WO2000065334A1 - Exhaled gas detecting method and device therefor - Google Patents

Exhaled gas detecting method and device therefor Download PDF

Info

Publication number
WO2000065334A1
WO2000065334A1 PCT/JP2000/002714 JP0002714W WO0065334A1 WO 2000065334 A1 WO2000065334 A1 WO 2000065334A1 JP 0002714 W JP0002714 W JP 0002714W WO 0065334 A1 WO0065334 A1 WO 0065334A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
value
expiration
sensor
gas sensor
Prior art date
Application number
PCT/JP2000/002714
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuharu Kira
Junko Yanagidani
Nobuaki Murakami
Takashi Matsumoto
Original Assignee
Fis Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fis Inc. filed Critical Fis Inc.
Priority to JP2000614023A priority Critical patent/JP4477780B2/en
Priority to AU41423/00A priority patent/AU4142300A/en
Publication of WO2000065334A1 publication Critical patent/WO2000065334A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B2010/0083Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements for taking gas samples
    • A61B2010/0087Breath samples

Definitions

  • the present invention relates to a breath gas detection method for detecting alcohol components and a bad breath factor gas component, and a device therefor.
  • metal oxide ⁇ body gas sensors fluctuate the gas sensitivity and the resistance value in the gas due to interference by gas components that are not to be detected, and it is not easy to obtain a means to correct the fluctuation. , Not enough accuracy; ⁇ could not be obtained.
  • the bad breath checker using the gas detection method described above (Refer to Japanese Utility Model Application Laid-Open No. 644-2420.) As mentioned above, it takes time s from detection of impact to detection, and the resistance of gas in gas is ⁇ m. Also, there was a P theme that accuracy deteriorated due to the influence of the atmosphere. ; Disclosure of the invention
  • the present invention has been made in view of the following points.
  • the purpose of the present invention is to achieve high reproducibility, high accuracy, and high efficiency even if the time from input to gas detection is shortened. Is to use a small expiration gas detection method. That is, the expiration gas detection method of the present invention starts the energization of the ⁇ J1 oxide gas sensor and generates high ⁇ ] D heat according to the operation start signal, and exhales the high oxygen gas gas during the high D heat. Spraying is performed based on a change in the resistance value of the metal oxide semiconductor gas sensor caused by the expiration of the exhaled gas, and the height of the oxide semiconductor gas sensor is stopped based on this detection to reduce the flow rate. After being in the low state, the resistance value of the oxide gas sensor at the time of Si ⁇ Si ⁇ is detected, and based on the detected value, the temperature of the gas during exhalation is detected. It is characterized by the detection of the gas components.
  • the gas component is heated to a temperature higher than that of the metal oxide semiconductor gas sensor before being turned on.
  • gas can be detected in a short time from the start of energization, and the change of the observation value when exhaled air is blown into the oxygen semiconductor gas sensor under high temperature conditions is changed to ⁇ b ⁇ .
  • As a trigger for the timing of the generation of gas it is easy to determine the timing of the transition to the low state, and the time from the expiration of the exhalation to the time of obtaining the response of the body oxide sensor can be shortened, and the state can be further increased After exposing with
  • the resistance value was determined immediately before or after the detection of exhaled breath under high temperature heating conditions, and the resistance value was calculated based on the withdrawal value. It is preferable to detect a gas component of interest in tine exhalation by comparing the value of the ratio with the ffjfESmffi resistance value with the value of a preset reference ratio. As for this ⁇ , it is possible to cancel the fluctuation component equivalent to the high-temperature state and high-precision detection is possible.
  • can quickly detect the expiration in fit ⁇ .
  • the expiration of the exhaled gas is detected by a resistance of a fiJlE ⁇ S acid sensor based on a change in a gas component in the exhaled gas.
  • expiration blowing can be detected quickly and reliably.
  • the predetermined time elapse is within a period before the resistance of the firf metal semiconductor gas sensor is stabilized. Thereby, the time until the detection can be further shortened.
  • the gas component to be detected is preferably alcohol.
  • This ⁇ can perform the alcohol detection;
  • the gas component to be detected is preferably a bad breath-causing gas component.
  • This ⁇ can be a mouth ⁇ method that produces the effects of the invention described above. It is a further object of the present invention to provide a breath gas detection device which has a high accuracy even when the time from gas introduction to gas detection is shortened 14 and which has high accuracy and small power consumption. That is, the expiration gas detection device of the present invention comprises an oxide gas sensor, a heater for powering the oxygen gas sensor, and an operation signal.
  • the energization of the tin heater is controlled so that the temperature of the body gas sensor becomes high, and under the high temperature condition, the expiration of the exhaled gas is detected by the oxygen gas sensor based on the change in the resistance value of the tut oxygen sensor. Then, based on the detection, the heater control means for controlling the energization of the self-heater so that the temperature of the gas sensor becomes low, the power of the gas sensor for the sulfur gas, and the temperature and temperature of the gas sensor for the ⁇ fS acid gas.
  • the resistance value of the oxide gas sensor is detected at the point of time ⁇ , and during the expiration, the resistance value of the oxide gas sensor is detected based on the fiber resistance value.
  • a detecting means for detecting a gas component of the contained intellectual fiber is provided.
  • the gas component is made to go to the metal oxide semiconductor gas sensor at high temperature and then to the i & mid K state.
  • the response of the sensor resistance can be made to appear between the temples.As a result, gas detection can be performed in a short time from the start of electricity supply. Since the change is used as a trigger for the opening and closing of the state, the timing of the opening of the state can be easily determined, and the time from the expiration of the expiration to the time when the response of the body gas sensor from the patient is obtained is increased.
  • the expiration gas is detected with the above-described exhaled gas detection device by using an excimer acid sensor of the exhalation gas sensor. In this case, the expiration of expiration can be detected quickly and accurately.
  • the expiration of the exhaled gas is detected by a fiber sensor of an oxide sensor based on a gas component and a change in the exhaled gas. In this case also, expiration of expiration can be detected quickly and reliably.
  • the reversal point for a certain period of time is within a certain period before the resistance of the metal oxide semiconductor gas sensor is stabilized. This has the effect of shortening the time until detection.
  • the gas component to be detected is preferably alcohol.
  • This ⁇ can provide an alcohol detection device having the effects of the above-described invention.
  • the gas component to be detected is a bad breath factor gas.
  • can be a mouth: ⁇ sensing device that has the effect of the invention described above.
  • FIG. 1 is a specific circuit diagram of an embodiment of the breath detection device of the present invention.
  • FIG. 2 is a timing chart for explaining the operation of the above air pollution detection.
  • FIG. 3 is a timing chart for explaining the operation of the ⁇ M Hb #) body gas sensor when there is no bad breath in the above-mentioned bad breath factor gas detection.
  • Fig. 4 is a timing chart for explaining the operation of the metal oxide gas sensor when there is bad breath in the above-mentioned bad breath factor gas detection.
  • FIG. 5 is a timing chart for explaining the operation of the metal oxide gas sensor at the time of alcohol synthesis in the alcohol detection.
  • FIG. 6 is a timing chart for operation of the metal oxide semiconductor semiconductor gas sensor when an alcohol component is present in the alcohol detection.
  • an exhaled gas detector for example, a gas detector constituting a bad breath checker is configured, and FIG. 1 shows a circuit diagram of the embodiment.
  • a low-voltage (for example, '3 V) battery 1 such as a dry cell or a rechargeable battery and a heater 2 are embedded in a gas-sensitive body for detecting gas, and both ends of the heater 2 2) and the output of the gas sensor connected to one end of the gas-sensing body 1) 3) a highly-structured heat-responsive acid gas sensor 3 and a liquid crystal table (hereinafter referred to as LCD and ⁇ ). 4)
  • the means for passing through the heater 2 and the means for detecting the carried fiber gas are programmed and the LCD 4 is equipped with a dry function.
  • the main components are a microcomputer (hereinafter abbreviated as “microcomputer”) 5 that performs processing, and an EEPROM 6 that is data used as a reference for determining the degree of bad breath.
  • the metal oxide gas sensor 3 has a resistance value between the output rice cake and the ground end of the heater 2 ′ ⁇ KD.
  • the heater 2 is connected via a PNP transistor Q1.
  • the gas-sensitive body is connected via a parallel circuit of a series circuit of PN p-type transistors Q2 and 2 and a series circuit of PNP-type transistor Q3 and a resistor R9. When the transistor Q2 or Q3 or both are on, the voltage VS across the gas-sensitive body is generated by the current flowing through the resistor R2 or R9 or the parallel circuit of both resistors.
  • the microcomputer 5 calculates the resistance value of the gas sensing material at both ends 3 ⁇ 4EV s.
  • the microcomputer 5 receives the power by connecting the power supply J terminal V to the battery power supply 1 via the diode D 1, and connects the middle point of the series circuit of the start switch SW and the resistor R 5 indicated by the arrow to the input port I 2.
  • H level control processing for gas detection is started according to the program.
  • the microcomputer 5 sets the midpoint to the base of the transistor Q1, and connects the other end of the series circuit of the resistors R3 and R4, one end of which is connected to the positive pole of the power supply 1, to the output port ⁇ 1.
  • Output port O Outputs a panless signal for duty control.
  • a function is provided to turn on the heater 2 by turning on and off the star Q1, and by using this function, the on-duty of the transistor Q1 is extended to force the metal oxide semiconductor gas sensor 3 to a high-temperature state or, conversely, to shorten it. By doing so, the heating control to be in the inactive state is performed.
  • microcomputer 5 outputs the bias circuit of the transistor Q2 as an output port.
  • the base current flows to the corresponding transistors Q2 and Q3 to turn them on.
  • the resistances R 2 and R 9 are connected between the resistance R s and the positive pole of 1. In other words, it has the ability to switch the load resistance.
  • the microcomputer 5 assigns the input terminals ID1 to ID4 of the LCD 4 to the output ports Ol1 to 014, the input ID5 and ID6 to the output port Ol5, and the input terminal I to the output port Ol6.
  • Input D7 and ID8 to output port Ol 7 ⁇ ? "ID9 and ID10, and output port Ol 8 to input ⁇ ID11 and ID12, and output port Ol9 to input terminals ID13 and ID14 and output Port O 20 has inputs ⁇ ID 15 and ID 16, respectively, and has a common channel of 04.
  • Ml is converted to output port O 2 and output from output ports Ol 1 to 020 and 02.
  • the character display of L CD 4 is now controlled.
  • the microcomputer 5 takes in the voltage of the shunt regulator 7 into the input port I3, and when the voltage of the shunt regulator 7 becomes lower than a predetermined value, the microcomputer 5 detects that the shunt has run out. ⁇ .
  • the shunt regulator 7 is adapted to stabilize the rnmmiE to a predetermined ma, being disliked by the pond irni via the transistor Q2 and the resistor R1.
  • the EEPROM 6 is used for registering a reference for detecting a gas detected by a known method.
  • the semiconductor gas sensor under high temperature conditions is used.
  • the value of i3 ⁇ 43 ⁇ 4R 0 of the gas sensing element of (3) and the value of 3 ⁇ 43 ⁇ 4tR s ( ⁇ and the ratio R s / RO of the two when switching from high temperature to low The value of the ratio is used as a basis for the detection of bad breath gas (eg, carbon, carbon, ammonia, or methyl menolecabutane), ie, the detection of mouth-to-mouth.
  • bad breath gas eg, carbon, carbon, ammonia, or methyl menolecabutane
  • the EEPROM 6 connects the data input DI, the serial clock terminal SR, and the chip selector terminal CS to the data output port do, output ports 021, ⁇ 22 of the microcomputer 5, respectively, and pulls up with the resistors R7, R8, R6 respectively. ing.
  • the data output terminal DO is connected to the data input terminal di of the microcomputer 5.
  • Input 04 is input 101 to 1016 and communication l COM1 is boosted by a resistor, respectively.
  • the characters corresponding to this word are displayed, and ID1 to ID4 correspond to the concentration of the bad breath factor gas, that is, the degree of bad breath, respectively, to the ⁇ "character, and ID5 to ID5.
  • ID16 corresponds to a character such as a person displayed on both sides of the character indicating the observation, and if the concentration of the bad breath gas increases, the wheat It becomes steep.
  • number 8 is a reset IC that gives a reset signal to microcomputer 5 when power is turned on to reset it
  • number 9 is a reference clock to the microcomputer
  • # 10 is a clock generation circuit.
  • Connector. C1 to C3 are capacitors.
  • the microcomputer 5 when mi i is reset, the microcomputer 5 is reset by reset I C8i t! And the right is set. Thereafter, the microcomputer 5 operates in the low-consumption mode to be in a state. In this state, the setting for the output port 03 of the microcomputer 5? "When the start switch SW is turned on with the connection between the ADJ and the ground, the microcomputer 5 rises to the input level of the input port I2, that is, when the operation start signal is input, the microcomputer 5 The operation state of the pre-programmed mode is entered, and a pulse signal is generated from the output port Ol with a period of, for example, 8.2 msec and a low voltage period of 96 ⁇ s.
  • the transistor Q1 is turned on and off with a duty of 9600 ⁇ sec and a period of 8.2 mssec, and the heater 2 is supplied with an easy-going power during the ON period.
  • the flat voltage applied to the heater 2 becomes approximately 1 OV by the duty control, so that the amount of heat in the heater 2 is large, and the acid gas sensor 3 is heated to a high temperature state.
  • the microcomputer 5 outputs a signal to turn on the transistors Q2 and Q3 (or only Q2 or Q3) in synchronization with the off period of the transistor Q1.
  • the microcomputer 5 outputs a low signal from the output port # 1.
  • the level period is switched to 75 ⁇ sec, and the on-duty of the transistor Q1 is set to 75 ⁇ sec while maintaining the cycle.
  • the average applied to the heater 2 through the transistor Q1 is reduced to approximately 0.3 V, and the amount of the heater 2 is reduced. Therefore, the dormitory-body gas sensor 3 is opened from the high temperature state.
  • the microcomputer 5 when switching from the high temperature state to the low temperature tl state, and when the transistor Q1 is turned off, the microcomputer 5 is at the right time. Both ends of the gas sensing element of sensor 3 ⁇ ⁇ V s are taken into input port I 1, and the sensed SEV S and load resistance and value are used to calculate the gas sensing element base of oxygen gas sensor 3 3 ⁇ 45 resistance R Calculate 0.
  • the microcomputer 5 starts to operate at a low temperature.
  • the voltage between both ends of the gas sensor of the gas sensor 3 is input to the input port I1, and the value R s of the gas sensor of the oxide gas sensor 3 is obtained from the input voltage, load resistance, and easy value.
  • the microcomputer 5 When the above adjustment mode ends, the microcomputer 5 returns to the state. Then, after the connection between the adjustment terminal ADJ and the ground is released, if the start switch SW1 is turned off, the microcomputer 5 will open the communication mode.
  • the microcomputer 5 is in the state of power s.
  • the microcomputer 5 is turned on after the conversion processing.
  • the operation in the mode is started, and the data is read out to the EEPROM 6 first, stored in the built-in RAM, and the base used for detecting the degree of bad breath is set.
  • the microcomputer 5 sets the period from the output port O1 to 8.2 msec and the low level period to 960 ⁇ s. Generate an ec pulse signal.
  • the transistor Q1 is turned on and off with a duty cycle of 960 ⁇ sec and a period of 8.2 msec, and during the ON period, the heater 2 of the body gas sensor 3 receives a signal from the heater 1 from the switch 1, As in the case of ⁇ 3 ⁇ , the oxygen gas sensor 3 is brought to a high temperature state.
  • the microcomputer 5 samples the voltage between both ends of the gas sensing body at the timing of turning off the transistor Q 1 every 0.5 sec, calculates the resistance value R s of the gas sensing body, and calculates the resistance obtained by the current sampling. The ratio between the value R s and the resistance value R S obtained by the previous sampling is calculated every 0.5 sec.
  • the microcomputer 5 detects that expiration has been blown.
  • the microcomputer 5 detects and determines the pollution of the atmosphere (air pollution) immediately after the above-described breath detection, and interrupts the breathing operation when it determines that the atmosphere is polluted. That is, as shown in FIG. 2, the resistance value Rs of the gas-sensitive body of the metal oxide semiconductor gas sensor 3 detected at the sampling immediately after the exhalation detection opening point ta and the resistance value Rs detected in the adjustment mode and contained in the EEPROM 6 ⁇ Calculate the ratio of ⁇ 5 ⁇ value to R 0, and the obtained value is smaller than a predetermined value (for example, 0.2):: ⁇ is increasing, that is, the cleaning direction in which ⁇ value R s increases The microcomputer 5 stops the detection operation and returns to the state, judging that the age is in a polluted state where it is impossible to detect bad breath, and displays on the LCD 4 that the air pollution is present.
  • a predetermined value for example, 0.2
  • Fig. 2 shows a diagram of this air pollution judgment, in which the curves A, A, and R show the change in R s R R 0 from the timing ta of the air pollution level and the age call timing.
  • B shows the change of RsZRO in the air pollution state
  • C shows that the air pollution was higher and the expiration was blown.
  • the value of RsZRO indicates the direction of cleanliness
  • indicates the expiration detection limit
  • indicates the air pollution and intellectual limit point.
  • the microcomputer 5 For good atmospheric pollution, the microcomputer 5 must be able to use the known signal for 1 se, for example, at the time of the call. At the time point, the microcomputer 5 outputs the noiseless signal with the on-duty of the transistor Q1 at 75 ⁇ sec while maintaining the period. The output from Ol is set to the low state of the metal gas sensor 3.
  • the resistance value of the gas-sensitive material sampled at this opening point is stored in the built-in RAM as a resistance value R0, and the ratio with the resistance value Rs obtained by sampling every 0.5 sec thereafter. Operate R s ZR 0 '. Then, the ratio of the calculated value 2 seconds after the start of the state tree to the base f (R s / R 0) obtained in the adjustment mode is obtained, and the degree of bad breath is determined directly from the ratio. The character corresponding to the bad breath degree is displayed on the LCD4. After a certain period of time, the microcomputer 5 returns to the ⁇ state, and the display of LCD 4 is also turned off.
  • FIGS. 3 and 4 show the state of Rs R0 (or RsZRO ') from the time point t1 when the start switch SW operates, from the high-temperature state to the time point 13 when the switch is in the ⁇ state.
  • Figure 3 shows that the value of R s / RO 'obtained at the time t 3 force, 2 sec 3 ⁇ 4i ⁇ B temple point t 4 is 25, and
  • Figure 4 shows that the time t 3 is 2 sec 3 ⁇ 41 time t It shows that the value of R s / RO 'obtained in 4 is 8.
  • t2 indicates the time of call notification.
  • the microcomputer 5 always checks the value of the shunt regulator 7 and judges that the battery has run out if the value falls below a predetermined value. ? Display til out.
  • the above-described embodiment constitutes a bad breath checker, it can be used as an alcohol check force for measuring blood alcohol concentration.
  • the alcohol concentration in the blood can be detected by using the fact that the ingested alcohol dissolves in the liquid and the alcohol component is contained in the breath via the lungs.
  • the oxygen gas sensor 3 sets the resistance value to the value suitable for alcohol detection, and sets the base value (R s )
  • the measurement frequency (R s ZR 0,), and the ratio may be programmed in advance.
  • the presence / absence and concentration of the target gas are determined by comparing RsZRO ′ and the residual RsZRO, but the detection resistance value Rs of the metal oxide based gas sensor 3 and the reference resistance It may be done by comparing with the value.
  • the value after a period of detection of the expiration of the expiratory blowing force under the high birth condition is used as the base m3 ⁇ 43 ⁇ 4t value R0 '.
  • the resistance value obtained by sampling immediately before detection may be used.
  • is power.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A gas detecting method and a device therefor, wherein the time needed from the time the power is turned on till gas detection becomes possible is short. A microcomputer (5) delivers a pulse signal to cause the on-duty of a transistor (Q1) to be 75 ν sec from an exhaled gas detection to reduce the average voltage to be applied to a heater (2) and causes the temperature of a metal oxide semiconductor gas sensor (3) to shift to a lower-temperature heating state. The resistance value of a gas sensor sampled at the point of time this shifting is started is stored in a built-in RAM as a reference resistance value RO', and ratios Rs/RO' are computed where Rs is a resistance value found by sampling thereafter every 0.5 sec. And the ratio of the calculated value obtained 2 sec after the start of low temperature heating state shift, to the reference value (Rs/RO) found in the adjustment mode is found, on the basis of which ratio the degree of halitosis is determined and a character corresponding to the determined degree of halitosis is displayed on an LCD (4).

Description

明細書 呼気ガス検知方法及びその装置 技術分野  Description: Expired gas detection method and device
本発明は、 アルコーノレや口臭要因ガス成分を検知するための呼気ガス検 知方法、 及びその装置に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a breath gas detection method for detecting alcohol components and a bad breath factor gas component, and a device therefor. Background art
金属酸化物半導体ガスセンサを用いた従来のポータブルガス検知器にお いては、 電源投入後、 センサ出力信号が安定になるまでの時間 (イニシャルァク シヨン) 、 すなわち数 1 0秒から数分間待つ必要があった。 また、 ¾ 投入直後 に^ Μ酸イ^^体ガスセンサのヒータに高レヽ を印加して高温状態を作り出 してセンサ表面をクリーニングし、 より速くセンサ出力信号を安定にする処置 (ヒートクリーニング) を行っても数 1 0秒を要していた。 このように待ち時間 力;長いのは、 イニシャルァクションゃヒートクリーニングの後のセンサ^ [値の ドリフトの安定を待ってから測定することと、 更にガス中での応 を 必要が あつたからである。 ヒートクリ一二ング後のセンサ ¾^直の安定を待たずにガス を曝露する齢には、 検知したガス中の抵抗値の顯性が非常に悪くなつた。 ま た検知するまでの時間力長いということは消費 ®Λも大きくなり、 特に を電 池とする は、 ^が数 1 0回の検知分しカ将たない:^があった。  In a conventional portable gas detector using a metal oxide semiconductor gas sensor, it is necessary to wait until the sensor output signal becomes stable after the power is turned on (initial function), that is, from several ten seconds to several minutes. was there. Immediately after the injection, a high temperature is applied to the heater of the acid gas sensor to create a high temperature state to clean the sensor surface and stabilize the sensor output signal faster (heat cleaning). It took several 10 seconds to perform The waiting time is long; the reason for this is that it is necessary to wait for the initial action ゃ sensor after heat cleaning to stabilize the value drift, and then measure it in the gas and further . At the age of exposure to gas without waiting for the sensor to stabilize after heat cleaning, the sensibility of the resistance value in the detected gas became very poor. In addition, the longer the time required for detection, the greater the power consumption. In particular, when using a battery as a battery, there was no way to detect several 10 times: ^.
また、 金属酸化物 ^^体ガスセンサの多くは、 献ゃ被検知 でないガス成分による妨害でガス感度やガス中の抵抗値が変動し、 その変動分を 補正する手段が容易に得られなレヽため、 十分な精度;^得られなかった。  In addition, most metal oxide ^^ body gas sensors fluctuate the gas sensitivity and the resistance value in the gas due to interference by gas components that are not to be detected, and it is not easy to obtain a means to correct the fluctuation. , Not enough accuracy; ^ could not be obtained.
ところで、 上記のようなガス検知方法を用いた口臭チヱッカーが従来 (実開昭 6 4— 4 2 0 1 5号公報参照) 衝共されているが、 前述のように衝原投 入から検知できるまでに時間力 sかかる上に、 ガス中の抵抗の^ m性や、 雰囲気の 影響を受けて精度力悪くなるという P題があった。 ; 発明の開示 By the way, the bad breath checker using the gas detection method described above (Refer to Japanese Utility Model Application Laid-Open No. 644-2420.) As mentioned above, it takes time s from detection of impact to detection, and the resistance of gas in gas is ^ m. Also, there was a P theme that accuracy deteriorated due to the influence of the atmosphere. ; Disclosure of the invention
本発明は、 の点に鑑みて為されたもので、 その目的とするところは ®¾1投入からガス検知までの時間を短くしても再現性が良く、 精度の高い、 しか も消 »®Λが小さい呼気ガス検知方法を樹共することにある。 すなわち、 本発明 の呼気ガス検知方法は、 動作開 ½ί言号により^ J1酸化物 体ガスセンサの通電 を開始するとともに高^] D熱し、 該高 D熱中に呼気を^ Μ酸ィ 体ガスセ ンサに吹きかけ、 この呼気の吹きかけにより生じる金属酸ィ匕物半導体ガスセンサ の抵抗値の変化から呼気の吹きかけを^ flし、 この検知に基づいて^^酸化物半 導体ガスセンサの高 を停止して低¾¾ロ^態^?させ、 該低^ 態 に してから一 寺間 Si§時点の 酸化物^体ガスセンサの抵抗値を検知 して該検知 値に基づレ、て呼気中のネ繊知 ¾ ^のガス成分を検知することを特 徴とするものである。  The present invention has been made in view of the following points. The purpose of the present invention is to achieve high reproducibility, high accuracy, and high efficiency even if the time from input to gas detection is shortened. Is to use a small expiration gas detection method. That is, the expiration gas detection method of the present invention starts the energization of the ^ J1 oxide gas sensor and generates high ^] D heat according to the operation start signal, and exhales the high oxygen gas gas during the high D heat. Spraying is performed based on a change in the resistance value of the metal oxide semiconductor gas sensor caused by the expiration of the exhaled gas, and the height of the oxide semiconductor gas sensor is stopped based on this detection to reduce the flow rate. After being in the low state, the resistance value of the oxide gas sensor at the time of Si § Si§ is detected, and based on the detected value, the temperature of the gas during exhalation is detected. It is characterized by the detection of the gas components.
この呼気ガス検知方法には、 ガス成分を金属酸化物半導体ガスセンサと 高温で させてから 態に 亍させるため、 iffiになってから さ せる:^に比べてセンサ^ tの応答を翻寺間で現出させることができ、 その結果 通電開始から短時間でガス検知ができ、 しかも高温状態下で呼気を 酸ィ 半 導体ガスセンサに吹きカ たときの觀値の変ィ匕を { ロ赚態への樹亍させる タイミングのトリガとするため、 低^ 態に移行させるタイミングを容易に 決定でき、 呼気吹きかけから^ 酸化物^!体ガスセンサの応答を得るまでの時 間をより短くでき、 更に高 態で呼気にさらした後、
Figure imgf000004_0001
In this exhaled gas detection method, the gas component is heated to a temperature higher than that of the metal oxide semiconductor gas sensor before being turned on. As a result, gas can be detected in a short time from the start of energization, and the change of the observation value when exhaled air is blown into the oxygen semiconductor gas sensor under high temperature conditions is changed to {b}. As a trigger for the timing of the generation of gas, it is easy to determine the timing of the transition to the low state, and the time from the expiration of the exhalation to the time of obtaining the response of the body oxide sensor can be shortened, and the state can be further increased After exposing with
Figure imgf000004_0001
してから一 寺間後の 値を検知しているため、 樹亍後 寺間の過渡期間内で あっても非常に醒性の良い、 精度の高い検知ができ、 また更 ( 知時間が短レヽ ことは、 消費 ¾Λが小さく、 を ®¾とした齢、 m¾の ^を逆比例的に長 くすることができるという効果がある。 Since the value after one temple period has been detected since then, Even if there is, it is possible to detect with very good alertness and high accuracy, and furthermore, the shorter the recognizing time is, the lower the consumption is, the age of ¾, and the length of m¾ is inversely longer. There is an effect that can be.
上記した呼気ガス検知方法にぉレ、て、 高温加熱状態下で呼気の吹きかけ 検知の直前又は一 寺間後の撤値を基、^ ®抗値とし、 ィ Sfi^赚態樹亍から一
Figure imgf000005_0001
ffjfESmffi抗値と の比の値と予め設定してある基準の比の値との比較により tine呼気中の 知対 象のガス成分を検知することが好ましい。 この^は、 高温状態と 態 に同等に る変動成分をキヤンセノ ることができ、 高精度の検知が可能とな る。
According to the above-mentioned method for detecting exhaled gas, the resistance value was determined immediately before or after the detection of exhaled breath under high temperature heating conditions, and the resistance value was calculated based on the withdrawal value.
Figure imgf000005_0001
It is preferable to detect a gas component of interest in tine exhalation by comparing the value of the ratio with the ffjfESmffi resistance value with the value of a preset reference ratio. As for this ^, it is possible to cancel the fluctuation component equivalent to the high-temperature state and high-precision detection is possible.
上記した呼気ガス検知方法において、 呼気の吹きかけを湿度変化による In the above-mentioned exhaled gas detection method,
^ΠΒ^ 斷匕物 ^体センサの抵抗ィ錢ィ匕で検知することが好ましレ、。 この:^ は、 速やかに且 fit^に呼気吹きかけを検知できる。 ^ ΠΒ ^ Shading object ^ It is preferable to detect with the resistance of the body sensor. This: ^ can quickly detect the expiration in fit ^.
また、 上記した呼気ガス検知方法において、 呼気の吹きかけを呼気中の ガス成分と 変化による fiJlE^S酸ィ ^^体センサの抵抗ィ 1¾ィ匕で検知する ことも好ましレヽ。 この も、 速やかに且つ確実に呼気吹きかけを検知できる。  Further, in the above-described exhaled gas detection method, it is preferable that the expiration of the exhaled gas is detected by a resistance of a fiJlE ^ S acid sensor based on a change in a gas component in the exhaled gas. In this case also, expiration blowing can be detected quickly and reliably.
上記した呼気ガス検知方法において、 前記一定時間経過時点は、 firf己金 属^ ί匕物半導体ガスセンサの抵抗が安定する前の過■間内であることが好まし レ、。 これにより、 検知までの時間をより短くすることができる。  In the above-described exhaled gas detection method, it is preferable that the predetermined time elapse is within a period before the resistance of the firf metal semiconductor gas sensor is stabilized. Thereby, the time until the detection can be further shortened.
上記した呼気ガス検知方法において、 被検知対象のガス成分は、 アル コールであることが好ましレ、。 この^は、 上記した発明の効果を奏するアル コール検知;^法を!^できる。  In the above-described exhaled gas detection method, the gas component to be detected is preferably alcohol. This ^ can perform the alcohol detection;
上記した呼気ガス検知方法において、 被検知対象のガス成分は、 口臭要 因ガス成分であることが好ましい。 この^^は、 上記した発明の効果を奏する口 ^^方法を できる。 本発明のさらなる目的は、 投入からガス検知までの時間を短くして も 14が良く、 精度の高い、 しかも消 »¾Λが小さい呼気ガス検知装置を樹共 することにある。 すなわち、 本発明の呼気ガス検知装置は、 酸化物 体ガ スセンサと、 該^ 酸ィ 体ガスセンサを力 するヒータと、 動作開 ^言号 により
Figure imgf000006_0001
In the above-described exhaled gas detection method, the gas component to be detected is preferably a bad breath-causing gas component. This ^^ can be a mouth ^^ method that produces the effects of the invention described above. It is a further object of the present invention to provide a breath gas detection device which has a high accuracy even when the time from gas introduction to gas detection is shortened 14 and which has high accuracy and small power consumption. That is, the expiration gas detection device of the present invention comprises an oxide gas sensor, a heater for powering the oxygen gas sensor, and an operation signal.
Figure imgf000006_0001
体ガスセンサの ½が高温となるように tin己ヒータの通電を制御し、 該高温状態 下で tut己^ m酸ィ 体ガスセンサの抵抗値の変化から 酸ィ 体 ガスセンサに呼気の吹きカ ナを検知し、 該検知に基づレ、て肅己 酸ィ 体 ガスセンサの 力 s低温となるように it己ヒータの通電を制御するヒータ制御手 段と、 ^fS 酸ィ ^体ガスセンサの 力 氐温となるように fill己ヒータの 通電制御が開始されてから一 寺間^ ϋ時点で、 廳己 酸化物 体ガスセン サの抵抗値を検知して該検繊抗値に基づレ、て呼気中に含まれる赚知纖のガ ス成分を検知する検知手段とを備えて成ることを 敷とする。 The energization of the tin heater is controlled so that the temperature of the body gas sensor becomes high, and under the high temperature condition, the expiration of the exhaled gas is detected by the oxygen gas sensor based on the change in the resistance value of the tut oxygen sensor. Then, based on the detection, the heater control means for controlling the energization of the self-heater so that the temperature of the gas sensor becomes low, the power of the gas sensor for the sulfur gas, and the temperature and temperature of the gas sensor for the ^ fS acid gas. At the time of the start of the energization control of the heater itself, the resistance value of the oxide gas sensor is detected at the point of time 寺, and during the expiration, the resistance value of the oxide gas sensor is detected based on the fiber resistance value. And a detecting means for detecting a gas component of the contained intellectual fiber.
上 13¾成を赚とする呼気ガス検知装置には、 ガス成分を金属酸化物半 導体ガスセンサと高温で ® ^させてから i&mid K態に させるため、 低温に なつてから Si ^させる:^に比べてセンサ抵抗の応答を 寺間で現出させること ができ、 その結 ¾1電開始から短時間でガス検知ができ、 しかも高温状態下で呼 気を m酸ィ 体ガスセンサに吹きかけたときの 値の変化を 動口, 態への樹亍させるタイミングのトリガとするため、 態に樹 ΐさせるタ イミングを容易に決定でき、 呼気吹きかけから德謝ヒ物 体ガスセンサの応 答を得るまでの時間をより短くでき、 更に高 態で呼気にさらした後、 低 態^^1してから一^ 間後の抵抗値を検知してレ、るため、 于後短時 間の過 間内であっても非常に再現†生の良い、 精度の高い検知ができ、 また更 に検知時間が短いことは、 消費 が小さく、 を n:池とした^^、 の寿 命を逆比例的に長くすることができるとレ、う効果がある。 上記した呼気ガス検知装置にぉレ、て、 高温加熱状態下で呼気の吹きかけ 検知の直前又は一 寺間後の抵抗値を 抗値とし、 口!^態 亍から一 定時間 時点の ϋίΙΕ^ 酸化物^体ガスセンサの抵抗値と filfES^^値と の比の値と予め設定してある基準の比の値との比較により嫌己呼気中のネ繊知対 象のガス成分を検知することが好ましい。 この^^は、 上記した発明の効果にカロ えて、 高温状態と 献態に同等に軌る変動成分をキャンセルすることが でき、 高精度の検知が可能となる。 In the exhaled gas detector with the above 13 composition, the gas component is made to go to the metal oxide semiconductor gas sensor at high temperature and then to the i & mid K state. The response of the sensor resistance can be made to appear between the temples.As a result, gas detection can be performed in a short time from the start of electricity supply. Since the change is used as a trigger for the opening and closing of the state, the timing of the opening of the state can be easily determined, and the time from the expiration of the expiration to the time when the response of the body gas sensor from the patient is obtained is increased. short can, after exposure to breath even higher state, Le detects the resistance value after between one ^ after low state ^^ 1, because, even within between over between when short于後Very reproducible and highly accurate detection, and detection time Shorter has the effect that the consumption is small and the life of ^^, where n is a pond, can be extended in inverse proportion. In the above-mentioned exhaled gas detector, the resistance value immediately before or after detection of exhaled breath under high temperature heating condition is regarded as resistance, and ϋίΙΕ ^ oxidation at a certain time from the mouth! ^ State 亍By comparing the ratio of the resistance value of the object-body gas sensor to the filfES ^^ value and the value of the preset reference ratio, it is possible to detect the gas component of the nervous exhalation that is to be detected. preferable. In addition to the effects of the above-described invention, the fluctuation component equivalent to the high-temperature state and the dedication can be canceled, and high-precision detection becomes possible.
上記した呼気ガス検知装置にぉレヽて、 呼気の吹きかけを' ¾変ィ匕による 爾己^酸ィ ^体センサの ¾¾¾ィ1¾ィ匕で検知することが好ましい。 この^ は、 速やかに且 ¾実に呼気の吹きかけを検知することができる。  It is preferable that the expiration gas is detected with the above-described exhaled gas detection device by using an excimer acid sensor of the exhalation gas sensor. In this case, the expiration of expiration can be detected quickly and accurately.
また、 上記した呼気ガス検知装置において、 呼気の吹きかけを呼気中の ガス成分と 変化による 酸化物 体センサの赚纖ィ匕で検知する ことも好ましレヽ。 この も、 速やかに且つ確実に呼気の吹きかけを検知するこ とができる。  Further, in the above-mentioned exhaled gas detection device, it is preferable that the expiration of the exhaled gas is detected by a fiber sensor of an oxide sensor based on a gas component and a change in the exhaled gas. In this case also, expiration of expiration can be detected quickly and reliably.
上記した呼気ガス検知装置にぉレ、て、 一定時間翻時点は 金属酸ィ匕 物 体ガスセンサの抵抗が安定する前の過,間内であることが好ましレヽ。 こ の は、 検知までの時間をより短くできるという効果がある。  In the above-mentioned exhaled gas detection device, it is preferable that the reversal point for a certain period of time is within a certain period before the resistance of the metal oxide semiconductor gas sensor is stabilized. This has the effect of shortening the time until detection.
上記した呼気ガス検知装覃において、 被検知対象のガス成分は、 アル コールであることが好ましレ、。 この^は、 上記した発明の効果を奏するアル コール検知装置を できる。  In the above-described exhaled gas detection apparatus, the gas component to be detected is preferably alcohol. This ^ can provide an alcohol detection device having the effects of the above-described invention.
上記した呼気ガス検知装置において、 被検知対象のガス成分は、 口臭要 因ガスであることが好ましレヽ。 この:^は、 上記した発明の効果を奏する口:^ 知装置を^ ¾できる。  In the above-mentioned expired gas detection device, it is preferable that the gas component to be detected is a bad breath factor gas. This: ^ can be a mouth: ^ sensing device that has the effect of the invention described above.
上記した呼気ガス検知装置にぉレ、て、 高 ロ纖態の ftrlE 酸化物半 導体ガスセンサの赚値が所定翻外若しくは呼気吹きカゝけで上 ί頃向である場 合に不 態であると判定することが好ましい。 この は、 検知雰囲気の汚染 に影響されて 1»知するのを に防止できる。 In the case of the above-mentioned exhaled gas detector, if the value of the high-fiber fiber ftrlE oxide semiconductor gas sensor is in the upward direction due to a predetermined transversion or exhalation blow, In this case, it is preferable to determine that it is inactive. This can be prevented from being noticed by the contamination of the detection atmosphere.
本発明のさらなる特徴およびそれがもたらす効果は, 添付された図面 を参照して以下に述べる発明の詳細な説明および実施例から理解されるだろ う。 、 図面の簡単な説明  Further features of the present invention and the effects provided thereby will be understood from the following detailed description of the invention and examples thereof, with reference to the accompanying drawings. Brief description of the drawings
図 1は、 本発明の呼気検知装置の一実施形態の具体回路図である。 FIG. 1 is a specific circuit diagram of an embodiment of the breath detection device of the present invention.
図 2は、 同上の大気汚染検知の動作説明用タイミングチヤ一トである。 FIG. 2 is a timing chart for explaining the operation of the above air pollution detection.
図 3は、 同上の口臭要因ガス検知における口臭無し時の^ M Hb#)^¾体ガスセ ンサの動作説明用タイミングチヤ一トである。 FIG. 3 is a timing chart for explaining the operation of the ^ M Hb #) body gas sensor when there is no bad breath in the above-mentioned bad breath factor gas detection.
図 4は、 同上の口臭要因ガス検知における口臭有り時の金属酸ィヒ物^ ί体ガスセ ンサの動 Μ½明用タイミングチヤ一トである。 Fig. 4 is a timing chart for explaining the operation of the metal oxide gas sensor when there is bad breath in the above-mentioned bad breath factor gas detection.
図 5は、 同上のアルコール検知におけるアルコール成^し時の金属酸ィ 体ガスセンサの動 ¾¾明用タイミングチャートである。 FIG. 5 is a timing chart for explaining the operation of the metal oxide gas sensor at the time of alcohol synthesis in the alcohol detection.
図 6は、 同上のアルコール検知におけるアルコール成分有り時の金属酸ィ匕物半導 体ガスセンサの動 明用タイミングチヤ一トである。 発明を実施するための最良の形態 FIG. 6 is a timing chart for operation of the metal oxide semiconductor semiconductor gas sensor when an alcohol component is present in the alcohol detection. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の一 H»態を添付の図面を参照しながら詳細に説明す る。  Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.
本実施形態は、 呼気ガス検知装置、 例えば口臭チェッカを構成するガス 検知装置を構成するものであり、 図 1は 態の回路図を示す。  In the present embodiment, an exhaled gas detector, for example, a gas detector constituting a bad breath checker is configured, and FIG. 1 shows a circuit diagram of the embodiment.
本 形態は、 乾電池、 充電池などの低 ¾ΙΪ (例えは' 3 V) の電池 1と、 ガスを感知するための感ガス体内にヒータ 2を埋設し、 ヒータ 2の両端が 繊される ②と、 感ガス体の一端に接続される出力慰亟^? 1)の 3 好構造の熱 答 の速レ^^酸ィ 体ガスセンサ 3と、 液晶表 (以 下 L CDと ^ "る) 4と、 上記ヒータ 2の通 1»を行う手段ゃ搬知纖ガス の検知を行う検知手段などの機能がプログラム化され、 また L CD 4のドライノく 機能を備え、 装置全体の制御処理を行うマイクロコンピュータ (以下マイコンと 略す) 5と、 口臭度合の判定を行うための基準となるデータを る E E P R OM 6とを主要な構成^ ^としている。 In this embodiment, a low-voltage (for example, '3 V) battery 1 such as a dry cell or a rechargeable battery and a heater 2 are embedded in a gas-sensitive body for detecting gas, and both ends of the heater 2 2) and the output of the gas sensor connected to one end of the gas-sensing body 1) 3) a highly-structured heat-responsive acid gas sensor 3 and a liquid crystal table (hereinafter referred to as LCD and ^). 4) The means for passing through the heater 2 and the means for detecting the carried fiber gas are programmed and the LCD 4 is equipped with a dry function. The main components are a microcomputer (hereinafter abbreviated as “microcomputer”) 5 that performs processing, and an EEPROM 6 that is data used as a reference for determining the degree of bad breath.
金属酸化物 体ガスセンサ 3は、 出力餅 と、 ヒータ 2のグラ ンド側の一端が される' ^^KDとの間の抵抗値カ感ガス体にガスが ることにより変ィ るもので、 内蔵したヒータ 2を P NP型のトランジスタ Q 1 を介して に してある。 また感ガス体は、 に対して P N p型のトランジスタ Q 2と 2との直列回路と、 P NP型のトランジスタ Q 3と抵抗 R 9との直列回路との並列回路を介して接続されており、 トランジスタ Q 2又は Q 3或いは両方がオン時に感ガス体に抵抗 R 2又は R 9又は両抵抗の並 列回路を介して流れる電流によって発生する感ガス体の両端電圧 V Sがマイコン The metal oxide gas sensor 3 has a resistance value between the output rice cake and the ground end of the heater 2 ′ ^^ KD. The heater 2 is connected via a PNP transistor Q1. In addition, the gas-sensitive body is connected via a parallel circuit of a series circuit of PN p-type transistors Q2 and 2 and a series circuit of PNP-type transistor Q3 and a resistor R9. When the transistor Q2 or Q3 or both are on, the voltage VS across the gas-sensitive body is generated by the current flowing through the resistor R2 or R9 or the parallel circuit of both resistors.
5の入力ポート I 1に取り込まれ、 マイコン 5はこの両端 ¾EV sカ 感ガス体 の抵抗値を演算する。 The microcomputer 5 calculates the resistance value of the gas sensing material at both ends ¾EV s.
マイコン 5は、 電池電源 1にダイオード D 1を介して電源 J¾子 Vを接続 して を受け、 に赚されたスタートスィツチ SWと抵抗 R 5 の直列回路の中点を入力ポート I 2に接続し、 該入カポート I 2がハイレベル (以下 Hレべノレと^ fる) になればガス検知のための制御処理をプログラムに 沿って開 ί台するようになってレ、る。  The microcomputer 5 receives the power by connecting the power supply J terminal V to the battery power supply 1 via the diode D 1, and connects the middle point of the series circuit of the start switch SW and the resistor R 5 indicated by the arrow to the input port I 2. When the input port I2 goes high (hereinafter referred to as H level), control processing for gas detection is started according to the program.
またマイコン 5は、 トランジスタ Q 1のベースに中点を し、 一端を 鼇池電源 1の +極に接続した抵抗 R 3, R 4の直列回路の他端を出力ポート Ο 1 に^ tし、 出力ポート O l力、らデュティ制御用のパノレス信号を出力して スタ Q 1をオンオフさせることによりヒータ 2の通電を»する機能を備え、 該 機能によりトランジスタ Q 1のオンデュティを長くすることにより金属酸化物半 導体ガスセンサ 3を高温状態に力 したり、 逆に短くすることにより ί¾ΛΠ» 態とする加熱制御を行う。 Further, the microcomputer 5 sets the midpoint to the base of the transistor Q1, and connects the other end of the series circuit of the resistors R3 and R4, one end of which is connected to the positive pole of the power supply 1, to the output port Ο1. Output port O Outputs a panless signal for duty control. A function is provided to turn on the heater 2 by turning on and off the star Q1, and by using this function, the on-duty of the transistor Q1 is extended to force the metal oxide semiconductor gas sensor 3 to a high-temperature state or, conversely, to shorten it. By doing so, the heating control to be in the inactive state is performed.
更にマイコン 5は、 上記トランジスタ Q 2のバイアス回路を出力ポート Further, the microcomputer 5 outputs the bias circuit of the transistor Q2 as an output port.
03に、 またトランジスタ Q3のバイアス回路を出力ポート 04に接続し、 出力 ポート 03, O 4をローレベルにすることにより、 対応するトランジスタ Q2, Q 3にベース電流を流してオンさせ、 感ガス体の抵抗 R sと 1の +極と の間に抵抗 R 2, R 9を赚するようになっている。 つまり負荷抵抗を切り替え る機能力 蓆わっている。 、 By connecting the bias circuit of the transistor Q3 to the output port 04 and setting the output ports 03 and O4 to low level, the base current flows to the corresponding transistors Q2 and Q3 to turn them on. The resistances R 2 and R 9 are connected between the resistance R s and the positive pole of 1. In other words, it has the ability to switch the load resistance. ,
また更にマイコン 5は、 出力ポート Ol 1〜014に LCD 4の入力端 子 ID1〜ID4を夫々赚し、 また出力ポート Ol 5に入力 I D 5, ID 6を、 また出力ポート Ol 6に入力端子 I D7, ID8を、 出力ポート Ol 7に 入力^? "ID9, I D10を、 また出力ポート Ol 8に入力 ^I D11, ID 12を、 出力ポート Ol 9に入力端子 ID 13, ID14を、 また出力ポート O 20には入力^ ID 15, ID16を夫々赚し、 また じ04の共通¾^じ ◦Mlを出力ポート O 2に換暁し、 出力ポート Ol 1〜020, 02より出力す るドライブ信号にて L CD 4のキヤラクタ表示を制 Wるようになってレ、る。  Further, the microcomputer 5 assigns the input terminals ID1 to ID4 of the LCD 4 to the output ports Ol1 to 014, the input ID5 and ID6 to the output port Ol5, and the input terminal I to the output port Ol6. Input D7 and ID8 to output port Ol 7 ^? "ID9 and ID10, and output port Ol 8 to input ^ ID11 and ID12, and output port Ol9 to input terminals ID13 and ID14 and output Port O 20 has inputs ^ ID 15 and ID 16, respectively, and has a common channel of 04. Ml is converted to output port O 2 and output from output ports Ol 1 to 020 and 02. The character display of L CD 4 is now controlled.
またマイコン 5は、 シャントレギュレータ 7の電圧を入力ポ一ト I 3に 取り込み、 該シャントレギュレータ 7の ¾£カ;所定 以下になると、 ¾:池切れ を検知する m "池切 ui^o 能を^ 。  Also, the microcomputer 5 takes in the voltage of the shunt regulator 7 into the input port I3, and when the voltage of the shunt regulator 7 becomes lower than a predetermined value, the microcomputer 5 detects that the shunt has run out. ^.
シャントレギュレータ 7は、 上記トランジスタ Q 2と抵抗 R 1を介して 池 irniに嫌され、 rnmmiEを所定 maに安定化させるようになつている。  The shunt regulator 7 is adapted to stabilize the rnmmiE to a predetermined ma, being disliked by the pond irni via the transistor Q2 and the resistor R1.
E E P ROM6は、 ¾ ^知 のガス検知に用レ、る基 直を登録するも のであって、 装置の検査工程時に、 高温状態下の当該金属酸ィ匕物半導体ガスセン サ 3の感ガス体の i¾¾R 0の値と、 高温状態から低 態に切り替えたとき の ¾¾tR s (^直と、 両者の比 R s/ROの値を夫々 内し、 通常時にこの搬内し た比の値を雄知魏ガスたる口臭要因ガス (例えは ィ 、 炭ィは素、 アンモ ユア或いはメチルメノレカブタン) の検知、 つまり口^^合の検知のための基 直 として用いられる。 このようにして^ M酸化物半導体ガスセンサ 3のばらつきを 考慮した適正な基簡直 R s /R 0を設定できるようになってレヽる。 The EEPROM 6 is used for registering a reference for detecting a gas detected by a known method. During the inspection process of the apparatus, the semiconductor gas sensor under high temperature conditions is used. The value of i¾¾R 0 of the gas sensing element of (3) and the value of ¾¾tR s (^ and the ratio R s / RO of the two when switching from high temperature to low The value of the ratio is used as a basis for the detection of bad breath gas (eg, carbon, carbon, ammonia, or methyl menolecabutane), ie, the detection of mouth-to-mouth. In this way, it is possible to set an appropriate basic simple R s / R 0 in consideration of the variation of the ^ M oxide semiconductor gas sensor 3.
そして EEPROM6はデータ入力 D I、 シリアルクロック端子 S R及びチップセレクタ端子 CSをマイコン 5のデータ出力ポート d o、 出力ポー ト 021、 〇 22に夫々接続するとともに、 抵抗 R7、 R8, R 6で夫々プノレ アップしている。 またデータ出力端子 DOをマイコン 5のデータ入力端子 d iに 擦院してある。  The EEPROM 6 connects the data input DI, the serial clock terminal SR, and the chip selector terminal CS to the data output port do, output ports 021, 〇22 of the microcomputer 5, respectively, and pulls up with the resistors R7, R8, R6 respectively. ing. The data output terminal DO is connected to the data input terminal di of the microcomputer 5.
じ04は入カ 101〜1016及 通 ¾÷COMlを抵抗によ り夫々ブルアップし、 共通 »C OM 1とキャラクタに対応する何れカゝの入力端 子 ID:!〜 1D16がローレべノレとなると、 当言 ¾Λカ好に対応させたキャラク タを表示するようになっており、 I D 1〜 I D4は夫々口臭要因ガスの濃度、 つ まり口臭度合を^" キャラクタに対応し、 I D5〜I D16は觀度を示すキャラ クタの両側に表示される人物等の表情を示すキャラクタに対応し、 口臭要因ガス の濃度が高く成る^!えば麦 Itが険しくなるようになつている。  Input 04 is input 101 to 1016 and communication l COM1 is boosted by a resistor, respectively. Common »COM 1 and input terminal ID of any input corresponding to the character:! In this case, the characters corresponding to this word are displayed, and ID1 to ID4 correspond to the concentration of the bad breath factor gas, that is, the degree of bad breath, respectively, to the ^ "character, and ID5 to ID5. ID16 corresponds to a character such as a person displayed on both sides of the character indicating the observation, and if the concentration of the bad breath gas increases, the wheat It becomes steep.
尚、 図中番号 8は電源投入時にマイコン 5にリセット信号を与えてリ セットするリセット I C、 番号 9はマイコンに基準クロックを与える ¾ ^クロッ ク発生回路、 番号 10はマイコン 5と LCD4とを赚するコネクタである。 ま た C 1〜 C 3はコンデンサである。  Note that in the figure, number 8 is a reset IC that gives a reset signal to microcomputer 5 when power is turned on to reset it, number 9 is a reference clock to the microcomputer, and # 10 is a clock generation circuit. Connector. C1 to C3 are capacitors.
次に、 本 態の動作を説明する。 まず、 mi iが^^されると、 リセット I C8i t!)きによりマイコン 5はリセットされ、 權設定を行う。 以後 マイコン 5は低消費モードで動作して^ 態となつてレ、る。 この^ 態において、 マイコン 5の出力ポート 03に されている 設^? "AD Jとグランドの間が^ &された状態で、 スタートスィツチ SWがォ ^作され、 入力ポート I 2の入力カ 、ィレベルに立ち上がると、 つまり動作開 ½ί言号が入力すると、 マイコン 5は予めプログラムされている モ一ドの動作 状態になり、 出力ポート O lから例えば周期が 8. 2m s e cで、 ローレべノレ期 間が 96 Ο μ s e cのパルス信号を発生させる。 Next, the operation of this embodiment will be described. First, when mi i is reset, the microcomputer 5 is reset by reset I C8i t!) And the right is set. Thereafter, the microcomputer 5 operates in the low-consumption mode to be in a state. In this state, the setting for the output port 03 of the microcomputer 5? "When the start switch SW is turned on with the connection between the ADJ and the ground, the microcomputer 5 rises to the input level of the input port I2, that is, when the operation start signal is input, the microcomputer 5 The operation state of the pre-programmed mode is entered, and a pulse signal is generated from the output port Ol with a period of, for example, 8.2 msec and a low voltage period of 96 μs.
従って、 トランジスタ Q 1は 9 6 0 μ s e cのオンデュティで且つ周期 8. 2ms e cでオンオフし、 オン期間にヒータ 2には飄観 1力 動が供 給される。 このときのヒータ 2に印加される平 1 ¾ΕΕはデュティ制御により略 1 · OVとなり、 そのためヒータ 2の ¾ ^量が多く、 酸イ^^体ガスセンサ 3 を高温状態に加熱する。  Therefore, the transistor Q1 is turned on and off with a duty of 9600 μsec and a period of 8.2 mssec, and the heater 2 is supplied with an easy-going power during the ON period. At this time, the flat voltage applied to the heater 2 becomes approximately 1 OV by the duty control, so that the amount of heat in the heater 2 is large, and the acid gas sensor 3 is heated to a high temperature state.
—方、 マイコン 5はトランジスタ Q 1のオフ期間に同期させてトランジ スタ Q 2及び Q 3 (或いは Q 2又は Q 3のみ) をオンさせる信号を出力ポート Ο On the other hand, the microcomputer 5 outputs a signal to turn on the transistors Q2 and Q3 (or only Q2 or Q3) in synchronization with the off period of the transistor Q1.
3及び 04 (或いは〇 3又は Ο 4) より出力させ、 負荷 ¾¾ΐである抵抗 R 2及び R 9からなる並列回路 (或いは 又は R9) を 酸化物半導体ガスセン サ 3の感ガス体に直列に接続し、 この負荷抵抗を通じて感ガス体を通電する。 3 and 04 (or 〇3 or Ο4), and a parallel circuit (or R9) consisting of resistors R2 and R9, which are loads 負荷, is connected in series to the gas-sensitive material of the oxide semiconductor gas sensor 3. The gas-sensitive body is energized through this load resistance.
そして高温状態への加熱開始から金属酸化物半導体ガスセンサ 3の感ガ ス体の抵抗値が安定する所 寺間 後にマイコン 5は上記出力ポ一ト〇 1から 出力されるノ、'ルス信号のローレベル期間を 7 5 μ s e cに切り替え、 周期はその ままでトランジスタ Q 1のオンデュティを 7 5 μ s e cとする。 これにより トラ ンジスタ Q 1を通じてヒータ 2に印加される平均 が略 0. 3 Vに低下し、 ヒータ 2の赚量が低下する。 従って、 劇匕物鸭体ガスセンサ 3は高温状 態から 口 態 ることになる。  Then, after the heating to the high temperature state starts, the resistance value of the gas-sensitive body of the metal oxide semiconductor gas sensor 3 becomes stable. After that, the microcomputer 5 outputs a low signal from the output port # 1. The level period is switched to 75 µsec, and the on-duty of the transistor Q1 is set to 75 µsec while maintaining the cycle. As a result, the average applied to the heater 2 through the transistor Q1 is reduced to approximately 0.3 V, and the amount of the heater 2 is reduced. Therefore, the dormitory-body gas sensor 3 is opened from the high temperature state.
さて、 高温状態から低温力 tl 態への切り替え開 寺で且つトランジス タ Q 1がオフしてレ、るタイミングにおレ、て、 マイコン 5は^!^ ί匕物 体ガス センサ 3の感ガス体の両端 ®Ξ V sを入力ポ一ト I 1に取り込み、 この取り込ん だ SEV S及び負荷抵抗値、 値から^ 酸ィ 体ガスセンサ 3の感 ガス体の基 ¾5抗値 R 0を演算する。 Now, when switching from the high temperature state to the low temperature tl state, and when the transistor Q1 is turned off, the microcomputer 5 is at the right time. Both ends of the gas sensing element of sensor 3 Ξ Ξ V s are taken into input port I 1, and the sensed SEV S and load resistance and value are used to calculate the gas sensing element base of oxygen gas sensor 3 ¾5 resistance R Calculate 0.
そして低¾¾[1熱状態への 亍開始から金属酸化物 体ガスセンサ 3の 抵抗値が安定するまで 翻間、 例えば 2 s e c m で且つトランジスタ Q 1がオフしているタイミングにおいて、 マイコン 5は^ 酸ィ 吻^体ガスセン サ 3の感ガス体の両端電圧を入力ポート I 1に取り込み、 この取り込んだ電圧及 び負荷抵抗値、 飄 ¾Ξ値から 酸化物 体ガスセンサ 3の感ガス体の雖 値 R sを演算し、 更にこの ¾^値 R sと上言 £¾概杭値 R 0の比 R s /R 0を求 め、 R s及び R O COf直とともに 直データとして £ £
Figure imgf000013_0001
に¾^1~る。 これにより、 当該チェッ力の被検知対象ガスである口臭要因ガス成分の濃度を検 知するための基 直が設定される。
Then, during the transition from the start of the low heat state [1] to the thermal state until the resistance value of the metal oxide gas sensor 3 becomes stable, for example, at 2 secm and at the timing when the transistor Q1 is turned off, the microcomputer 5 starts to operate at a low temperature. The voltage between both ends of the gas sensor of the gas sensor 3 is input to the input port I1, and the value R s of the gas sensor of the oxide gas sensor 3 is obtained from the input voltage, load resistance, and easy value. Then, calculate the ratio R s / R 0 between this ¾ ^ value R s and the above-mentioned approximate pile value R 0, and calculate the direct data with R s and RO COf directly as £ £
Figure imgf000013_0001
Nya ^ 1 ~ As a result, a standard for detecting the concentration of the bad breath factor gas component, which is the gas to be detected by the check force, is set.
上記の調整モードが終了すると、 マイコン 5 態に戻ることにな る。 そして調整端子 AD Jと、 グランド間の接続が解除された後、 スタ一トス イッチ SW1がォ 作されれば、 マイコン 5は通 作モードを開^ Tること ことになる。  When the above adjustment mode ends, the microcomputer 5 returns to the state. Then, after the connection between the adjustment terminal ADJ and the ground is released, if the start switch SW1 is turned off, the microcomputer 5 will open the communication mode.
次に ±3ίの基 直デ一タが E E P R ΟΜ 6に ¾ ^された本 形態が口 臭チェックに実際に^ fflされる:^の動作を説明する。  Next, a description will be given of the operation of the present embodiment in which the basic data of ± 3ί is applied to E EPΟΜRΟΜ6 to be actually ^ ffl: ^ for the bad breath check.
既に カ^^されてマイコン 5力 s の状態にあるとし、 この 態時にスタートスィツチ SWがオン操作され、 入力ポート I 2がハイレべ ルに立ち上がると、 マイコン 5は; ^化処理後、 通 乍モードによる動作を開 始し、 まず E E P R OM6に ¾ ^してレ、るデータを読み出して内蔵 RAMに 内 し、 口臭度合の検知に用いる基 直を設定する。  It is assumed that the microcomputer has already been turned on and the microcomputer 5 is in the state of power s. In this state, when the start switch SW is turned on and the input port I 2 rises to a high level, the microcomputer 5 is turned on after the conversion processing. The operation in the mode is started, and the data is read out to the EEPROM 6 first, stored in the built-in RAM, and the base used for detecting the degree of bad breath is set.
また通 ¾作モードが開始されると、 調整モード時と同様に、 マイコン 5は出力ポート O 1から周期が 8. 2 m s e cで、 ローレベル期間が 9 6 0 μ s e cのパルス信号を発生させる。 Also, when the operation mode is started, as in the adjustment mode, the microcomputer 5 sets the period from the output port O1 to 8.2 msec and the low level period to 960 μs. Generate an ec pulse signal.
従って、 トランジスタ Q 1が 9 6 0 μ s e cのオンデュティで且つ周期 8 . 2 m s e cでオンオフし、 オン期間に^酸ィ ¾)^体ガスセンサ 3のヒ一 タ 2に馳飄 1より ¾Λを し、 ±3ίと同様に^ 酸ィ 体ガスセンサ 3を高温状態とする。 そして例えば 0 . 5 s e c毎にトランジスタ Q 1のオフの タイミングでマイコン 5は感ガス体の両端電圧をサンプリングして、 感ガス体の 抵抗値 R sを計算するとともに、 今回のサンプリングにより求めた抵抗値 R sと 前回のサンプリングにより求めた抵抗値 R Sの比を 0 . 5 s e c毎に演算する。 Therefore, the transistor Q1 is turned on and off with a duty cycle of 960 μsec and a period of 8.2 msec, and during the ON period, the heater 2 of the body gas sensor 3 receives a signal from the heater 1 from the switch 1, As in the case of ± 3ί, the oxygen gas sensor 3 is brought to a high temperature state. For example, the microcomputer 5 samples the voltage between both ends of the gas sensing body at the timing of turning off the transistor Q 1 every 0.5 sec, calculates the resistance value R s of the gas sensing body, and calculates the resistance obtained by the current sampling. The ratio between the value R s and the resistance value R S obtained by the previous sampling is calculated every 0.5 sec.
高温状態下で被検知対象の人が呼気を金属酸化物半導体ガスセンサ 3に 吹きかけると、 呼気には水蒸気やガス成分が含まれているため感ガス体の抵抗値 R sが低下することになり、 0 . 5 s e c毎に求める今回のサンプリングで求め た抵抗ィ直 R sと前回のサンプリングで求めた R Sの比が 0 . 9 6以下となると、 マイコン 5は呼気が吹きかけられたと検知する。 When a person to be detected blows expiration on the metal oxide semiconductor gas sensor 3 in a high temperature state, the expiration contains water vapor and gas components, so that the resistance value R s of the gas sensing body decreases, When the ratio of the resistance R s obtained in the current sampling obtained every 0.5 sec to the R S obtained in the previous sampling is 0.96 or less, the microcomputer 5 detects that expiration has been blown.
ここでマイコン 5は上記の呼気検知直後に雰囲気の汚染 (大気汚染) を 検知判断を行って、 雰囲気が汚染していると検知判断した には呼 知動作 を中断する。 つまり図 2に示すように呼気検知開 寺点 t aの直後のサンプリン グ時に検知した金属酸化物半導体ガスセンサ 3の感ガス体の抵抗値 R sと調整 モード時に検知して E E P R OM 6に 内した ^ί¾¾5ΐ値 R 0との比を求め、 そ の求めた値が所定値 (例えば 0 . 2 ) より小さレ、: ^と、 上昇傾向で有る^、 つまり ¾¾ΐ値 R sが上昇する清浄方向である齢には、 口臭の検知が不可能な汚 嫌態にあると判断して、 マイコン 5は検知動作を停止して 態に戻るとと もに、 L C D 4に大気汚赚態であることを表示させる。 図 2は、 この大気汚染 判断の^;図を示しており、 図中 A、 A, の曲線は大気の汚染カ少なレ、齢の呼 知のタイミング t aからの R sノ R 0の変化を示し、 Bは大気汚染状態の R s ZR Oの変ィ匕を示し、 Cは大気汚 ¾¾¾合がより高く、 呼気を吹きかけたことに より、 RsZROの値が清浄方向を示^^合を示しており、 αが呼気検知限界、 βが大気汚,知限界点を示してレ、る。 Here, the microcomputer 5 detects and determines the pollution of the atmosphere (air pollution) immediately after the above-described breath detection, and interrupts the breathing operation when it determines that the atmosphere is polluted. That is, as shown in FIG. 2, the resistance value Rs of the gas-sensitive body of the metal oxide semiconductor gas sensor 3 detected at the sampling immediately after the exhalation detection opening point ta and the resistance value Rs detected in the adjustment mode and contained in the EEPROM 6 ^ Calculate the ratio of {5} value to R 0, and the obtained value is smaller than a predetermined value (for example, 0.2):: ^ is increasing, that is, the cleaning direction in which 清浄 value R s increases The microcomputer 5 stops the detection operation and returns to the state, judging that the age is in a polluted state where it is impossible to detect bad breath, and displays on the LCD 4 that the air pollution is present. Let it. Fig. 2 shows a diagram of this air pollution judgment, in which the curves A, A, and R show the change in R s R R 0 from the timing ta of the air pollution level and the age call timing. B shows the change of RsZRO in the air pollution state, and C shows that the air pollution was higher and the expiration was blown. Thus, the value of RsZRO indicates the direction of cleanliness, α indicates the expiration detection limit, and β indicates the air pollution and intellectual limit point.
さて大気の汚 淀が良である には、 マイコン 5は呼^^知から例 えば 1 s eじ; ^時点で、 周期はそのままで、 トランジスタ Q1のオンデュティ を 75μ s e cとするノ ノレス信号を出力ポート Olより出力して金属^ fli )^¾ 体ガスセンサ 3の を低? ΜΛΙ1 態 させる。  For good atmospheric pollution, the microcomputer 5 must be able to use the known signal for 1 se, for example, at the time of the call. At the time point, the microcomputer 5 outputs the noiseless signal with the on-duty of the transistor Q1 at 75 μsec while maintaining the period. The output from Ol is set to the low state of the metal gas sensor 3.
この 開 ½fl寺点にぉレ、てサンプリングした感ガス体の抵抗値を基 抗値 R0, として内蔵 RAMに格納し、 以後 0. 5 s e c毎のサンプリングで求 めた抵抗値 R sとの比 R s ZR 0 ' を演算する。 そして ίΜΛυ 態樹亍開始か ら 2 s e c経過時点で求めた演算値の、 調整モードで求めた基 ¾f直 (R s/R 0) に対する比率を求めてその比率 直から口臭度合を判定し、 その口臭度合に 応じたキャラクタを LCD4で表示させる。 マイコン 5はその後一定時間 す ると ^態に戻ることになり、 L C D 4の表示も消灯させる。  The resistance value of the gas-sensitive material sampled at this opening point is stored in the built-in RAM as a resistance value R0, and the ratio with the resistance value Rs obtained by sampling every 0.5 sec thereafter. Operate R s ZR 0 '. Then, the ratio of the calculated value 2 seconds after the start of the state tree to the base f (R s / R 0) obtained in the adjustment mode is obtained, and the degree of bad breath is determined directly from the ratio. The character corresponding to the bad breath degree is displayed on the LCD4. After a certain period of time, the microcomputer 5 returns to the ^ state, and the display of LCD 4 is also turned off.
図 3、 図 4は、 スタートスィッチ SWのォ ^作時点 t 1からの Rsノ R0 (或いは RsZRO' ) の 状態を示しており、 高温状■間から ίδ^Λ口 態^^る時点 13までの基 直は、 I ^モードで求めた R 0を用レ、、 時点 t 3以後は時点 t 3で求めた基準 ¾¾t値 R0' を用いている。 そして図 3で は時点 t 3力、ら 2 s e c ¾i§B寺点 t 4で求めた R s/RO' の値が 25であるこ と示し、 図 4では時点 t 3カら 2 s e c ¾1時点 t 4で求めた R s/RO' の値 が 8であることを示している。  FIGS. 3 and 4 show the state of Rs R0 (or RsZRO ') from the time point t1 when the start switch SW operates, from the high-temperature state to the time point 13 when the switch is in the ΛδΛ state. Is based on R0 obtained in the I ^ mode, and after time t3, the reference ¾¾t value R0 'obtained at time t3 is used. Figure 3 shows that the value of R s / RO 'obtained at the time t 3 force, 2 sec ¾i§B temple point t 4 is 25, and Figure 4 shows that the time t 3 is 2 sec ¾1 time t It shows that the value of R s / RO 'obtained in 4 is 8.
この図 3, 図 4の 8\ ££?1^01^6に 内した基!^(直1^ 5//1 0が 10で、 時点 t 4で求めた R s/RO' の値が図 3のように 10より大きレ、値の ^には口臭無しと判断され、 図 4のように 10より小さレ 直を示 には口 臭ありと判断され、 マイコン 5は更に口臭度合を求めた値 RsZRO' と基 直 RsZROに基づレ、て演算して口臭度合に対応したキャラクタを LCD4に表示 させるのである。 口臭が無レ、:^にもそれに対応したキャラクタを L C D 4で表 示させる。 The base within 8 \ ££? 1 ^ 01 ^ 6 in Figs. 3 and 4! ^ (Direct 1 ^ 5 / / 10 is 10 and the value of R s / RO 'obtained at time t 4 is As shown in Fig. 3, it is judged that there is no bad breath when the value is larger than 10 and the value of ^ is less than 10, and it is judged that there is bad breath when it is smaller than 10 as shown in Fig. 4.The microcomputer 5 further calculates the degree of bad breath. Based on the calculated value RsZRO 'and the base value RsZRO, calculate the value and display the character corresponding to the bad breath level on the LCD4 Let it do. No bad breath,: ^ displays the corresponding character on LCD 4.
尚、 図 3, 図 4中 t 2は呼^^知時点を示す。 ところで、 マイコン 5は シャントレギュレータ 7の を常時 見してその値が所定値より低下すると電 池切れと判断し, L CD 4に!? til切れを表示させる。  In FIGS. 3 and 4, t2 indicates the time of call notification. By the way, the microcomputer 5 always checks the value of the shunt regulator 7 and judges that the battery has run out if the value falls below a predetermined value. ? Display til out.
上記実施形態は、 口臭チェッカを構成するものであるが、 血中アルコー ノレ濃度を測定するためのアルコ―ルチェッ力としても構 i¾¾rrることができる。  Although the above-described embodiment constitutes a bad breath checker, it can be used as an alcohol check force for measuring blood alcohol concentration.
血中アルコール濃度は摂取されたアルコールがー 液中に溶け、 肺臓 を介して呼気中にアルコール成分が含まれることを利用して検知することができ る。 この齢、 酸ィ 体ガスセンサ 3 離抗値をアルコール検知に 合った値に設^ rるとともに、 アルコール検知の判定を行うための基鹡直 (R s The alcohol concentration in the blood can be detected by using the fact that the ingested alcohol dissolves in the liquid and the alcohol component is contained in the breath via the lungs. At this age, the oxygen gas sensor 3 sets the resistance value to the value suitable for alcohol detection, and sets the base value (R s
ZR 0) と測定 f直 (R s ZR 0, ) と比率などを予めプログラムしておけばよい。 ZR 0), the measurement frequency (R s ZR 0,), and the ratio may be programmed in advance.
この: ^も醒モードで、 基 直 (R s /R O ) 及び夫々の値 R s, R 0を E E P ROM6に登録し、 通常時には口臭チェッカと同様に、 スタートス イッチ SWのォ 作以後、 呼纖知、 大気汚赚知、 駒 体ガスセ ンサ 3の を高温状態からィ SM¾ロ繊態^亍させる切り替え、 基職杭値 R 0 ' の測定、 一 寺間後の R s ZR 0 ' の測定、 そして基 直 R s ZR 0との比 較による血中アルコール度合の検知を行うのである。  This is also awake mode, where the base (R s / RO) and the respective values R s, R 0 are registered in the EEPROM 6, and normally, like the bad breath checker, after the start switch SW is activated, Fiber and air pollution, switching of the gas sensor 3 from high temperature to low temperature, measurement of the base pile value R 0 ', measurement of R s ZR 0' after one temple Then, the blood alcohol level is detected by comparison with the reference R s ZR 0.
図 5, 図 6 ίΛ¾前と、 飮酒 2 5分後の呼気中のアルコールチェックを 行った場合の高温状態下での R s /R 0, の遷移及び低温加 態移行後の R s ノ R 0 ' の を示している。 アルコールチェックの:^には呼^ 知のタイミ ング t 2から約 2 s e C後のタイミング t 3で ίδβΡ^態^^亍させる制 御を行レヽ、 基 ¾S抗値 R 0, を測定している。 そしてこの樹 ΐ後凡そ 2 s e c経 過後の時点 t 4で R s /R 0 ' の測定と基 直 R s /R 0とを比較してアルコ一 ノレ度合の判定をおこなっている。 図 5では基準 ί直 R s ZR Oが 2であるのに対し て R s /R 0, の値が 10と非常に大きく、 この^アルコールが呼気中に無レ、 と半 ϋ断され、 それに対応するキャラクタを LCD4でま示させる。 一方、 図 6で は基 直 R s/ROが 2であるのに対して R sZRO' の値が 1. 5と小さく、 この:^アルコールが呼気中に^ ¾Eしていると判断され、 この値と基霸の値と 力 ら血中アルコール濃度を演算し、 その演算結果に基づレ、て対応するキヤラクタ を LCD4で表示させる。 図 5, 図 6の t lは、 スタートスィッチ SWをオ^ 作したタイミングを示す。 Fig. 5, Fig. 6 ίΛ¾ Transition of R s / R 0 under high temperature condition and R s R R 0 after transition to low temperature condition when alcohol check during expiration was performed before and 25 minutes after drinking 'Is shown. In the alcohol check: ^ control the ΡδβΡ state ^^ 亍 at the timing t3, approximately 2 se C after the timing of the notification t2, and measure the base S resistance R0. I have. Then, at time t4 about 2 seconds after this tree, the measurement of Rs / R0 'is compared with the reference Rs / R0 to determine the degree of alcohol tolerance. In Fig. 5, the reference straight line R s ZR O is 2, whereas Therefore, the value of R s / R 0, is very large at 10, and it is determined that this alcohol is not present during exhalation, and the corresponding character is displayed on LCD4. On the other hand, in FIG. 6, the value of R sZRO 'is as small as 1.5, whereas the basic R s / RO is 2, and it is determined that: The blood alcohol concentration is calculated from the value and the strength of the bachelor and the strength, and the corresponding character is displayed on the LCD 4 based on the calculation result. Tl in FIGS. 5 and 6 indicates the timing at which the start switch SW is operated.
上記 形態では、 RsZRO' と基剩直 RsZROの比較で ¾ ^知対 象ガスの有無及び濃度を判定してレ、るが、 金属酸化物 体ガスセンサ 3の検知 抵抗値 R sと基準となる抵抗値との比較によって行ってもよレ、。 また上記実膨 態では、 高 ロ獻態下で呼気の吹き力ゝけ検知の一 寺間後の赚値を基 m¾¾t 値 R0' として用いているが、 高 態下で呼気の吹き力ゝけ検知直前のサン プリングで得た得た抵抗値を用いても良い。 特に高温でも高感度なガス (例えば アルコール) や高濃度のガスを!^知 とする:^に 力である。 In the above embodiment, the presence / absence and concentration of the target gas are determined by comparing RsZRO ′ and the residual RsZRO, but the detection resistance value Rs of the metal oxide based gas sensor 3 and the reference resistance It may be done by comparing with the value. In addition, in the actual inflated condition, the value after a period of detection of the expiration of the expiratory blowing force under the high birth condition is used as the base m¾¾t value R0 '. The resistance value obtained by sampling immediately before detection may be used. Especially high sensitive gas (eg alcohol) and high concentration gas even at high temperature! I know: ^ is power.

Claims

請求の範囲 The scope of the claims
1 . 動作開 ½ί言号により金属酸ィ t¾l 体ガスセンサの通電を開始するとともに 高 熱し、 該高^] D熱中に呼気を^^酸化物^^体ガスセンサに吹きかけ、 こ の呼気の吹きかけにより生じる金属酸ィ匕物^体ガスセンサの 値の変化から 呼気の吹きかけを検知し、 この検知に基づレ、て 酸化物 体ガスセンサの高 !1熱を停止して 態^ ί?させ、 該 ίδ^¾[1 態に^^してから一定 時間経過時点の^ 酸イ^^ ¾体ガスセンサの抵抗値を検知して該検知キ氐抗 ί直に 基づいて呼気中の 知 ¾ ^のガス成分を検知することを糊数とする呼気ガス検 知風 1. When the energization signal is turned on, the metal oxide gas sensor starts energizing and heats up, and heat is exhaled. During the high heat, expiration is blown to the ^ oxide gas sensor, which is generated by the expiration. The expiration of the exhaled gas is detected based on the change in the value of the metal oxide sensor ^ body gas sensor, and based on this detection, the high heat of the oxide gas sensor is stopped and the state is turned off. The resistance value of the acid gas sensor at a certain time after the return to the state 1 is detected, and the gas component of the inhaled gas is detected based on the detected resistance. Breath gas detection style with the number of glues as detection
2. 高温加 態下で呼気の吹きかけ検知の直前又は一^^間後の抵抗値を基準 抵抗値とし、 低 纖態^?から一 寺間; ί¾§時点の tins 酸化物^^体ガ スセンサの ί¾¾直と ^TIBS^S抗値との比の値と予め設定してある基準の比の値 との比較により tins呼気中の 知 のガス成分を検^ 1"ることを樹敫とする 請求項 1に記載の呼気ガス検知方法。 2. The resistance value immediately before or one hour after the detection of expiration under high-temperature conditions is taken as the reference resistance value, from low fiber state ^? To one temple; tins oxide ^^ body gas sensor at ί¾§ The detection of the known gas component in the exhalation of tins by comparing the value of the ratio between the measured value and the ^ TIBS ^ S resistance value with the value of the preset reference ratio is defined as a tree. The exhaled gas detection method according to claim 1.
3. 呼気の吹きかけを、 继変化による 己^酸ィ ¥¾体センサの抵抗 化で検知することを糊数とする請求項 1に記載の呼気ガス検知方法。 3. The exhaled gas detection method according to claim 1, wherein the number of glues is that the expiration of exhalation is detected by resistance of the self-acid sensor due to a change in the amount of glue.
4. 呼気の吹きかけを、 呼気中のガス成分と继変化による flit己金属酸ィ 轉 体センサの isiititt、化で検知することを糊数とする請求項 1に言 e¾の呼気ガス検 知方法。 4. The expiratory gas detection method according to claim 1, wherein the number of glues is used to detect the expiration of the expiration by the isiititt of the flit self-metal oxide sensor according to the change in the gas component and the change in the expiration. Knowledge method.
5. ¾tn己一 寺間経過時点は前記金属酸化物半導体ガスセンサの抵抗が安定する 前の過■間内であることを 敏とする請求項 1に の呼気ガス検知方法。 ' 5. The exhaled gas detection method according to claim 1, wherein the time point of elapse of time between atns is within a period before the resistance of the metal oxide semiconductor gas sensor is stabilized. '
6. tiife^知 ¾· ^のガス成分がアルコールであることを樹教とする請求項 1 isifeの呼気ガス検知方^ > 6. tiife ^ knowledge ¾ · ^ is a teaching that the gas component is alcohol. 1 Expected gas detection method of isife ^>
7. 觸己¾ ^知 ¾ ^のガス成分が口臭要因ガス成分であることを とする請求 項 1に 1Β¾の呼気ガス検知 W去。 7. The expiratory gas detection of 1) is described in claim 1 wherein the gas component of the touch is known to be a bad breath factor gas component.
8. 酸イ^ 体ガスセンサと、 8. Acid and body gas sensor,
該^ 酸化物 体ガスセンサを加熱するヒータと、 A heater for heating the oxide gas sensor;
動作開^ ί言号により ttif己金属酸ィ 体ガスセンサに通^ るとともに ttns金 属酸化物 体ガスセンサの が高温となるように tinsヒータの通電を制御し、
Figure imgf000019_0001
When the operation is started, the tins heater is controlled to energize the tins heater so that the temperature of the ttns metal oxide gas sensor becomes high while passing through the ttif metal oxide gas sensor.
Figure imgf000019_0001
ィ匕物半導体ガスセンサに呼気の吹きかけを検知し、 該検知に基づレ、て前記金属酸 ィ匕物半導体ガスセンサの が低温となるように前記ヒータの通電を制御する ヒータ制御手段と、 Heater control means for detecting the blowing of exhaled air on the semiconductor gas sensor, and controlling the energization of the heater based on the detection so that the temperature of the metal oxide semiconductor gas sensor becomes low.
filfS金属酸化物^ ¾体ガスセンサの が低温となるように ΙΐϋΞヒータの通電制 御が開始されてから一;^寺間 β時点で、 ttit己^^酸化物 体ガスセンサの抵 抗値を検知して該検知碰値に基づレ、て呼気中に含まれる »知據のガス成分 を検知する検知手段とを備えて成ることを樹教とする呼気ガス検知装 filfS metal oxide ^ よ う so that the temperature of the body gas sensor becomes low. 一 One time after the heater energization control is started; A respiratory gas detecting device, comprising: detecting means for detecting a resistance value and detecting a known gas component contained in exhaled breath based on the detected value.
9. 高温加熱状態下で呼気の吹きかけ検知の直前又は一^ H ^後の抵抗値を基準 抵抗値とし、 低^ Λロ赚態^ fTから一 寺間腿時点の 酸ィ b ) 体ガ スセンサの 値と 抗値との比の値と予め設定してある基準の ¾の値 との比較により ΙίίΙΕ呼気中の »知¾ ^のガス成分を検知することを糊教とする 請求項 8に の呼気ガス検知装置。 9. Under the high temperature heating condition, the resistance value immediately before or after the detection of expiration is set as the reference resistance value, and the acid value from the low ^^^^^^^ T to the time of one tera thigh b) Body gas sensor 9. The method according to claim 8, wherein the detection of the gas component of "¾" in the expiration is performed by comparing the value of the ratio of the の value and the resistance value with the 基準 value of a preset reference. Exhaled gas detector.
1 0. 呼気の吹きかけを、 変化による ftriE^ 酸化物^ ¾体センサの抵抗値 変化で検知することを糊数とする請求項 8に言 s iの呼気ガス検知装 10. The expiration gas detection device according to claim 8, wherein the number of pastes is such that the expiration of expiration is detected by a change in the resistance value of the ftriE ^ oxide ^ solid-state sensor due to the change.
1 1. 呼気の吹きかけを、 呼気中のガス成分と 変化による itnE金属酸化物半 導体センサの抵抗ィ艘ィ匕で検知することを糊数とする請求項 8に言凍の呼気ガス 1 1. The exhaled breath gas of claim 8 wherein the number of glues is used to detect the exhalation of the exhaled breath with the resistance of the itnE metal oxide semiconductor sensor based on the gas component and change in the exhaled breath.
1 2. 前記一 寺間経過時点は前記金属酸化物半導体ガスセンサの抵抗が安定す る前の過 ¾^間内であることを糊敫とする請求項 8に の呼気ガス検知装 12. The expiration gas detection device according to claim 8, wherein the time point of the passage between the one period is within a period before the resistance of the metal oxide semiconductor gas sensor is stabilized.
1 3. fiJlE^知據のガス成分がアルコールであることを樹敫とする請求項 8 に f¾feの呼気ガス検知装 1 3. Claim 8 that the gas component of fiJlE ^ is alcohol The f¾fe exhalation gas detector
1 4. „ 知¾ ^のガス成分が口臭要因ガスであることを とする請求項 8に の呼気ガス検知装 So 1 4. The expiratory gas detection device So according to claim 8, wherein the gas component of ¾ ¾ is a bad breath factor gas.
1 5. 高温力 態の前記金属酸化物半導体ガスセンサの 値が所定範囲外若 しくは呼気吹きカゝけで上 ί頃向である に不 態であると判定することを特 徴とする請求項 8に ΙΞ¾の呼気ガス検知装 go 1 5. The method according to claim 1, wherein the value of the metal oxide semiconductor gas sensor in a high-temperature state is determined to be out of a predetermined range or to be in an upward direction due to expiration blowout and to be in an inactive state. 8 ΙΞ¾ 呼 expiratory gas detector go
PCT/JP2000/002714 1999-04-27 2000-04-26 Exhaled gas detecting method and device therefor WO2000065334A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000614023A JP4477780B2 (en) 1999-04-27 2000-04-26 Exhaled gas detection method and apparatus
AU41423/00A AU4142300A (en) 1999-04-27 2000-04-26 Exhaled gas detecting method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/119547 1999-04-27
JP11954799 1999-04-27

Publications (1)

Publication Number Publication Date
WO2000065334A1 true WO2000065334A1 (en) 2000-11-02

Family

ID=14764016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002714 WO2000065334A1 (en) 1999-04-27 2000-04-26 Exhaled gas detecting method and device therefor

Country Status (4)

Country Link
JP (1) JP4477780B2 (en)
AU (1) AU4142300A (en)
TW (1) TW548092B (en)
WO (1) WO2000065334A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318215A (en) * 2001-02-16 2002-10-31 Figaro Eng Inc Gas detecting method and device therefor
JP2009042166A (en) * 2007-08-10 2009-02-26 Toyota Central R&D Labs Inc Gas detector
JP2011232059A (en) * 2010-04-23 2011-11-17 Fis Inc Expired-air component measuring instrument
JP2015175835A (en) * 2014-03-18 2015-10-05 フィガロ技研株式会社 gas detector and gas detection method
JP2021107829A (en) * 2017-03-15 2021-07-29 株式会社タニタ Biogas detection device, method and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989567B2 (en) * 2008-06-24 2012-08-01 株式会社豊田中央研究所 Gas detector
CH707875B1 (en) * 2013-04-11 2017-10-31 Sunstar Suisse Sa Apparatus and method for the analysis of a respiratory gas mixture, especially for the detection of halitosis.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313750A (en) * 1988-06-13 1989-12-19 Figaro Eng Inc Detection of gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313750A (en) * 1988-06-13 1989-12-19 Figaro Eng Inc Detection of gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318215A (en) * 2001-02-16 2002-10-31 Figaro Eng Inc Gas detecting method and device therefor
JP2009042166A (en) * 2007-08-10 2009-02-26 Toyota Central R&D Labs Inc Gas detector
JP2011232059A (en) * 2010-04-23 2011-11-17 Fis Inc Expired-air component measuring instrument
JP2015175835A (en) * 2014-03-18 2015-10-05 フィガロ技研株式会社 gas detector and gas detection method
JP2021107829A (en) * 2017-03-15 2021-07-29 株式会社タニタ Biogas detection device, method and program
JP7112134B2 (en) 2017-03-15 2022-08-03 株式会社タニタ BIOGAS DETECTION DEVICE, METHOD, AND PROGRAM

Also Published As

Publication number Publication date
TW548092B (en) 2003-08-21
JP4477780B2 (en) 2010-06-09
AU4142300A (en) 2000-11-10

Similar Documents

Publication Publication Date Title
US20140366610A1 (en) Gas sensor with heater
TWI479458B (en) A flow sensor system
US20200375260A1 (en) Aerosol inhalation device and control device for aerosol inhalation device
WO2007134040A1 (en) Personal breathalyzer having digital circuitry
EP4122515A1 (en) Thermistor flow sensor having multiple temperature points
TW200839474A (en) Calibration method for flow rate controller and flow rate measuring device, calibration system for flow rate controller, and semiconductor production apparatus
JP4871776B2 (en) Gas detection device and gas detection method
WO2000065334A1 (en) Exhaled gas detecting method and device therefor
JP5531264B2 (en) Expiratory component measuring device
JP2008203190A (en) Sensor controller
JPH04231857A (en) Operating method of measuring circuit device for detecting component of combustible gas
US20140371619A1 (en) Gas sensor with heater
GB2091882A (en) Electrical catalytic gas detection systems
JP2007248075A (en) Gas concentration measuring instrument and method
JP5337095B2 (en) Expiratory component measuring device
JP2010261940A (en) Expired ethanol concentration measurement system, expiration introduction pipe, and expiration measurement management system
TW548093B (en) Mouth odor detection device and regulating method therefor
JPH03272452A (en) Diagnosis of abnormality of air/fuel ratio sensor
JP5111180B2 (en) Thermal flow meter
KR100549119B1 (en) An apparatus for measuring density of alcohol using semiconductor sensor
JP3897327B2 (en) Portable gas detector
JPH11142356A (en) Semiconductor gas sensor
JP3999831B2 (en) Gas detection method and apparatus
JP4728461B2 (en) Exhalation component measuring instrument
JP2001269407A (en) Medical gas flowmeter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 614023

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase