WO2000068674A1 - Mouth odor detection device and regulating method therefor - Google Patents

Mouth odor detection device and regulating method therefor Download PDF

Info

Publication number
WO2000068674A1
WO2000068674A1 PCT/JP2000/002903 JP0002903W WO0068674A1 WO 2000068674 A1 WO2000068674 A1 WO 2000068674A1 JP 0002903 W JP0002903 W JP 0002903W WO 0068674 A1 WO0068674 A1 WO 0068674A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
gas sensor
metal oxide
resistance value
semiconductor gas
Prior art date
Application number
PCT/JP2000/002903
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Ito
Kuniyoshi Koizumi
Nobuaki Murakami
Takeo Tsunemi
Original Assignee
Tanita Corporation
Fis Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corporation, Fis Inc. filed Critical Tanita Corporation
Priority to JP2000616408A priority Critical patent/JP4129122B2/en
Priority to AU43173/00A priority patent/AU4317300A/en
Publication of WO2000068674A1 publication Critical patent/WO2000068674A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B2010/0083Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements for taking gas samples
    • A61B2010/0087Breath samples

Definitions

  • the present invention relates to a bad breath inspection apparatus for detecting bad breath gas components and detecting bad breath, and a method of adjusting the same.
  • the detection target gas was sulfide-based gas, especially methyl mercaptan (corresponding to periodontal disease, which is one of the causes of bad breath).
  • CH 3 SH methylmercaptan
  • methylmercaptan was also used as an adjustment gas for setting the criteria for determining bad breath intensity in order to determine bad breath intensity from the concentration of methyl mercaptan.
  • halitosis is not limited to periodontal disease.
  • the present invention has been made in view of the above circumstances, and its purpose is not limited to periodontal disease, but also lifestyle and lifestyle of daily life such as eating and smoking. It is an object of the present invention to provide a breath odor detection device that detects various bad breath factor gas components that fluctuate in a short term and / or a long term due to the above factors and appropriately performs a bad breath test.
  • the breath odor detection device of the present invention includes a metal oxide semiconductor gas sensor, a heater for heating the metal oxide semiconductor gas sensor, an electric current supplied to the metal oxide semiconductor gas sensor by an operation start signal, and a metal oxide semiconductor gas sensor.
  • the heater is controlled so that the temperature of ⁇ becomes high, the expiration of expiration is detected from the change in the resistance value of the metal oxide semiconductor gas sensor under high temperature conditions, and based on the detection, Heater control means for controlling the energization of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low; and energization control of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low.
  • the resistance value of the metal oxide semiconductor gas sensor is detected after a lapse of a certain period of time, and immediately before or at a certain time before the detection of expiration in high temperature heating conditions
  • the resistance value of the metal oxide semiconductor gas sensor after a certain period of time from the transition to the low and high temperature state is defined as the reference resistance value, and the ratio between the resistance value of the metal oxide semiconductor gas sensor and the reference resistance value is the reference resistance value.
  • Detecting means for detecting the concentration of the bad breath factor gas component in the exhaled breath by comparing with the measured value, and spraying a regulated gas, which is a mixture of a sulfide-based gas and a hydrocarbon-based gas at a predetermined ratio, onto the metal oxide semiconductor gas sensor
  • a regulated gas which is a mixture of a sulfide-based gas and a hydrocarbon-based gas at a predetermined ratio
  • the resistance value immediately before or after a certain period of time when an adjustment gas in which a sulfide-based gas and a hydrocarbon-based gas are mixed at a predetermined ratio is blown to a metal oxide semiconductor gas sensor is determined as a reference resistance value for adjustment.
  • the ratio of the resistance value of the metal oxide semiconductor gas sensor to the reference resistance value for adjustment at a certain time after the transition to the low heat state of the mouth and the reference resistance value for adjustment is used as the criterion for bad breath inspection, it is not limited to periodontal disease , It is possible to detect various bad breath factor gas components that fluctuate in the short term or long term depending on the lifestyle and health conditions of daily life such as eating and smoking, and to conduct proper breath odor testing.
  • a mixed gas of methyl mercaptan and ethylene as the adjusting gas.
  • the change in the resistance value when the adjustment gas is blown to the metal oxide semiconductor gas sensor under a high temperature condition becomes larger and the change in the resistance value becomes lower than that of the adjustment gas consisting only of methylmer force butane. It is easy to use as a trigger for the timing to bring the mouth heat state.
  • the mixing ratio between methyl mercaptan and ethylene is approximately 1:10. In this case, a good correlation with the result of the sensory test is obtained.
  • a further object of the present invention is not only periodontal disease, but also various kinds of bad breath factor gas components that fluctuate in the short term and / or in the long term depending on lifestyle habits such as eating and smoking, health conditions, and the like.
  • the purpose of the present invention is to provide a method for adjusting a bad breath inspection apparatus that performs an appropriate inspection of the breath. That is, the method for adjusting the breath odor detection device of the present invention includes a metal oxide semiconductor gas sensor, a heater for heating the metal oxide semiconductor gas sensor, a power supply to the metal oxide semiconductor gas sensor by an operation start signal, and a metal oxide semiconductor gas sensor.
  • the temperature of the heater is controlled so that the temperature of the heater becomes high, and under the high temperature state, the resistance of the metal oxide semiconductor gas sensor is changed, and the expiration of expiration is detected by the metal oxide semiconductor gas sensor.
  • Heater control means for controlling energization of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low based on the detection, and energization control of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low After a certain period of time, the resistance value of the metal oxide semiconductor gas sensor is detected, and expiration is performed under high-temperature heating conditions.
  • the resistance value immediately before or after a certain period of time of detection known as a reference resistance value
  • the low thermal state tree ⁇ - between the resistance value and the reference resistance value of the metal oxide semiconductor gas sensor constant time elapse Detecting means for detecting the concentration of the gas component of the bad breath factor in the breath by comparing the value of the ratio with the value of the preset reference ratio; and storage means for storing the value of the reference ratio.
  • the ratio of the resistance value of the metal oxide semiconductor gas sensor to the reference resistance value for adjustment at the time when a certain time has elapsed from the state transition is stored in the storage means as the value of the reference ratio.
  • the resistance value immediately before or after a certain time is applied to the metal oxide semiconductor gas sensor with an adjustment gas obtained by mixing a sulfide-based gas and a hydrocarbon-based gas at a predetermined ratio is used as a reference resistance value for adjustment.
  • the ratio of the resistance value of the metal oxide semiconductor gas sensor to the reference resistance value for adjustment after a certain period of time from the low-temperature] thermal state tree is used as a criterion for bad breath inspection, Not limited to this, detect various bad breath factor gas components that fluctuate in the short term or long term depending on the lifestyle and health conditions of daily life such as eating and smoking, and conduct proper breath odor testing. Can be.
  • the adjustment gas it is preferable to use a mixed gas of methyl mercaptan and ethylene as the adjustment gas.
  • the change in the resistance value when the adjustment gas is sprayed on the metal oxide semiconductor gas sensor under a high temperature condition becomes larger and the change in the resistance value becomes lower than that of the adjustment gas consisting only of methyl mercaptan. It is easy to use as a trigger for the timing to bring the mouth heat state.
  • the mixing ratio of methyl mercaptan to ethylene is preferably about 1:10. In this case, a good correlation with the result of the sensory test is obtained.
  • FIG. 1 is a specific circuit diagram of an embodiment of the breath odor inspection apparatus of the present invention.
  • Fig. 2 is a timing chart for explaining the operation of air pollution detection by the bad breath inspection device.
  • FIG. 3 is a timing chart for explaining the operation of the metal oxide semiconductor gas sensor when there is no bad breath.
  • FIG. 4 is a timing chart for explaining the operation of the metal oxide semiconductor gas sensor when there is bad breath.
  • FIG. 5 is a graph showing the correlation between the sensory test and the resistance change of the metal oxide semiconductor gas sensor.
  • Fig. 6A is a diagram showing the correlation between the adjustment gas consisting of methyl mercaptan alone and the sensory test
  • Fig. 6B is a diagram showing the correlation between the adjustment gas consisting of a mixed gas of methyl mercaptan and methane and the sensory test
  • FIG. 6C is a diagram showing a correlation between a conditioning gas composed of a mixed gas of methyl mercaptan and ethylene and a sensory test.
  • 7A to 7D are diagrams showing the results of studying the mixing ratio of the adjustment gas.
  • 8A to 8D are diagrams showing the results of study on the mixing ratio of the adjustment gas.
  • 9A to 9D are diagrams showing the results of studying the mixing ratio of the adjustment gas.
  • FIG. 10 shows a timing chart and a Noguchi chart for operation when the adjustment is performed using an adjustment gas consisting of only methyl mercaptan.
  • Fig. 11 shows a control gas consisting of a mixture of methyl mercaptan and ethylene. Therefore, it is a timing chart for explaining the operation when the adjustment is performed.
  • FIG. 1 shows a circuit diagram of the present embodiment.
  • a low-ME (for example, 3 V) battery power source 1 such as a dry battery or a rechargeable battery
  • a heater 2 embedded in a gas-sensitive body and electrode terminals 1 and 2 to which both ends of the heater 2 are connected are connected to the sensor 2.
  • microcomputer that has a programmed function such as a means for performing detection and a detection means for detecting the gas to be detected, has a driver function for the LCD 4, and performs control processing of the entire device.
  • the main component is EEPROM 6 that stores data that serves as a reference for determining bad breath intensity.
  • the resistance value between the output electrode terminal 3 of the gas-sensitive body and the electrode terminal ⁇ to which one end of the ground side of the heater 2 is connected is such that the gas contacts the gas-sensitive body.
  • the built-in heater 2 is connected to the battery power supply 1 via a PN p-type transistor Q1.
  • the gas-sensitive body is connected to the battery power supply 1 through a parallel circuit of a series circuit of a PNP transistor Q2 and a resistor R2 and a series circuit of a PNP transistor Q3 and a resistor R9. Connected, and when the transistor Q 2 or Q 3 or both are turned on, the voltage across the gas-sensitive body is generated by the current flowing through the resistor R 2 or R 9 or the parallel circuit of both resistors.
  • s is taken into the input port I1 of the microcomputer 5, and the microcomputer 5 calculates the resistance value of the gas-sensitive material from the 3 ⁇ 4 ⁇ s force at both ends.
  • the microcomputer 5 connects the power supply terminal V to the battery power supply 1 via the diode D 1 to receive the power supply, and is connected to the start switch SW connected to the battery power supply 1.
  • the middle point of the series circuit of the anti-R5 is connected to the input port I2, and when the input port I2 becomes incomplete, the control process for gas detection is started according to the program. .
  • the microcomputer 5 connects the middle point to the base of the transistor Q1, connects one end to the positive terminal of the battery power supply 1, and connects the other end of the series circuit of resistors R3 and R4 to the output port ⁇ 1.
  • a function is provided to control the energization of heater 2 by outputting a pulse signal for duty control from O 1 to turn on / off transistor Q 1, and to increase the on-duty of transistor Q 1 by that function
  • the semiconductor gas sensor 3 is heated to a high temperature state or, on the contrary, is shortened to perform a heating control to make the state low in the J temperature.
  • the microcomputer 5 responds by connecting the bias circuit of the transistor Q2 to the output port O3 and the bias circuit of the transistor Q3 to the output port O4, and setting the output ports ⁇ 3 and ⁇ 4 to low level.
  • the base current flows through the transistors Q 2 and Q 3 to turn on, and the resistors R 2 and R 9 are connected between the resistance R s of the gas sensing body and the positive pole of the battery lightning source 1. In other words, it has a function to switch the load resistance.
  • the microcomputer 5 connects the input terminals ID1 to ID4 of the LCD 4 to the output ports Ol1 to # 14, respectively, the input terminal ID5 and ID6 to the output port # 15, and the input terminal ID to the output port Ol6. 7 and ID 8, input terminals ID9 and ID10 to output port O17, input terminals ID11 and ID12 to output port Ol8, input terminals ID13 and ID14 to output port # 19, and output port 020 Connect the input terminals ID15 and ID16 respectively, and connect the common terminal COM1 of LCD4 to the output port No.2, and display the character on LCD4 using the drive signals output from the output ports Ol1 to No20 and O2. Control.
  • the microcomputer 5 takes in the voltage of the shunt regulator 7 to the input port I3 and has a dead battery detection function for detecting a dead battery when the Iff of the shunt regulator 7 exceeds a specified value.
  • the shunt regulator 7 is connected to the battery source 1 via the transistor Q2 and the resistor R1, and is configured to stabilize the battery me by a predetermined miB.
  • the battery voltage is monitored from the applied voltage and the stabilized voltage, so that a decrease in the battery voltage can be relatively detected.
  • the EEPROM 6 is used to register a reference value used for detecting a gas to be detected.
  • the value of the resistance R 0 of the gas-sensitive material of the metal oxide semiconductor gas sensor 3 under a high temperature condition is registered.
  • the value of the resistance Rs when switching from the high temperature state to the low heat state and the value of the ratio R sZRO of the two are stored respectively, and the value of the stored ratio is the concentration of the bad breath factor gas component that is the detection target gas during normal times. That is, it is used as a reference value for detecting the intensity of bad breath.
  • the EEPROM 6 connects the data input terminal DI, the serial clock terminal SR, and the chip selector terminal CS to the data output port do, output ports # 21 and O22 of the microcomputer 5, respectively, and pulls up with the resistors R7, R8, and R6 respectively. I have.
  • the data output terminal D ⁇ is connected to the data input terminal di of the microcomputer 5.
  • the LCD4 pulls up the input terminals ID1 to ID16 and the common terminal COM1 with a resistor, respectively.
  • ID1 to ID4 correspond to the characters indicating the concentration of the bad breath gas component, that is, the bad breath intensity
  • ID5 to ID16 are displayed on both sides of the character indicating the concentration. Character showing the expression of a person Corresponding to the lacquer, the higher the concentration of the bad breath gas component, for example, the sharper the expression becomes.
  • number 8 is a reset IC that resets the microcomputer 5 by supplying a reset signal when the power is turned on
  • number 9 is a clock oscillator that supplies a reference clock to the microcomputer
  • number 10 is a connector that connects the microcomputer 5 and LCD4. It is.
  • C1 to C3 are capacitors.
  • the operation of the reset IC 8 resets the microcomputer 5 and performs initial settings. Thereafter, the microcomputer 5 operates in the low-consumption mode and is in a standby state.
  • the start switch SW is turned on, and the input of the input port I2 goes high.
  • the microcomputer 5 enters the operation state of the pre-programmed adjustment mode.
  • the cycle is 8.2 ms ec and the low level period is 960 / sec from the output port Ol. Pulse signal is generated.
  • the transistor Q 1 is turned on and off at an on-duty of 960 / sec and a period of 8.2 ms sec, and power is supplied to the heater 2 from the battery power source 1 during the on-period.
  • the average mffi applied to the heater 2 becomes approximately 1.0 V due to the duty control, so that the calorific value of the heater 2 is large and the metal oxide semiconductor gas sensor 3 is heated to a high temperature state.
  • the microcomputer 5 outputs a signal for turning on the transistors Q 2 and Q 3 (or only Q 2 or Q 3) at an off timing of the transistor Q 1 every 0.5 sec.
  • This The gas-sensitive body is energized through the load resistance.
  • the microcomputer 5 takes in the voltage Vs across the gas-sensitive body of the metal oxide semiconductor gas sensor 3 into the input port I1, and obtains the voltage Vs across the gas-sensitive body.
  • the sampling value is used to calculate the resistance value R s of the gas sensing element, and the ratio between the resistance value RS obtained by the current sampling and the resistance value R s' obtained by the previous sampling is calculated every 0.5 sec.
  • a conditioning gas gas obtained by mixing sulfide-based gas, methyl-mer-butane, and hydrocarbon-based gas, ethylene at a mixing ratio of 1:10 is mixed with a metal oxide semiconductor gas sensor 3. Spraying, the resistance R s of the gas-sensitive material decreases. When the ratio of the resistance value R s obtained in the current sampling obtained every 0.5 sec to R s ′ obtained in the previous sampling becomes 0.96 or less, the microcomputer 5 detects that the adjustment gas has been blown. .
  • the microcomputer 5 switches the low-level period of the pulse signal output from the output port O1 to 75 ⁇ s, and the on-duty of the transistor Q1 remains unchanged. To 75 ⁇ sec. As a result, the average ME applied to the heater 2 through the transistor Q 1 is reduced to approximately 0.3 V, and the amount of heat generated by the heater 2 is reduced. Therefore, the metal oxide semiconductor gas sensor 3 shifts from a high temperature state to a low heat state.
  • the microcomputer 5 determines the voltage V s across the gas-sensitive body of the metal oxide semiconductor gas sensor 3. Is input to the input port I1, and the reference resistance value R0 of the gas-sensitive body of the metal oxide semiconductor gas sensor 3 is calculated from the input voltage Vs, the load resistance value, and the power supply value.
  • the microcomputer 5 takes in the voltage V s across the gas-sensitive body of the metal oxide semiconductor gas sensor 3 into the input port I 1, and uses the miEv s, load resistance value, and power supply value Calculate the resistance value R s of the gas-sensitive material of the metal oxide semiconductor gas sensor 3 and further calculate the ratio R s / RO of this resistance value R s to the reference resistance value R 0, and calculate the reference value together with the values of R s and RO.
  • the reference value for detecting the concentration of the bad breath factor gas component which is the detection target gas of the bad breath detection device, is set.
  • the microcomputer 5 When the above adjustment mode ends, the microcomputer 5 returns to the standby state. Then, after the connection between the adjustment terminal ADJ and the ground is released, if the start switch SW is turned on, the microcomputer 5 starts the detection operation in the normal operation mode.
  • the microcomputer 5 is initialized when the start switch SW is turned on during this standby state, and the input port I2 and the input port are turned on. After the processing, the operation in the normal operation mode is started. First, the data registered in the EEPROM 6 is read and stored in the built-in RAM, and the reference value used for detecting the bad breath intensity is set.
  • the microcomputer 5 When the normal operation mode starts, the microcomputer 5 generates a pulse signal with a period of 8.2 ms and a low-level period of 960 ⁇ sec from the output port # 1, as in the adjustment mode.
  • the transistor Q1 is turned on and off with an on-duty of 960 ⁇ sec and a period of 8.2 ms ec, and power is supplied from the battery power supply 1 to the heater 2 of the metal oxide semiconductor gas sensor 3 during the on period.
  • the metal oxide semiconductor gas sensor 3 is brought to a high temperature state. And for example every 0.5 sec
  • the microcomputer 5 samples the voltage between both ends of the gas sensing body, calculates the resistance value R s of the gas sensing body, and calculates the resistance value R s obtained by this sampling and the previous sampling time. Calculate the ratio of the resistance value R s' obtained by the above every 0.5 sec.
  • the microcomputer 5 detects that expiration has been blown.
  • the microcomputer 5 performs the detection determination of the contamination of the atmosphere (atmospheric contamination) immediately after the above-described breath detection, and interrupts the breath detection operation when the detection is determined that the atmosphere is polluted.
  • the contamination of the atmosphere atmospheric contamination
  • the resistance value R s of the gas-sensitive body of the metal oxide semiconductor gas sensor 3 detected at the time of sampling immediately after the start of expiration detection ta and the reference resistance detected in the adjustment mode and stored in the EEPROM 6 If the ratio of the calculated value to the value R 0 is smaller than a predetermined value (for example, 0.2): ⁇ , and the value is increasing ⁇ , that is, if the resistance value Rs is in the clean direction in which the resistance value Rs increases,
  • the microcomputer 5 determines that the state is in a polluted state where it is impossible to detect bad breath, the microcomputer 5 stops the detecting operation, returns to the standby state, and displays on the LCD 4 that the air pollution state is present.
  • a predetermined value for example, 0.2
  • FIG. 2 shows a schematic diagram of this air pollution judgment, in which the curves A and A 'show the change in R s ZR O from the expiration detection timing ta when the air pollution is low, and B Indicates the change of R s ZR O in the air pollution state, C indicates the case where the air pollution degree is higher, and the value of R s ZR O indicates the clean direction due to the expiration, ⁇ Indicates the exhalation detection limit, and // 3 indicates the air pollution detection limit point.
  • the microcomputer 5 For example, when 1 second elapses, the pulse is output from the output port O 1 with the on-duty of the transistor Q 1 being 75 ⁇ sec while maintaining the cycle, and the temperature of the metal oxide semiconductor gas sensor 3 is lowered. Allow to heat up.
  • the resistance value of the sampled gas sensing material is stored in the built-in RAM as a reference resistance value R0 ', and thereafter, the ratio Rs / RO' to the resistance value Rs obtained by sampling every 5 seconds Is calculated. Then, the ratio of the calculated value 2 seconds after the start of the transition to the low-temperature heating state to the reference value (Rs / RO) determined in the adjustment mode is determined, and the breath odor intensity is determined from the value of the ratio. The character corresponding to the bad breath intensity is displayed on the LCD4. After a certain period of time, the microcomputer 5 returns to the standby state, and the display on the LCD 4 is also turned off.
  • FIGS. 3 and 4 show the transition state of R s / R0, from the on-time t1 of the start switch SW.
  • Fig. 3 shows that the value of R s / RO 'obtained at time t 4 after 2 seconds from time t 3 is 25, and
  • Fig. 4 shows that R s obtained at time t 4 after 2 seconds from time t 3 This indicates that the value of / RO 'is 8.
  • the reference value 1571 0 stored in ££ 10] ⁇ / [6 is 10 for example, and the value of R s / RO 'obtained at time t4 is as shown in Fig. 3. If the value is greater than 10 in this case, it is determined that there is no bad breath, and as shown in Fig. 4, it is determined that the value is less than 10 and ⁇ indicates a bad breath, and the microcomputer 5 further calculated the bad breath intensity.
  • the LCD 4 displays the character corresponding to the bad breath intensity by calculating based on the value R s ZR0 'and the reference value R sZRO. Even if there is no bad breath, the corresponding character is displayed on LCD4. Note that t 2 in FIGS. 3 and 4 indicates the point in time when the exhalation is detected.
  • rank 1 no bad breath
  • rank 2 weak
  • Rank 3 Sense of bad breath
  • Rank 4 Sense of strong breath
  • 5 subjects judged to belong to each rank in the four-step evaluation a total of 20 subjects
  • the adjustment gas was a simple gas containing only methyl mercaptan, a mixed gas containing methyl mercaptan and methane, and a mixed gas containing methyl mercaptan and ethylene.
  • Figures 6A to 6C show the results of examining the correlation between the test results obtained by the bad breath tester adjusted by each control gas and the sensory test.
  • the display levels 1 to 4 on the horizontal axis in FIGS. 6A to 6C correspond to the ranks 1 to 4 in the sensory test described above.
  • the adjustment gas is a simple gas consisting of methyl mercaptan alone, the correlation between the test results obtained by the bad breath inspection device and the sensory test is poor, as shown in Fig. 6A, making it impractical.
  • the adjustment gas is a mixture of methyl mercaptan and methane, it is better than methyl mercaptan alone, as shown in Fig. 6B, but the correlation between the test results from the breath odor analyzer and the sensory test is still poor. Is not suitable for practical use.
  • the bad breath tester which was adjusted with a gas mixture of 0.7 ppm methinoremercaptan and 10 ppm ethylene, showed a very good correlation with Rank 3 subjects as shown in Figure 7C. However, the other ranks 1, 2, and 4 have very good correlation.
  • the breath odor inspection device adjusted by adjusting the gas mixture of methyl mercaptan 0.7 Ppm and ethylene 3 ppm, the correlation was very good for the subjects of each rank 1 to 4 as shown in Figs. 8A to 8D. Absent.
  • a breath odor detection device adjusted by adjusting gas containing a mixture of 0.7 ppm of methyl mercaptan and 7 ppm of ethylene, as shown in Figs.
  • the correlation is very good. Therefore, if adjustment is performed using an adjustment gas in which the mixing ratio of methino-remercaptan and ethylene is set to 1:10, a bad breath inspection apparatus and an adjustment method thereof having a very good correlation with a sensory test can be realized.
  • the breath odor is detected by using a conditioned gas obtained by mixing methinoremercaptan and ethylene at a mixing ratio of 1:10 in the adjustment mode. Since the reference value for the test is set, the correlation with the sensory test can be adjusted very well. Unlike the conventional example where adjustment was made only with methyl mercaptan, it is not limited to periodontal disease. The advantage of being able to detect bad breath gas components that fluctuate in the short term and / or long term depending on the daily habits such as eating and smoking, and health conditions, etc., and perform appropriate tests for bad breath. There is.
  • a change in the resistance value when the exhaled air is blown to the metal oxide semiconductor gas sensor 3 under a high temperature condition is used as a trigger of a timing for causing a change in the resistance value to a low ⁇ Jtl thermal state.
  • ⁇ J] Thailand to transition to mouth heat state It is possible to easily determine the mining. Therefore, when the adjustment gas consisting only of methyl mercaptan is used in the adjustment mode, as shown in Fig. 10, the resistance value R s obtained at the current sampling (time t 3) obtained every 0.5 sec is If the ratio of R s ′ obtained in the previous sampling (time t 2) is larger than 0.96, the microcomputer 5 may not be able to detect that the adjustment gas has been blown. In other words, the adjustment gas consisting of methyl mercaptan alone does not trigger the timing of transition from the high-temperature state to the low-temperature overheating state, and may not be able to perform normal adjustment.
  • the sampling is performed at the current sampling (time t 3) obtained every 0.5 sec as shown in FIG.
  • the ratio of the resistance value R s to R s ′ obtained in the previous sampling (time t 2) is 0.96 or less, and the microcomputer 5 can detect that the adjustment gas has been blown.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A mouth odor detection device for detecting various mouth odor-causing gas components varying in a short time or over an extended period of time due to paradental diseases, daily living habits such as eating and smoking and health conditions and for examining a mouth odor; and a regulating method therefor. In a regulating mode, a regulating gas (a mixture of methylmercaptan and ethylene in a mixing ratio of 1 : 10) is sprayed over a metal oxide semiconductor gas sensor (3) in a high temperature condition. Then, a microcomputer (5) computes, when a high temperature condition-to-low temperature heating-switching is started, a reference resistance R0 of the metal oxide semiconductor gas sensor (3). In addition, during a transition period from the start of shifting to the low-temperature heating to a resistance stabilization of the gas sensor (3), the microcomputer (5) determines a resistance Rs of the gas sensor (3) and a ratio Rs/R0 and stores the ratio along with Rs and R0 in an EEPROM (6) as reference value data.

Description

口臭検査装置及びその調整方法 技術分野  Technical Field
本発明は、 口臭要因ガス成分を検知して口臭の検查を行うための口臭 検査装置、 及びその調整方法に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a bad breath inspection apparatus for detecting bad breath gas components and detecting bad breath, and a method of adjusting the same. Background art
金属酸化物半導体ガスセンサを用いた従来の口臭検査装置では、 検知 対象ガスを硫化物系のガス、 特に口臭の要因の一つである歯周病と良レ、相関 が得られているメチルメルカプタン (C H 3 S H) に限定し、 メチルメル力 プタンの濃度から口臭強度の判定を行うために、 口臭強度の判定基準を設定 する調整ガスにもメチルメルカプタンが用レヽられていた。 In a conventional bad breath inspection device using a metal oxide semiconductor gas sensor, the detection target gas was sulfide-based gas, especially methyl mercaptan (corresponding to periodontal disease, which is one of the causes of bad breath). CH 3 SH), and methylmercaptan was also used as an adjustment gas for setting the criteria for determining bad breath intensity in order to determine bad breath intensity from the concentration of methyl mercaptan.
ところで、 一般的な口臭の要因は歯周病に限ったものではなく、 食事 や喫煙といった日常生活の生活習'慣、 健康状態等によつて短期的及び若しく
Figure imgf000003_0001
By the way, the common cause of halitosis is not limited to periodontal disease.
Figure imgf000003_0001
で調整された従来の口臭検查装置にぉレヽては、 歯周病との相関はよいものの、 その他の要因から生じる一般的な口臭と検查結果との相関がとれず、 適正な 口臭検査が行えない場合があった。 発明の開示 With the conventional breath odor detection device adjusted in the above, although the correlation with periodontal disease is good, the general breath odor resulting from other factors cannot be correlated with the test result, and an appropriate breath odor test is performed. Could not be performed. Disclosure of the invention
本発明は上記事情に鑑みて為されたものであり、 その目的とするとこ ろは、 歯周病に限らず、 食事や喫煙といった日常生活の生活習慣、 健康状態 等によって短期的及び若しくは長期的に変動する種々の口臭要因ガス成分を 検知して口臭の検査を適正に行う口臭検查装置を提供することにある。 すな わち、 本発明の口臭検査装置は、 金属酸化物半導体ガスセンサと、 金属酸化 物半導体ガスセンサを加熱するヒータと、 動作開始信号により金属酸化物半 導体ガスセンサに通電するとともに金属酸化物半導体ガスセンサの^^が高 温となるようにヒータの通電を制御し、 高温状態下で金属酸化物半導体ガス センサの抵抗値の変化から金属酸化物半導体ガスセンサに呼気の吹きかけを 検知し、 その検知に基づいて金属酸ィ匕物半導体ガスセンサの温度が低温とな るようにヒータの通電を制御するヒ一タ制御手段と、 金属酸化物半導体ガス センサの温度が低温となるようにヒータの通電制御が開始されてから一定時 間経過時点で金属酸化物半導体ガスセンサの抵抗値を検知し、 高温加熱状態 下で呼気の吹きかけ検知の直前又は一定時間後の抵抗値を基準抵抗値とし、 低 & ¾熱状態移行から一定時間経過時点の金属酸化物半導体ガスセンサの抵 抗値と基準抵抗値との比の値と予め設定してある基準の比の値との比較によ り呼気中の口臭要因ガス成分の濃度を検知する検知手段と、 硫化物系ガスと 炭化水素系ガスを所定の割合で混合した調整ガスを金属酸化物半導体ガスセ ンサに吹きかける直前又は一定時間後の抵抗値を調整用の基準抵抗値とする とともに低 ^口熱状態 から一定時間経過時点の金属酸化物半導体ガスセ ンサの抵抗値と調整用の基準抵抗値との比の値を、 前記基準の比の値として 格納する記憶手段とを備えたことを特徴とする。 The present invention has been made in view of the above circumstances, and its purpose is not limited to periodontal disease, but also lifestyle and lifestyle of daily life such as eating and smoking. It is an object of the present invention to provide a breath odor detection device that detects various bad breath factor gas components that fluctuate in a short term and / or a long term due to the above factors and appropriately performs a bad breath test. In other words, the breath odor detection device of the present invention includes a metal oxide semiconductor gas sensor, a heater for heating the metal oxide semiconductor gas sensor, an electric current supplied to the metal oxide semiconductor gas sensor by an operation start signal, and a metal oxide semiconductor gas sensor. The heater is controlled so that the temperature of ^^ becomes high, the expiration of expiration is detected from the change in the resistance value of the metal oxide semiconductor gas sensor under high temperature conditions, and based on the detection, Heater control means for controlling the energization of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low; and energization control of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low. The resistance value of the metal oxide semiconductor gas sensor is detected after a lapse of a certain period of time, and immediately before or at a certain time before the detection of expiration in high temperature heating conditions The resistance value of the metal oxide semiconductor gas sensor after a certain period of time from the transition to the low and high temperature state is defined as the reference resistance value, and the ratio between the resistance value of the metal oxide semiconductor gas sensor and the reference resistance value is the reference resistance value. Detecting means for detecting the concentration of the bad breath factor gas component in the exhaled breath by comparing with the measured value, and spraying a regulated gas, which is a mixture of a sulfide-based gas and a hydrocarbon-based gas at a predetermined ratio, onto the metal oxide semiconductor gas sensor The resistance value immediately before or after a certain period of time is used as the reference resistance value for adjustment, and the ratio of the resistance value of the metal oxide semiconductor gas sensor to the reference resistance value for adjustment after a certain period of time from the low thermal state And storage means for storing the value as the value of the reference ratio.
この口臭検查装置においては、 硫化物系ガスと炭化水素系ガスを所定 の割合で混合した調整ガスを金属酸化物半導体ガスセンサに吹きかける直前 又は一定時間後の抵抗値を調整用の基準抵抗値とするとともに低¾¾口熱状態 移行から一定時間経過時点の金属酸化物半導体ガスセンサの抵抗値と調整用 の基準抵抗値との比の値を口臭検査の判定基準とするので、 歯周病に限らず、 食事や喫煙といった日常生活の生活習慣、 健康状態等によつて短期的及び若 しくは長期的に変動する種々の口臭要因ガス成分を検知して口臭の検査を適 正に行うことができる。 In this breath odor detection device, the resistance value immediately before or after a certain period of time when an adjustment gas in which a sulfide-based gas and a hydrocarbon-based gas are mixed at a predetermined ratio is blown to a metal oxide semiconductor gas sensor is determined as a reference resistance value for adjustment. In addition, since the ratio of the resistance value of the metal oxide semiconductor gas sensor to the reference resistance value for adjustment at a certain time after the transition to the low heat state of the mouth and the reference resistance value for adjustment is used as the criterion for bad breath inspection, it is not limited to periodontal disease , It is possible to detect various bad breath factor gas components that fluctuate in the short term or long term depending on the lifestyle and health conditions of daily life such as eating and smoking, and to conduct proper breath odor testing.
上記の口臭検査装置において、 調整ガスとしてメチルメルカブタンと エチレンの混合ガスを使用することが好ましい。 この場合は、 メチルメル力 ブタンのみから成る調整ガスに比較して、 高温状態下で調整ガスを金属酸化 物半導体ガスセンサに吹きかけたときの抵抗値の変化が大きくなり、 その抵 抗値変化を低^口熱状態へ樹亍させるタイミングのトリガとし易くなる。 ま た、 メチルメルカプタンとエチレンとの混合比を略 1 : 1 0とすることが好 ましい。 この場合は、 官能試験による検查結果との良い相関が得られる。  In the above-mentioned halitosis test device, it is preferable to use a mixed gas of methyl mercaptan and ethylene as the adjusting gas. In this case, the change in the resistance value when the adjustment gas is blown to the metal oxide semiconductor gas sensor under a high temperature condition becomes larger and the change in the resistance value becomes lower than that of the adjustment gas consisting only of methylmer force butane. It is easy to use as a trigger for the timing to bring the mouth heat state. Further, it is preferable that the mixing ratio between methyl mercaptan and ethylene is approximately 1:10. In this case, a good correlation with the result of the sensory test is obtained.
本発明のさらなる目的は、 歯周病に限らず、 食事や喫煙といった日常 生活の生活習慣、 健康状態等によつて短期的及び若しくは長期的に変動する 種々の口臭要因ガス成分を検知して口臭の検査を適正に行う口臭検査装置の 調整方法を することにある。 すなわち、 本発明の口臭検査装置の調整方 法は、 金属酸化物半導体ガスセンサと、 金属酸化物半導体ガスセンサを加熱 するヒータと、 動作開始信号により金属酸化物半導体ガスセンサに通電する とともに金属酸化物半導体ガスセンサの温度が高温となるようにヒータの通 電を制御し、 その高温状態下で金属酸化物半導体ガスセンサの抵抗値の変ィ匕 力、ら金属酸化物半導体ガスセンサに呼気の吹きかけを検知し、 その検知に基 づいて金属酸ィ匕物半導体ガスセンサの温度が低温となるようにヒータの通電 を制御するヒータ制御手段と、 金属酸化物半導体ガスセンサの温度が低温と なるようにヒータの通電制御が開始されてから一定時間経過時点で金属酸ィ匕 物半導体ガスセンサの抵抗値を検知し、 高温加熱状態下で呼気の吹きかけ検 知の直前又は一定時間後の抵抗値を基準抵抗値とし、 低 熱状態樹亍から —定時間経過時点の金属酸化物半導体ガスセンサの抵抗値と基準抵抗値との 比の値と予め設定してある基準の比の値との比較により呼気中の口臭要因ガ ス成分の濃度を検知する検知手段と、 前記基準の比の値を格納する記憶手段 とを備えた口臭検査装置の調整方法であって、 金属酸ィ匕物半導体ガスセンサ の S が低温となるようにヒータの通電制御が開始されてから一定時間経過 時点で金属酸ィヒ物半導体ガスセンサの抵抗値を検知手段により検知し、 高温 加熱状態下で、 硫化物系ガスと炭化水素系ガスを所定の割合で混合した調整 ガスの吹きかけ検知の直前又は一定時間後の抵抗値を基準抵抗値とし、 低温 加熱状態移行から一定時間経過時点の金属酸化物半導体ガスセンサの抵抗値 と調整用の基準抵抗値との比の値を、 前記基準の比の値として記憶手段に格 納することを特徴とする。 A further object of the present invention is not only periodontal disease, but also various kinds of bad breath factor gas components that fluctuate in the short term and / or in the long term depending on lifestyle habits such as eating and smoking, health conditions, and the like. The purpose of the present invention is to provide a method for adjusting a bad breath inspection apparatus that performs an appropriate inspection of the breath. That is, the method for adjusting the breath odor detection device of the present invention includes a metal oxide semiconductor gas sensor, a heater for heating the metal oxide semiconductor gas sensor, a power supply to the metal oxide semiconductor gas sensor by an operation start signal, and a metal oxide semiconductor gas sensor. The temperature of the heater is controlled so that the temperature of the heater becomes high, and under the high temperature state, the resistance of the metal oxide semiconductor gas sensor is changed, and the expiration of expiration is detected by the metal oxide semiconductor gas sensor. Heater control means for controlling energization of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low based on the detection, and energization control of the heater so that the temperature of the metal oxide semiconductor gas sensor becomes low After a certain period of time, the resistance value of the metal oxide semiconductor gas sensor is detected, and expiration is performed under high-temperature heating conditions. The resistance value immediately before or after a certain period of time of detection known as a reference resistance value, the low thermal state tree 亍 - between the resistance value and the reference resistance value of the metal oxide semiconductor gas sensor constant time elapse Detecting means for detecting the concentration of the gas component of the bad breath factor in the breath by comparing the value of the ratio with the value of the preset reference ratio; and storage means for storing the value of the reference ratio. A method of adjusting a bad breath inspection apparatus, wherein the resistance value of a metal oxide semiconductor gas sensor is determined at a certain time after the heater energization control is started so that S of the metal oxide semiconductor gas sensor becomes low. Detected by the detection means, and adjusted under a high temperature heating condition by mixing a sulfide-based gas and a hydrocarbon-based gas at a predetermined ratio. The ratio of the resistance value of the metal oxide semiconductor gas sensor to the reference resistance value for adjustment at the time when a certain time has elapsed from the state transition is stored in the storage means as the value of the reference ratio.
この調整方法においては、 硫化物系ガスと炭化水素系ガスを所定の割 合で混合した調整ガスを金属酸化物半導体ガスセンサに吹きかける直前又は 一定時間後の抵抗値を調整用の基準抵抗値とするとともに低^]口熱状態樹亍 から一定時間経過時点の金属酸化物半導体ガスセンサの抵抗値と調整用の基 準抵抗値との比の値を口臭検査の判定基準とするので、 歯周病に限らず、 食 事や喫煙といった日常生活の生活習慣、 健康状態等によつて短期的及び若し くは長期的に変動する種々の口臭要因ガス成分を検知して口臭の検査を適正 に行うことができる。  In this adjustment method, the resistance value immediately before or after a certain time is applied to the metal oxide semiconductor gas sensor with an adjustment gas obtained by mixing a sulfide-based gas and a hydrocarbon-based gas at a predetermined ratio is used as a reference resistance value for adjustment. The ratio of the resistance value of the metal oxide semiconductor gas sensor to the reference resistance value for adjustment after a certain period of time from the low-temperature] thermal state tree is used as a criterion for bad breath inspection, Not limited to this, detect various bad breath factor gas components that fluctuate in the short term or long term depending on the lifestyle and health conditions of daily life such as eating and smoking, and conduct proper breath odor testing. Can be.
上記の調整方法において、 調整ガスとしてメチルメルカブタンとェチ レンの混合ガスを使用することが好ましい。 この場合は、 メチルメルカプタ ンのみから成る調整ガスに比較して、 高温状態下で調整ガスを金属酸化物半 導体ガスセンサに吹きかけたときの抵抗値の変ィ匕が大きくなり、 その抵抗値 変化を低 口熱状態へ樹亍させるタイミングのトリガとし易くなる。 また、 メチルメルカプタンとエチレンとの混合比を略 1 : 1 0とすることが好まし レ、。 この場合は、 官能試験による検査結果との良い相関が得られる。 . 本発明のさらなる特徴およびそれがもたらす効果は, 添付された図面 を参照して以下に述べる発明を実施するための最良の形態から理解されるだ ろう。 図面の簡単な説明 In the above adjustment method, it is preferable to use a mixed gas of methyl mercaptan and ethylene as the adjustment gas. In this case, the change in the resistance value when the adjustment gas is sprayed on the metal oxide semiconductor gas sensor under a high temperature condition becomes larger and the change in the resistance value becomes lower than that of the adjustment gas consisting only of methyl mercaptan. It is easy to use as a trigger for the timing to bring the mouth heat state. The mixing ratio of methyl mercaptan to ethylene is preferably about 1:10. In this case, a good correlation with the result of the sensory test is obtained. Further features of the present invention and the advantages provided by the same will be understood from the following detailed description of the preferred embodiments with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の口臭検査装置の一実施形態の具体回路図である。 FIG. 1 is a specific circuit diagram of an embodiment of the breath odor inspection apparatus of the present invention.
図 2は、 口臭検査装置の大気汚染検知の動作説明用タイミングチヤ一トであ る。 Fig. 2 is a timing chart for explaining the operation of air pollution detection by the bad breath inspection device.
図 3は、 口臭無し時の金属酸化物半導体ガスセンサの動作説明用タイミング チャートである。 FIG. 3 is a timing chart for explaining the operation of the metal oxide semiconductor gas sensor when there is no bad breath.
図 4は、 口臭有り時の金属酸化物半導体ガスセンサの動作説明用タイミング チヤ一トである。 FIG. 4 is a timing chart for explaining the operation of the metal oxide semiconductor gas sensor when there is bad breath.
図 5は、 官能試験と金属酸化物半導体ガスセンサとの抵抗値変ィ匕との相関を 示すグラフである。 FIG. 5 is a graph showing the correlation between the sensory test and the resistance change of the metal oxide semiconductor gas sensor.
図 6 Aは、 メチルメルカブタンのみから成る調整ガスと官能試験との相関を 示す図であり、 図 6 Bはメチルメルカプタンとメタンとの混合ガスから成る 調整ガスと官能試験との相関を示す図であり、 図 6 Cはメチルメルカプタン とエチレンとの混合ガスから成る調整ガスと官能試験との相関を示す図であ る。 Fig. 6A is a diagram showing the correlation between the adjustment gas consisting of methyl mercaptan alone and the sensory test, and Fig. 6B is a diagram showing the correlation between the adjustment gas consisting of a mixed gas of methyl mercaptan and methane and the sensory test. FIG. 6C is a diagram showing a correlation between a conditioning gas composed of a mixed gas of methyl mercaptan and ethylene and a sensory test.
図 7 A〜7 Dは、 調整ガスの混合比の検討結果を示す図である。 7A to 7D are diagrams showing the results of studying the mixing ratio of the adjustment gas.
図 8 A〜 8 Dは、 調整ガスの混合比の検討結果を示す図である。 8A to 8D are diagrams showing the results of study on the mixing ratio of the adjustment gas.
図 9 A〜 9 Dは、 調整ガスの混合比の検討結果を示す図である。 9A to 9D are diagrams showing the results of studying the mixing ratio of the adjustment gas.
図 1 0は、 メチルメルカプタンのみから成る調整ガスによって調整を行う場 合の動ィ转兑明用のタイミ、ノグチヤートである。 FIG. 10 shows a timing chart and a Noguchi chart for operation when the adjustment is performed using an adjustment gas consisting of only methyl mercaptan.
図 1 1は、 メチルメルカプタンとエチレンの混合ガスから成る調整ガスに よって調整を行う場合の動作説明用のタイミングチャートである。 発明を実施するための最良の形態 Fig. 11 shows a control gas consisting of a mixture of methyl mercaptan and ethylene. Therefore, it is a timing chart for explaining the operation when the adjustment is performed. BEST MODE FOR CARRYING OUT THE INVENTION
図 1に本実施形態の回路図を示す。 本実施形態は、 乾電池、 充電池な どの低 ME (例えば 3 V) の電池電源 1と、 感ガス体内にヒータ 2を埋設し、 ヒータ 2の両端が接続される電極端子①、 ②と、 感ガス体の一端に接続され る出力電極端子③の 3端子構造の熱応答速度の速レ、金属酸化物半導体ガスセ ンサ 3と、 液晶表示器 (以下 L C Dと称する) 4と、 ヒータ 2の通電制御を 行う手段や被検知対象ガスの検知を行う検知手段などの機能がプログラム化 され、 また L C D 4のドライバ機能を備え、 装置全体の制御処理を行うマイ クロコンピュータ (以下マイコンと略す) 5と、 口臭強度の判定を行うため の基準となるデータを格納する E E P R OM 6とを主要な構成要素としてい る。  FIG. 1 shows a circuit diagram of the present embodiment. In this embodiment, a low-ME (for example, 3 V) battery power source 1 such as a dry battery or a rechargeable battery, a heater 2 embedded in a gas-sensitive body, and electrode terminals 1 and 2 to which both ends of the heater 2 are connected are connected to the sensor 2. Control of energization of the metal oxide semiconductor gas sensor 3, liquid crystal display (hereinafter referred to as LCD) 4, and heater 2, with the rapid thermal response speed of the three-terminal structure of the output electrode terminal ③ connected to one end of the gas body And a microcomputer (hereinafter abbreviated as “microcomputer”) that has a programmed function such as a means for performing detection and a detection means for detecting the gas to be detected, has a driver function for the LCD 4, and performs control processing of the entire device. The main component is EEPROM 6 that stores data that serves as a reference for determining bad breath intensity.
金属酸ィ匕物半導体ガスセンサ 3は、 感ガス体の出力電極端子③と、 ヒータ 2のグランド側の一端が接続される電極端子②との間の抵抗値が感ガ ス体にガスが接触することにより変化するもので、 内蔵したヒータ 2を P N p型のトランジスタ Q 1を介して電池電源 1に接続してある。 また感ガス体 は、 電池電源 1に対して P N P型のトランジスタ Q 2と抵抗 R 2との直列回 路と、 P N P型のトランジスタ Q 3と抵抗 R 9との直列回路との並列回路を 介して接続されており、 トランジスタ Q 2又は Q 3或いは両方がオン時に感 ガス体に抵抗 R 2又は R 9又は両抵抗の並列回路を介して流れる電流によつ て発生する感ガス体の両端電圧 V sがマイコン 5の入力ポート I 1に取り込 まれ、 マイコン 5はこの両端 ¾Ιΐν s力 ら感ガス体の抵抗値を演算する。  The resistance value between the output electrode terminal ③ of the gas-sensitive body and the electrode terminal 体 to which one end of the ground side of the heater 2 is connected is such that the gas contacts the gas-sensitive body. The built-in heater 2 is connected to the battery power supply 1 via a PN p-type transistor Q1. The gas-sensitive body is connected to the battery power supply 1 through a parallel circuit of a series circuit of a PNP transistor Q2 and a resistor R2 and a series circuit of a PNP transistor Q3 and a resistor R9. Connected, and when the transistor Q 2 or Q 3 or both are turned on, the voltage across the gas-sensitive body is generated by the current flowing through the resistor R 2 or R 9 or the parallel circuit of both resistors. s is taken into the input port I1 of the microcomputer 5, and the microcomputer 5 calculates the resistance value of the gas-sensitive material from the ¾Ιΐν s force at both ends.
マイコン 5は、 電池電源 1にダイォード D 1を介して電源端子 Vを接 続して 源供給を受け、 電池電源 1に接続されたスタートスィッチ SWと抵 抗 R 5の直列回路の中点を入力ポート I 2に接続し、 入力ポート I 2カ 、ィ レべノレになればガス検知のための制御処理をプログラムに沿って開始するよ うになっている。 The microcomputer 5 connects the power supply terminal V to the battery power supply 1 via the diode D 1 to receive the power supply, and is connected to the start switch SW connected to the battery power supply 1. The middle point of the series circuit of the anti-R5 is connected to the input port I2, and when the input port I2 becomes incomplete, the control process for gas detection is started according to the program. .
マイコン 5は、 トランジスタ Q1のベースに中点を接続し、 一端を電 池電源 1の +極に接続した抵抗 R 3, R 4の直列回路の他端を出力ポート〇 1に接続し、 出力ポート O 1からデューティ制御用のパルス信号を出力して トランジスタ Q 1をオンオフさせることによりヒータ 2の通電を制御する機 能を備え、 その機能により トランジスタ Q1のオンデューティを長くするこ とにより金属酸化物半導体ガスセンサ 3を高温状態に加熱したり、 逆に短く することにより低^ J口熱状態とする加熱制御を行う。  The microcomputer 5 connects the middle point to the base of the transistor Q1, connects one end to the positive terminal of the battery power supply 1, and connects the other end of the series circuit of resistors R3 and R4 to the output port 〇1. A function is provided to control the energization of heater 2 by outputting a pulse signal for duty control from O 1 to turn on / off transistor Q 1, and to increase the on-duty of transistor Q 1 by that function The semiconductor gas sensor 3 is heated to a high temperature state or, on the contrary, is shortened to perform a heating control to make the state low in the J temperature.
マイコン 5は、 トランジスタ Q 2のバイアス回路を出力ポート O 3に、 またトランジスタ Q 3のバイアス回路を出力ポート O 4に接続し、 出力ポー ト〇3, 〇 4をローレベルにすることにより、 対応するトランジスタ Q 2, Q 3にベース電流を流してオンさせ、 感ガス体の抵抗 R sと電池雷源 1の + 極との間に抵抗 R 2, R 9を接続するようになっている。 つまり負荷抵抗を 切り替える機能が備わっている。  The microcomputer 5 responds by connecting the bias circuit of the transistor Q2 to the output port O3 and the bias circuit of the transistor Q3 to the output port O4, and setting the output ports 〇3 and 〇4 to low level. The base current flows through the transistors Q 2 and Q 3 to turn on, and the resistors R 2 and R 9 are connected between the resistance R s of the gas sensing body and the positive pole of the battery lightning source 1. In other words, it has a function to switch the load resistance.
マイコン 5は、 出力ポート Ol 1〜〇14に LCD 4の入力端子 I D 1〜ID4を夫々接続し、 また出力ポート〇15に入力端子 ID 5, I D6 を、 また出力ポート Ol 6に入力端子 ID 7, ID 8を、 出力ポート O 17 に入力端子 ID9, ID10を、 また出力ポート Ol 8に入力端子 ID11, ID12を、 出力ポート〇19に入力端子 ID 13, ID14を、 また出力 ポート 020には入力端子 I D15, ID16を夫々接続し、 また LCD 4 の共通端子 COM 1を出力ポート〇 2に接続し、 出力ポート Ol 1〜〇20, O 2より出力するドライブ信号にて L C D 4のキヤラクタ表示を制御するよ うになつてレ、る。 マイコン 5は、 シャントレギュレータ 7の電圧を入力ポート I 3に取 り込み、 シャントレギュレータ 7の Iffが規定値以上になると、 電池切れを 検知する電池切れ検知機能を持つ。 The microcomputer 5 connects the input terminals ID1 to ID4 of the LCD 4 to the output ports Ol1 to # 14, respectively, the input terminal ID5 and ID6 to the output port # 15, and the input terminal ID to the output port Ol6. 7 and ID 8, input terminals ID9 and ID10 to output port O17, input terminals ID11 and ID12 to output port Ol8, input terminals ID13 and ID14 to output port # 19, and output port 020 Connect the input terminals ID15 and ID16 respectively, and connect the common terminal COM1 of LCD4 to the output port No.2, and display the character on LCD4 using the drive signals output from the output ports Ol1 to No20 and O2. Control. The microcomputer 5 takes in the voltage of the shunt regulator 7 to the input port I3 and has a dead battery detection function for detecting a dead battery when the Iff of the shunt regulator 7 exceeds a specified value.
シャントレギュレータ 7は、 トランジスタ Q 2と抵抗 R 1を介して電 池 源 1に接続され、 電池 meを所定 miBこ安定ィ匕させるようになっており、 その安定ィ匕した miiを入力ポート 13に印加するとともにその安定ィ匕した電 圧から電池電圧を監視して電池電圧の低下を相対的に検出できるようになつ ている。  The shunt regulator 7 is connected to the battery source 1 via the transistor Q2 and the resistor R1, and is configured to stabilize the battery me by a predetermined miB. The battery voltage is monitored from the applied voltage and the stabilized voltage, so that a decrease in the battery voltage can be relatively detected.
E E P ROM6は、 被検知対象のガス検知に用いる基準値を登録する ものであって、 装置の検査工程時に、 高温状態下の金属酸化物半導体ガスセ ンサ 3の感ガス体の抵抗 R 0の値と、 高温状態から低 熱状態に切り替え たときの抵抗 Rsの値と、 両者の比 R sZROの値を夫々格納し、 通常時に この格納した比の値が被検知対象ガスたる口臭要因ガス成分の濃度、 つまり 口臭強度の検知のための基準値として用いられる。  The EEPROM 6 is used to register a reference value used for detecting a gas to be detected.In the inspection process of the device, the value of the resistance R 0 of the gas-sensitive material of the metal oxide semiconductor gas sensor 3 under a high temperature condition is registered. The value of the resistance Rs when switching from the high temperature state to the low heat state and the value of the ratio R sZRO of the two are stored respectively, and the value of the stored ratio is the concentration of the bad breath factor gas component that is the detection target gas during normal times. That is, it is used as a reference value for detecting the intensity of bad breath.
EEPROM6は、 データ入力端子 D I、 シリアルクロック端子 SR 及びチップセレクタ端子 CSをマイコン 5のデータ出力ポート d o、 出力 ポート〇21、 O 22に夫々接続するとともに、 抵抗 R7、 R8, R6で 夫々プノレアップしている。 またデータ出力端子 D〇をマイコン 5のデータ入 力端子 d iに接続してある。  The EEPROM 6 connects the data input terminal DI, the serial clock terminal SR, and the chip selector terminal CS to the data output port do, output ports # 21 and O22 of the microcomputer 5, respectively, and pulls up with the resistors R7, R8, and R6 respectively. I have. The data output terminal D〇 is connected to the data input terminal di of the microcomputer 5.
LCD4は、 入力端子 ID1〜ID16及び共通端子 COM1を抵抗 により夫々プノレアップし、 共通端子 COM1とキャラクタに対応する何れか の入力端子 ID1〜: LD16がローレべノレになると、 当該入力端子に対応さ せたキャラクタを表示するようになっており、 I D 1〜 I D4は夫々口臭要 因ガス成分の濃度、 つまり口臭強度を示すキャラクタに対応し、 ID5〜I D 16は濃度を示すキャラクタの両側に表示される人物等の表情を示すキヤ ラクタに対応し、 口臭要因ガス成分の濃度が高く成る程例えば表情が険しく なるようになっている。 The LCD4 pulls up the input terminals ID1 to ID16 and the common terminal COM1 with a resistor, respectively. When the common terminal COM1 and any of the input terminals ID1 to LD16 corresponding to the character become low level, the corresponding input terminal is assigned. ID1 to ID4 correspond to the characters indicating the concentration of the bad breath gas component, that is, the bad breath intensity, and ID5 to ID16 are displayed on both sides of the character indicating the concentration. Character showing the expression of a person Corresponding to the lacquer, the higher the concentration of the bad breath gas component, for example, the sharper the expression becomes.
尚、 図中の番号 8は、 電源投入時にマイコン 5にリセット信号を与え てリセットするリセット I C、 番号 9はマイコンに基準クロックを与えるク ロック発振器、 番号 10はマイコン 5と LCD4とを接続するコネクタであ る。 また C 1〜C 3はコンデンサである。  In the figure, number 8 is a reset IC that resets the microcomputer 5 by supplying a reset signal when the power is turned on, number 9 is a clock oscillator that supplies a reference clock to the microcomputer, and number 10 is a connector that connects the microcomputer 5 and LCD4. It is. C1 to C3 are capacitors.
次に本実施形態の動作を説明する。 まず電池雷源 1が接続されると、 リセット I C 8の働きによりマイコン 5はリセットされ、 初期設定を行う。 以後マイコン 5は低消費モードで動作して待機状態となっている。  Next, the operation of the present embodiment will be described. First, when the battery lightning source 1 is connected, the operation of the reset IC 8 resets the microcomputer 5 and performs initial settings. Thereafter, the microcomputer 5 operates in the low-consumption mode and is in a standby state.
この待機状態において、 マイコン 5の出力ポート O 3に接続されてい る設定端子 AD Jとグランドの間が短絡された状態で、 スタートスィツチ S Wがオン操作され、 入力ポート I 2の入力がハイレべノレに立ち上がると、 つ まり動作開始信号が入力すると、 マイコン 5は予めプログラムされている調 整モードの動作状態になり、 出力ポート Olから例えば周期が 8. 2ms e cで、 ローレベル期間が 960 / s e cのパルス信号を発生させる。  In this standby state, with the setting terminal ADJ connected to the output port O3 of the microcomputer 5 and the ground short-circuited, the start switch SW is turned on, and the input of the input port I2 goes high. In other words, when the operation start signal is input, the microcomputer 5 enters the operation state of the pre-programmed adjustment mode. For example, the cycle is 8.2 ms ec and the low level period is 960 / sec from the output port Ol. Pulse signal is generated.
従って、 トランジスタ Q 1は 960/ s e cのオンデューティで且つ 周期 8. 2ms e cでオンオフし、 オン期間にヒータ 2には電池電原 1から 電力が供給される。 このときのヒータ 2に印カ卩される平均 mffiはデューティ 制御により略 1. 0Vとなり、 そのためヒータ 2の発熱量が多く、 金属酸化 物半導体ガスセンサ 3を高温状態に加熱する。  Therefore, the transistor Q 1 is turned on and off at an on-duty of 960 / sec and a period of 8.2 ms sec, and power is supplied to the heater 2 from the battery power source 1 during the on-period. At this time, the average mffi applied to the heater 2 becomes approximately 1.0 V due to the duty control, so that the calorific value of the heater 2 is large and the metal oxide semiconductor gas sensor 3 is heated to a high temperature state.
—方、 マイコン 5は、 例えば 0. 5 s e c毎にトランジスタ Q 1のォ フのタイミングでトランジスタ Q 2及び Q 3 (或いは Q 2又は Q 3のみ) を オンさせる信号を出力ポート〇 3及び 04 (或いは 03又は〇4) より出力 させ、 負荷抵抗である抵抗 R 2及び R 9からなる並列回路 (或いは抵抗 R 2 又は R9) を金属酸ィ匕物半導体ガスセンサ 3の感ガス体に直列に接続し、 こ の負荷抵抗を通じて感ガス体に通電する。 そして、 トランジスタ Q 1がオフ しているタイミングにおいで、 マイコン 5は金属酸化物半導体ガスセンサ 3 の感ガス体の両端電圧 V sを入力ポート I 1に取り込み、 感ガス体の両端電 圧 V sをサンプリングして感ガス体の抵抗値 R sを計算するとともに、 今回 のサンプリングにより求めた抵抗値 R Sと前回のサンプリングにより求めた 抵抗値 R s ' の比を 0. 5 s e c毎に演算する。 On the other hand, the microcomputer 5 outputs a signal for turning on the transistors Q 2 and Q 3 (or only Q 2 or Q 3) at an off timing of the transistor Q 1 every 0.5 sec. Alternatively, output from 03 or 〇4) and connect a parallel circuit consisting of resistors R 2 and R 9 (or resistors R 2 or R 9), which are load resistors, in series with the gas sensitive body of the metal oxide semiconductor gas sensor 3. , This The gas-sensitive body is energized through the load resistance. Then, at the timing when the transistor Q1 is turned off, the microcomputer 5 takes in the voltage Vs across the gas-sensitive body of the metal oxide semiconductor gas sensor 3 into the input port I1, and obtains the voltage Vs across the gas-sensitive body. The sampling value is used to calculate the resistance value R s of the gas sensing element, and the ratio between the resistance value RS obtained by the current sampling and the resistance value R s' obtained by the previous sampling is calculated every 0.5 sec.
それから、 高温状態下で調整ガス (硫化物系ガスであるメチルメル力 ブタンと炭化水素系ガスであるエチレンとを 1 : 1 0の混合比で混合したガ ス) を金属酸ィヒ物半導体ガスセンサ 3に吹きかけると、 感ガス体の抵抗値 R sが低下することになる。 0. 5 s e c毎に求める今回のサンプリングで求 めた抵抗値 R sと前回のサンプリングで求めた R s ' の比が 0 . 9 6以下と なると、 マイコン 5は調整ガスが吹きかけられたと検知する。  Then, at a high temperature, a conditioning gas (gas obtained by mixing sulfide-based gas, methyl-mer-butane, and hydrocarbon-based gas, ethylene at a mixing ratio of 1:10) is mixed with a metal oxide semiconductor gas sensor 3. Spraying, the resistance R s of the gas-sensitive material decreases. When the ratio of the resistance value R s obtained in the current sampling obtained every 0.5 sec to R s ′ obtained in the previous sampling becomes 0.96 or less, the microcomputer 5 detects that the adjustment gas has been blown. .
例えば、 調整ガスの検知から 1 s e c経過時点で、 マイコン 5は出力 ポート O 1から出力されるパルス信号のローレベル期間を 7 5 μ s e cに切 り替え、 周期はそのままでトランジスタ Q 1のオンデューティを 7 5 μ s e cとする。 これにより トランジスタ Q 1を通じてヒータ 2に印加される平均 MEが略 0. 3 Vに低下し、 ヒータ 2の発熱量が低下する。 従って金属酸ィ匕 物半導体ガスセンサ 3は高温状態から低 熱状態へ移行することになる。  For example, one microsecond after the detection of the adjustment gas, the microcomputer 5 switches the low-level period of the pulse signal output from the output port O1 to 75 μs, and the on-duty of the transistor Q1 remains unchanged. To 75 μsec. As a result, the average ME applied to the heater 2 through the transistor Q 1 is reduced to approximately 0.3 V, and the amount of heat generated by the heater 2 is reduced. Therefore, the metal oxide semiconductor gas sensor 3 shifts from a high temperature state to a low heat state.
さて、 高温状態から低^] Π熱状態への切り替え開始時で且つトランジ スタ Q 1がオフしているタイミングにおいて、 マイコン 5は金属酸化物半導 体ガスセンサ 3の感ガス体の両端電圧 V sを入力ポート I 1に取り込み、 こ の取り込んだ電圧 V s及び負荷抵抗値、 電源 値から金属酸化物半導体ガ スセンサ 3の感ガス体の基準抵抗値 R 0を演算する。  Now, at the start of switching from the high-temperature state to the low-temperature state, and at the timing when the transistor Q1 is turned off, the microcomputer 5 determines the voltage V s across the gas-sensitive body of the metal oxide semiconductor gas sensor 3. Is input to the input port I1, and the reference resistance value R0 of the gas-sensitive body of the metal oxide semiconductor gas sensor 3 is calculated from the input voltage Vs, the load resistance value, and the power supply value.
低^)口熱状態への移行開始から金属酸化物半導体ガスセンサ 3の抵抗 値が安定するまでの過渡期間、 例えば 2 s e c経過後で且つトランジスタ Q 1がオフしているタイミングにおいて、 マイコン 5は金属酸化物半導体ガス センサ 3の感ガス体の両端電圧 V sを入力ポート I 1に取り込み、 この取り 込んだ miEv s及び負荷抵抗値、 電源 値から金属酸化物半導体ガスセン サ 3の感ガス体の抵抗値 R sを演算し、 更にこの抵抗値 R sと基準抵抗値 R 0の比 R s/ROを求め、 R s及び ROの値とともに基準値データとして E EPROM6に格納する。 これにより、 口臭検查装置の被検知対象ガスであ る口臭要因ガス成分の濃度を検知するための基準値が設定される。 (Low ^) Transient period from the start of the transition to the mouth heat state until the resistance value of the metal oxide semiconductor gas sensor 3 becomes stable, for example, after 2 seconds and the transistor Q At the timing when 1 is off, the microcomputer 5 takes in the voltage V s across the gas-sensitive body of the metal oxide semiconductor gas sensor 3 into the input port I 1, and uses the miEv s, load resistance value, and power supply value Calculate the resistance value R s of the gas-sensitive material of the metal oxide semiconductor gas sensor 3 and further calculate the ratio R s / RO of this resistance value R s to the reference resistance value R 0, and calculate the reference value together with the values of R s and RO. Store the data in EPROM6 as data. Thereby, the reference value for detecting the concentration of the bad breath factor gas component, which is the detection target gas of the bad breath detection device, is set.
上記の調整モードが終了すると、 マイコン 5は待機状態に戻ることに なる。 そして調整端子 AD Jと、 グランド間の接続が解除された後、 スター トスイッチ SWがオン操作されれば、 マイコン 5は通常動作モードの検知動 作を開始することになる。  When the above adjustment mode ends, the microcomputer 5 returns to the standby state. Then, after the connection between the adjustment terminal ADJ and the ground is released, if the start switch SW is turned on, the microcomputer 5 starts the detection operation in the normal operation mode.
次に、 上述の基準値データが E E P ROM 6に登録された本実施形態 が口臭検査に実際に使用される場合の動作を説明する。  Next, an operation in the case where the present embodiment in which the above-described reference value data is registered in the EEPROM 6 is actually used for a bad breath test will be described.
既に電池電源 1が接続されてマイコン 5が待機の状態にあるとし、 こ の待機状態時にスタートスィツチ SWがオン操作され、 入力ポート I 2カ 、 ィレべノレに立ち上がると、 マイコン 5は初期化処理後、 通常動作モードによ る動作を開始し、 まず E EPROM6に登録しているデータを読み出して内 蔵 RAMに格納し、 口臭強度の検知に用いる基準値を設定する。  Assuming that the battery power supply 1 is already connected and the microcomputer 5 is in the standby state, the microcomputer 5 is initialized when the start switch SW is turned on during this standby state, and the input port I2 and the input port are turned on. After the processing, the operation in the normal operation mode is started. First, the data registered in the EEPROM 6 is read and stored in the built-in RAM, and the reference value used for detecting the bad breath intensity is set.
通常動作モードが開始されると、 調整モード時と同様に、 マイコン 5 は出力ポート〇1から周期が 8. 2m s e cで、 ローレベル期間が 96 0 μ s e cのパルス信号を発生させる。  When the normal operation mode starts, the microcomputer 5 generates a pulse signal with a period of 8.2 ms and a low-level period of 960 µsec from the output port # 1, as in the adjustment mode.
従って、 トランジスタ Q 1が 9 6 0 μ s e cのオンデューティで且つ 周期 8. 2ms e cでオンオフし、 オン期間に金属酸化物半導体ガスセンサ 3のヒータ 2に電池電源 1より電力を供給し、 上述と同様に金属酸化物半導 体ガスセンサ 3を高温状態とする。 そして例えば 0. 5 s e c毎 スタ Q 1のオフのタイミングでマイコン 5は感ガス体の両端電圧をサンプリ ングして、 感ガス体の抵抗値 R sを計算するとともに、 今回のサンプリング により求めた抵抗値 R sと前回のサンプリングにより求めた抵抗値 R s ' の 比を 0. 5 s e c毎に演算する。 Therefore, the transistor Q1 is turned on and off with an on-duty of 960 μsec and a period of 8.2 ms ec, and power is supplied from the battery power supply 1 to the heater 2 of the metal oxide semiconductor gas sensor 3 during the on period. Next, the metal oxide semiconductor gas sensor 3 is brought to a high temperature state. And for example every 0.5 sec When the star Q1 is turned off, the microcomputer 5 samples the voltage between both ends of the gas sensing body, calculates the resistance value R s of the gas sensing body, and calculates the resistance value R s obtained by this sampling and the previous sampling time. Calculate the ratio of the resistance value R s' obtained by the above every 0.5 sec.
高温状態下で被検知対象の人が呼気を金属酸化物半導体ガスセンサ 3 に吹きかけると、 呼気には水蒸気やガス成分が含まれているため感ガス体の 抵抗値 R sが低下することになり、 0. 5 s e c毎に求める今回のサンプリ ングで求めた抵抗値 R sと前回のサンプリングで求めた R s ' の比が 0. 9 6以下となると、 マイコン 5は呼気が吹きかけられたと検知する。  When a person to be detected blows expiration on the metal oxide semiconductor gas sensor 3 under a high temperature condition, the expiration contains water vapor and gas components, so that the resistance value R s of the gas sensing body decreases, When the ratio of the resistance value R s obtained in the current sampling obtained every 0.5 sec to R s ′ obtained in the previous sampling is 0.96 or less, the microcomputer 5 detects that expiration has been blown.
ここで、 マイコン 5は上記の呼気検知直後に雰囲気の汚染 (大気汚 染) の検知判断を行って、 雰囲気が汚染していると検知判断した場合には呼 気検知動作を中断する。 つまり図 2に示すように呼気検知開始時点 t aの直 後のサンプリング時に検知した金属酸化物半導体ガスセンサ 3の感ガス体の 抵抗値 R sと調整モード時に検知して E E P R OM 6に格納した基準抵抗値 R 0との比を求め、 その求めたィ直が所定値 (例えば 0. 2 ) より小さい:^ と、 上昇傾向で有る^、 つまり抵抗値 R sが上昇する清浄方向である場合 には、 口臭の検知が不可能な汚染状態にあると判断して、 マイコン 5は検知 動作を停止して待機状態に戻るとともに、 L C D 4に大気汚染状態であるこ とを表示させる。 図 2はこの大気汚染判断の模式図を示しており、 図中 A、 A' の曲線は大気の汚染が少ない場合の呼気検知のタイミング t aからの R s ZR Oの変ィヒを示し、 Bは大気汚染状態の R s ZR Oの変ィ匕を示し、 Cは 大気汚染度合がより高く、 呼気を吹きかけたことにより、 R s ZR Oの値が 清浄方向を示す場合を示しており、 αが呼気検知限界、 /3が大気汚染検知限 界点を示している。  Here, the microcomputer 5 performs the detection determination of the contamination of the atmosphere (atmospheric contamination) immediately after the above-described breath detection, and interrupts the breath detection operation when the detection is determined that the atmosphere is polluted. In other words, as shown in Fig. 2, the resistance value R s of the gas-sensitive body of the metal oxide semiconductor gas sensor 3 detected at the time of sampling immediately after the start of expiration detection ta and the reference resistance detected in the adjustment mode and stored in the EEPROM 6 If the ratio of the calculated value to the value R 0 is smaller than a predetermined value (for example, 0.2): ^, and the value is increasing ^, that is, if the resistance value Rs is in the clean direction in which the resistance value Rs increases, When the microcomputer 5 determines that the state is in a polluted state where it is impossible to detect bad breath, the microcomputer 5 stops the detecting operation, returns to the standby state, and displays on the LCD 4 that the air pollution state is present. Fig. 2 shows a schematic diagram of this air pollution judgment, in which the curves A and A 'show the change in R s ZR O from the expiration detection timing ta when the air pollution is low, and B Indicates the change of R s ZR O in the air pollution state, C indicates the case where the air pollution degree is higher, and the value of R s ZR O indicates the clean direction due to the expiration, α Indicates the exhalation detection limit, and // 3 indicates the air pollution detection limit point.
さて、 大気の汚れ判定が良である場合には、 マイコン 5は呼気検知か ら例えば 1 s e c経過時点で、 周期はそのままで、 トランジスタ Q 1のオン デューティを 7 5 μ s e cとするパルス信号を出力ポート O 1より出力して 金属酸化物半導体ガスセンサ 3の温度を低^ Λ口熱状態へ樹亍させる。 By the way, if the determination of air pollution is good, the microcomputer 5 For example, when 1 second elapses, the pulse is output from the output port O 1 with the on-duty of the transistor Q 1 being 75 μsec while maintaining the cycle, and the temperature of the metal oxide semiconductor gas sensor 3 is lowered. Allow to heat up.
この移行開始時点において、 サンプリングした感ガス体の抵抗値を基 準抵抗値 R0' として内蔵 RAMに格納し、 以後 5 s e c毎のサンプリ ングで求めた抵抗値 R sとの比 R s/RO' を演算する。 そして低温加熱状 態移行開始から 2 s e c経過時点で求めた演算値の、 調整モードで求めた基 準値 (R s/R O) に対する比率を求めてその比率の値から口臭強度を判定 し、 その口臭強度に応じたキャラクタを LCD4で表示させる。 マイコン 5 はその後一定時間経過すると待機状態に戻ることになり、 LCD 4の表示も 消灯させる。  At the start of this transition, the resistance value of the sampled gas sensing material is stored in the built-in RAM as a reference resistance value R0 ', and thereafter, the ratio Rs / RO' to the resistance value Rs obtained by sampling every 5 seconds Is calculated. Then, the ratio of the calculated value 2 seconds after the start of the transition to the low-temperature heating state to the reference value (Rs / RO) determined in the adjustment mode is determined, and the breath odor intensity is determined from the value of the ratio. The character corresponding to the bad breath intensity is displayed on the LCD4. After a certain period of time, the microcomputer 5 returns to the standby state, and the display on the LCD 4 is also turned off.
図 3、 図 4は、 スタートスィッチ SWのオン操作時点 t 1からの R s /R0, の遷移状態を示している。 図 3では時点 t 3から 2 s e c経過時点 t 4で求めた R s/RO' の値が 2 5であること示し、 図 4では時点 t 3か ら 2 s e c経過時点 t 4で求めた R s/R O' の値が 8であることを示して いる。  FIGS. 3 and 4 show the transition state of R s / R0, from the on-time t1 of the start switch SW. Fig. 3 shows that the value of R s / RO 'obtained at time t 4 after 2 seconds from time t 3 is 25, and Fig. 4 shows that R s obtained at time t 4 after 2 seconds from time t 3 This indicates that the value of / RO 'is 8.
図 3, 図 4の場合、 ££ 1 0]\/[6に格納した基準値1 571 0が例 えば 1 0で、 時点 t 4で求めた R s/RO ' の値が図 3のように 1 0より大 きい値の場合には口臭無しと判断され、 図 4のように 1 0より小さレ、値を示 す^には口臭ありと判断され、 マイコン 5は更に口臭強度を求めた値 R s ZR0' と基準 ί直 R sZROに基づいて演算して口臭強度に対応したキャラ クタを LCD 4に表示させるのである。 口臭が無い場合にもそれに対応した キャラクタを LCD4で表示させる。 尚、 図 3および図 4中 t 2は呼気検知 時点を示す。  In the case of Figs. 3 and 4, the reference value 1571 0 stored in ££ 10] \ / [6 is 10 for example, and the value of R s / RO 'obtained at time t4 is as shown in Fig. 3. If the value is greater than 10 in this case, it is determined that there is no bad breath, and as shown in Fig. 4, it is determined that the value is less than 10 and ^ indicates a bad breath, and the microcomputer 5 further calculated the bad breath intensity. The LCD 4 displays the character corresponding to the bad breath intensity by calculating based on the value R s ZR0 'and the reference value R sZRO. Even if there is no bad breath, the corresponding character is displayed on LCD4. Note that t 2 in FIGS. 3 and 4 indicates the point in time when the exhalation is detected.
ところで、 官能試験によりランク 1 : 口臭を感じない、 ランク 2 :弱 い口臭を感じる、 ランク 3 : 口臭を感じる、 ランク 4 :強い口臭を感じる、 の 4段階評価で各ランクに属すると判定された 5名ずつ、 合計 2 0名の被験 者について、 口臭検査装置における金属酸ィ匕物半導体ガスセンサ 3の抵抗値 の比 R s ZR O ' を求めてみると、 図 5に示すように各ランク 1〜4毎にば らつきがあることが判る。 つまり、 口臭検査装置にて口臭要因ガス成分の濃 度を適正に検知するためには、 調整モードにおける基準値の設定が重要とな る。 By the way, according to the sensory test, rank 1: no bad breath, rank 2: weak Rank 3: Sense of bad breath, Rank 4: Sense of strong breath, 5 subjects judged to belong to each rank in the four-step evaluation, a total of 20 subjects, When the ratio R s ZR O ′ of the resistance values of the metal oxide semiconductor gas sensor 3 is obtained, it can be seen that there is variation in each rank 1 to 4 as shown in FIG. In other words, setting the reference value in the adjustment mode is important for properly detecting the concentration of the bad breath factor gas component in the bad breath inspection device.
そこで、 官能試験でランク 3に属すると判定された 5.名の被験者に対 して、 調整ガスをメチルメルカプタンのみの単体ガス、 メチルメルカプタン とメタンとの混合ガス、 メチルメルカプタンとエチレンとの混合ガスとして 各々基準値を設定し、 各調整ガスによって調整された口臭検査装置による検 査結果と官能試験との相関を調べた結果を図 6 A〜6 Cに示す。 尚、 図 6 A 〜 6 Cにおける横軸の表示レべノレ 1〜 4は上記官能試験のランク 1〜 4に対 応している。  Therefore, for the five subjects who were judged to belong to rank 3 in the sensory test, the adjustment gas was a simple gas containing only methyl mercaptan, a mixed gas containing methyl mercaptan and methane, and a mixed gas containing methyl mercaptan and ethylene. Figures 6A to 6C show the results of examining the correlation between the test results obtained by the bad breath tester adjusted by each control gas and the sensory test. In addition, the display levels 1 to 4 on the horizontal axis in FIGS. 6A to 6C correspond to the ranks 1 to 4 in the sensory test described above.
調整ガスをメチルメルカプタンのみの単体ガスとした場合、 図 6 Aに 示すように口臭検査装置による検査結果と官能試験との相関が悪く、 実用に はならなレ、。 調整ガスをメチルメルカブタンとメタンとの混合ガスとした場 合、 図 6 Bに示すようにメチルメルカプタン単体よりはよいが、 それでも口 臭検査装置による検査結果と官能試験との相関が悪く、 これも実用には適さ ない。  If the adjustment gas is a simple gas consisting of methyl mercaptan alone, the correlation between the test results obtained by the bad breath inspection device and the sensory test is poor, as shown in Fig. 6A, making it impractical. When the adjustment gas is a mixture of methyl mercaptan and methane, it is better than methyl mercaptan alone, as shown in Fig. 6B, but the correlation between the test results from the breath odor analyzer and the sensory test is still poor. Is not suitable for practical use.
一方、 調整ガスをメチルメルカブタンとエチレンとの混合ガスとした 場合、 図 6 Cに示すように口臭検査装置による検査結果と官能試験との相関 が非常に良く、 充分に実用レベルに達していることが判る。 メチルメルカプ タンとエチレンとの混合ガスを調整ガスとして用いれば官能試験との相関が 良くなることが判ったので、 次にメチルメルカプタンとエチレンとの混合比 につレ、て検討した結果を図 7 A〜 7 D、 図 8 A〜 8 Dおよび図 9 A〜 9 Dを 参照して説明する。 On the other hand, when the adjustment gas was a mixture of methyl mercaptan and ethylene, the correlation between the test results of the bad breath tester and the sensory test was very good, as shown in Fig. 6C, and the level reached a practical level. You can see that. It was found that using a gas mixture of methyl mercaptan and ethylene as the adjusting gas would improve the correlation with the sensory test. Next, the mixing ratio of methyl mercaptan and ethylene was determined. The results of the study will be described with reference to FIGS. 7A to 7D, FIGS. 8A to 8D, and FIGS. 9A to 9D.
まず、 メチノレメルカプタン 0 . 7 p p mとエチレン 1 0 p p mとを混 合した調整ガスにより調整された口臭検査装置では、 図 7 Cに示すようにラ ンク 3の被験者との間では非常によい相関がとれているが、 それ以外のラン ク 1, 2, 4では相関があまり良くなレ、。 また、 メチルメルカプタン 0 . 7 P p mとエチレン 3 p p mとを混合した調整ガスにより調整された口臭検査 装置では、 図 8 A〜 8 Dに示すように各ランク 1〜4の被験者について相関 があまり良くない。 それに対してメチルメルカプタン 0 . 7 p p mとェチレ ン 7 p p mとを混合した調整ガスにより調整された口臭検查装置では、 図 9 A〜 9 Dに示すように各ランク 1〜 4の被験者との間で非常によレ、相関がと れている。 故に、 メチノレメルカプタンとエチレンとの混合比を 1 : 1 0とし た調整ガスで調整すれば、 官能試験との相関が非常によい口臭検査装置及び その調整方法を実現することができる。  First, the bad breath tester, which was adjusted with a gas mixture of 0.7 ppm methinoremercaptan and 10 ppm ethylene, showed a very good correlation with Rank 3 subjects as shown in Figure 7C. However, the other ranks 1, 2, and 4 have very good correlation. In addition, with the breath odor inspection device adjusted by adjusting the gas mixture of methyl mercaptan 0.7 Ppm and ethylene 3 ppm, the correlation was very good for the subjects of each rank 1 to 4 as shown in Figs. 8A to 8D. Absent. On the other hand, with a breath odor detection device adjusted by adjusting gas containing a mixture of 0.7 ppm of methyl mercaptan and 7 ppm of ethylene, as shown in Figs. The correlation is very good. Therefore, if adjustment is performed using an adjustment gas in which the mixing ratio of methino-remercaptan and ethylene is set to 1:10, a bad breath inspection apparatus and an adjustment method thereof having a very good correlation with a sensory test can be realized.
上述のように、 本実施形態の口臭検查装置及びその調整方法にぉレ、て は、 調整モードにおいてメチノレメルカプタンとエチレンとを 1 : 1 0の混合 比で混合した調整ガスを用いて口臭検査のための基準値を設定しているので、 官能試験との相関が非常によい調整を行うことができ、 メチルメルカプタン のみで調整を行っていた従来例とは異なり、 歯周病に限らず、 食事や喫煙と いった日常生活の生活習慣、 健康状態等によつて短期的及び若しくは長期的 に変動する種々の口臭要因ガス成分を検知して口臭の検査を適正に行うこと ができるという利点がある。  As described above, in the breath odor detection apparatus and the method of adjusting the same according to the present embodiment, the breath odor is detected by using a conditioned gas obtained by mixing methinoremercaptan and ethylene at a mixing ratio of 1:10 in the adjustment mode. Since the reference value for the test is set, the correlation with the sensory test can be adjusted very well. Unlike the conventional example where adjustment was made only with methyl mercaptan, it is not limited to periodontal disease. The advantage of being able to detect bad breath gas components that fluctuate in the short term and / or long term depending on the daily habits such as eating and smoking, and health conditions, etc., and perform appropriate tests for bad breath. There is.
ところで、 本実施形態においては、 高温状態下で呼気を金属酸化物半 導体ガスセンサ 3に吹きかけたときの抵抗値の変化を低^ Jtl熱状態へ樹亍さ せるタイミングのトリガとすることにより、 低^ J]口熱状態に移行させるタイ ミングを容易に決定できるようにしている。 そのため、 調整モードにおいて メチルメルカプタンのみから成る調整ガスを用いた場合には、 図 1 0に示す ように 0 . 5 s e c毎に求める今回のサンプリング (時点 t 3 ) で求めた抵 抗値 R sと前回のサンプリング (時点 t 2 ) で求めた R s ' の比が 0 . 9 6 より大きくなつて、 マイコン 5は調整ガスが吹きかけられたと検知できない 場合がある。 つまり、 メチルメルカプタンのみから成る調整ガスでは、 高温 状態から低温過熱状態へ移行させるタイミングのトリガがかからず、 調整が 正常に行えない虞がある。 By the way, in the present embodiment, a change in the resistance value when the exhaled air is blown to the metal oxide semiconductor gas sensor 3 under a high temperature condition is used as a trigger of a timing for causing a change in the resistance value to a low ^ Jtl thermal state. ^ J] Thailand to transition to mouth heat state It is possible to easily determine the mining. Therefore, when the adjustment gas consisting only of methyl mercaptan is used in the adjustment mode, as shown in Fig. 10, the resistance value R s obtained at the current sampling (time t 3) obtained every 0.5 sec is If the ratio of R s ′ obtained in the previous sampling (time t 2) is larger than 0.96, the microcomputer 5 may not be able to detect that the adjustment gas has been blown. In other words, the adjustment gas consisting of methyl mercaptan alone does not trigger the timing of transition from the high-temperature state to the low-temperature overheating state, and may not be able to perform normal adjustment.
それに対して、 本実施形態のようにメチルメルカプタンとエチレンと を混合した調整ガスを用いれば、 図 1 1に示すように 0 . 5 s e c毎に求め る今回のサンプリング (時点 t 3 ) で求めた抵抗値 R sと前回のサンプリン グ (時点 t 2 ) で求めた R s ' の比が 0 . 9 6以下となって、 マイコン 5は 調整ガスが吹きかけられたと検知できる。 このように調整ガスとしてメチル メルカプタンとエチレンとを混合した調整ガスを用いることによって、 高温 状態から低温過熱状態へ銜亍させるタイミングのトリガが必ずかかることと なり、 調整が常に正常に行えるという利点がある。 On the other hand, when the adjustment gas in which methyl mercaptan and ethylene are mixed as in the present embodiment is used, the sampling is performed at the current sampling (time t 3) obtained every 0.5 sec as shown in FIG. The ratio of the resistance value R s to R s ′ obtained in the previous sampling (time t 2) is 0.96 or less, and the microcomputer 5 can detect that the adjustment gas has been blown. By using a gas mixture of methyl mercaptan and ethylene as a control gas in this way, the trigger of the timing of switching from a high-temperature state to a low-temperature overheat state is always triggered, and the advantage that the adjustment can always be performed normally. is there.

Claims

請求の範囲 The scope of the claims
1 . 金属酸化物半導体ガスセンサと、 該金属酸化物半導体ガスセンサを加熱 するヒータと、 動作開始信号により前記金属酸化物半導体ガスセンサに通電 するとともに前記金属酸化物半導体ガスセンサの温度が高温となるように前 記ヒータの通電を制御し、 該高温状態下で前記金属酸化物半導体ガスセンサ の抵抗値の変化から前記金属酸化物半導体ガスセンサに呼気の吹きかけを検 知し、 該検知に基づレ、て前記金属酸化物半導体ガスセンサの温度が低温とな るように前記ヒータの通電を制御するヒータ制御手段と、 前記金属酸化物半 導体ガスセンサの温度が低温となるように前記ヒータの通電制御が開始され てから一定時間経過時点で前記金属酸化物半導体ガスセンサの抵抗値を検知 し、 高温加熱状態下で呼気の吹きかけ検知の直前又は一定時間後の抵抗値を 基準抵抗値とし、 低 ^口熱状態樹亍から一定時間経過時点の前記金属酸ィ匕物 半導体ガスセンサの抵抗値と前記基準抵抗値との比の値と予め設定してある 基準の比の値との比較により前記呼気中の口臭要因ガス成分の濃度を検知す る検知手段と、 硫化物系ガスと炭化水素系ガスを所定の割合で混合した調整 ガスを前記金属酸ィヒ物半導体ガスセンサに吹きかける直前又は一定時間後の 抵抗値を調整用の基準抵抗値とするとともに低^]口熱状態樹亍から一定時間 経過時点の前記金属酸化物半導体ガスセンサの抵抗値と前記調整用の基準抵 抗値との比の値を、 前記基準の比の値として格納する記憶手段とを備えたこ とを特徴とする口臭検査装置。 1. A metal oxide semiconductor gas sensor, a heater for heating the metal oxide semiconductor gas sensor, and a power supply to the metal oxide semiconductor gas sensor in accordance with an operation start signal, and the temperature of the metal oxide semiconductor gas sensor is increased to a high temperature. The energization of the heater is controlled, and under the high temperature state, the expiration of expiration is detected from the change in the resistance value of the metal oxide semiconductor gas sensor to the metal oxide semiconductor gas sensor. Heater control means for controlling the energization of the heater so that the temperature of the oxide semiconductor gas sensor is low; and after the energization control of the heater is started so that the temperature of the metal oxide semiconductor gas sensor is low. The resistance value of the metal oxide semiconductor gas sensor is detected after a certain period of time, and immediately before the detection of expiration in a high-temperature heating state Alternatively, a resistance value after a certain time is set as a reference resistance value, and a value of a ratio between the resistance value of the metal oxide semiconductor semiconductor gas sensor and the reference resistance value at a certain time after the low heat state state is preset. Detecting means for detecting the concentration of the bad breath factor gas component in the breath by comparing with a reference ratio value, and an adjusting gas obtained by mixing a sulfide-based gas and a hydrocarbon-based gas at a predetermined ratio. The resistance value immediately before or after a certain time is applied to the metal oxide semiconductor gas sensor is used as a reference resistance value for adjustment, and the resistance value of the metal oxide semiconductor gas sensor at the time when a certain time has elapsed from the low heat state of the mouth And a storage means for storing a ratio value between the adjustment reference resistance value and the reference resistance value as the reference ratio value.
2 . 前記調整; ンとエチレンの混合ガスとしたことを 特徴とする請求項 !己載の口臭検查装置。 2. A gas mixture of ethylene and ethylene. A self-contained breath odor detector.
3 . メチルメルカプタンとエチレンとの混合比を略 1 : 1 0としたことを特 徴とする請求項 2に記載の口臭検査装置。 3. The breath odor testing device according to claim 2, wherein the mixing ratio of methyl mercaptan and ethylene is approximately 1:10.
4 . 金属酸化物半導体ガスセンサと、 該金属酸化物半導体ガスセンサを加熱 するヒータと、 動作開始信号により前記金属酸化物半導体ガスセンサに通電 するとともに前記金属酸ィ匕物半導体ガスセンサの温度が高温となるように前 記ヒータの通電を制御し、 該高温状態下で前記金属酸化物半導体ガスセンサ の抵抗値の変化から前記金属酸化物半導体ガスセンサに呼気の吹きかけを検 知し、 該検知に基づいて前記金属酸化物半導体ガスセンサの温度が低温とな るように前記ヒータの通電を制御するヒータ制御手段と、 前記金属酸化物半 導体ガスセンサの温度が低温となるように前記ヒータの通電制御が開始され てから一定時間経過時点で前記金属酸化物半導体ガスセンサの抵抗値を検知 し、 高温加熱状態下で呼気の吹きかけ検知の直前又は一定時間後の抵抗値を 基準抵抗値とし、 低^口熱状態樹亍から一定時間経過時点の前記金属酸化物 半導体ガスセンサの抵抗値と前記基準抵抗値との比の値と予め設定してある 基準の比の値との比較により前記呼気中の口臭要因ガス成分の濃度を検知す る検知手段と、 前記基準の比の値を格納する記憶手段とを備えた口臭検査装 置の調整方法であって、 前記金属酸化物半導体ガスセンサの温度が低温とな るように前記ヒータの通電制御が開始されてから一定時間経過時点で前記金 属酸ィヒ物半導体ガスセンサの抵抗値を前記検知手段により検知し、 高温加熱 状態下で、 硫化物系ガスと炭化水素系ガスを所定の割合で混合した調整ガス の吹きかけ検知の直前又は一定時間後の抵抗値を基準抵抗値とし、 低温加熱 状態移行から一定時間経過時点の前記金属酸化物半導体ガスセンサの抵抗値 と前記調整用の基準抵抗値との比の値を、 前記基準の比の値として前記記憶 手段に格納することを特徴とする口臭検查装置の調整方法。 4. A metal oxide semiconductor gas sensor, a heater for heating the metal oxide semiconductor gas sensor, and an electric current supplied to the metal oxide semiconductor gas sensor by an operation start signal so that the temperature of the metal oxide semiconductor gas sensor becomes high. Controlling the energization of the heater, detecting the expiration of exhalation to the metal oxide semiconductor gas sensor from a change in the resistance value of the metal oxide semiconductor gas sensor under the high temperature condition; Heater control means for controlling energization of the heater so that the temperature of the semiconductor gas sensor becomes low; and constant after the energization control of the heater is started so that the temperature of the metal oxide semiconductor gas sensor becomes low. At the time point, the resistance value of the metal oxide semiconductor gas sensor is detected, and immediately before the detection of expiration blowing under a high temperature heating state Alternatively, a resistance value after a certain time is set as a reference resistance value, and a value of a ratio between the resistance value of the metal oxide semiconductor gas sensor and the reference resistance value at a certain time after the low heat state is set in advance. A method for adjusting a bad breath inspection apparatus, comprising: detecting means for detecting the concentration of a bad breath factor gas component in the breath by comparing with a reference ratio value; and storage means for storing the reference ratio value. Wherein the resistance value of the metal oxide semiconductor gas sensor is detected at a point in time after a predetermined time has elapsed since the energization control of the heater is started so that the temperature of the metal oxide semiconductor gas sensor becomes low. Under the high-temperature heating condition, the resistance value immediately before or after the detection of the spraying of the adjustment gas, which is a mixture of the sulfide-based gas and the hydrocarbon-based gas at a predetermined ratio, is used as the reference resistance value, and the low-temperature heating A value of a ratio between a resistance value of the metal oxide semiconductor gas sensor and a reference resistance value for adjustment at a point in time when a state transition has elapsed is stored in the storage unit as a value of the reference ratio. How to adjust the bad breath detector.
5 . 前記調整ガスをメチルメルカプタンとエチレンの混合ガスとしたことを 特徴とする請求項 4に記載の口臭検査装置の調整方法。 5. The method for adjusting a bad breath inspection apparatus according to claim 4, wherein the adjustment gas is a mixed gas of methyl mercaptan and ethylene.
6 . メチルメルカプタンとエチレンとの混合比を略 1 : 1 0としたことを特 徴とする請求項 5に記載の口臭検查装置の調整方法。 6. The method for adjusting a bad breath detector according to claim 5, wherein a mixing ratio of methyl mercaptan and ethylene is set to approximately 1:10.
PCT/JP2000/002903 1999-05-07 2000-05-01 Mouth odor detection device and regulating method therefor WO2000068674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000616408A JP4129122B2 (en) 1999-05-07 2000-05-01 Breath breath inspection device and adjustment method thereof
AU43173/00A AU4317300A (en) 1999-05-07 2000-05-01 Mouth odor detection device and regulating method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/127254 1999-05-07
JP12725499 1999-05-07

Publications (1)

Publication Number Publication Date
WO2000068674A1 true WO2000068674A1 (en) 2000-11-16

Family

ID=14955507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002903 WO2000068674A1 (en) 1999-05-07 2000-05-01 Mouth odor detection device and regulating method therefor

Country Status (4)

Country Link
JP (1) JP4129122B2 (en)
AU (1) AU4317300A (en)
TW (1) TW548093B (en)
WO (1) WO2000068674A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103142215A (en) * 2013-03-22 2013-06-12 无锡市崇安区科技创业服务中心 Oral breath detector
CH707875B1 (en) * 2013-04-11 2017-10-31 Sunstar Suisse Sa Apparatus and method for the analysis of a respiratory gas mixture, especially for the detection of halitosis.
JP7186500B2 (en) * 2017-12-27 2022-12-09 ライオン株式会社 Breath Volatile Sulfur Compound Level Estimating Method, Breath Volatile Sulfur Compound Level Estimating Apparatus and Program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313750A (en) * 1988-06-13 1989-12-19 Figaro Eng Inc Detection of gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313750A (en) * 1988-06-13 1989-12-19 Figaro Eng Inc Detection of gas

Also Published As

Publication number Publication date
JP4129122B2 (en) 2008-08-06
TW548093B (en) 2003-08-21
AU4317300A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
CA2035727A1 (en) Gas detector
CA2478112C (en) Gas chromatograph and expired air component analyzer
US10084401B2 (en) Electric shaver
EP0822326B1 (en) Temperature control for a wide range oxygen sensor
JP2006507489A5 (en)
US20110285414A1 (en) Systems And Methods For An Open Circuit Current Limiter
KR20080068362A (en) Apparatus for measuring salinity using ion conductivity and method therefor
KR0143539B1 (en) Multiple k factor, selectable gas detector
US8555701B1 (en) Enhanced metal oxide gas sensor
WO2000068674A1 (en) Mouth odor detection device and regulating method therefor
JP5531264B2 (en) Expiratory component measuring device
JP4477780B2 (en) Exhaled gas detection method and apparatus
JP4805759B2 (en) Gas detector
US6758084B2 (en) Method and apparatus for detecting a dry/wet state of a thermistor bead
KR100549119B1 (en) An apparatus for measuring density of alcohol using semiconductor sensor
JP3897327B2 (en) Portable gas detector
JP5337095B2 (en) Expiratory component measuring device
JP2003185613A (en) Portable gas detector
KR0147163B1 (en) Humid area calculating method of humidifier for humidity control
JPH03246461A (en) Air-fuel ratio sensor controller
JP7314734B2 (en) Fluid heating device
JPH0961389A (en) Gas detector and setting method therefor
KR100435751B1 (en) a method for heating feed back controlling of O2 sensor
KR910002093B1 (en) Device for measuring blood sugar and its control system
JP5344475B2 (en) Heating transpiration device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 616408

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase