WO2000063542A1 - Intake gas amount control device of internal combustion engine - Google Patents

Intake gas amount control device of internal combustion engine Download PDF

Info

Publication number
WO2000063542A1
WO2000063542A1 PCT/JP2000/002261 JP0002261W WO0063542A1 WO 2000063542 A1 WO2000063542 A1 WO 2000063542A1 JP 0002261 W JP0002261 W JP 0002261W WO 0063542 A1 WO0063542 A1 WO 0063542A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
housing
internal combustion
combustion engine
control device
Prior art date
Application number
PCT/JP2000/002261
Other languages
French (fr)
Japanese (ja)
Inventor
Katsunari Takagi
Mikihiko Suzuki
Kensuke Imada
Takeshi Sugiyama
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO2000063542A1 publication Critical patent/WO2000063542A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1065Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type

Definitions

  • the present invention relates to an intake amount control device that controls an intake air amount according to a traveling state of a vehicle.
  • FIG. 7 shows a configuration of a conventional intake air amount control device for an internal combustion engine.
  • 1 is a housing of a throttle body made of an aluminum alloy die-cast
  • 2 is an intake passage provided inside the housing 1
  • 3 is a throttle which is rotatably supported at both ends of the housing 1 and penetrates the intake passage 2 and restricts the air.
  • the throttle valve 4 is a valve shaft to which the valve 4 is attached. The throttle valve 4 rotates the intake passage 2 from the fully closed position to the fully open position by rotating the valve shaft 3 to control the amount of intake air.
  • a sensor 5 for detecting a rotation angle of the valve shaft 3 is arranged at one end of the valve shaft 3, and a speed reduction mechanism driven by a motor 6 is connected to the other end.
  • Reference numeral 7 denotes a connector for externally connecting the sensor 5.
  • the motor 6 includes a rotor 9 fixed to a drive shaft 8 and a stator 10 .
  • the drive shaft 8 is arranged on the same axis as the valve shaft 3 and has a gear 8 a at the tip, Driven by being coupled to the valve shaft 3 via a reduction mechanism composed of reduction gears 11, 13 and a reduction gear support 12.
  • the stator 10 is held by a synthetic resin housing 15 that integrally forms a connector 14 for external opening of the motor 6, and the motor housing 15 is connected to one end of the throttle body housing 1. It is fixed by screws and the slot poddy and the motor 6 are integrated. As described above, the sensor 5 is screwed to the end of the throttle body opposite to the motor mounting portion.
  • the motor 6 is controlled by a control device (not shown) and receives the feed pack by the sensor 5.
  • the throttle pod, the motor 6 and the sensor 5 are separately formed, and there is a limit to the reduction in size and weight in a configuration in which these are integrally assembled.
  • the housing 1 of the torque body also had the rigidity required for assembling the motor 6 and the like, and required high precision in the bore diameter, so it was necessary to use aluminum alloy die casting at the expense of weight.
  • the motor 6 and the sensor 5 are mounted on both sides of the valve shaft 3 in the axial direction, the axial dimension is increased, so that the assemblability to the internal combustion engine is poor, and the number of parts has to be increased. I didn't get it.
  • the present invention has been made in order to solve such problems, and it is possible to improve the mountability by reducing the weight and the axial dimension, to improve the controllability of the engine speed, and to improve the engagement of the reduction gear. It is another object of the present invention to provide an intake air amount control device for an internal combustion engine capable of reducing the number of parts and improving the assemblability accordingly. Disclosure of the invention
  • An intake air amount control device for an internal combustion engine includes: a housing made of a synthetic resin forming an intake passage of the internal combustion engine therein; a valve shaft rotatably provided in the intake passage of the housing; A throttle valve mounted on the housing to control the amount of air flowing through the intake passage, and insert molded into the housing,
  • the motor includes a motor that drives a valve shaft through a speed reduction mechanism, and a sensor that is provided near a joint between the valve shaft and the speed reduction mechanism and that detects a rotation angle of the valve shaft.
  • the synthetic resin housing is designed to anticipate changes in dimensions such as the roundness of the intake passage due to shrinkage during resin molding and cooling, and the mounting pitch of the motor drive shaft and valve shaft. Correct the mold dimensions, or eliminate roundness in the vicinity of the intake passage, which requires accuracy such as roundness and passage diameter, etc., and provide reinforcement ribs at a position away from the intake passage. It is manufactured by reducing the dimensional change due to shrinkage during resin cooling and ensuring accuracy.
  • the motor is constituted by a DC motor or a DC brushless motor.
  • the connector for external opening of the motor and the connector for external opening of the sensor are formed integrally with the housing.
  • the external outlet connector of the motor and the external outlet connector of the sensor are formed integrally with the cover covering the end face of the housing.
  • one of the external connector for the motor and the external connector for the sensor is formed integrally with the housing and the other with the cover.
  • the connector for externally connecting the motor and the connector for externally connecting the sensor are integrally integrated and molded.
  • FIG. 1 is a partial cross-sectional top view showing a structure of an intake air amount control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial cross-sectional top view showing the structure of the intake air amount control device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic sectional view showing a molding die without resin shrinkage compensation for molding the resin housing of the intake air amount control device.
  • FIG. 4 is a schematic sectional view showing the housing of the intake air amount control device formed by using the forming die of FIG.
  • FIG. 5 is a schematic cross-sectional view showing a molding die with resin shrinkage compensation for molding the resin housing of the intake air amount control device of the present invention.
  • FIG. 6 is a schematic sectional view showing the housing of the intake air amount control device formed by using the forming die of FIG.
  • FIG. 7 is a partial cross-sectional top view showing the structure of a conventional intake air amount control device.
  • FIG. 1 is a partial cross-sectional view of an intake air amount control device for an internal combustion engine according to a first embodiment of the present invention.
  • reference numeral 16 denotes a throttle body housing, in which an intake passage 2 for supplying intake air to the internal combustion engine 2 has an intake control section 17 having an inner diameter, and a motor storage section 18 for storing the motor 6 is the same. It is molded integrally with synthetic resin.
  • Numeral 3 is a valve shaft which is rotatably supported at both ends by a bearing 19 provided in an intake control section 17 of a housing 16, penetrates the intake passage 2 and has a throttle valve 4 attached thereto.
  • the valve 4 is configured to rotate the intake passage 2 from the fully closed position to the fully open position by rotating the valve shaft 3 to control the amount of intake air, and a motor shaft is provided at one end of the valve shaft 3. And a speed reduction mechanism driven by the motor.
  • the stator 10 of the motor 6 is attached to the motor housing 18 of the housing 16 by insert molding, and the rotor 9 having the drive shaft 8 has the drive shaft 8 of the motor housing 18 of the housing 16. Both ends are supported by bearings 20 and 21 provided on the shaft, are arranged in parallel with the valve shaft 3, and a gear 8 a is attached to the tip of the driving shaft 8.
  • 1 1 is a reduction gear that forms part of the reduction mechanism, and cooperates with other gears (not shown) to rotate the motor Slow down the rotation and drive the valve shaft 3.
  • Reference numeral 2 denotes a sensor, which is provided in the vicinity of a connection portion of the valve shaft 3 with the deceleration 4 and detects the rotation angle of the valve shaft 3 to control the driving position of the motor 6.
  • Reference numeral 23 denotes a connector integrally formed with the housing 16 and integrated into the sensor 22 and an external outlet of the motor 6, and 24 denotes a drive of the valve shaft 3 by the motor 6. It is a cover to cover.
  • a DC motor is used for motor 6, and a DC brushless motor is used for further reliability.
  • the vicinity of the intake passage 2 which requires accuracy such as roundness and passage diameter as resin shrinkage compensation, and motor 6 or motor 6 It is also effective to reduce the amount of resin by providing a gap G by eliminating the meat between the storage sections 18. Further, a reinforcing rib R is provided at a position distant from the suction passage 2, so that a change in dimension due to shrinkage during cooling of the resin can be reduced to ensure accuracy.
  • Fig. 3 is a schematic cross-sectional view of a molding die 35 for manufacturing the housing 16 of the intake air amount control device by resin molding
  • Fig. 4 uses the molding die 35 of Fig. 3.
  • the housing 36 of the intake air amount control device formed in this way is shown in a sectional view.
  • the molding die shown in Fig. 3 takes into account deformation due to resin shrinkage, such as the required change in roundness and dimensions due to the shrinkage of the housing material due to the synthetic resin due to the molding resin cooling.
  • the cross-sectional shape of the obtained intake passage 37 of the housing 36 is such that the inner diameter in the direction of the axis A1 of the valve shaft is D1 and the inner diameter in the direction perpendicular to the axis A1 is shorter than D1.
  • FIG. 5 is a schematic cross-sectional view of a molding die 40 with resin shrinkage compensation for manufacturing the housing 16 of the intake air amount control device by resin molding.
  • FIG. 6 shows the molding of FIG.
  • the housing 16 of the intake air amount control device formed by using the mold 40 is shown in a sectional view.
  • the molding die 40 shown in Fig. 5 is deformed due to shrinkage during molding resin cooling because the housing material is synthetic resin.
  • resin shrinkage compensation is performed by considering deformation due to resin shrinkage such as required roundness of inner diameter and change in dimensions.
  • the molding die 40 shown in FIG. 5 that is significantly different from the molding die 35 shown in FIG.
  • the hollow portion forming the intake passage 2 of the housing 16 is The cross section of the child 4 2 is not a perfect circle, and the diameter D 3 in the direction of the axis A 1 of the valve shaft is shorter than the diameter D 4 in the direction perpendicular to the axis A 1. Is formed in a distorted shape, and in particular, the axis A 3 of the cavity 43 forming the motor housing 18 has an intake passage 4 with respect to the axis A 1 of the valve shaft. For example, it is inclined in the direction approaching as it moves away from the center of 1.
  • the housing material is a synthetic resin
  • the housing is deformed by shrinkage during cooling of the molding resin, and the roundness and dimensions of the inner diameter are changed.
  • resin shrinkage compensation is performed as an elliptical shape (molded with a mold whose shape and dimensions are corrected to allow for deformation). It is also effective as a resin shrinkage compensation to reduce the amount of resin by eliminating the wall between the vicinity of the intake passage and the motor, which requires accuracy such as roundness and passage diameter, etc.
  • a reinforcing rib is provided at a position distant from the intake passage, so that a change in dimensions due to shrinkage during resin cooling can be reduced to ensure accuracy.
  • the cross-sectional shape of the intake passage 2 is a perfect circle in order to compensate for the above-mentioned resin shrinkage.
  • the evening storage section 18 also has no distortion, and its axis A 2 is parallel to the axis A 1 of the valve shaft.
  • the stator 10 of the motor 6 is integrated with the throttle body housing 16 by insert molding. ing. Therefore, the housing 16 which does not require rigidity for mounting the motor can be formed of synthetic resin.
  • the housing was molded with a mold whose shape and dimensions were corrected to allow for deformation, and by reducing the thickness near the intake passage and devising the position of the reinforcing ribs, the dimensions of the housing were refined. The degree has improved. The controllability of the engine speed can be improved, and the number of parts can be reduced and the weight can be reduced.
  • the drive shaft 8 of the motor 6 and the valve shaft 3 of the throttle body are arranged in parallel, and the sensor 22 is housed near the joint with the reduction mechanism of the valve shaft 3, so that the axial dimension can be shortened.
  • This is effective in obtaining an intake amount control device for an internal combustion engine with good mountability.
  • the mounting holes of the bearings 19 supporting the valve shaft 3 and the mounting holes of the bearings 20 and 21 supporting the drive shaft 8 of the motor 6 are formed at the same time. Since the hole between holes can be made with high precision by molding with the corrected mold, the gearing of the reduction mechanism is improved, the gear noise is reduced, and the rotational position accuracy of the throttle valve 4 is improved. Can be possible.
  • the connectors 23 and 23 may be separated from the connectors for the motor 6 and the sensor 22 and formed integrally with the housing 16 without being consolidated depending on the wiring.
  • FIG. 2 is a partial sectional view of an intake air amount control device for an internal combustion engine according to a second embodiment of the present invention.
  • This embodiment is different from the first embodiment in that a yoke 26 and a bracket Using a DC motor, which is a completed product with 27, and insert-molding it into the housing 16 as in the first embodiment, the housing 16 can be made of synthetic resin.
  • the connector 28 for the motor 25 and the connector 30 for the sensor 22 are integrally formed on the cover 28 that covers the drive unit of the valve shaft 3 by the motor 25. Are different.
  • a standard mode motor can be used without specializing the mode for driving the throttle valve, and the degree of freedom in the arrangement of the connectors is increased. Improved controllability of engine speed, reduced number of parts, reduced weight, improved mounting characteristics by shortening the axial dimension, reduced gear noise by increasing the precision of the mounting hole pitch of the valve shaft 3 and motor 25, An intake air amount control device for an internal combustion engine having an effect of improving the rotational position accuracy of the throttle valve 4 and the like can be obtained.
  • the motor and sensor connectors are separated into a housing and a cover, and are integrally formed therewith. You can also. Industrial applicability
  • the motor and the motor are insert-molded and integrated by the throttle body housing, the drive shaft of the motor and the valve shaft of the throttle body are arranged in parallel, and the sensor is connected to the valve. Since the housing is provided at the joint of the shaft and the speed reducer, the housing that does not require rigidity for assembling the motor is made of synthetic resin, so that the number of parts and the weight can be reduced.
  • the housing was molded using a mold whose shape and dimensions were corrected to allow for deformation during molding of the synthetic resin, or by eliminating the flesh for one hour near the intake passage and devising the position of reinforcing ribs.
  • the change in dimensions due to shrinkage during resin cooling can be reduced, and the roundness of the bore of the intake passage inside the intake control section, the dimensions and the dimensional accuracy of the reduction gear section are improved, and the desired engine idle speed is achieved.
  • Gear noise can be reduced, and seal failure due to improved cover mounting surface dimensional accuracy

Abstract

An intake gas amount control device of an internal combustion engine which is small in size and weight, excellent in mountability, and small in number of parts, and is improved in engine speed controllability and meshing of speed reduction gears, comprising a synthetic resin housing forming, inside the device, an intake gas passage of the internal combustion engine, a valve stem installed rotatably in the intake gas passage, a throttle valve which is installed on the valve stem and controls a flowing air amount in the intake gas passage, a motor which is insert-formed in the housing and drives the valve stem through a speed reduction mechanism, and a sensor which is installed near a connection part between the valve stem and the speed reduction mechanism and detects the rotating angle of the valve stem, wherein the drive shaft of the motor and the valve stem are disposed in parallel with each other, and a resin contraction compensation is applied to a synthetic resin housing forming mold so that a deformation due to its contraction does not occur at the time of cooling of the resin.

Description

明 細 書 内燃機関の吸気量制御装置 技術分野  Description Intake air volume control system for internal combustion engine
この発明は、 車両の走行状態に応じて吸入空気量を制御する吸入量 制御装置に関するもである。 背景技術  The present invention relates to an intake amount control device that controls an intake air amount according to a traveling state of a vehicle. Background art
図 7は、 従来の内燃機関の吸気量制御装置の構成を示すものである。 図において、 1はアルミ合金ダイカスト製のスロッ トルボディのハウ ジング、 2はハウジング 1の内部に設けられた吸気通路、 3は両端が ハウジング 1に回動自在に支持され吸気通路 2を貫通すると共に絞り 弁 4が取り付けられる弁軸であり、 絞り弁 4は弁軸 3の回動により吸 気通路 2を全閉位置から全開位置まで回転移動して吸入空気量を制御 する。 弁軸 3の一方の端部には弁軸 3の回動角を検出するセンサ 5が 配置され、 他方の端部にはモー夕 6により駆動される減速機構が結合 されている。 7はセンサ 5の外部口出し用のコネクタである。  FIG. 7 shows a configuration of a conventional intake air amount control device for an internal combustion engine. In the figure, 1 is a housing of a throttle body made of an aluminum alloy die-cast, 2 is an intake passage provided inside the housing 1, and 3 is a throttle which is rotatably supported at both ends of the housing 1 and penetrates the intake passage 2 and restricts the air. The throttle valve 4 is a valve shaft to which the valve 4 is attached. The throttle valve 4 rotates the intake passage 2 from the fully closed position to the fully open position by rotating the valve shaft 3 to control the amount of intake air. A sensor 5 for detecting a rotation angle of the valve shaft 3 is arranged at one end of the valve shaft 3, and a speed reduction mechanism driven by a motor 6 is connected to the other end. Reference numeral 7 denotes a connector for externally connecting the sensor 5.
モータ 6は駆動軸 8に固定された回転子 9と固定子 1 0とで構成さ れ、 駆動軸 8は弁軸 3とは同一軸線上に配置されると共に先端に歯車 8 aを有し、 減速歯車 1 1、 1 3および減速歯車支持体 1 2よりなる 減速機構を介して弁軸 3に結合され駆動する。 固定子 1 0は、 モー夕 6の外部口出し用のコネクタ 1 4を一体に形成する合成樹脂製のモー 夕ハウジング 1 5により保持され、 モー夕ハウジング 1 5はスロッ ト ルボディのハウジング 1の一端にネジ止めにより固定されてスロッ ト ルポディ とモー夕 6とが一体化されている。 また、 スロヅ トルボディ のモータ取付部の反対側の端部には上記の通りセンサ 5がネジ止めさ れている。  The motor 6 includes a rotor 9 fixed to a drive shaft 8 and a stator 10 .The drive shaft 8 is arranged on the same axis as the valve shaft 3 and has a gear 8 a at the tip, Driven by being coupled to the valve shaft 3 via a reduction mechanism composed of reduction gears 11, 13 and a reduction gear support 12. The stator 10 is held by a synthetic resin housing 15 that integrally forms a connector 14 for external opening of the motor 6, and the motor housing 15 is connected to one end of the throttle body housing 1. It is fixed by screws and the slot poddy and the motor 6 are integrated. As described above, the sensor 5 is screwed to the end of the throttle body opposite to the motor mounting portion.
図 7に示す従来の吸気量制御装置において、 モ一夕 6は図示しない 制御装置により制御され、 センサ 5によるフィードパックを受けなが ら弁軸 3を駆動し、 アクセルの状態および車両の走行状態により決定 される吸入量になるように絞り弁 4の閧度を設定保持するが、 近年、 C 0 2を含む排ガスを抑制するために、 車両の各部品の小型化が促進さ れるなかにおいて、 スロッ トルポディとモータ 6とセンサ 5とを個別 に形成し、 これらを一体に組付ける構成では小型軽量化には限界があ り、 スロッ トルボディのハウジング 1もモータ 6などの組付けに必要 な剛性を得るとともに、 ボア内径寸法に高精度を必要とするために、 重量を犠牲にしてアルミ合金ダイカストを使用せざるを得なかった。 また、 弁軸 3の軸方向の両側にモー夕 6 とセンサ 5が組付けられてい る為、 軸方向寸法が増大して内燃機関に対する組付性が悪く、 部品点 数も多大にならざるを得なかった。 In the conventional intake air amount control device shown in FIG. 7, the motor 6 is controlled by a control device (not shown) and receives the feed pack by the sensor 5. Drives et valve shaft 3, but sets retain閧度the throttle valve 4 so that the intake amount determined by the traveling state of the accelerator state and the vehicle, in recent years, in order to suppress the exhaust gas containing C 0 2 In addition, as the miniaturization of each part of the vehicle is promoted, the throttle pod, the motor 6 and the sensor 5 are separately formed, and there is a limit to the reduction in size and weight in a configuration in which these are integrally assembled. The housing 1 of the torque body also had the rigidity required for assembling the motor 6 and the like, and required high precision in the bore diameter, so it was necessary to use aluminum alloy die casting at the expense of weight. In addition, since the motor 6 and the sensor 5 are mounted on both sides of the valve shaft 3 in the axial direction, the axial dimension is increased, so that the assemblability to the internal combustion engine is poor, and the number of parts has to be increased. I didn't get it.
また、 図 7に示す従来の吸気量制御装置のハウジングの材料を単に 合成樹脂で置き換えただけでは、 吸気制御部内 吸気通路のボア径真円 度、 寸法及び减速ギヤ部の寸法精度が悪く、 ①全閉漏れ流量が大きく、 所望のエンジンアイ ドル回転数に制御できない、 ②減速ギヤのかみ合 い不良により、 スロッ トル開度制御性が悪い (ギヤのパックラッシが 大きく、 スムーズに動作しない) 、 ③減速ギヤのかみ合い不良により、 ギヤの摩耗が発生する、 ④カパー取付面の反り変形により、 シール不 良が発生する等の問題が発生する。  Further, simply replacing the material of the housing of the conventional intake air amount control device shown in Fig. 7 with a synthetic resin would result in poor roundness and dimensions of the bore diameter of the intake passage in the intake control section, and poor dimensional accuracy of the high-speed gear portion. The fully closed leakage flow rate is large and the desired engine idle speed cannot be controlled. ② Poor throttle opening controllability due to poor meshing of the reduction gear (gear pack lash is large and does not operate smoothly). ③ Problems such as gear abrasion occur due to poor meshing of the reduction gear, and bad seals due to warpage of the cover mounting surface.
この発明は、 このような課題を解決するためになされたものであり、 軽量化と軸方向寸法の短縮化による装着性の改善及び、 エンジン回転 数制御性の改善、 減速ギヤのかみ合い改善が可能、 かつ、 部品点数の 削減と、 これに伴う組付性の改善が可能な内燃機関の吸気量制御装置 を得ることを目的とするものである。 発明の開示  The present invention has been made in order to solve such problems, and it is possible to improve the mountability by reducing the weight and the axial dimension, to improve the controllability of the engine speed, and to improve the engagement of the reduction gear. It is another object of the present invention to provide an intake air amount control device for an internal combustion engine capable of reducing the number of parts and improving the assemblability accordingly. Disclosure of the invention
この発明に係わる内燃機関の吸気量制御装置は、 内部に内燃機関の 吸気通路を形成する合成樹脂製のハウジングと、 このハウジングの吸 気通路に回動自在に設けられた弁軸と、 弁軸に取り付けられ吸気通路 の流通空気量制御する絞り弁と、 ハウジングにインサート成形され、 減速機構を介して弁軸を駆動するモー夕と、 弁軸と減速機構との結合 部近辺に設けられ、 弁軸の回動角を検出するセンサとを備えるように したものである。 An intake air amount control device for an internal combustion engine according to the present invention includes: a housing made of a synthetic resin forming an intake passage of the internal combustion engine therein; a valve shaft rotatably provided in the intake passage of the housing; A throttle valve mounted on the housing to control the amount of air flowing through the intake passage, and insert molded into the housing, The motor includes a motor that drives a valve shaft through a speed reduction mechanism, and a sensor that is provided near a joint between the valve shaft and the speed reduction mechanism and that detects a rotation angle of the valve shaft.
また、 モー夕の駆動軸と弁軸とが平行に配列されるようにしたもの である。  In addition, the drive shaft of the motor and the valve shaft are arranged in parallel.
さらに、 合成樹脂製ハウジングは成形、 樹脂冷却時の収縮により吸 気通路の真円度及びモー夕の駆動軸と弁軸の取付ピッチ等 精度を必要 とする個所の寸法の変化を事前に見越し、 金型を寸法補正する、 もし くは真円度 ·通路径寸法 等 精度を必要とする吸気通路近傍一モー夕 間の肉を無くし、 かつ、 吸気通路から離れた位置に補強用リブを設け、 樹脂冷却時の収縮による寸法の変化を減少させ精度を確保し製作した ものである。  In addition, the synthetic resin housing is designed to anticipate changes in dimensions such as the roundness of the intake passage due to shrinkage during resin molding and cooling, and the mounting pitch of the motor drive shaft and valve shaft. Correct the mold dimensions, or eliminate roundness in the vicinity of the intake passage, which requires accuracy such as roundness and passage diameter, etc., and provide reinforcement ribs at a position away from the intake passage. It is manufactured by reducing the dimensional change due to shrinkage during resin cooling and ensuring accuracy.
さらにまた、 モータが D Cモー夕、 ないしは、 D Cブラシレスモー 夕にて構成されるようにしたものである。  Furthermore, the motor is constituted by a DC motor or a DC brushless motor.
さらにまた、 モー夕の外部口出し用コネクタとセンサの外部口出し 用コネクタとがハウジングに一体成形されるようにしたものである。  Furthermore, the connector for external opening of the motor and the connector for external opening of the sensor are formed integrally with the housing.
また、 モー夕の外部口出し用コネクタとセンサの外部口出し用コネ クタとがハウジングの端面を覆うカバーと一体に成形されるようにし たものである。  Further, the external outlet connector of the motor and the external outlet connector of the sensor are formed integrally with the cover covering the end face of the housing.
さらに、 モー夕の外部口出し用コネクタとセンサの外部口出し用コ ネク夕のうち、 一方がハウジングに、 他方がカバーに一体成形される ようにしたものである。  In addition, one of the external connector for the motor and the external connector for the sensor is formed integrally with the housing and the other with the cover.
さらにまた、 モータの外部口出し用コネクタとセンサの外部口出し 用コネクタとが一体に集約され、 成形されるようにしたものである。 図面の簡単な説明  Furthermore, the connector for externally connecting the motor and the connector for externally connecting the sensor are integrally integrated and molded. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の実施の形態 1による吸気量制御装置の構造を示す 部分断面上面図である。  FIG. 1 is a partial cross-sectional top view showing a structure of an intake air amount control device according to Embodiment 1 of the present invention.
図 2はこの発明の実施の形態 2による吸気量制御装置の構造を示す 部分断面上面図である。 図 3は吸気量制御装置の樹脂ハウジングを成形するための樹脂収縮 補償をしてない成形金型を示す概略断面図である。 FIG. 2 is a partial cross-sectional top view showing the structure of the intake air amount control device according to Embodiment 2 of the present invention. FIG. 3 is a schematic sectional view showing a molding die without resin shrinkage compensation for molding the resin housing of the intake air amount control device.
図 4は図 3の成形金型を用いて成形された吸気量制御装置のハウジ ングを示す概略断面図である。  FIG. 4 is a schematic sectional view showing the housing of the intake air amount control device formed by using the forming die of FIG.
図 5はこの発明の吸気量制御装置の樹脂ハウジングを成形するため の樹脂収縮補償を施した成形金型を示す概略断面図である。  FIG. 5 is a schematic cross-sectional view showing a molding die with resin shrinkage compensation for molding the resin housing of the intake air amount control device of the present invention.
図 6は図 5の成形金型を用いて成形された吸気量制御装置のハウジ ングを示す概略断面図である。  FIG. 6 is a schematic sectional view showing the housing of the intake air amount control device formed by using the forming die of FIG.
図 7は従来の吸気量制御装置の構造を示す部分断面上面図である。 発明を実施するための最良の形態  FIG. 7 is a partial cross-sectional top view showing the structure of a conventional intake air amount control device. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 . Embodiment 1
図 1は、 この発明の実施の形態 1の内燃機関の吸気量制御装置の部 分断面図であり従来例と同一部分には同一符号を付与してある。 図に おいて、 1 6はスロッ トルボディのハウジングであり、 内燃機関に吸 気を供給する吸気通路 2内径に有する吸気制御部 1 7と、 モー夕 6を 収納するモータ収納部 1 8とが同一合成樹脂により一体に成形されて いる。  FIG. 1 is a partial cross-sectional view of an intake air amount control device for an internal combustion engine according to a first embodiment of the present invention. In the figure, reference numeral 16 denotes a throttle body housing, in which an intake passage 2 for supplying intake air to the internal combustion engine 2 has an intake control section 17 having an inner diameter, and a motor storage section 18 for storing the motor 6 is the same. It is molded integrally with synthetic resin.
3はハウジング 1 6の吸気制御部 1 7に設けられた軸受け 1 9によ り両端部が回動自在に支承され、 吸気通路 2を貫通すると共に絞り弁 4が取り付けられる弁軸であり、 絞り弁 4は弁軸 3の回動により吸気 通路 2を全閉位置から全開位置まで回転移動して吸入空気量を制御す るように構成され、 弁軸 3の一方の端部にはモー夕 6により駆動され る減速機構が結合されている。  Numeral 3 is a valve shaft which is rotatably supported at both ends by a bearing 19 provided in an intake control section 17 of a housing 16, penetrates the intake passage 2 and has a throttle valve 4 attached thereto. The valve 4 is configured to rotate the intake passage 2 from the fully closed position to the fully open position by rotating the valve shaft 3 to control the amount of intake air, and a motor shaft is provided at one end of the valve shaft 3. And a speed reduction mechanism driven by the motor.
モー夕 6の固定子 1 0はハウジング 1 6のモー夕収納部 1 8にイン サート成形により取り付けられ、 駆動軸 8を有する回転子 9は駆動軸 8がハウジング 1 6のモー夕収納部 1 8に設けられた軸受け 2 0と 2 1により両端部が支承され、 弁軸 3とは平行に配設されると共に、 駆 動軸 8の先端には歯車 8 aが取り付けられている。 1 1は減速機構の 一部をなす減速歯車で、 図示しない他の歯車と協動してモー夕 6の回 転を滅速して弁軸 3を駆動する。 2 2はセンサで、 弁軸 3の減速 4 との結合部近辺に設けちれ、 弁軸 3の回動角を検出してモータ 6の駆 動位置を制御する。 2 3はハウジング 1 6とは一体に成形され、 セン サ 2 2およびモー夕 6の外部口出し用として一体に集約されたコネク 夕であり、 2 4はモー夕 6による弁軸 3の駆動部を覆うカバーである。 また、 モー夕 6は D Cモータが使用され、 さらに信頼性を得るために は D Cブラシレスモータが使用される。 The stator 10 of the motor 6 is attached to the motor housing 18 of the housing 16 by insert molding, and the rotor 9 having the drive shaft 8 has the drive shaft 8 of the motor housing 18 of the housing 16. Both ends are supported by bearings 20 and 21 provided on the shaft, are arranged in parallel with the valve shaft 3, and a gear 8 a is attached to the tip of the driving shaft 8. 1 1 is a reduction gear that forms part of the reduction mechanism, and cooperates with other gears (not shown) to rotate the motor Slow down the rotation and drive the valve shaft 3. Reference numeral 2 denotes a sensor, which is provided in the vicinity of a connection portion of the valve shaft 3 with the deceleration 4 and detects the rotation angle of the valve shaft 3 to control the driving position of the motor 6. Reference numeral 23 denotes a connector integrally formed with the housing 16 and integrated into the sensor 22 and an external outlet of the motor 6, and 24 denotes a drive of the valve shaft 3 by the motor 6. It is a cover to cover. A DC motor is used for motor 6, and a DC brushless motor is used for further reliability.
. また図 1に示す吸気量制御装置のハウジング 1 6に於いては、 樹脂 収縮補償として、 真円度、 通路径寸法等の精度を必要とする吸気通路 2の近傍とモー夕 6あるいはモー夕収納部 1 8との間の肉を無く して 空隙部 Gを設けて樹脂量を少なくすることも効果的である。 更に、 吸 気通路 2から離れた位置に補強用リブ Rを設け、 樹脂冷却時の収縮に よる寸法の変化を減少させ精度を確保することもできる。  In addition, in the housing 16 of the intake air amount control device shown in Fig. 1, the vicinity of the intake passage 2 which requires accuracy such as roundness and passage diameter as resin shrinkage compensation, and motor 6 or motor 6 It is also effective to reduce the amount of resin by providing a gap G by eliminating the meat between the storage sections 18. Further, a reinforcing rib R is provided at a position distant from the suction passage 2, so that a change in dimension due to shrinkage during cooling of the resin can be reduced to ensure accuracy.
図 3には吸気量制御装置のハウジング 1 6を樹脂成形により製造す るための成形金型 3 5を概略断面図で示してあり、 図 4には図 3の成 形金型 3 5を用いて成形された吸気量制御装置のハウジング 3 6を断 面図で示してある。 図 3に示す成形金型は、 ハウジング材料が合成樹 脂のために成形樹脂冷却時の収縮により変形し、 必要とする内径真円 度、 寸法が変化すること等の樹脂収縮による変形を考慮してない。 従 つて、 得られたハウジング 3 6の吸気通路 3 7の断面形は、 弁軸の軸 心 A 1の方向の内径が D 1で軸心 A 1に直角な方向の内径が D 1より も短い D 2の楕円となっている。 また、 吸気通路 3 7の周囲部分にも 樹脂収縮による変形が発生するため、 ハウジング 3 6の本体から突出 したモー夕収納部 3 8も歪んでその軸心 A 2が弁軸の軸心 A 1に対し て平行ではなくなつてしまっている。  Fig. 3 is a schematic cross-sectional view of a molding die 35 for manufacturing the housing 16 of the intake air amount control device by resin molding, and Fig. 4 uses the molding die 35 of Fig. 3. The housing 36 of the intake air amount control device formed in this way is shown in a sectional view. The molding die shown in Fig. 3 takes into account deformation due to resin shrinkage, such as the required change in roundness and dimensions due to the shrinkage of the housing material due to the synthetic resin due to the molding resin cooling. Not. Accordingly, the cross-sectional shape of the obtained intake passage 37 of the housing 36 is such that the inner diameter in the direction of the axis A1 of the valve shaft is D1 and the inner diameter in the direction perpendicular to the axis A1 is shorter than D1. It is an ellipse of D2. In addition, since the resin around the intake passage 37 is deformed due to resin shrinkage, the motor housing 38 protruding from the main body of the housing 36 is also distorted, and its axis A 2 becomes the axis A 1 of the valve shaft. It is no longer parallel to.
図 5には吸気量制御装置のハウジング 1 6を樹脂成形により製造す るための樹脂収縮補償を施した成形金型 4 0を概略断面図で示してあ り、 図 6には図 5の成形金型 4 0を用いて成形された吸気量制御装置 のハウジング 1 6を断面図で示してある。 図 5に示す成形金型 4 0は、 ハウジング材料が合成樹脂のために成形樹脂冷却時の収縮により変形 し、 必要とする内径真円度、 寸法が変化すること等の樹脂収縮による 変形を考盧して、 樹脂収縮補償を施してある。 図 5に示す成形金型 4 0では、 図 3の成形金型 3 5と比較して顕著な相違を代表例として挙 げれば、 ハウジング 1 6の吸気通路 2を形成する空洞部分である中子 4 2の断面形が真円ではなく、 弁軸の軸心 A 1の方向の直径 D 3が軸 心 A 1に直角方向の直径 D 4よりも短くされていること、 モータ収納 部 1 8を形成する空洞部分 4 3が歪んだ形にされていて、 特にモー夕 収納部 1 8を形成する空洞部分 4 3の軸心 A 3が弁軸の軸心 A 1に対 して吸気通路 4 1の中心から遠ざかるにつれて近づく方向に傾けられ ていること等である。 FIG. 5 is a schematic cross-sectional view of a molding die 40 with resin shrinkage compensation for manufacturing the housing 16 of the intake air amount control device by resin molding. FIG. 6 shows the molding of FIG. The housing 16 of the intake air amount control device formed by using the mold 40 is shown in a sectional view. The molding die 40 shown in Fig. 5 is deformed due to shrinkage during molding resin cooling because the housing material is synthetic resin. In addition, resin shrinkage compensation is performed by considering deformation due to resin shrinkage such as required roundness of inner diameter and change in dimensions. As a typical example of the molding die 40 shown in FIG. 5 that is significantly different from the molding die 35 shown in FIG. 3, the hollow portion forming the intake passage 2 of the housing 16 is The cross section of the child 4 2 is not a perfect circle, and the diameter D 3 in the direction of the axis A 1 of the valve shaft is shorter than the diameter D 4 in the direction perpendicular to the axis A 1. Is formed in a distorted shape, and in particular, the axis A 3 of the cavity 43 forming the motor housing 18 has an intake passage 4 with respect to the axis A 1 of the valve shaft. For example, it is inclined in the direction approaching as it moves away from the center of 1.
このように、 この発明によれば、 ハウジング材料が合成樹脂のため、 成形樹脂冷却時の収縮により変形し、 内径真円度、 寸法が変化するの で、 吸気通路 2の成形金型そのものを事前に楕円形状 (変形を見込ん で形状、 寸法を補正した金型にて成形) として樹脂収縮補償を施して ある。 また、 樹脂収縮補償として、 真円度、 通路径寸法等の精度を必 要とする吸気通路近傍とモー夕との間の肉を無く して樹脂量を少なく することも効果的である。 更に、 吸気通路から離れた位置に補強用リ ブを設け、 樹脂冷却時の収縮による寸法の変化を減少させ精度を確保 することもできる。  As described above, according to the present invention, since the housing material is a synthetic resin, the housing is deformed by shrinkage during cooling of the molding resin, and the roundness and dimensions of the inner diameter are changed. In addition, resin shrinkage compensation is performed as an elliptical shape (molded with a mold whose shape and dimensions are corrected to allow for deformation). It is also effective as a resin shrinkage compensation to reduce the amount of resin by eliminating the wall between the vicinity of the intake passage and the motor, which requires accuracy such as roundness and passage diameter, etc. Further, a reinforcing rib is provided at a position distant from the intake passage, so that a change in dimensions due to shrinkage during resin cooling can be reduced to ensure accuracy.
このような成形金型 4 0を使用して得られた図 6に示すハウジング 1 6に於いては、 上述の樹脂収縮補償のために吸気通路 2の断面形が 真円であり、 また、 モー夕収納部 1 8にも歪みが無く、 その軸心 A 2 が弁軸の軸心 A 1に対して平行になっている。  In the housing 16 shown in FIG. 6 obtained by using such a molding die 40, the cross-sectional shape of the intake passage 2 is a perfect circle in order to compensate for the above-mentioned resin shrinkage. The evening storage section 18 also has no distortion, and its axis A 2 is parallel to the axis A 1 of the valve shaft.
以上のように構成されたこの発明の実施の形態 1の内燃機関の吸気 量制御装置においては、 スロッ トルボディのハウジング 1 6により、 モータ 6の固定子 1 0をインサ一ト成形して一体化されている。 従つ て、 モータ取り付けのための剛性を必要としないハウジング 1 6を合 成樹脂により形成することができる。 また、 ハウジングは変形を見込 んで形状、 寸法を補正した金型にて成形したこと、 また、 吸気通路近 傍の肉の削減と補強用リブ位置の工夫とにより、 ハウジングの寸法精 度が向上した。 エンジン回転数制御性の改善ができ、 部品点数の低減 と軽量化とが達成できる。 また、 モ一夕 6の駆動軸 8とスロッ トルポ ディの弁軸 3とを平行配置とし、 センサ 2 2を弁軸 3の減速機構との 結合部近辺に収納したので軸方向寸法が短縮でき、 装着性の良好な内 燃機関の吸気量制御装置が得られる効果がある。 更に、 弁軸 3を支承 する軸受け 1 9の取付孔とモー夕 6の駆動軸 8を支承する軸受け 2 0、 2 1の取付孔とが同時成形され、 かつ、 変形を見込んで形状、 寸法を 補正した金型にて成形したことにより孔間ビツチが高精度にできるの で、 減速機構の歯車の嚙み合わせが良好になり、 ギヤ音の低減と絞り 弁 4の回動位置精度の向上を可能とすることができる。 なお、 コネク 夕 2 3は配線の都合上によっては集約することなく、 モー夕 6用とセ ンサ 2 2用とを分離してハウジング 1 6に一体成形することもできる。 実施の形態 2 . In the intake air amount control device for an internal combustion engine according to the first embodiment of the present invention configured as described above, the stator 10 of the motor 6 is integrated with the throttle body housing 16 by insert molding. ing. Therefore, the housing 16 which does not require rigidity for mounting the motor can be formed of synthetic resin. In addition, the housing was molded with a mold whose shape and dimensions were corrected to allow for deformation, and by reducing the thickness near the intake passage and devising the position of the reinforcing ribs, the dimensions of the housing were refined. The degree has improved. The controllability of the engine speed can be improved, and the number of parts can be reduced and the weight can be reduced. Also, the drive shaft 8 of the motor 6 and the valve shaft 3 of the throttle body are arranged in parallel, and the sensor 22 is housed near the joint with the reduction mechanism of the valve shaft 3, so that the axial dimension can be shortened. This is effective in obtaining an intake amount control device for an internal combustion engine with good mountability. Further, the mounting holes of the bearings 19 supporting the valve shaft 3 and the mounting holes of the bearings 20 and 21 supporting the drive shaft 8 of the motor 6 are formed at the same time. Since the hole between holes can be made with high precision by molding with the corrected mold, the gearing of the reduction mechanism is improved, the gear noise is reduced, and the rotational position accuracy of the throttle valve 4 is improved. Can be possible. The connectors 23 and 23 may be separated from the connectors for the motor 6 and the sensor 22 and formed integrally with the housing 16 without being consolidated depending on the wiring. Embodiment 2
図 2は、 この発明の実施の形態 2の内燃機関の吸気量制御装置の部 分断面図であり、 この実施の形態は実施の形態 1に対してモー夕 2 5 にヨーク 2 6とブラケッ ト 2 7とを有して完成品となった D Cモー夕 を使用し、 実施の形態 1 と同様にハウジング 1 6にインサ一ト成形す ることによりハウジング 1 6の合成樹脂化を可能にしたこと、 及び、 モー夕 2 5による弁軸 3の駆動部を覆うカバー 2 8にモ一夕 2 5用の コネクタ 2 9とセンサ 2 2用のコネクタ 3 0とを一体に形成するよう にしたことが異なるものである。  FIG. 2 is a partial sectional view of an intake air amount control device for an internal combustion engine according to a second embodiment of the present invention. This embodiment is different from the first embodiment in that a yoke 26 and a bracket Using a DC motor, which is a completed product with 27, and insert-molding it into the housing 16 as in the first embodiment, the housing 16 can be made of synthetic resin. The connector 28 for the motor 25 and the connector 30 for the sensor 22 are integrally formed on the cover 28 that covers the drive unit of the valve shaft 3 by the motor 25. Are different.
このように構成することにより、 絞り弁駆動用のモー夕を特殊化す ること無く標準形態のモー夕が使用でき、 また、 コネクタの配置に自 由度が増加するほか、 実施の形態 1にて示したエンジン回転数制御性 の改善、 部品点数の低減、 軽量化、 軸方向寸法の短縮による装着性の 改善、 弁軸 3とモータ 2 5の取付孔ピッチの高精度化によるギヤ音の 低減、 絞り弁 4の回動位置精度の向上などの効果も併せ持つ内燃機関 の吸気量制御装置が得られるものである。 また、 モータ用とセンサ用 のコネクタはハウジングとカバ一とに分離してそれそれに一体成形す ることもできる。 産業上の利用可能性 With this configuration, a standard mode motor can be used without specializing the mode for driving the throttle valve, and the degree of freedom in the arrangement of the connectors is increased. Improved controllability of engine speed, reduced number of parts, reduced weight, improved mounting characteristics by shortening the axial dimension, reduced gear noise by increasing the precision of the mounting hole pitch of the valve shaft 3 and motor 25, An intake air amount control device for an internal combustion engine having an effect of improving the rotational position accuracy of the throttle valve 4 and the like can be obtained. In addition, the motor and sensor connectors are separated into a housing and a cover, and are integrally formed therewith. You can also. Industrial applicability
以上のように、 スロ ヅ トルボディのハウジングによりモー夕をィン サート成形して一体化する構成とし、 また、 モー夕の駆動軸とスロッ トルボディの弁軸とを平行配置とし、 さらに、 センサを弁軸の減速機 構との結合部に設けたので、 モータの組付の為の剛性を必要としない ハウジングを合成樹脂により形成して部品点数の低減と軽量化とが達 成できる。  As described above, the motor and the motor are insert-molded and integrated by the throttle body housing, the drive shaft of the motor and the valve shaft of the throttle body are arranged in parallel, and the sensor is connected to the valve. Since the housing is provided at the joint of the shaft and the speed reducer, the housing that does not require rigidity for assembling the motor is made of synthetic resin, so that the number of parts and the weight can be reduced.
また、 ハウジングは合成樹脂成形時の変形を見込んで形状、 寸法を 補正した金型にて成形、 もしくは、 吸気通路近傍一モー夕間の肉を無 く し、 補強用リブ位置を工夫したことにより、 樹脂冷却時の収縮によ る寸法の変化が減少でき、 吸気制御部内 吸気通路のボア径真円度、 寸 法及び減速ギヤ部の寸法精度が良くなり、 所望のエンジンアイ ドル回 転数に制御でき、 減速ギヤのかみ合いが良好となることにより、 スロ ッ トル開度制御性の向上 · ギヤの耐摩耗性の向上 ·ギヤ音の低減が可 能となり、 カバー取付面寸法精度向上によりシール不良がなくなり、 また軸方向寸法が短縮できて装着性が良好になるなど優れた内燃機関 の吸気量制御装置を得ることができる。  In addition, the housing was molded using a mold whose shape and dimensions were corrected to allow for deformation during molding of the synthetic resin, or by eliminating the flesh for one hour near the intake passage and devising the position of reinforcing ribs. The change in dimensions due to shrinkage during resin cooling can be reduced, and the roundness of the bore of the intake passage inside the intake control section, the dimensions and the dimensional accuracy of the reduction gear section are improved, and the desired engine idle speed is achieved. Control and good reduction gear engagement, improving throttle opening controllability ・ Improving gear abrasion resistance ・ Gear noise can be reduced, and seal failure due to improved cover mounting surface dimensional accuracy Thus, it is possible to obtain an excellent intake air amount control device for an internal combustion engine such that the axial dimension can be reduced and the mountability is improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 内部に内燃機関の吸気通路を形成する合成樹脂製のハウジング と、 このハウジングの吸気通路に回動自在に設けられた弁軸と、 この 弁軸に取り付けられ、 吸気通路の流通空気量を制御する絞り弁と、 上 記ハウジングにィンサ一ト成形され、 減速機構を介して上記弁軸を駆 動するモータと、 上記弁軸と上記減速機構との結合部近辺に設けられ、 弁軸の回動角を検出するセンサとを備えたことを特徴とする内燃機関 の吸気量制御装置。 1. A housing made of a synthetic resin forming an intake passage of an internal combustion engine therein, a valve shaft rotatably provided in the intake passage of the housing, and an air flow amount of the intake passage attached to the valve shaft. A throttle valve to be controlled; a motor formed by insert molding in the housing, which drives the valve shaft via a speed reduction mechanism; and a motor provided near a joint between the valve shaft and the speed reduction mechanism. An intake air amount control device for an internal combustion engine, comprising: a sensor for detecting a rotation angle.
2 . 合成樹脂製のハウジングが成形、 樹脂冷却時の収縮による吸気 通路の真円度及びモー夕の駆動軸と弁軸の取付ピッチ等の精度を必要 とする個所の寸法の変化を見込んで、 形状および Zまたは寸法につい て樹脂収縮補償を施した金型にて製作されたことを特徴とする請求項2. In view of the change in dimensions of places where precision is required, such as the roundness of the intake passage due to shrinkage during resin cooling and the mounting pitch of the drive shaft and valve shaft due to shrinkage during resin cooling, The product is manufactured in a mold with resin shrinkage compensation for shape and Z or dimensions.
1に記載の内燃機関の吸気量制御装置。 2. The intake air amount control device for an internal combustion engine according to 1.
3 . 合成樹脂製のハウジングにおいて、 真円度、 通路径寸法等の精 度を必要とする吸気通路近傍とモー夕との間の肉を無く し、 樹脂冷却 時の収縮による寸法の変化を減少させたことを特徴とする請求項 1ま たは 2に記載の内燃機関の吸気量制御装置。 3. In the synthetic resin housing, there is no wall between the intake passage and the motor, which requires precision such as roundness and passage diameter, to reduce dimensional changes due to shrinkage during resin cooling. 3. The intake air amount control device for an internal combustion engine according to claim 1, wherein
4 . 合成樹脂製のハウジングにおいて、 真円度および/または通路 径寸法等の精度を必要とする吸気通路近傍とモー夕との間の肉を無く し、 かつ、 ハウジングの強度を確保するために、 吸気通路から離れた 位置に補強用リブを設け、 樹脂冷却時の収縮による寸法の変化を減少 させたことを特徴とする請求項 1または 2に記載の内燃機関の吸気量 制御装置。 4. In a synthetic resin housing, in order to eliminate the flesh between the vicinity of the intake passage and the motor that requires accuracy such as roundness and / or passage diameter, and to secure the strength of the housing. 3. The intake air amount control device for an internal combustion engine according to claim 1, wherein a reinforcing rib is provided at a position distant from the intake passage to reduce a dimensional change due to shrinkage during resin cooling.
5 . モータの駆動軸と弁軸とが互いに平行に配列されたことを特徴 とする請求項 1乃至 4のいずれかに記載の内燃機関の吸気量制御装置。 5. The intake air amount control device for an internal combustion engine according to any one of claims 1 to 4, wherein the drive shaft and the valve shaft of the motor are arranged in parallel with each other.
6 . モータは D Cモー夕または D Cブラシレスモー夕であることを 特徴とする請求項 1乃至 5のいずれかに記載の内燃機関の吸気量制御 装置。 6. The intake air amount control device for an internal combustion engine according to claim 1, wherein the motor is a DC motor or a DC brushless motor.
7 . モー夕の外部口出し用コネクタとセンサの外部口出し用コネク タとが、 ハウジングに一体成形されたことを特徴とする請求項 1乃至 5のいずれかに記載の内燃機関の吸気量制御装置。 7. The intake air amount control device for an internal combustion engine according to claim 1, wherein the external outlet connector of the motor and the external outlet connector of the sensor are formed integrally with the housing.
8 . モー夕の外部口出し用コネクタとセンサの外部口出し用コネク 夕とが、 ハウジングの端面を覆うカバーと一体に成形されたことを特 徴とする請求項 1乃至 5のいずれかに記載の内燃機関の吸気量制御装 置。 8. The internal combustion engine according to any one of claims 1 to 5, characterized in that the external outlet connector of the motor and the external outlet connector of the sensor are integrally formed with a cover that covers an end surface of the housing. Engine air intake control device.
9 . モー夕の外部口出し用コネクタとセンサの外部口出し用コネク 夕のうち、 一方がハウジングに、 他方がカバ一に一体成形されたこと を特徴とする請求項 1乃至 5のいずれかに記載の内燃機関の吸気量制 御装置。 9. The connector according to any one of claims 1 to 5, wherein one of the external outlet connector of the motor and the external outlet connector of the sensor is integrally formed with the housing and the other is integrally formed with the cover. Air intake control device for internal combustion engine.
1 0 . モー夕の外部口出し用コネクタとセンサの外部口出し用コネ クタとが、 一体に集約され、 成形されたことを特徴とする請求項 7ま たは 8に記載の内燃機関の吸気量制御装置。 10. The intake air amount control for an internal combustion engine according to claim 7 or 8, wherein the external outlet connector of the motor and the external outlet connector of the sensor are integrally formed and molded. apparatus.
PCT/JP2000/002261 1999-04-15 2000-04-07 Intake gas amount control device of internal combustion engine WO2000063542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10806399 1999-04-15
JP11/108063 1999-04-15

Publications (1)

Publication Number Publication Date
WO2000063542A1 true WO2000063542A1 (en) 2000-10-26

Family

ID=14474962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002261 WO2000063542A1 (en) 1999-04-15 2000-04-07 Intake gas amount control device of internal combustion engine

Country Status (1)

Country Link
WO (1) WO2000063542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296679A (en) * 2019-07-31 2019-10-01 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of device and monitoring method having the long-term deformation monitoring ability of valve rod

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218631Y2 (en) * 1981-05-18 1990-05-24
JPH07158457A (en) * 1993-12-10 1995-06-20 Mitsubishi Motors Corp Intake control device for multiple cylinder internal combustion engine
JPH07324636A (en) * 1994-04-04 1995-12-12 Nippondenso Co Ltd Throttle valve controller
JPH08254129A (en) * 1995-01-17 1996-10-01 Hitachi Ltd Throttle valve controller of internal combustion engine
JPH09287522A (en) * 1996-04-22 1997-11-04 Hitachi Ltd Intake device for internal combustion engine
JPH10196461A (en) * 1997-01-17 1998-07-28 Nippon Soken Inc Oil scattering preventing system
JPH10509230A (en) * 1995-09-12 1998-09-08 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Electrically controlled throttle with variable ratio drive
JPH1113562A (en) * 1997-06-24 1999-01-19 Toyota Motor Corp Resin throttle body
JPH1114419A (en) * 1997-06-23 1999-01-22 Hitachi Ltd Intake-system duct for internal-combustion engine
JPH11101165A (en) * 1997-09-29 1999-04-13 Hitachi Chem Co Ltd Synthetic resin intake manifold

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218631Y2 (en) * 1981-05-18 1990-05-24
JPH07158457A (en) * 1993-12-10 1995-06-20 Mitsubishi Motors Corp Intake control device for multiple cylinder internal combustion engine
JPH07324636A (en) * 1994-04-04 1995-12-12 Nippondenso Co Ltd Throttle valve controller
JPH08254129A (en) * 1995-01-17 1996-10-01 Hitachi Ltd Throttle valve controller of internal combustion engine
JPH10509230A (en) * 1995-09-12 1998-09-08 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Electrically controlled throttle with variable ratio drive
JPH09287522A (en) * 1996-04-22 1997-11-04 Hitachi Ltd Intake device for internal combustion engine
JPH10196461A (en) * 1997-01-17 1998-07-28 Nippon Soken Inc Oil scattering preventing system
JPH1114419A (en) * 1997-06-23 1999-01-22 Hitachi Ltd Intake-system duct for internal-combustion engine
JPH1113562A (en) * 1997-06-24 1999-01-19 Toyota Motor Corp Resin throttle body
JPH11101165A (en) * 1997-09-29 1999-04-13 Hitachi Chem Co Ltd Synthetic resin intake manifold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296679A (en) * 2019-07-31 2019-10-01 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of device and monitoring method having the long-term deformation monitoring ability of valve rod

Similar Documents

Publication Publication Date Title
US6923157B2 (en) Throttle device for internal combustion engine
US6986860B2 (en) Method for producing a throttle valve unit with integrated throttle valve
JPS60190626A (en) Throttle valve controlling device
US7047936B2 (en) Throttle bodies and methods of manufacturing such throttle bodies
US20080127921A1 (en) Camshaft Adjuster for an Internal Combustion Engine
US6761348B2 (en) Throttle devices housing with flexible compensation elements for internal combustion engines
US6295968B2 (en) Throttle apparatus for internal combustion engine
US5777412A (en) Throttle actuator
JP2007278123A (en) Throttle valve control device
US6892698B2 (en) Throttle control heat dissipation device
WO2019194222A1 (en) Deceleration mechanism and motor having deceleration mechanism installed therein
JP2006017005A (en) Throttle device for internal combustion engine
JPH05500095A (en) Electromagnetic rotation regulator
WO2000063542A1 (en) Intake gas amount control device of internal combustion engine
JP2001303979A (en) Intake air quantity control device of internal combustion engine and manufacturing method therefor
JPH1047520A (en) Throttle body
JP3838217B2 (en) Variable intake system
HU223135B1 (en) Flap valve
US20090272350A1 (en) Camshaft adjuster for an internal combustion engine
US6851410B2 (en) Throttle control device
CN209398510U (en) Electronic throttle
JP2004162680A (en) Electric type throttle body
JP2005180423A (en) Throttle body and method of manufacturing the same
JP2023042089A (en) Throttle device
JP2001289069A (en) Intake quantity control device for internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase