WO2000061633A1 - Method for purifying blood coagulation factor viii and blood coagulation factor viii/von willebrand factor complex - Google Patents

Method for purifying blood coagulation factor viii and blood coagulation factor viii/von willebrand factor complex Download PDF

Info

Publication number
WO2000061633A1
WO2000061633A1 PCT/JP2000/002350 JP0002350W WO0061633A1 WO 2000061633 A1 WO2000061633 A1 WO 2000061633A1 JP 0002350 W JP0002350 W JP 0002350W WO 0061633 A1 WO0061633 A1 WO 0061633A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood coagulation
fviii
gel
complex
coagulation factor
Prior art date
Application number
PCT/JP2000/002350
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Hosokawa
Toyoaki Suzuki
Masanori Nagata
Original Assignee
Fujimori Kogyo Co., Ltd.
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co., Ltd., Chisso Corporation filed Critical Fujimori Kogyo Co., Ltd.
Priority to AU36767/00A priority Critical patent/AU3676700A/en
Publication of WO2000061633A1 publication Critical patent/WO2000061633A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)

Definitions

  • the present invention relates to a novel blood coagulation factor VIII and a method for purifying a blood coagulation factor VIII / von Willebrand factor complex. More specifically, the present invention relates to a method for purifying blood coagulation factor VIII and a blood coagulation factor VIII nofon-bilmbrand factor complex with high purity and high yield without reducing its activity. is there. Background art
  • Blood coagulation factors are factors involved in blood coagulation, and are a total of 15 factors, including proteinaceous coagulation factors in 12 types of plasma and 3 types of calcium ions, tissue troponoplastin and phospholipids. Is known to be involved in the blood coagulation reaction.
  • blood coagulation factor VIII (also referred to simply as “FVIII”) functions as a promoter of the blood coagulation reaction, and is an important blood for maintaining a normal hemostasis mechanism. Coagulation is a coagulation factor of the intrinsic system.
  • FVIII is also called anti-hemophilia factor A, anti-hemophilia factor or anti-hemophilia glopurin.
  • Hemophilia A is a sex-chromosomal recessive inheritance and is classified as mild, moderate, or severe, depending on the degree of reduced factor activity.In mild cases, spontaneous bleeding is rare, and it is difficult to stop bleeding during trauma, surgery, or tooth extraction Is noticeable for the first time, In severe or severe cases, spontaneous bleeding is the main symptom, and bleeding occurs in deep tissues due to intrinsic coagulation disorders.Bleeding into joint cavities is characteristic of this disease. The joints contracture and become functionally impaired, as well as intramuscular bleeding, intracranial bleeding, and renal bleeding. Gene therapy or transplantation can be considered as treatment for patients with hemophilia A, but these treatments are currently under clinical research, and have been put into practical use for hemophilia patients. Has not been. For this reason, at present, patients with hemophilia A need to be supplemented with the deficient factor FVIII at the time of bleeding to stop bleeding each time, or to be treated prophylactically when bleeding is expected. Have been.
  • FVIII clotting protein has a plasma content of about 0.2 g / m1 and other clotting factors.
  • purified protein equivalent to mg a large amount of plasma, 20 to 40 liters, is required, and FVIII is denatured during the purification process and becomes fragmented. Then, there was a problem that it was very difficult to purify while maintaining the entire structure.
  • this FVI 11 binds non-covalently to a von Willebrand (von Wile lebrand) factor (herein, also simply referred to as “vWF”) in a blood stream and forms a complex (here, “blood Coagulation factor VIII / von Willebrand factor complex ”or simply“ FVIII / vWF complex ”.
  • vWF von Wile lebrand factor
  • the von Wille brand factor protein acts as a carrier protein for FVIII and adheres platelets to damaged vascular endothelial subcellular tissues exposed during bleeding.
  • Factors that bind platelets to subendothelial tissue during primary hemostasis It functions as a molecule (molecular glue), forms a complex with FVIII through non-covalent bonds, and exists in the circulating blood as a macromolecular glycoprotein that has a stabilizing effect on FVIII.
  • vWF deficiency or abnormality can be attributed to prolonged bleeding time, decreased plasma factor VIII, decreased platelet adhesion and reduced ristocetin aggregation, decreased vascular resistance, transfusion ' It is known to be the cause of von Willebrand disease, which is characterized by an increase in factor activity that is higher than expected.
  • This method includes, for example, (1) first collecting a cryopion in the presence of 3% ethanol and 1% polyethylene glycol (PEG), and removing the supernatant to obtain a cryoprecipitate ( The cryoprecipitate is subjected to heat treatment, glycine-salt precipitation, 3-4% Ficoll 70 precipitation fractionation, etc. to remove fibrinogen, and the FVIII / vWF complex is roughly purified.
  • the complex is subjected to gel filtration chromatography (eg, Sepharose 4B or CL-6B, Ultrogel AcA22 in the presence of a protease inhibitor such as DFP) or affinity chromatography (eg, anti-fibrinogen, anti-cold).
  • gel filtration chromatography eg, Sepharose 4B or CL-6B, Ultrogel AcA22 in the presence of a protease inhibitor such as DFP
  • affinity chromatography eg, anti-fibrinogen, anti-cold
  • the purified FVIII / vWF complex A method in which FVIII and vWF are dissociated by mixing with calcium chloride, and then FVIII appearing in the low molecular weight part is collected by gel filtration; (2) Cryoprecipitate is prepared from fresh plasma in the presence of proteazyme inhibitor A method of adsorbing this to CNBr-Sepharose 4B-anti-vWF monoclonal antibody large force ram, washing and eluting FVIII with a buffer containing calcium chloride; and (3) cryoprecipitate from plasma
  • the FVIII / vWF complex is partially purified by adsorbing and eluting the FVIII / vWF complex, and then added to the polyelectrolyte E5 large-s
  • the method (1) can be used for purification, it is not suitable from an industrial point of view because the target FVIII activity is reduced in the purification stage of the FVIII / vWF complex.
  • the methods (2) and (3) described above are based on the fact that the FVIII coagulation-active protein has a plasma content of about 0.2 g / m1, which is much lower than other coagulation factors, as described above.
  • a large amount of plasma of 20 to 40 liters is required, which requires a correspondingly large volume column, which is not preferable in terms of equipment, and the process is complicated and takes time and effort. There was a disadvantage.
  • an object of the present invention is to provide a method for purifying FVIII / vWF complex and FVIII to a high degree of purity by a simple process even from a solution containing a large volume of FVIII / vWF complex.
  • Another object of the present invention is to provide a method for purifying an FVIII / vWF complex and FVIII to a high degree of purity from a solution containing a large volume of the FVIII / vWF complex in a simple step without reducing the activity of FVIII. Disclosure of the invention that is intended to be provided
  • the present inventors have conducted intensive studies to achieve the above objects, and as a result, when a solution containing the FVIII / vWF complex was mixed with a gel having pores of a specific size, fibrinogen-fibronectin was obtained.
  • Low molecular weight today Small molecules such as protein and water are captured and retained in the gel network, but the FVIII / vWF complex has a large molecular weight and is located outside the gel without entering the gel network.
  • the solution containing the FVIII / vWF complex is mixed with such a gel, and then the gel is separated and removed by filtration or the like, whereby the solution containing the FVIII / vWF complex is concentrated several to several tens of times. And the ability to simultaneously separate and remove low molecular weight proteins such as fibrinogen and fibronectin, and small molecules such as water.
  • the present inventors have reported that the FVIII / vWF complex has a molecular weight of several million to about 2,000,000, and exists as a very large complex, whereas fipri, which is a protein complex, is present. Focusing on the fact that the molecular weights of nogen and fibronectin are relatively small, ranging from 240,000 to 100,000, compared to the above complex, the solution containing the FVIII / vWF complex can be used in a specific range by utilizing such a difference in molecular weight.
  • the FVIII / vWF complex can be purified efficiently by ultrafiltration or gel filtration chromatography with a membrane containing pores that cut off molecules having a molecular weight of They also discovered that they can be separated with high purity and high yield.
  • the solution containing the FVIII / vWF complex is mixed with a gel having pores of a specific size to concentrate and concentrate the blood FVIII / vWF complex.
  • the partially purified solution containing the FVIII / vWF complex is subjected to ultrafiltration or gel filtration chromatography using a membrane containing pores for cutting off molecules having a specific range of molecular weight.
  • a high purity FVIII / vWF complex free from the complex is obtained, and blood coagulation factor VIII is dissociated from this complex, and further purified using ultrafiltration, gel filtration chromatography, or affinity chromatography.
  • the present invention has the following configurations (1) to (10).
  • a method for purifying blood coagulation factor VIII comprising a step of purifying a mixed solution of blood coagulation factor VIII and von Willebrand factor by ultrafiltration after the dissociation step according to (6).
  • the ultrafiltration membrane used in the ultrafiltration has a cut-off molecular weight of 300,000 to 1
  • a method for purifying blood coagulation factor VI comprising a step of purifying.
  • a blood coagulation factor VIII comprises mixing a solution containing a blood coagulation factor VIII / von Willebrand factor complex with a gel, and then separating and removing the gel from the mixture.
  • a method for purifying a von Willebrand factor complex is provided.
  • the solution containing the FVIII / vWF complex used in the present invention (hereinafter, also simply referred to as “starting solution”) is not particularly limited as long as it contains the FVIII / vWF complex.
  • cryoprecipitate is prepared from plasma by a conventionally known method.
  • a commercially available product such as a cryo preparation or a factor VIII concentrated preparation may be used as it is.
  • the method for preparing a mutant using a gene recombination technique is not particularly limited, and a gene recombination technique known in the art can be used in the same manner.
  • the gel used in the present invention is not particularly limited as long as it has a three-dimensional network structure and has a solvent (solution) retention ability inside.
  • These gels may be produced by a known technique or a commercially available gel may be used as it is.
  • Sephacryl-300 Pharmacia
  • Sepharose 6B gel Pharmacia
  • Sephadex G200 Pharmacia
  • Gels for cell mouth fining such as GCL-2000 (manufactured by Chidso Co., Ltd.) and Cell mouth fins, and xiapatite having a head mouth.
  • the shape of the gel is not particularly limited, and any shape may be used.
  • the size of the gel is not particularly limited, and varies depending on the shape of the gel, the size of the pores, and the like.For example, when the gel is spherical, the diameter is about 0.1 to 100 zm, preferably It is about 50-500 zm.
  • the network structure of the gel is such that impurities such as low molecular weight proteins such as fibrinogen and fibronectin and small molecules such as water are taken in and retained therein, but high molecular weight FVI The II / vWF complex forms pores that are too large to be incorporated.
  • gels usually have an exclusion limit of 300,000 to 2,000,000 proteins, but the molecular weight of the FVI II / vWF complex is several million to 2,000,000. Considering the degree of exclusion, it preferably has a protein exclusion limit of 300,000 to 100,000, more preferably 300,000 to 500,000.
  • the exclusion limit of the gel exceeds 2,000,000, the desired purified product F
  • the VIII / vWF complex is also incorporated into the gel network, which may reduce the purification efficiency of the FVIII / vWF complex.
  • fibrinogen molecular weight: about 330,000
  • fibronectin molecular weight in monomer form: about 24 It is possible that low-molecular-weight contaminating proteins such as (10,000) will not be incorporated efficiently, that is, it will hinder good purification of the FVIII / vWF complex.
  • Nectin is a dimer or tetramer in the S--S bond.
  • the exclusion limit of the gel by the protein is preferably in the range of 500,000 to 20,000,000, more preferably 500,000 to 100,000,000, and most preferably 500,000 to 5,000,000.
  • the exclusion limit of the gel by the protein is set at 1,000,000 to 20,000,000, more preferably 1,000,000 to 1,000,000. It is preferably in the range of 10,000 to 5,000,000.
  • the amount of the gel used depends on the type and amount of the starting solution to be purified, the type and the shape of the gel, and the like.
  • the solution containing the FVIII / vWF complex can be concentrated, and the amount of the gel such as fibrinogen / fibronectin can be increased. It is not particularly limited as long as it can remove small molecules such as low molecular weight protein and water, but it captures as much foreign protein as possible and retains it in the gel network structure. Preferably it is possible.
  • the gel used in the present invention when added in a dry state by freeze-drying or the like, has a higher water absorption amount than when a wet gel is added, and the gel of the solution It is more preferable in terms of the degree of concentration.
  • a dry gel it is desirable that the network structure can be returned to a wet state, and a gel having a strong bond such as a crosslinked gel is preferable.
  • gel to mix The amount varies depending on the structure of the gel, the size and the retention capacity of the solution, but is usually 20 to 200 (v / v)%, preferably 50 to: L50 (v / v) based on the starting solution.
  • the term “gel in a dry state (dry gel)” is used to mean a gel having a capacity to hold a sufficient amount of liquid inside its network structure, and the water content in the gel The less is the better, but does not necessarily mean that the water content must be zero.
  • a dried gel may be used as it is without equilibrating the gel with a buffer or the like.
  • the above gel is dried in a desiccator containing a desiccant such as silica gel, calcium chloride, phosphorus pentoxide, etc. overnight; passing through dry air; It may be used afterwards.
  • the mixing of the starting solution and the gel is not particularly limited as long as the contact between the starting solution and the gel can be sufficiently achieved.However, in order to complete the contact in a short time, the starting solution and the gel are put into a container and stirred. It is preferable to mix while mixing.
  • a method for separating a gel from a mixture of a starting solution and a gel is the same as a method known in the art.
  • centrifugation usually, 4 to 20, 500 to 5000 xg, 30 minutes, preferably 4 to 8. C, 1,000 to 3,000 xg, 30 minutes
  • suction filtration suction filtration
  • pressure filtration pressure filtration and centrifugation are preferably used.
  • the FVIII / vWF complex can be concentrated in a single operation, usually about 3 to 10 times in volume ratio, and can be reduced to a low molecular weight such as fibrinogen-fibronectin.
  • Small molecules such as sun protein and water are usually removed by 30 to 90% of the total, preferably 70 to 90% of the total.
  • the removal rate of impurities is determined by specific activity and SDS. — On PAGE Therefore, it is a value calculated based on the measured value.
  • the concentration / impurity removal operation may be performed once or repeatedly. When the concentration and impurity removal operations are repeated, it is preferable to repeat the operation about 2 to 5 times.
  • the purity of the FVI II / vWF complex obtained by repeating the operation more than 5 times Although the purity is higher, it is not economical when considering time and labor because the improvement in purity corresponding to the repetition is not much observed. Concentration can be achieved sufficiently.
  • the FVI I I / vWF complex is further concentrated to a small amount, and small proteins such as water and other proteins such as fibrinogen-fibronectin are further removed.
  • the gel used in each operation is washed after each concentration operation to remove miscellaneous proteins so that they can be incorporated into the gel and re-used. Can be used.
  • the gel used in each operation may be the same or different.
  • the solution containing the FVI II / vWF complex is subjected to ultrafiltration or gel filtration chromatography after the concentration removal operation according to the first aspect of the present invention.
  • the present invention provides a method for purifying a blood coagulation factor VIII / Phosphate / Vilbrand factor complex comprising:
  • the ultrafiltration step according to the second aspect of the present invention is hereinafter also referred to as “first ultrafiltration step”.
  • the solution containing the FVI I / vWF complex used in the present invention is the same as defined in the first embodiment.
  • ultrafiltration is effective for the FVI II / vWF complex and other impurities contained in the starting solution, for example, fibrinogen-fibronectin. This is performed using an ultrafiltration membrane that can be separated efficiently.
  • the molecular weight of the FVIII / vWF complex is about several million to about 20 million, whereas the molecular weight of fibrinogen / fibronectin is about 330,000 and about 240,000 (in the form of monomer).
  • the ultrafiltration membrane used for ultrafiltration usually has a cut-off molecular weight of 300,000 to 18,000,000, preferably a cut-off molecular weight of 300,000 to 5,000,000, more preferably A membrane having a molecular weight cut-off of 300,000 to 100,000 is used.
  • the FVIII / vWF complex partially passes through the ultrafiltration membrane together with impurities such as fibrinogen / fibronectin. The yield of the desired FVIII / vWF complex may be reduced.
  • the molecular weight cut-off of the ultrafiltration membrane is less than 300,000, impurities such as fibrinogen / fibronectin cannot pass through the ultrafiltration membrane, resulting in good separation from the FVIII / vWF complex. It may not be done.
  • a commercially available ultrafiltration membrane is used as it is. Examples of commercially available ultrafiltration membranes include BIOMAX lOOOKDa (manufactured by Millipore) and 0.1 micron membrane filter. (Millipore).
  • an ultrafiltration membrane having a molecular weight cut-off of 300,000 to 18,000,000 corresponds to an ultrafiltration membrane having a pore size of about 0.02 to 2 microns.
  • the dimer form is present in the low-molecular-weight protein.
  • the molecular weight cut off of the ultrafiltration membrane used for ultrafiltration is from 500,000 to 18 million, more preferably from 500,000 to 5 million, most preferably It is preferably in the range of 500,000 to 100,000.
  • the molecular weight cut off of the ultrafiltration membrane used for filtration is preferably in the range of 100,000 to 1,800,000, and more preferably in the range of 100,000 to 500,000. Good.
  • low-molecular-weight contaminating proteins such as fibrinogen and fibronectin are usually more than 90% of the total, and preferably more than 99% of the total. Removed at a rate. Ultrafiltration is also preferable because it removes contaminating viruses in addition to low molecular weight proteins such as fibrinogen and fibronectin.
  • the ultrafiltration operation may be performed once or repeatedly, for example, about 2 to 10 times. It is possible to repeat the ultrafiltration operation more than 10 times, but it is more preferable that the number of repetitions is small in order to process in as short a time as possible and prevent loss of components.
  • contaminant proteins such as fibrinogen / fibronectin are further removed, and the target FVI II / vWF complex is purified with higher purity.
  • the ultrafiltration membrane used in each operation may be the same or may be changed to a different one depending on the kind of the foreign matter to be removed. .
  • a purification step by gel filtration chromatography may be performed.
  • the exclusion limit of the gel used at this time is preferably 300,000 to 200,000.
  • Sephacryl-300 manufactured by Pharmacia
  • Sepharose 6B column manufactured by Pharmacia
  • the exclusion limit of the gel by protein is set at 500,000 to 200,000.
  • the exclusion limit of the gel due to the protein is set at 100,000 to 20,000,000. It is preferable to set the range.
  • the purification step according to the first embodiment and the purification step according to the second embodiment have been described independently of each other. However, by using these purification steps in combination, FVIII / vWF with higher purity can be obtained. A complex is obtained.
  • the order in which the purification step according to the first aspect and the purification step according to the second aspect are used in combination is not particularly limited, and may be performed in any order. Thus, the starting solution can be concentrated to a small volume and a small amount of sample can be used in the next purification step.If cryoprecipitate is used directly in the purification step according to the second embodiment, a large amount of fibrinogen / fibronectin can be obtained.
  • the purification process according to the first aspect is first performed, and then the purification is performed according to the second aspect. It is preferable to purify the FVIII / vWF complex by performing the step.
  • the purification step according to the first aspect as described above, or a combination of the purification step according to the first aspect and the purification step according to the second aspect preferably purification according to the first aspect Of the blood coagulation factor VIII comprising dissociating the FVIII / vWF complex purified by the combination of the step and the purification step according to the second embodiment into blood coagulation factor VIII and von Willebrand factor.
  • a purification method is provided.
  • a conventionally known method can be applied to the method of dissociating the FVIII / vWF complex into FVIII and vWF in the same manner. Specifically, 0. 25 ⁇ 1 M, preferably a method of dissociating FVIII / vWF complex in FVIII and vWF in the presence of 0. 25-0. 5 M calcium chloride (C a C l 2) Is raised I can do it.
  • the mixed solution of FVIII and vWF after dissociation is further subjected to ultrafiltration to further remove FVIII. It is preferable to perform a purification step (hereinafter, also referred to as a “second ultrafiltration step”).
  • the molecular weight of FVIII is 250,000 to 300,000 and fibrinogen (molecular weight: about 340,000) and fibronectin (The molecular weight in the form of a monomer is approximately 240,000), so that the dissociation step is performed by combining the purification step according to the first embodiment and the purification step according to the second embodiment. It is preferably carried out after removing contaminant proteins such as gender fibronectin as much as possible.
  • the FVIII / vWF complex is dissociated into FVIII and vWF to substantially reduce FVIII (molecular weight of 250,000 to 300,000) and vWF (molecular weight of about A second ultrafiltration process is performed on this mixed solution to obtain only a pure FVIII (molecular weight of 250,000 to 300,000).
  • FVIII molecular weight of 250,000 to 300,000
  • vWF molecular weight of about
  • the FVIII / vWF complex is purified to a high degree of purity by passing through the purification step according to the first aspect and / or the purification step according to the second aspect, so that the solution containing the purified FVIII / vWF complex FVIII purified by the second ultrafiltration step is also obtained in high purity and high yield.
  • the ultrafiltration membrane used in the second ultrafiltration step the same one as described in the first ultrafiltration step can be used.
  • the ultrafiltration membrane used in performing the ultrafiltration step may be the same or different. Further, after performing the dissociation operation of the FVIII / vWF complex into FVIII and vWF, or after the second ultrafiltration step, purification by affinity chromatography is further performed to obtain FVIII.
  • the ligand of the adsorbent used in affinity mouth chromatography is not particularly limited, and a known ligand can be used in the same manner.
  • an anti-FVIII monoclonal having affinity for FV III can be used.
  • examples include a null antibody and anthrom- thrombin, which is a thrombin derivative that has a binding ability to FVIII but has lost serine protease activity.
  • anhydrothrombin is particularly preferably used as a ligand for the adsorbent, in consideration of the purification efficiency of the objective FVIII and the risk of contamination with a protein derived from a heterologous animal.
  • the ligands may be used alone or in combination of two or more.
  • anhydrothrombin which is particularly preferably used as a ligand in the present invention can be prepared by a known method, for example, WO99 / 20655%, Ashton, RW et al., "Preparation and characterization of anhydrothrombin". , Biochemistry (1995), Vo. 34, No. 19, p. 6454-6463.
  • the degree of purification of the FVIII / vWF complex and FVIII was calculated in the same manner as described in the embodiment of the present invention.
  • cryoprecipitate Ten liters of frozen citrate plasma was thawed at 4 ° C to obtain cryoprecipitate. Next, the cryoprecipitate was separated from plasma by centrifugation at 4 ° C (3,000 xg, 30 minutes), and 1 liter of cryoprecipitate was separated. It was dissolved in a phosphate buffer (PH 7.0) to obtain a cryo-dissolved solution. To this lysate was added 90% (v / v) of dried Sephacry 300 (Pharmacia), and the mixture was stirred at 20 ° C for 30 minutes. Was isolated.
  • PH 7.0 phosphate buffer
  • cryo-concentrated solution was subjected to gel filtration with a Shepharose 6B (Pharmacia) column (500 ml) to recover an FVI II / vWF complex eluted near the void volume.
  • the thus obtained peak recovered solution having FVIII activity is subjected to ultrafiltration with a 0.1 micron membrane filter Yuichi (manufactured by Millipore) to obtain a small amount of filtrate contained in the recovered solution. Impurities such as Plinogen-Fibronectin were removed.
  • Dried Shepharose 6B (manufactured by Pharmacia) was added to the cryo-lysate solution prepared in the same manner as in Example 1 so as to have a concentration of 90% (v / v).
  • the supernatant was separated by filtration.
  • the same operation as described above was repeated again for about 200 ml of the obtained supernatant to obtain about 40 ml of a cryo-concentrated solution (a concentrated solution containing the FVIII / vWF complex). This As a result, a 5-fold concentration was possible with a single operation.
  • crys- tal concentrate was subjected to gel filtration using a Sephacry 400 (manufactured by Pharmacia) column (500 ml) to recover an FVI II / vWF complex eluted near the void volume.
  • the thus obtained peak recovery solution having FVIII activity is subjected to ultrafiltration using a 0.1-micron membrane filter (manufactured by Millipore) to obtain a small amount of fibrinogen contained in the recovery solution. (4) Impurities such as fibronectin were removed.
  • the thus-obtained peak recovery solution having FVIII activity was applied to a 20 m1 immobilized column of anhydrothrombin immobilized with a buffer (50 mM Tris-HCl, 0.15 M NaCl, pH 7.5). 5 mg / m1), completely elute the non-adsorbed peaks with the same buffer, and use the dissociation solution (50 mM Tris-HCl, O.IM NaCl, 0.25 M CaCl 2 . After dissociation and elution of FVIII, FVIII was eluted with an eluate (50 mM Tris-HCI, 0.15 M NaCl, 0.15 M, benzamidine, ⁇ 7.5). The specific activity of the purified FVIII thus obtained was about 2,500 u / mg, and the recovery was about 40%. Industrial applicability
  • the method for purifying the blood coagulation factor VIII / von-Bilbrand factor complex of the present invention comprises the steps of: mixing a solution and a gel containing the blood coagulation factor VIII / von-Bilbrand factor complex; It consists of separating and removing the gel from the solution.
  • the solution containing the FVIII / vWF complex can be concentrated to a very small volume in a simple step, so that the purification operation in the next step can be performed without requiring large equipment.
  • foreign proteins such as fibrinogen and fibronectin contained in the solution containing the FVIII / vWF complex can be efficiently separated and removed by simple steps.
  • a solution and a gel containing the blood coagulation factor VIII z von Willebrand factor complex are mixed, and the solution is concentrated by separating and removing the gel from the solution.
  • a solution containing a large volume of FVIII / vWF complex can be concentrated to a small volume in a simple step, and the FVIII / vWF complex can be concentrated in a simple step and reduce the activity of FVIII. It is possible to purify to high purity without reduction.
  • the FVIII / vWF complex purified to high purity as described above is dissociated into blood coagulation factor VIII and von's Vilbrand factor, and the dissociated solution is subjected to ultrafiltration and / or affinity.
  • blood coagulation factor VIII can be separated in a short time and efficiently with almost no impurities.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A method for purifying a blood coagulation factor VIII/Von Willebrand factor complex and blood coagulation factor VIII via a simple step even from a solution containing a large amount of the blood coagulation factor VIII/Von Willebrand factor complex. This method comprises mixing a solution containing the blood coagulation factor VIII/Von Willebrand factor complex with a gel and then separating and removing the gel from the solution.

Description

明 細 書 血液凝固第 VIII因子および血液凝固第 VIII因子/フォン · ビルブラン ト因子複合体の精製方法 技術分野  Description Purification method for blood coagulation factor VIII and blood coagulation factor VIII / von Willebrand factor complex
本発明は、 新規な血液凝固第 VIII因子および血液凝固第 VIII因子/ フォン · ビルブラント因子複合体の精製方法に関するものである。 詳し くは、 本発明は、 血液凝固第 VIII因子および血液凝固第 VIII因子ノフ オン · ビルブラント因子複合体をその活性の低下を生じることなく高純 度 ·高収率で精製する方法に関するものである。 背景技術  The present invention relates to a novel blood coagulation factor VIII and a method for purifying a blood coagulation factor VIII / von Willebrand factor complex. More specifically, the present invention relates to a method for purifying blood coagulation factor VIII and a blood coagulation factor VIII nofon-bilmbrand factor complex with high purity and high yield without reducing its activity. is there. Background art
血液凝固因子は、 血液凝固に関与する因子のことであり、 1 2種の血 漿中のタンパク質性の凝固因子、 ならびにカルシウムイオン、 組織トロ ンポプラスチンおよびリン脂質の 3種の計 1 5種の因子が血液凝固反応 に関与していることが知られている。  Blood coagulation factors are factors involved in blood coagulation, and are a total of 15 factors, including proteinaceous coagulation factors in 12 types of plasma and 3 types of calcium ions, tissue troponoplastin and phospholipids. Is known to be involved in the blood coagulation reaction.
これらの血液凝固因子のうち、 血液凝固第 VIII因子 (本明細書では、 単に 「FVIII」 ともいう) は、 血液凝固反応の促進因子として機能し、 正常な止血機構を維持するための重要な血液凝固内因系の凝固因子であ る。 また、 血友病 Aではこの FVIII凝固活性タンパク質の欠乏または異 常が認められることから、 FVIIIは抗血友病因子 A、 抗血友病因子また は抗血友病グロプリンとも呼ばれている。  Among these blood coagulation factors, blood coagulation factor VIII (also referred to simply as “FVIII”) functions as a promoter of the blood coagulation reaction, and is an important blood for maintaining a normal hemostasis mechanism. Coagulation is a coagulation factor of the intrinsic system. In addition, since the deficiency or abnormality of the FVIII clotting activity protein is observed in hemophilia A, FVIII is also called anti-hemophilia factor A, anti-hemophilia factor or anti-hemophilia glopurin.
血友病 Aは、 性染色体劣性遺伝であり、 因子活性低下の程度により、 軽症、 中等症、 重症に分類され、 軽症では、 自然出血はまれであり、 外 傷や手術、 抜歯時の止血困難によって初めて気づく程度であるが、 中等 症ないし重症例では、 自然出血が主症状となり、 内因性凝固障害のため 出血が深部組織に起こり、 特に関節腔内への出血はこの疾患に特徴的で、 反復出血により関節症をきたし、 さらに関節は拘縮変形して機能障害を 呈するようになるほか、 筋肉内出血、 頭蓋内出血、 腎出血等が認められ る。 こうした血友病 Aの患者治療としては、 遺伝子治療あるいは移植治 療も考えられるが、 これらの治療法は現時点では臨床的研究が進められ ている段階であり、 血友病患者に対して実用化はされていない。 このた め、 現状では、 血友病 Aの患者に出血時に欠損因子である FVIIIを補充 してその都度止血を図るか、 もしくは出血が予想される'ときに予防的に 補充する治療が必要とされている。 Hemophilia A is a sex-chromosomal recessive inheritance and is classified as mild, moderate, or severe, depending on the degree of reduced factor activity.In mild cases, spontaneous bleeding is rare, and it is difficult to stop bleeding during trauma, surgery, or tooth extraction Is noticeable for the first time, In severe or severe cases, spontaneous bleeding is the main symptom, and bleeding occurs in deep tissues due to intrinsic coagulation disorders.Bleeding into joint cavities is characteristic of this disease. The joints contracture and become functionally impaired, as well as intramuscular bleeding, intracranial bleeding, and renal bleeding. Gene therapy or transplantation can be considered as treatment for patients with hemophilia A, but these treatments are currently under clinical research, and have been put into practical use for hemophilia patients. Has not been. For this reason, at present, patients with hemophilia A need to be supplemented with the deficient factor FVIII at the time of bleeding to stop bleeding each time, or to be treated prophylactically when bleeding is expected. Have been.
上述したように、 血友病患者の治療には抗血友病製剤である FVIII製 剤または第 IX因子製剤 (プロ トロンビン複合体) が使用されているが、 抗血友病製剤を輸注していると患者に欠乏因子に対する抗体が発生する ことがあったり、 主に C型のウィルス性肝炎や A I D S (後天性免疫不 全症候群) の罹患原因としてとりあげられたり した。 このため、 現在で は、 60°Cで 10時間液状加熱した乾燥濃縮人血液凝固第 VIII因子製 剤や、 65°Cで 95時間乾燥加熱処理した乾燥濃縮人血液凝固第 VIII 因子製剤等の安全性の極めて高い加熱製剤が使用されているほかに、 献 血者血漿を原料に、 加熱処理や有機溶媒/界面活性剤処理 (TNBP/ ォク トキシノール 9処理) にてウィルス不活化し、 抗 FVIIIモノクロ一 ナル抗体を使用して精製分離した乾燥濃縮人血液凝固第 VIII因子製剤 や、 例えば、 特開平 7 - 278 , 1 97号公報 (特許番号 2 5 1 39 9 3号) 等に開示されているように、 遺伝子組み換え技術により産生され た産物を第 VIII: C因子活性の C—末端サブュニッ トに対するモノク ローナル抗体を使ったァフィ二ティ一クロマトグラフィー等により精製 されたリコンビナン ト製剤が開発された。 しかしながら、 加熱処理や有機溶媒/界面活性剤処理にてウィルス不 活化が図られ安全性が高められた製剤も、 非 A非 B型肝炎等のウィルス 感染症の危険性を完全には否定できず、 また加熱製剤ではフイ ブリノ一 ゲンが含まれているので、 投与により血中のフイブリノ一ゲン濃度が過 度に上昇するおそれがある。 一方、 上記モノクローナル抗体を使用して 精製分離する場合には、 ( 1 ) モノクローナル抗体には異種動物由来の 夕ンパク質がしばしば使われているため、 製剤中に異種動物由来の夕ン パク質が混入する危険性があり、 (2) コス ト面でもモノクロ一ナル抗 体自体が極めて高価であるため、 最終的に得られる製剤も高価なものに ならざるを得ないとする問題がある。 As mentioned above, the treatment of hemophilia patients uses anti-hemophilia drugs FVIII or factor IX (prothrombin complex). In some cases, antibodies to the deficiency factor may be raised in patients, and it has been cited as a major cause of viral hepatitis C and AIDS (acquired immunodeficiency syndrome). For this reason, at present, the safety of dry concentrated human blood coagulation factor VIII products heated in liquid form at 60 ° C for 10 hours and dry concentrated human blood coagulation factor VIII products heat-dried at 65 ° C for 95 hours is available. In addition to the use of heat-treated preparations with extremely high potency, blood plasma is used as a raw material, and the virus is inactivated by heat treatment or treatment with an organic solvent / detergent (TNBP / octoxinol 9 treatment), and anti-FVIII A dry concentrated human blood coagulation factor VIII preparation purified and separated using a monoclonal antibody, and disclosed in, for example, Japanese Patent Application Laid-Open No. 7-278,197 (Patent No. 2513993). As a result, recombinant products have been developed in which products produced by genetic recombination techniques have been purified by affinity chromatography using a monoclonal antibody against the C-terminal subunit of factor VIII: C activity, etc. . However, even for preparations in which virus treatment was inactivated by heat treatment or treatment with an organic solvent / surfactant and safety was improved, the risk of viral infections such as non-A non-B hepatitis could not be completely ruled out. In addition, since the heated preparation contains fibrinogen, administration thereof may cause an excessive rise in the concentration of fibrinogen in the blood. On the other hand, when the monoclonal antibody is used for purification and separation, (1) since the protein derived from a heterologous animal is often used in the monoclonal antibody, the protein derived from the heterologous animal is often contained in the preparation. (2) Monoclonal antibodies themselves are extremely expensive in terms of cost, and there is a problem that the final preparation must be expensive.
したがって、 こう した問題を伴うことなく、 FVIIIを精製することの できる技術が強く求められているが、 FVIII凝固活性夕ンパク質は血漿 含有量が約 0. 2 g/m 1と他の凝固因子に比べて非常に少ないため m g相当の純化タンパク質を得るためには 20〜 40リ ッ トルという多 量の血漿が必要となり、 かつ FVIIIは純化過程中に変性し、 フラグメン ト化しゃすいので、 現状では、 全構造を保持したままの純化は非常に困 難であるという問題があった。  Therefore, there is a strong need for a technology that can purify FVIII without these problems.However, FVIII clotting protein has a plasma content of about 0.2 g / m1 and other clotting factors. In order to obtain purified protein equivalent to mg, a large amount of plasma, 20 to 40 liters, is required, and FVIII is denatured during the purification process and becomes fragmented. Then, there was a problem that it was very difficult to purify while maintaining the entire structure.
ところで、 この FVI 11は、 流血中ではフォン · ビルブラン ト(von Wi 1 lebrand)因子 (本明細書では、 単に 「vWF」 ともいう) と非共有結合し て複合体 (本明細書では、 「血液凝固第 VIII因子/フォン · ビルブラ ン ト因子複合体」 または単に 「FVIII/vWF複合体」 ともいう) を形成し ている。  By the way, this FVI 11 binds non-covalently to a von Willebrand (von Wile lebrand) factor (herein, also simply referred to as “vWF”) in a blood stream and forms a complex (here, “blood Coagulation factor VIII / von Willebrand factor complex ”or simply“ FVIII / vWF complex ”.
FVIII/vWF複合体の構成成分であるフォン ' ビルブラン ト(von Wille brand)因子夕ンパク質は、 FVIIIのキャリアタンパク質として働く とと もに、 出血時に露出した損傷血管内皮細胞下組織に血小板が粘着し、 凝 集する一次止血において血小板と内皮細胞下組織を結合せしめる接着因 子 (分子糊) として機能し、 FVIII と非共有結合による複合体を形成し て、 FVIIIの安定化作用を示す巨大分子糖夕ンパク質として循環血液中 に存在する。 また、 この vWFの欠乏または異常は、 出血時間延長、 血漿 VIII因子の減少、 血小板粘着能低下とリス トセチン凝集能の低下、 血 管抵抗の低下、 輸血 ' 輸血漿 · VIII因子濃縮製剤輸注による VIII因子 活性の期待値以上の上昇を特徴とするフォン · ビルブラン ト病の原因で あることが知られている。 The von Wille brand factor protein, a component of the FVIII / vWF complex, acts as a carrier protein for FVIII and adheres platelets to damaged vascular endothelial subcellular tissues exposed during bleeding. Factors that bind platelets to subendothelial tissue during primary hemostasis It functions as a molecule (molecular glue), forms a complex with FVIII through non-covalent bonds, and exists in the circulating blood as a macromolecular glycoprotein that has a stabilizing effect on FVIII. In addition, this vWF deficiency or abnormality can be attributed to prolonged bleeding time, decreased plasma factor VIII, decreased platelet adhesion and reduced ristocetin aggregation, decreased vascular resistance, transfusion ' It is known to be the cause of von Willebrand disease, which is characterized by an increase in factor activity that is higher than expected.
また、 FVIII/vWF複合体の 9 5 %以上は vWF夕ンパク質が占めるため、 FVIII/vWF複合体を純化 .精 した後、 これから FVIII凝固活性夕ンパ ク質を採取する方法が試みられた。 この方法としては、 例えば、 ( 1 ) まず 3 %ェタノ一ル、 1 %ポリエチレングリコール(PEG)の存在下でク リオを採取し、 上澄液を除去することにより得られたク リオプレシピテ —ト (クリオ沈渣) について加熱処理法、 グリシン—食塩沈殿法、 3〜 4 %Ficoll 70沈殿分画法などによる脱フイブリノ一ゲン処理を行い、 FVIII/vWF複合体を粗精製し、 この粗精製 FVIII/vWF複合体をゲル瀘過 クロマトグラフィー (例えば、 DFP等のプロテア一ゼインヒビ夕一存在 下での Sepharose 4Bまたは CL— 6B、 Ultrogel AcA22) やァフィ二ティ —クロマトグラフィー (例えば、 抗フイブリノ一ゲン、 抗寒冷不溶性グ 口ブリン(CIG)、 抗 IgM家兎血清 IgM画分を固定化した CNBr- Sepharose 4Bカラムによるなど) によりさらに FVIII/vWF複合体を精製した後、 この精製 FVIII/vWF複合体に塩化カルシウムを混和して FVIII と vWFと を解離させた後ゲル瀘過により低分子量部に出現する FVIII を採取する 方法 ; ( 2 ) 新鮮血漿からプロテア一ゼィンヒビターの存在下でク リオ プレシピテートを作製し、 これを CNBr-Sepharose 4B-抗 vWFモノクロ —ナル抗体大力ラムに吸着させ、 洗浄した後、 塩化カルシウム加緩衝液 で FVIIIを溶出する方法 ; および ( 3 ) 血漿からク リオプレシピテ一ト を作製し、 ポリエレク トロライ ト E5大力ラムに添加して FVIII/vWF複 合体を吸着、 溶出させて FVIII/vWF複合体を部分純化し、 さらにこの部 分純化された FVIII/vWF複合体を CNBr-Sepharose 4B-抗 vWFモノクロ ーナル抗体カラムに吸着させ、 洗浄した後、 塩化カルシウム加緩衝液で FVIIIを溶出する方法などが挙げられる。 しかしながら、 上記 ( 1 ) の 方法は、 一応精製は可能ではあるが、 FVIII/vWF複合体の精製段階で目 的とする FVIIIの活性の低下が認められ、 工業的な観点から不適切であ る。 また、 上記 (2) や (3) の方法は、 上記したように FVIII凝固活 性夕ンパク質は血漿含有量が約 0. 2 g/m 1と他の凝固因子に比べ て非常に少ないため m g相当の純化タンパク質を得るためには 20〜 4 0リッ トルという多量の血漿が必要となり、 それ相応の大容量のカラム を必要とし設備面で好ましくない上、 工程が複雑で手間や時間がかかる という欠点があった。 したがって、 本発明は、 大容量の FVIII/vWF複合体を含む溶液からで も簡単な工程で FVIII/vWF複合体及び FVIIIを高純度まで精製する方法 を提供することを目的とするものである。 In addition, since 95% or more of the FVIII / vWF complex is occupied by vWF protein, a method of purifying and refining the FVIII / vWF complex and then collecting a FVIII coagulation-active protein was attempted. This method includes, for example, (1) first collecting a cryopion in the presence of 3% ethanol and 1% polyethylene glycol (PEG), and removing the supernatant to obtain a cryoprecipitate ( The cryoprecipitate is subjected to heat treatment, glycine-salt precipitation, 3-4% Ficoll 70 precipitation fractionation, etc. to remove fibrinogen, and the FVIII / vWF complex is roughly purified. The complex is subjected to gel filtration chromatography (eg, Sepharose 4B or CL-6B, Ultrogel AcA22 in the presence of a protease inhibitor such as DFP) or affinity chromatography (eg, anti-fibrinogen, anti-cold). After further purifying the FVIII / vWF complex by insoluble guinea pig (CIG) or a CNBr-Sepharose 4B column immobilized with anti-IgM rabbit serum IgM fraction), the purified FVIII / vWF complex A method in which FVIII and vWF are dissociated by mixing with calcium chloride, and then FVIII appearing in the low molecular weight part is collected by gel filtration; (2) Cryoprecipitate is prepared from fresh plasma in the presence of proteazyme inhibitor A method of adsorbing this to CNBr-Sepharose 4B-anti-vWF monoclonal antibody large force ram, washing and eluting FVIII with a buffer containing calcium chloride; and (3) cryoprecipitate from plasma The FVIII / vWF complex is partially purified by adsorbing and eluting the FVIII / vWF complex, and then added to the polyelectrolyte E5 large-strength ram.The partially purified FVIII / vWF complex is further purified by CNBr- After adsorbing onto a Sepharose 4B-anti-vWF monoclonal antibody column, washing, and then eluting FVIII with a buffer solution containing calcium chloride. However, although the method (1) can be used for purification, it is not suitable from an industrial point of view because the target FVIII activity is reduced in the purification stage of the FVIII / vWF complex. . In addition, the methods (2) and (3) described above are based on the fact that the FVIII coagulation-active protein has a plasma content of about 0.2 g / m1, which is much lower than other coagulation factors, as described above. In order to obtain purified protein equivalent to mg, a large amount of plasma of 20 to 40 liters is required, which requires a correspondingly large volume column, which is not preferable in terms of equipment, and the process is complicated and takes time and effort. There was a disadvantage. Therefore, an object of the present invention is to provide a method for purifying FVIII / vWF complex and FVIII to a high degree of purity by a simple process even from a solution containing a large volume of FVIII / vWF complex.
本発明の他の目的は、 大容量の FVIII/vWF複合体を含む溶液からでも 簡単な工程でかつ FVIIIの活性の低下を伴わずに FVIII/vWF複合体及び FVIIIを高純度まで精製する方法を提供することを目的とするものであ る 発明の開示  Another object of the present invention is to provide a method for purifying an FVIII / vWF complex and FVIII to a high degree of purity from a solution containing a large volume of the FVIII / vWF complex in a simple step without reducing the activity of FVIII. Disclosure of the invention that is intended to be provided
本発明者らは、 上記諸目的を達成するために鋭意検討を行った結果、 FVIII/vWF複合体を含む溶液を特定の大きさの孔を有するゲルと混合す ると、 フイブリノ一ゲンゃフイブロネクチン等の低分子量のきょう雑夕 ンパク質や水などの小分子はゲルの網目構造内に取り込まれて保持され るが、 FVIII/vWF複合体は分子量が大きくゲルの網目構造内に入れずに ゲルの外に存在することに着目し、 FVIII/vWF複合体を含む溶液をこの ようなゲルと混合した後瀘過等により当該ゲルを分離 · 除去することに より FVIII/vWF複合体を含む溶液を数倍から数十倍程度濃縮でき、 かつ フイ ブリノ一ゲンゃフィ ブロネクチン等の低分子量のきよう雑夕ンパク 質や水などの小分子を同時に分離 · 除去することが可能であることを発 j し o The present inventors have conducted intensive studies to achieve the above objects, and as a result, when a solution containing the FVIII / vWF complex was mixed with a gel having pores of a specific size, fibrinogen-fibronectin was obtained. Low molecular weight today Small molecules such as protein and water are captured and retained in the gel network, but the FVIII / vWF complex has a large molecular weight and is located outside the gel without entering the gel network. Then, the solution containing the FVIII / vWF complex is mixed with such a gel, and then the gel is separated and removed by filtration or the like, whereby the solution containing the FVIII / vWF complex is concentrated several to several tens of times. And the ability to simultaneously separate and remove low molecular weight proteins such as fibrinogen and fibronectin, and small molecules such as water.
また、 本発明者らは、 FVIII/vWF複合体の分子量は数百万から 2, 0 00万程度と非常に大きな複合体として存在しているのに対してきよう 雑夕ンパク質であるフィプリノーゲン及びフィブロネクチンの分子量は 24万〜 1 00万程度と上記複合体に比べて比較的小さいことに着目し、 このような分子量の差を利用して FVIII/vWF複合体を含む溶液を特定範 囲の分子量を有する分子を切り捨てる孔を含む膜で限外瀘過またはゲル 濾過クロマトグラフィーを行なうことによって、 FVIII/vWF複合体を効 率よく精製できる、 さらにはこの複合体から血液凝固第 VIII因子を高 純度でかつ高収率で分離できることをも発見した。  In addition, the present inventors have reported that the FVIII / vWF complex has a molecular weight of several million to about 2,000,000, and exists as a very large complex, whereas fipri, which is a protein complex, is present. Focusing on the fact that the molecular weights of nogen and fibronectin are relatively small, ranging from 240,000 to 100,000, compared to the above complex, the solution containing the FVIII / vWF complex can be used in a specific range by utilizing such a difference in molecular weight. The FVIII / vWF complex can be purified efficiently by ultrafiltration or gel filtration chromatography with a membrane containing pores that cut off molecules having a molecular weight of They also discovered that they can be separated with high purity and high yield.
上記知見に加えて、 上記 2工程を組み合わせることによって、 すなわ ち、 FVIII/vWF複合体を含む溶液を特定の大きさの孔を有するゲルと混 合して血液 FVIII/vWF複合体を濃縮及び部分精製し、 この FVIII/vWF複 合体を含む粗精製液を特定範囲の分子量を有する分子を切り捨てる孔を 含む膜を用いて限外瀘過またはゲル濾過クロマトグラフィ一を行なうこ とによって、 ほとんど不純物を含まない純度の高い FVIII/vWF複合体が 得られ、 さらにこの複合体から血液凝固第 VIII因子を解離し、 さらに 限外濾過、 ゲル濾過クロマトグラフィーやァフィ二ティ一クロマ トグラ フィ一を用いて精製することによりほとんど不純物を含まない FVIIIが 効率よく得られることをも発見した。 In addition to the above findings, by combining the above two steps, the solution containing the FVIII / vWF complex is mixed with a gel having pores of a specific size to concentrate and concentrate the blood FVIII / vWF complex. The partially purified solution containing the FVIII / vWF complex is subjected to ultrafiltration or gel filtration chromatography using a membrane containing pores for cutting off molecules having a specific range of molecular weight. A high purity FVIII / vWF complex free from the complex is obtained, and blood coagulation factor VIII is dissociated from this complex, and further purified using ultrafiltration, gel filtration chromatography, or affinity chromatography. By doing so, FVIII containing almost no impurities We also found that it can be obtained efficiently.
これらの知見に基づいて、 本発明を完成するに至った。  Based on these findings, the present invention has been completed.
すなわち、 本発明は、 下記 ( 1 ) 〜 1 0 ) の構成からなる。  That is, the present invention has the following configurations (1) to (10).
( 1 ) 血液凝固第 VIII因子/フオン ' ビルブラン ト因子複合体を含 む溶液をゲルと混合した後、 混合物からゲルを分離 ·除去することから なる血液凝固第: VI II因子/フォン · ビルブラント因子複合体の精製方  (1) After coagulation of a solution containing the complex factor VIII / Phone 'virbrand factor complex with the gel, separation and removal of the gel from the mixture: factor VIII / von Willebrand How to purify factor complexes
(2) 該ゲルは乾燥ゲルである、 前記 ( 1 ) に記載の方法。 (2) The method according to (1), wherein the gel is a dry gel.
(3 ) 前記 ( 1 ) または (2 ) に記載の方法によって得られた血液凝 固第!/!因子/フォン · ビルブラント因子複合体を含む溶液に対してゲル 濾過ク口マトグラフィ一を行う血液凝固第 VI因子/フォン · ビルブラン ト因子複合体の精製方法。  (3) Blood coagulation obtained by the method according to (1) or (2) above! /! A method for purifying a blood coagulation factor VI / von-Vilbrand factor complex by performing gel filtration on a solution containing the factor / von-Vilbrand factor complex.
(4) 前記 ( 1 ) 〜 (3) のいずれか一に記載の方法によって得られ た血液凝固第 VIII因子/フォン · ビルブラント因子複合体を含む溶液 に対して限外瀘過による精製工程を行なう血液凝固第 VIII因子/フォ ン · ビルブラント因子複合体の精製方法。  (4) Purifying the solution containing the blood coagulation factor VIII / von Willebrand factor complex obtained by the method according to any one of (1) to (3) by ultrafiltration. How to purify the blood coagulation factor VIII / Fon / Vilbrand factor complex.
( 5 ) 該ゲルのタンパク質による排除限界が 30万〜 2000万の範 囲である、 前記 ( 1 ) 〜 (4) のいずれか一に記載の方法。  (5) The method according to any one of (1) to (4), wherein the exclusion limit of the gel by a protein is in a range of 300,000 to 20,000,000.
(6) 前記 ( 1 ) 〜 (5) のいずれか一に記載の方法によって得られ た血液凝固第 VIII因子/フォン · ビルブラント因子複合体を血液凝固 第 VIII因子及びフォン · ビルブラント因子に解離させる工程を含む血 液凝固第 VIII因子の精製方法。  (6) Dissociating the blood coagulation factor VIII / von Willebrand factor complex obtained by the method according to any one of the above (1) to (5) into blood coagulation factor VIII and von Willebrand factor A method for purifying blood coagulation factor VIII, comprising the step of:
( 7 ) 前記 (6) に記載の解離工程後に、 血液凝固第 VIII因子及び フォン · ビルブラント因子の混合液を限外濾過により精製する工程を含 む、 血液凝固第 VIII因子の精製方法。  (7) A method for purifying blood coagulation factor VIII, comprising a step of purifying a mixed solution of blood coagulation factor VIII and von Willebrand factor by ultrafiltration after the dissociation step according to (6).
(8) 該限外濾過で使用される限外瀘過膜の分画分子量が 30万〜 1 8 0 0万の範囲である、 前記 ( 7 ) に記載の方法。 (8) The ultrafiltration membrane used in the ultrafiltration has a cut-off molecular weight of 300,000 to 1 The method according to (7), wherein the range is 800,000.
( 9 ) 前記 ( 6 ) に記載の解離工程または前記 ( 7 ) に記載の限外濾 過工程後に、 血液凝固第 νπι因子及びフォン · ビルブラン ト因子の混合液 をァフィ二ティ一クロマ トグラフィーにより精製する工程を含む、 血液 凝固第 VI因子の精製方法。  (9) After the dissociation step according to (6) or the ultrafiltration step according to (7), the mixture of blood coagulation factor νπι factor and von Willebrand factor is subjected to affinity chromatography. A method for purifying blood coagulation factor VI, comprising a step of purifying.
( 1 0 ) 該ァフィニティ一クロマトグラフィ一で使用される吸着体の リガン ドがアンヒ ドロ トロンビンである、 前記 ( 9 ) に記載の方法。 発明を実施するための最良の形態  (10) The method according to (9), wherein the ligand of the adsorbent used in the affinity chromatography is anhydrothrombin. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第一の態様によると、 血液凝固第 VIII因子/フォン · ビル ブラン ト因子複合体を含む溶液をゲルと混合した後、 混合物からゲルを 分離 · 除去することからなる血液凝固第 VIII因子/フォン · ビルブラ ン ト因子複合体の精製方法が提供される。 上記方法によって、 大容量の According to a first aspect of the present invention, a blood coagulation factor VIII comprises mixing a solution containing a blood coagulation factor VIII / von Willebrand factor complex with a gel, and then separating and removing the gel from the mixture. A method for purifying a von Willebrand factor complex is provided. By the above method, large capacity
FVIII/vWF複合体を含む溶液でも簡単な工程で数倍から数十倍程度濃縮 することができ、 かつフイブリノ一ゲンゃフイブロネクチン等の低分子 量のきょう雑タンパク質や水などの小分子を同時に分離 · 除去できる。 本発明において使用される FVIII/vWF複合体を含む溶液 (本明細書で は、 単に 「出発溶液」 ともいう) は、 FVIII/vWF複合体を含むものであ れば特に制限されるものではないが、 例えば、 ヒ ト、 好ましくは正常ヒ ト由来の血漿 [好ましくは新鮮 (凍結) 血漿] 、 血小板及び胎盤等の体 液 ; ク リオプレシピテート (ク リオ沈渣) ; フラクション I (Fraction I) ( 8 %エタノール沈殿) ; ならびにこれらの遺伝子組換え操作により 少なく とも一のアミノ酸が欠失、 置換もしくは付加されたアミノ酸配列 を有しかつ VIII因子凝固活性を維持するこれらの変異体を含む溶液な どが挙げられる。 この際、 本発明において、 クリオプレシピテート (ク リオ沈渣) は、 従来公知の方法によって血漿から調製されたものであつ ても、 あるいは市販品、 例えば、 クリオ製剤、 VI I I因子濃縮製剤をそ のまま使用してもよい。 また、 遺伝子組み換え技術を用いて変異体を調 製する方法としては、 特に制限されるものではなく、 当該分野において 既知の遺伝子組み換え技術を同様にして使用できる。 Even a solution containing the FVIII / vWF complex can be concentrated several times to several tens times in a simple process, and simultaneously separates low-molecular-weight contaminating proteins such as fibrinogen-fibronectin and small molecules such as water. · Can be removed. The solution containing the FVIII / vWF complex used in the present invention (hereinafter, also simply referred to as “starting solution”) is not particularly limited as long as it contains the FVIII / vWF complex. However, for example, plasma derived from human, preferably normal human [preferably fresh (frozen) plasma], body fluids such as platelets and placenta; cryoprecipitate (cryoprecipitate); fraction I (Fraction I) (8% ethanol precipitation); and a solution containing these mutants which have an amino acid sequence in which at least one amino acid has been deleted, substituted or added by these genetic recombination operations and which maintains factor VIII clotting activity. And so on. At this time, in the present invention, cryoprecipitate (cryoprecipitate) is prepared from plasma by a conventionally known method. Alternatively, a commercially available product such as a cryo preparation or a factor VIII concentrated preparation may be used as it is. The method for preparing a mutant using a gene recombination technique is not particularly limited, and a gene recombination technique known in the art can be used in the same manner.
本発明において使用されるゲルは、 3次元網目構造を有し、 内部に溶 媒 (溶液) 保持能を有するものであれば特に限定されることなく使用さ れる。 これらのゲルは、 公知技術により製造してもあるいは市販のゲル をそのまま使用してもよいが、 例えば、 Sephacryl-300 (フアルマシア 社製) 、 Sepharose 6Bゲル (フアルマシア社製) 、 Sephadex G200 (フ アルマシア社製) 及びセル口ファイ ン GCL-2000 (チヅソ株式会社製) 等のク口マ トグラフィ一用ゲル、 ならびにヒ ド口キシァパタイ トなどが 挙げられる。 ゲルの形状については特に限定されず、 いずれの形状を使 用してもよいが、 容器への充填密度や出発溶液との接触効率などを考慮 すると、 球状や微粒子状が好ましく使用される。 また、 ゲルの大きさも 特に限定されずゲルの形状ゃ孔の大きさ等によって異なるが、 例えば、 ゲルが球状である際には、 直径が、 約 0 . 1〜 1 0 0 0 z m、 好ましく は約 5 0〜 5 0 0 z mである。  The gel used in the present invention is not particularly limited as long as it has a three-dimensional network structure and has a solvent (solution) retention ability inside. These gels may be produced by a known technique or a commercially available gel may be used as it is. For example, Sephacryl-300 (Pharmacia), Sepharose 6B gel (Pharmacia), Sephadex G200 (Pharmacia) Gels for cell mouth fining such as GCL-2000 (manufactured by Chidso Co., Ltd.) and Cell mouth fins, and xiapatite having a head mouth. The shape of the gel is not particularly limited, and any shape may be used. However, spherical and fine particles are preferably used in consideration of the packing density in the container and the contact efficiency with the starting solution. Also, the size of the gel is not particularly limited, and varies depending on the shape of the gel, the size of the pores, and the like.For example, when the gel is spherical, the diameter is about 0.1 to 100 zm, preferably It is about 50-500 zm.
また、 本発明において、 ゲルの網目構造は、 フイブリノ一ゲンゃフィ ブロネクチン等の低分子量のきよう雑タンパク質や水などの小分子など の不純物はその中に取り込んで保持するが、 高分子量の FVI I I/vWF複合 体は中に取り込めないような大きさの孔を形成するものである。 具体的 には、 ゲルは、 通常、 3 0万〜 2 0 0 0万のタンパク質による排除限界 を有するものであるが、 FVI I I/vWF複合体の分子量が数百万から 2, 0 0 0万程度であることを考慮して、 好ましくは 3 0万〜 1 0 0 0万、 よ り好ましくは 3 0万〜 5 0 0万のタンパク質による排除限界を有する。 この際、 ゲルの排除限界が 2 0 0 0万を超えると、 目的精製物である F VIII/vWF複合体をもゲルの網目構造中に取り込んでしまい、 FVIII/vWF 複合体の精製効率が低下する恐れがある。 これに対して、 ゲルの排除限 界が 30万未満であると、 ゲルの網目構造中にフイブリノ一ゲン (分子 量 : 約 33万) ゃフイ ブロネクチン (単量体の形態での分子量 : 約 24 万) 等の低分子量のきょう雑タンパク質が効率良く取り込まれず、 即ち、 FVIII/vWF複合体の良好な精製を妨げる可能性がある。 なお、 フイブ口 ネクチンは S— S結合で二量体または四量体の形態をとっていることが あるため、 低分子量のきよう雑夕ンパク質中に二量体の形態のフイ ブ口 ネクチンが存在する場合には、 ゲルのタンパク質による排除限界を、 5 0万〜 2000万、 より好ましくは 50万〜 1 000万、 最も好ましく は 50万〜 500万の範囲にすることが好ましい。 また、 低分子量のき よう雑タンパク質中に四量体の形態のフィブロネクチンが存在する場合 には、 ゲルのタンパク質による排除限界を、 1 00万〜 2000万、 よ り好ましくは 1 00万〜 1 000万、 最も好ましくは 1 00万〜 500 万の範囲にすることが好ましい。 In the present invention, the network structure of the gel is such that impurities such as low molecular weight proteins such as fibrinogen and fibronectin and small molecules such as water are taken in and retained therein, but high molecular weight FVI The II / vWF complex forms pores that are too large to be incorporated. Specifically, gels usually have an exclusion limit of 300,000 to 2,000,000 proteins, but the molecular weight of the FVI II / vWF complex is several million to 2,000,000. Considering the degree of exclusion, it preferably has a protein exclusion limit of 300,000 to 100,000, more preferably 300,000 to 500,000. At this time, if the exclusion limit of the gel exceeds 2,000,000, the desired purified product F The VIII / vWF complex is also incorporated into the gel network, which may reduce the purification efficiency of the FVIII / vWF complex. On the other hand, when the exclusion limit of the gel is less than 300,000, fibrinogen (molecular weight: about 330,000) ゃ fibronectin (molecular weight in monomer form: about 24 It is possible that low-molecular-weight contaminating proteins such as (10,000) will not be incorporated efficiently, that is, it will hinder good purification of the FVIII / vWF complex. In some cases, Nectin is a dimer or tetramer in the S--S bond. In the case where is present, the exclusion limit of the gel by the protein is preferably in the range of 500,000 to 20,000,000, more preferably 500,000 to 100,000,000, and most preferably 500,000 to 5,000,000. In addition, when fibronectin in the form of a tetramer is present in the low molecular weight protein, the exclusion limit of the gel by the protein is set at 1,000,000 to 20,000,000, more preferably 1,000,000 to 1,000,000. It is preferably in the range of 10,000 to 5,000,000.
本発明において、 ゲルの使用量は、 精製されるべき出発溶液の種類や 使用量及びゲルの種類や形状などによって異なり、 FVIII/vWF複合体を 含む溶液を濃縮でき、 フイブリノ一ゲンゃフィブロネクチン等の低分子 量のきょう雑夕ンパク質や水などの小分子を除去できる量であれば特に 制限されないが、 ゲルの網目構造内に可能な限り多くのきょう雑タンパ ク質ゃ小分子を取り込んで保持できることが好ましい。 このような点を 考慮すると、 本発明に使用されるゲルは凍結乾燥などにより乾燥した状 態で添加された方が湿潤ゲルを添加する場合に比べてゲルの吸水量が高 くなり、 溶液の濃縮度合いの面からより好ましい。 また、 乾燥ゲルを使 用する場合、 網目構造が湿潤時の状態に戻れることが望ましく、 架橋ゲ ルなど強固な結合をさせたゲルが好ましい。 また、 混合するゲルの使用 量は、 ゲルの構造、 サイズや液の保持能などにより変化するが、 出発溶 液に対して、 通常、 20〜 200 (v/v) %、 好ましくは 50〜: L 5 0 (v/v) %、 より好ましくは 80〜: L O O (v/v) %、 最も好ま しくは 90〜: L 00 (v/v) %である。 なお、 本明細書中、 「乾燥状 態にあるゲル (乾燥ゲル) 」 ということばは、 その網目構造内部に液体 を十分量保持する能力を有するゲルという意味で使用され、 ゲル中の水 分含量は少なければ少ないほど好ましいが、 必ずしも水分含量が 0でな ければならないことを意味するものではない。 このような乾燥ゲルは、 ゲルを緩衝液などで平衡化することなく、 そのまま使用してもよい。 あ るいは、 上記したゲルを、 シリカゲル、 塩化カルシウム、 五酸化二リ ン などの乾燥剤入りのデシケ一夕一中で乾燥する ; 乾燥空気を通過する ; 凍結乾燥するなどの方法によって、 予め乾燥してから使用してもよい。 本発明において、 出発溶液とゲルとの混合は、 両者の接触が十分達成 できる方法であれば特に限定されないが、 短時間に接触が完了するため に、 容器に出発溶液及びゲルを投入して攪拌しながら混合することが好 ましい。 In the present invention, the amount of the gel used depends on the type and amount of the starting solution to be purified, the type and the shape of the gel, and the like. The solution containing the FVIII / vWF complex can be concentrated, and the amount of the gel such as fibrinogen / fibronectin can be increased. It is not particularly limited as long as it can remove small molecules such as low molecular weight protein and water, but it captures as much foreign protein as possible and retains it in the gel network structure. Preferably it is possible. In consideration of these points, the gel used in the present invention, when added in a dry state by freeze-drying or the like, has a higher water absorption amount than when a wet gel is added, and the gel of the solution It is more preferable in terms of the degree of concentration. When a dry gel is used, it is desirable that the network structure can be returned to a wet state, and a gel having a strong bond such as a crosslinked gel is preferable. Also use gel to mix The amount varies depending on the structure of the gel, the size and the retention capacity of the solution, but is usually 20 to 200 (v / v)%, preferably 50 to: L50 (v / v) based on the starting solution. )%, More preferably 80 to: LOO (v / v)%, most preferably 90 to: L00 (v / v)%. In this specification, the term “gel in a dry state (dry gel)” is used to mean a gel having a capacity to hold a sufficient amount of liquid inside its network structure, and the water content in the gel The less is the better, but does not necessarily mean that the water content must be zero. Such a dried gel may be used as it is without equilibrating the gel with a buffer or the like. Alternatively, the above gel is dried in a desiccator containing a desiccant such as silica gel, calcium chloride, phosphorus pentoxide, etc. overnight; passing through dry air; It may be used afterwards. In the present invention, the mixing of the starting solution and the gel is not particularly limited as long as the contact between the starting solution and the gel can be sufficiently achieved.However, in order to complete the contact in a short time, the starting solution and the gel are put into a container and stirred. It is preferable to mix while mixing.
本発明において、 出発溶液とゲルの混合物からゲルを分離する方法は- 従来公知の方法と同様の方法が使用される。 例えば、 遠心分離 (通常、 4〜 20 で、 500〜5000 xg、 30分、 好ましくは 4〜8。Cで、 1 000〜3000 xg、 30分) 、 吸引濾過、 加圧瀘過などが挙げら れる。 これらのうち、 加圧瀘過及び遠心分離が好ましく使用される。  In the present invention, a method for separating a gel from a mixture of a starting solution and a gel is the same as a method known in the art. For example, centrifugation (usually, 4 to 20, 500 to 5000 xg, 30 minutes, preferably 4 to 8. C, 1,000 to 3,000 xg, 30 minutes), suction filtration, pressure filtration, and the like. It is. Of these, pressure filtration and centrifugation are preferably used.
このような方法によって、 FVIII/vWF複合体は、 一回の操作で、 通常、 容積比で、 3倍から 1 0倍程度濃縮でき、 さらにフイ ブリノ一ゲンゃフ ィブロネクチン等の低分子量のきよう雑夕ンパク質や水などの小分子が、 通常、 全体の 30〜9 0%、 好ましくは全体の 70〜 9 0 %除去される, 本明細書において、 不純物の除去率は、 比活性及び S D S— PAGEに よって測定された値を基準に算出した値である。 By such a method, the FVIII / vWF complex can be concentrated in a single operation, usually about 3 to 10 times in volume ratio, and can be reduced to a low molecular weight such as fibrinogen-fibronectin. Small molecules such as sun protein and water are usually removed by 30 to 90% of the total, preferably 70 to 90% of the total. In the present specification, the removal rate of impurities is determined by specific activity and SDS. — On PAGE Therefore, it is a value calculated based on the measured value.
また、 本発明において、 濃縮 · 不純物除去操作は、 一回行なわれても あるいは、 繰り返して行なわれてもよい。 濃縮,不純物除去操作を繰り 返して行なう際には、 該操作を、 2〜5回程度繰り返すことが好ましい, 該操作を 5回を超えた回数繰り返すことにより得られる FVI I I/vWF複合 体の純度はより高まるものの、 繰り返しに見合う純度の向上があまり認 められず時間や手間を考慮すると経済的でなく、 添加するゲルの性能や 処理する液量によっても異なるが、 2〜 5回程度行うことにより濃縮は 十分達成できる。 このようにして上記操作を繰り返し行うことによって、 FVI I I/vWF複合体はさらに少量に濃縮され、 フイブリノ一ゲンゃフイブ ロネクチン等のきょう雑夕ンパク質や水などの小分子がさらに除去され る。 なお、 上記濃縮 ·不純物除去操作を繰り返し行う際には、 各操作に おいて使用されるゲルは濃縮操作毎に洗浄することにより、 ゲル内部に 取込んだきよう雑夕ンパク質を除去して再使用することができる。 また. 各操作において使用されるゲルは同一であってもあるいは異なるもので あってもよい。  Further, in the present invention, the concentration / impurity removal operation may be performed once or repeatedly. When the concentration and impurity removal operations are repeated, it is preferable to repeat the operation about 2 to 5 times. The purity of the FVI II / vWF complex obtained by repeating the operation more than 5 times Although the purity is higher, it is not economical when considering time and labor because the improvement in purity corresponding to the repetition is not much observed. Concentration can be achieved sufficiently. By repeating the above-described operation in this manner, the FVI I I / vWF complex is further concentrated to a small amount, and small proteins such as water and other proteins such as fibrinogen-fibronectin are further removed. When the above concentration / impurity removal operations are repeated, the gel used in each operation is washed after each concentration operation to remove miscellaneous proteins so that they can be incorporated into the gel and re-used. Can be used. The gel used in each operation may be the same or different.
本発明の第二の態様によると、 本発明の第一の態様による濃縮♦ 不純 物除去操作の後、 FVI I I/vWF複合体を含む溶液を限外瀘過またはゲル濾 過クロマトグラフィーを行なうことからなる血液凝固第 VI I I因子/フ オン , ビルブラント因子複合体の精製方法が提供される。 なお、 本発明 の第二の態様による限外濾過工程を、 以下、 「第一の限外瀘過工程」 と もいう。  According to the second aspect of the present invention, the solution containing the FVI II / vWF complex is subjected to ultrafiltration or gel filtration chromatography after the concentration removal operation according to the first aspect of the present invention. The present invention provides a method for purifying a blood coagulation factor VIII / Phosphate / Vilbrand factor complex comprising: The ultrafiltration step according to the second aspect of the present invention is hereinafter also referred to as “first ultrafiltration step”.
本発明において使用される FVI I I/vWF複合体を含む溶液は上記第一の 態様における定義と同様である。  The solution containing the FVI I / vWF complex used in the present invention is the same as defined in the first embodiment.
本発明において、 限外瀘過は、 FVI I I/vWF複合体と出発溶液中に含ま れる他の不純物、 例えば、 フイブリノ一ゲンゃフイブロネクチンとを効 率的に分離できる限外瀘過膜を用いて行われる。 この際、 FVIII/vWF複 合体の分子量が数百万から 2 , 000万程度であるのに対して、 フイブ リノーゲンゃフィブロネクチンの分子量が約 33万ならびに約 24万 (単量体の形態) 程度であることを考慮すると、 限外濾過に使用される 限外瀘過膜としては、 通常、 30万〜 1 800万の分画分子量、 好まし くは 30万〜 500万の分画分子量、 より好ましくは 30万〜 1 00万 の分画分子量を有するような膜が使^!される。 この際、 限外瀘過膜の分 画分子量が 1 800万を超えると、 FVIII/vWF複合体が部分的にフィブ リノ一ゲンゃフィブロネクチ: 等の不純物と一緒に限外瀘過膜を通過し てしまい、 目的とする FVIII/vWF複合体の収率が低下してしまう恐れが ある。 これに対して、 限外瀘過膜の分画分子量が 30万未満であると、 フイブリノ一ゲンゃフィブロネクチン等の不純物が限外濾過膜を通過で きず、 FVIII/vWF複合体から良好に分離が行われなくなる恐れがある。 このような限外濾過膜としては市販の限外瀘過膜がそのまま使用され、 市販の限外瀘過膜としては、 例えば、 BIOMAX lOOOKDa (ミ リポア社製) 、 0. 1ミクロン メンブレンフィル夕一 (ミ リポア社製) などが挙げら れる。 なお、 本明細書において、 分画分子量が 30万〜 1 800万の限 外瀘過膜は、 ポアサイズが約 0. 02〜 2ミクロンの限外濾過膜に相当 する。 In the present invention, ultrafiltration is effective for the FVI II / vWF complex and other impurities contained in the starting solution, for example, fibrinogen-fibronectin. This is performed using an ultrafiltration membrane that can be separated efficiently. At this time, the molecular weight of the FVIII / vWF complex is about several million to about 20 million, whereas the molecular weight of fibrinogen / fibronectin is about 330,000 and about 240,000 (in the form of monomer). Taking into account that, the ultrafiltration membrane used for ultrafiltration usually has a cut-off molecular weight of 300,000 to 18,000,000, preferably a cut-off molecular weight of 300,000 to 5,000,000, more preferably A membrane having a molecular weight cut-off of 300,000 to 100,000 is used. At this time, when the molecular weight cut off of the ultrafiltration membrane exceeds 18 million, the FVIII / vWF complex partially passes through the ultrafiltration membrane together with impurities such as fibrinogen / fibronectin. The yield of the desired FVIII / vWF complex may be reduced. On the other hand, if the molecular weight cut-off of the ultrafiltration membrane is less than 300,000, impurities such as fibrinogen / fibronectin cannot pass through the ultrafiltration membrane, resulting in good separation from the FVIII / vWF complex. It may not be done. As such an ultrafiltration membrane, a commercially available ultrafiltration membrane is used as it is. Examples of commercially available ultrafiltration membranes include BIOMAX lOOOKDa (manufactured by Millipore) and 0.1 micron membrane filter. (Millipore). In the present specification, an ultrafiltration membrane having a molecular weight cut-off of 300,000 to 18,000,000 corresponds to an ultrafiltration membrane having a pore size of about 0.02 to 2 microns.
なお、 上述したように、 フイブロネクチンは S— S結合で二量体また は四量体の形態をとっていることがあるため、 低分子量のきよう雑タン パク質中に二量体の形態のフィ ブロネクチンが存在する場合には、 限外 瀘過に使用される限外濾過膜の分画分子量は、 50万〜 1 800万の分 画分子量、 より好ましくは 50万〜 500万、 最も好ましくは 50万〜 1 00万の範囲であることが好ましい。 また、 低分子量のきょう雑タン パク質中に四量体の形態のフィ ブロネクチンが存在する場合には、 限外 濾過に使用される限外瀘過膜の分画分子量は、 1 0 0万〜 1 8 0 0万の 分画分子量、 より好ましくは 1 0 0万〜 5 0 0万の範囲であることが好 ましい。 As described above, since fibronectin may be in the form of a dimer or a tetramer due to the S--S bond, the dimer form is present in the low-molecular-weight protein. When fibronectin is present, the molecular weight cut off of the ultrafiltration membrane used for ultrafiltration is from 500,000 to 18 million, more preferably from 500,000 to 5 million, most preferably It is preferably in the range of 500,000 to 100,000. In addition, if the tetrameric form of fibronectin is present in low molecular weight foreign proteins, The molecular weight cut off of the ultrafiltration membrane used for filtration is preferably in the range of 100,000 to 1,800,000, and more preferably in the range of 100,000 to 500,000. Good.
このような簡単な限外瀘過操作によって、 フイ ブリノ一ゲンゃフイ ブ ロネクチン等の低分子量のきょう雑タンパク質が、 通常、 全体の 9 0 % 以上、 好ましぐは全体の 9 9 %以上の割合で除去される。 また、 限外瀘 過操作は、 フイブリノ一ゲンゃフィブロネクチン等の低分子量のきよう 雑タンパク質に加えて、 混入するウィルスをも合わせて除去するため好 ましい。  By such a simple ultrafiltration procedure, low-molecular-weight contaminating proteins such as fibrinogen and fibronectin are usually more than 90% of the total, and preferably more than 99% of the total. Removed at a rate. Ultrafiltration is also preferable because it removes contaminating viruses in addition to low molecular weight proteins such as fibrinogen and fibronectin.
また、 本発明において、 上記限外瀘過操作は、 一回行ってもあるいは、 繰り返して、 例えば、 2〜 1 0回程度行ってもよい。 限外濾過操作は 1 0回を超えて繰り返すことも可能であるが、 なるべく短時間で処理し、 成分のロスを防ぐためには繰り返し回数は少ない方がより好ましい。 上 記限外瀘過操作を繰り返し行うことによって、 フイブリノ一ゲンゃフィ ブロネクチン等のきょう雑タンパク質がさらに除去されて、 目的物であ る FVI I I/vWF複合体がさらに高純度で精製される。 なお、 上記精製操作 を繰り返し行う際には、 各操作において使用される限外瀘過膜は同一で あってもあるいは除去しょうとするきよう雑物の種類によって異なるも のに変更してもよい。  In the present invention, the ultrafiltration operation may be performed once or repeatedly, for example, about 2 to 10 times. It is possible to repeat the ultrafiltration operation more than 10 times, but it is more preferable that the number of repetitions is small in order to process in as short a time as possible and prevent loss of components. By repeatedly performing the above ultrafiltration operation, contaminant proteins such as fibrinogen / fibronectin are further removed, and the target FVI II / vWF complex is purified with higher purity. When the above purification operation is repeatedly performed, the ultrafiltration membrane used in each operation may be the same or may be changed to a different one depending on the kind of the foreign matter to be removed. .
また、 上記第一の態様による精製工程の後にゲル濾過クロマトグラフ ィ一による精製工程を行なってもよい。 この際使用されるゲルの夕ンパ ク質による排除限界は、 3 0万〜 2 0 0 0万のものが好ましく、 例えば、 Sephacryl-300 (フアルマシア社製) 及び Sepharose 6Bカラム (フアル マシア社製) 等などが使用できる。 この場合においても、 同様にして、 低分子量のきよう雑夕ンパク質中に二量体の形態のフィブロネクチンが 存在する場合には、 ゲルの夕ンパク質による排除限界を 5 0万〜 2 0 0 0万の範囲にすることが好ましく、 また、 低分子量のきょう雑タンパク 質中に四量体の形態のフィブロネクチンが存在する場合には、 ゲルの夕 ンパク質による排除限界を 1 00万〜 2000万の範囲にすることが好 ましい。 After the purification step according to the first aspect, a purification step by gel filtration chromatography may be performed. The exclusion limit of the gel used at this time is preferably 300,000 to 200,000. For example, Sephacryl-300 (manufactured by Pharmacia) and Sepharose 6B column (manufactured by Pharmacia) Etc. can be used. In this case as well, similarly, when the dimeric form of fibronectin is present in the low molecular weight protein, the exclusion limit of the gel by protein is set at 500,000 to 200,000. In the case where the tetrameric form of fibronectin is present in the low-molecular-weight contaminant protein, the exclusion limit of the gel due to the protein is set at 100,000 to 20,000,000. It is preferable to set the range.
なお、 上記では、 第一の態様による精製工程と第二の態様による精製 工程とをそれそれ独立して説明したが、 これらの精製工程を組み合わせ て使用することによって、 さらに純度の高い FVIII/vWF複合体が得られ る。 第一の態様による精製工程と第二の態様による精製工程を組み合わ せて使用する際のこれらの順序は、 特に限定されず、 いかなる順序で行 われてもよいが、 第一の態様による精製工程では出発溶液を少容量にま で濃縮でき次の精製工程により少ない量の試料を用いればよい点及びク リオプレシピテートを直接第二の態様による精製工程に使用すると多量 のフイブリノ一ゲンゃフィブロネクチン等の低分子量のきよう雑タンパ ク質により限外濾過膜の孔が詰まってしまう点などを考慮すると、 初め に第一の態様による精製工程を行った後、 次に第二の態様による精製ェ 程を行うことにより、 FVIII/vWF複合体を精製することが好ましい。 本発明の第三の態様によると、 前述したような第一の態様による精製 工程、 または第一の態様による精製工程及び第二の態様による精製工程 との組み合わせ、 好ましくは第一の態様による精製工程及び第二の態様 による精製工程との組み合わせにより精製された FVIII/vWF複合体をさ らに血液凝固第 VIII因子とフォン · ビルブラント因子とに解離するこ とからなる血液凝固第 VIII因子の精製方法が提供される。  In the above, the purification step according to the first embodiment and the purification step according to the second embodiment have been described independently of each other. However, by using these purification steps in combination, FVIII / vWF with higher purity can be obtained. A complex is obtained. The order in which the purification step according to the first aspect and the purification step according to the second aspect are used in combination is not particularly limited, and may be performed in any order. Thus, the starting solution can be concentrated to a small volume and a small amount of sample can be used in the next purification step.If cryoprecipitate is used directly in the purification step according to the second embodiment, a large amount of fibrinogen / fibronectin can be obtained. Considering the fact that the pores of the ultrafiltration membrane are clogged by low-molecular-weight proteins such as urea, the purification process according to the first aspect is first performed, and then the purification is performed according to the second aspect. It is preferable to purify the FVIII / vWF complex by performing the step. According to a third aspect of the present invention, the purification step according to the first aspect as described above, or a combination of the purification step according to the first aspect and the purification step according to the second aspect, preferably purification according to the first aspect Of the blood coagulation factor VIII comprising dissociating the FVIII / vWF complex purified by the combination of the step and the purification step according to the second embodiment into blood coagulation factor VIII and von Willebrand factor. A purification method is provided.
上記態様において、 FVIII/vWF複合体の FVIII及び vWFへの解離方法 は、 従来公知の方法が同様にして適用できる。 具体的には、 0. 25〜 1 M、 好ましくは 0. 25〜0. 5 Mの塩化カルシウム (C a C l 2) の存在下で FVIII/vWF複合体を FVIII及び vWFに解離する方法などが挙 げられる。 In the above embodiment, a conventionally known method can be applied to the method of dissociating the FVIII / vWF complex into FVIII and vWF in the same manner. Specifically, 0. 25~ 1 M, preferably a method of dissociating FVIII / vWF complex in FVIII and vWF in the presence of 0. 25-0. 5 M calcium chloride (C a C l 2) Is raised I can do it.
また、 上記態様において、 このようにして、 FVIII/vWF複合体の FVII I及び vWFへの解離操作を行なった後は、 解離後の FVIII及び vWFの混 合液を限外瀘過により FVIIIをより精製する工程 (以下、 「第二の限外 濾過工程」 ともいう) を行なうことが好ましい。 この血液凝固第 VIII 因子及びフォン ' ビルブラント因子の混合液を限外瀘過により精製する 工程では、 FVIIIの分子量が 25万〜 30万とフイブリノ一ゲン (分子 量:約 34万) 及びフイブロネクチン (単量体の形態での分子量:約 2 4万) の分子量と近似してい ので、 解離工程は、 特に第一の態様によ る精製工程及び第二の態様による精製工程との組み合わせることにより フイブリノ一ゲンゃフイブロネクチン等のきょう雑タンパク質を可能な 限り除去した後に、 行われることが好ましい。  Further, in the above embodiment, after the dissociation operation of the FVIII / vWF complex into FVII I and vWF is performed in this manner, the mixed solution of FVIII and vWF after dissociation is further subjected to ultrafiltration to further remove FVIII. It is preferable to perform a purification step (hereinafter, also referred to as a “second ultrafiltration step”). In the step of purifying the mixture of blood coagulation factor VIII and von 'Vilbrand factor by ultrafiltration, the molecular weight of FVIII is 250,000 to 300,000 and fibrinogen (molecular weight: about 340,000) and fibronectin ( The molecular weight in the form of a monomer is approximately 240,000), so that the dissociation step is performed by combining the purification step according to the first embodiment and the purification step according to the second embodiment. It is preferably carried out after removing contaminant proteins such as gender fibronectin as much as possible.
前述の工程によりきよう雑蛋白質を可能な限り除去した後に、 FVIII/ vWF複合体を FVIII及び vWFに解離操作を行うことにより、 実質的に FV III (分子量 25〜30万) 及び vWF (分子量約 2 000万) のみから 構成される混合溶液が得られるので、 この混合溶液に第二の限外瀘過ェ 程を施すことによって、 FVIII (分子量 25〜30万) のみが実質的に 純粋な状態で限外瀘過膜を通過する。 すなわち、 FVIII/vWF複合体は、 第一の態様による精製工程および/または第二の態様による精製工程を 経ることにより、 高純度にまで精製されるので、 この純化 FVIII/vWF複 合体を含む溶液を解離し、 さらに第二の限外濾過工程により精製された FVIIIもまた、 高純度でかつ高収率で得られる。 なお、 第二の限外濾過 工程に使用される限外瀘過膜は第一の限外濾過工程で記載したのと同様 のものが使用でき、 また、 第一の限外濾過工程及び第二の限外濾過工程 を行う際に使用される限外濾過膜は、 同一であってもあるいは異なるも のであってもよい。 また、 FVIII/vWF複合体の FVIII及び vWFへの解離操作を行なった後、 または上記第二の限外瀘過工程の後に、 さらにァフィ二ティ一クロマ ト グラフィ一による精製を行なうことによって、 FVIIIが選択的に吸着 · 回収され、 さらに純度の高い FVIIIを得ることができ、 好ましい。 この 際ァフィ二ティーク口マ トグラフィ一で使用される吸着体のリガン ドは、 特に制限されず公知のリガン ドが同様にして使用されるが、 例えば、 FV IIIに親和性を有する抗 FVIIIモノクロ一ナル抗体、 FVIIIとの結合能 は有するがセリンプロテアーゼ活性を失わせた トロンビン誘導体である アンヒ ドロ トロンビンなどが挙げられる。 これらのうち、 目的 FVIIIの 精製効率や異種動物由来のタンパク質の混入の危険性などを考慮すると、 アンヒ ドロ トロンビンが特に吸着体のリガン ドとして好ましく使用され る。 なお、 本'ァフィ二ティークロマ トグラフィーにおいて、 上記リガン ドは、 単独で使用されてもまたは 2種以上の組み合わせで使用されても よい。 また、 本発明においてリガン ドとして特に好ましく使用されるァ ンヒ ドロ トロンビンは、 公知の方法、 例えば、 WO 9 9/206 5 5 ·%や Ashton, R.W. et al . , "Preparation and characterization of a nhydrothrombin", Biochemistry (1995), Vo. 34, No. 19, p.6454-646 3に記載されるのと同様にして調製される。 以下、 本発明の実施例により具体的に説明する。 なお、 FVIII/vWF複 合体及び FVIIIの精製度は、 上記発明の実施の形態で述べたのと同様に して算出した。 After removing the miscellaneous proteins as much as possible by the above-described steps, the FVIII / vWF complex is dissociated into FVIII and vWF to substantially reduce FVIII (molecular weight of 250,000 to 300,000) and vWF (molecular weight of about A second ultrafiltration process is performed on this mixed solution to obtain only a pure FVIII (molecular weight of 250,000 to 300,000). Through the ultrafiltration membrane. That is, the FVIII / vWF complex is purified to a high degree of purity by passing through the purification step according to the first aspect and / or the purification step according to the second aspect, so that the solution containing the purified FVIII / vWF complex FVIII purified by the second ultrafiltration step is also obtained in high purity and high yield. As the ultrafiltration membrane used in the second ultrafiltration step, the same one as described in the first ultrafiltration step can be used. The ultrafiltration membrane used in performing the ultrafiltration step may be the same or different. Further, after performing the dissociation operation of the FVIII / vWF complex into FVIII and vWF, or after the second ultrafiltration step, purification by affinity chromatography is further performed to obtain FVIII. Is preferentially adsorbed and recovered, so that FVIII with higher purity can be obtained. In this case, the ligand of the adsorbent used in affinity mouth chromatography is not particularly limited, and a known ligand can be used in the same manner. For example, an anti-FVIII monoclonal having affinity for FV III can be used. Examples include a null antibody and anthrom- thrombin, which is a thrombin derivative that has a binding ability to FVIII but has lost serine protease activity. Of these, anhydrothrombin is particularly preferably used as a ligand for the adsorbent, in consideration of the purification efficiency of the objective FVIII and the risk of contamination with a protein derived from a heterologous animal. In the affinity chromatography, the ligands may be used alone or in combination of two or more. In addition, anhydrothrombin which is particularly preferably used as a ligand in the present invention can be prepared by a known method, for example, WO99 / 20655%, Ashton, RW et al., "Preparation and characterization of anhydrothrombin". , Biochemistry (1995), Vo. 34, No. 19, p. 6454-6463. Hereinafter, the present invention will be described specifically with reference to examples. The degree of purification of the FVIII / vWF complex and FVIII was calculated in the same manner as described in the embodiment of the present invention.
実施例 1 Example 1
凍結クェン酸血漿 1 0リ ツ トルを 4 °Cで溶解して、 ク リオプレシピテ —トを得た。 次に、 このク リオプレシピテートを 4 °Cで遠 分離 ( 3 , 000 xg、 30分) することによって血漿と分離し、 1 リ ッ トルのク ェン酸緩衝液 (P H 7. 0 ) に溶解して、 クリォ溶解液を得た。 このク リオ溶解液に、 90% (v/v) となるように乾燥 Sephacry卜 300 (フ アルマシア社製) を加え、 20°Cで 30分間、 撹拌した後、 加圧瀘過に より上清を分離した。 得られた上清約 200 mlについて、 上記同様の 操作を再度繰り返して、 約 40mlのクリオ濃縮液 (FVIII/vWF複合体 を含む濃縮液) を得た。 これにより、 一回の操作でおおよそ 5倍の濃縮 が可能であった。 Ten liters of frozen citrate plasma was thawed at 4 ° C to obtain cryoprecipitate. Next, the cryoprecipitate was separated from plasma by centrifugation at 4 ° C (3,000 xg, 30 minutes), and 1 liter of cryoprecipitate was separated. It was dissolved in a phosphate buffer (PH 7.0) to obtain a cryo-dissolved solution. To this lysate was added 90% (v / v) of dried Sephacry 300 (Pharmacia), and the mixture was stirred at 20 ° C for 30 minutes. Was isolated. The same operation as described above was repeated again for about 200 ml of the obtained supernatant to obtain about 40 ml of a cryo-concentrated solution (a concentrated solution containing the FVIII / vWF complex). This enabled a 5-fold concentration in a single operation.
さらに、 このクリオ濃縮液を Shepharose 6B (フアルマシア社製) 力 ラム ( 500 m 1 ) でゲル瀘過を行い、 ボイ ド容積付近に溶出する FVI II/vWF複合体を回収した。  Further, the cryo-concentrated solution was subjected to gel filtration with a Shepharose 6B (Pharmacia) column (500 ml) to recover an FVI II / vWF complex eluted near the void volume.
続いて、 このようにして得られた FVIII活性を有するピーク回収液を 0. 1 ミクロン メンブレンフィル夕一 (ミ リポア社製) で限外瀘過す ることによって、 回収液中に含まれる微量のフィプリノーゲンゃフイブ ロネクチン等の不純物を除去した。  Subsequently, the thus obtained peak recovered solution having FVIII activity is subjected to ultrafiltration with a 0.1 micron membrane filter Yuichi (manufactured by Millipore) to obtain a small amount of filtrate contained in the recovered solution. Impurities such as Plinogen-Fibronectin were removed.
上記限外瀘過操作を繰り返して約 1 0万倍にまで濃縮した後、 この濃 縮液に 0. 3M 塩化カルシウムを添加することにより、 FVIII/vWF複 合体を解離した後、 さらに上記と同様にして 0. 1 ミクロン メンブレ ンフィルタ一 (ミ リポア社製) を用いて限外瀘過することによって、 FV IIIのみを選択的に膜に通過させ、 純化 FVIIIを得た。 この際の純化 FV IIIの比活性は 2 , 000 u/mgであり、 回収率は約 40 %であった。 実施例 2  After the above ultrafiltration procedure was repeated to concentrate to about 100,000 times, 0.3M calcium chloride was added to this concentrated solution to dissociate the FVIII / vWF complex, and the same as above By ultrafiltration using a 0.1 micron membrane filter (manufactured by Millipore), only FVIII was selectively passed through the membrane to obtain purified FVIII. At this time, the specific activity of the purified FV III was 2,000 u / mg, and the recovery was about 40%. Example 2
実施例 1と同様にして調製したクリォ溶解液に、 90 % (v/v) と なるように乾燥 Shepharose 6B (フアルマシア社製) を添加し、 20 °C で 30分間、 撹拌した後、 加圧瀘過により上清を分離した。 得られた上 清約 200 mlについて、 上記同様の操作を再度繰り返して、 約 40m 1のクリオ濃縮液 (FVIII/vWF複合体を含む濃縮液) を得た。 これによ り、 一回の操作でおおよそ 5倍の濃縮が可能であった。 Dried Shepharose 6B (manufactured by Pharmacia) was added to the cryo-lysate solution prepared in the same manner as in Example 1 so as to have a concentration of 90% (v / v). The supernatant was separated by filtration. The same operation as described above was repeated again for about 200 ml of the obtained supernatant to obtain about 40 ml of a cryo-concentrated solution (a concentrated solution containing the FVIII / vWF complex). This As a result, a 5-fold concentration was possible with a single operation.
さらに、 このク リオ濃縮液を Sephacry卜 400 (フアルマシア社製) 力 ラム ( 500 ml) でゲル瀘過を行い、 ボイ ド容積付近に溶出する FVI II/vWF複合体を回収した。  Further, this crys- tal concentrate was subjected to gel filtration using a Sephacry 400 (manufactured by Pharmacia) column (500 ml) to recover an FVI II / vWF complex eluted near the void volume.
続いて、 このようにして得られた FVIII活性を有するピーク回収液を 0. 1ミクロン メンブレンフィルター (ミ リポア社製) で限外濾過す ることによって、 回収液中に含まれ 微量のフイブリノ一ゲンゃフイブ ロネクチン等の不純物を除去した。  Subsequently, the thus obtained peak recovery solution having FVIII activity is subjected to ultrafiltration using a 0.1-micron membrane filter (manufactured by Millipore) to obtain a small amount of fibrinogen contained in the recovery solution. (4) Impurities such as fibronectin were removed.
上記操作を繰り返して約 1 Q万倍にまで濃縮した後、 この濃縮液に 0 , 3 M 塩化カルシウムを添加することにより、 FVIII/vWF複合体を解離 した後、 さらに上記と同様にして BIOMAX lOOOKDa (ミ リポア社製) を 用いて限外瀘過を行うことによって、 FVIIIのみを選択的に膜に通過さ せ、 純化 FVIIIを得た。 この際の純化 FVIIIの比活性は 2 , 200 u/ mgであり、 回収率は約 30 %であった。  After the above procedure was repeated to concentrate to about 1 Q 10,000 times, 0.3 M calcium chloride was added to this concentrate to dissociate the FVIII / vWF complex, and then BIOMAX lOOOKDa By ultrafiltration using (Millipore), only FVIII was selectively passed through the membrane to obtain purified FVIII. At this time, the specific activity of the purified FVIII was 2,200 u / mg, and the recovery was about 30%.
実施例 3 Example 3
実施例 1と同様にして最終的に調製されたク リォ濃縮液 30 m 1を、 Sephacryl-4B (フアルマシア社製) カラム (500ml ) でゲル濾過を 行ない、 ボイ ド容積付近に溶出する FVIII/vWF複合体を回収した。  FVIII / vWF eluted in the vicinity of the void volume by subjecting 30 ml of the cryo-concentrated solution finally prepared in the same manner as in Example 1 to gel filtration using a Sephacryl-4B (Pharmacia) column (500 ml) to carry out gel filtration The complex was recovered.
続いて、 このようにして得られた FVIII活性を有するピーク回収液を、 緩衝液(50mM Tris-HCl, 0.15M NaCl, pH7.5)で平衡化したアンヒ ドロ ト ロンビン固定化カラム 20 m 1 ( 5 m g/m 1 ) に添加し、 非吸着ピ一 クを同緩衝液で完全に溶出した後、 解離液(50mM Tris-HCl, O.IM NaCl, 0.25M CaCl2, ρΗ7·5)で vWFを解離 · 溶出した後、 溶出液(50mM Tris-H CI, 0.15M NaCl, 0.15Mへ、、ンス、、アミシ、、ン(benzamidine) , ρΗ7.5)で FVIIIを 溶出した。 このようにして得られた純化 FVIIIの比活性は約 2, 500 u/mgであり、 回収率は約 40 %であった。 産業上の利用可能性 Subsequently, the thus-obtained peak recovery solution having FVIII activity was applied to a 20 m1 immobilized column of anhydrothrombin immobilized with a buffer (50 mM Tris-HCl, 0.15 M NaCl, pH 7.5). 5 mg / m1), completely elute the non-adsorbed peaks with the same buffer, and use the dissociation solution (50 mM Tris-HCl, O.IM NaCl, 0.25 M CaCl 2 , After dissociation and elution of FVIII, FVIII was eluted with an eluate (50 mM Tris-HCI, 0.15 M NaCl, 0.15 M, benzamidine, ρΗ7.5). The specific activity of the purified FVIII thus obtained was about 2,500 u / mg, and the recovery was about 40%. Industrial applicability
上述したように、 本発明の血液凝固第 VIII因子/フォン · ビルブラ ント因子複合体の精製方法は、 血液凝固第 VIII因子/フォン · ビルブ ラント因子複合体を含む溶液及びゲルを混合した後、 この溶液からゲル を分離 ·除去することからなることを特徴とするものである。 この方法 に従うことによって、 FVIII/vWF複合体を含む溶液が簡単な工程でかな りの小容量にまで濃縮できるため、 次工程の精製操作が大きな設備を必 要とせずに行える。 また、 このような方法によって、 FVIII/vWF複合体 を含む溶液中に含まれるフイブリノ一ゲンゃフイブロネクチン等のきょ う雑タンパク質が簡単な工程で効率よく分離 ·除去できる。  As described above, the method for purifying the blood coagulation factor VIII / von-Bilbrand factor complex of the present invention comprises the steps of: mixing a solution and a gel containing the blood coagulation factor VIII / von-Bilbrand factor complex; It consists of separating and removing the gel from the solution. By following this method, the solution containing the FVIII / vWF complex can be concentrated to a very small volume in a simple step, so that the purification operation in the next step can be performed without requiring large equipment. In addition, by such a method, foreign proteins such as fibrinogen and fibronectin contained in the solution containing the FVIII / vWF complex can be efficiently separated and removed by simple steps.
特に、 血液凝固第 VIII因子 zフォン · ビルブラント因子複合体を含 む溶液及びゲルを混合し、 この溶液からゲルを分離 ·除去することによ り当該溶液を濃縮した後、 さらにこの濃縮液を限外瀘過することによつ て、 大容量の FVIII/vWF複合体を含む溶液を簡単な工程で小容量にまで 濃縮し、 さらに FVIII/vWF複合体を簡単な工程でかつ FVIIIの活性の低 下を伴わずに高純度にまで精製することが可能である。  In particular, a solution and a gel containing the blood coagulation factor VIII z von Willebrand factor complex are mixed, and the solution is concentrated by separating and removing the gel from the solution. By ultrafiltration, a solution containing a large volume of FVIII / vWF complex can be concentrated to a small volume in a simple step, and the FVIII / vWF complex can be concentrated in a simple step and reduce the activity of FVIII. It is possible to purify to high purity without reduction.
また、 上記したような高純度にまで精製された FVIII/vWF複合体を血 液凝固第 VIII因子及びフォン ' ビルブラント因子に解離し、 さらにこ の解離液を限外濾過および/またはァフィ二ティークロマトグラフィー によって精製することによって、 血液凝固第 VIII因子はほとんど不純 物を含まずに短時間でかつ効率よく分離できる。  In addition, the FVIII / vWF complex purified to high purity as described above is dissociated into blood coagulation factor VIII and von's Vilbrand factor, and the dissociated solution is subjected to ultrafiltration and / or affinity. By purification by chromatography, blood coagulation factor VIII can be separated in a short time and efficiently with almost no impurities.

Claims

請 求 の 範 囲 The scope of the claims
1. 血液凝固第 VIII因子 zフォン · ビルブラン ト因子複合体を含む 溶液をゲルと混合した後、 混合物からゲルを分離 ·除去することからな る血液凝固第 VIII因子/フォン · ビルブラント因子複合体の精製方法。 1. A blood coagulation factor VIII / von-Bilbrand factor complex, which consists of mixing a solution containing the complex with the gel and separating and removing the gel from the mixture. Purification method.
2. 該ゲルは乾燥ゲルである、 請求の範囲第 1項に記載の方法。  2. The method according to claim 1, wherein the gel is a dry gel.
3. 請求の範囲第 1項または第 2項に記載の方法によって得られた血 液凝固第观因子/フォン · ビルブラント因子複合体を含む溶液に対して ゲル濾過クロマトグラフィ一を行う血液凝固第 VI因子/フォン ' ビルブ ラント因子複合体の精製方法。  3. Blood coagulation VI, which is performed by gel filtration chromatography on a solution containing the blood coagulation factor フ ォ ン / von Willebrand factor complex obtained by the method according to claim 1 or 2. Factor / Von 'method for purification of the bilant factor complex.
4. 請求の範囲第 1項〜第 3項のいずれか 1項に記載の方法によって 得られた血液凝固第 VIII因子/フォン · ビルブラン ト因子複合体を含 む溶液に対して限外濾過による精製工程を行なう血液凝固第 VIII因子 /フォン · ビルブラント因子複合体の精製方法。  4. Purification by ultrafiltration of a solution containing a blood coagulation factor VIII / von Willebrand factor complex obtained by the method according to any one of claims 1 to 3 Method of purifying blood coagulation factor VIII / von Willebrand factor complex.
5. 該ゲルのタンパク質による排除限界が 30万〜 2000万の範囲 である、 請求の範囲第 1項〜第 4項のいずれか 1項に記載の方法。  5. The method according to any one of claims 1 to 4, wherein the exclusion limit of the gel by the protein is in the range of 300,000 to 20,000,000.
6. 請求の範囲第 1項〜第 5項のいずれか 1項に記載の方法によって 得られた血液凝固第 VIII因子/フォン · ビルブラント因子複合体を血 液凝固第 VIII因子及びフォン ' ビルブラント因子に解離させる工程を 含む血液凝固第 VIII因子の精製方法。  6. The blood coagulation factor VIII / von Willebrand factor complex obtained by the method according to any one of claims 1 to 5 is combined with blood coagulation factor VIII and von 'Vilbrandt. A method for purifying blood coagulation factor VIII, comprising a step of dissociating into factor.
7. 請求の範囲第 6項に記載の解離工程後に、 血液凝固第 VIII因子 及びフォン · ビルブラント因子の混合液を限外濾過により精製する工程 を含む、 血液凝固第 VIII因子の精製方法。  7. A method for purifying blood coagulation factor VIII, comprising: after the dissociation step according to claim 6, purifying a mixed solution of blood coagulation factor VIII and von Willebrand factor by ultrafiltration.
8. 該限外瀘過で使用される限外瀘過膜の分画分子量が 30万〜 1 8 00万の範囲である、 請求の範囲第 7項に記載の方法。  8. The method according to claim 7, wherein the molecular weight cut-off of the ultrafiltration membrane used in the ultrafiltration is in the range of 300,000 to 180,000.
9. 請求の範囲第 6項に記載の解離工程または請求の範囲第 7項に記 載の限外濾過工程後に、 血液凝固第 VI因子及びフォン · ビルブラント因 子の混合液をァフィニティ一クロマトグラフィーにより精製する工程を 含む、 血液凝固第 VI因子の精製方法。 9. Dissociation process described in claim 6 or described in claim 7 A method for purifying blood coagulation factor VI, comprising a step of purifying a mixed solution of blood coagulation factor VI and a von Willebrand factor by affinity chromatography after the ultrafiltration step described above.
1 0 . 該ァフィニティーク口マトグラフィ一で使用される吸着体のリガ ンドがアンヒ ドロ トロンビンである、 請求の範囲第 9項に記載の方法。  10. The method according to claim 9, wherein the ligand of the adsorbent used in the affinity mouth chromatography is anhydrothrombin.
PCT/JP2000/002350 1999-04-12 2000-04-11 Method for purifying blood coagulation factor viii and blood coagulation factor viii/von willebrand factor complex WO2000061633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU36767/00A AU3676700A (en) 1999-04-12 2000-04-11 Method for purifying blood coagulation factor viii and blood coagulation factor viii/von willebrand factor complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10458799A JP2002348300A (en) 1999-04-12 1999-04-12 Method for purifying blood coagulation factor viii and blood coagulation factor viii/von willebrand factor complex
JP11/104587 1999-04-12

Publications (1)

Publication Number Publication Date
WO2000061633A1 true WO2000061633A1 (en) 2000-10-19

Family

ID=14384580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002350 WO2000061633A1 (en) 1999-04-12 2000-04-11 Method for purifying blood coagulation factor viii and blood coagulation factor viii/von willebrand factor complex

Country Status (3)

Country Link
JP (1) JP2002348300A (en)
AU (1) AU3676700A (en)
WO (1) WO2000061633A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592591A (en) * 2020-06-17 2020-08-28 博雅生物制药集团股份有限公司 Preparation method of human von willebrand factor/human blood coagulation factor VIII compound, product and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205665A1 (en) * 2016-02-11 2017-08-16 Octapharma AG Method of separating factor viii from blood products

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455301A (en) * 1980-02-26 1984-06-19 Cutter Laboratories, Inc. Antihemophilic factor concentrate
JPS59167519A (en) * 1983-03-15 1984-09-21 Nippon Sekijiyuujishiya Removal of fibrinogen from mixed serum proteins with deactivated thrombin gel
EP0245875A2 (en) * 1986-05-15 1987-11-19 Green Cross Corporation Method of purifying factor VIII
JPH0236199A (en) * 1988-07-22 1990-02-06 Asahi Medical Co Ltd Method for purifying blood coagulation factor and adsorbent material for purification
JPH02255698A (en) * 1989-03-29 1990-10-16 Green Cross Corp:The Preparation of blood coagulation factor viii
WO1991007438A1 (en) * 1989-11-09 1991-05-30 Novo Nordisk A/S A method for isolating factor viii
EP0882789A2 (en) * 1997-06-05 1998-12-09 Fujimori Kogyo Co., Ltd. Method for synthesis of anhydrothrombin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455301A (en) * 1980-02-26 1984-06-19 Cutter Laboratories, Inc. Antihemophilic factor concentrate
JPS59167519A (en) * 1983-03-15 1984-09-21 Nippon Sekijiyuujishiya Removal of fibrinogen from mixed serum proteins with deactivated thrombin gel
EP0245875A2 (en) * 1986-05-15 1987-11-19 Green Cross Corporation Method of purifying factor VIII
JPH0236199A (en) * 1988-07-22 1990-02-06 Asahi Medical Co Ltd Method for purifying blood coagulation factor and adsorbent material for purification
JPH02255698A (en) * 1989-03-29 1990-10-16 Green Cross Corp:The Preparation of blood coagulation factor viii
WO1991007438A1 (en) * 1989-11-09 1991-05-30 Novo Nordisk A/S A method for isolating factor viii
EP0882789A2 (en) * 1997-06-05 1998-12-09 Fujimori Kogyo Co., Ltd. Method for synthesis of anhydrothrombin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAERSGAARD, P. ET. AL.: "Isolation of the factor VIII-von Willebr and factor complex directly from plasma by gel filtration.", J. CHROMATOGR. B. BIOMED. SCI. APPL., vol. 715, no. 2, 1998, pages 357 - 367, XP002928075 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592591A (en) * 2020-06-17 2020-08-28 博雅生物制药集团股份有限公司 Preparation method of human von willebrand factor/human blood coagulation factor VIII compound, product and application

Also Published As

Publication number Publication date
AU3676700A (en) 2000-11-14
JP2002348300A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP3094167B2 (en) Purification method of immune serum globulin
CA1074698A (en) Method of collecting anti-hemophilic factor viii from blood and blood plasma
RU2088590C1 (en) Method of preparing the standardized concentration of human villebrand factor and concentrate obtained by this method
US4341764A (en) Method of preparing fibronectin and antihemophilic factor
EP0378208B2 (en) Production method for protein-containing composition
EP0144957B1 (en) Process for purifying factor viii:c
RU2603103C2 (en) Method of producing fibrinogen using strong anion exchange resin and fibrinogen-containing product
CA2645701C (en) Process for obtaining a concentrate of von willebrand factor or a complex of factor viii/von willebrand factor and use of the same
CA2024667C (en) Process for preparing a concentrate of blood coagulation factor viii-von willebrand factor complex from total plasma
CA2073012C (en) Method for isolating factor viii
AU2003244850B2 (en) Processes for the preparation of fibrinogen
US5252217A (en) Blood coagulation factor XI concentrate having high specific activity, suitable for therapeutic use, and process for preparing same
AU752271B2 (en) Method for preparing by filtration a virally secure factor VIII solution
US20020099174A1 (en) Filtration of plasma mixtures using cellulose-based filter aids
KR100436857B1 (en) Methods for Producing Factor Nine from Biological Sources
WO2007046631A1 (en) Method for manufacturing high purified factor ix
WO2000061633A1 (en) Method for purifying blood coagulation factor viii and blood coagulation factor viii/von willebrand factor complex
US4406886A (en) Purification of antihemophilia factor VIII by precipitation with zinc ions
WO1999020655A1 (en) Method for purifying thrombin substrates and/or inhibitors or method for eliminating the same
US20210087224A1 (en) Compositions and methods for generating modified cryo poor plasma
Liu et al. An improved method for the preparation of intermediate‐purity antihemophilic factor concentrate for therapeutic usage
JP2931655B2 (en) Method for producing blood concentrate VIII-Fon-Vilbrand factor complex concentrate from whole plasma
DK1037923T4 (en) A process for the filtration to produce a solution with regard to virus-safe factor VIII
JPS59167519A (en) Removal of fibrinogen from mixed serum proteins with deactivated thrombin gel
AU710566B2 (en) Filtration of plasma mixtures using cellulose-based filter aids

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase