WO2000066656A1 - Plastic wastes catalytic cracking process - Google Patents

Plastic wastes catalytic cracking process Download PDF

Info

Publication number
WO2000066656A1
WO2000066656A1 PCT/ES2000/000161 ES0000161W WO0066656A1 WO 2000066656 A1 WO2000066656 A1 WO 2000066656A1 ES 0000161 W ES0000161 W ES 0000161W WO 0066656 A1 WO0066656 A1 WO 0066656A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
catalyst
plastic
matrix
reactor
Prior art date
Application number
PCT/ES2000/000161
Other languages
Spanish (es)
French (fr)
Inventor
Avelino Corma Canos
Salvador Cayetano Cardona Navarrete
Jose Antonio Gaona Miguelez
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2000066656A1 publication Critical patent/WO2000066656A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention encompasses in the field of plastic waste transformation and, more specifically, in the sector of plastic waste transformation by means of catalytic cracking techniques.
  • plastic waste can be converted into gaseous and liquid hydrocarbons and generate, at the same time, a certain amount of waxes.
  • Thermal cracking and hydrocracking has been investigated at the laboratory and pilot plants level, and some semi-commercial facilities for the treatment of mixed plastic waste, including chlorinated polymers, have been built.
  • thermal cracking generates low quality and unstable hydrocarbons, within a wide range of boiling points.
  • catalytic cracking allows working temperatures lower than those used in thermal cracking and generates products of superior quality, with the consequent economic benefit.
  • There are different methods to carry out the catalytic cracking of plastic waste by catalytic cracking of the mixture of plastics with liquid hydrocarbon streams, by thermal cracking of plastic waste and subsequent catalytic cracking of pyrolysis products to improve its quality, by catalytic cracking of plastic waste by direct contact with the catalyst, and by catalytic hydrocracking.
  • a simple way to process plastic waste via catalytic cracking is by mixing the plastic waste with the typical feed of a FCC unit, forming a current (slurry) that is treated conventionally in the FCC unit of a refinery.
  • the main limitations to this technology are the cost of transporting plastic waste from its origin to the refinery, the need for significant flows of refinery liquids taking into account the limited amount of plastics that can be mixed, and restrictions on treatment of plastics containing chlorine or other heteroatoms in their composition, since these can adversely affect both the FCC unit and the catalyst.
  • Another alternative involves the prior thermal cracking of plastic waste to produce low quality hydrocarbons (vapors or liquids extracted by the bottom of the reactor), which are treated directly, downstream, in a catalytic reactor in order to improve the quality of Pyrolysis products and convert them into transport fuels.
  • This option implies a high economic cost due to the necessary infrastructure in each treatment center that was installed, or due to the cost of transporting the plastic waste to a centralized treatment plant. It would be possible to separate the thermal cracking stage from the catalytic cracking stage by condensing the pyrolysis products and subsequently feeding said liquid products to a catalytic cracking reactor.
  • the first strategy requires a high cost in infrastructure, both for the catalytic cracking process and for product separation operations, as well as in catalysts.
  • the second strategy has a lower infrastructure cost, although the operating cost is significantly affected by the cost of the catalyst used.
  • catalysts have been tested in several types of reactors (batch, semi-continuous, continuous, fixed bed and fluidized bed) and in a wide range of working temperatures.
  • Various processes have also been patented using catalysts such as a mixture of quartz sand, Al and ⁇ -Al 2 0 3 ; basic metal oxides; a catalyst containing Al and an aluminosilicate; aluminum oxide catalysts; aluminosilicates or alkali metal aluminosilicates; activated alumina catalysts with solutions of halogenated compounds; copper powders, synthetic catalyst ZDL; catalyst consisting of kaolin and iron pieces; catalyst composed of modified Y zeolite, aluminum hydroxide and a lubricant; MgCl 2 and AICI3 catalyst; catalyst composed of a modified Y zeolite that has pores in the medium to large range and highly active aluminum hydroxide; SIO2-AI2O3 catalyst; catalyst constituted by desaluminized zeolites; activated clays as a catalyst
  • Zeolites have been studied as catalysts for direct catalytic cracking of plastics such as polypropylene, polyethylene and polystyrene.
  • the activity of these catalysts depends on their pore size, the distribution of pore sizes, the number and strength of the acid centers, and the type of plastic to be cracked. Due to the high length of the polymer chains and the high viscosity of the plastics in the molten state, the diffusion processes of the polymer chains through the channels of the zeolites are hindered, so that the initial cracking takes place on the external surface of the zeolite, the external active centers being the ones that are really controlling the catalytic activity of these microporous catalysts.
  • mesoporous catalysts such as amorphous silica-alumina or ordered structure (amorphous silica-alumina, MCM-41, etc.) would improve the accessibility of plastic molecules to the active centers of the catalyst, so that increase the activity in catalytic cracking.
  • the strength of the acid centers of these mesoporous catalysts is not very high, so certain polymers, such as polypropylene, will crack easily while others, such as polyethylene, will need higher working temperatures or higher amounts of mesoporous catalyst. to carry out the process in an efficient way.
  • mesoporous catalysts such as amorphous silica-alumina or MCM-41 have a high economic cost, which represents an important limitation for the commercial use of these catalysts in the catalytic cracking of plastic waste.
  • the commercial catalytic cracking catalysts used in conventional FCC units allow cracking of the bulky diesel molecules due to their composition, composed of 1-70% many times by 15-50%, of zeolite embedded in a matrix more or less active silica-alumina and with a series of additives according to the type of feed to be processed or the desired reaction products.
  • the active silica-alumina matrices precrack the molecules of a high chain length, so that the resulting products can already be cracked more selectively on the zeolites that are part of these commercial FCC catalysts.
  • a residual equilibrium catalyst of FCC even though it has lost most of its acid centers and is not suitable for continued use in units FCC and is treated as a waste product, it is capable of cracking the polymer chains of plastics and converting them into products such as gasoline, diesel, C ⁇ -C gases and waxes.
  • the use of these low-cost catalysts reduces the operating cost of commercial units for the treatment of plastic waste, while increasing the useful life of residual catalysts that end up in the landfill.
  • the present invention is based on a process for the treatment of plastic waste by direct catalytic cracking through the use of FCC unit balance catalysts.
  • the process comprises contacting the catalyst with the molten plastic at the reaction temperature in a stirred or semi-continuous stirred reactor. Under certain circumstances, fresh FCC catalysts can also be used.
  • the present invention relates to a process for converting plastic waste into hydrocarbons and, in general, lower molecular weight organic compounds, mainly hydrocarbons and liquid organic compounds useful as automotive fuels or as valid chemicals as raw material in the petrochemical industry, waxes useful as raw material for obtaining lubricants, and hydrocarbons and gaseous organic compounds useful as an energy source of the same catalytic cracking process, which is endothermic, and / or as to power a cogeneration system with which to generate thermal and electrical energy. Thermal energy will cover the heat needs of the process, while surpluses of electrical energy could be exported to the electricity grid.
  • the process is based on the direct catalytic cracking of molten plastics in the presence of fresh catalytic cracking catalysts used in FCC units, or on equilibrium catalysts from the same units.
  • the process must take place in a reactor equipped with an appropriate stirring system.
  • the main objectives of the stirring system are to improve the heat transfer process, achieve homogeneous mixing between the catalyst and the plastic, and improve the external diffusion of the long polymer molecules from the molten plastic mass to the catalyst surface.
  • the heat transfer process is key in the cracking of plastic waste that has a low thermal conductivity, so that without the presence of the agitation systems the temperature gradients would be considerable.
  • without stirring there would not be a uniform distribution of the catalyst within the molten plastic, so that only a part of the plastic cracked it catalytically, while thermal cracking, not very selective, would take place in an important way. In the process the contact between the catalyst and the molten plastic must take place at the temperature of reaction.
  • the conversion obtained is much less than when the catalyst contacts the molten plastic at the reaction temperature. This may be due to the deactivation of the catalyst during the heating process from room temperature or from a temperature lower than the reaction temperature, to the reaction temperature.
  • the process can take place semi-continuously or continuously, in a range of reaction temperatures between 300 ° C and 550 ° C, at pressures ranging between 0.5 and 10 bar, preferably between 340 ° C and 480 ° C, and more preferably between 350 ° C and 450 ° C.
  • the plastic waste is deposited inside the reactor and the heating stage is started from room temperature to the reaction temperature.
  • the heating process between room temperature and the reaction temperature can be carried out at various heating rates or in several stages, passing through constant temperature sections.
  • Initial heating with the solid state plastic does not usually require agitation. However, stirring should be started at the time the plastic is molten and with a sufficiently low viscosity, preferably in the temperature range between 110 and 400 ° C, and more preferably between 140 and 300 ° C.
  • the catalyst is injected into the reactor, so that the molten plastic is contacted with the catalyst, with stirring being maintained at all times.
  • the temperature of the injected catalyst will be the reaction temperature.
  • the vapors generated in the reactor as a result of the catalytic cracking of the plastic are extracted from it, controlling the residence time of these vapors inside the reactor by means of a flow of inerting gas.
  • the inertization gas can be chosen from among the gases generated in the catalytic cracking process, nitrogen, water vapor or combinations thereof. Vapors are condensed in a condenser to obtain hydrocarbons and liquid organic compounds, while hydrocarbons and gaseous organic compounds can be stored for later use or burned directly in a torch.
  • hydrocarbons and liquid organic compounds generated will be subsequently treated in the conventional units of a refinery to improve product quality, generating fuels for transportation or raw material for the petrochemical industry.
  • the catalyst deactivated with coke remains, if the process has been carried out in total conversion, or the catalyst deactivated with coke and mixed with waxes, in the event that the process has not been carried out to total conversion.
  • the type of waxes obtained depends on the plastic treated and the degree of conversion achieved in the reactor.
  • the waxes are separated from the catalyst deactivated with coke, in a suitable and conventional manner, for example by the use of suitable solvents.
  • the catalyst deactivated with coke can be regenerated and reused in the process.
  • molten plastic, fresh or balanced catalytic cracking catalyst and a gas flow are continuously introduced into the reactor.
  • the molten plastic is introduced at a temperature in the range between the melting temperature of the plastic and the reaction temperature, with a temperature between the reaction and approximately 100 ° C lower than the reaction being preferable.
  • the catalytic cracking catalyst, fresh or balanced is preferably introduced into the reactor at the reaction temperature.
  • the catalyst / plastic ratio fed to the reactor is set according to the degree of conversion desired and the catalyst / plastic ratio that is intended to be maintained inside the reactor.
  • the gas flow such as the incondensable gases generated in the catalytic cracking process, water vapor, nitrogen or combinations thereof, is also continuously introduced into the reactor to control the residence time of the vapors generated in the catalytic cracking
  • the stirring system is kept in operation during the process and the inside of the reactor is at the reaction temperature.
  • the vapors that are extracted from the reactor are those whose boiling point is low enough to be able to leave the reactor, so that the extracted fractions will depend on the reaction temperature.
  • the incondensable gases can be sent back to the reactor in order to control the residence time of the vapors inside the reactor, they can be used as a source of energy to heat the reactor, they can be burned in a torch, or They may well be used as fuel in a cogeneration system.
  • the catalyst deactivated by coke is removed from the bottom of the reactor along with a certain amount of waxes. The mixture of the catalyst and the waxes can be separated in case you are interested in recovering the waxes for their economic value as a lubricant base.
  • the catalyst deactivated with coke can be subsequently regenerated and again introduced into the reactor, with the catalyst purges used and the new catalyst additions necessary to maintain the conversion of the process during steady state operation.
  • the plastic residues that can be cracked are preferably polyethylene, polystyrene and polypropylene or mixtures thereof (polyethylene + polystyrene, polyethylene + polypropylene, polypropylene + polystyrene, polypropylene + polyethylene + polystyrene), and more preferably Polypropylene.
  • Halogenated polymers can also be cracked during continuous operation. Halogenated polymers can also be used during semi-continuous operation.
  • the catalytic cracking catalysts to be used in the process of the invention are commercial FCC catalysts. Fresh FCC catalysts or residual FCC equilibrium catalysts can be used. In FCC catalysts, those containing Y zeolite in a range between 1% and 70% and having a unit cell size between 24.24 and 24.60 ⁇ are preferred.
  • FCC catalysts whose zeolitic component comprises zeolites X, REX, Y, USY, KING, REUSY, L, ZSM-5, Beta and combinations thereof are suitable.
  • the matrix can be active or inactive and must be resistant to temperature and attrition.
  • Materials that are part of the matrix include inactive or active inorganic materials such as clays, metal oxides of silica, aluminum, titanium, zirconium or magnesium, silica-alumina, silicon-magnesium, silicon-zirconium, silicon-thorium, silicon-beryllium, silica-titanium, silica-alumina-thorium, silica-alumina-zirconium, silica-alumina-magnesium and silicon-magnesium-zirconium, and mixtures of the above containing or not containing phosphorus in its composition.
  • DESCRIPTION OF THE FIGURE Figure 1 Diagram of the reaction system.
  • Example 1 This example illustrates that the conversion in the process of direct catalytic cracking of plastic waste is greatly affected by the speed of agitation.
  • Different experiments were performed by varying the stirring speed in a semi-continuous reactor with heating from the outside by electric jacket (Fig. 1), using as a catalyst a USY zeolite with unit cell size 24.35 ⁇ , particle size in the range 0.42- 0.59 mm, and as polypropylene plastic in the form of pellets.
  • the catalyst / plastic ratio was 1/35, the reaction temperature 380 ° C and the time of reaction 72 min. Table 1 shows the conversion results (%).
  • Example 2 To illustrate that the conversion of the process varies depending on whether the contact between the catalyst and the plastic waste takes place from the beginning of the heating process or at the reaction temperature, two experiments were performed; in one the catalyst and the plastic were contacted at room temperature from the beginning of the process, while in the other the catalyst was contacted with the molten plastic at the reaction temperature.
  • the experiments were performed in a semi-continuous reactor stirred with heating from the outside by electric jacket (Fig. 1), using an equilibrium FCC catalyst with unit cell size 24.28 ⁇ , particle size in the range 0.42-0.59 mm, and as pellet-shaped polypropylene plastic.
  • the catalyst / plastic ratio was 1/35, the reaction temperature 360 ° C and the reaction time, from the moment the temperature inside the reactor reached 360 ° C, it was 72 min. Table 2 shows the conversion results (%).
  • Example 3 This example illustrates that at a given reaction temperature and by setting the reaction time, the process conversion can be controlled by varying the catalyst / plastic ratio.
  • Several experiments were performed, modifying the catalyst / plastic ratio, in a stirred semi-continuous reactor with heating from the outside by electric jacket (Fig. 1), using an equilibrium FCC catalyst with unit cell size 24.28 ⁇ , particle size comprised in the range 0.42-0.59 mm, and as plastic pellet shaped polypropylene.
  • the reaction temperature was 380 ° C and the reaction time 72 min.
  • Table 3 shows the results of conversion (%) and selectivity (%) to products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a process for the catalytic cracking of plastic wastes by directly contacting said plastic wastes in molten state with a catalytic cracking catalyst with the purpose of breaking the long polymeric chains of the plastic materials and obtaining liquid hydrocarbons, waxes and gaseous hydrocarbons having a lower molecular weight as main products. Fresh or balanced FCC catalysts (residual catalyst from the process) are used as catalytic cracking catalysts.

Description

PROCESO PARA EL CRAQUEO CATALÍTICO DE RESIDUOS PROCESS FOR CATALYTIC WASTE CROSSING
PLÁSTICOS CAMPO TÉCNICO DE LA INVENCIÓNPLASTICS TECHNICAL FIELD OF THE INVENTION
La presente invención se engloba en el campo de la transformación de residuos plásticos y, más concretamente, en el sector de la transformación de residuos plásticos mediante técnicas de craqueo catalítico.The present invention encompasses in the field of plastic waste transformation and, more specifically, in the sector of plastic waste transformation by means of catalytic cracking techniques.
ESTADO DE LA TÉCNICA ANTERIOR En los últimos cincuenta años, los plásticos han registrado un desarrollo sin precedentes, de manera que resulta difícil imaginar la vida cotidiana sin ellos. Como consecuencia de su producción y su elevado consumo en múltiples aplicaciones, se generan importantes cantidades de residuos sólidos cuando los productos plásticos han finalizado su vida útil. Al tratarse de productos de síntesis de laboratorio, la naturaleza no puede degradarlos de forma rápida, por lo que su permanencia en los vertederos es superior a otros tipos de residuos, por lo que contribuyen de forma importante a la degradación medioambiental.STATE OF THE PREVIOUS TECHNIQUE In the last fifty years, plastics have registered an unprecedented development, so it is difficult to imagine everyday life without them. As a result of its production and its high consumption in multiple applications, significant amounts of solid waste are generated when plastic products have finished their useful life. As they are laboratory synthesis products, nature cannot degrade them quickly, so their permanence in landfills is superior to other types of waste, so they contribute significantly to environmental degradation.
Por otra parte, la sociedad actual está adquiriendo una preocupación cada vez mayor respecto a los temas medioambientales, entre los que se encuentran los residuos sólidos y, particularmente, los residuos plásticos. Esto supone el desarrollo de diversos tratamientos con el objetivo de reducir el volumen de residuos plásticos y recuperar tanto el valor económico como energético que llevan asociados, para reducir de esta forma el consumo de recursos y la contaminación medioambiental. De todos los posibles tratamientos de los residuos plásticos es de esperar que el reciclado terciario se potencie cada vez más, sobre todo en cuanto a las tecnologías basadas en el craqueo-hidrocraqueo térmico o catalítico de los residuos plásticos, ya que éstas permiten el tratamiento de mezclas de distintos tipos de plásticos, evitando la separación por tipos, incluidos los termoestables. De esta forma los residuos plásticos pueden convertirse en hidrocarburos gaseosos y líquidos y generar, al mismo tiempo, cierta cantidad de ceras.On the other hand, the current society is acquiring a growing concern regarding environmental issues, among which are solid waste and, in particular, plastic waste. This involves the development of various treatments in order to reduce the volume of plastic waste and recover both the economic and energy value associated with it, in order to reduce resource consumption and environmental pollution. Of all the possible treatments of plastic waste, it is expected that tertiary recycling will be Increasingly, especially in terms of technologies based on thermal cracking or catalytic cracking-hydrocracking of plastic waste, since these allow the treatment of mixtures of different types of plastics, avoiding separation by types, including thermosets. In this way, plastic waste can be converted into gaseous and liquid hydrocarbons and generate, at the same time, a certain amount of waxes.
El craqueo e hidrocraqueo térmico ha sido investigado a nivel de laboratorio y plantas piloto, e incluso han sido construidas algunas instalaciones de carácter semicomercial para el tratamiento de residuos plásticos mezclados, entre los que se encuentran los polímeros clorados. Sin embargo, el craqueo térmico genera hidrocarburos de baja calidad y de carácter inestable, dentro de un amplio rango de puntos de ebullición. Por otra parte, el craqueo catalítico permite temperaturas de trabajo menores a las empleadas en el craqueo térmico y genera productos de una calidad superior, con el consiguiente beneficio económico. Hay diferentes métodos para llevar a cabo el craqueo catalítico de los residuos plásticos: mediante el craqueo catalítico de la mezcla de los plásticos con corrientes liquidas de hidrocarburos, mediante el craqueo térmico de los residuos plásticos y posterior craqueo catalítico de los productos de pirólisis para mejorar su calidad, mediante el craqueo catalítico de los residuos plásticos por contacto directo con el catalizador, y mediante hidrocraqueo catalítico.Thermal cracking and hydrocracking has been investigated at the laboratory and pilot plants level, and some semi-commercial facilities for the treatment of mixed plastic waste, including chlorinated polymers, have been built. However, thermal cracking generates low quality and unstable hydrocarbons, within a wide range of boiling points. On the other hand, catalytic cracking allows working temperatures lower than those used in thermal cracking and generates products of superior quality, with the consequent economic benefit. There are different methods to carry out the catalytic cracking of plastic waste: by catalytic cracking of the mixture of plastics with liquid hydrocarbon streams, by thermal cracking of plastic waste and subsequent catalytic cracking of pyrolysis products to improve its quality, by catalytic cracking of plastic waste by direct contact with the catalyst, and by catalytic hydrocracking.
Una forma simple de procesar los residuos plásticos via craqueo catalítico es mediante la mezcla de los residuos plásticos con la alimentación típica de una unidad de FCC, formando una corriente (slurry) que es tratada convencionalmente en la unidad de FCC de una refinería. Las principales limitaciones a esta tecnología son el coste del transporte de los residuos plásticos desde su origen hasta la refinería, la necesidad de importantes caudales de líquidos de refinería teniendo en cuenta la limitada cantidad de plásticos que pueden ser mezclados, y las restricciones en el tratamiento de plásticos que contengan cloro u otros heteroátomos en su composición, ya que éstos pueden afectar negativamente tanto a la unidad de FCC como al catalizador.A simple way to process plastic waste via catalytic cracking is by mixing the plastic waste with the typical feed of a FCC unit, forming a current (slurry) that is treated conventionally in the FCC unit of a refinery. The main limitations to this technology are the cost of transporting plastic waste from its origin to the refinery, the need for significant flows of refinery liquids taking into account the limited amount of plastics that can be mixed, and restrictions on treatment of plastics containing chlorine or other heteroatoms in their composition, since these can adversely affect both the FCC unit and the catalyst.
Otra alternativa supone el craqueo térmico previo de los residuos plásticos para producir hidrocarburos de baja calidad (vapores o líquidos extraídos por el fondo del reactor) , los cuales son tratados directamente, aguas abajo, en un reactor catalítico con el fin de mejorar la calidad de los productos de pirólisis y convertirlos en combustibles para transporte. Esta opción supone un alto coste económico debido a la infraestructura necesaria en cada centro de tratamiento que se instalase, o bien debido al coste de transporte de los residuos plásticos hasta una planta de tratamiento centralizada. Seria posible separar la etapa de craqueo térmico de la etapa de craqueo catalítico mediante la condensación de los productos de pirólisis y la posterior alimentación de dichos productos líquidos a un reactor de craqueo catalítico. Bajo estas condiciones seria posible instalar varias unidades de craqueo térmico para generar unos productos líquidos de pirólisis que serian transportados a un menor coste hasta la unidad de FCC de una refinería, en la cual el liquido de pirólisis seria coalimentado con la alimentación convencional y, de esta forma, valorizado. Otra ventaja que presenta este tratamiento de los residuos plásticos reside en la posibilidad de procesar plásticos que contengan cloro en su composición, siempre que en los productos de pirólisis sea eliminado el cloro antes de ser coalimentados a las unidades de FCC.Another alternative involves the prior thermal cracking of plastic waste to produce low quality hydrocarbons (vapors or liquids extracted by the bottom of the reactor), which are treated directly, downstream, in a catalytic reactor in order to improve the quality of Pyrolysis products and convert them into transport fuels. This option implies a high economic cost due to the necessary infrastructure in each treatment center that was installed, or due to the cost of transporting the plastic waste to a centralized treatment plant. It would be possible to separate the thermal cracking stage from the catalytic cracking stage by condensing the pyrolysis products and subsequently feeding said liquid products to a catalytic cracking reactor. Under these conditions, it would be possible to install several thermal cracking units to generate liquid pyrolysis products that would be transported at a lower cost to the FCC unit of a refinery, in which the pyrolysis liquid would be combined with the feed conventional and, in this way, valued. Another advantage of this treatment of plastic waste lies in the possibility of processing plastics containing chlorine in its composition, provided that in the pyrolysis products the chlorine is removed before being co-fermented to the FCC units.
Finalmente, cabe destacar la posibilidad del craqueo catalítico de residuos plásticos por contacto directo con el catalizador, sin una etapa previa de craqueo térmico. Esta posibilidad reduce los costes energéticos en comparación con el craqueo térmico seguido del catalítico, ya que la temperatura de reacción o el tiempo de residencia pueden reducirse. Esta tecnología es apropiada para el tratamiento de residuos plásticos que contengan cloro en su composición, siempre que se incluya la adsorción/absorción de cloro en los gases de salida. Bajo esta óptica existen dos estrategias de operación: Puede optarse, o bien por generar un producto de elevada calidad que pueda utilizarse directamente como combustible para transporte o como materia prima para la industria petroquímica, o bien por generar un producto liquido mediante un craqueo suave que sea transportado a la refinería donde se trate de forma convencional para generar productos de alto valor añadido. La primera estrategia requiere un elevado coste en infraestructura, tanto para el proceso de craqueo catalítico como para las operaciones de separación de los productos, asi como en catalizadores. La segunda estrategia tiene un menor coste de infraestructura, si bien el coste de explotación se ve afectado de forma importante por el coste del catalizador utilizado. Se han realizado un gran número de estudios de laboratorio sobre el craqueo catalítico de diversos tipos de plásticos utilizando diferentes tipos de catalizadores: AI2O3, Pt-Al203, Si02, SÍO2-AI2O3, Pt-Si02-Al203, MgO, Ti02, ZnO, CaO, BaO, K20, Co304, Cr203, Fe203, CuO, A12C13, zeolita Ca-X, zeolita Na-Y, zeolita H-Y, zeolita L, zeolita REY, H-mordenita, Na-mordenita, silicalita, H-Ga-silicalita, H- ZSM-5, H-USY, zirconia sulfatada, Al-MCM-41, Si-MCM-41, Sílice mesoporosa (FSM) y carbón activado conteniendo Pt o Fe. Los catalizadores anteriores han sido probados en varios tipos de reactores (batch, semicontinuos, continuos, de lecho fijo y de lecho fluidizado) y en un amplio rango de temperaturas de trabajo. También han sido patentados diversos procesos utilizando catalizadores tales como una mezcla de arena de cuarzo, Al y γ-Al203; óxidos metálicos básicos; un catalizador conteniendo Al y un aluminosilicato; catalizadores de óxido de aluminio; aluminosilicatos o aluminosilicatos de metales alcalinos; catalizadores de alúmina activada con disoluciones de compuestos halogenados; polvos de cobre, catalizador sintético ZDL; catalizador constituido por caolín y trozos de hierro; catalizador compuesto de zeolita Y modificada, hidróxido de aluminio y un lubricante; catalizador de MgCl2 y AICI3; catalizador compuesto de una zeolita Y modificada que presenta poros en el rango de medios a grandes e hidróxido de aluminio altamente activo; catalizador de SÍO2-AI2O3; catalizador constituido por zeolitas desaluminizadas; arcillas activadas como catalizador; óxidos inorgánicos mesoporosos con haluros metálicos enlazados a grupos funcionales sobre la superficie de los poros; catalizadores ácidos sólidos; catalizador de Al-Fe ; un catalizador de sílice mesoporosa etc.Finally, it is worth highlighting the possibility of catalytic cracking of plastic waste by direct contact with the catalyst, without a previous stage of thermal cracking. This possibility reduces energy costs compared to thermal cracking followed by catalytic, since the reaction temperature or residence time can be reduced. This technology is appropriate for the treatment of plastic waste containing chlorine in its composition, provided that the adsorption / absorption of chlorine is included in the exhaust gases. Under this perspective there are two operation strategies: You can choose either to generate a high quality product that can be used directly as a fuel for transportation or as a raw material for the petrochemical industry, or to generate a liquid product through a soft cracking that It is transported to the refinery where it is treated in a conventional way to generate products with high added value. The first strategy requires a high cost in infrastructure, both for the catalytic cracking process and for product separation operations, as well as in catalysts. The second strategy has a lower infrastructure cost, although the operating cost is significantly affected by the cost of the catalyst used. A large number of laboratory studies have been carried out on the catalytic cracking of various types of plastics using different types of catalysts: AI2O3, Pt-Al 2 0 3 , Si0 2 , SÍO2-AI2O3, Pt-Si0 2 -Al 2 0 3 , MgO, Ti0 2 , ZnO, CaO, BaO, K 2 0, Co 3 0 4 , Cr 2 0 3 , Fe 2 0 3 , CuO, A1 2 C1 3 , Ca-X zeolite, Na-Y zeolite, HY zeolite , zeolite L, zeolite KING, H-mordenite, Na-mordenite, silicalite, H-Ga-silicalite, H- ZSM-5, H-USY, sulfated zirconia, Al-MCM-41, Si-MCM-41, Mesoporous silica (FSM) and activated carbon containing Pt or Fe. The above catalysts have been tested in several types of reactors (batch, semi-continuous, continuous, fixed bed and fluidized bed) and in a wide range of working temperatures. Various processes have also been patented using catalysts such as a mixture of quartz sand, Al and γ-Al 2 0 3 ; basic metal oxides; a catalyst containing Al and an aluminosilicate; aluminum oxide catalysts; aluminosilicates or alkali metal aluminosilicates; activated alumina catalysts with solutions of halogenated compounds; copper powders, synthetic catalyst ZDL; catalyst consisting of kaolin and iron pieces; catalyst composed of modified Y zeolite, aluminum hydroxide and a lubricant; MgCl 2 and AICI3 catalyst; catalyst composed of a modified Y zeolite that has pores in the medium to large range and highly active aluminum hydroxide; SIO2-AI2O3 catalyst; catalyst constituted by desaluminized zeolites; activated clays as a catalyst; mesoporous inorganic oxides with metal halides bonded to functional groups on the surface of the pores; solid acid catalysts; Al-Fe catalyst; a mesoporous silica catalyst etc.
Las zeolitas han sido estudiadas como catalizadores del craqueo catalítico directo de plásticos como el polipropileno, el polietileno y el poliestireno. La actividad de estos catalizadores depende de su tamaño de poro, de la distribución de tamaños de poro, del número y fortaleza de los centros ácidos, y del tipo de plástico a craquear. Debido a la elevada longitud de las cadenas de los polímeros y a la alta viscosidad de los plásticos en estado fundido, los procesos de difusión de las cadenas poliméricas por los canales de las zeolitas se ven dificultados, de forma que el craqueo inicial tiene lugar sobre la superficie externa de la zeolita, siendo los centros activos externos los que realmente están controlando la actividad catalítica de estos catalizadores microporosos. Mientras que para algunos plásticos, como el polietileno, la accesibilidad a los centros activos y la fortaleza acida son aspectos importantes a considerar en el catalizador, en otros, como el polipropileno, la accesibilidad es el factor limitante en la actividad de los catalizadores empleados. Esto es debido a la presencia de átomos de carbono en posición terciaria en las moléculas de polipropileno, los cuales no requieren centros ácidos muy fuertes para que tenga lugar el craqueo.Zeolites have been studied as catalysts for direct catalytic cracking of plastics such as polypropylene, polyethylene and polystyrene. The activity of these catalysts depends on their pore size, the distribution of pore sizes, the number and strength of the acid centers, and the type of plastic to be cracked. Due to the high length of the polymer chains and the high viscosity of the plastics in the molten state, the diffusion processes of the polymer chains through the channels of the zeolites are hindered, so that the initial cracking takes place on the external surface of the zeolite, the external active centers being the ones that are really controlling the catalytic activity of these microporous catalysts. While for some plastics, such as polyethylene, accessibility to active centers and acid strength are important aspects to consider in the catalyst, in others, such as polypropylene, accessibility is the limiting factor in the activity of the catalysts used. This is due to the presence of tertiary carbon atoms in polypropylene molecules, which do not require very strong acid centers for cracking to take place.
Por tanto, la utilización de catalizadores mesoporosos como las sílices-alúminas amorfas o de estructura ordenada (silice-alúmina amorfa, MCM-41, etc) mejorarla la accesibilidad de las moléculas de plástico a los centros activos del catalizador, de forma que se incrementarla la actividad en el craqueo catalítico. Sin embargo, la fortaleza de los centros ácidos de estos catalizadores mesoporosos no es muy elevada por lo que ciertos polímeros, como el polipropileno, se craquearán con facilidad mientras que otros, como el polietileno, necesitarán mayores temperaturas de trabajo o mayores cantidades de catalizador mesoporoso para llevar a cabo el proceso de una forma eficiente.Therefore, the use of mesoporous catalysts such as amorphous silica-alumina or ordered structure (amorphous silica-alumina, MCM-41, etc.) would improve the accessibility of plastic molecules to the active centers of the catalyst, so that increase the activity in catalytic cracking. However, the strength of the acid centers of these mesoporous catalysts is not very high, so certain polymers, such as polypropylene, will crack easily while others, such as polyethylene, will need higher working temperatures or higher amounts of mesoporous catalyst. to carry out the process in an efficient way.
No obstante, los catalizadores mesoporosos como la silice-alúmina amorfa o la MCM-41 presentan un elevado coste económico, lo cual supone una importante limitación para el uso comercial de estos catalizadores en el craqueo catalítico de residuos plásticos.However, mesoporous catalysts such as amorphous silica-alumina or MCM-41 have a high economic cost, which represents an important limitation for the commercial use of these catalysts in the catalytic cracking of plastic waste.
Por otra parte, la reducida estabilidad térmica e hidrotérmica de estos catalizadores mesoporosos dificulta la regeneración del catalizador, indispensable para incrementar de nuevo la actividad del catalizador desactivado por deposición de coque. Conforme más elevado es el coste del catalizador, más importante es la necesidad de llevar a cabo la etapa de regeneración del mismo.On the other hand, the reduced thermal and hydrothermal stability of these mesoporous catalysts makes it difficult to regenerate the catalyst, which is essential for increasing the activity of the catalyst deactivated by coke deposition. The higher the cost of the catalyst, the more important is the need to carry out the regeneration step thereof.
Por tanto, mientras que la viabilidad técnica del proceso de craqueo catalítico directo de residuos plásticos es clara, la viabilidad económica depende considerablemente del coste del catalizador.Therefore, while the technical feasibility of the direct catalytic cracking process of plastic waste is clear, the economic viability depends considerably on the cost of the catalyst.
Los catalizadores comerciales de craqueo catalítico utilizados en las unidades convencionales de FCC permiten el craqueo de las voluminosas moléculas de gasoil debido a su composición, integrada por un 1-70% muchas veces por un 15 - 50%, de zeolita embebida en una matriz más o menos activa de silice-alúmina y con una serie de aditivos de acuerdo con el tipo de alimentación a procesar o los productos de reacción deseados. Las matrices activas de silice-alúmina precraquean las moléculas de una elevada longitud de cadena, de forma que los productos resultantes ya pueden ser craqueados de forma más selectiva sobre las zeolitas que forman parte de estos catalizadores comerciales de FCC.The commercial catalytic cracking catalysts used in conventional FCC units allow cracking of the bulky diesel molecules due to their composition, composed of 1-70% many times by 15-50%, of zeolite embedded in a matrix more or less active silica-alumina and with a series of additives according to the type of feed to be processed or the desired reaction products. The active silica-alumina matrices precrack the molecules of a high chain length, so that the resulting products can already be cracked more selectively on the zeolites that are part of these commercial FCC catalysts.
Por tanto, seria posible utilizar un catalizador comercial fresco de FCC para el craqueo catalítico de residuos plásticos por contacto directo. No obstante, si la finalidad del craqueo catalítico de los residuos plásticos es generar hidrocarburos líquidos mediante un craqueo suave, los cuales serian procesados posteriormente en unidades convencionales de refinería con el fin de mejorar la calidad de dichos productos, no parece justificado desde un punto de vista económico el utilizar los catalizadores comerciales frescos de FCC, a no ser que éstos presenten un precio muy bajo.Therefore, it would be possible to use a fresh commercial FCC catalyst for catalytic cracking of plastic waste by direct contact. However, if the purpose of catalytic cracking of plastic waste is to generate liquid hydrocarbons by gentle cracking, which would be subsequently processed in conventional refinery units in order to improve the quality of these products, it does not seem justified from a point of economic view of using fresh commercial FCC catalysts, unless they have a very low price.
OBJETOS DE LA INVENCIÓN Es un objeto de la invención, superar los inconvenientes del estado de la técnica anteriormente descrito, mediante un proceso que permite un craqueo catalítico eficiente y económico de residuos plásticos.OBJECTS OF THE INVENTION It is an object of the invention to overcome the drawbacks of the state of the art described above, by means of a process that allows efficient and economical catalytic cracking of plastic waste.
Es otro objeto de la invención, el uso de un catalizador de bajo precio en el craqueo catalítico de residuos plásticos.It is another object of the invention, the use of a low price catalyst in the catalytic cracking of plastic waste.
Es un ulterior objeto de la invención, aprovechar catalizadores de equilibrio de FCC que, en su uso en unidades FCC para el craqueo de corrientes de hidrocarburos tales como de petróleo, han perdido al menos parte de sus centros ácidos iniciales. DESCRIPCIÓN DE LA INVENCIÓNIt is a further object of the invention to take advantage of FCC equilibrium catalysts which, in their use in FCC units for cracking hydrocarbon streams such as petroleum, have lost at least part of their initial acid centers. DESCRIPTION OF THE INVENTION
Los objetos anteriormente mencionados se consiguen mediante las características definidas en las reivindicaciones, en base a que, sorprendentemente, un catalizador de equilibrio residual de FCC, aun cuando ha perdido la mayor parte de sus centros ácidos y no es apto para su uso continuado en unidades de FCC y es tratado como un producto de desecho, es capaz de craquear las cadenas de polímeros de los plásticos y de convertirlas en productos tales como gasolina, diesel, gases Cι-C y ceras. La utilización de estos catalizadores de bajo coste reduce el coste de explotación de las unidades comerciales para el tratamiento de los residuos plásticos, al mismo tiempo que se incrementa la vida útil de unos catalizadores residuales que terminan en el vertedero.The aforementioned objects are achieved by the characteristics defined in the claims, on the basis that, surprisingly, a residual equilibrium catalyst of FCC, even though it has lost most of its acid centers and is not suitable for continued use in units FCC and is treated as a waste product, it is capable of cracking the polymer chains of plastics and converting them into products such as gasoline, diesel, Cι-C gases and waxes. The use of these low-cost catalysts reduces the operating cost of commercial units for the treatment of plastic waste, while increasing the useful life of residual catalysts that end up in the landfill.
La presente invención se basa en un proceso para el tratamiento de residuos plásticos por craqueo catalítico directo mediante la utilización de catalizadores de equilibrio de unidades de FCC. El proceso comprende el poner en contacto el catalizador con el plástico fundido a la temperatura de reacción en un reactor continuo o semicontinuo agitado. En determinadas circunstancias se pueden utilizar también catalizadores frescos de FCC.The present invention is based on a process for the treatment of plastic waste by direct catalytic cracking through the use of FCC unit balance catalysts. The process comprises contacting the catalyst with the molten plastic at the reaction temperature in a stirred or semi-continuous stirred reactor. Under certain circumstances, fresh FCC catalysts can also be used.
La presente invención se refiere a un proceso para convertir residuos plásticos en hidrocarburos y, en general, compuestos orgánicos de menor peso molecular, principalmente hidrocarburos y compuestos orgánicos líquidos útiles como combustibles de automoción o como productos químicos válidos como materia prima en la industria petroquímica, ceras útiles como materia prima para la obtención de lubricantes, e hidrocarburos y compuestos orgánicos gaseosos útiles como fuente energética del mismo proceso de craqueo catalítico, el cual es endotérmico, y/o como para alimentar un sistema de cogeneración con el cual generar energía térmica y eléctrica. La energía térmica cubrirla las necesidades de calor del proceso, mientras que los excedentes de energía eléctrica podrían exportarse a la red eléctrica. El proceso se basa en el craqueo catalítico directo de los plásticos fundidos en presencia de catalizadores de craqueo catalítico fresco utilizados en unidades de FCC, o sobre catalizadores de equilibrio provenientes de las mismas unidades.The present invention relates to a process for converting plastic waste into hydrocarbons and, in general, lower molecular weight organic compounds, mainly hydrocarbons and liquid organic compounds useful as automotive fuels or as valid chemicals as raw material in the petrochemical industry, waxes useful as raw material for obtaining lubricants, and hydrocarbons and gaseous organic compounds useful as an energy source of the same catalytic cracking process, which is endothermic, and / or as to power a cogeneration system with which to generate thermal and electrical energy. Thermal energy will cover the heat needs of the process, while surpluses of electrical energy could be exported to the electricity grid. The process is based on the direct catalytic cracking of molten plastics in the presence of fresh catalytic cracking catalysts used in FCC units, or on equilibrium catalysts from the same units.
El proceso debe tener lugar en un reactor dotado de un sistema de agitación apropiado. Los principales objetivos del sistema de agitación son mejorar el proceso de transferencia de calor, conseguir un mezclado homogéneo entre el catalizador y el plástico, y mejorar la difusión externa de las largas moléculas de polímero desde la masa de plástico fundido hasta la superficie del catalizador. El proceso de transferencia de calor es clave en el craqueo de residuos plásticos que presentan una baja conductividad térmica, de forma que sin la presencia de los sistemas de agitación los gradientes de temperatura serian considerables. Por otra parte, sin agitación no habría una distribución uniforme del catalizador en el seno del plástico fundido, por lo que sólo una parte del plástico craquearla de forma catalítica, mientras que el craqueo térmico, poco selectivo, tendría lugar de forma importante. En el proceso tiene que tener lugar el contacto entre el catalizador y el plástico fundido a la temperatura de reacción. Si el plástico y el catalizador se mezclan desde el comienzo del proceso de calentamiento, estando el plástico en estado sólido, o bien se mezclan el plástico fundido y el catalizador pero a temperaturas bastante inferiores a la de reacción, la conversión que se obtiene es mucho menor que cuando el catalizador se pone en contacto con el plástico fundido a la temperatura de reacción. Ello puede ser debido a la desactivación que sufre el catalizador durante el proceso de calentamiento desde temperatura ambiente o desde una temperatura inferior a la de reacción, hasta la temperatura de reacción.The process must take place in a reactor equipped with an appropriate stirring system. The main objectives of the stirring system are to improve the heat transfer process, achieve homogeneous mixing between the catalyst and the plastic, and improve the external diffusion of the long polymer molecules from the molten plastic mass to the catalyst surface. The heat transfer process is key in the cracking of plastic waste that has a low thermal conductivity, so that without the presence of the agitation systems the temperature gradients would be considerable. On the other hand, without stirring, there would not be a uniform distribution of the catalyst within the molten plastic, so that only a part of the plastic cracked it catalytically, while thermal cracking, not very selective, would take place in an important way. In the process the contact between the catalyst and the molten plastic must take place at the temperature of reaction. If the plastic and the catalyst are mixed from the beginning of the heating process, the plastic being in a solid state, or the molten plastic and the catalyst are mixed but at temperatures well below the reaction, the conversion obtained is much less than when the catalyst contacts the molten plastic at the reaction temperature. This may be due to the deactivation of the catalyst during the heating process from room temperature or from a temperature lower than the reaction temperature, to the reaction temperature.
El proceso puede tener lugar de forma semicontinua o de forma continua, en un rango de temperaturas de reacción comprendido entre 300 °C y 550 °C, a presiones comprendidas en un rango entre 0.5 y 10 bar, preferiblemente entre 340 °C y 480 °C, y más preferiblemente entre 350 °C y 450 °C.The process can take place semi-continuously or continuously, in a range of reaction temperatures between 300 ° C and 550 ° C, at pressures ranging between 0.5 and 10 bar, preferably between 340 ° C and 480 ° C, and more preferably between 350 ° C and 450 ° C.
Durante el proceso en régimen semicontinuo los residuos plásticos se depositan en el interior del reactor y se comienza la etapa de calentamiento desde temperatura ambiente hasta la temperatura de reacción. El proceso de calentamiento entre temperatura ambiente y la temperatura de reacción puede realizarse a diversas velocidades de calentamiento o en varias etapas, pasando por tramos de temperatura constante. El calentamiento inicial con el plástico en estado sólido no suele precisar agitación. Sin embargo, la agitación debe comenzarse en el momento que el plástico está fundido y con una viscosidad suficientemente baja, preferiblemente en el rango de temperaturas entre 110 y 400°C, y más preferiblemente entre los 140 y 300°C.During the semi-continuous process the plastic waste is deposited inside the reactor and the heating stage is started from room temperature to the reaction temperature. The heating process between room temperature and the reaction temperature can be carried out at various heating rates or in several stages, passing through constant temperature sections. Initial heating with the solid state plastic does not usually require agitation. However, stirring should be started at the time the plastic is molten and with a sufficiently low viscosity, preferably in the temperature range between 110 and 400 ° C, and more preferably between 140 and 300 ° C.
HOJA RECTIFICADAÍREGLA 91) ISA/ES Cuando la temperatura del plástico fundido coincide con la temperatura de reacción el catalizador es inyectado en el interior del reactor, de forma que el plástico fundido se pone en contacto con el catalizador, manteniéndose la agitación en todo momento. Preferiblemente la temperatura del catalizador inyectado será la temperatura de reacción. Los vapores generados en el reactor como resultado del craqueo catalítico del plástico son extraídos del mismo, controlando el tiempo de residencia de esos vapores en el interior del reactor mediante un caudal de gas de inertización.RECTIFIED SHEET REGULATION 91) ISA / ES When the temperature of the molten plastic coincides with the reaction temperature, the catalyst is injected into the reactor, so that the molten plastic is contacted with the catalyst, with stirring being maintained at all times. Preferably the temperature of the injected catalyst will be the reaction temperature. The vapors generated in the reactor as a result of the catalytic cracking of the plastic are extracted from it, controlling the residence time of these vapors inside the reactor by means of a flow of inerting gas.
El gas de inertización puede elegirse entre -los gases generados en el proceso de craqueo catalítico, nitrógeno, vapor de agua o combinaciones de los mismos. Los vapores son condensados en un condensador para obtener unos hidrocarburos y compuestos orgánicos líquidos, mientras que los hidrocarburos y compuestos orgánicos gaseosos incondensables pueden almacenarse para una utilización posterior o bien ser quemados directamente en una antorcha.The inertization gas can be chosen from among the gases generated in the catalytic cracking process, nitrogen, water vapor or combinations thereof. Vapors are condensed in a condenser to obtain hydrocarbons and liquid organic compounds, while hydrocarbons and gaseous organic compounds can be stored for later use or burned directly in a torch.
Los hidrocarburos y compuestos orgánicos líquidos generados serán posteriormente tratados en las unidades convencionales de una refinería para mejorar la calidad del producto, generando combustibles para transporte o materia prima para la industria petroquímica.The hydrocarbons and liquid organic compounds generated will be subsequently treated in the conventional units of a refinery to improve product quality, generating fuels for transportation or raw material for the petrochemical industry.
Finalizado el proceso de craqueo catalítico, en el interior del reactor sólo queda el catalizador desactivado con coque, si el proceso se ha llevado a cabo a conversión total, o bien el catalizador desactivado con coque y mezclado con ceras, en el caso de que el proceso no se haya realizado a conversión total. El tipo de ceras obtenidas depende del plástico tratado y del grado de conversión alcanzado en el reactor. Las ceras son separadas del catalizador desactivado con coque, de forma adecuada y en si convencional, por ejemplo mediante la utilización de disolventes adecuados. El catalizador desactivado con coque puede regenerarse y volver a ser utilizado en el proceso.After the catalytic cracking process, inside the reactor only the catalyst deactivated with coke remains, if the process has been carried out in total conversion, or the catalyst deactivated with coke and mixed with waxes, in the event that the process has not been carried out to total conversion. The type of waxes obtained depends on the plastic treated and the degree of conversion achieved in the reactor. The waxes are separated from the catalyst deactivated with coke, in a suitable and conventional manner, for example by the use of suitable solvents. The catalyst deactivated with coke can be regenerated and reused in the process.
Durante el proceso en régimen continuo se introducen en el reactor de forma continua el plástico fundido, el catalizador de craqueo catalítico fresco o equilibrado y un flujo de gas. El plástico fundido es introducido a una temperatura en el rango comprendido entre la temperatura de fusión del plástico y la temperatura de reacción, siendo preferible una temperatura comprendida entre la de reacción y aproximadamente 100 °C inferior a la de reacción. El catalizador de craqueo catalítico, fresco o equilibrado, es introducido en el reactor preferiblemente a la temperatura de reacción. La relación catalizador/plástico alimentado al reactor viene fijada en función del grado de conversión que se desee y de la relación catalizador/plástico que se pretenda mantener en el interior del reactor. El flujo de gas, como podrían ser los gases incondensables generados en el proceso de craqueo catalítico, vapor de agua, nitrógeno o combinaciones de ellos, es también introducido de forma continua en el reactor para controlar el tiempo de residencia de los vapores generados en el craqueo catalítico. El sistema de agitación se mantiene en funcionamiento durante el proceso y el interior del reactor se encuentra a la temperatura de reacción. De forma continua, se van extrayendo del reactor el flujo de vapores correspondientes a los productos de reacción y la mezcla del catalizador desactivado por coque junto con las ceras. Los vapores que se extraen del reactor son aquellos cuyo punto de ebullición es suficientemente bajo como para poder abandonar el reactor, de forma que las fracciones extraídas dependerán de la temperatura de reacción. Dichos vapores son condensados en un condensador de manera que los hidrocarburos y compuestos orgánicos líquidos se van almacenando y los gases incondensables pueden utilizarse de diversos modos. Asi, los gases incondensables pueden ser enviados de nuevo al reactor con el fin de controlar el tiempo de residencia de los vapores en el interior del reactor, pueden ser utilizados como fuente de energía para calentar el reactor, pueden ser quemados en una antorcha, o bien pueden ser utilizados como combustible en un sistema de cogeneración. Por la parte inferior del reactor se va extrayendo el catalizador desactivado por coque junto con una cierta cantidad de ceras. La mezcla del catalizador y las ceras puede separarse en caso de que interese recuperar las ceras por su valor económico como base de lubricantes. El catalizador desactivado con coque puede ser posteriormente regenerado y de nuevo introducido en el reactor, con las purgas de catalizador utilizado y las adiciones de catalizador nuevo necesarias para mantener la conversión del proceso durante el funcionamiento en régimen estacionario.During the continuous process, molten plastic, fresh or balanced catalytic cracking catalyst and a gas flow are continuously introduced into the reactor. The molten plastic is introduced at a temperature in the range between the melting temperature of the plastic and the reaction temperature, with a temperature between the reaction and approximately 100 ° C lower than the reaction being preferable. The catalytic cracking catalyst, fresh or balanced, is preferably introduced into the reactor at the reaction temperature. The catalyst / plastic ratio fed to the reactor is set according to the degree of conversion desired and the catalyst / plastic ratio that is intended to be maintained inside the reactor. The gas flow, such as the incondensable gases generated in the catalytic cracking process, water vapor, nitrogen or combinations thereof, is also continuously introduced into the reactor to control the residence time of the vapors generated in the catalytic cracking The stirring system is kept in operation during the process and the inside of the reactor is at the reaction temperature. On a continuous basis, the flow of vapors corresponding to the reaction products and the catalyst mixture deactivated by coke together with the waxes. The vapors that are extracted from the reactor are those whose boiling point is low enough to be able to leave the reactor, so that the extracted fractions will depend on the reaction temperature. Said vapors are condensed in a condenser so that hydrocarbons and liquid organic compounds are stored and the non-condensable gases can be used in various ways. Thus, the incondensable gases can be sent back to the reactor in order to control the residence time of the vapors inside the reactor, they can be used as a source of energy to heat the reactor, they can be burned in a torch, or They may well be used as fuel in a cogeneration system. The catalyst deactivated by coke is removed from the bottom of the reactor along with a certain amount of waxes. The mixture of the catalyst and the waxes can be separated in case you are interested in recovering the waxes for their economic value as a lubricant base. The catalyst deactivated with coke can be subsequently regenerated and again introduced into the reactor, with the catalyst purges used and the new catalyst additions necessary to maintain the conversion of the process during steady state operation.
Los residuos plásticos que pueden ser craqueados son, preferiblemente, polietileno, poliestireno y polipropileno o sus mezclas (polietileno + poliestireno, polietileno + polipropileno, polipropileno + poliestireno, polipropileno + polietileno + poliestireno) , y más preferiblemente polipropileno. También pueden ser craqueados polímeros halogenados durante el funcionamiento en régimen continuo. Durante el funcionamiento en régimen semicontinuo también pueden utilizarse polímeros halogenados. Los catalizadores de craqueo catalítico a utilizar en el proceso de la invención son catalizadores comerciales de FCC. Pueden utilizarse catalizadores frescos de FCC o catalizadores residuales de equilibrio de FCC. En los catalizadores de FCC se prefieren aquellos que contienen zeolita Y en un rango entre 1% y 70% y que presentan un tamaño de celda unidad comprendido entre 24.24 y 24.60 Á.The plastic residues that can be cracked are preferably polyethylene, polystyrene and polypropylene or mixtures thereof (polyethylene + polystyrene, polyethylene + polypropylene, polypropylene + polystyrene, polypropylene + polyethylene + polystyrene), and more preferably Polypropylene. Halogenated polymers can also be cracked during continuous operation. Halogenated polymers can also be used during semi-continuous operation. The catalytic cracking catalysts to be used in the process of the invention are commercial FCC catalysts. Fresh FCC catalysts or residual FCC equilibrium catalysts can be used. In FCC catalysts, those containing Y zeolite in a range between 1% and 70% and having a unit cell size between 24.24 and 24.60 Á are preferred.
De acuerdo con la invención, son adecuados los catalizadores FCC cuyo componente zeolitico comprende zeolitas X, REX, Y, USY, REY, REUSY, L, ZSM-5, Beta y combinaciones de éstas.In accordance with the invention, FCC catalysts whose zeolitic component comprises zeolites X, REX, Y, USY, KING, REUSY, L, ZSM-5, Beta and combinations thereof are suitable.
La matriz puede ser activa o inactiva y tiene que ser resistente a la temperatura y a la atrición. Los materiales que forman parte de la matriz incluyen materiales inorgánicos inactivos o activos como arcillas, óxidos metálicos de sílice, aluminio, titanio, zirconio o magnesio, silice-alúmina, silice-magnesio, silice- zirconio, silice-torio, silice-berilio, silice-titanio, silice-alúmina-torio, silice-alúmina-zirconio, silice- alúmina-magnesio y silice-magnesio-zirconio, y mezclas de los anteriores conteniendo o no en su composición fósforo. DESCRIPCIÓN DE LA FIGURA Figura 1. Diagrama del sistema de reacción.The matrix can be active or inactive and must be resistant to temperature and attrition. Materials that are part of the matrix include inactive or active inorganic materials such as clays, metal oxides of silica, aluminum, titanium, zirconium or magnesium, silica-alumina, silicon-magnesium, silicon-zirconium, silicon-thorium, silicon-beryllium, silica-titanium, silica-alumina-thorium, silica-alumina-zirconium, silica-alumina-magnesium and silicon-magnesium-zirconium, and mixtures of the above containing or not containing phosphorus in its composition. DESCRIPTION OF THE FIGURE Figure 1. Diagram of the reaction system.
A: Medidor de FlujoA: Flow Meter
B: Manómetro C: Horno EléctricoB: Pressure gauge C: Electric oven
D: Termopar Consigna InteriorD: Thermocouple Interior Setpoint
E: Termopar Consigna ExteriorE: Thermocouple External Setpoint
F: Depósito CatalizadorF: Catalyst Deposit
G: Resistencia H: ReactorG: Resistance H: Reactor
I : AgitadorI: Stirrer
J: CondensadoresJ: Capacitors
K: Baño agua-hieloK: Ice water bath
L: Buretas de gases M: Depósito de aguaL: Gas burettes M: Water tank
DESCRIPCIÓN DE REALIZACIONES DE IA INVENCIÓNDESCRIPTION OF EMBODIMENTS OF THE INVENTION
La invención se ilustra en los siguientes ejemplos: Ejemplo 1 : Este ejemplo ilustra que la conversión en el proceso de craqueo catalítico directo de residuos plásticos se ve afectada considerablemente por la velocidad de agitación. Se realizaron diferentes experimentos variando la velocidad de agitación en un reactor semicontinuo con calentamiento desde el exterior por camisa eléctrica (Fig. 1) , utilizando como catalizador una zeolita USY con tamaño de celda unidad 24.35 Á, tamaño de partícula comprendido en el rango 0.42-0.59 mm, y como plástico polipropileno en forma de granza. La relación catalizador/plástico era de 1/35, la temperatura de reacción 380 °C y el tiempo de reacción 72 min . La Tabla 1 muestra los resultados de convers ión ( % ) .The invention is illustrated in the following examples: Example 1: This example illustrates that the conversion in the process of direct catalytic cracking of plastic waste is greatly affected by the speed of agitation. Different experiments were performed by varying the stirring speed in a semi-continuous reactor with heating from the outside by electric jacket (Fig. 1), using as a catalyst a USY zeolite with unit cell size 24.35 Á, particle size in the range 0.42- 0.59 mm, and as polypropylene plastic in the form of pellets. The catalyst / plastic ratio was 1/35, the reaction temperature 380 ° C and the time of reaction 72 min. Table 1 shows the conversion results (%).
Tabla 1Table 1
Figure imgf000019_0001
Figure imgf000019_0001
Menores velocidades de agitación implican mayores conversiones a costa de un mayor consumo energético en el calentamiento del reactor, ya que al verse dificultada la transferencia de calor, los gradientes radiales de temperatura son más elevados con el fin de mantener una temperatura en el interior del reactor. De esta forma la temperatura media en el interior del reactor se incrementa y con ello la conversión.Lower stirring speeds imply greater conversions at the cost of greater energy consumption in the heating of the reactor, since when heat transfer is difficult, the radial temperature gradients are higher in order to maintain a temperature inside the reactor . In this way the average temperature inside the reactor is increased and with it the conversion.
Ejemplo 2 : Para ilustrar que la conversión del proceso varia en función de que el contacto entre el catalizador y los residuos plásticos tenga lugar desde el comienzo del proceso de calentamiento o a la temperatura de reacción, se realizaron dos experimentos; en uno se pusieron en contacto el catalizador y el plástico a temperatura ambiente desde el inicio del proceso, mientras que en el otro se puso en contacto el catalizador con el plástico fundido a la temperatura de reacción. Los experimentos se realizaron en un reactor semicontinuo agitado con calentamiento desde el exterior por camisa eléctrica (Fig. 1) , utilizando un catalizador de FCC en equilibrio con tamaño de celda unidad 24.28 Á, tamaño de partícula comprendido en el rango 0.42-0.59 mm, y como plástico polipropileno en forma de granza. La relación catalizador/plástico era de 1/35, la temperatura de reacción 360 °C y el tiempo de reacción, a partir del momento que la temperatura en el interior del reactor alcanzaba los 360 °C, era de 72 min. La Tabla 2 muestra los resultados de conversión (%) .Example 2: To illustrate that the conversion of the process varies depending on whether the contact between the catalyst and the plastic waste takes place from the beginning of the heating process or at the reaction temperature, two experiments were performed; in one the catalyst and the plastic were contacted at room temperature from the beginning of the process, while in the other the catalyst was contacted with the molten plastic at the reaction temperature. The experiments were performed in a semi-continuous reactor stirred with heating from the outside by electric jacket (Fig. 1), using an equilibrium FCC catalyst with unit cell size 24.28 Á, particle size in the range 0.42-0.59 mm, and as pellet-shaped polypropylene plastic. The catalyst / plastic ratio was 1/35, the reaction temperature 360 ° C and the reaction time, from the moment the temperature inside the reactor reached 360 ° C, it was 72 min. Table 2 shows the conversion results (%).
Tabla 2Table 2
Figure imgf000020_0001
Figure imgf000020_0001
Ejemplo 3: Este ejemplo ilustra que a una temperatura de reacción dada y fijando el tiempo de reacción, puede controlarse la conversión del proceso mediante la variación de la relación catalizador/plástico. Se realizaron varios experimentos, modificando la relación catalizador/plástico, en un reactor semicontinuo agitado con calentamiento desde el exterior por camisa eléctrica (Fig. 1), utilizando un catalizador de FCC en equilibrio con tamaño de celda unidad 24.28 Á, tamaño de partícula comprendido en el rango 0.42-0.59 mm, y como plástico polipropileno en forma de granza. La temperatura de reacción era de 380 °C y el tiempo de reacción 72 min. La Tabla 3 muestra los resultados de conversión (%) y selectividad (%) a productos.Example 3: This example illustrates that at a given reaction temperature and by setting the reaction time, the process conversion can be controlled by varying the catalyst / plastic ratio. Several experiments were performed, modifying the catalyst / plastic ratio, in a stirred semi-continuous reactor with heating from the outside by electric jacket (Fig. 1), using an equilibrium FCC catalyst with unit cell size 24.28 Á, particle size comprised in the range 0.42-0.59 mm, and as plastic pellet shaped polypropylene. The reaction temperature was 380 ° C and the reaction time 72 min. Table 3 shows the results of conversion (%) and selectivity (%) to products.
Tabla 3Table 3
Figure imgf000021_0001
Figure imgf000021_0001
Al incrementarse la relación catalizador/plástico aumenta la conversión, con mínimas variaciones en la selectividad a productos.As the catalyst / plastic ratio increases, the conversion increases, with minimal variations in product selectivity.
Ejemplo 4:Example 4:
Este ejemplo ilustra que la temperatura de reacción afecta de forma considerable a la conversión. Se efectuaron diversos experimentos, modificando la temperatura de reacción, en un reactor semicontinuo agitado con calentamiento desde el exterior por camisa eléctrica (Fig. 1), utilizando un catalizador de FCC en equilibrio con tamaño de celda unidad 24.28 Á, tamaño de partícula comprendido en el rango 0.42-0.59 mm, y como plástico polietileno en forma de granza. La relación catalizador/plástico era de 1.25/35 y el tiempo de reacción 72 min. De la Tabla 4 que muestra los resultados de conversión (%) y selectividad (%) a productos, se desprende que, conforme se incrementa la temperatura de reacción, aumenta considerablemente la conversión. Por otra parte, aumenta la selectividad a diesel + gas oil, disminuye la selectividad a gasolinas, mientras que la selectividad a gases permanece prácticamente constante.This example illustrates that the reaction temperature significantly affects the conversion. Various experiments were carried out, modifying the reaction temperature, in a semi-continuous reactor stirred with heating from the outside by electric jacket (Fig. 1), using an equilibrium FCC catalyst with unit cell size 24.28 Á, particle size comprised in the range 0.42-0.59 mm, and as a polyethylene plastic in the form of pellets. The catalyst / plastic ratio was 1.25 / 35 and the reaction time 72 min. From Table 4 which shows the results of conversion (%) and selectivity (%) to products, it follows that, as the temperature of reaction, greatly increases the conversion. On the other hand, the selectivity to diesel + gas oil increases, the selectivity to gasoline decreases, while the gas selectivity remains practically constant.
Tabla 4Table 4
Figure imgf000022_0001
Figure imgf000022_0001

Claims

REIVINDICACIONES
1. Un proceso para obtener hidrocarburos y, en general, compuestos orgánicos a partir de residuos plásticos por craqueo catalítico directo que comprende calentar los residuos plásticos hasta obtener plásticos fundidos, poner el plástico fundido en contacto con un catalizador en un reactor agitado a una temperatura de reacción, y retirar los productos de craqueo que comprenden vapores de reacción y ceras, comprendiendo los vapores de reacción hidrocarburos y compuestos orgánicos condensables en productos líquidos e hidrocarburos y compuestos orgánicos gaseosos; donde el catalizador está seleccionado entre el grupo constituido por catalizadores de FCC frescos, catalizadores de FCC de equilibrio, y mezclas de los mismos, y se pone en contacto con el plástico fundido en un reactor agitado.1. A process for obtaining hydrocarbons and, in general, organic compounds from plastic waste by direct catalytic cracking which comprises heating the plastic waste until molten plastics are obtained, putting the molten plastic in contact with a catalyst in a stirred reactor at a temperature reaction, and removing cracking products comprising reaction vapors and waxes, the reaction vapors comprising hydrocarbons and condensable organic compounds in liquid and hydrocarbon products and gaseous organic compounds; where the catalyst is selected from the group consisting of fresh FCC catalysts, equilibrium FCC catalysts, and mixtures thereof, and is contacted with molten plastic in a stirred reactor.
2. Un proceso de acuerdo con la reivindicación 1, en el que catalizador se pone en contacto con el plástico fundido en un reactor agitado, seleccionado entre un reactor continuo o un reactor semicontinuo, y en el que los vapores de reacción se extraen de forma continua, y se separan en productos gaseosos y en productos condensables líquidos.2. A process according to claim 1, wherein the catalyst is contacted with the molten plastic in a stirred reactor, selected from a continuous reactor or a semi-continuous reactor, and in which the reaction vapors are extracted in a manner continues, and they are separated into gaseous products and liquid condensable products.
3. Un proceso según cualquiera de las reivindicaciones 1 y 2, que comprende introducir en el reactor, de forma continua, el catalizador, el plástico fundido y un flujo de gas, introduciéndose el plástico fundido a una temperatura comprendida entre la temperatura de fusión del plástico y la temperatura de reacción, preferentemente a una temperatura comprendida entre la temperatura de reacción y 100 °C inferior a la temperatura de reacción, introduciéndose el catalizador en el reactor preferiblemente a la temperatura de reacción, e introduciéndose el flujo de gas de forma continua en el reactor con un caudal adaptado para controlar el tiempo de residencia de los vapores de reacción generados en el craqueo catalítico; y retirar la cera formada mezclada con catalizador desactivado, del reactor; seleccionándose el gas del flujo de gas entre los gases generados en el proceso de craqueo catalítico, vapor de agua, nitrógeno o combinaciones de los mismos; y manteniéndose la temperatura de reacción y la agitación durante la reacción.3. A process according to any of claims 1 and 2, comprising continuously introducing the catalyst, molten plastic and a gas flow into the reactor, the molten plastic being introduced at a temperature comprised between the melting temperature of the plastic and the reaction temperature, preferably at a temperature between the reaction temperature and 100 ° C lower than the reaction temperature, the catalyst being introduced into the reactor preferably at the reaction temperature, and introduced the flow of gas continuously in the reactor with a flow adapted to control the residence time of the reaction vapors generated in the catalytic cracking; and removing the wax formed mixed with deactivated catalyst, from the reactor; the gas being selected from the gas flow among the gases generated in the catalytic cracking process, water vapor, nitrogen or combinations thereof; and maintaining the reaction temperature and stirring during the reaction.
4. Un proceso según cualquiera de las reivindicaciones 1 y 2, que comprende depositar los residuos plásticos en el reactor y calentar los residuos plásticos hasta la temperatura de reacción, utilizando diversas velocidades de calentamiento o varias etapas, pasando por tramos de temperatura constante, agitar el plástico fundido cuando haya alcanzado una viscosidad suficientemente baja, preferiblemente en el rango de temperaturas entre 110 y 400°C y más preferiblemente entre 140 y 300°C e introducir el catalizador en el reactor sobre el plástico fundido que está a la temperatura de reacción, siendo la temperatura del catalizador inyectado preferiblemente igual a la temperatura de reacción; manteniéndose la temperatura de reacción y la agitación durante la reacción; extraer los vapores de reacción, controlándose el tiempo de residencia de los vapores de reacción generados en el craqueo catalítico regulando un caudal de un gas que se introduce en el reactor y seleccionándose el gas del flujo de gas entre los gases generados en el proceso de craqueo catalítico, vapor de agua, nitrógeno o combinaciones de los mismos; y retirar la cera formada mezclada con catalizador desactivado, del reactor.4. A process according to any of claims 1 and 2, comprising depositing the plastic waste in the reactor and heating the plastic waste to the reaction temperature, using various heating rates or several stages, passing through constant temperature sections, stir the molten plastic when it has reached a sufficiently low viscosity, preferably in the temperature range between 110 and 400 ° C and more preferably between 140 and 300 ° C and introducing the catalyst into the reactor over the molten plastic that is at the reaction temperature , the temperature of the injected catalyst being preferably equal to the reaction temperature; maintaining the reaction temperature and stirring during the reaction; extracting the reaction vapors, controlling the residence time of the reaction vapors generated in the catalytic cracking by regulating a flow rate of a gas that is introduced into the reactor and selecting the gas from the gas flow between the gases generated in the cracking process catalytic, water vapor, nitrogen or combinations thereof; and remove the wax formed mixed with deactivated catalyst, from the reactor.
5. Un proceso según una de las reivindicaciones 1 a 4, en el que el catalizador comprende un componente zeolitico seleccionado entre zeolitas X, REX, Y, USY, REY, REUSY, L, ZSM-5, Beta, y combinaciones de las mismas.5. A process according to one of claims 1 to 4, wherein the catalyst comprises a zeolitic component selected from zeolites X, REX, Y, USY, KING, REUSY, L, ZSM-5, Beta, and combinations thereof .
6. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita X como componente zeolitico.6. A process according to one of claims 1 to 5, wherein the catalyst comprises zeolite X as the zeolitic component.
7. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita REX.7. A process according to one of claims 1 to 5, wherein the catalyst comprises REX zeolite.
8. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita Y.8. A process according to one of claims 1 to 5, wherein the catalyst comprises zeolite Y.
9. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita USY. 9. A process according to one of claims 1 to 5, wherein the catalyst comprises USY zeolite.
10. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita REY.10. A process according to one of claims 1 to 5, wherein the catalyst comprises KING zeolite.
11. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita REUSY.11. A process according to one of claims 1 to 5, wherein the catalyst comprises REUSY zeolite.
12. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita L.12. A process according to one of claims 1 to 5, wherein the catalyst comprises zeolite L.
13. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita ZSM-5.13. A process according to one of claims 1 to 5, wherein the catalyst comprises zeolite ZSM-5.
14. Un proceso según una de las reivindicaciones 1 a 5, en el que el catalizador comprende zeolita Beta.14. A process according to one of claims 1 to 5, wherein the catalyst comprises Beta zeolite.
15. Un proceso según cualquiera de las reivindicaciones 5 a 14, en el que el catalizador comprende entre el 1 y el 70% en peso del componente zeolitico.15. A process according to any of claims 5 to 14, wherein the catalyst comprises between 1 and 70% by weight of the zeolitic component.
16. Un proceso según cualquiera de las reivindicaciones16. A process according to any of the claims
5, 7 y 15, en el que el componente zeolitico en el catalizador es zeolita Y con un tamaño de celda unidad comprendido entre 24.24 y 24.60 Á.5, 7 and 15, in which the zeolitic component in the catalyst is zeolite Y with a unit cell size between 24.24 and 24.60 Á.
17. Un proceso según cualquiera de las reivindicaciones precedentes, en el que el catalizador comprende además una matriz seleccionada entre el grupo constituido por arcillas, óxidos metálicos de sílice, aluminio, titanio, zirconio o magnesio, silice-alúmina, silice-magnesio, silice-zirconio, silice-torio, silice-berilio, silice- titanio, silice-alúmina-torio, silice-alúmina-zirconio, silice-alúmina-magnesio y silice-magnesio-zirconio, y combinaciones de los mismos.17. A process according to any of the preceding claims, wherein the catalyst further comprises a matrix selected from the group consisting of clays, metal oxides of silica, aluminum, titanium, zirconium or magnesium, silica-alumina, silica-magnesium, silica -zirconium, silicon-thorium, silicon-beryllium, silicon- titanium, silicon-alumina-thorium, silica-alumina-zirconium, silica-alumina-magnesium and silicon-magnesium-zirconium, and combinations thereof.
18. Un proceso según la reivindicación 17, en el que la matriz está constituida por arcilla.18. A process according to claim 17, wherein the matrix is constituted by clay.
19. Un proceso según la reivindicación 17, en el que la matriz está constituida por óxidos metálicos de sílice.19. A process according to claim 17, wherein the matrix consists of metal oxides of silica.
20. Un proceso según la reivindicación 17, en el que la matriz está constituida por aluminio.20. A process according to claim 17, wherein the matrix is constituted by aluminum.
21. Un proceso según la reivindicación 17, en el que la matriz está constituida por titanio.21. A process according to claim 17, wherein the matrix is constituted by titanium.
22. Un proceso según la reivindicación 17, en el que la matriz está constituida por zirconio.22. A process according to claim 17, wherein the matrix is constituted by zirconium.
23. Un proceso según la reivindicación 17, en el que la matriz está constituida por magnesio.23. A process according to claim 17, wherein the matrix is constituted by magnesium.
24. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-alúmina.24. A process according to claim 17, wherein the matrix is constituted by silica-alumina.
25. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-magnesio.25. A process according to claim 17, wherein the matrix is constituted by silicon-magnesium.
26. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-zirconio. 26. A process according to claim 17, wherein the matrix is constituted by silicon-zirconium.
27. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-torio.27. A process according to claim 17, wherein the matrix is constituted by silicon-thorium.
28. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-berilio.28. A process according to claim 17, wherein the matrix is constituted by silicon-beryllium.
29. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-titanio .29. A process according to claim 17, wherein the matrix is constituted by silica-titanium.
30. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-alúmina-torio.30. A process according to claim 17, wherein the matrix is constituted by silica-alumina-thorium.
31. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-alúmina-zirconio.31. A process according to claim 17, wherein the matrix is constituted by silica-alumina-zirconium.
32. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-alúmina-magnesio.32. A process according to claim 17, wherein the matrix is constituted by silica-alumina-magnesium.
33. Un proceso según la reivindicación 17, en el que la matriz está constituida por silice-magnesio-zirconio.33. A process according to claim 17, wherein the matrix is constituted by silicon-magnesium-zirconium.
34. Un proceso según cualquier de las reivindicaciones 17 a 33, en el que la matriz contiene además fósforo en su composición.34. A process according to any of claims 17 to 33, wherein the matrix also contains phosphorus in its composition.
35. Un proceso según la reivindicación 1, en el que el residuo plástico es polietileno.35. A process according to claim 1, wherein the plastic residue is polyethylene.
36. Un proceso según la reivindicación 1, en el que el residuo plástico es poliestireno. 36. A process according to claim 1, wherein the plastic residue is polystyrene.
37. Un proceso según la reivindicación 1, en el que el residuo plástico es polipropileno.37. A process according to claim 1, wherein the plastic residue is polypropylene.
38. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polietileno y poliestireno.38. A process according to claim 1, wherein the plastic residue comprises polyethylene and polystyrene.
39. Un proceso según la reivindicación 1, en el que el residuo plástico comprende mezcla de polietileno y polipropileno.39. A process according to claim 1, wherein the plastic residue comprises a mixture of polyethylene and polypropylene.
40. Un proceso según la reivindicación 1, en el que el residuo plástico comprende mezcla de poliestireno y polipropileno.40. A process according to claim 1, wherein the plastic residue comprises a mixture of polystyrene and polypropylene.
41. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polietileno, poliestireno y polipropileno .41. A process according to claim 1, wherein the plastic residue comprises polyethylene, polystyrene and polypropylene.
42. Un proceso según la reivindicación 1, en el que el residuo plástico contiene halógenos en su composición.42. A process according to claim 1, wherein the plastic residue contains halogens in its composition.
43. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polímeros halogenados y polietileno.43. A process according to claim 1, wherein the plastic residue comprises halogenated polymers and polyethylene.
44. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polímeros halogenados y poliestireno. 44. A process according to claim 1, wherein the plastic residue comprises halogenated polymers and polystyrene.
45. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polímeros halogenados y polipropileno.45. A process according to claim 1, wherein the plastic residue comprises halogenated polymers and polypropylene.
46. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polímeros halogenados, polietileno y poliestireno.46. A process according to claim 1, wherein the plastic residue comprises halogenated polymers, polyethylene and polystyrene.
47. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polímeros halogenados, polietileno y polipropileno.47. A process according to claim 1, wherein the plastic residue comprises halogenated polymers, polyethylene and polypropylene.
48. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polímeros halogenados, poliestireno y polipropileno.48. A process according to claim 1, wherein the plastic residue comprises halogenated polymers, polystyrene and polypropylene.
49. Un proceso según la reivindicación 1, en el que el residuo plástico comprende polímeros halogenados, polietileno, poliestireno y polipropileno.49. A process according to claim 1, wherein the plastic residue comprises halogenated polymers, polyethylene, polystyrene and polypropylene.
50. Un proceso según la reivindicación 1, 3 ó 4, en el que la temperatura de reacción es de 300 a 550 °C.50. A process according to claim 1, 3 or 4, wherein the reaction temperature is 300 to 550 ° C.
51. Un proceso según la reivindicación 1, 3 ó 4, en el que la temperatura de reacción es de 340 a 480 °C.51. A process according to claim 1, 3 or 4, wherein the reaction temperature is 340 to 480 ° C.
52. Un proceso según la reivindicación 1, 3 ó 4, en el que la temperatura de reacción es de 350 a 450 °C. 52. A process according to claim 1, 3 or 4, wherein the reaction temperature is 350 to 450 ° C.
53. Un proceso según cualquiera de las reivindicaciones precedentes, en el que se opera a una presión de trabajo de 0.5 a 10 bar.53. A process according to any of the preceding claims, wherein an operating pressure of 0.5 to 10 bar is operated.
54. Un proceso según reivindicaciones precedentes en el que el catalizador puede ser regenerado por métodos convencionales mediante combustión de los residuos carbonosos depositados sobre el catalizador.54. A process according to preceding claims wherein the catalyst can be regenerated by conventional methods by combustion of the carbonaceous residues deposited on the catalyst.
55. Un proceso según reivindicaciones anteriores dotado de métodos convencionales no limitantes para la eliminación de compuestos inorgánicos como HC1, NOx, SOx , etc. en el caso de que se generasen. 55. A process according to previous claims endowed with conventional non-limiting methods for the removal of inorganic compounds such as HC1, NO x , SO x , etc. in case they were generated.
PCT/ES2000/000161 1999-04-29 2000-04-29 Plastic wastes catalytic cracking process WO2000066656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9900910 1999-04-29
ES009900910A ES2168033B1 (en) 1999-04-29 1999-04-29 PROCESS FOR THE CATALITICAL CREATION OF PLASTIC WASTE.

Publications (1)

Publication Number Publication Date
WO2000066656A1 true WO2000066656A1 (en) 2000-11-09

Family

ID=8308225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000161 WO2000066656A1 (en) 1999-04-29 2000-04-29 Plastic wastes catalytic cracking process

Country Status (2)

Country Link
ES (1) ES2168033B1 (en)
WO (1) WO2000066656A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125345A1 (en) * 2013-02-12 2014-08-21 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
US8895790B2 (en) 2013-02-12 2014-11-25 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products
WO2014161767A3 (en) * 2013-04-04 2014-12-31 Achim Methling Josef Ranftl Gbr Method for the degrading of synthetic polymers and device for carrying out said method
US9447332B2 (en) 2013-02-12 2016-09-20 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products using temperature control
CN110229685A (en) * 2019-06-12 2019-09-13 中国科学院广州能源研究所 A kind of method that the thermal transition of waste plastics high pressure prepares fuel oil
US10519292B2 (en) 2018-04-19 2019-12-31 Biocellection Inc. Products from the decomposition of plastic waste
US10537876B2 (en) 2015-12-18 2020-01-21 Solvay Sa Use of a catalyst composition for the catalytic depolymerization of plastics waste
US10647922B2 (en) 2015-12-18 2020-05-12 Solvay Sa Use of a catalyst composition for the catalytic depolymerization of plastics waste
US20210130569A1 (en) * 2018-08-22 2021-05-06 Mitsubishi Heavy Industries, Ltd. Method for decomposing plastic composite
US11220586B2 (en) 2018-04-19 2022-01-11 Novoloop, Inc. Methods for the decomposition of contaminated plastic waste
EP3971264A1 (en) * 2020-09-21 2022-03-23 Indian Oil Corporation Limited Catalytic pyrolysis of polystyrene into aromatic rich liquid product using spherical catalyst
CN114341244A (en) * 2019-09-09 2022-04-12 巴塞尔聚烯烃意大利有限公司 Depolymerization of polyolefins with metal oxides
US11466218B2 (en) 2019-09-05 2022-10-11 Molecule Works Inc. Catalytic reactor apparatus for conversion of plastics
WO2023161414A1 (en) * 2022-02-25 2023-08-31 Plastic Energy Limited A method for the production of a pyrolysis oil from end-of-life plastics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240093B2 (en) 2013-07-25 2019-03-26 Newpek S.A. De C.V. Method and equipment for producing hydrocarbons by catalytic decomposition of plastic waste products in a single step
WO2021037851A1 (en) * 2019-08-29 2021-03-04 Basell Poliolefine Italia S.R.L. Plastic depolymerization using fluorinated alumina

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584421A (en) * 1983-03-25 1986-04-22 Agency Of Industrial Science And Technology Method for thermal decomposition of plastic scraps and apparatus for disposal of plastic scraps
EP0607994A1 (en) * 1993-01-22 1994-07-27 Mazda Motor Corporation Method of obtaining hydrocarbon oil from waste plastic material or waste rubber material and apparatus for carrying out the method
EP0675189A1 (en) * 1994-03-30 1995-10-04 Fuji Recycle Industry K.K. Method and apparatus for thermal cracking of waste plastics
EP0775738A1 (en) * 1995-06-07 1997-05-28 Ngk Insulators, Ltd. Process for producing low-boiling oil from waste plastics containing phthalic polyester and/or polyvinyl chloride
EP0863197A1 (en) * 1995-08-08 1998-09-09 Li Xing A process for producing gasoline, diesel fuel and carbon black from waste rubber and/or waste plastics
EP0872535A1 (en) * 1995-11-23 1998-10-21 Plastic Advanced Recycling Corporation Process and apparatus for treatment of waste plastic hydrocarbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584421A (en) * 1983-03-25 1986-04-22 Agency Of Industrial Science And Technology Method for thermal decomposition of plastic scraps and apparatus for disposal of plastic scraps
EP0607994A1 (en) * 1993-01-22 1994-07-27 Mazda Motor Corporation Method of obtaining hydrocarbon oil from waste plastic material or waste rubber material and apparatus for carrying out the method
EP0675189A1 (en) * 1994-03-30 1995-10-04 Fuji Recycle Industry K.K. Method and apparatus for thermal cracking of waste plastics
EP0775738A1 (en) * 1995-06-07 1997-05-28 Ngk Insulators, Ltd. Process for producing low-boiling oil from waste plastics containing phthalic polyester and/or polyvinyl chloride
EP0863197A1 (en) * 1995-08-08 1998-09-09 Li Xing A process for producing gasoline, diesel fuel and carbon black from waste rubber and/or waste plastics
EP0872535A1 (en) * 1995-11-23 1998-10-21 Plastic Advanced Recycling Corporation Process and apparatus for treatment of waste plastic hydrocarbons

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895790B2 (en) 2013-02-12 2014-11-25 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products
US9212318B2 (en) 2013-02-12 2015-12-15 Saudi Basic Industries Corporation Catalyst for the conversion of plastics to olefin and aromatic products
US9428695B2 (en) 2013-02-12 2016-08-30 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
US9447332B2 (en) 2013-02-12 2016-09-20 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products using temperature control
WO2014125345A1 (en) * 2013-02-12 2014-08-21 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
US10494572B2 (en) 2013-04-04 2019-12-03 Achim Methling Joesef Ranftl GbR Method for the degrading of synthetic polymers and device for carrying out said method
WO2014161767A3 (en) * 2013-04-04 2014-12-31 Achim Methling Josef Ranftl Gbr Method for the degrading of synthetic polymers and device for carrying out said method
CN105102519A (en) * 2013-04-04 2015-11-25 阿希姆梅特林约瑟夫瑞福特公司 Method for the degrading of synthetic polymers and device for carrying out said method
US10647922B2 (en) 2015-12-18 2020-05-12 Solvay Sa Use of a catalyst composition for the catalytic depolymerization of plastics waste
US10537876B2 (en) 2015-12-18 2020-01-21 Solvay Sa Use of a catalyst composition for the catalytic depolymerization of plastics waste
US11945918B2 (en) 2018-04-19 2024-04-02 Novoloop, Inc. Methods for the decomposition of contaminated plastic waste
US10557011B2 (en) 2018-04-19 2020-02-11 Biocellection Inc. Methods for the decomposition of contaminated plastic waste
US10519292B2 (en) 2018-04-19 2019-12-31 Biocellection Inc. Products from the decomposition of plastic waste
CN112513155A (en) * 2018-04-19 2021-03-16 博澳克股份有限公司 Method for decomposing polluted plastic waste
US11192999B2 (en) 2018-04-19 2021-12-07 Novoloop, Inc. Products from the decomposition of plastic waste
US11220586B2 (en) 2018-04-19 2022-01-11 Novoloop, Inc. Methods for the decomposition of contaminated plastic waste
US20210130569A1 (en) * 2018-08-22 2021-05-06 Mitsubishi Heavy Industries, Ltd. Method for decomposing plastic composite
CN110229685A (en) * 2019-06-12 2019-09-13 中国科学院广州能源研究所 A kind of method that the thermal transition of waste plastics high pressure prepares fuel oil
US11466218B2 (en) 2019-09-05 2022-10-11 Molecule Works Inc. Catalytic reactor apparatus for conversion of plastics
CN114341244A (en) * 2019-09-09 2022-04-12 巴塞尔聚烯烃意大利有限公司 Depolymerization of polyolefins with metal oxides
CN114341244B (en) * 2019-09-09 2022-12-09 巴塞尔聚烯烃意大利有限公司 Depolymerization of polyolefins with metal oxides
US11613623B2 (en) 2020-09-21 2023-03-28 Indian Oil Corporation Limited Catalytic pyrolysis of polystyrene into aromatic rich liquid product using spherical catalyst
EP3971264A1 (en) * 2020-09-21 2022-03-23 Indian Oil Corporation Limited Catalytic pyrolysis of polystyrene into aromatic rich liquid product using spherical catalyst
WO2023161414A1 (en) * 2022-02-25 2023-08-31 Plastic Energy Limited A method for the production of a pyrolysis oil from end-of-life plastics

Also Published As

Publication number Publication date
ES2168033B1 (en) 2003-05-01
ES2168033A1 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
WO2000066656A1 (en) Plastic wastes catalytic cracking process
JP6173637B1 (en) Conversion of plastics to olefins and aromatic products.
US20190256781A1 (en) Process and plant for conversion of waste material to liquid fuel
Kloprogge et al. A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels
RU2677887C2 (en) Hydropyrolysis of raw materials containing biomass
US4263128A (en) Upgrading petroleum and residual fractions thereof
Blackmond et al. In situ Fourier transform infrared spectroscopy study of HY cracking catalysts: Coke formation and the nature of the active sites
TW592816B (en) Crystalline microporous oxide catalysts having increased Lewis acidity and methods for the preparation thereof
US8710285B1 (en) Catalytic pyrolysis using UZM-44 aluminosilicate zeolite
EP0414439A2 (en) Conversion of plastics
WO2011045675A1 (en) Process for producing fuel from plastic waste material by using dolomite catalyst
Su et al. Catalytic pyrolysis of waste packaging polyethylene using AlCl3-NaCl eutectic salt as catalyst
WO2015012676A1 (en) Method and equipment for producing hydrocarbons by catalytic decomposition of plastic waste products in a single step
EA009221B1 (en) Method of starting up a reaction system
Serra et al. Reviewing the use of zeolites and clay based catalysts for pyrolysis of plastics and oil fractions
Cheng et al. Transalkylation of benzene with 1, 2, 4-trimethylbenzene over nanosized ZSM-5
CN1169707C (en) Hydrogen-making method by utilizing catalytic cracked regenerated flue gas
JPH0559372A (en) Production of fuel oil from polyolefinic resin
CN105722954A (en) Process for removing mercury from coal tar product
AU2017213547A1 (en) Process and plant for conversion of waste plastic material into fuel products
JP2005187794A (en) Method for liquefying waste plastic and inorganic oxide particle for liquefying the waste plastic
CN116083119B (en) Catalytic conversion method for producing propylene and high aromatic hydrocarbon gasoline by co-refining waste plastic oil and heavy oil
Yang et al. Catalytic conversion of postconsumer PE/PP waste into hydrocarbons using the FCC process with an equilibrium FCC commercial catalyst
US11814593B1 (en) Processes for hydroprocessing and cracking crude oil
Ren et al. Environmentally benign catalytic synthesis and hydro‐refining of linear alkylbenzenes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP