WO2000061368A1 - Composite material comprising polystyrene resin foam layer and thermoplastic resin layer - Google Patents

Composite material comprising polystyrene resin foam layer and thermoplastic resin layer Download PDF

Info

Publication number
WO2000061368A1
WO2000061368A1 PCT/JP1999/005996 JP9905996W WO0061368A1 WO 2000061368 A1 WO2000061368 A1 WO 2000061368A1 JP 9905996 W JP9905996 W JP 9905996W WO 0061368 A1 WO0061368 A1 WO 0061368A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
composite material
thermoplastic resin
weight
Prior art date
Application number
PCT/JP1999/005996
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Iwamoto
Manabu Sato
Kenichi Takase
Toru Kino
Takasi Muroi
Yoshiaki Momose
Original Assignee
Jsp Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10325899A external-priority patent/JP4059415B2/en
Application filed by Jsp Corporation filed Critical Jsp Corporation
Priority to AU63671/99A priority Critical patent/AU6367199A/en
Publication of WO2000061368A1 publication Critical patent/WO2000061368A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate

Definitions

  • the present invention relates to a composite material, and more particularly to a sheet or plate-like composite material having a polystyrene resin foam layer and a thermoplastic resin layer.
  • Expanded polystyrene sheets are widely used as materials for thermoforming various containers such as trays, bowls, and cups.
  • foamed polystyrene sheets have poor oil and solvent resistance.
  • its heat resistance is relatively low, and when the container is heated in a microwave oven, it tends to be deformed.
  • Japanese Utility Model Publication No. 62-209-69 discloses that foamed polystyrene is used as an adhesive with a mixture of polybutadiene, polyisoprene, styrene-butadiene copolymer, or a mixture of thermoplastic rubber and polyethylene.
  • a composite sheet is shown in which a polyolefin resin film is adhered to a sheet.
  • thermoplastic rubber which is more than three times more expensive than polystyrene, polyethylene, etc.
  • the adhesive strength cannot be sufficiently satisfied.
  • 62-137384 proposes that urethane or an ethylene / vinyl acetate copolymer is used as an adhesive, but it is effective to use a used laminate effectively. It has problems that it cannot be recycled, the laminate has low heat resistance, and the ethylene // vinyl acetate copolymer has a strong odor.
  • the method of recycling this multilayer film is to separate it into layers, to recover each resin, to melt the multilayer film, and then to recover each resin by fractional distillation, and to multilayer film. There is a method of melting and recovering as a resin mixture. The former two methods are not advantageous in terms of cost.
  • the third method requires that the mixture be free of substances that would interfere with the purpose of reuse.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is a composite material including a polystyrene resin foam layer and a thermoplastic resin layer, wherein the adhesive strength of both layers is a composite material such as a bowl. It is an object of the present invention to provide a composite material that is high enough to withstand the formation of a deep container, has high oil resistance, is inexpensive, and can be recycled.
  • a polystyrene resin foam layer an alloy layer provided on at least one of both surfaces of the polystyrene resin foam layer, and a thermoplastic resin layer provided on the aperture layer.
  • the thermoplastic resin layer is selected from a polyolefin resin and a polyester resin. Made of plastic
  • the alloy layer is composed of a mixture of a polystyrene resin and a thermoplastic resin selected from a polyolefin resin and a polyester resin.
  • a thermoplastic resin layer is composed of a polyolefin resin
  • the resin heat of the alloy layer is reduced.
  • the plastic resin is a polyolefin resin
  • the thermoplastic resin layer is made of a polyester resin
  • the resin thermoplastic resin of the alloy layer is a polyester resin
  • a composite material having an adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer of 98 OmN / 25 mm or more is provided.
  • FIG. 1 is a diagram showing a graph of crystallization time measurement.
  • the polystyrene resin used for the polystyrene resin foam layer in the present invention includes a homopolymer and a copolymer of styrene.
  • the styrene monomer unit contained in the copolymer is at least 25% by weight or more, preferably 50% by weight or more.
  • polystyrene resin examples include polystyrene, rubber-modified polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer, and styrene-acrylic acid copolymer.
  • Polymer styrene-methacrylic acid copolymer, styrene-methyl methacrylate copolymer, styrene-methyl methacrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl acrylate
  • examples thereof include a copolymer, a styrene-maleic anhydride copolymer, a polystyrene-polyphenylene ether copolymer, and a mixture of polystyrene and polyphenylene ether.
  • Polypropylene resin or its hydrogenated product is blended.
  • Polyolefin resin such as polypropylene resin or high-density polyethylene is blended at a ratio of 20% by weight or less in consideration of mixing of recycled resin. be able to.
  • the heat resistance of the composite material of the present invention can be improved by using a polystyrene resin having a vicat softening point of 110 ° C. or higher.
  • the vicat softening point of the resin refers to a value determined by JIS K7206 (test load is ⁇ method, heating rate of heat transfer medium is 50 ° CZ).
  • the melt viscosity of polystyrene resin is the melt viscosity under the conditions of 190 ° C and a shear rate of 100 sec- 1 . It is more than 20 Pa and less than 10 Pa, less than OOOPa. 0 0-5, OOOP a 's. If the melt viscosity is less than 20 Pa ⁇ s, the molten resin extruded from the die at the time of foam molding may sag, making molding difficult. On the other hand, if it exceeds 10, OOOP a 's, the extrusion pressure will increase and extrusion molding will be difficult, and there is a possibility that high quality foams cannot be molded.
  • Polystyrene density of the resin foam layer is usually 0. 0 3 5 ⁇ 0. 7 g Z cm 3, preferably 0. 0 5 ⁇ 0. 5 g Z cm 3, particularly those for thermoforming 0. 0 7 ⁇ 0. 5 g / cm 3 things Shi preferred Rere.
  • density is less than 0. 0 3 5 g / cm 3 , or insufficient strength of the molded article obtained by molding a composite material, a hole in the molded article results in lack of elongation when heated vacuum forming May occur.
  • its density is greater than 0.7 g Z cm 3, it is economically disadvantageous.
  • the heat insulation of the molded article such as a container is deteriorated. For example, when hot water is poured, the container cannot be held by hand.
  • the thickness of the polystyrene resin foam layer is usually 0.5 to 10 mm, preferably 0.7 to 5 mm, especially 0.7 to 4 mm for thermoforming. Is preferred. If the thickness of the foam layer is less than 0.5 mm, the wall thickness of the molded product obtained by vacuum forming or the like becomes insufficient, and the strength and the heat insulating property tend to be inferior. On the other hand, if the thickness is more than 10 mm, uneven heating inside and outside of the sheet is likely to occur during heating vacuum forming, and precise temperature control is required.
  • the open cell ratio (A STM D 285, Procedure C) of the foam layer is preferably 40% or less.
  • the open cell ratio of the foam layer affects the secondary foaming property at the time of thermoforming and the quality (physical properties such as strength) of the obtained secondary molded product.
  • the polystyrene resin foam layer can be obtained by any known method using a foaming agent such as an organic foaming agent, an inorganic foaming agent, or a decomposable foaming agent.
  • a foaming agent such as an organic foaming agent, an inorganic foaming agent, or a decomposable foaming agent.
  • the organic blowing agent include propane, n-butane, i-butane, a mixture of n-butane and i-butane, aliphatic hydrocarbons such as pentane and hexane, and cyclic compounds such as cyclobutane and cyclopentane.
  • Aliphatic hydrocarbons trichlorofluoromethane, dichlorodifluoromethane, 1, 1—difluoroethane, 1,1—diphneololol 1—chloroethane, 1,1,1,2, -tetranoleoloethane, methyl chloride, ethyl chloride And halogenated hydrocarbons such as methylene chloride, and mixtures thereof.
  • the inorganic foaming agent include a gas such as nitrogen and carbon dioxide and water.
  • examples of the decomposable blowing agent include azodicarbonamide, dinitrosopentamethylentramine, azobisisobutyronitrile, sodium bicarbonate and the like.
  • foaming agents can be appropriately mixed and used. Among them, it is preferable to use a material that does not contain hydrogen hydride and has little effect on the environment such as destruction of the ozone layer.
  • the amount of the foaming agent used is not particularly limited, but is generally in the range of 0.01 to 0.1 mol per 100 g of the resin.
  • various additives which are usually added to the polystyrene resin as needed, for example, a nucleating agent, an antioxidant, a heat stabilizer, so long as the object of the present invention is not significantly impaired.
  • An antistatic agent, a conductivity-imparting agent, a weathering agent, an ultraviolet absorber, a coloring agent, a flame retardant, an inorganic filler and the like can be added.
  • the thermoplastic resin used for the thermoplastic resin layer laminated on the polystyrene resin foam layer includes a polyolefin resin or a polyester resin.
  • the thickness of the thermoplastic resin layer is generally 0.1 to 1 mm, preferably 0.15 to 0.8 mm, more preferably 0.015 to 0.35 mm, and the polystyrene
  • the ratio to the thickness of the resin foam layer is generally 3 to 50%, preferably 5 to 40%. If the thickness of the thermoplastic resin layer is smaller than the above-mentioned range, the sheet is likely to have through holes and breakage during secondary molding, which is not preferable. On the other hand, if the thickness is too large, the foaming layer may be melted if the composite material is molded with the best heating time for the thermoplastic resin layer as well as the cost.
  • thermoplastic resin layer it is preferable to use a high-density polyethylene-polypropylene resin as the thermoplastic resin layer in terms of heat resistance and appearance.
  • high-density polyethylene is used, the surface of the composite material has a matte appearance.
  • polypropylene resin is used, a composite material having excellent surface gloss can be obtained.
  • polyester resin for the thermoplastic resin layer from the viewpoints of fragrance retention and gas barrier properties.
  • thermoplastic resin layer various additives such as antioxidants, heat stabilizers, antistatic agents, conductivity-imparting agents, nucleating agents, weathering agents, UV inhibitors, etc.
  • thermoplastic resin layer Add 1 to 100 nm of kaolin, myriki, silica, tanolek, creis, zinc methacrylate, highly saturated nitrile rubber, liquid crystal polymer, etc. in an amount of 3 to 10% by weight based on the resin. It can be finely dispersed to form a so-called nanocomposite. As a result, the tensile strength, tensile modulus, bending strength, bending modulus, gas permeability, transparency, flame retardancy, heat stability, and the like are improved. If necessary, a compatibilizer can be added for dispersion.
  • thermoplastic resin layer laminated on the polystyrene resin foam layer in addition to the thermoplastic resin layer laminated on the polystyrene resin foam layer, a film-like polyamide resin, vinylidene chloride, saponified ethylene vinyl acetate copolymer, and It can also be laminated with the foam as a composite material by combining with other functional materials such as lumidium foil.
  • thermoplastic resin layer formed of polyolefin resin or polyester resin should be provided as the outermost layer of the composite material. Can be.
  • thermoplastic resin layer Next, the polyolefin resin and the polyester resin forming the thermoplastic resin layer will be described in detail.
  • the polyolefin resin includes homopolymers, copolymers (random copolymers, block copolymers, and the like) of olefins, and blends.
  • copolymers random copolymers, block copolymers, and the like
  • the upper limit of the softening point is particularly limited
  • it is about 160 ° C.
  • it is particularly preferable to use high-density polyethylene or polypropylene resin.
  • the propylene resin includes homopolymers, copolymers and blends of propylene.
  • the copolymer component includes ethylene, butylene and other monoolefins, and the ⁇ -olefin has 12 or less, preferably 8 or less carbon atoms.
  • the content of the copolymer components, ethylene, butylene and other monoolefins, is 20% by weight or less for block copolymers and 8% by weight or less for random copolymers. Preferably.
  • the resin for the blend includes a homopolymer of ethylene, a copolymer of ethylene and an ⁇ -olefin having 3 to 12 carbon atoms, and a carbon number of And the homopolymers of "one-olefin" having 4 to 6 are exemplified.
  • the polyolefin resin for forming the thermoplastic resin layer has (i) a melting point of 150.
  • a mixture of a polypropylene resin having a melting point of not more than C (hereinafter, also referred to as a low melting point polypropylene resin) and a polyethylene resin having a melting point of not less than 130 ° C (hereinafter, also referred to as a high melting point polyethylene resin);
  • a polypropylene resin exceeding C hereinafter also referred to as a high-melting-point polypropylene resin
  • a resin having a melting point of 130 and a main component of the above-mentioned polyethylene resin are used.
  • the “main component” means that the resin or mixed resin (i) to (iii) is about 80% by weight of the thermoplastic resin layer. /. Within the range not impairing the object and effect of the present invention, for example, 70 parts by weight or less of a polystyrene resin of 100 parts by weight or less of the resin (i) to (iii) or a mixed resin, It means that other polymers such as nylon resin, polyester resin, rubber and the like may be further included.
  • the low-melting polypropylene resin includes a copolymer of propylene and the like.
  • the copolymer component includes ethylene, butylene, and other ⁇ -olefins, and the ct-olefin has a carbon number of 12 or less, preferably 8 or less.
  • the content of the copolymer components, ethylene, butylene, and other ⁇ -olefins, is 8% in the case of a random copolymer. / 0 or less is preferable.
  • the melting point of the low melting point polypropylene resin is preferably at least 138 ° C.
  • a particularly preferred melting point range of the low melting point polypropylene resin is 140 to 150 ° C.
  • the high melting point polypropylene resin includes propylene homopolymers and copolymers.
  • As the high melting point polypropylene resin various conventionally known ones can be used.
  • the upper limit of the melting point is usually about 165 ° C. Its preferred melting point range is 158 to 164 ° C.
  • the high-melting-point polyethylene resin includes a copolymer of ethylene and ⁇ -olefin having 3 to 12 carbon atoms, and examples thereof include conventionally known various materials such as high-density polyethylene.
  • the upper limit of the melting point is usually 140 ° C. Its preferred melting point range is 132-138 ° C.
  • the amount of the low melting point polypropylene resin is preferably less than 100% by weight, more preferably 70% by weight, based on the total weight of the low melting point polypropylene resin and the high melting point polyethylene resin.
  • the amount of the high melting point polyethylene resin is preferably 0% by weight. / 0 more than 85 weight. /.
  • the content is more preferably 30 to 70% by weight.
  • the polyolefin resin constituting the thermoplastic resin layer has the above-mentioned composition (i) to (iiii) and has a high crystallization rate.
  • the semi-crystallization time of the polyolefin resin at 100 ° C. is 30 seconds or less, preferably 2 to 28 seconds. If the time exceeds 30 seconds, the moldability will deteriorate.
  • the half-crystallization time referred to in this specification was previously set at 300 ° C using a crystallization rate measuring device (MK-801 type manufactured by Meto Co., Ltd. (former Kotaki Shoji Co., Ltd.))
  • the heated resin sample can be put into a crystallization bath set at 100 ° C. for measurement.
  • the measurement sample should be in the form of a film.
  • the thickness of the finolem shall be 0.1 ⁇ 0.2 mm, and the dimensions of the film shall be 15 x 15 mm square. This is sandwiched between power microscope glasses and used as a measurement sample.
  • the support value is 3 V.
  • the crystallization rate measuring device manufactured by Metron Co., Ltd. is a device for determining the degree of crystallinity from the relationship between the crystallization of a sample and the birefringence of light, and the half-crystallization time referred to in this specification is defined as It is determined from the obtained time-birefringence light quantity curve (I) shown in FIG. That is, the amount of light due to birefringence in the sample increases with time, and finally becomes constant (value ⁇ ) after time point a.
  • the half-crystallization time is the time c in the curve (I) that gives the amount of light B equal to ⁇ 2.
  • (II) represents a change in the bath temperature when the crystallization bath temperature is set to a temperature D (100 ° C. in the case of the present invention).
  • thermoplastic resin layer a polyester resin can be used in addition to the polyolefin resin described above.
  • Polyester resin is dicarboxylic acid II
  • Method of polycondensing component and diol component It is produced by transesterification of polyester homopolymer and Z or polyester copolymer.
  • the polyester resin an aromatic polyester resin having a half-crystallization time at 100 ° C. of 30 minutes or more is preferably used.
  • the aromatic polyester resin is composed of a dicarboxylic acid component and a diol component, at least one of which is aromatic.
  • dicarboxylic acid component of the aromatic polyester resin dicarboxylic acid or an ester-forming derivative thereof can be used.
  • the ester-forming derivatives include ester derivatives such as dimethyl ester and getyl ester, salts such as diammonium salts, and acid halides such as dichloride.
  • the dicarboxylic acid component units in the polymer include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, phthalic acid, 4,4'-diphenyl carboxylic acid, and 3,4'-diphenyl Aromatic dicarboxylic acids such as dicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and esters thereof
  • a component unit derived from a forming derivative or a component unit derived from an aliphatic dicarboxylic acid such as oxalic acid, succinic acid, adipic acid, sebacic acid, dodecanedioic acid or an ester-forming derivative thereof; or Alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid, 1,3-cyclohexane
  • diol component of the aromatic polyester resin used in the present invention aliphatic and aromatic diols (including divalent phenol) can be used.
  • diol component unit in the polymer there are aliphatic diols such as ethylene glycol, cyclohexanedimethanol, propylene glycol, trimethylene daryl, diethylene glycol, and 1,4-butanediol, or esters thereof.
  • Alicyclic diols such as 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,6-cyclohexanediol, etc., or their ester formation
  • a component unit derived from an aromatic diol such as bisfuninol A or an ester-forming derivative thereof.
  • the above aromatic polyester resin may have its molecular end sealed with a component unit derived from a monofunctional compound such as a small amount of benzoic acid, benzoyl benzoic acid, methoxypolyethylene glycol, or the like. Les ,. Also, it may contain a small amount of a component unit derived from a polyfunctional compound such as pyromellitic acid, trimellitic acid, trimesic acid, glycerin, and pentaerythritol.
  • a monofunctional compound such as a small amount of benzoic acid, benzoyl benzoic acid, methoxypolyethylene glycol, or the like. Les ,.
  • a component unit derived from a polyfunctional compound such as pyromellitic acid, trimellitic acid, trimesic acid, glycerin, and pentaerythritol.
  • the half-crystallization time of the aromatic polyester resin can be adjusted by using two or more dicarboxylic acid components such as terephthalic acid and isophthalic acid to change the molar ratio of the dicarboxylic acid component units. It can be adjusted by using two or more kinds of diol components such as ethylene glycol and cyclohexanedimethanol and changing the molar ratio of the diol component units.
  • an aromatic polyester copolymer having a half-crystallization time of 30 minutes or more is preferable. Particularly preferred examples are 75 to 40 mol. / 0 ethylenic glycol and 25-60 mol 0 /. Diol component consisting of cyclohexanedimethanol And a dicarboxylic acid component composed of terephthalic acid.
  • the film-like aromatic polyester resin may be a polyolefin resin such as a polystyrene resin, a polypropylene resin, or a polyethylene resin, a nylon resin, or a high-molecular-weight resin as long as the object of the present invention is not impaired.
  • Resins such as impact polystyrene, styrene-containing thermoplastic elastomers, etc., elastomers and rubbers are approximately 40% by weight. /. It may be contained in the following proportions.
  • the thickness of the polyester resin is preferably from 0.01 to 0.5 mm, particularly preferably from 0.03 to 0.2 mm. If it is less than 0.01 mm, it is stretched and further thinned during thermoforming, so that breakage and pinholes are liable to occur, and the solvent resistance of the composite material is liable to decrease, and it is difficult to obtain sufficient oil resistance. If it exceeds 0.5 mm, it will be difficult to adhere to the polystyrene resin foam, resulting in high cost. Also, from the viewpoint of the recyclability of the composite material, the amount of the laminated polyester resin is 50% by weight of the composite material. /. Hereinafter, the content is preferably 25% by weight or less.
  • the adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer of the composite material of the present invention is 980 mNZ25 mm or more, particularly preferably 2451 mN / 25 mm or more, and more preferably 3677 mN. It has a large value of 25 mm or more. ⁇ The upper limit of the adhesive strength is usually about 122 58 mN / 25 mm. A composite material having such a large interlayer adhesive strength is provided for the first time by the present invention.
  • the interlayer adhesive strength of the composite material of the present invention having a large value as described above means that the phase structure index PI value between the polystyrene resin foam layer and the thermoplastic resin layer is 0.5 to: 1.5, Preferably 0.6 to: 1.4, more preferably 0.6. This is due to having an alloy layer in the range of 7 to 1.3. The following is a description of the error layer.
  • the alloy layer is mainly composed of a mixed resin of a polystyrene resin and a thermoplastic resin, and the weight ratio of the polystyrene resin to the thermoplastic resin is 95: 5 to 30:70, and 90:10 to 40:40. : 60, particularly preferably 85: 15 to 55: 45.
  • the total amount of the polystyrene resin and the thermoplastic resin is 50% by weight or more based on the alloy layer.
  • the thermoplastic resin used for the alloy layer the same resin as the thermoplastic resin used for the thermoplastic resin layer laminated on the alloy layer, or the same kind of thermoplastic resin that can be heat-fused is used. Is preferably used.
  • the amount of polystyrene resin in the mixed resin of the alloy layer exceeds 95: 5
  • the adhesive strength between the alloy layer and the polystyrene foam layer can be satisfied, but the adhesive strength between the alloy layer and the thermoplastic resin layer can be improved. May be insufficient in adhesive strength.
  • the amount of the polystyrene resin is lower than 30:70, the adhesive strength between the alloy layer and the thermoplastic resin layer can be satisfied, but the adhesive strength between the polystyrene resin foam layer and the alloy layer can be improved. The strength may be insufficient.
  • the thickness of the alloy layer is in the range of 15 to 200 m, and the adhesive strength tends to increase as the thickness increases, and is preferably 20 to 150 / j m.
  • the thickness of the alloy layer is 3 to 50%, preferably 5 to 40% of the thickness of the polystyrene resin foam layer. If the thickness of the alloy layer is less than 3%, the adhesion becomes insufficient, while if it exceeds 50%, the foam layer is heated when the alloy layer is laminated on the foam layer, and as a result, the foam The open cell ratio of the layer tends to be high, and also causes cost increase.
  • polyester resin is used as the thermoplastic resin of the alloy layer, the melting point ig
  • the melting point in the present specification is determined from a melting peak of a DSC curve obtained by a heat flux differential scanning calorimetry performed in accordance with JIS K7112. Details are as follows. Approximately 5 mg of a film having a thickness of 0.5 mm or less is used as a test piece. Immediately after the temperature is raised to 0 ° C higher, the temperature is lowered to 40 ° C in a cooling rate of 10 ° CZ, and then immediately at a heating rate of 10 ° C / min. The melting point is defined as the peak temperature of the melting peak of the DSC curve (when two or more melting peaks are present, the melting peak area is larger) when the temperature is raised to about 30 ° C higher.
  • additives such as a compatibilizer, an adhesive, an elastic component, a viscosity modifier and the like can be added to the alloy layer in an amount of less than 50% by weight based on the alloy layer.
  • the alloy layer preferably contains a compatibilizer.
  • a compatibilizer any one can be used as long as it can compatibilize the polystyrene resin and the thermoplastic resin of the alloy layer, and various conventionally known ones can be used.
  • the use of a styrene-containing thermoplastic elastomer not only improves the adhesion between the polystyrene foam layer and the thermoplastic resin layer, but also improves the impact strength and brittleness of the composite material. Is preferred.
  • the thermoplastic resin of the alloy layer is a polyester resin
  • the styrene-containing thermoplastic elastomer is made of polystyrene. It functions as a viscosity regulator for lowering the viscosity of the mixed resin of the polyester resin and the polyester resin, thereby improving the kneading property of the polystyrene resin and the polyester resin.
  • styrene-containing thermoplastic elastomer examples include styrene-ethylene-butylene-styrene-block copolymer (SEBS), styrene-ethylene-propylene-styrene-block copolymer (SEPS), and styrene-butadiene.
  • SEBS styrene-ethylene-butylene-styrene-block copolymer
  • SEPS styrene-ethylene-propylene-styrene-block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SBS or SIS has a polystyrene crystal phase as a hard segment, and has a structure in which polybutadiene or polyisoprene is block copolymerized as a soft segment.
  • SEBS and SEPS are obtained by highly hydrogenating polybutadiene and polyisoprene contained in SBS and SIS to saturate the double bonds in the main chain.
  • These styrene-containing thermoplastic elastomers such as SEBS, SEPS, SBS, and SIS are described in detail in “Plastic Age”, pp. 101-106. (June 1985) Have been.
  • the addition of the compatibilizer increases the adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer, and further increases the impact strength and brittleness of the composite material when the compatibilizer of the styrene-containing thermoplastic elastomer is used. Is improved.
  • the compatibilizer is generally added in an amount of from 0: to 30 parts by weight, preferably from 0.5 to 10 parts by weight, per 100 parts by weight of the total amount of the polystyrene resin and the thermoplastic resin in the alloy layer. You. In the case of a styrene-containing thermoplastic elastomer, the content is preferably 2 to 10 parts by weight.
  • This compatibilizer increases the adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer, Impact strength and brittleness are improved.
  • the styrene-containing thermoplastic elastomer is preferably used in an amount of 0.3 to 100 parts by weight of the total amount of the polystyrene resin and the polyester resin in the alloy layer. 20 parts by weight, more preferably 0.5 to 15 parts by weight, is added.
  • the styrene-containing thermoplastic elastomer acts as a compatibilizer, an elasticity-imparting agent, and a viscosity modifier, and is preferably added to the alloy layer.
  • An elastic component can be added to the alloy layer for the purpose of improving brittleness.
  • the elastic component a random copolymer, a block copolymer, a graft copolymer, or a mixture of these copolymers composed of a styrene component such as styrene or ⁇ -methylstyrene and a butadiene or isoprene-based gen component is used.
  • the elastic component is preferably added in an amount of 2 to 50 parts by weight, more preferably 5 to 30 parts by weight, per 100 parts by weight of the total of the polystyrene resin and the thermoplastic resin in the alloy layer. Parts by weight.
  • the elastic component containing the above-mentioned styrene-containing thermoplastic elastomer is used in the polystyrene resin foam layer in order to improve its brittleness, and is used in an amount of 0.5 to 30 parts by weight per 100 parts by weight of the polystyrene resin. Parts, preferably 1 to 20 parts by weight, can be added.
  • An adhesive such as an ethylene-vinyl acetate copolymer can be added to the alloy layer.
  • the ethylene / butyl acetate copolymer is preferably used in an amount of not more than 25 parts by weight per 100 parts by weight of the mixed resin of the polystyrene resin and the thermoplastic resin, from the viewpoint of economy and reduction of odor.
  • the alloy layer has a phase structure index ⁇ I value in the range of 0.5 to 1.5.
  • the phase structure index ⁇ ⁇ value indicates the mixed state of the polystyrene resin and the thermoplastic resin of the alloy layer, and is defined by the following equation (1).
  • PI value (7; ⁇ ⁇ ⁇ l3 ⁇ 4ZB ⁇ A) Equation (1) In the above equation (1), ⁇ .
  • melt viscosity of polystyrene resin at shear rate 100 sec ⁇ ' melt viscosity of polystyrene resin at shear rate 100 sec ⁇ '
  • ⁇ ⁇ volume fraction of thermoplastic resin phase in alloy layer
  • heat at 77 ⁇ 190 ° C shear rate 100 sec 1 It is the melt viscosity of the plastic resin.
  • the thermoplastic resin in the alloy layer is covered with the polystyrene resin and is hardly exposed on the bonding surface, and the bonding strength between the foam layer and the alloy layer is satisfactory.
  • the adhesive strength between the alloy layer and the thermoplastic resin layer is insufficient, and delamination occurs when the composite material is molded into a molded article such as a bowl or the like obtained by thermoforming.
  • the PI value comes to more than 1.5, polystyrene down resin Aroi layer is not easily exposed to the covered adhesive surface to the thermoplastic resin, the adhesion between the thermoplastic resins layer and Aroi layer Although the strength is satisfactory, the adhesive strength between the alloy layer and the foam layer is insufficient, and delamination tends to occur when the composite material is formed into a molded article such as a container.
  • the PI value is preferably in the range of 0.6 to 1.4, particularly 0.7 to 1.3, because of the excellent adhesive strength between the foam layer and the thermoplastic resin layer.
  • the composite material of the present invention can be manufactured by a conventionally known method.
  • a typical method an alloy layer and a thermoplastic resin layer are sequentially supplied to a previously produced foam layer by an extruder and adhered thereto; the previously produced foam layer and the thermoplastic resin layer are bonded together.
  • the composite material (multi-layer sheet) obtained by the multi-layer co-extrusion method has a thimble process and can be reduced in cost compared to other methods. It is preferable because the adhesion strength between the body layer and the alloy layer and between the alloy layer and the thermoplastic resin layer is increased.
  • the polystyrene resin, the thermoplastic resin, the compatibilizer, and the like used in the alloy layer may be dry-blended in a pellet form and then directly introduced into the inlet of an extruder, or may be melt-kneaded in advance.
  • the composite of the present invention has a structure in which a thermoplastic resin layer is provided on at least one surface via an alloy layer.
  • the other surface can be a polystyrene resin layer alloy layer. Since the polystyrene resin layer is excellent in printability and glossiness, it can be appropriately printed.
  • the alloy layer is also excellent in printability and glossiness, so that printing can be performed appropriately. Further, since two alloy layers can be simultaneously laminated on both sides of the foam layer by the co-extrusion method using the same extruder, the productivity is excellent.
  • HIPS high impact polystyrene
  • various additives which are usually added to the polystyrene resin and the thermoplastic resin as necessary, for example, a nucleating agent, an antioxidant, and a heat-stable agent, within a range not significantly impairing the object of the present invention.
  • Agents, antistatic agents, conductivity-imparting agents, weathering agents, ultraviolet absorbers, coloring agents, flame retardants, inorganic fillers, etc. go to various additives which are usually added to the polystyrene resin and the thermoplastic resin as necessary, for example, a nucleating agent, an antioxidant, and a heat-stable agent, within a range not significantly impairing the object of the present invention.
  • Agents, antistatic agents, conductivity-imparting agents, weathering agents, ultraviolet absorbers, coloring agents, flame retardants, inorganic fillers, etc. go
  • the composite material of the present invention is formed by laminating a polystyrene resin foam layer and a thermoplastic resin layer with extremely high adhesive strength, and is excellent in oil resistance and thermoformability. Since no special adhesive is used, it can be manufactured at low cost and is suitable for recycling. That is, the melted composite material can be reused as an alloy layer of the composite material.
  • thermoplastic resin layer by forming the thermoplastic resin layer with a polypropylene resin having a vicat softening point of 112 ° C. or higher, a composite material having excellent heat resistance can be obtained.
  • thermoplastic resin layer By forming the thermoplastic resin layer with a polyester resin having a half-crystallization time of 30 minutes or more, a composite material having excellent recyclability, thermoformability, and heat sealability can be obtained.
  • the polyester resin layer is excellent in oil resistance, fragrance retention, gas barrier properties, and adhesion to other wrap films, this composite material is particularly effective as a material for molding containers and the like.
  • Sheet composites having the configurations shown in Tables 1, 2, 5, and 6 were produced. Tables 1, 2, 5, and 6 also show the density (gZ cm 3 ) of this composite, the thickness of the composite ( mm ), and the type of composite material used in its manufacture. Indicated. Furthermore, Table 1, Table 2, Table 5 and Table 6, oil resistance of the composite material, the adhesive strength (mNZ25 mm) and continuous cell ratio of the foam layer of polyolefin resin layer (2 'or sigma 2) (% ) showed that.
  • Poriorefui down resin (Z 1) represents the surface layer
  • Poriorefui emission resin layer (Z 2) shows the back surface layer.
  • Z indicates the adhesive strength between the polyolefin resin layer (Z 1 ) forming the surface layer and the foam layer (X)
  • Z 2 ZX Indicates the adhesive strength between the polyolefin resin layer (Z) forming the backside layer and the foam layer (X).
  • the specific contents of the types of composite materials shown in Tables 1, 2, 5, and 6 are as follows.
  • the resin temperature shown in Table 1, Table 2, Table 5 and Table 6 is the resin temperature when extruded from the die (die) of the extruder.
  • the extruded cylindrical resin was cut open along the cooled cylinder having a diameter of 200 mm in the drawing and extrusion direction to obtain a polystyrene resin foam sheet, and the foam sheet was wound up.
  • a polyolefin resin film having a thickness shown in Table 1 or Table 2 was laminated on the obtained foamed sheet via an alloy layer shown in Table 3 or Table 4 to obtain a composite material.
  • the alloy layer was extruded with a 5 Omm diameter extruder from the raw material inlet through a prescribed amount of resin shown in Table 3 or Table 4 and, if necessary, an amount of phase shown in Table 3 or Table 4 per 100 parts by weight of alloy.
  • the solubilizer was heated and kneaded, and was extruded and supplied from a T-die having a width of 600 mm at 200 ° C.
  • extruders with a diameter of 65 mm and a diameter of 9 Omm as extruders for foam layers
  • An extruder with a diameter of 50 mm was used as the extruder for the polyolefin resin layer, and an extruder with a diameter of 40 mm was used as the extruder for the alloy layer.
  • the one with a cylindrical slit with a diameter of 84 mm and a thickness of 0.5 mm was used.
  • the foam layer was heated and kneaded with a prescribed amount of resin and additives from the raw material inlet using a 65 mm diameter extruder in the amounts shown in Table 3, Table 4, Table 7, or Table 8 per 100 parts by weight of resin. Then, the blowing agent and the amount shown in Table 3, Table 4, Table 7 or Table 8 are injected into the resin mixture adjusted to about 200 ° C., and then fed to an extruder having a diameter of 9 O mm. The resin temperature was adjusted as shown in Table 1, Table 2, Table 5, and Table 6.
  • the polyolefin resin layer is supplied from an extruder with a diameter of 50 mm
  • the alloy layer is supplied from an extruder with a diameter of 40 mm to one or both sides of the melt for forming a polystyrene resin foam layer, as required.
  • the melt was mixed with the melt for forming a foam layer inside the die and coextruded.
  • the alloy layer was added with a compatibilizer in an amount shown in Table 3, Table 4, Table 7, or Table 8 per 100 parts by weight of the alloy of the polystyrene resin and the polyolefin resin as required.
  • the composite material was wound up by pulling the extruded cylindrical resin along a cooled cylinder having a diameter of 200 mm.
  • Table 3 Table 4, the foam layer of the composite material shown in Table 7 or Table 8 (X), Aroi layer ( ⁇ ', ⁇ 2) and Poriorefui emission resin layer ( ⁇ ', ⁇ 2) the specific contents of It will be shown.
  • the amount (weight / 0 ) of the PS resin or the glass resin in the alloy layer is a value based on the total weight of 100% by weight of the PS resin and the glass resin.
  • 25 parts by weight of a resin (to be described later) was added as an elastic component to 100 parts by weight of the mixed resin of the PS resin and the ⁇ resin. did.
  • the resin ⁇ ⁇ described later as an elastic component in the alloy layer was added to 100 parts by weight of the mixed resin of the PS resin and the ⁇ resin. And 25 parts by weight.
  • the specific contents of the PS resin (polystyrene resin) indicated by reference numerals for the foam layer (X) are as described below.
  • the talc blended with the PS resin is Highfila # 12 manufactured by Matsumura Sangyo Co., Ltd.
  • B represents a butane mixture composed of 70 wt% of n-butane and 30 wt% of iso-butane
  • n-p represents n-pentane
  • CF 40 S represents "Hydrocerol CF 40 S" (chemical blowing agent) manufactured by Dainichi Seika Co., Ltd. is shown.
  • alloy layer ( ⁇ 2 ) The specific contents of the resin (polyolefin resin) and the compatibilizer are as described below.
  • the alloy composition of the alloy layer ( ⁇ 1 ) and the alloy layer ( ⁇ 2 ) are the same.
  • the specific contents of the ⁇ ⁇ resin ( ⁇ ⁇ 2 ) indicated by reference numerals for the ⁇ ⁇ layer (polyolefin layer) are as shown below.
  • composition of the ⁇ layer ( ⁇ 1 ) and the ⁇ layer ( ⁇ _) is the same.
  • the bond strength between the specimens was determined by cutting a 25 mm wide test piece from the composite material and measuring it in a 90 ° peel test at a peel rate of 300 mm / min in accordance with JISZ 0237. (MNZ 25 mm) was taken as the adhesive strength.
  • the adhesive strength may be measured as described above. If it is not possible to cut out a test piece with a width of 25 mm, cut out a test piece as wide as possible and perform the above measurement on the cut out test piece. The obtained value (mN) is multiplied by (width of 25Z test piece (mm)) to obtain the adhesive strength (mNZ25 mm).
  • the thickness of the composite is as follows.
  • the thickness of the composite material was measured at any 20 points on the vertical cross section in the thickness direction, and the average value was adopted. The thickness was measured using a micrograph and converted to an enlargement magnification to determine each thickness.
  • test piece having a length of 20 cm (length) ⁇ 20 cm (width) ⁇ composite material was cut out from the composite material, and the weight of the test piece (g) was measured. m 2 ) was calculated.
  • test piece similar to the basis weight measurement of the composite material was prepared, the test piece weight (g) was measured, and the test piece volume (cm) obtained by measuring 20 cm (length) ⁇ 20 cm (width) ⁇ the thickness (cm) of the composite material It was determined by dividing the test piece weight (g) by 3 ).
  • HH32 made by Idemitsu Petrochemical Co., Ltd.
  • GPPS general-purpose polystyrene
  • HH30J manufactured by Idemitsu Petrochemical Co., Ltd. (GPPS, melt viscosity 1 230 Pas, density 1.05 g Zcm)
  • MK2111 Polylene-ethylene bronze manufactured by Nippon Polyolefin Block copolymer, melt viscosity 800 Pa, S melting point 16 3 ° C, density 0.9 g Z cm 3 , Vicat softening point 120 ° C or more, semi-crystallization time (10 0 0. C) 10 seconds or less)
  • E250G manufactured by Idemitsu Petrochemical Co., Ltd. (Propylene-ethylene block copolymer, melt viscosity 1570 Pa ⁇ S, melting point 163 ° C, density ⁇ .9 g Z cm 3 , Vicat softening point of 120 ° C or more, half-crystallization time (100 ° C) of 10 seconds or less
  • Modiper A 3100 styrene graft polypropylene, melt viscosity 360 Pas, density 0.94 g / cm 3 )
  • F8188 Polylene-ethylene random copolymer melt viscosity 630 Pa'S (190 ° C), melting point 145.7 C, density 0.9, manufactured by Chisso Corporation) g / cm 3 , Vicat softening point above 120 ° C, half-crystallization time (100 ° C) 25 seconds)
  • J5051HP Polylene-ethylene block copolymer, melt viscosity 260 Pas, melting point 16 ° C, density 0.9 gZ cm 3 , Vicat softening point 15 1 ° C, half-crystallization time (100 ° C) 10 seconds or less
  • Troftec L512 hydrogenated styrene-butadiene styrene block copolymer, melt viscosity 290 Pa ⁇ S, density 0.91 g
  • K Resin KR05 manufactured by Philips (styrene butadiene styrene block copolymer, melt viscosity 1150 Pa'S, density 1. OlgZ
  • melt viscosities given for the present invention have been measured as follows.
  • the above formula (1) was used to calculate the PI value of the alloy layer.
  • When adding a compatibilizer calculate without the compatibilizer. A calculation example in the case of the embodiment is shown below.
  • the viscosity of the P ⁇ component is 731 Pa'S.
  • ⁇ I (viscosity of P S component: 2 0 4 0 X ⁇ ⁇ volume fraction of ⁇ component: 2 7) /
  • Table 9 shows the density (g Z cm 3 ), the thickness of the composite (mm), and the adhesive strength (mNZ 25 mm) of the polyolefin resin layer (Z 1 or Z 2). Table 9 also shows the moldability, mold release and heat resistance of the composite.
  • Polyolefin resin layer has uneven stretching. Releasability ⁇ Good
  • Mold may stick to the mold during mold release Heat resistance ⁇ ⁇ No deformation of container
  • the polyolefin resin (Z1) indicates the surface layer
  • the polyolefin resin layer (Z2) indicates the back layer.
  • the foam layer was heated and kneaded with a prescribed amount of resin and additives from the raw material input port in an extruder with a diameter of 65 mm in the amount shown in Table 10 per 100 parts by weight of resin, and was heated to about 200 ° C.
  • the mixed foaming agent 30% by weight of isobutane and 70% by weight of normal butane was press-fitted into the extruder shown in Table 10 with respect to the resin mixture adjusted to the above, and then the blowing agent-containing molten resin was mixed with a diameter of 9%.
  • the feed was to a 0 mm extruder.
  • the polyolefin resin layer is supplied from an extruder with a diameter of 50 mm
  • the alloy layer is supplied from an extruder with a diameter of 4 Omm to one or both sides of the molten resin for forming a polystyrene resin foam layer, as required.
  • section ⁇ it was combined with the molten resin for foam layer formation and co-extruded.
  • the compatibilizer was added to the alloy layer as needed in the amount shown in Table 10.
  • the extruded cylindrical resin was taken out along a cooled cylinder (mandrel) having a diameter of 200 mm, and then the composite material was wound into a roll.
  • Table 10 shows the specific contents of the foam layer (X), the alloy layer (Y), and the polyolefin resin layer (Zl, Z2) constituting the composite material.
  • the specific contents of the PS resin (polystyrene resin) indicated by reference numerals for the foam layer (X) are as described above.
  • the talc blended with the PS resin is Matsumura Sangyo's High Filler # 12.
  • the specific contents of the PO resin (polyolefin resin) and the compatibilizer with respect to the alloy layer (Y) are as described above.
  • E203 Polylene-ethylene random copolymer, melt viscosity 7500 Pa ⁇ s (190 ° C), melting point 138.5 ° C, vicat softening, manufactured by Chisso Corporation) Point 1 19 ° C, density 0.9 g Z cm 3 , half-crystallization time (100 ° C) 53 seconds)
  • F1188 polypropylene homopolymer, melt viscosity 6.50 Pa ⁇ s (190 ° C), melting point 160.3 ° C, Vicat softening point 1 5 1 ° C, density 0.9 g Z cm 3 , half-crystallization time (100 ° C) 6 seconds)
  • the composite materials obtained in Examples and Comparative Examples were stored in a single-shot molding machine (PL AVA C-FE36 HP type manufactured by Sanwa Kogyo Co., Ltd.). With a partitioning rib that divides it into six equal parts, a rectangular shape with a length of 210 mm, a width of 55 mm, and a depth of 50 mm was attached and vacuum forming was performed for evaluation. In this molding test, all of the 40 dials of the voltage regulator of the upper heater were set to 30 and all of the 6 dials of the lower heater were set to 40. I went.
  • the composite materials obtained in Examples and Comparative Examples were molded into a rectangular container of 210 mm in length and 150 mm in width and 50 mm in depth. 300 ml of hot water at 0 ° C was added, and the mixture was heated in a 500 W microwave oven for 1 minute, and then checked for deformation.
  • Two extruders having a diameter of 65 mm and a diameter of 9 Omm were used in tandem type as extruders for producing a foam layer.
  • an extruder with a diameter of 50 mm was used as the extruder for the polyester resin layer
  • an extruder with a diameter of 40 mm was used for the production of the alloy layer
  • a die with a diameter of 84 mm was used.
  • mm and a cylindrical slit with a gap of 0.5 mm were used.
  • the polyester resin B laminated on the foam layer is extruded by adjusting the resin temperature to 215 ° C with a 50 mm diameter extruder, and the resin constituting the alloy layer is a polystyrene resin F 6 0% by weight and polyester resin G40 0% 0 /.
  • the mixture was extruded from a 40 mm diameter extruder while adjusting the resin temperature to 150 ° C.
  • the resin constituting the alloy layer and the polyester resin were supplied from the foam sheet side in such a manner as to be laminated in this order, and were combined with the foamable resin inside the die and co-extruded.
  • the extruded cylindrical foamed resin was taken out along a cooled cylinder having a diameter of 200 mm, and then cut open to obtain a composite material, which was wound up.
  • the thickness of the foam layer is 1.4 mm
  • the thickness of the alloy layer is 0.04 mm
  • the thickness of the film-like polyester resin is 0.05 mm.
  • a polystyrene resin L with a resin temperature of 260 ° C was extruded from a 65 mm diameter extruder equipped with a 700 mm wide T die on the obtained sheet, and extruded and laminated to perform one side. Then, a composite material in which a 0.15 mm-thick film-like polystyrene resin was laminated and adhered, and a film-like polyester resin was laminated and adhered to one surface of the other side via an alloy layer was obtained.
  • Polystyrene resin F is trade name Styrone H8601, manufactured by A & M Styrene Co., Ltd. and has a melt viscosity of 98 Pas and a vicat softening point of 9 6 ° C, the density is 1. 0 5 g / cm 3 .
  • Polyester resin G is a product name: Biono Ire # 1903, manufactured by Showa High Polymer Co., Ltd., with a melt viscosity of 62 Pas, a melting point of 114 ° C, and a density of 1 . a 2 6 g Z cm 3.
  • Polystyrene resin L is trade name RQ301, manufactured by Denki Kagaku Kogyo Co., Ltd., its melt viscosity is 650 Pas, its vicat softening point is 97 ° C, and its density is 1. is a 0 5 g Z cm 3.
  • the polyester resin B is polyester PETG 6763 from Eastman Chemical Japan Co., Ltd., has a half-crystallization time of 60 minutes or more (100 ° C), and has a melt viscosity of 210 ° C. Polymerization using P aS, density 1.26 g Z cm 3 n ,
  • melcene MX 28 melt viscosity 2770 Pa ⁇ S, density 0.94 g / cm 3 , melting point 117 ° C, east Soichi Co., Ltd. was used.
  • blowing agent ⁇ a butane mixture consisting of 70% by weight of n-butane and 30% by weight of iso-butane was used.
  • polyester resin P manufactured by Nippon Unipet Co., Ltd., has a melt viscosity of RT 543, a half-crystallization time of less than 30 minutes (100 ° C), and unmelted at 190 ° C. unmeasurable, the density 1. 2 6 g / cm 3.
  • Polyester resin P was used in place of polyester resin B as the polyester resin, and the composite material was extruded in the same manner as in the example except that the extruder was extruded at a resin temperature of 270 ° C from a 50 mm diameter extruder. Obtained.
  • the composite material obtained in each of the examples and comparative examples was formed using a single-shot molding machine (PL AVAC-FE36HP type manufactured by Sanwa Kogyo Co., Ltd.) with an opening shape of 150 mm in diameter and a bottom diameter of 1 2. Attach a container mold of 0 mm, depth of 60 mm or 30 mm with a frustoconical shape. Vacuum forming was performed. In this molding test, all 40 dial scales for the upper heater and the voltage regulator were set to 30 and all six dial scales for the lower heater and the voltage regulator were set to 40. I went. The moldability (thermoformability) was evaluated based on the appearance of the obtained molded body.
  • extruders for producing a polystyrene-based resin foam layer two extruders having a diameter of 90 mm and a diameter of 120 mm were connected in tandem.
  • a cylinder with a diameter of 135 mm and a gap of 0.3 mm was used as a c- base using an extruder with a diameter of 65 mm for the production of a polyolefin resin layer.
  • the blowing agent ⁇ is n-butane 70% by weight, is ⁇ I
  • the resin constituting the alloy layers (2) and (3) on both sides of the polystyrene resin foam layer is resin 50% by weight as a polyester resin and resin 50% by weight as a polystyrene resin. 100 parts by weight of the mixture was added with 10 parts by weight of compatibilizer T, and these were added to an extruder having a diameter of 65 mm from an extruder.
  • the resin temperature was adjusted to 0 ° C.
  • the resin constituting the polyester resin laminated on the polystyrene resin foam layer via the alloy layer (2) is resin S, which is extruded at a resin temperature of 200 ° C from an extruder with a diameter of 45 mm. Was adjusted.
  • the polyester resin contains 70% by weight of the resin S. /.
  • the polyolefin resin 3% by weight of resin M was used. This was adjusted to a resin temperature of 170 ° C. by an extruder having a diameter of 65 mm.
  • the resin constituting the two outermost polyolefin resin layers of the composite material was resin M, which was adjusted to a resin temperature of 185 ° C by an extruder having a diameter of 65 mm.
  • the respective resins are merged inside the die and co-extruded to form a polyolefin resin layer, an adhesive layer (1), a polyester resin layer, an alloy layer (2), a polystyrene resin foam layer, an alloy layer (3), and a polyolefin resin.
  • the cylindrical foamed resin laminated in the order of the layers was taken out along a cooled cylinder having a diameter of 335 mm, and then cut open to obtain a composite material, which was wound up. Table 13 shows properties of the obtained composite material.
  • the resin constituting the polyolefin resin layer is resin H (propylene-ethylene block copolymer), and the adhesive layer (1), alloy layer (2), and (3) are yellow.
  • a composite material was obtained in the same manner as in Example 25, except that 4.2 parts by weight of EPS-E40518 manufactured by Pigment Polycarbon Industry Co., Ltd. was added to 100 parts by weight of the mixed resin.
  • the adhesive layer (1), the alloy layers (2) and (3) were mixed with black pigment SBF-T-1683 (carbon black) manufactured by Resinoka Ichi Kogyo Co., Ltd.
  • a composite material was obtained in the same manner as in Example 25 except that 2 parts by weight was added.
  • the resin constituting the polyolefin resin layer is resin E (high-density polyethylene), and the foaming agent A is 0 for the resin kneaded material adjusted to about 200 ° C as the polystyrene resin foam layer.
  • a composite material was obtained in the same manner as in Example 25, except that 0.7 parts by weight was pressed and the density of the polystyrene foam layer was 0.35 g Z cm 3 and the thickness was 0.55 mm.
  • a composite material was obtained in the same manner as in Example 28 except that resin N (high-density polyethylene) was used as the resin constituting the polyolefin resin layer and resin D was used as the polystyrene resin foam layer.
  • resin N high-density polyethylene
  • the open cell ratio was 8 to 20%.
  • Polyester resin S “PESTAG PETG 6763 J” (melt viscosity 2100 Pas, density 1.26 g / c semi-crystallization time 60 minutes or more) manufactured by Yeastman Chemical Japan Co., Ltd.
  • PS resin type A A B B B B D A Type of additive and talc talc talc talc talc talc talc talc Foam layer None
  • Type of PS resin A A D D D and amount (% by weight) 75 75 75 75 70
  • Type of compatibilizer and amount of Y V V Y V X (parts by weight) 25 5 5 25 10 6.25
  • Foam layer (X) 1.12 1.12 1.12 1.12 0.82 1.12 1.12 (Thickness:

Landscapes

  • Laminated Bodies (AREA)

Abstract

A composite material comprising a polystyrene resin foam layer, an alloy layer on at least one side of the polystyrene resin foam layer and a thermoplastic resin layer on the alloy layer, wherein the thermoplastic resin layer comprises a resin selected from a polyolefin resin and a polyester resin, the alloy layer comprises a mixture of a polystyrene resin with a thermoplastic resin selected from a polyolefin resin and a polyester resin, with the proviso that the thermoplastic resin in the alloy layer is a polyolefin resin when the thermoplastic resin layer consists substantially of a polyolefin resin, and the thermoplastic resin in the alloy layer is a polyester resin when the thermoplastic resin layer consists substantially of a polyester resin, and wherein the adhesion strength between the polystyrene resin foam layer and the thermoplastic resin layer is 980 mN/25mm or more.

Description

明細書  Specification
ポリ スチレン樹脂発泡体層と熱可塑性樹脂層を持つ複合材料 技術分野  Composite materials with polystyrene resin foam layer and thermoplastic resin layer
本発明は複合材料に関し、 更に詳しくはポリスチレン樹脂発泡体層と 熱可塑性樹脂層を持つシー ト又は板状の複合材料に関する。  The present invention relates to a composite material, and more particularly to a sheet or plate-like composite material having a polystyrene resin foam layer and a thermoplastic resin layer.
背景技術 Background art
発泡ポリスチレンシートは、 トレイ、 ボウル、 カップ等の各種容器の 熱成形による製造用材料と して広く使用されている。 しかし、 発泡ポリ スチレンシー トは耐油性、 耐溶剤性に劣る。 また、 その耐熱性も比較的 低く、 容器を電子レンジで加熱した場合、 変形が生じやすい。  Expanded polystyrene sheets are widely used as materials for thermoforming various containers such as trays, bowls, and cups. However, foamed polystyrene sheets have poor oil and solvent resistance. Moreover, its heat resistance is relatively low, and when the container is heated in a microwave oven, it tends to be deformed.
これらの発泡ポリ スチレンシ一 卜の欠点を改良することを目的と して, ポリエチレン、 ポリ プロ ピレン、 ポリエステル等の樹脂フィルムを発泡 ポリ スチレンシー 卜の片面や両面に設けた多層シー 卜が検討されている c 実公昭 5 9— 1 7 6 2 8号公報では、 ポリ スチレン樹脂 4 0〜 6 0重 量。 /。とポリオレフィン樹脂 6 0〜 4 0重量%との溶融混合物を接着剤と して、 発泡ポリ スチレンシー 卜にポリ オレフィ ン樹脂フィルムを接着し てなる複合シー 卜が示されている。 この複合シー トの接着強度は 2 9 4 m N Z c m以下と低く、 ボウルゃカップ等の成形時にポリオレフイン樹 脂フィルムがー部剥離するという問題がある。 In order to improve the disadvantages of these foamed polystyrene sheets, multilayer sheets in which a resin film of polyethylene, polypropylene, polyester, etc. is provided on one or both sides of a foamed polystyrene sheet have been studied. the c Utility Model 5 9 1 7 6 2 8 discloses that have, polystyrene resin 4 0-6 0 by weight. /. A composite sheet is shown in which a polyolefin resin film is bonded to a foamed polystyrene sheet using a molten mixture of 60 to 40% by weight of a polyolefin resin as an adhesive. The adhesive strength of this composite sheet is as low as 294 mNZcm or less, and there is a problem that the polyolefin resin film peels off at the time of molding bowls and cups.
実公昭 6 2— 2 0 2 6 9号公報には、 ポリブタジエン、 ポリイソプレ ン、 スチレンーブタジェン共重合体等のまたは熱可塑性ゴムとポリェチ レンとの混合物を接着剤と して、 発泡ボリ スチレンシー トにポリ オレフ ィン樹脂フイルムを接着してなる複合シー 卜が示されている。 しかしな がら、 高い接着強度を得るには、 価格がポリ スチレンやポリエチレン等 に比べて 3倍以上高い熱可塑性ゴムを大量に用いなければならず、 経済 上の問題がある。 また、 ポリオレフイ ン樹脂フィルムと して例えばポリ プロピレンを用いた場合の接着強度は十分満足し得るものではない。 実公昭 6 2— 1 3 7 8 4号公報は、 ウレタン又はエチレン/酢酸ビニ ル共重合体を接着剤と して用いていることを提案しているが、 使用済み の積層体の効果的なリサイクル利用ができない、積層体の耐熱性が低い、 ェチレン/ /酢酸ビニル共重合体の臭気が強いという問題を抱えている。 一方、 近年、 プラスチック容器のリサイクルが強く求められており、 これは、 上記のポリエチレン、 ポリ プロ ピレン、 ポリエステル等の樹脂 フィルムを発泡ポリスチレンシー 卜に積層した多層フィルムにも当ては まる。 この多層フィルムをリサイクルする方法と しては、 これを各層に 剥離してそれぞれの樹脂を回収する方法、 多層フィルムを溶融し、 次い で分留によりそれぞれの樹脂を回収する方法、 及び多層フィルムを溶融 し樹脂混合物と して回収する方法がある。 前者の 2つの方法はコス 卜の 点で有利ではない。 第三番目の方法は混合物中に再使用目的を阻害する 物質を含まないことが必要である。 Japanese Utility Model Publication No. 62-209-69 discloses that foamed polystyrene is used as an adhesive with a mixture of polybutadiene, polyisoprene, styrene-butadiene copolymer, or a mixture of thermoplastic rubber and polyethylene. A composite sheet is shown in which a polyolefin resin film is adhered to a sheet. However, in order to obtain high adhesive strength, it is necessary to use a large amount of thermoplastic rubber, which is more than three times more expensive than polystyrene, polyethylene, etc. There is a problem above. In addition, when, for example, polypropylene is used as the polyolefin resin film, the adhesive strength cannot be sufficiently satisfied. Japanese Utility Model Publication No. 62-137384 proposes that urethane or an ethylene / vinyl acetate copolymer is used as an adhesive, but it is effective to use a used laminate effectively. It has problems that it cannot be recycled, the laminate has low heat resistance, and the ethylene // vinyl acetate copolymer has a strong odor. On the other hand, in recent years, there has been a strong demand for recycling plastic containers, and this also applies to multilayer films formed by laminating resin films of the above-mentioned polyethylene, polypropylene, polyester, etc. on expanded polystyrene sheets. The method of recycling this multilayer film is to separate it into layers, to recover each resin, to melt the multilayer film, and then to recover each resin by fractional distillation, and to multilayer film. There is a method of melting and recovering as a resin mixture. The former two methods are not advantageous in terms of cost. The third method requires that the mixture be free of substances that would interfere with the purpose of reuse.
本発明は、 上記のような従来技術の問題点を鑑みなされたもので、 ポ リスチレン樹脂発泡体層と熱可塑性樹脂層からなる複合材であって、 両 者の接着強度が複合材のボウル等の深物容器への成形に耐えうるく らい 高く、 耐油性が高く、 安価でしかもリサイ クル利用が可能な複合材を提 供することをその課題とする。  The present invention has been made in view of the above-mentioned problems of the prior art, and is a composite material including a polystyrene resin foam layer and a thermoplastic resin layer, wherein the adhesive strength of both layers is a composite material such as a bowl. It is an object of the present invention to provide a composite material that is high enough to withstand the formation of a deep container, has high oil resistance, is inexpensive, and can be recycled.
発明の開示 Disclosure of the invention
本発明によれば、 ポリ スチレン樹脂発泡体層と、 該ポリ スチレン樹脂 発泡体層の両面の少なく と も一方に設けたァロイ層と、 該ァ口ィ層上に 設けた熱可塑性樹脂層からなる複合材であって、  According to the present invention, there are provided a polystyrene resin foam layer, an alloy layer provided on at least one of both surfaces of the polystyrene resin foam layer, and a thermoplastic resin layer provided on the aperture layer. A composite material,
該熱可塑性樹脂層がポリオレフィ ン樹脂及びポリエステル樹脂から選 ばれる樹脂からなり、 The thermoplastic resin layer is selected from a polyolefin resin and a polyester resin. Made of plastic
該ァロイ層がポリ スチレン樹脂と、 ポリ オレフィ ン樹脂及びポリ エス テル樹脂から選ばれる熱可塑性樹脂との混合物からなり、 ただし該熱可 塑性樹脂層がポリォレフィン樹脂からなるときは該ァロイ層の樹脂熱可 塑性樹脂はポリオレフイ ン樹脂であり、 該熱可塑性樹脂層がポリエステ ル樹脂からなるときは該ァロイ層の樹脂熱可塑性樹脂はポリエステル樹 脂であり、 及び  The alloy layer is composed of a mixture of a polystyrene resin and a thermoplastic resin selected from a polyolefin resin and a polyester resin. However, when the thermoplastic resin layer is composed of a polyolefin resin, the resin heat of the alloy layer is reduced. The plastic resin is a polyolefin resin, and when the thermoplastic resin layer is made of a polyester resin, the resin thermoplastic resin of the alloy layer is a polyester resin; and
該ポリスチレン樹脂発泡体層と該熱可塑性樹脂層との接着強度が 9 8 O m N / 2 5 m m以上である複合材が提供される。  A composite material having an adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer of 98 OmN / 25 mm or more is provided.
本発明を次に図面を参照しつつ詳細に説明する。 図中、 第 1図は結晶 化時間測定のグラフを示す図である。  The present invention will now be described in detail with reference to the drawings. In the figure, FIG. 1 is a diagram showing a graph of crystallization time measurement.
ポリスチレン樹脂発泡体層 Polystyrene resin foam layer
本発明でポリスチレン樹脂発泡体層に用いるポリスチレン樹脂には、 スチレンの単独重合体及び共重合体が包含される。 共重合体中に含まれ るスチレンモノマー単位は少なく とも 2 5重量%以上、 好ましくは 5 0 重量%以上である。  The polystyrene resin used for the polystyrene resin foam layer in the present invention includes a homopolymer and a copolymer of styrene. The styrene monomer unit contained in the copolymer is at least 25% by weight or more, preferably 50% by weight or more.
前記ポリ スチレン樹脂と しては、 ポリ スチレン、 ゴム変性ポ リ スチレ ン、 スチレンーァク リ ロ二 ト リノレ共重合体、 スチレン一ブタジエン一ァ ク リ ロニ ト リル共重合体、 スチレン一アク リル酸共重合体、 スチレン— メタク リル酸共重合体、 スチレン一メタク リル酸メチル共重合体、 スチ レン一メタク リル酸ェチル共重合体、 スチレン一ァク リル酸メチル共重 合体、 スチレン一アク リ ル酸ェチル共重合体、 スチレン一無水マ レイ ン 酸共重合体、 ポリ スチレン一ポ リ フエ二 レンエーテル共重合体、 ポ リ ス チレンとポリフエ二レンエーテルとの混合物などが例示される。  Examples of the polystyrene resin include polystyrene, rubber-modified polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer, and styrene-acrylic acid copolymer. Polymer, styrene-methacrylic acid copolymer, styrene-methyl methacrylate copolymer, styrene-methyl methacrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl acrylate Examples thereof include a copolymer, a styrene-maleic anhydride copolymer, a polystyrene-polyphenylene ether copolymer, and a mixture of polystyrene and polyphenylene ether.
これらの樹脂に脆性改善等を目的と してスチレン一共役ジェンプロッ , For the purpose of improving brittleness, etc. of these resins, styrene-conjugated ,
ク共重合体やその水添物をプレン ドしたものゃリサイクル樹脂の混合等 を考慮してポリプロピレン樹脂や高密度ポリエチレン等のポリオレフィ ン樹脂を 2 0重量%以下の割合でプレンドしたものも使用することがで きる。 尚、 ビカッ ト軟化点が 1 1 0 °C以上のポリ スチレン樹脂を使用す ることにより、本発明の複合材の耐熱性を向上させることができる。 尚、 本明細書において、 樹脂のビカッ ト軟化点は J I S K 7 2 0 6 (試験 荷重は Α法、 伝熱媒体の昇温速度は 5 0 °CZ時の条件) にて求められる 値を指す。 Polypropylene resin or its hydrogenated product is blended. Polyolefin resin such as polypropylene resin or high-density polyethylene is blended at a ratio of 20% by weight or less in consideration of mixing of recycled resin. be able to. The heat resistance of the composite material of the present invention can be improved by using a polystyrene resin having a vicat softening point of 110 ° C. or higher. In the present specification, the vicat softening point of the resin refers to a value determined by JIS K7206 (test load is Α method, heating rate of heat transfer medium is 50 ° CZ).
ポリスチレン樹脂の溶融粘度は、 1 9 0 °C、 剪断速度 1 0 0 s e c—1 の条件下での溶融粘度で、 2 0 P a ' s以上で 1 0, O O O P a . s以下、 好ましくは 1 0 0〜 5, O O O P a ' sである。 溶融粘度が 2 0 P a · s より小さいと、 発泡体成形時にダイスより押出された溶融樹脂が垂れて しまい、 成形困難になる虞れがある。 一方、 1 0 , O O O P a ' s を超え ると、 押出圧力が上昇して押出成形が困難になり、 良質の発泡体が成形 できなくなる虞れがある。 The melt viscosity of polystyrene resin is the melt viscosity under the conditions of 190 ° C and a shear rate of 100 sec- 1 . It is more than 20 Pa and less than 10 Pa, less than OOOPa. 0 0-5, OOOP a 's. If the melt viscosity is less than 20 Pa · s, the molten resin extruded from the die at the time of foam molding may sag, making molding difficult. On the other hand, if it exceeds 10, OOOP a 's, the extrusion pressure will increase and extrusion molding will be difficult, and there is a possibility that high quality foams cannot be molded.
ポリ スチレン樹脂発泡体層の密度は通常 0. 0 3 5〜 0. 7 g Z c m3、 好ましくは 0. 0 5〜 0. 5 g Z c m3 であり、 特に熱成形用のものは 0. 0 7〜 0. 5 g / c m3 のものが好ましレヽ。 その密度が 0. 0 3 5 g / c m3 より小さく なると、 複合材を成形して得られる成形品の強度 が不足したり、 加熱真空成形するときに伸び不足を生じて成形品に透孔 を生じることがある。 一方、 その密度が 0. 7 g Z c m3 より も大きく なると、 経済的に不利になる。 又、 容器等の成形品の断熱性が悪くなり、 例えば熱湯を入れたときに容器を手で持つことができなくなる。 Polystyrene density of the resin foam layer is usually 0. 0 3 5~ 0. 7 g Z cm 3, preferably 0. 0 5~ 0. 5 g Z cm 3, particularly those for thermoforming 0. 0 7~ 0. 5 g / cm 3 things Shi preferred Rere. When the density is less than 0. 0 3 5 g / cm 3 , or insufficient strength of the molded article obtained by molding a composite material, a hole in the molded article results in lack of elongation when heated vacuum forming May occur. On the other hand, if its density is greater than 0.7 g Z cm 3, it is economically disadvantageous. In addition, the heat insulation of the molded article such as a container is deteriorated. For example, when hot water is poured, the container cannot be held by hand.
また、 ポリ スチレン樹脂発泡体層の厚みは通常 0. 5〜 1 0 mm、 好 ましくは 0. 7〜 5 mmであり、 特に熱成形用のものは 0. 7〜 4 mm が好ましい。 発泡体層の厚みが 0. 5 mmより も薄くなると、 真空成形 等により得られる成形品の壁厚が不十分となり、 強度や断熱性の点で劣 つたものとなる傾向がある。 一方、 その厚みが 1 0 mmより大きくなり すぎると、 加熱真空成形の際に、 シートの内部と外部の加熱ムラが起り やすく、 精密な温度制御が必要となる。 The thickness of the polystyrene resin foam layer is usually 0.5 to 10 mm, preferably 0.7 to 5 mm, especially 0.7 to 4 mm for thermoforming. Is preferred. If the thickness of the foam layer is less than 0.5 mm, the wall thickness of the molded product obtained by vacuum forming or the like becomes insufficient, and the strength and the heat insulating property tend to be inferior. On the other hand, if the thickness is more than 10 mm, uneven heating inside and outside of the sheet is likely to occur during heating vacuum forming, and precise temperature control is required.
更に、 発泡体層の連続気泡率 (A S TM D 2 8 5 6、 手順 C) は好 ましくは 4 0 %以下である。 発泡体層の連続気泡率は熱成形時の二次発 泡性や得られる二次成形品の品質 (強度等の物性) に影響を与えるので、 前記の通りに規定するのがよい。  Further, the open cell ratio (A STM D 285, Procedure C) of the foam layer is preferably 40% or less. The open cell ratio of the foam layer affects the secondary foaming property at the time of thermoforming and the quality (physical properties such as strength) of the obtained secondary molded product.
ポリ スチレン樹脂発泡体層は有機発泡剤、 無機発泡剤、 分解型発泡剤 などの発泡剤を用いていかなる公知の方法により得ることができる。 有 機発泡剤と しては、 プロパン、 n—ブタン、 i —ブタン、 n—ブタンと i —ブタンとの混合物、 ペンタン、 へキサン等の脂肪族炭化水素、 シク ロブタン、 シクロペンタン等の環式脂肪族炭化水素、 ト リ クロ口フロロ メ タン、 ジク ロ ロジフロ ロメ タン、 1 , 1 —ジフルォロェタン、 1 , 1 —ジフノレオロー 1 —クロロェタン、 1, 1 , 1 , 2—テ トラフノレォロェ タン、 メチルクロライ ド、 ェチルクロライ ド、 メチレンクロライ ド等の ハロゲン化炭化水素およびこれらの混合物等が挙げられる。 また、 無機 発泡剤と しては窒素、 二酸化炭素等のガス及び水が挙げられる。 更に、 分解型発泡剤と しては、 ァゾジカルボンアミ ド、 ジニ トロ ソペンタメチ レンテ トラ ミン、 ァゾビスィ ソブチロニ ト リル、 重炭酸ナ ト リ ゥム等が 挙げられる。 これらの発泡剤は適宜混合して用いることができる。 この なかでもハ口ゲン化水素を含まないオゾン層の破壊等環境への影響の少 ないものを使用することが好ましい。 発泡剤の使用量は、 特に限定され ないが、 おおむね樹脂 1 0 0 gあたり 0. 0 1〜0. 1モルの範囲であ a The polystyrene resin foam layer can be obtained by any known method using a foaming agent such as an organic foaming agent, an inorganic foaming agent, or a decomposable foaming agent. Examples of the organic blowing agent include propane, n-butane, i-butane, a mixture of n-butane and i-butane, aliphatic hydrocarbons such as pentane and hexane, and cyclic compounds such as cyclobutane and cyclopentane. Aliphatic hydrocarbons, trichlorofluoromethane, dichlorodifluoromethane, 1, 1—difluoroethane, 1,1—diphneololol 1—chloroethane, 1,1,1,2, -tetranoleoloethane, methyl chloride, ethyl chloride And halogenated hydrocarbons such as methylene chloride, and mixtures thereof. Examples of the inorganic foaming agent include a gas such as nitrogen and carbon dioxide and water. Further, examples of the decomposable blowing agent include azodicarbonamide, dinitrosopentamethylentramine, azobisisobutyronitrile, sodium bicarbonate and the like. These foaming agents can be appropriately mixed and used. Among them, it is preferable to use a material that does not contain hydrogen hydride and has little effect on the environment such as destruction of the ozone layer. The amount of the foaming agent used is not particularly limited, but is generally in the range of 0.01 to 0.1 mol per 100 g of the resin. a
る。 You.
ポリスチレン樹脂発泡体層には、 本発明の目的を著しく損なわない範 囲で、 必要に応じて通常ポリ スチレン樹脂に添加される各種の添加剤、 例えば、 造核剤、 酸化防止剤、 熱安定剤、 帯電防止剤、 導電性付与剤、 耐候剤、 紫外線吸収剤、 着色剤、 難燃剤、 無機充填剤等を添加すること ができる。  In the polystyrene resin foam layer, various additives which are usually added to the polystyrene resin as needed, for example, a nucleating agent, an antioxidant, a heat stabilizer, so long as the object of the present invention is not significantly impaired. , An antistatic agent, a conductivity-imparting agent, a weathering agent, an ultraviolet absorber, a coloring agent, a flame retardant, an inorganic filler and the like can be added.
熱可塑性樹脂層 Thermoplastic resin layer
上記ポリスチレン樹脂発泡体層に積層される熱可塑性樹脂層に用いる 熱可塑性樹脂は、 ポリオレフィン樹脂又はポリエステル樹脂を含む。 熱可塑性樹脂層の厚みは一般には 0 . 0 1 〜 1 m m、 好ましくは 0 . 0 1 5〜 0 . 8 m m、 更に好ましくは 0 . 0 1 5〜 0 . 3 5 m mであり、 そのポリ スチレン樹脂発泡体層の厚みに対する割合は一般には 3〜 5 0 %、 好ましくは 5〜 4 0 %である。 熱可塑性樹脂層の厚みが前記範囲 より も小さくなると、 二次成形時にシ一 トに透孔ゃ破れを生じるので好 ましくなレ、。 一方、 余りにも厚くなりすぎると、 コス トアップになるば かり力、、 熱可塑性樹脂層に最適な加熱時間で複合材を成形すると、 その 発泡体層が溶融したりする。  The thermoplastic resin used for the thermoplastic resin layer laminated on the polystyrene resin foam layer includes a polyolefin resin or a polyester resin. The thickness of the thermoplastic resin layer is generally 0.1 to 1 mm, preferably 0.15 to 0.8 mm, more preferably 0.015 to 0.35 mm, and the polystyrene The ratio to the thickness of the resin foam layer is generally 3 to 50%, preferably 5 to 40%. If the thickness of the thermoplastic resin layer is smaller than the above-mentioned range, the sheet is likely to have through holes and breakage during secondary molding, which is not preferable. On the other hand, if the thickness is too large, the foaming layer may be melted if the composite material is molded with the best heating time for the thermoplastic resin layer as well as the cost.
熱可塑性樹脂層と して耐熱性、 外観の面から高密度ポリエチレンゃポ リプロピレン樹脂の使用が好ましい。高密度ポリエチレンを用いた場合、 複合材の表面がつや消しの外観を呈する。 一方、 ポリ プロ ピレン樹脂を 用いた場合、 複合材の表面光沢性に優れたものが得られる。 保香性及び ガスバリァー性の面から, 熱可塑性樹脂層と してポリエステル樹脂の使 用が好ましい。  It is preferable to use a high-density polyethylene-polypropylene resin as the thermoplastic resin layer in terms of heat resistance and appearance. When high-density polyethylene is used, the surface of the composite material has a matte appearance. On the other hand, when a polypropylene resin is used, a composite material having excellent surface gloss can be obtained. It is preferable to use a polyester resin for the thermoplastic resin layer from the viewpoints of fragrance retention and gas barrier properties.
熱可塑性樹脂層には、 必要に応じて各種の添加剤、 例えば酸化防止剤、 熱安定剤、 帯電防止剤、 導電性付与剤、 造核剤、 耐候剤、 紫外線防止剤、 „ In the thermoplastic resin layer, various additives such as antioxidants, heat stabilizers, antistatic agents, conductivity-imparting agents, nucleating agents, weathering agents, UV inhibitors, „
着色剤、 難燃剤、 無機充填剤等を適宜添加することができる。 熱可塑性 樹脂層に粒径 I n n!〜 1 O O n mのカオリ ン、 マイ力、 シ リ カ、 タノレク、 ク レイ、 メタク リ ル酸亜鉛、 高飽和二 ト リルゴム、 液晶ポリ マー等を樹 脂に対して 3〜 1 0重量%添加し微分散させて、 いわゆるナノコンポジ ッ トとすることができる。 これにより、 引張り強度、 引張り弾性率、 曲 げ強度、 曲げ弾性率、 ガス透過性、 透明性、 難燃性、 耐熱安定性等が良 化する。 分散させるために必要に応じて相溶化剤を添加することもでき る。 Coloring agents, flame retardants, inorganic fillers and the like can be added as appropriate. Particle size I n n! In the thermoplastic resin layer Add 1 to 100 nm of kaolin, myriki, silica, tanolek, creis, zinc methacrylate, highly saturated nitrile rubber, liquid crystal polymer, etc. in an amount of 3 to 10% by weight based on the resin. It can be finely dispersed to form a so-called nanocomposite. As a result, the tensile strength, tensile modulus, bending strength, bending modulus, gas permeability, transparency, flame retardancy, heat stability, and the like are improved. If necessary, a compatibilizer can be added for dispersion.
リサイクル性の面からはあまり好ましくはないが、 ポリスチレン樹脂 発泡体層に積層される熱可塑性樹脂層に加え更にフィルム状のポリアミ ド榭脂、 塩化ビニリデン、 エチレン一酢酸ビニル共重合体ケン化物、 ァ ルミ二ゥム箔等の他の機能性材料と組み合わせて複合材と して該発泡体 に積層することもできる。  Although not very desirable in terms of recyclability, in addition to the thermoplastic resin layer laminated on the polystyrene resin foam layer, a film-like polyamide resin, vinylidene chloride, saponified ethylene vinyl acetate copolymer, and It can also be laminated with the foam as a composite material by combining with other functional materials such as lumidium foil.
又、 ポリオレフィン榭脂又はポリエステル樹脂から形成される熱可塑 性樹脂層の上には、 それに直接熱接着する 1つ又は 2つの追加の熱可塑 性樹脂層を複合材の最外層と して設けることができる。  In addition, one or two additional thermoplastic resin layers directly bonded to the thermoplastic resin layer formed of polyolefin resin or polyester resin should be provided as the outermost layer of the composite material. Can be.
次に、 熱可塑性樹脂層を形成するポリオレフィ ン樹脂及びポリエステ ル榭脂について詳述する。  Next, the polyolefin resin and the polyester resin forming the thermoplastic resin layer will be described in detail.
ポリオレフィン樹脂  Polyolefin resin
ポリオレフイ ン樹脂には、 ォレフ ィ ンの単独重合体、 共重合体 (ラン ダム共重合体、 ブロック共重合体等) 及びブレン ド体等が包含される。 本発明では、 特に、 耐熱性の点から、 ビカツ 卜軟化点が 1 1 2 °C以上の もの、 更に該軟化点が 1 2 0 °C以上のもの (該軟化点の上限値は特に限 定されないが 1 6 0 °C程度である。)、 特に高密度ポリエチレンやポリプ ロピレン樹脂の使用が好ましい。 Q The polyolefin resin includes homopolymers, copolymers (random copolymers, block copolymers, and the like) of olefins, and blends. In the present invention, particularly, from the viewpoint of heat resistance, those having a vicat softening point of 112 ° C or more, and those having a softening point of 120 ° C or more (the upper limit of the softening point is particularly limited) However, it is about 160 ° C.), but it is particularly preferable to use high-density polyethylene or polypropylene resin. Q
ポリ プロ ピレン樹脂には、 プロ ピレンの単独重合体、 共重合体及びブ レンド体等が包含される。 The propylene resin includes homopolymers, copolymers and blends of propylene.
プロピレン共重合体において、 その共重合成分には、 エチレン、 プチ レン、 その他のひ 一ォレフィ ンが包含され、 その α —ォレフィ ンの炭素 数は 1 2以下、 好ましくは 8以下である。 その共重合成分であるェチレ ン、 ブチレン、 その他のひ 一ォレフィ ンの含有量は、 ブロ ック共重合体 の場合は 2 0重量%以下、 ランダム共重合体の場合は 8重量%以下であ ることが好ましい。  In the propylene copolymer, the copolymer component includes ethylene, butylene and other monoolefins, and the α-olefin has 12 or less, preferably 8 or less carbon atoms. The content of the copolymer components, ethylene, butylene and other monoolefins, is 20% by weight or less for block copolymers and 8% by weight or less for random copolymers. Preferably.
また、 ポリ プロ ピレン樹脂のブレン ド体において、 そのブレン ド用樹 脂には、 エチレンの単独重合体、 エチレンと炭素数が 3 〜 1 2個の α — ォレフィ ンとの共重合体、 炭素数が 4 〜 6 の " 一ォレフィ ンの単独重合 体等が挙げられる。  In the blend body of a propylene resin, the resin for the blend includes a homopolymer of ethylene, a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms, and a carbon number of And the homopolymers of "one-olefin" having 4 to 6 are exemplified.
本発明の好ましい態様においては、 熱可塑性樹脂層を形成するポリォ レフィン樹脂と して、 ( i ) 融点 1 5 5 。C以下のポリプロピレン樹脂 (以 下、 低融点ポリプロピレン樹脂とも言う) と融点 1 3 0 °C以上のポリエ チレン樹脂 (以下、 高融点ポリエチレン樹脂とも言う) との混合物、 ( i i ) 融点 1 5 5 °Cを越えるポリプロピレン樹脂 (以下、 高融点ポリプロ ピレン樹脂と も言う)、 ( i i i ) 融点 1 3 0で以上のポリエチレン樹脂 を主成分とするものが用いられる。 この場合、 「主成分とする」 とは( i ) 〜 ( i i i ) の榭脂又は混合樹脂が熱可塑性樹脂層の約 8 0重量。/。以上 占めることを意味し、 本発明の目的 · 効果を阻害しない範囲で、 例えば ( i ) 〜 ( i i i ) の樹脂又は混合樹脂 1 0 0重量部に対して 7 0重量 部以下のポリ スチレン樹脂、 ナイ ロン樹脂、 ポリエステル樹脂、 ゴム等 の他の重合体を更に包含しても良いことを意味する。  In a preferred embodiment of the present invention, the polyolefin resin for forming the thermoplastic resin layer has (i) a melting point of 150. A mixture of a polypropylene resin having a melting point of not more than C (hereinafter, also referred to as a low melting point polypropylene resin) and a polyethylene resin having a melting point of not less than 130 ° C (hereinafter, also referred to as a high melting point polyethylene resin); A polypropylene resin exceeding C (hereinafter also referred to as a high-melting-point polypropylene resin), and (iii) a resin having a melting point of 130 and a main component of the above-mentioned polyethylene resin are used. In this case, the “main component” means that the resin or mixed resin (i) to (iii) is about 80% by weight of the thermoplastic resin layer. /. Within the range not impairing the object and effect of the present invention, for example, 70 parts by weight or less of a polystyrene resin of 100 parts by weight or less of the resin (i) to (iii) or a mixed resin, It means that other polymers such as nylon resin, polyester resin, rubber and the like may be further included.
低融点ポリ プロ ピレン榭脂には、 プロ ピレンの共重合体等が包含され g The low-melting polypropylene resin includes a copolymer of propylene and the like. g
る。 プロ ピレン共重合体において、 その共重合成分には、 エチレン、 ブ チレン、 その他の α—ォレフイ ンが包含され、 その ct —ォレフィ ンの炭 素数は 1 2以下、 好ましくは 8以下である。 その共重合成分であるェチ レン、 ブチレン、 その他の α —ォレフィ ンの含有量は、 ランダム共重合 体の場合には 8重量。 /0以下であることが好ましい。 また、 その成形品の 離型性を考慮する と低融点ポリプロピレン樹脂の融点は 1 3 8 °C以上で あることが好ましい。 低融点ポリプロピレン樹脂の特に好ましい融点範 囲は 1 40〜 1 5 0°Cである。 You. In the propylene copolymer, the copolymer component includes ethylene, butylene, and other α-olefins, and the ct-olefin has a carbon number of 12 or less, preferably 8 or less. The content of the copolymer components, ethylene, butylene, and other α-olefins, is 8% in the case of a random copolymer. / 0 or less is preferable. Further, in consideration of the mold releasability of the molded product, the melting point of the low melting point polypropylene resin is preferably at least 138 ° C. A particularly preferred melting point range of the low melting point polypropylene resin is 140 to 150 ° C.
高融点ポリプロピレン樹脂には、 プロピレンの単独重合体及び共重合 体等が包含される。 この高融点ポリ プロ ピレン樹脂と しては従来公知の 各種のものが挙げられる。 その融点の上限値は、 通常、 1 6 5°C程度で ある。 その好ましい融点範囲は 1 5 8〜 1 64°Cである。  The high melting point polypropylene resin includes propylene homopolymers and copolymers. As the high melting point polypropylene resin, various conventionally known ones can be used. The upper limit of the melting point is usually about 165 ° C. Its preferred melting point range is 158 to 164 ° C.
高融点ポリエチレン樹脂には、 エチレンと炭素数が 3〜 1 2個の α — ォレフイ ンとの共重合体等が包含され、 例えば、 高密度ポリエチレン等 従来公知の各種のものが挙げられる。 その融点の上限値は、 通常、 1 4 0°Cである。 その好ましい融点範囲は 1 3 2〜 1 3 8°Cである。  The high-melting-point polyethylene resin includes a copolymer of ethylene and α-olefin having 3 to 12 carbon atoms, and examples thereof include conventionally known various materials such as high-density polyethylene. The upper limit of the melting point is usually 140 ° C. Its preferred melting point range is 132-138 ° C.
前記 ( i ) の混合樹脂の場合、 低融点ポリプロピレン樹脂の量は、 好 ましくは、 低融点ポリプロピレン樹脂と高融点ポリエチレン樹脂との合 計重量に基づき、 1 00重量%未満、 更に好ましくは 70〜 30重量% であり、 一方、 高融点ポリ エチレン樹脂の量は好ましくは 0重量。 /0超 8 5重量。 /。以下、 更に好ましくは 3 0〜 7 0重量%である。 In the case of the mixed resin (i), the amount of the low melting point polypropylene resin is preferably less than 100% by weight, more preferably 70% by weight, based on the total weight of the low melting point polypropylene resin and the high melting point polyethylene resin. On the other hand, the amount of the high melting point polyethylene resin is preferably 0% by weight. / 0 more than 85 weight. /. The content is more preferably 30 to 70% by weight.
上記 ( i ) の混合樹脂又は ( i i i ) の高融点ポリエチレン樹脂を 用いることにより、 耐油性はもちろんのこと耐熱性、 低温下での耐衝撃 性の良好な多層シ一 トを得ることができる。  By using the mixed resin (i) or the high-melting-point polyethylene resin (iii), a multilayer sheet having not only oil resistance but also heat resistance and good impact resistance at low temperatures can be obtained.
前記 ( i i ) のポリオレフイン樹脂の場合、 耐油性はもちろんのこと 特に耐熱性の良い多層シ一 トを得ることができる。 In the case of the polyolefin resin (ii), not only oil resistance but also In particular, a multilayer sheet having good heat resistance can be obtained.
成形性を考慮すると、 熱可塑性樹脂層を構成するポリォレフィン樹脂 は前記 ( i ) 〜 ( i i i ) の組成を持ち、 且つ結晶化速度の速いことが 好ましい。 特に、 ポリオレフイ ン樹脂の 1 0 0 °Cでの半結晶化時間は 3 0秒以下、 好ましくは 2〜 2 8秒である。 3 0秒を超えたものを使用す ると成形性が悪くなる。  In consideration of the moldability, it is preferable that the polyolefin resin constituting the thermoplastic resin layer has the above-mentioned composition (i) to (iiii) and has a high crystallization rate. In particular, the semi-crystallization time of the polyolefin resin at 100 ° C. is 30 seconds or less, preferably 2 to 28 seconds. If the time exceeds 30 seconds, the moldability will deteriorate.
本明細書でいう半結晶化時間は、結晶化速度測定器(メ ト口ン株式会社 (旧コタキ商事株式会社) 製の MK— 8 0 1型) を使用し、 あらかじめ 3 0 0°Cに加熱した樹脂試料を、 1 0 0 °Cに設定した結晶化浴に投入し、 測定することができる。 なお、 測定試料は、 フィルム状のものを用意す る。 この場合、 そのフイノレムの厚みは 0. 1 ± 0 · 0 2 mmのものと し、 そのフィルムの寸法は 1 5 X 1 5 mmの四角とする。 これを顕微鏡用力 バ一グラスに挟み込んだものを測定試料と して使用する。 又、 光源ラン プの揮度設定は支持値を 3 Vとする。  The half-crystallization time referred to in this specification was previously set at 300 ° C using a crystallization rate measuring device (MK-801 type manufactured by Meto Co., Ltd. (former Kotaki Shoji Co., Ltd.)) The heated resin sample can be put into a crystallization bath set at 100 ° C. for measurement. The measurement sample should be in the form of a film. In this case, the thickness of the finolem shall be 0.1 ± 0.2 mm, and the dimensions of the film shall be 15 x 15 mm square. This is sandwiched between power microscope glasses and used as a measurement sample. For the light source lamp, the support value is 3 V.
前記メ トロン株式会社製の結晶化速度測定器は、 試料の結晶化と光の 複屈折の関係より結晶化度を求める装置であり、 本明細書で言う半結晶 化時間とは前記測定方法により得られる図 1例示した時間—複屈折によ る光の量曲線 ( I ) から決定される。 即ち、 試料における複屈折に起因 する光の量は時間とともに増大し、 時点 a以後は最終的に一定 (値 Λ) となる。 半結晶化時間は、 ΛΖ 2 と等しい光の量 Bを与える曲線 ( I ) における時間 cである。 尚、 図 1 において、 ( I I ) は結晶化浴温度を温 度 D (本発明の場合 1 0 0°C) に設定したときの浴温度変化を表す。  The crystallization rate measuring device manufactured by Metron Co., Ltd. is a device for determining the degree of crystallinity from the relationship between the crystallization of a sample and the birefringence of light, and the half-crystallization time referred to in this specification is defined as It is determined from the obtained time-birefringence light quantity curve (I) shown in FIG. That is, the amount of light due to birefringence in the sample increases with time, and finally becomes constant (value Λ) after time point a. The half-crystallization time is the time c in the curve (I) that gives the amount of light B equal to ΛΖ2. In FIG. 1, (II) represents a change in the bath temperature when the crystallization bath temperature is set to a temperature D (100 ° C. in the case of the present invention).
ポリ エステル樹脂  Polyester resin
熱可塑性樹脂層と しては上記で述べたポリオレフィン樹脂以外にポリ エステル樹脂も用いることができる。 ポリ エステル樹脂はジカルボン酸 II As the thermoplastic resin layer, a polyester resin can be used in addition to the polyolefin resin described above. Polyester resin is dicarboxylic acid II
成分とジオール成分とを重縮合させる方法ゃポリエステル単独重合体及 び Z又はポリエステル共重合体のエステル交換反応等により製造される。 ポリエステル樹脂と しては 1 0 0 °Cでの半結晶化時間が 3 0分以上の 芳香族ポリエステル樹脂が好ましく用いられる。 芳香族ポリエステル樹 脂はジカルボン酸成分とジオール成分からなり、 これらの少なく とも 1 方は芳香族性のものである。 該芳香族ポリエステル樹脂のジカルボン酸 成分と しては、 ジカルボン酸或いはそのエステル形成性誘導体を使用で きる。 エステル形成性誘導体と しては、 ジメチルエステル、 ジェチルェ ステルなどのエステル誘導体、 ジアンモニゥム塩などの塩、 ジク ロ リ ド などの酸ハロゲン化物などを挙げることができる。 Method of polycondensing component and diol component: It is produced by transesterification of polyester homopolymer and Z or polyester copolymer. As the polyester resin, an aromatic polyester resin having a half-crystallization time at 100 ° C. of 30 minutes or more is preferably used. The aromatic polyester resin is composed of a dicarboxylic acid component and a diol component, at least one of which is aromatic. As the dicarboxylic acid component of the aromatic polyester resin, dicarboxylic acid or an ester-forming derivative thereof can be used. Examples of the ester-forming derivatives include ester derivatives such as dimethyl ester and getyl ester, salts such as diammonium salts, and acid halides such as dichloride.
重合体中のジカルボン酸成分単位と しては、 テレフタル酸、 イソフタ ル酸、 2 , 6 _ナフタ レンジカルボン酸、 フタル酸、 4 , 4 '—ジフエ二 ノレジカルボン酸、 3 , 4 '—ジフエニルジカルボン酸、 1 , 4—ナフタ レ ンジカルボン酸、 1 , 5 —ナフタ レンジカルボン酸、 2 , 5 —ナフタ レ ンジカルボン酸、 2 , 7 —ナフタ レンジカルボン酸等の芳香族ジカルボ ン酸或いはそのエステル形成性誘導体から誘導される成分単位、 又はシ ユウ酸、 コハク酸、 アジピン酸、 セバシン酸、 ドデカンジオン酸等の脂 肪族ジカルボン酸或いはそのエステル形成性誘導体から誘導される成分 単位、 又は 1 , 4ーシクロへキサンジカルボン酸、 1 , 3—シクロへキ サンジカルボン酸、 デカ リ ンジカルボン酸、 テ トラ リ ンジカルボン酸等 の脂環族ジカルボン酸或いはそのエステル形成性誘導体から誘導される 成分単位が挙げられ、 これらの 1種又は 2種以上が重合体中に含有され る。  The dicarboxylic acid component units in the polymer include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, phthalic acid, 4,4'-diphenyl carboxylic acid, and 3,4'-diphenyl Aromatic dicarboxylic acids such as dicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and esters thereof A component unit derived from a forming derivative or a component unit derived from an aliphatic dicarboxylic acid such as oxalic acid, succinic acid, adipic acid, sebacic acid, dodecanedioic acid or an ester-forming derivative thereof; or Alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, decalindicarboxylic acid, and tetralindicarboxylic acid Include Bonn acid or a component unit derived from an ester-forming derivative thereof, these one or two or more Ru are contained in the polymer.
本発明で用いる該芳香族ポリエステル樹脂のジオール成分と しては、 脂肪族及び芳香族ジオール (二価のフ エノールを含む) を使用できる。 重合体中のジオール成分単位と してはェチレングリ コール、 シク ロへ キサンジメ タノール、 プロピレングリ コール、 ト リ メチレンダリ コール、 ジエチレングリ コール、 1, 4 _ブタンジオール等の脂肪族ジオール或 いはそのエステル形成性誘導体から誘導される成分単位、 又は 1 , 4— シク ロへキサンジメ タノール、 1 , 3 —シク ロへキサンジメ タノール、 1, 6—シク口へキサンジオール等の脂環族ジオール或いはそのエステ ル形成性誘導体から誘導される成分単位、 又はビスフニノール A等の芳 香族ジオール或いはそのエステル形成性誘導体から誘導される成分単位 を挙げることができる。 As the diol component of the aromatic polyester resin used in the present invention, aliphatic and aromatic diols (including divalent phenol) can be used. As the diol component unit in the polymer, there are aliphatic diols such as ethylene glycol, cyclohexanedimethanol, propylene glycol, trimethylene daryl, diethylene glycol, and 1,4-butanediol, or esters thereof. Alicyclic diols such as 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,6-cyclohexanediol, etc., or their ester formation And a component unit derived from an aromatic diol such as bisfuninol A or an ester-forming derivative thereof.
また、 上記の芳香族ポリ エステル樹脂は、 例えば少量の安息香酸、 ベ ンゾィル安息香酸、 メ トキシポリエチレングリ コール等のごとき単官能 化合物から誘導される成分単位によって分子末端を封止されていてもよ レ、。 又、 ピロメ リ ッ ト酸、 ト リ メ リ ッ ト酸、 ト リ メ シン酸、 グリセリ ン、 ペンタエリ スリ トール等の多官能化合物から誘導される成分単位を少量 含んでいてもよレ、。  In addition, the above aromatic polyester resin may have its molecular end sealed with a component unit derived from a monofunctional compound such as a small amount of benzoic acid, benzoyl benzoic acid, methoxypolyethylene glycol, or the like. Les ,. Also, it may contain a small amount of a component unit derived from a polyfunctional compound such as pyromellitic acid, trimellitic acid, trimesic acid, glycerin, and pentaerythritol.
なお、 芳香族ポ リ エステル樹脂の半結晶化時間の調整は、 ジカルボン 酸成分と してテレフタル酸とイ ソフタル酸等 2種以上使用してそれらジ カルボン酸成分単位のモル比を変える方法や、 ジオール成分と してェチ レングリ コールとシクロへキサンジメタノール等 2種以上使用してそれ らジオール成分単位のモル比を変える方法等により調整することができ る。  The half-crystallization time of the aromatic polyester resin can be adjusted by using two or more dicarboxylic acid components such as terephthalic acid and isophthalic acid to change the molar ratio of the dicarboxylic acid component units. It can be adjusted by using two or more kinds of diol components such as ethylene glycol and cyclohexanedimethanol and changing the molar ratio of the diol component units.
半結晶化時間が 3 0分以上の芳香族ボリエステル樹脂と しては、 半結 晶化時間が 3 0分以上の芳香族ポリエステル共重合体が好ましい。 特に 好ましいものを例示すると、 7 5〜 4 0モル。 /0のェチレングリ コ一ルと 2 5〜 6 0モル0 /。のシク ロへキサンジメタノールからなるジオール成分 とテレフタル酸からなるジカルボン酸成分とのポリ エステル共重合体等 が挙げられる。 As the aromatic polyester resin having a half-crystallization time of 30 minutes or more, an aromatic polyester copolymer having a half-crystallization time of 30 minutes or more is preferable. Particularly preferred examples are 75 to 40 mol. / 0 ethylenic glycol and 25-60 mol 0 /. Diol component consisting of cyclohexanedimethanol And a dicarboxylic acid component composed of terephthalic acid.
また、 本発明において、 フィルム状の芳香族ポリエステル樹脂は、 本 発明の目的 ' 効果を阻害しない範囲において、 ポリ スチレン樹脂、 ポリ プロ ピレン樹脂、 ポリエチレン樹脂等のポリ オレフイ ン樹脂、 ナイ ロン 樹脂、 ハイインパク トポリ スチレン、 スチレン含有熱可塑性エラス トマ —等の樹脂、 エラス トマ一やゴムをおおむね 4 0重量。 /。以下の割合で含 有しているものであってもよレ、。  In the present invention, the film-like aromatic polyester resin may be a polyolefin resin such as a polystyrene resin, a polypropylene resin, or a polyethylene resin, a nylon resin, or a high-molecular-weight resin as long as the object of the present invention is not impaired. Resins such as impact polystyrene, styrene-containing thermoplastic elastomers, etc., elastomers and rubbers are approximately 40% by weight. /. It may be contained in the following proportions.
ポリエステル樹脂の厚みは、 0. 0 1〜 0. 5 mmが好ましく、 特に 0. 0 3〜 0. 2 mmが好ましい。 0. 0 1 m m未満では熱成形する際 に伸ばされて更に薄くなるために破れやピンホールが生じやすくなり、 複合材の耐溶剤性の低下を起こし易く十分な耐油性が得られ難い。 0. 5 mmを越える場合はポリスチレン樹脂発泡体との接着が難しくなり、 コス ト高となってしまう。 また、 複合材のリサイクル性の点からは、 積 層されるポリエステル樹脂量は、 複合材に対して、 5 0重量。 /。以下、 好 ましくは 2 5重量%以下にするのがよい。  The thickness of the polyester resin is preferably from 0.01 to 0.5 mm, particularly preferably from 0.03 to 0.2 mm. If it is less than 0.01 mm, it is stretched and further thinned during thermoforming, so that breakage and pinholes are liable to occur, and the solvent resistance of the composite material is liable to decrease, and it is difficult to obtain sufficient oil resistance. If it exceeds 0.5 mm, it will be difficult to adhere to the polystyrene resin foam, resulting in high cost. Also, from the viewpoint of the recyclability of the composite material, the amount of the laminated polyester resin is 50% by weight of the composite material. /. Hereinafter, the content is preferably 25% by weight or less.
本発明の複合材のポリスチレン樹脂発泡体層と熱可塑性樹脂層との間 の接着強度は 9 8 0 mNZ25mm以上、 特に好ましくは 2 4 5 1 m N / 25mm以上、 更には 3 6 7 7 m N 25m m以上という大きな値を有する < その接着強度の上限値は、 通常、 1 2 2 5 8 mN/25mm程度である。 このよ うな大きな層間接着強度を有する複合材は本発明によって初めて 提供されたものである。  The adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer of the composite material of the present invention is 980 mNZ25 mm or more, particularly preferably 2451 mN / 25 mm or more, and more preferably 3677 mN. It has a large value of 25 mm or more. <The upper limit of the adhesive strength is usually about 122 58 mN / 25 mm. A composite material having such a large interlayer adhesive strength is provided for the first time by the present invention.
本発明の複合材の層間接着強度が前記のように大きな値を有すること は、 ポリスチレン樹脂発泡体層と熱可塑性樹脂層との間に相構造指数 P I値が 0. 5〜 : 1. 5、 好ましくは 0. 6〜 : 1. 4、 更に好ましくは 0. 7〜 1. 3の範囲にあるァロイ層をもうけたことに起因する。 このァロ ィ層にっき, 次に説明する。 The interlayer adhesive strength of the composite material of the present invention having a large value as described above means that the phase structure index PI value between the polystyrene resin foam layer and the thermoplastic resin layer is 0.5 to: 1.5, Preferably 0.6 to: 1.4, more preferably 0.6. This is due to having an alloy layer in the range of 7 to 1.3. The following is a description of the error layer.
ァロイ層  Alloy layer
ァロイ層は、 ポリスチレン樹脂と熱可塑性樹脂との混合樹脂を主成分 と し、 熱可塑性樹脂に対するポリスチレン樹脂の重量比が 9 5 : 5〜 3 0 : 7 0、 更に 9 0 : 1 0〜4 0 : 6 0、 特に 8 5 : 1 5〜 5 5 : 4 5 であることが好ましい。 なお、 ポリ スチレン樹脂と熱可塑性樹脂の合計 量はァロイ層に対し 5 0重量%以上である。 ァロイ層に使用される熱可 塑性樹脂と しては、 ァロイ層上に積層される熱可塑性樹脂層に用いられ る熱可塑性樹脂と同一の樹脂、 もしくは熱融着可能な同種の熱可塑性樹 脂が好ましく用いられる。  The alloy layer is mainly composed of a mixed resin of a polystyrene resin and a thermoplastic resin, and the weight ratio of the polystyrene resin to the thermoplastic resin is 95: 5 to 30:70, and 90:10 to 40:40. : 60, particularly preferably 85: 15 to 55: 45. The total amount of the polystyrene resin and the thermoplastic resin is 50% by weight or more based on the alloy layer. As the thermoplastic resin used for the alloy layer, the same resin as the thermoplastic resin used for the thermoplastic resin layer laminated on the alloy layer, or the same kind of thermoplastic resin that can be heat-fused is used. Is preferably used.
ァロイ層の混合樹脂中のポリスチレン樹脂の量が 9 5 : 5を超えると、 ァロイ層とポリ スチレン発泡体層との間の接着強度は満足し得るものの、 ァロイ層と熱可塑性樹脂層との間の接着強度が不十分になる虞がある。 一方、 ポリスチレン樹脂の量が 3 0 : 7 0より低く なると、 ァロイ層と 熱可塑性樹脂層との間の接着強度は満足し得るものの、 ポリ スチレン樹 脂発泡体層とァロイ層との間の接着強度が不十分となる虞がある。  If the amount of polystyrene resin in the mixed resin of the alloy layer exceeds 95: 5, the adhesive strength between the alloy layer and the polystyrene foam layer can be satisfied, but the adhesive strength between the alloy layer and the thermoplastic resin layer can be improved. May be insufficient in adhesive strength. On the other hand, when the amount of the polystyrene resin is lower than 30:70, the adhesive strength between the alloy layer and the thermoplastic resin layer can be satisfied, but the adhesive strength between the polystyrene resin foam layer and the alloy layer can be improved. The strength may be insufficient.
ァロイ層の厚みは 1 5〜 2 0 0 mの範囲内で、 厚みが増す程接着力 が大きくなる傾向にあり、 好ましくは 2 0〜 1 5 0 /j mである。 ァロイ 層の厚みのポリ スチレン樹脂発泡体層の厚みの 3〜 5 0 %、 好ましくは 5〜 4 0 %である。 ァロイ層の厚みが 3 %より も小さくなると、 接着性 が不十分となり、 一方、 5 0 %を超えると、 ァロイ層を発泡体層に積層 する際、 発泡体層が加熱され、 その結果発泡体層の連続気泡率が高くな る傾向にあり、 また、 コス トアップの原因となる。  The thickness of the alloy layer is in the range of 15 to 200 m, and the adhesive strength tends to increase as the thickness increases, and is preferably 20 to 150 / j m. The thickness of the alloy layer is 3 to 50%, preferably 5 to 40% of the thickness of the polystyrene resin foam layer. If the thickness of the alloy layer is less than 3%, the adhesion becomes insufficient, while if it exceeds 50%, the foam layer is heated when the alloy layer is laminated on the foam layer, and as a result, the foam The open cell ratio of the layer tends to be high, and also causes cost increase.
ァロイ層の熱可塑性樹脂と してポリエステル樹脂を用いる場合、 融点 i g When polyester resin is used as the thermoplastic resin of the alloy layer, the melting point ig
が 1 0 5 °C以上 2 0 0 °C以下であるポリエステル樹脂が耐熱性の高い複 合材が得られる点で望ましい。 Is preferably 105 ° C. or more and 200 ° C. or less, since a composite having high heat resistance can be obtained.
本明細書における融点は、 J I S K 7 1 2 1 に準じて行なう熱流束 示差走查熱量測定によって得られる D S C曲線の融解ピークから求めら れる。 詳細は以下の通りである。 厚み 0 . 5 m m以下のフィルム約 5 m gを試験片と し、 該試験片を示差走査熱量測定装置を用いて常温から加 熱速度 1 0 °C Z分で融解ピーク終了時の温度より も約 3 0 °C高い温度ま で昇温した後、 直ちに冷却速度 1 0 °C Z分で 4 0 °Cまで降温させ、 次い で直ちに加熱速度 1 0 °C /分で融解ピーク終了時の温度より も約 3 0 °C 高い温度まで昇温した時に得られる D S C曲線の融解ピーク (融解ピー クが 2つ以上存在する場合は融解ピーク面積のより大きいもの) の頂点 温度をもって融点とする。 尚、 本明細書においては示差走査熱量測定装 置と して (株) 島津製作所製の島津熱流束示差走査熱量計 D S C— 5 0 を使用し、 窒素ガス流入速度を毎分 2 0 m 1 と して上記測定を行って求 められた融点を採用した。  The melting point in the present specification is determined from a melting peak of a DSC curve obtained by a heat flux differential scanning calorimetry performed in accordance with JIS K7112. Details are as follows. Approximately 5 mg of a film having a thickness of 0.5 mm or less is used as a test piece. Immediately after the temperature is raised to 0 ° C higher, the temperature is lowered to 40 ° C in a cooling rate of 10 ° CZ, and then immediately at a heating rate of 10 ° C / min. The melting point is defined as the peak temperature of the melting peak of the DSC curve (when two or more melting peaks are present, the melting peak area is larger) when the temperature is raised to about 30 ° C higher. In this specification, a differential scanning calorimeter, Shimadzu Heat Flux Differential Scanning Calorimeter DSC-50 manufactured by Shimadzu Corporation is used, and the nitrogen gas inflow rate is set to 20 m 1 / min. Then, the melting point obtained by performing the above measurement was adopted.
ァロイ層には、 必要に応じ、 相溶化剤、 接着剤、 弾性成分、 粘度調節 材などの添加剤をァロイ層に対して 5 0重量%未満の量で添加すること ができる。  If necessary, additives such as a compatibilizer, an adhesive, an elastic component, a viscosity modifier and the like can be added to the alloy layer in an amount of less than 50% by weight based on the alloy layer.
ァロイ層は、 相溶化剤を含むことが好ましい。 相溶化剤と しては、 ァ ロイ層のポリスチレン樹脂と熱可塑性樹脂とを相溶化し得るものであれ ばよく、 従来公知の各種のものを用いることができる。 このよ うなもの と しては、 特にスチレン含有熱可塑性エラス トマ一の使用がポリ スチレ ン発泡体層と熱可塑性樹脂層との接着性の改善のほか、 複合材の衝撃強 度や脆性が改善されるため好ましい。 ァロィ層の熱可塑性樹脂がポリェ ステル樹脂の場合、 スチレン含有熱可塑性エラス トマ一は、 ポ リ スチレ ン樹脂とポリエステル樹脂との混合樹脂の粘度を下げる粘度調節剤と し て機能し、 これによりポリ スチレン樹脂とポリエステル樹脂との混練性 が向上する。 The alloy layer preferably contains a compatibilizer. As the compatibilizing agent, any one can be used as long as it can compatibilize the polystyrene resin and the thermoplastic resin of the alloy layer, and various conventionally known ones can be used. In particular, the use of a styrene-containing thermoplastic elastomer not only improves the adhesion between the polystyrene foam layer and the thermoplastic resin layer, but also improves the impact strength and brittleness of the composite material. Is preferred. When the thermoplastic resin of the alloy layer is a polyester resin, the styrene-containing thermoplastic elastomer is made of polystyrene. It functions as a viscosity regulator for lowering the viscosity of the mixed resin of the polyester resin and the polyester resin, thereby improving the kneading property of the polystyrene resin and the polyester resin.
このスチレン含有熱可塑性エラス トマ一には、 例えば、 スチレン—ェ チレン一ブチレン一スチレンブロ ックコポリマ一 ( S E B S)、 スチレン —エチレン一プロ ピレン一スチレンブロ ック コポリマ一 ( S E P S)、 ス チレン一ブタジエン一スチレンブロ ック コポリマー ( S B S) 又はスチ レン一イ ソプレン一スチレンブロ ックコポリマ一 (S I S ) である。 こ のスチレン含有熱可塑性エラス トマ一のスチレン含有量は好ましく は 1 0〜 6 0重量0 /0である。 S B S又は S I Sは、 ハー ドセグメン トと して ポリスチレンの結晶相を有し、 ソフ トセグメン トと してポリブタジェン 又はポリイソプレンがプロック的に共重合された構造を有する。 一方、 S E B Sや S E P Sは、 前記 S B Sや S I Sのものに含まれているポリ ブタジエン、 ポリイソプレンを高度に水素化してその主鎖中の二重結合 を飽和させたものである。 これらの S E B Sや、 S E P S、 S B S及び S I S等のスチレン含有熱可塑性エラス トマ一は、 「プラスチックエー ジ」、 第 1 0 1頁〜第 1 0 6頁.( J u n e 1 9 8 5 ) に詳述されている。 相溶化剤の添加により、 ポリスチレン樹脂発泡体層と熱可塑性樹脂層と の接着強度が高まり 、 スチレン含有熱可塑性エラス トマ一の相溶化剤を 用いた場合には、 更に複合材の衝撃強度や脆性が改善される。 Examples of the styrene-containing thermoplastic elastomer include styrene-ethylene-butylene-styrene-block copolymer (SEBS), styrene-ethylene-propylene-styrene-block copolymer (SEPS), and styrene-butadiene. Styrene block copolymer (SBS) or styrene-isoprene-styrene block copolymer (SIS). Styrene content of the styrene-containing thermoplastic Heras Tomah one This is preferably 1 0-6 0 weight 0/0. SBS or SIS has a polystyrene crystal phase as a hard segment, and has a structure in which polybutadiene or polyisoprene is block copolymerized as a soft segment. On the other hand, SEBS and SEPS are obtained by highly hydrogenating polybutadiene and polyisoprene contained in SBS and SIS to saturate the double bonds in the main chain. These styrene-containing thermoplastic elastomers such as SEBS, SEPS, SBS, and SIS are described in detail in “Plastic Age”, pp. 101-106. (June 1985) Have been. The addition of the compatibilizer increases the adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer, and further increases the impact strength and brittleness of the composite material when the compatibilizer of the styrene-containing thermoplastic elastomer is used. Is improved.
相溶化剤は、 ァロイ層中のポリ スチレン樹脂と熱可塑性樹脂との合計 量 1 0 0重量部当り、 通常 0. :!〜 3 0重量部、 好ましくは 0. 5〜 1 0重量部添加される。 スチレン含有熱可塑性エラス トマ一の場合は 2〜 1 0重量部とするのが好ましい。 この相溶化剤の添加により、 ポリ スチ レン樹脂発泡体層と熱可塑性樹脂層との接着強度が高まるほか、 複合材 の衝撃強度や脆性が改善される。 ァロイ層の熱可塑性樹脂がポリエステ ル樹脂の場合、 スチレン含有熱可塑性エラス トマ一は、 ァロイ層中のポ リ スチレン樹脂とポリエステル樹脂との合計量 1 0 0重量部あたり好ま しくは 0 . 3〜 2 0重量部、 更に好ましく は 0 . 5〜 1 5重量部添加さ れる。 このよ うに、 スチレン含有熱可塑性エラス トマ一は、 相溶化剤、 弾性付与剤及び粘度調節剤と して作用し、 ァロイ層に好ましく添加され る。 The compatibilizer is generally added in an amount of from 0: to 30 parts by weight, preferably from 0.5 to 10 parts by weight, per 100 parts by weight of the total amount of the polystyrene resin and the thermoplastic resin in the alloy layer. You. In the case of a styrene-containing thermoplastic elastomer, the content is preferably 2 to 10 parts by weight. The addition of this compatibilizer increases the adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer, Impact strength and brittleness are improved. When the thermoplastic resin of the alloy layer is a polyester resin, the styrene-containing thermoplastic elastomer is preferably used in an amount of 0.3 to 100 parts by weight of the total amount of the polystyrene resin and the polyester resin in the alloy layer. 20 parts by weight, more preferably 0.5 to 15 parts by weight, is added. As described above, the styrene-containing thermoplastic elastomer acts as a compatibilizer, an elasticity-imparting agent, and a viscosity modifier, and is preferably added to the alloy layer.
ァロイ層には脆性改善を目的と して弾性成分を添加することができる。 弾性成分と しては、 スチレン、 α—メチルスチレンなどのスチレン成分 とブタジエンもしくはィソプレン系ジェン成分からなるランダム共重合 体、 ブロック共重合体、 グラフ ト共重合体、 又はこれらの共重合体の混 合物が挙げられる。 弾性成分は該ァロイ層中の前記ポリスチレン榭脂と 前記熱可塑性樹脂との合計量 1 0 0重量部当り 2〜 5 0重量部の量で添 加するのが好ましく、 更に好ましくは 5〜 3 0重量部である。  An elastic component can be added to the alloy layer for the purpose of improving brittleness. As the elastic component, a random copolymer, a block copolymer, a graft copolymer, or a mixture of these copolymers composed of a styrene component such as styrene or α-methylstyrene and a butadiene or isoprene-based gen component is used. Compounds. The elastic component is preferably added in an amount of 2 to 50 parts by weight, more preferably 5 to 30 parts by weight, per 100 parts by weight of the total of the polystyrene resin and the thermoplastic resin in the alloy layer. Parts by weight.
尚、 上記したスチレン含有熱可塑性エラス トマ一を含む弾性成分はポ リ スチレン樹脂発泡体層中にその脆性改善を目的と して、 ポリ スチレン 樹脂 1 0 0重量部あたり 0 · 5〜 3 0重量部、 好ましくは 1 〜 2 0重量 部、 添加することができる。  The elastic component containing the above-mentioned styrene-containing thermoplastic elastomer is used in the polystyrene resin foam layer in order to improve its brittleness, and is used in an amount of 0.5 to 30 parts by weight per 100 parts by weight of the polystyrene resin. Parts, preferably 1 to 20 parts by weight, can be added.
ァロイ層にはエチレン Ζ酢酸ビニル共重合体などの接着剤を添加する ことができる。 エチレン Ζ酢酸ビュル共重合体はポリ スチレン樹脂と熱 可塑性樹脂との混合樹脂 1 0 0重量部あたり 2 5重量部以下とするのが 経済性、 臭気低減の理由で好ましい。  An adhesive such as an ethylene-vinyl acetate copolymer can be added to the alloy layer. The ethylene / butyl acetate copolymer is preferably used in an amount of not more than 25 parts by weight per 100 parts by weight of the mixed resin of the polystyrene resin and the thermoplastic resin, from the viewpoint of economy and reduction of odor.
前に述べたように、 ァロイ層は 0 . 5〜 1 . 5の範囲の相構造指数 Ρ I値を持つ。 相構造指数 Ρ Ι値は、 ァロイ層のポリ スチレン樹脂と熱可 塑性樹脂との混合状態を示すもので、 下記式 ( 1 ) で定義される。 P I値 = ( 7; Λ · Φ l¾Z B · A ) 式 ( 1 ) 前記式 ( 1 ) において、 φ .、はァロイ層中のポ リ スチレン樹脂相の体 積分率、 7 Aは 1 9 0 °C、 剪断速度 1 0 0 s e c ·'におけるポリスチレン 榭脂の溶融粘度、 Φ Βはァロイ層中の熱可塑性樹脂相の体積分率、 77 ± 1 9 0 °C剪断速度 1 0 0 s e c 1 における熱可塑性樹脂の溶融粘度であ る。 As mentioned earlier, the alloy layer has a phase structure index ΡI value in the range of 0.5 to 1.5. The phase structure index Ρ Ι value indicates the mixed state of the polystyrene resin and the thermoplastic resin of the alloy layer, and is defined by the following equation (1). PI value = (7; Λ · Φl¾ZB · A) Equation (1) In the above equation (1), φ. Is the volume fraction of the polystyrene resin phase in the alloy layer, and 7A is 190 ° C, melt viscosity of polystyrene resin at shear rate 100 sec · ', Φ Β is volume fraction of thermoplastic resin phase in alloy layer, heat at 77 ± 190 ° C shear rate 100 sec 1 It is the melt viscosity of the plastic resin.
前記ァロイ層の P I値が 0 . 5より小さくなると、 ァロイ層中の熱可 塑性樹脂がポリスチレン樹脂に覆われて接着表面に露出し難くなり、 発 泡体層とァロイ層との接着強度は満足し得るものの、 ァロイ層と熱可塑 性樹脂層との間の接着強度が不十分となり、 複合材を熱成形して得られ るボウル等の容器等の成形品に成形する際に層間剥離が生じやすくなる c 一方、 P I値が 1 . 5を超えるようになると、 ァロイ層中のポリスチレ ン樹脂が熱可塑性樹脂に覆われ接着表面に露出し難くなり、 熱可塑性樹 脂層とァロイ層との接着強度は満足するものの、 ァロイ層と発泡体層と の接着強度が不十分となり、 複合材を容器等の成形品に成形する際に層 間剥離が生じやすくなる。 P I値は、 発泡体層と熱可塑性樹脂層との間 の優れた接着強度の理由で 0 . 6〜 1 . 4特に 0 . 7〜 1 . 3の範囲が 好ましい。 When the PI value of the alloy layer is smaller than 0.5, the thermoplastic resin in the alloy layer is covered with the polystyrene resin and is hardly exposed on the bonding surface, and the bonding strength between the foam layer and the alloy layer is satisfactory. However, the adhesive strength between the alloy layer and the thermoplastic resin layer is insufficient, and delamination occurs when the composite material is molded into a molded article such as a bowl or the like obtained by thermoforming. on the other hand becomes easier c, the PI value comes to more than 1.5, polystyrene down resin Aroi layer is not easily exposed to the covered adhesive surface to the thermoplastic resin, the adhesion between the thermoplastic resins layer and Aroi layer Although the strength is satisfactory, the adhesive strength between the alloy layer and the foam layer is insufficient, and delamination tends to occur when the composite material is formed into a molded article such as a container. The PI value is preferably in the range of 0.6 to 1.4, particularly 0.7 to 1.3, because of the excellent adhesive strength between the foam layer and the thermoplastic resin layer.
本発明の複合材は、 従来公知の方法で製造することができる。 その代 表的な方法と しては、 予め作製した発泡体層にァロイ層と熱可塑性樹脂 層を順次押出機で供給して接着する方法 ; 予め作製した発泡体層と熱可 塑性樹脂層を押出機より供給したァロイ層で接着する方法、 共押出によ つて発泡体層にァロイ層及び熱可塑性樹脂層を同時に形成する方法等が ある。 なかでも多層共押出法によって得られる複合材 (多層シ一 ト) は、 他の方法に比べて工程がシンブルで低コス ト化が可能であり、 また発泡 体層とァロイ層、 ァロイ層と熱可塑性樹脂層の接着強度が高くなるので 好ましい。 The composite material of the present invention can be manufactured by a conventionally known method. As a typical method, an alloy layer and a thermoplastic resin layer are sequentially supplied to a previously produced foam layer by an extruder and adhered thereto; the previously produced foam layer and the thermoplastic resin layer are bonded together. There are a method of bonding with an alloy layer supplied from an extruder, and a method of simultaneously forming an alloy layer and a thermoplastic resin layer on a foam layer by coextrusion. Among them, the composite material (multi-layer sheet) obtained by the multi-layer co-extrusion method has a thimble process and can be reduced in cost compared to other methods. It is preferable because the adhesion strength between the body layer and the alloy layer and between the alloy layer and the thermoplastic resin layer is increased.
ァロイ層に用いるポリスチレン樹脂、 熱可塑性樹脂および相溶化剤等 はペレツ ト状でドライブレンドした後、 そのまま押出機の投入口に入れ ても良く、 また予め溶融混練して用いても良い。  The polystyrene resin, the thermoplastic resin, the compatibilizer, and the like used in the alloy layer may be dry-blended in a pellet form and then directly introduced into the inlet of an extruder, or may be melt-kneaded in advance.
本発明の複合体はその少なく とも一方の面にァロイ層を介して熱可 塑性樹脂層を設けた構造を持つ。 一方の面だけに熱可塑性樹脂層をもつ 場合、 残りの面はポリスチレン樹脂層ゃァロイ層とすることができる。 ポリ スチレン樹脂層は印刷性、 光沢性にすぐれているので、 適宜印刷を 施すことができる。 ァロイ層も印刷性、 光沢性にすぐれているので、 適 宜印刷を施すことができる。 又、 共押出し法により発泡体層の両面に 2 つのァロイ層を同じ押出機を使用して同時に積層することができる為、 生産性において優れる。  The composite of the present invention has a structure in which a thermoplastic resin layer is provided on at least one surface via an alloy layer. When only one surface has a thermoplastic resin layer, the other surface can be a polystyrene resin layer alloy layer. Since the polystyrene resin layer is excellent in printability and glossiness, it can be appropriately printed. The alloy layer is also excellent in printability and glossiness, so that printing can be performed appropriately. Further, since two alloy layers can be simultaneously laminated on both sides of the foam layer by the co-extrusion method using the same extruder, the productivity is excellent.
例えばポリスチレン榭脂発泡体の第 1の面にハイインパク トポリスチ レン (H I P S ) 等のポリ スチレン樹脂層を、 第 2の面にァロイ層を介 して熱可塑性樹脂を積層した複合材は、 前記共押出法等にてポリ スチレ ン榭脂発泡体の第 2の面にァロィ層を介して熱可塑性樹脂を積層した複 合材を得て、 次に Tダイスを使用してハイインパク トポリスチレン溶融 物を第 1 の面に押出ラミネー ト法により積層する方法ゃポリ スチレン樹 脂発泡体層、 ァロイ層、 熱可塑性樹脂層そしてポリ スチレン樹脂層を共 押出ラ ミネ一卜する方法等が採用される。  For example, a composite material in which a polystyrene resin layer such as high impact polystyrene (HIPS) is laminated on the first surface of a polystyrene resin foam and a thermoplastic resin is laminated on the second surface via an alloy layer, A composite material obtained by laminating a thermoplastic resin on the second surface of a polystyrene resin foam through an alloy layer by extrusion or the like is obtained, and then a high-impact polystyrene melt is produced using a T-die. Of the polystyrene resin foam layer, alloy layer, thermoplastic resin layer and polystyrene resin layer by coextrusion lamination, etc.
ァロイ層には、 本発明の目的を著しく損なわない範囲で、 必要に応じ て通常ポリ スチレン樹脂および熱可塑性樹脂等に添加される各種の添加 剤、 例えば、 造核剤、 酸化防止剤、 熱安定剤、 帯電防止剤、 導電性付与 剤、 耐候剤、 紫外線吸収剤、 着色剤、 難燃剤、 無機充填剤等を添加する go In the alloy layer, various additives which are usually added to the polystyrene resin and the thermoplastic resin as necessary, for example, a nucleating agent, an antioxidant, and a heat-stable agent, within a range not significantly impairing the object of the present invention. Agents, antistatic agents, conductivity-imparting agents, weathering agents, ultraviolet absorbers, coloring agents, flame retardants, inorganic fillers, etc. go
ことができる。 be able to.
本発明の複合材は、 ポリスチレン樹脂発泡体層と熱可塑性樹脂層が極 めて高い接着強度を持って積層され、 耐油性、 熱成形性に優れたもので ある。 特殊な接着剤を用いないことから、 安価に製造でき しかもリサィ クルに適している。 即ち、 複合材を溶融したものは複合材のァロイ層と して再度使用し得る。  The composite material of the present invention is formed by laminating a polystyrene resin foam layer and a thermoplastic resin layer with extremely high adhesive strength, and is excellent in oil resistance and thermoformability. Since no special adhesive is used, it can be manufactured at low cost and is suitable for recycling. That is, the melted composite material can be reused as an alloy layer of the composite material.
又、熱可塑性樹脂層をビカツ ト軟化点が 1 1 2°C以上のポリプロピレ ン樹脂で形成することによ り耐熱性の優れた複合材が得られる。  Further, by forming the thermoplastic resin layer with a polypropylene resin having a vicat softening point of 112 ° C. or higher, a composite material having excellent heat resistance can be obtained.
熱可塑性樹脂層を半結晶化時間が 3 0分以上のポリエステル樹脂で形 成することにより リサイクル性、 熱成形性、 ヒー トシール性が優れた複 合材が得られる。 特に、 ポリエステル樹脂層は耐油性、 保香性、 ガスバ リヤー性、 他のラップフィルムとの密着性に優れることから、 この複合 材は容器などの成形用素材と して特に有効である。  By forming the thermoplastic resin layer with a polyester resin having a half-crystallization time of 30 minutes or more, a composite material having excellent recyclability, thermoformability, and heat sealability can be obtained. In particular, since the polyester resin layer is excellent in oil resistance, fragrance retention, gas barrier properties, and adhesion to other wrap films, this composite material is particularly effective as a material for molding containers and the like.
次の実施例は本発明をさらに説明する。  The following examples further illustrate the invention.
実施例:!〜 1 9、 比較例:!〜 3  Example:! ~ 19, Comparative example:! ~ 3
表 1、 表 2、 表 5及び表 6に示す構成のシート状複合材を作製した。 また、 表 1、 表 2、 表 5及び表 6には、 この複合材の密度 (gZ c m3)、 複合材の厚み (mm) 及びその製造に採用された複合材の製法の種類に ついても示した。 さらに、 表 1、 表 2、 表 5及び表 6には、 その複合材 の耐油性、 ポリオレフイン樹脂層 (2 '又は∑2) の接着強度 (mNZ25 mm) 及び発泡体層の連続気泡率 (%) を示した。 Sheet composites having the configurations shown in Tables 1, 2, 5, and 6 were produced. Tables 1, 2, 5, and 6 also show the density (gZ cm 3 ) of this composite, the thickness of the composite ( mm ), and the type of composite material used in its manufacture. Indicated. Furthermore, Table 1, Table 2, Table 5 and Table 6, oil resistance of the composite material, the adhesive strength (mNZ25 mm) and continuous cell ratio of the foam layer of polyolefin resin layer (2 'or sigma 2) (% ) showed that.
表 1、 表 2、 表 5及び表 6に示した複合材において、 ポリオレフイ ン 樹脂 (Z1) はその表面層を示し、 ポリオレフイ ン樹脂層 (Z2) は裏面 層を示す。 また、 接着強度において、 Z は表面層を形成するポリオ レフイ ン榭脂層 (Z 1) と発泡体層 (X) との接着強度を示し、 Z2ZX は裏面層を形成するポリオレフイ ン樹脂層 (Z ) と発泡体層 (X) との 接着強度を示す。 Table 1, Table 2, in the composite material shown in Table 5 and Table 6, Poriorefui down resin (Z 1) represents the surface layer, Poriorefui emission resin layer (Z 2) shows the back surface layer. In the adhesive strength, Z indicates the adhesive strength between the polyolefin resin layer (Z 1 ) forming the surface layer and the foam layer (X), and Z 2 ZX Indicates the adhesive strength between the polyolefin resin layer (Z) forming the backside layer and the foam layer (X).
表 1、 表 2、 表 5及び表 6に示した複合材の製法の種類の具体的内容 は以下の通りである。 また、 表 1、 表 2、 表 5及び表 6に示した樹脂温 度は押出機の口金 (ダイス) より押し出す際の樹脂温度である。  The specific contents of the types of composite materials shown in Tables 1, 2, 5, and 6 are as follows. The resin temperature shown in Table 1, Table 2, Table 5 and Table 6 is the resin temperature when extruded from the die (die) of the extruder.
(後ラミ)  (After lami)
押出機と して直径 6 5 mmと直径 9 O mmの 2台の押出機を用い、 口 金 (ダイス) と しては、 直径 8 4 mm、 厚さ 0. 5 mmの円筒状細隙を 有するものを用いた。  Two extruders with a diameter of 65 mm and a diameter of 9 Omm were used as extruders, and a cylindrical gap of 84 mm in diameter and 0.5 mm in thickness was used as a die. What had it was used.
直径 6 5 mmの押出機で原料投入口より所定の量の樹脂および添加剤 を樹脂 1 0 0重量部に対して表 3又は表 4に示す量、 加熱混練し、 約 2 0 0°Cに調整された樹脂混合物に対して表 3又は表 4に示す発泡剤およ び量を圧入し、 次いで、 直径 9 ◦ mmの押出機に供給し、 表 1又は 2に 示す樹脂温度に調整して、 口金 (ダイス) より樹脂を押出した。  Using a 65 mm diameter extruder, heat and knead a specified amount of resin and additives from the raw material inlet to 100 parts by weight of resin in the amounts shown in Table 3 or Table 4, and bring the temperature to about 200 ° C. Press the foaming agent and amount shown in Table 3 or Table 4 into the adjusted resin mixture, and then supply it to an extruder with a diameter of 9 ° mm and adjust the resin temperature to Table 1 or 2 The resin was extruded from the die.
押出された円筒状樹脂を、 直径 2 0 0 mmの冷却された円筒に沿わせ て引取り押出方向に切り開いてポリ スチレン樹脂発泡シー トを得、 該発 泡シー トを卷き取った。  The extruded cylindrical resin was cut open along the cooled cylinder having a diameter of 200 mm in the drawing and extrusion direction to obtain a polystyrene resin foam sheet, and the foam sheet was wound up.
得られた発泡シ一 トに表 1又は表 2に示す厚さのポリオレフィン樹脂 フィルムを表 3又は表 4に示すァロイ層を介してラ ミネ一 トし複合材を 得た。 ァロイ層は直径 5 O mmの押出機で原料投入口より、 表 3又は表 4に示す所定の量の樹脂および必要に応じてァロイ 1 0 0重量部当り表 3又は表 4に示す量の相溶化剤を加熱混練し、 2 0 0 °Cで幅 6 5 0 mm の Tダイスより押出供給した。  A polyolefin resin film having a thickness shown in Table 1 or Table 2 was laminated on the obtained foamed sheet via an alloy layer shown in Table 3 or Table 4 to obtain a composite material. The alloy layer was extruded with a 5 Omm diameter extruder from the raw material inlet through a prescribed amount of resin shown in Table 3 or Table 4 and, if necessary, an amount of phase shown in Table 3 or Table 4 per 100 parts by weight of alloy. The solubilizer was heated and kneaded, and was extruded and supplied from a T-die having a width of 600 mm at 200 ° C.
(共押出)  (Co-extrusion)
発泡体層用の押出機と して直径 6 5 mmと直径 9 O mmの 2台の押出 機を、 ポリオレフィ ン樹脂層用の押出機と しては直径 5 0 mmの押出機 を、 ァロイ層用と しては直径 4 0 mmの押出機を用い、 口金 (ダイス) と しては、 直径 8 4 mm、 厚さ 0. 5 m mの円筒状細隙を有するものを 用いた。 Two extruders with a diameter of 65 mm and a diameter of 9 Omm as extruders for foam layers An extruder with a diameter of 50 mm was used as the extruder for the polyolefin resin layer, and an extruder with a diameter of 40 mm was used as the extruder for the alloy layer. The one with a cylindrical slit with a diameter of 84 mm and a thickness of 0.5 mm was used.
発泡体層は直径 6 5 mmの押出機で原料投入口より所定の量の樹脂お よび添加剤を樹脂 1 0 0重量部当り表 3、 表 4、 表 7又は表 8に示す量、 加熱混練し、 約 2 0 0°Cに調整された樹脂混合物に対して表 3、 表 4、 表 7又は表 8に示す発泡剤および量を圧入し、 次いで、 直径 9 O mmの 押出機に供給し、 表 1、 表 2、 表 5及び表 6に示す樹脂温度に調整した。 一方ポリオレフイ ン樹脂層は直径 5 0 mmの押出機より、 ァロイ層は直 径 4 0 mmの押出機よりそれぞれポリ スチレン樹脂発泡体層形成用溶融 物の片面又は両面に必要に応じて供給し、 ダイス内部で発泡体層形成用 溶融物と合流させ共押出した。 なお、 ァロイ層には必要に応じてポリ ス チレン榭脂とポリオレフィ ン樹脂とのァロイ 1 0 0重量部当り相溶化剤 を表 3、 表 4、 表 7又は表 8に示す量添加した。  The foam layer was heated and kneaded with a prescribed amount of resin and additives from the raw material inlet using a 65 mm diameter extruder in the amounts shown in Table 3, Table 4, Table 7, or Table 8 per 100 parts by weight of resin. Then, the blowing agent and the amount shown in Table 3, Table 4, Table 7 or Table 8 are injected into the resin mixture adjusted to about 200 ° C., and then fed to an extruder having a diameter of 9 O mm. The resin temperature was adjusted as shown in Table 1, Table 2, Table 5, and Table 6. On the other hand, the polyolefin resin layer is supplied from an extruder with a diameter of 50 mm, and the alloy layer is supplied from an extruder with a diameter of 40 mm to one or both sides of the melt for forming a polystyrene resin foam layer, as required. The melt was mixed with the melt for forming a foam layer inside the die and coextruded. The alloy layer was added with a compatibilizer in an amount shown in Table 3, Table 4, Table 7, or Table 8 per 100 parts by weight of the alloy of the polystyrene resin and the polyolefin resin as required.
押出された円筒状樹脂を、 直径 2 0 0 mmの冷却された円筒に沿わせ て引取ることにより、 複合材を卷き取った。  The composite material was wound up by pulling the extruded cylindrical resin along a cooled cylinder having a diameter of 200 mm.
表 3、 表 4、 表 7又は表 8に複合材を構成する発泡体層 (X)、 ァロイ 層 (Υ'、 Υ2) 及びポリオレフイ ン樹脂層 (Ζ '、 ζ 2) の具体的内容につ いて示す。 なお、 表中ァロイ層の P S樹脂又は Ρ Ο樹脂の量 (重量。 /0) は P S樹脂と Ρ Ο樹脂との合計重量 1 0 0重量%に対する値である。尚、 実施例 1 4及び 1 7については、 ァロイ層中に弾性成分と して後述する 樹脂 Υを P S樹脂と Ρ〇樹脂との混合樹脂 1 0 0重量部に対して 2 5重 量部添加した。 また実施例 1 9についてもァロイ層中に弾性成分と して 後述する樹脂 Ζを P S樹脂と Ρ Ο樹脂との混合樹脂 1 0 0重量部に対し て 2 5重量部添加した。 Table 3, Table 4, the foam layer of the composite material shown in Table 7 or Table 8 (X), Aroi layer (Υ ', Υ 2) and Poriorefui emission resin layer (Ζ', ζ 2) the specific contents of It will be shown. In the table, the amount (weight / 0 ) of the PS resin or the glass resin in the alloy layer is a value based on the total weight of 100% by weight of the PS resin and the glass resin. In Examples 14 and 17, in the alloy layer, 25 parts by weight of a resin (to be described later) was added as an elastic component to 100 parts by weight of the mixed resin of the PS resin and the Ρ〇 resin. did. Also in Example 19, the resin 後 述 described later as an elastic component in the alloy layer was added to 100 parts by weight of the mixed resin of the PS resin and the Ο resin. And 25 parts by weight.
発泡体層 (X) に関して符号で示した P S樹脂 (ポリ スチレン樹脂) の具体的内容は後記に示す通りである。 また、 P S樹脂に配合したタル クは松村産業社製ハイ フィラ一 # 1 2である。 さらに、 符号で示した発 泡剤において、 Bは n—ブタン 7 0 w t %と i s o—ブタン 3 0 w t % からなるブタン混合物を示し、 n— pは n—ペンタンを示し、 C F 40 Sは、 大日精化社製 「ハイ ドロセロール C F 40 S] (化学発泡剤) を示 す。  The specific contents of the PS resin (polystyrene resin) indicated by reference numerals for the foam layer (X) are as described below. The talc blended with the PS resin is Highfila # 12 manufactured by Matsumura Sangyo Co., Ltd. Further, in the foaming agents indicated by the symbols, B represents a butane mixture composed of 70 wt% of n-butane and 30 wt% of iso-butane, n-p represents n-pentane, and CF 40 S represents "Hydrocerol CF 40 S" (chemical blowing agent) manufactured by Dainichi Seika Co., Ltd. is shown.
ァロイ層 (Υ γ2) に関して ΡΟ樹脂 (ポリオレフイ ン樹脂) 及び 相溶化剤の具体的内容は、 後記において示す通りである。 Regarding the alloy layer (Υγ 2 ) The specific contents of the resin (polyolefin resin) and the compatibilizer are as described below.
なお、 ァロイ層 (γ1) とァロイ層 (γ2) の成分組成は同じである。 Ρ ο層 (ポリオレフイ ン層) (ζ ζ2) に関して符号で示した Ρ ο樹 脂の具体的内容は後記において示す通りである。 The alloy composition of the alloy layer (γ 1 ) and the alloy layer (γ 2 ) are the same. The specific contents of the Ρ ο resin (符号 ζ 2 ) indicated by reference numerals for the Ρ Ρ layer (polyolefin layer) are as shown below.
なお、 Ρ Ο層 (ζ 1) と Ρ Ο層 (ζ_) の成分組成は同じである。 The composition of the 成分 layer (ζ 1 ) and the Ο layer (ζ_) is the same.
前記複合材に関しての表 1、 2、 5、 6、 1 1、 1 2、 1 3耐油性及 び表 1、 2、 5、 6、 9、 1 1、 1 2、 1 3接着強度の評価法は以下の 通りである。  Tables 1, 2, 5, 6, 11, 12, 13 for the above composite materials and Table 1, 2, 5, 6, 9, 11, 11, 12, 13 Is as follows.
(耐油性)  (Oil resistance)
2 5 mm X 4 O mmのシー 卜の中央に米炊飯調味油 (フ レッシュ 口一 ノレホワイ ト、 (株) 口一リ ング製) を 0. 02 5 m l滴下し均一に延ばし た後、 8 0°Cで 5分間加熱し前後の変化を調べた。  To the center of a 25 mm X 4 O mm sheet, add 0.025 ml of rice cooked rice seasoning oil (Fresh Kuchiichi Nore White, Kuchiichi Ring Co., Ltd.) and spread evenly. The mixture was heated at ° C for 5 minutes and the change before and after was examined.
〇 · · · 変化なし  〇 · · · No change
X · · · シ一 ト表面に侵食有り  X · · · Erosion on sheet surface
(接着強度)  (Adhesive strength)
ポリ スチレン樹脂発泡体層 (X) とポリオレフイ ン樹脂層 (Z) との 間の接着強度は複合材より幅 2 5 mmの試験片を切り出し、 J I S Z 0 2 3 7に準拠し、 剥離速度条件 3 0 0 mm/m i nの 9 0 ° 剥離試験 にて測定して求めた値 (mNZ 2 5 mm) を接着強度と した。 Between the polystyrene resin foam layer (X) and the polyolefin resin layer (Z) The bond strength between the specimens was determined by cutting a 25 mm wide test piece from the composite material and measuring it in a 90 ° peel test at a peel rate of 300 mm / min in accordance with JISZ 0237. (MNZ 25 mm) was taken as the adhesive strength.
尚、 本明細書において接着強度は上記の通り測定すればよいが、 幅 2 5 mmの試験片を切り出すことができない場合は、 できるだけ広幅の試 験片を切り出し、 切り出した試験片について上記測定を行い、 得られた 値 (mN) に ( 2 5Z試験片の幅 (mm)) を乗じて接着強度 (mNZ 2 5 mm) とする。  In this specification, the adhesive strength may be measured as described above.If it is not possible to cut out a test piece with a width of 25 mm, cut out a test piece as wide as possible and perform the above measurement on the cut out test piece. The obtained value (mN) is multiplied by (width of 25Z test piece (mm)) to obtain the adhesive strength (mNZ25 mm).
以下、 表中の複合材の厚み、 複合材の坪量、 複合材の密度及びポ リ ス チレン樹脂発泡体の密度は以下の通りである。  Hereinafter, the thickness of the composite, the basis weight of the composite, the density of the composite, and the density of the polystyrene resin foam in the table are as follows.
(複合材の厚み)  (Composite material thickness)
複合材の厚み方向垂直断面の任意の 2 0ケ所より厚みを測定しその平 均値を採用した。 尚、 厚み測定は顕微鏡写真を使用し拡大倍率換算して 各厚みを求めた。  The thickness of the composite material was measured at any 20 points on the vertical cross section in the thickness direction, and the average value was adopted. The thickness was measured using a micrograph and converted to an enlargement magnification to determine each thickness.
(複合材の坪量)  (Composite material weight)
複合材ょ り縦 2 0 c m X横 2 0 c m X複合材の厚みの試験片を切り出 し、 試験片重量 ( g ) を測定し、 その値を 2 5倍することにより坪量 ( g /m2) を算出した。 A test piece having a length of 20 cm (length) × 20 cm (width) × composite material was cut out from the composite material, and the weight of the test piece (g) was measured. m 2 ) was calculated.
(複合材の密度)  (Composite material density)
複合材の坪量測定と同様の試験片を作成し、 試験片重量 ( g ) を測定 し、 縦 2 0 c m X横 2 0 c m X複合材の厚み ( c m) で求められる試験 片体積 ( c m3) で試験片重量 ( g ) を割ることによ り求めた。 A test piece similar to the basis weight measurement of the composite material was prepared, the test piece weight (g) was measured, and the test piece volume (cm) obtained by measuring 20 cm (length) × 20 cm (width) × the thickness (cm) of the composite material It was determined by dividing the test piece weight (g) by 3 ).
(ポリスチレン樹脂発泡体層の密度)  (Density of polystyrene resin foam layer)
複合材の坪量 ( g Zm2) から、 ポリ エステル樹脂、 ァロイ層及びポリ スチレン樹脂の各々の坪量 ( g Zm2) (各々の密度及び厚みより算出さ れる) を引き算して求められる発泡体層のみの坪量 (gZm2) を単位換 算して坪量 (gZc m2) と し、 該坪量 (gZcm2) を発泡体層のみの 厚み ( c m) で割り算することにより求めた。 From the basis weight of the composite material (g Zm 2), poly ester resin, Aroi layer and the basis weight of each polystyrene resin (g Zm 2) (calculator than each of the density and thickness ), The basis weight (gZm 2 ) of only the foam layer, which is obtained by subtracting, is converted to the basis weight (gZcm 2 ), and the basis weight (gZcm 2 ) is converted to the thickness (gZcm 2 ) of the foam layer only. cm).
表 7及び 8において符号で示した樹脂の具体的内容は以下の通りであ る。  The specific contents of the resin indicated by reference numerals in Tables 7 and 8 are as follows.
( 1 ) 樹脂 Λ  (1) Resin Λ
出光石油化学社製、 「HH 3 2」 (汎用ポリ スチレン (G P P S)、溶融 粘度 2 0 4 0 P a · S、 密度 1. 0 5 g Z c m")  "HH32" (made by Idemitsu Petrochemical Co., Ltd.) (general-purpose polystyrene (GPPS), melt viscosity 204 Pa, density 1.05 g Z cm ")
( 2 ) 樹脂 B  (2) Resin B
出光石油化学社製、 「HH 3 0 J」 (G P P S、 溶融粘度 1 2 3 0 P a · S、 密度 1. 0 5 g Z c m )  "HH30J" manufactured by Idemitsu Petrochemical Co., Ltd. (GPPS, melt viscosity 1 230 Pas, density 1.05 g Zcm)
( 3) 樹脂 C  (3) Resin C
旭化成社製、 「スタイロン 6 7 9」 (G P P S、 溶融粘度 8 3 0 P a · S、 密度 1. 0 5 g / c m )  Asahi Kasei Co., Ltd., “Stylon 6 7 9” (GPPS, melt viscosity 8330 Pa · S, density 1.05 g / cm)
(4) 樹脂 D  (4) Resin D
エー - アン ド - ェムスチレン製、 「G 9 0 0 1」 (スチレン一メ タク リ ル酸共重合体、 溶融粘度 2 6 8 0 P a · s、 密度 1. 0 5 g Z c m3、 ビ 力ッ ト軟化点 1 1 0°C以上) Made of A-And-Am-styrene, “G9001” (styrene-methacrylic acid copolymer, melt viscosity 280 Pas, density 1.05 g Zcm 3 , Softening point 1 110 ° C or higher)
( 5 ) 樹脂 H  (5) Resin H
日本ポリオレフイ ン社製、 「ΡΜ 7 6 1 Λ」 (プロ ピレン一エチレンブロ ック共重合体、 溶融粘度 6 6 0 P a · S、 融点 1 6 3. 4°C、 密度 0.Nippon Polyolefin Co., Ltd., “ΡΜ761Λ” (Propylene-ethylene block copolymer, melt viscosity 660 Pa · S, melting point 163.4 ° C, density 0.
S g/ c m3 ビカッ ト軟化点 1 2 0 °C以上、 半結晶化時間 ( 1 0 0°C) 7秒) S g / cm 3 Bika' preparative softening point 1 2 0 ° C or more, half-crystallization time (1 0 0 ° C) 7 seconds)
( 6 ) 樹脂 I  (6) Resin I
日本ポリ オレフイ ン社製、 「MK 2 1 1」 (プロ ピレン一エチレンブロ ック共重合体、 溶融粘度 8 0 0 P a · S、 融点 1 6 3°C、 密度 0. 9 g Z c m3、 ビカッ ト軟化点 1 2 0°C以上、 半結晶化時間 ( 1 0 0。C) 1 0 秒以下) "MK2111" (Propylene-ethylene bronze) manufactured by Nippon Polyolefin Block copolymer, melt viscosity 800 Pa, S melting point 16 3 ° C, density 0.9 g Z cm 3 , Vicat softening point 120 ° C or more, semi-crystallization time (10 0 0. C) 10 seconds or less)
( 7) 樹脂 J  (7) Resin J
出光石油化学社製、 「E 2 5 0 G」 (プロ ピレン一エチレンブロック共 重合体、 溶融粘度 1 5 7 0 P a · S、 融点 1 6 3°C、 密度◦ . 9 g Z c m3、 ビカッ ト軟化点 1 2 0°C以上、 半結晶化時間 ( 1 0 0°C) 1 0秒以 下) “E250G” manufactured by Idemitsu Petrochemical Co., Ltd. (Propylene-ethylene block copolymer, melt viscosity 1570 Pa · S, melting point 163 ° C, density ◦ .9 g Z cm 3 , Vicat softening point of 120 ° C or more, half-crystallization time (100 ° C) of 10 seconds or less
( 8) 樹脂 K  (8) Resin K
日本ポリオレフィン社製、 「KB 1 7 5 A」 (高密度ポリエチレン、 溶融 粘度 1 9 1 0 P a · S、 融点 1 3 4 °C、 密度 0. 9 5 7 g Z c m3、 ビ 力ッ ト軟化点 1 2 0°C以上、 半結晶化時間 ( 1 0 0°C) 1 0秒以下)Nippon Polyolefin Co., Ltd., "KB 1 7 5 A" (high-density polyethylene, melt viscosity 1 9 1 0 P a · S , melting point 1 3 4 ° C, density 0. 9 5 7 g Z cm 3 , bi Chikara' DOO Softening point of more than 120 ° C, half-crystallization time (100 ° C) of less than 10 seconds)
( 9) 樹脂 V (9) Resin V
旭化成社製、 「タフテック H I 0 4 1」 (水素添加スチレンブタジエン スチレンブロックコポリマ一、 溶融粘度 2 9 0 0 P a ' S、 密度 0. 9 Asahi Kasei Co., Ltd., “Tuftec HI041” (hydrogenated styrene-butadiene styrene block copolymer, melt viscosity 290 Pa S ', density 0.9
/ : /:
g κ c m ) g κ cm)
( 1 0) 樹脂 W  (10) Resin W
日本油脂社製、 「モディパー A 3 1 0 0」 (スチレングラフ トポリプロ ピレン、 溶融粘度 3 6 0 P a · S、 密度 0. 9 4 g / c m3) Nippon Oil & Fats Co., Ltd., “Modiper A 3100” (styrene graft polypropylene, melt viscosity 360 Pas, density 0.94 g / cm 3 )
( 1 1 ) 樹脂 M  (1 1) Resin M
チッ ソ社製、 「F 8 1 8 8」 (プロ ピレン一エチレンランダム共重合体 溶融粘度 6 3 0 P a ' S ( 1 9 0 °C)、 融点 1 4 5. 7 C、 密度 0. 9 g / c m3、 ビカッ ト軟化点 1 2 0 °C以上、 半結晶化時間 ( 1 0 0°C) 2 5秒) “F8188” (Propylene-ethylene random copolymer melt viscosity 630 Pa'S (190 ° C), melting point 145.7 C, density 0.9, manufactured by Chisso Corporation) g / cm 3 , Vicat softening point above 120 ° C, half-crystallization time (100 ° C) 25 seconds)
( 1 2 ) 樹脂 N ム (1 2) Resin N M
出光石油化学社製、 「 3 1 0 E」 (高密度ポリ エチレン、 溶融粘度 1 6 5 0 P a ' S、 密度 0. 9 6 5 g Z c m3、 融点 1 3 6。C、 ビカ ッ ト軟 化点 1 3 0°C、 半結晶化時間 ( 1 0 0°C) 1 0秒以下) Manufactured by Idemitsu Petrochemical Co., Ltd., "3 1 0 E" (high-density polyethylene ethylene, melt viscosity 1 6 5 0 P a 'S , density 0. 9 6 5 g Z cm 3 , melting point 1 3 6.C, Vika Tsu DOO Softening point 130 ° C, half-crystallization time (100 ° C) 10 seconds or less)
( 1 3 ) 樹脂 O  (13) Resin O
出光石油化学社製、 「 5 2 0 MB」 (高密度ポリ エチレン、 溶融粘度 1 9 0 0 P a ' S、 密度◦ . 964 gZc nT、 融点 1 3 3°C、 ビカ ッ ト 軟化点 1 2 8°C、 半結晶化時間 ( 1 0 0°C) 1 0秒以下)  “520 MB” (manufactured by Idemitsu Petrochemical Co., Ltd.) (high-density polyethylene, melt viscosity: 1900 Pas, density: 964 gZc nT, melting point: 133 ° C, vicat softening point: 1 2 8 ° C, half-crystallization time (100 ° C) 10 seconds or less
( 1 4) 樹脂 P  (1 4) Resin P
出光石油化学社製、 「 J 5 0 5 1 HP」 (プロ ピレン—エチレンブロッ ク共重合体、 溶融粘度 2 6 0 P a · S、 融点 1 6 3°C、 密度 0. 9 gZ c m3、 ビカッ ト軟化点 1 5 1 °C、 半結晶化時間 ( 1 0 0°C) 1 0秒以下)Idemitsu Petrochemical Co., Ltd., “J5051HP” (Propylene-ethylene block copolymer, melt viscosity 260 Pas, melting point 16 ° C, density 0.9 gZ cm 3 , Vicat softening point 15 1 ° C, half-crystallization time (100 ° C) 10 seconds or less)
( 1 5 ) 樹脂 Q (15) Resin Q
出光石油化学社製、 「 2 1 0 J Z」 (高密度ポリエチレン、 溶融粘度 8 2 0 P a ' S、 融点 1 3 5. 6。C、 密度 0. 9 6 8 §ノ。 1113、 ビカ ツ ト軟化点 1 2 9°C、 半結晶化時間 ( 1 0 0°C) 5秒) Manufactured by Idemitsu Petrochemical Co., Ltd., "2 1 0 JZ" (high-density polyethylene, melt viscosity 8 2 0 P a 'S, mp 1 3 5. 6.C, density 0. 9 6 8 § Roh. 111 3, Vika Tsu Softening point 1 229 ° C, half-crystallization time (100 ° C) 5 seconds
( 1 6 ) 樹脂 R  (16) Resin R
日本ポリオレフィン社製「PM 7 3 1 M] (プロ ピレン一エチレンラン ダム共重合体、 溶融粘度 6 1 0 P a ■ S、 融点 1 4 9. 4°C、 密度 0. 9 g / c m\ ビカッ ト軟化点 1 2 0°C以上、 半結晶化時間 ( 1 0 0°C) 1 7秒)  Nippon Polyolefin Co., Ltd. “PM731M” (Propylene-ethylene random copolymer, melt viscosity 610 Pa ■ S, melting point 149.4 ° C, density 0.9 g / cm \ Softening point of more than 120 ° C, half-crystallization time (100 ° C) for 17 seconds
( 1 7 ) 樹脂 X  (17) Resin X
旭化成社製、 「タフテック L 5 1 2」 (水素添加スチレンブタジエンス チレンブロ ックコポリマ一、 溶融粘度 2 9 0 P a · S、 密度 0. 9 1 g Asahi Kasei Co., Ltd., “Tuftec L512” (hydrogenated styrene-butadiene styrene block copolymer, melt viscosity 290 Pa · S, density 0.91 g
/ c m ) / cm )
( 1 8 ) 樹脂 Y 旭化成社製、 「タフブレン 1 2 5」 (スチレンブタジエンスチレンブロ ックコポリマー、 溶融粘度 1 2 1 0 P a · S、 密度 0. 9 5 g / c m3) ( 1 9 ) 樹脂 Z (18) Resin Y Asahi Kasei Co., Ltd., “Toughbrene 125” (styrene butadiene styrene block copolymer, melt viscosity 11210 Pa · S, density 0.95 g / cm 3 ) (19) Resin Z
フィ リ ップス社製「Kレジン KR 0 5」 (スチレンブタジエンスチレ ンブロックコポリマー、 溶融粘度 1 1 5 0 P a ' S、 密度 1. O l g Z  "K Resin KR05" manufactured by Philips (styrene butadiene styrene block copolymer, melt viscosity 1150 Pa'S, density 1. OlgZ
3ヽ  3 ヽ
c m ) cm )
本発明に関して示したその溶融粘度は以下のようにして測定されたも のである。  The melt viscosities given for the present invention have been measured as follows.
(樹脂の溶融粘度)  (Melting viscosity of resin)
剪断速度 1 0 0 s e c 1 の条件下の溶融粘度は、 ノズル內径 (D) が 1. 0 mm, L/D= 1 0 (Lはノズル長 (mm)) のノズルを用い樹脂 温度 1 9 0 °Cの条件にてチアス ト社製レオビス 2 1 0 0で測定した。 また、 ァロイ層の P I値の算出は前記式 ( 1 ) を使用した。 相溶化剤 を添加する場合は相溶化剤を除いて算出する。 実施例の場合の算出例を 以下に示す。 The melt viscosity under the conditions of shear rate 100 sec 1 was measured using a nozzle with a nozzle diameter (D) of 1.0 mm and L / D = 10 (L is the nozzle length (mm)). The measurement was carried out at 0 ° C. with Reobis 2100 manufactured by Thiast. The above formula (1) was used to calculate the PI value of the alloy layer. When adding a compatibilizer, calculate without the compatibilizer. A calculation example in the case of the embodiment is shown below.
使用樹脂 :  Use resin :
HH 3 2 (P S樹脂) (溶融粘度 2 0 4 0 P a · S、 密度 1. 0 5 g HH32 (PS resin) (Melt viscosity 2400 Pa, S, density 1.05 g
/ c m ) / cm )
F 8 1 8 8 ( P O樹脂) (溶融粘度 6 3 0 P a · S )  F 8 1 8 8 (PO resin) (Melt viscosity 6300 Pa · S)
2 1 0 J Z ( P O樹脂) (溶融粘度 8 2 0 P a · S )  210 JZ (PO resin) (Melting viscosity 82 0 Pa · S)
まず、 P O成分の溶融粘度を求める。 このためには、 2 1 0 J Z (密 度 0. 9 6 8 g / c m:i) と F 8 1 8 8 (密度 0. 9 g Z c m'3) とのブ レンドの体積比を求める。 この場合のブレンド比は 1 0 : 1 0 (重量比) であるから、 その体積比は 4 8. 2 : 5 1. 8 となる。 First, determine the melt viscosity of the PO component. For this purpose, 2 1 0 JZ (density 0. 9 6 8 g / cm: i) the determined volume ratio of the probe trend between F 8 1 8 8 (density 0. 9 g Z c m '3 ). Since the blend ratio in this case is 10:10 (weight ratio), the volume ratio is 48.2: 51.8.
P P成分の粘度 = 1 0 " 但し、 Viscosity of PP component = 10 " However,
a = [{ 1 o g (F 8 1 8 8の粘度 : 6 6 0 X 1 0 )X 5 1 . 8 +  a = [{1 og (viscosity of F8188: 660 X10) X51.8 +
1 o g (2 1 0 J Zの粘度 : 8 2 0 X 1 0 )X 4 8 . 2 }/ 1 0 0〕 よって P〇成分の粘度は 7 3 1 P a ' S となる。  1 og (viscosity of 210 JZ: 82 0 X 10) X 48 .2} / 100] Therefore, the viscosity of the P〇 component is 731 Pa'S.
P〇成分の体積分率 : Volume fraction of P〇 component:
〔{( 1 0 / 0. 9 6 8 )+( 1 0 / 0 . 9 )}/{( 1 0 / 0 . 9 6 8 ) + ( 1 0 / 0 . 9)+(6 0Z l . 0 5 ) }] X 1 0 0 - 2 7  [{(10 / 0.96.8) + (10 / 0.9)} / {(10 / 0.968) + (10 / 0.9) + (6Zl.0 5)}] X 1 0 0-2 7
P Sの体積分率 : Volume fraction of PS:
〔(6 0 , 1 . 0 5 ) /{( 1 0 / 0. 9 6 8 )+ ( 1 0 / 0. 9 ) + [(60, 1.05) / {(10 / 0.96 8) + (10 / 0.9) +
( 6 0 / 1 . 0 5 ) }〕 X 1 0 0 = 7 3 (6 0/1 .0 5)}) X 100 = 7 3
したがって Ρ I値は  So the ΡI value is
Ρ I = ( P S成分の粘度 : 2 0 4 0 X Ρ Ρ成分の体積分率 : 2 7 ) / Ρ I = (viscosity of P S component: 2 0 4 0 X Ρ 体 volume fraction of Ρ component: 2 7) /
( Ρ Ο成分の粘度 : 7 3 1 X P S成分の体積分率 : 7 3 ) = 1 . 0 3  (Viscosity of Ο component: 7 3 1 X P S component volume fraction: 7 3) = 1.0 3
実施例 2 0〜 2 3、 比較例 4〜 6  Examples 20 to 23, Comparative Examples 4 to 6
表 9に示す構成の複合材を作製した。 また、 表 9には、 この複合材の 密度 ( g Z c m3)、 複合材厚み (mm) 及びポリオレフイ ン樹脂層 (Z 1又は Z 2 ) の接着強度 (mNZ 2 5 mm) を示した。 さらに、 表 9に は、 その複合材の成形性、 離型性及び耐熱性についても示した。 A composite having the configuration shown in Table 9 was produced. Table 9 shows the density (g Z cm 3 ), the thickness of the composite (mm), and the adhesive strength (mNZ 25 mm) of the polyolefin resin layer (Z 1 or Z 2). Table 9 also shows the moldability, mold release and heat resistance of the composite.
成形性 〇 良好  Formability 〇 good
Δ ポリオレフィ ン樹脂層に伸びムラ有り 離型性 〇 良好  Δ Polyolefin resin layer has uneven stretching. Releasability 〇 Good
Δ 離型時に成形体が型に貼り付く ことがある 耐熱性 〇 容器の変形なし  Δ Mold may stick to the mold during mold release Heat resistance な し No deformation of container
X 変形あり 表 9及に示した複合材において、 ポリオレフイ ン樹脂 (Z 1 ) はその 表面層を示し、 ポリオレフ イ ン樹脂層 (Z 2 ) は裏面層を示す。 X with deformation In the composite materials shown in Table 9, the polyolefin resin (Z1) indicates the surface layer, and the polyolefin resin layer (Z2) indicates the back layer.
表 9に示した複合材の製法の具体的内容は以下の通りである。  The specific contents of the manufacturing method of the composite material shown in Table 9 are as follows.
発泡体層用の押出機と して直径 6 5 mmと直径 9 O mmの 2台の押出 機を、 ポリオレフイ ン樹脂層用の押出機と しては直径 5 O mmの押出機 を、 ァロイ層用と しては直径 4 O mmの押出機を各用い、 口金 (ダイス) と しては、 直径 8 4 mm、 厚さ 0. 5 m mの円筒状細隙を有するものを 用いた。  Two extruders with a diameter of 65 mm and 9 Omm as extruders for the foam layer, an extruder with a diameter of 5 Omm as the extruder for the polyolefin resin layer, and an alloy layer Each extruder used had a diameter of 4 O mm, and the die used was a die having a diameter of 84 mm and a thickness of 0.5 mm and having a cylindrical slit.
発泡体層は直径 6 5 mmの押出機で原料投入口より所定の量の樹脂お よび添加剤を樹脂 1 0 0重量部当り表 1 0に示す量、 加熱混練し、 約 2 0 0°Cに調整された樹脂混合物に対してィ ソブタン 3 0重量%とノルマ ルブタン 7 0重量%との混合発泡剤を表 1 0に示す量押出機に圧入し、 次いで、 発泡剤含有溶融樹脂を直径 9 0 mmの押出機に供給した。 一方、 ポリオレフィン樹脂層は直径 5 0 mmの押出機より、 ァロイ層は直径 4 O mmの押出機よりそれぞれポリ スチレン樹脂発泡体層形成用溶融樹脂 の片面又は両面に必要に応じて供給し、 ダイス內部で発泡体層形成用溶 融樹脂と合流させ共押出した。 なお、 ァロイ層には必要に応じて相溶化 剤を表 1 0に示す量添加した。  The foam layer was heated and kneaded with a prescribed amount of resin and additives from the raw material input port in an extruder with a diameter of 65 mm in the amount shown in Table 10 per 100 parts by weight of resin, and was heated to about 200 ° C. The mixed foaming agent of 30% by weight of isobutane and 70% by weight of normal butane was press-fitted into the extruder shown in Table 10 with respect to the resin mixture adjusted to the above, and then the blowing agent-containing molten resin was mixed with a diameter of 9%. The feed was to a 0 mm extruder. On the other hand, the polyolefin resin layer is supplied from an extruder with a diameter of 50 mm, and the alloy layer is supplied from an extruder with a diameter of 4 Omm to one or both sides of the molten resin for forming a polystyrene resin foam layer, as required. In section 內, it was combined with the molten resin for foam layer formation and co-extruded. Note that the compatibilizer was added to the alloy layer as needed in the amount shown in Table 10.
押出された円筒状樹脂を、 直径 2 0 0 mmの冷却された円筒 (マン ド レル) に沿わせて引取り切り開いた後、 複合材をロール状に巻き取った。 表 1 0に複合材を構成する発泡体層 (X)、 ァロイ層 (Y) 及びポリオ レフイ ン樹脂層 (Z l、 Z 2 ) の具体的内容について示す。  The extruded cylindrical resin was taken out along a cooled cylinder (mandrel) having a diameter of 200 mm, and then the composite material was wound into a roll. Table 10 shows the specific contents of the foam layer (X), the alloy layer (Y), and the polyolefin resin layer (Zl, Z2) constituting the composite material.
発泡体層 (X) に関して符号で示した P S樹脂 (ポリ スチレン樹脂) の具体的内容は前記に示す通りである。 また、 P S樹脂に配合したタル クは松村産業社製ハイ フィ ラ一# 1 2である。 ァロイ層 (Y) に関して P O樹脂 (ポリオレフイ ン樹脂) 及び相溶化 剤の具体的内容は、 前記において示す通りである。 The specific contents of the PS resin (polystyrene resin) indicated by reference numerals for the foam layer (X) are as described above. The talc blended with the PS resin is Matsumura Sangyo's High Filler # 12. The specific contents of the PO resin (polyolefin resin) and the compatibilizer with respect to the alloy layer (Y) are as described above.
P O層 (ポリオレフィン層) (Z 1、 Z 2 ) に関して符号で示した P O 樹脂の具体的内容は前記において示す通りである。  The specific contents of the P O resin indicated by reference numerals with respect to the P O layer (polyolefin layer) (Z 1, Z 2) are as described above.
なお、 P O層 (Z 1 ) と P〇層 (Z 2 ) の成分組成は同じである。 表 9および表 1 0において符号で示した樹脂の具体的内容は前記した 符号と同じでその他は以下の通りである。  The composition of the P O layer (Z 1) and that of the P〇 layer (Z 2) are the same. In Tables 9 and 10, the specific contents of the resin indicated by the reference numerals are the same as those described above, and the others are as follows.
( 1 ) 樹脂 F  (1) Resin F
チッソ社製、 「E T 2 0 3 1」 (プロ ピレン一エチレンランダム共重合 体、 溶融粘度 7 5 0 P a · s ( 1 9 0 °C)、 融点 1 3 8. 5 °C、 ビカッ ト 軟化点 1 1 9°C、 密度 0. 9 g Z c m3、 半結晶化時間 ( 1 0 0 °C) 5 3秒) "ET203" (Propylene-ethylene random copolymer, melt viscosity 7500 Pa · s (190 ° C), melting point 138.5 ° C, vicat softening, manufactured by Chisso Corporation) Point 1 19 ° C, density 0.9 g Z cm 3 , half-crystallization time (100 ° C) 53 seconds)
( 2 ) 樹脂 G  (2) Resin G
チッソ社製、 「F 1 1 8 8」 (ポリ プロ ピレン単独重合体、 溶融粘度 6 5 0 P a · s ( 1 9 0 °C)、 融点 1 6 0. 3 °C、 ビカッ ト軟化点 1 5 1 °C、 密度 0. 9 g Z c m3、 半結晶化時間 ( 1 0 0°C) 6秒) “F1188” (polypropylene homopolymer, melt viscosity 6.50 Pa · s (190 ° C), melting point 160.3 ° C, Vicat softening point 1 5 1 ° C, density 0.9 g Z cm 3 , half-crystallization time (100 ° C) 6 seconds)
( 3 ) 樹脂 L  (3) Resin L
出光石油化学社製、 「F— 7 1 4 N P」 (プロ ピレン一エチレンランダ ム共重合体、 溶融粘度 6 5 0 P a ' s (1 9 0°C)、 融点 1 5 4. 6。C、 ビ カッ ト軟化点 1 2 0°C以上、 密度 0. 9 g Z c m3、 半結晶化時間 1 1 秒) Idemitsu Petrochemical Co., Ltd., "F-714NP" (Propylene-ethylene random copolymer, melt viscosity 65500 Pa's (190 ° C), melting point 154.6.C , Vicat softening point above 120 ° C, Density 0.9 g Z cm 3 , Semi-crystallization time 11 sec)
表 9に示した成形性及び離型性については実施例及び比較例で得られ た複合材を単発成形機 (三和興業株式会社製の P L AVA C— F E 3 6 H P型) にて収納部を 6等分する仕切り状のリブを有する開口部形状が 縦 2 1 0 mm、 横 1 5 5 mmの長方形、 深さ 5 0 mmの容器成形用金型 を取り付けて真空成形を行ない評価した。 なお、 この成形テス トにおい ては、 上ヒータ一の電圧調整器の 4 0個のダイアル目盛りはすべて 3 0 に設定し、 下ヒーターの電圧調整器の 6個のダイアル目盛りはすべて 4 0に設定して行った。 Regarding the moldability and mold release properties shown in Table 9, the composite materials obtained in Examples and Comparative Examples were stored in a single-shot molding machine (PL AVA C-FE36 HP type manufactured by Sanwa Kogyo Co., Ltd.). With a partitioning rib that divides it into six equal parts, a rectangular shape with a length of 210 mm, a width of 55 mm, and a depth of 50 mm Was attached and vacuum forming was performed for evaluation. In this molding test, all of the 40 dials of the voltage regulator of the upper heater were set to 30 and all of the 6 dials of the lower heater were set to 40. I went.
表 9に示した耐熱性については、 実施例及び比較例で得られた複合材 を縦 2 1 0 mm、 横 1 5 5 mmの長方形、 深さ 5 0 mmの容器に成形し たものに 8 0 °Cのお湯を 3 0 0 m l 入れ、 5 0 0 Wの電子レンジで 1分 間加熱した後、 その変形の有無を調べた。  Regarding the heat resistance shown in Table 9, the composite materials obtained in Examples and Comparative Examples were molded into a rectangular container of 210 mm in length and 150 mm in width and 50 mm in depth. 300 ml of hot water at 0 ° C was added, and the mixture was heated in a 500 W microwave oven for 1 minute, and then checked for deformation.
実施例 2 4 Example 2 4
表 1 1に要約した構成を持つ複合材を作成した。  A composite having the configuration summarized in Table 11 was made.
発泡体層製造用の押出機と して直径 6 5 mmと直径 9 O mmの 2台の 押出機をタンデム型に連結して用いた。 この場合、 ポリエステル樹脂層 用の押出機と しては直径 5 0 mmの押出機を、 ァロイ層製造用と しては 直径 4 0 mmの押出機を用い、 口金と しては、 直径 8 4 mm、 隙間間隔 0. 5 mmの円筒状ス リ ッ トを有するものを用いた。  Two extruders having a diameter of 65 mm and a diameter of 9 Omm were used in tandem type as extruders for producing a foam layer. In this case, an extruder with a diameter of 50 mm was used as the extruder for the polyester resin layer, an extruder with a diameter of 40 mm was used for the production of the alloy layer, and a die with a diameter of 84 mm was used. mm and a cylindrical slit with a gap of 0.5 mm were used.
直径 6 5 mmの押出機の原料投入口より発泡体層製造用のポリ スチレ ン樹脂 Λ 9 8. 6重量部及び気泡調整剤と してハイ ドロセロール C F 4 O S (大日精化工業 (株) 製) を 0. 3重量部を投入し、 押出機内で加 熱混練し、 約 2 0 0 °Cに調整された樹脂混練物に対して発泡剤 Aを 1. 1重量部を圧入し、 次いで、 直径 9 0 mmの押出機に供給し、 1 6 7 °C の樹脂温度に調整した。 一方、 発泡体層に積層されるポリ エステル樹脂 Bはこれを直径 5 0 mmの押出機より 2 1 5 °Cの樹脂温度に調整して押 出し、 ァロイ層を構成する樹脂はポリスチレン樹脂 F 6 0重量%とポリ エステル樹脂 G 4 0重量0/。の混合物を用い、 これを直径 4 0 mmの押出 機より 1 5 0 °Cの樹脂温度に調整して押出し、 それぞれ発泡体層の片面 に発泡シ一 ト側からァロイ層を構成する樹脂、 ポリエステル樹脂の順に 積層されたものが得られるように供給し、 ダイス内部で発泡性樹脂と合 流させ共押出した。 Polystyrene resin for foam layer production from the raw material inlet of an extruder with a diameter of 65 mm Λ 98.6 parts by weight and hydrocerol CF 4 OS as a cell regulator (manufactured by Dainichi Seika Kogyo Co., Ltd.) ) Was added, and the mixture was heated and kneaded in an extruder, and 1.1 parts by weight of a foaming agent A was injected into the resin kneaded material adjusted to about 200 ° C., and then It was fed to a 90 mm diameter extruder and adjusted to a resin temperature of 167 ° C. On the other hand, the polyester resin B laminated on the foam layer is extruded by adjusting the resin temperature to 215 ° C with a 50 mm diameter extruder, and the resin constituting the alloy layer is a polystyrene resin F 6 0% by weight and polyester resin G40 0% 0 /. The mixture was extruded from a 40 mm diameter extruder while adjusting the resin temperature to 150 ° C. Then, the resin constituting the alloy layer and the polyester resin were supplied from the foam sheet side in such a manner as to be laminated in this order, and were combined with the foamable resin inside the die and co-extruded.
押出された円筒状発泡樹脂を、 直径 2 0 0 mmの冷却された円筒に沿 わせて引取り、 その後切り開く ことにより、 複合材を得、 これを巻き取 つた。  The extruded cylindrical foamed resin was taken out along a cooled cylinder having a diameter of 200 mm, and then cut open to obtain a composite material, which was wound up.
この複合材において、 その発泡体層の厚みは 1. 4 mm、 ァロイ層の 厚みは 0. 04 mm、 フィルム状ポリエステル樹脂の厚みは 0. 0 5 m mである。 得られたシ一 トに幅 7 0 0 mmの Tダイスを装着した直径 6 5 mmの押出機より樹脂温度 2 6 0 °Cと したポリスチレン樹脂 Lを押出 して押出ラ ミネ一トを行い片面に厚さ 0. 1 5 mmのフィルム状のポリ スチレン樹脂が積層接着され、 他方の片面にァロイ層を介してフィルム 状のポリエステル樹脂が積層接着された複合材を得た。  In this composite material, the thickness of the foam layer is 1.4 mm, the thickness of the alloy layer is 0.04 mm, and the thickness of the film-like polyester resin is 0.05 mm. A polystyrene resin L with a resin temperature of 260 ° C was extruded from a 65 mm diameter extruder equipped with a 700 mm wide T die on the obtained sheet, and extruded and laminated to perform one side. Then, a composite material in which a 0.15 mm-thick film-like polystyrene resin was laminated and adhered, and a film-like polyester resin was laminated and adhered to one surface of the other side via an alloy layer was obtained.
ポリ スチレン樹脂 Fは商品名スタイ ロン H 8 6 0 1、 エイ ' アン ド ' ェム スチレン (株) 製のもので、 その溶融粘度は 9 8 0 P a · S、 ビ カッ ト軟化点は 9 6°C、 密度は 1 . 0 5 g / c m3である。 Polystyrene resin F is trade name Styrone H8601, manufactured by A & M Styrene Co., Ltd. and has a melt viscosity of 98 Pas and a vicat softening point of 9 6 ° C, the density is 1. 0 5 g / cm 3 .
ポリエステル樹脂 Gは商品名:ビオノ一レ # 1 9 0 3、昭和高分子(株) 製のもので、 その溶融粘度は 6 2 0 P a · S、 融点は 1 1 4°C、 密度は 1. 2 6 g Z c m3である。 Polyester resin G is a product name: Biono Ire # 1903, manufactured by Showa High Polymer Co., Ltd., with a melt viscosity of 62 Pas, a melting point of 114 ° C, and a density of 1 . a 2 6 g Z cm 3.
ポリ スチレン樹脂 Lは商品名 R Q 3 0 1、 電気化学工業 (株) 製のも ので、 その溶融粘度は 1 6 5 0 P a · S、 ビカ ッ ト軟化点は 9 7 °C、 密 度は 1. 0 5 g Z c m3である。 Polystyrene resin L is trade name RQ301, manufactured by Denki Kagaku Kogyo Co., Ltd., its melt viscosity is 650 Pas, its vicat softening point is 97 ° C, and its density is 1. is a 0 5 g Z cm 3.
なお、 ポリエステル樹脂 Bと しては、 イース トマンケ ミ カルジャパン (株)のィ一スター P E T G 6 7 6 3、 半結晶化時間 6 0分以上 ( 1 0 0 "C)、 溶融粘度 2 1 0 0 P a · S、 密度 1. 2 6 g Z c m 3を用い、 重合 n , The polyester resin B is polyester PETG 6763 from Eastman Chemical Japan Co., Ltd., has a half-crystallization time of 60 minutes or more (100 ° C), and has a melt viscosity of 210 ° C. Polymerization using P aS, density 1.26 g Z cm 3 n ,
34  34
体 (変性エチレン一酢酸ビニル共重合体) と しては、 メ ルセン MX 2 8、 溶融粘度 2 7 0 P a · S、 密度 0. 9 4 g / c m3、 融点 1 1 7 °C、 東ソ一(株)製を用いた。 As a product (modified ethylene-vinyl acetate copolymer), melcene MX 28, melt viscosity 2770 Pa · S, density 0.94 g / cm 3 , melting point 117 ° C, east Soichi Co., Ltd. was used.
発泡剤 Λと しては、 n—ブタン 7 0重量%と i s o—ブタン 3 0重 量%からなるブタン混合物を用いた。  As the blowing agent ブ, a butane mixture consisting of 70% by weight of n-butane and 30% by weight of iso-butane was used.
比較例 7 Comparative Example 7
表 1 2に要約した構成を持つ複合材を作成した。  Composites having the configurations summarized in Table 12 were prepared.
ポリエステル樹脂と してポリエステル樹脂 Bの替わりにポリエステル 樹脂 Pを用いた以外は実施例と同様にして複合材を得た。 なお、 前記ポ リエステル樹脂 Pは日本ュニペッ ト (株) 製、 RT 5 4 3、 半結晶化時 間 3 0分未満 ( 1 0 0°C)、 1 9 0°Cで未溶融のため溶融粘度測定不可、 密度 1. 2 6 g/ c m3である。 A composite material was obtained in the same manner as in the example except that polyester resin P was used instead of polyester resin B as the polyester resin. The polyester resin P, manufactured by Nippon Unipet Co., Ltd., has a melt viscosity of RT 543, a half-crystallization time of less than 30 minutes (100 ° C), and unmelted at 190 ° C. unmeasurable, the density 1. 2 6 g / cm 3.
比較例 8 Comparative Example 8
表 1 2に要約した構成を持つ複合材を作成した。  Composites having the configurations summarized in Table 12 were prepared.
ポリエステル樹脂と してポリエステル樹脂 Bの替わりにポリエステル 樹脂 Pを用い、 直径 5 0 mmの押出機より 2 7 0 °Cの樹脂温度に調整し て押出した以外は実施例と同様にして複合材を得た。  Polyester resin P was used in place of polyester resin B as the polyester resin, and the composite material was extruded in the same manner as in the example except that the extruder was extruded at a resin temperature of 270 ° C from a 50 mm diameter extruder. Obtained.
次に、 前記実施例及び比較例で得た各複合材の物性を測定すると とも に、 その押出発泡性を評価し、 さらにその成形性及び耐熱性を下記のよ うにして評価した。 その結果を表 1 1又は表 1 2に示す。  Next, the physical properties of each of the composite materials obtained in the above Examples and Comparative Examples were measured, and their extrusion foaming properties were evaluated. Further, their moldability and heat resistance were evaluated as follows. The results are shown in Table 11 or Table 12.
(成形性)  (Formability)
実施例及び比較例にて得られた複合材を単発成形機 (三和興業株式会 社製の P L AVAC— F E 3 6 H P型) にて開口部形状が直径 1 5 0 m m、 底部直径 1 2 0 mm、 深さ 6 0 mm又は 3 0 mmの円錐台形状の容 器成形用金型を取り付けて (ポリ エステル樹脂積層面が容器の内側とな るようにして) 真空成形を行なった。 尚、 この成形テス トにおいては、 上ヒータ一の電圧調整器の 4 0個のダイヤル目盛りはすべて 3 0に設定 し、 下ヒータ一の電圧調整器の 6個のダイヤル目盛りはすべて 4 0に設 定して行った。 得られた成形体の外観にて成形性 (熱成形性) の評価を 行なった。 The composite material obtained in each of the examples and comparative examples was formed using a single-shot molding machine (PL AVAC-FE36HP type manufactured by Sanwa Kogyo Co., Ltd.) with an opening shape of 150 mm in diameter and a bottom diameter of 1 2. Attach a container mold of 0 mm, depth of 60 mm or 30 mm with a frustoconical shape. Vacuum forming was performed. In this molding test, all 40 dial scales for the upper heater and the voltage regulator were set to 30 and all six dial scales for the lower heater and the voltage regulator were set to 40. I went. The moldability (thermoformability) was evaluated based on the appearance of the obtained molded body.
◎ : 絞り比 0 9において金型再現性及び外観共に良好  ◎: Good mold reproducibility and appearance at draw ratio of 09
〇 : 絞り比 0 4 (深さ 6 O m m ) において金型再現性及び外観共 に良好、  〇: Good mold reproducibility and appearance at a draw ratio of 0 4 (depth: 6 O mm)
絞り比 0 9では金型再現性及び Z又は外観が不良  Mold reproducibility and Z or appearance are poor at an aperture ratio of 09
△ : 絞り比 0 2 (深さ 3 O m m ) において金型再現性及び外観共 に良好、  △: Good mold reproducibility and appearance at a draw ratio of 0 2 (depth: 3 O mm)
絞り比 0 4では金型再現性及び Z又は外観が不良  Mold reproducibility and Z or appearance are poor at an aperture ratio of 04
尚、 上記絞り比 0 . 9については開口部形状が直径 9 5 m m、 底部直 径 7 0 m m、 深さ 1 0 5 m mの円錐台形状の容器成形用金型を用いた。 前記試験の結果、 実施例の複合材はいずれも連続気泡率が低く 、 加熱 真空成形においては金型再現性の良好な深絞り成形体を得ることができ た。 また接着強度も強いものであった。  For the above-described drawing ratio of 0.9, a frustoconical container molding die having an opening of 95 mm in diameter, a bottom diameter of 70 mm, and a depth of 105 mm was used. As a result of the test, all of the composite materials of the examples had a low open cell ratio, and were able to obtain a deep drawn molded body having good mold reproducibility in heating and vacuum forming. Also, the adhesive strength was strong.
一方、 比較例の複合材は加熱真空成形においては金型再現性の良好な 深絞り成形体を得ることができなかった。 また、 比較例 8のものは、 多 層の発泡シートが得られても連続気泡率が高いものであった。 また、 比 較例 7及び 8に示したように発泡体層にァロイ層を介してフィルム状で 積層するポリエステル樹脂を半結晶化時間が 3 0分未満のポリエステル 樹脂と した複合材は、 加熱真空成形においてポリスチレン樹脂発泡体の 成形条件ではポリエステル部が十分伸びず、 成形体表面にシヮが発生し た。 (耐熱性) On the other hand, in the case of the composite material of the comparative example, a deep drawn product having good mold reproducibility could not be obtained in the heating vacuum forming. In Comparative Example 8, the open cell ratio was high even when a multilayer foam sheet was obtained. In addition, as shown in Comparative Examples 7 and 8, a composite material in which a polyester resin laminated on a foam layer in the form of a film via an alloy layer as a polyester resin having a half-crystallization time of less than 30 minutes was subjected to heating vacuum. Under the molding conditions of the polystyrene resin foam during molding, the polyester part did not stretch sufficiently, and the surface of the molded body was shiny. (Heat-resistant)
前記熱成形試験にて得られた絞り比 0. 4の成形体に沸騰したお湯を 深さ 5 0 mmになる量を 5秒間で注ぎその後 4分間蓋をせずに放置しそ の後お湯を捨て、 容器内部の外観を観察した。  Pour boiling water into a molded body with a draw ratio of 0.4 obtained in the thermoforming test at a depth of 50 mm for 5 seconds, then leave it open for 4 minutes without lid, and then discard hot water The appearance inside the container was observed.
〇 : 変化なし  〇: No change
△ : シ一ト表面ポリエステル樹脂層の剥離有り  △: Peeling of polyester resin layer on sheet surface
実施例 2 5 Example 2 5
ポリオレフイ ン樹脂層、 接着層 ( 1 )、 ポリエステル樹脂層、 ァロイ層 ( 2 )、 ポリ スチレン榭脂発泡体層、 ァロイ層 ( 3 )、 ポリオレフイ ン樹 脂層がこの順に積層された複合材を作製した。  Create a composite material in which a polyolefin resin layer, an adhesive layer (1), a polyester resin layer, an alloy layer (2), a polystyrene resin foam layer, an alloy layer (3), and a polyolefin resin layer are laminated in this order. did.
ポリスチレン系樹脂発泡体層製造用の押出機と して、 直径 9 0 mmと 直径 1 2 0 mmの 2台の押出機をタンデム型に連結して用いた。  As extruders for producing a polystyrene-based resin foam layer, two extruders having a diameter of 90 mm and a diameter of 120 mm were connected in tandem.
ァロイ層 ( 2)、 ( 3 ) 製造用と して直径 6 5 mmの押出機を用いた。 ポリエステル樹脂層用の押出機と して直径 4 5 mmの押出機を用いた c 複合材におけるポリエステル樹脂層とポリオレフィン樹脂層との接着 層 ( 1 ) 製造用と して直径 6 5 mmの押出機を用いた。 For the alloy layers (2) and (3), an extruder with a diameter of 65 mm was used. Adhesion layer between polyester resin layer and polyolefin resin layer in c- composite using extruder with diameter of 45 mm as extruder for polyester resin layer (1) Extruder with diameter of 65 mm for production Was used.
ポリオレフィン樹脂層の製造用と して直径 6 5 mmの押出機を用いた c 口金と しては、 直径 1 3 5 m m、 隙間間隔 0. 3 m mの円筒状スリ ツ トを有するものを用いた。 As a c- base using an extruder with a diameter of 65 mm for the production of a polyolefin resin layer, a cylinder with a diameter of 135 mm and a gap of 0.3 mm was used. .
直径 9 0 mmの押出機の原料投入口より発泡体層製造用のポリ スチレ ン樹脂 Λ 9 8. 6重量部および気泡調整剤と してハイ ドロセロール C F 4 0 S (大日精化工業 (株) 製) を 0. 3重量部投入し、 その押出機内 で加熱混練し、 約 2 0 0°Cに調整された樹脂混合物に対して発泡剤 Aを 1. 1重量部圧入し、 次いで、 直径 1 2 0 mmの押出機に供給し、 樹脂 温度 1 6 5 °Cに調整した。 尚、 発泡剤 Λは n—ブタン 7 0重量%、 i s ό I Polystyrene resin for foam layer production from the raw material inlet of an extruder with a diameter of 90 mm Λ 98.6 parts by weight and hydrocerol CF 40 S as a cell regulator (Dainichi Seika Kogyo Co., Ltd.) 0.3 parts by weight), heated and kneaded in the extruder, and 1.1 parts by weight of the foaming agent A was injected into the resin mixture adjusted to about 200 ° C. The resin was fed to a 20 mm extruder, and the resin temperature was adjusted to 165 ° C. The blowing agent Λ is n-butane 70% by weight, is ό I
o—ブタン 3 0重量%からなるブタン混合物を使用した。 A butane mixture consisting of 30% by weight of o-butane was used.
ポリスチレン樹脂発泡体層の両面のァロイ層 ( 2 )、 ( 3 ) を構成する 樹脂は、 ポリエステル樹脂と して樹脂 S 5 0重量%、 ポリ スチレン樹脂 と して樹脂 Λ 5 0重量%を用い、 それらの混合物 1 0 0重量部当たり 1 0重量部相溶化剤 Tを添加し、 これらを直径 6 5 mmの押出機より 1 7 The resin constituting the alloy layers (2) and (3) on both sides of the polystyrene resin foam layer is resin 50% by weight as a polyester resin and resin 50% by weight as a polystyrene resin. 100 parts by weight of the mixture was added with 10 parts by weight of compatibilizer T, and these were added to an extruder having a diameter of 65 mm from an extruder.
0 °Cの樹脂温度に調整した。 The resin temperature was adjusted to 0 ° C.
ポリ スチレン樹脂発泡体層にァロイ層 ( 2 ) を介して積層されるポリ エステル樹脂を構成する樹脂は樹脂 Sを用い、 これを直径 4 5 mmの押 出機より 2 0 0°Cの樹脂温度に調整した。  The resin constituting the polyester resin laminated on the polystyrene resin foam layer via the alloy layer (2) is resin S, which is extruded at a resin temperature of 200 ° C from an extruder with a diameter of 45 mm. Was adjusted.
ポリエステル樹脂とポリオレフィ ン樹脂との混合物を主成分とする接 着層 ( 1 ) と してポリエステル樹脂は、 樹脂 Sを 7 0重量。 /。使用し、 ポ リオレフィン樹脂は、 樹脂 Mを 3 ◦重量%使用した。 これを直径 6 5 m mの押出機より 1 7 0°Cの樹脂温度に調整した。  As the adhesive layer (1) mainly composed of a mixture of a polyester resin and a polyolefin resin, the polyester resin contains 70% by weight of the resin S. /. As the polyolefin resin, 3% by weight of resin M was used. This was adjusted to a resin temperature of 170 ° C. by an extruder having a diameter of 65 mm.
複合材における 2つの最外層のポリオレフィン樹脂層を構成する樹脂 は、 樹脂 Mを用い、 これを直径 6 5 mmの押出機より 1 8 5 °Cの樹脂温 度に調整した。  The resin constituting the two outermost polyolefin resin layers of the composite material was resin M, which was adjusted to a resin temperature of 185 ° C by an extruder having a diameter of 65 mm.
それぞれの樹脂をダイス内部で合流させ共押出して、 ポリオレフイン 樹脂層、 接着層 ( 1 )、 ポリエステル樹脂層、 ァロイ層 ( 2 )、 ポリ スチ レン樹脂発泡体層、 ァロイ層 ( 3 )、 ポリオレフイ ン樹脂層の順に積層さ れた円筒状発泡樹脂を、 直径 3 3 5 mmの冷却された円筒に沿わせて引 取り、 その後切り開く ことにより複合材を得て、 これを巻き取った。 得られた複合材について諸物性を表 1 3に示した。  The respective resins are merged inside the die and co-extruded to form a polyolefin resin layer, an adhesive layer (1), a polyester resin layer, an alloy layer (2), a polystyrene resin foam layer, an alloy layer (3), and a polyolefin resin. The cylindrical foamed resin laminated in the order of the layers was taken out along a cooled cylinder having a diameter of 335 mm, and then cut open to obtain a composite material, which was wound up. Table 13 shows properties of the obtained composite material.
実施例 2 6 Example 26
ポリオレフィン樹脂層を構成する樹脂に樹脂 H (プロ ピレンーェチレ ンブロック共重合体) と し、 接着層 ( 1 )、 ァロイ層 ( 2 )、 ( 3 ) に黄色 顔料ポリ コール工業 (株) 製 E P S— E 4 0 5 1 8を混合樹脂 1 0 0重 量部に対して 4. 2重量部添加した以外は実施例 2 5 と同様に複合材を 得た。 The resin constituting the polyolefin resin layer is resin H (propylene-ethylene block copolymer), and the adhesive layer (1), alloy layer (2), and (3) are yellow. A composite material was obtained in the same manner as in Example 25, except that 4.2 parts by weight of EPS-E40518 manufactured by Pigment Polycarbon Industry Co., Ltd. was added to 100 parts by weight of the mixed resin.
実施例 2 7 Example 2 7
接着層 ( 1 )、 ァロイ層 ( 2)、 ( 3 ) に黒色顔料レジノカラ一工業 (株) 製 S B F— T— 1 6 8 3 (カーボンブラック) を混合樹脂 1 0 0重量部 に対して 0. 2重量部添加した以外は実施例 2 5 と同様に複合材を得た。 実施例 2 8  The adhesive layer (1), the alloy layers (2) and (3) were mixed with black pigment SBF-T-1683 (carbon black) manufactured by Resinoka Ichi Kogyo Co., Ltd. A composite material was obtained in the same manner as in Example 25 except that 2 parts by weight was added. Example 2 8
ポリ オレフィ ン樹脂層を構成する樹脂に樹脂 E (高密度ポリエチレン) と し、 ポリ スチレン樹脂発泡体層と して約 2 0 0°Cに調整された樹脂混 練物に対して発泡剤 Aを 0. 7重量部圧入し、 ポリ スチレン発泡体層の 密度 0. 3 5 g Z c m3、 厚さ 0. 5 5 mmと した以外は実施例 2 5 と同 様に複合材を得た。 The resin constituting the polyolefin resin layer is resin E (high-density polyethylene), and the foaming agent A is 0 for the resin kneaded material adjusted to about 200 ° C as the polystyrene resin foam layer. A composite material was obtained in the same manner as in Example 25, except that 0.7 parts by weight was pressed and the density of the polystyrene foam layer was 0.35 g Z cm 3 and the thickness was 0.55 mm.
実施例 2 9 Example 2 9
ポリオレフィン樹脂層を構成する樹脂に樹脂 N (高密度ポリエチレン) と し、 ポリスチレン樹脂発泡体層と して樹脂 Dと した以外は実施例 2 8 と同様に複合材を得た。  A composite material was obtained in the same manner as in Example 28 except that resin N (high-density polyethylene) was used as the resin constituting the polyolefin resin layer and resin D was used as the polystyrene resin foam layer.
実施例 2 5〜 2 9における連続気泡率は 8〜 2 0 %であった。  In Examples 25 to 29, the open cell ratio was 8 to 20%.
実施例 2 5〜 2 9に示した成分の符号は前記した符号と同じでその他 は以下の通りである。  The symbols of the components shown in Examples 25 to 29 are the same as those described above, and the others are as follows.
ポリ オレフィ ン樹脂 E  Polyolefin resin E
東ソ一 (株) 製 「二ボロンハード 4 0 0 0」 (高密度ポリエチレン、 融 点 1 3 5 °C、 密度 0. 9 6 4 g / c m3、 溶融粘度 6 3 0 P a ■ s ( 1 9 0 °C ) ビカ ッ ト軟化点 1 3 0 °C ) Higashisoichi Ltd. "two boron Hard 4 0 0 0" (high-density polyethylene, melting point 1 3 5 ° C, density 0. 9 6 4 g / cm 3 , melt viscosity 6 3 0 P a ■ s ( 190 ° C) Vicat softening point 130 ° C)
ポリエステル樹脂 S ィ一ス トマンケミカルジャパン(株)製「ィ一スタ一 P E T G 6 7 6 3 J (溶融粘度 2 1 0 0 P a · s、 密度 1 . 2 6 g / c 半結晶化時間 6 0分以上) Polyester resin S "PESTAG PETG 6763 J" (melt viscosity 2100 Pas, density 1.26 g / c semi-crystallization time 60 minutes or more) manufactured by Yeastman Chemical Japan Co., Ltd.
相溶化剤 T  Compatibilizer T
旭化成工業 (株) 製 「タフテック H 1 1 4 1」 (水素添加スチレンブタ ジエンスチレンブロックコポリマー、 密度 0. 9 1 g / c m3) Asahi Kasei Kogyo Co., Ltd. “Tuftec H1141” (hydrogenated styrene butadiene styrene block copolymer, density 0.91 g / cm 3 )
表 1 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 1 2 3 4 5 6 7 8Table 1 Example Example Example Example Example Example Example Example Example 1 2 3 4 5 6 7 8
P O層(Z1) U. υ. υο υ. υο υ. 0 n uoc υ. uo U. UO 層(Y1) U. υ. υο η υ. υ. υ. n u. π Π 複合材の構成 PO layer (Z 1 ) U. υ. Υο υ. Υο υ. 0 n uoc υ. Uo U. UO layer (Y 1 ) U. υ. Υο η υ. Υ. Υ. N u. Π Π Constitution
発泡体層(X) 1 q 1 1 R · Q o  Foam layer (X) 1 q 1 1 R · Q o
(厚み: mm)  (Thickness: mm)
層(Y2) η Layer (Y 2 ) η
υ. υο υ. υο υ. i υ. U. u.  υ. υο υ. υο υ. i υ. U. u.
PO層(Z2) 一 0.05 0.05 0.05 0.1 0.05 一 複合材の密度(gZ c m3) 0.18 0.25 0.31 0.28 0.31 0.27 0.2 0.8 複合材の厚み(mm) 1.98 2.1 1.8 2.0 1.9 2.2 2.55 2.5 製法の種類 後ラミ 共押出 共押出 共押出 共押出 共押出 共押出 後ラミ 樹脂温度 (°C) 175 179 178 178 178 173 190 175 耐油性 〇 〇 〇 〇 〇 O 〇 〇PO layer (Z 2 ) 1 0.05 0.05 0.05 0.1 0.05 1 Composite density (gZ cm 3 ) 0.18 0.25 0.31 0.28 0.31 0.27 0.2 0.8 Composite thickness (mm) 1.98 2.1 1.8 2.0 1.9 2.2 2.55 2.5 Type of manufacturing method Co-extrusion Co-extrusion Co-extrusion Co-extrusion Co-extrusion Co-extrusion Laminated resin temperature (° C) 175 179 178 178 178 173 190 175 Oil resistance 〇 〇 〇 〇 〇 O 〇 〇
Z'/X接着強度 Z '/ X adhesive strength
3185 5882 4902 6372 4412 7107 5392 4902 (mN/2 5 mm)  3185 5882 4902 6372 4412 7107 5392 4902 (mN / 2 5 mm)
Z2ZX接着強度 Z 2 ZX adhesive strength
3430 2695 4657 2940 4902 4412 (mN/2 5 mm)  3430 2695 4657 2940 4902 4412 (mN / 2 5 mm)
発泡体層の連続気泡率 (%) 16 13 18 15 16 12 20 15 Open cell ratio of foam layer (%) 16 13 18 15 16 12 20 15
表 2 Table 2
Figure imgf000043_0001
Figure imgf000043_0001
表 3 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 Table 3 Example Example Example Example Example Example Example Example Example Example
Q rr  Q rr
丄 4 o  丄 4 o
O b o  O b o
PS樹脂の種類 A A B B B B D A 添加剤の種類と タルク タルク タルク タルク タルク タルク タルク 発泡体層 なしPS resin type A A B B B B D A Type of additive and talc talc talc talc talc talc talc Foam layer None
1 1 1 1. o 1 1 丄 1 1 1 1.o 1 1 丄
発泡剤の種類と B B B n - p B B B CF40S 量(重量%) 1.0 1.4 l. υ 1.1 I.0 I, u 上. b Type of blowing agent and B B B n -p B B B CF40S amount (% by weight) 1.0 1.4 l. Υ 1.1 I.0 I, u on. B
P S樹脂の種類 A A B C B B D A と量 (重量%) 7Λ Type of P S resin A A B C B B D A and amount (% by weight) 7Λ
0 00 00 7 7Q 0 00 00 7 7Q
/ 0 /Π U O/ 0 / Π U O
ΡΟ樹脂の種類 H H H I I K J H と量 (重量%) 22 25 30 45 35 55 30 22 ァロイ層 ΡΟType of resin H H H I I K J H and amount (% by weight) 22 25 30 45 35 55 30 22 Alloy layer
相溶化剤の種類  Types of compatibilizer
なし V 5 V 5 V 5 W3 V4 V 5 なし と量 (重量部)  None V5 V5 V5 W3 V4 V5 None and quantity (parts by weight)
Ρ I値 1.02 1.20 0.93 0.99 0.97 0.86 0.89 1.02 フィノレム層 ΡΟ榭脂の種類 J H H H I K I J Ρ I value 1.02 1.20 0.93 0.99 0.97 0.86 0.89 1.02 Finolem layer Type of resin JHHHIKIJ
表 4 比較例 比較例 比較例Table 4 Comparative examples Comparative examples Comparative examples
1 Δ 31 Δ 3
P S樹脂の種類 A A B 添加剤の種類と タルク タルク タルク 発泡体層 P S resin type A A B Additive type and talc Talc Talc Foam layer
量 (重量部) 1 1 1 発泡剤の種類と B B B 量 (重量%) 1.6 1.6 1.0 Amount (parts by weight) 1 1 1 Type of blowing agent and B B B amount (% by weight) 1.6 1.6 1.0
P S樹脂の種類 A A B と量 (重量%) 85 50 55Type of P S resin A A B and amount (% by weight) 85 50 55
PO樹脂の種類 H H H と量 (重量%) 15 50 45 ァロイ層 PO resin type H H H and amount (% by weight) 15 50 45 Alloy layer
相溶化剤の種類 V V なし  Compatibilizer type V V None
5 5 5 5
P I値 0.64 3.61 1.78 フィルム層 PO樹脂の種類 J H K PI value 0.64 3.61 1.78 Film layer PO resin type JHK
表 5 実施例 実施例 実施例 実施例 実施例 Table 5 Example Example Example Example Example Example
丄丄 丄 Ζ 1 l *o} 丄 丄 丄 Ζ 1 l * o}
PO層 (Z1) 0.03 0.04 0.04 0.03 0.035 ァロイ層 (γ1) 0.06 0.05 0.05 0.04 0.05 複合材の構成 PO layer (Z 1 ) 0.03 0.04 0.04 0.03 0.035 Alloy layer (γ 1 ) 0.06 0.05 0.05 0.04 0.05 Composition of composite material
発泡体層 (X) 0.63 2.4 2.0 0.9 0.63 Foam layer (X) 0.63 2.4 2.0 0.9 0.63
(厚み: mm) (Thickness: mm)
ァロイ層 (Y2) 0.06 0.05 0.05 0.04 0.05Alloy layer (Y 2 ) 0.06 0.05 0.05 0.04 0.05
P O層 (Z2) 0.03 0.04 0.04 0.03 0.035 複合材の密度 (gZc m3) 0.45 0.16 0.17 0.31 0.48 複合材の厚み (mm) 0.78 2.6 2.2 1.05 0.8 製法の種類 共押出 共押出 共押出 共押出 共押出 樹脂温度 (°C) 165 160 174 178 182 耐油性 〇 〇 〇 〇 〇PO layer (Z 2 ) 0.03 0.04 0.04 0.03 0.035 Composite density (gZc m 3 ) 0.45 0.16 0.17 0.31 0.48 Composite thickness ( mm ) 0.78 2.6 2.2 1.05 0.8 Manufacturing method Co-extrusion Co-extrusion Co-extrusion Co-extrusion Co-extrusion Resin temperature (° C) 165 160 174 178 182 Oil resistance 〇 〇 〇 〇 〇
Z1 X接着強度 Z 1 X adhesive strength
6985 8090 5270 5147 5147 (mN/2 5 mm)  6985 8090 5270 5147 5147 (mN / 2 5 mm)
Z2/X接着強度 Z 2 / X adhesive strength
6617 7600 5147 5637 5270 (mN/2 5 mm)  6617 7600 5147 5637 5270 (mN / 2 5 mm)
発泡体層の連続気泡率 (%) 15 16 14 12 18 Open cell ratio of foam layer (%) 15 16 14 12 18
表 6 通例 芙 51例 夹 K6例 夹 ffi例 実 Sfe例Table 6 Normally 51 cases 芙 K6 cases 夹 ffi cases Actual Sfe cases
14 15 16 17 18 1914 15 16 17 18 19
PO層 (Z1) 0.03 0.03 0.03 0.03 0.03 0.03 ァロイ層 (Y1) 0.04 0.04 0.06 0.06 0.06 0.04 複合材の構成 PO layer (Z 1 ) 0.03 0.03 0.03 0.03 0.03 0.03 Alloy layer (Y 1 ) 0.04 0.04 0.06 0.06 0.06 0.04 Composition of composite material
発泡体層 (X) 0.9 0.9 0.54 0.54 0.54 1.1 Foam layer (X) 0.9 0.9 0.54 0.54 0.54 1.1
(厚み: mm) (Thickness: mm)
ァロイ層 (Y2) 0.04 0.04 0.06 0.06 0.06 0.04Alloy layer (Y 2 ) 0.04 0.04 0.06 0.06 0.06 0.04
PO層 (Z2) 0.03 0.03 0.03 0.03 0.03 0.03 複合材の密度 ( /cm3) W. J n υ. c: u. u 複合材の厚み (mm) 1 05 1.05 0 7 0 7 0 7 1_ 25 製法の種類 共押出 共押出 共押出 共押出 共押出 共押出 樹脂温度 (V) 165 165 168 167 166 160 耐油性 〇 〇 〇 〇 〇 〇 ζν/χ接着強度 PO layer (Z 2 ) 0.03 0.03 0.03 0.03 0.03 0.03 Composite density (/ cm 3 ) W. Jn υ. C: u.u Composite thickness ( mm ) 1 05 1.05 0 7 0 7 0 7 1_ 25 Type of manufacturing method Coextrusion Coextrusion Coextrusion Coextrusion Coextrusion Coextrusion Resin temperature (V) 165 165 168 167 166 160 160 Oil resistance 160 〇 〇 〇 〇 ζ ζν / χAdhesive strength
6617 6127 5147 7352 6985 3430 6617 6127 5147 7352 6985 3430
(mN/25 mm) (mN / 25 mm)
z x接着強度 z x adhesive strength
5025 5637 5882 6862 5882 4902 (raN/25 mm)  5025 5637 5882 6862 5882 4902 (raN / 25 mm)
発泡体層の連続気泡率 (%) 15 18 13 14 17 12 Open cell ratio of foam layer (%) 15 18 13 14 17 12
表 7 実施例 実施例 実施例 実施例 実施例Table 7 Example Example Example Example Example Example
9 10 11 12 13 p S樹脂の释類 A A D D n 発泡体 ja 添加剤の種類と タルク タルク タルク タルク タルク 量 (重量部) 1.0 0.8 0.8 1.0 1.2 発泡剤の種類と B B B B B 量(重量%) 0.9 1.6 1.65 1.0 0.89 10 11 12 13 p Class of S resin AADD n Foam ja Additive type and talc talc talc talc talc amount (parts by weight) 1.0 0.8 0.8 1.0 1.2 Type of blowing agent and BBBBB amount (% by weight) 0.9 1.6 1.65 1.0 0.8
P S樹脂の種類 A A D D D と量 (重量%) 75 75 75 75 70Type of PS resin A A D D D and amount (% by weight) 75 75 75 75 70
ΡΟ樹脂の種類 H M N N O と量 (重量%) 25 25 25 25 30 ァロイ層 ΡΟType of resin H M N N O and amount (% by weight) 25 25 25 25 30 Alloy layer
相溶化剤の種類 V V V X X と量 (重量部) 5 5 5 5 5 Type of compatibilizer V V V XX and amount (parts by weight) 5 5 5 5 5
Ρ I値 1.20 1.26 0.62 0.62 0.54 フィノレム層 ΡΟ樹脂の種類 H M N N 0 Ρ I value 1.20 1.26 0.62 0.62 0.54 Finolem layer ΡΟ Resin type HMNN 0
表 8 実施例 実施例 実施例 実施例 実施例 実施例Table 8 Example Example Example Example Example Example Example
14 15 16 17 18 19 14 15 16 17 18 19
P S樹脂の種類 A A A A A A 添加剤の種類と量 タルク タルク タルク タルク タルク CF40S 発泡体層 Type of PS resin A A A A A A A Type and amount of additive Talc Talc Talc Talc Talc CF40S Foam layer
(重量部) 1.0 1.0 0.8 0.8 0.8 0.2 発泡剤の種類と量 B B B B B B (重量%) 1.0 1.0 0.8 0.8 0.8 1.8 (Parts by weight) 1.0 1.0 0.8 0.8 0.8 0.2 Type and amount of blowing agent B B B B B B (% by weight) 1.0 1.0 0.8 0.8 0.8 1.8
P S樹脂の種類と A A A A A A 量 (重量%) 75 75 75 75 75 75Type of PS resin and A A A A A A Amount (% by weight) 75 75 75 75 75 75
PO樹脂の種類と M Q Q M R H 量 (重量%) 25 25 25 25 25 25 ァロイ層 PO resin type and M Q Q M R H amount (% by weight) 25 25 25 25 25 25 Alloy layer
相溶化剤の種類と Y V V Y V X 量 (重量部) 25 5 5 25 10 6.25  Type of compatibilizer and amount of Y V V Y V X (parts by weight) 25 5 5 25 10 6.25
P I値 1.26 0.90 0.90 1.26 1.30 1.20 フィルム層 PO樹脂の種類 M Q Q M R H PI value 1.26 0.90 0.90 1.26 1.30 1.20 Film layer PO resin type MQQMRH
表 9 実施例 比較例 Table 9 Example Comparative Example
20 21 22 23 4 5 6  20 21 22 23 4 5 6
M/Q M/Q Μ/Η  M / Q M / Q Μ / Η
種類 (重量比) L ヮ G Η F  Type (weight ratio) L ヮ G Η F
=ー7/3 =3/7  = -7 / 3 = 3/7
PO層  PO layer
1 00ででの  At 1 00
11 5 5 6 7 8 53 半結晶化時間 (秒)  11 5 5 6 7 8 53 Semi-crystallization time (sec)
PO層(Z 1 ) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 複合材 ァロイ層(Y) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 の構成  PO layer (Z 1) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 Composite material Alloy layer (Y) 0.04 0.04 0.04 0.04 0.04 0.04 0.04
発泡体層(X) 1.12 1.12 1.12 1.12 0.82 1.12 1.12 (厚み:  Foam layer (X) 1.12 1.12 1.12 1.12 0.82 1.12 1.12 (Thickness:
mm; ァロイ層(Y) 0.04 0.04 0.04 0.04 0.04 0.04 0.04  mm; Alloy layer (Y) 0.04 0.04 0.04 0.04 0.04 0.04 0.04
PO層(Z 2) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 複合材の密度 (gZcm3) 0.25 0.25 0.25 0.25 0.29 0.25 0.25 複合材の厚み (mm) 1.26 1.26 1.26 1.26 0.96 1.26 1.26 速続気泡率 (%) 17 17 16 19 20 17 17 接着強度 X/Z 1 4412 7600 7845 6372 5392 5392 4167 (mN/25mm) X/Z 2 3922 5147 6127 4657 4167 4657 3800 成形性 〇 〇 〇 Δ Δ Δ Δ 離型性 〇 〇 〇 〇 〇 〇 Δ 耐熱性 〇 〇 〇 〇 〇 Ο 〇 PO layer (Z 2) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 Composite density (gZcm 3 ) 0.25 0.25 0.25 0.25 0.29 0.25 0.25 Composite thickness ( mm ) 1.26 1.26 1.26 1.26 0.96 1.26 1.26 Rapid continuity (%) 17 17 16 19 20 17 17 Adhesive strength X / Z 1 4412 7600 7845 6372 5392 5392 4167 (mN / 25mm) X / Z 2 3922 5147 6127 4657 4167 4657 3800 Moldability 〇 〇 〇 Δ Δ Δ Δ Release property 〇 〇 〇 〇 〇 〇 Δ Heat resistance 〇 〇 〇 〇 〇 Ο 〇
表 1 o 実方 δ例 比較例 Table 1 o Actual method δ example Comparative example
20 21 22 23 4 5 6 種 類 M/Q M/Q M/ll  20 21 22 23 4 5 6 types M / Q M / Q M / ll
PO層 し G H F  PO layer G H F
(重量比) =5/5 =7/3 =3/7 (Weight ratio) = 5/5 = 7/3 = 3/7
P S樹脂の種類 H P S resin type H
Ηοϋ H O HbU H60 H60 と量 (重量%) 71.25 Ηοϋ H O HbU H60 H60 and quantity (% by weight) 71.25
PO樹脂の種類 A10 A14 G G PO resin type A10 A14 G G
接着層 JN ϋ t ϋ と量 (重量%) CIO C6 23.75 23.75 相溶化剤の種類  Adhesive layer JN ϋ t ϋ and amount (% by weight) CIO C6 23.75 23.75 Type of compatibilizer
K20 K20 K20 し 5 K20 L5 K20 と量 (重量%)  K20 K20 K20 then 5 K20 L5 K20 and quantity (% by weight)
P S榭脂の種類 H H H H H H H 添加剤の種類  P S Type of fat H H H H H H H H Type of additive
発泡体層 タルク 1 タルク 1 タルク 1 タノレク 1 タルク 1 タノレク 1 タノレク 1 と量 (重量部) Foam layer Talc 1 Talc 1 Talc 1 Tanolek 1 Talc 1 Tanolek 1 Tanolek 1 and amount (parts by weight)
発泡剤の量  Amount of blowing agent
1.25 1.25 1.25 1.25 1.25 1.25 1.25 (重量%)  1.25 1.25 1.25 1.25 1.25 1.25 1.25 (% by weight)
P I値 1.22 1.03 1.14 1.22 1.20 1.22 1.06  P I value 1.22 1.03 1.14 1.22 1.20 1.22 1.06
項目 実施例 24 ポリエステル樹脂層 厚 み (mm) Item Example 24 Polyester resin layer thickness (mm)
ァ ロ イ 層 厚 み (mm) 0.04 ポリスチレン樹 Ji旨 厚 み (mm) 1.4 発泡体層 密 度 ( g c m3) Thickness of alloy layer (mm) 0.04 Polystyrene tree Ji thickness (mm) 1.4 Density of foam layer (gcm 3 )
ポリスチレン樹脂層 厚 み (mm; (J.丄¾ 厚 み (mm) 1.64 坪 量 (gZm2) 551 密 度 (gZcm3) 0.34 連続気泡率 (%) 16 複合材の特性 接着強度 Polystyrene resin layer Thickness (mm; (J. み Thickness (mm)) 1.64 Basis weight (gZm 2 ) 551 Density (gZcm 3 ) 0.34 Open cell ratio (%) 16 Properties of composite material Adhesive strength
5025 (mN/ 25 mm)  5025 (mN / 25 mm)
耐 油 性 〇 成 形 性 ◎ 耐 熱 性 〇 Oil resistance 〇 Formability ◎ Heat resistance 〇
P I値 0.88 PI value 0.88
表 1 2 比較例 項目 Table 12 Comparative Example Item
7 8 ポリエステル樹脂層 厚 み (mm) 0.05 0.05 ァ ロ イ 層 厚 み (mm) 0.03 0.04 ポリスチレン樹脂 厚 み (mm) 1.9 1.4 発泡体層 密 度 ( g c m3) 0.105 0.21 ポリスチレン樹脂層 厚 み 、mm) 0.15 厚 み (mm) 1.98 1.64 坪 量 (gZm2) 292 551 密 度 (gZcm3) 0.15 0.34 連続気泡率 (%) 22 74 複合材の特性 接着強度 7 8 Polyester resin layer thickness (mm) 0.05 0.05 Alloy layer thickness (mm) 0.03 0.04 Polystyrene resin thickness (mm) 1.9 1.4 Foam layer density (gcm 3 ) 0.105 0.21 Polystyrene resin layer thickness, mm ) 0.15 Thickness (mm) 1.98 1.64 Basis weight (gZm 2 ) 292 551 Density (gZcm 3 ) 0.15 0.34 Open cell ratio (%) 22 74 Properties of composite materials Adhesive strength
8825 5637 (mN/25 mm)  8825 5637 (mN / 25 mm)
耐 油 性 〇 〇 成 形 性 △ △ 耐 熱 性 測定不能 測定不能 Oil resistance 〇 〇 Formability △ △ Heat resistance Unmeasurable Unmeasurable
P I値 PI value
68 68
52  52
表 13 実施例 実施例 実施例 実施例 実施例 項 目 07 Table 13 Example Example Example Example Example Example Item 07
ポリオレフイン 厚み Polyolefin thickness
22.5 22.5 22.5 22.2 22.2 樹月日眉 ( mノ  22.5 22.5 22.5 22.2 22.2
厚み  Thickness
接着層 (1 ) 28.8 28.8 28.8 17.6 17.6 Adhesive layer (1) 28.8 28.8 28.8 17.6 17.6
( mノ  (m no
ポリエステル 厚み Polyester thickness
31.5 31.5 31.5 19 19 樹脂層  31.5 31.5 31.5 19 19 Resin layer
厚み  Thickness
ァロイ層 (2) 97 97 97 34.5 34.5 Alloy layer (2) 97 97 97 34.5 34.5
810 810 810 400 400 ポリスチレン 810 810 810 400 400 Polystyrene
樹脂 体層 Resin body layer
0.21 0.21 0.21 0.35 0.35 0.21 0.21 0.21 0.35 0.35
(g/cm3) (g / cm 3 )
厚み  Thickness
ァロイ層 (3 ) 97 97 97 34.5 34.5 Alloy layer (3) 97 97 97 34.5 34.5
( μ m)  (μm)
ポリオレフィン 厚み Polyolefin thickness
13.5 13.5 13.5 22.2 22.2 樹脂層 (μ m)  13.5 13.5 13.5 22.2 22.2 Resin layer (μm)
厚み  Thickness
1.1 1.1 1.1 0.55 0.55 (mm)  1.1 1.1 1.1 0.55 0.55 (mm)
坪量  Basis weight
340 340 340 280 280 (gん m2) 340 340 340 280 280 (g m 2 )
複合材の特性 密度 Composite properties Density
0.61 0.61 0.61 0.68 0.68 (gん m3) 0.61 0.61 0.61 0.68 0.68 (g m 3 )
耐油性 〇 〇 〇 〇 〇 成形性 〇 〇 〇 〇 〇 耐熱性 〇 〇 〇 〇 〇 Oil resistance 〇 〇 〇 〇 〇 Moldability 〇 〇 〇 〇 〇 Heat resistance 〇 〇 〇 〇 〇
Ρ I値 0.80 0.80 0.80 0.80 0.80 接着強度(mN/25mm) Ρ I value 0.80 0.80 0.80 0.80 0.80 Adhesive strength (mN / 25mm)
ポリエステル樹脂層/ 4902 5392 5147 5270 5147 ポリスチレン榭脂発泡体層 Polyester resin layer / 4902 5392 5147 5270 5147 Polystyrene resin foam layer

Claims

請求の範囲 The scope of the claims
1 . ポリ スチレン樹脂発泡体層と、 該ポリ スチレン樹脂発泡体層の 両面の少なく とも一方に設けたァロイ層と、 該ァロイ層上に設けた熱可 塑性樹脂層からなる複合材であって、  1. A composite material comprising a polystyrene resin foam layer, an alloy layer provided on at least one of both surfaces of the polystyrene resin foam layer, and a thermoplastic resin layer provided on the alloy layer,
該熱可塑性樹脂層がポリオレフィン樹脂及びポリエステル樹脂から選 ばれる樹脂からなり、  The thermoplastic resin layer is made of a resin selected from a polyolefin resin and a polyester resin,
該ァロイ層がポリスチレン樹脂と、 ポリオレフィン樹脂及びポリエス テル樹脂から選ばれる熱可塑性樹脂との混合物からなり、 ただし該熱可 塑性樹脂層がポリォレフィン樹脂からなるときは該ァロイ層の熱可塑性 樹脂はポリオレフイン樹脂であり、 該熱可塑性樹脂層がポリエステル樹 脂からなるときは該ァ口ィ層の熱可塑性樹脂はポリエステル樹脂であり、 及び  The alloy layer is composed of a mixture of a polystyrene resin and a thermoplastic resin selected from a polyolefin resin and a polyester resin. However, when the thermoplastic resin layer is composed of a polyolefin resin, the thermoplastic resin of the alloy layer is a polyolefin resin. When the thermoplastic resin layer is made of a polyester resin, the thermoplastic resin of the opening layer is a polyester resin; and
該ポリスチレン樹脂発泡体層と該熱可塑性樹脂層との接着強度が 9 8 0 mN/ 2 5 mm以上である複合材。  A composite material having an adhesive strength between the polystyrene resin foam layer and the thermoplastic resin layer of at least 980 mN / 25 mm.
2. 前記ァロイ層は 0. 5〜 1 . 5の相構造指数 P I を持つ請求の 範囲 1項に記載の複合材、 ここで P I は下記式で定義される。  2. The composite material according to claim 1, wherein the alloy layer has a phase structure index P I of 0.5 to 1.5, wherein P I is defined by the following formula.
P I = " .\ · B/ 1 B ' Φ .\)  P I = ". \ B / 1 B 'Φ. \)
式中、 φ .、は該ァロイ層中の前記ポリスチレン樹脂の体積分率、 7? Λは 1Wherein, phi., The volume fraction of the polystyrene resin of the Aroi layer, 7? Lambda 1
9 0°C、 剪断速度 1 0 0 s e c における該ポリスチレン樹脂の溶融粘 度、 φ Bは該ァロイ層中の前記熱可塑性樹脂の体積分率、 Βは 1 9 0 °C 剪断速度 1 0 0 s e c .1における該熱可塑性樹脂の溶融粘度である。 9 0 ° C, time melt viscosity of the polystyrene resin at a shear rate of 1 0 0 sec, φ B is the volume fraction of the thermoplastic resin of the Aroi layer, beta is 1 9 0 ° C shear rate of 1 0 0 sec 1 is the melt viscosity of the thermoplastic resin.
3. 前記ァロイ層は 0. 7〜 1 . 3の相構造指数 P I を持つ請求の 範囲 1又は 2項に記載の複合材。  3. The composite material according to claim 1, wherein the alloy layer has a phase structure index P I of 0.7 to 1.3.
4. 前記ァロイ層が該ァロイ層の該ポリスチレン樹脂と該熱可塑性 樹脂との間の相溶性を高めるための相溶化剤を該ァロイ層の該ポリ スチ レン樹脂と該熱可塑性樹脂との合計 1 0 0重量部あたり 0 . 1〜 3 0重 量部含む請求の範囲 1〜 3項のいずれかに記載の複合材。 4. The alloy layer includes a compatibilizing agent for increasing the compatibility between the polystyrene resin and the thermoplastic resin of the alloy layer. The composite material according to any one of claims 1 to 3, wherein the composite material comprises 0.1 to 30 parts by weight per 100 parts by weight of the total of the lent resin and the thermoplastic resin.
5 . 前記ァロイ層中の前記熱可塑性樹脂に対する前記ポリ スチレン 樹脂の重量比が 9 5 : 5から 3 0 : 7 0の範囲である請求の範囲 1〜 4 項のいずれかに記載の複合材。  5. The composite according to any one of claims 1 to 4, wherein a weight ratio of the polystyrene resin to the thermoplastic resin in the alloy layer is in a range of 95: 5 to 30:70.
6 . 前記相溶化剤がスチレン含有熱可塑性エラス トマ一である請求 の範囲 4項又は 5項に記載の複合材。  6. The composite material according to claim 4, wherein the compatibilizer is a styrene-containing thermoplastic elastomer.
7 . 前記エラス トマ一がスチレン一ブタジエン一スチレンブロ ック コポリマー、 スチレン一イ ソフ。レン一スチレンブ'ロ ック コポリマ一、 ス チレン一エチレン一ブチレン一スチレンプロ ック コポリマー、 スチレン —エチレン一プロピレン一スチレンブロックコポリマ一の中から選ばれ るものである請求の範囲 6項記載の複合材。  7. The elastomer is styrene-butadiene-styrene block copolymer, styrene-isof. 7. The composite according to claim 6, wherein the composite is selected from a styrene-block copolymer, a styrene-ethylene-butylene-styrene block copolymer, and a styrene-ethylene-propylene-styrene block copolymer. Wood.
8 . 前記ァ口ィ層の厚みが 1 5〜 2 0 0 mである請求の範囲 1〜 7項のいずれかに記載の複合材。  8. The composite material according to any one of claims 1 to 7, wherein the thickness of the opening layer is 15 to 200 m.
9 . 前記ァロイ層が前記ポリ スチレン榭脂発泡体層と共押出で得ら れたものである請求の範囲 1〜 8項のいずれかに記載の複合材。  9. The composite material according to any one of claims 1 to 8, wherein the alloy layer is obtained by co-extrusion with the polystyrene resin foam layer.
1 0 . 前記熱可塑性樹脂層がビカツ ト軟化点 1 1 2 °C以上であるポリ ォレフィン榭脂からなる請求の範囲 1〜 9項のいずれかに記載の複合材。  10. The composite material according to any one of claims 1 to 9, wherein the thermoplastic resin layer is made of a polyolefin resin having a vicat softening point of 112 ° C or higher.
1 1 . 前記熱可塑性樹脂層が 1 0 0 °Cでの半結晶化時間が 3 0分以上 の芳香族ポリエステル樹脂からなる請求の範囲 1〜 9項のいずれかに記 載の複合材。  11. The composite material according to any one of claims 1 to 9, wherein the thermoplastic resin layer is made of an aromatic polyester resin having a half-crystallization time at 100 ° C of 30 minutes or more.
1 2 . 前記芳香族ポリ エステル樹脂が芳香族カルボン酸成分単位と ジオール成分単位を含むものであり、 該芳香族カルボン酸成分単位がテ レフタル酸成分単位を含み、 該ジオール成分単位がエチレングリ コール 成分単位とシクロへキサンジメタノール成分単位を含む請求の範囲 1 1 00 12. The aromatic polyester resin contains an aromatic carboxylic acid component unit and a diol component unit, the aromatic carboxylic acid component unit contains a terephthalic acid component unit, and the diol component unit contains ethylene glycol. Claim 1 1 comprising the component unit and the cyclohexanedimethanol component unit 00
項に記載の複合材。 The composite material according to the item.
1 3. 前記熱可塑性樹脂層が ( a ) 融点 1 5 5 C以下のポリプロ ピレ ン樹脂と ( b ) 1 3 0 C以上で且つ該樹脂 ( a ) とは異なる融点を持つ ポリエチレン樹脂との混合物からなり、 該樹脂 ( a ) の量は樹脂 ( a ) と (b ) の合計重量の 5 0重量%以上 1 ◦ 0重量%未満であり、 該樹脂 ( b ) の量は樹脂 ( a ) と (b ) の合計重量の 0重量%超 5 0重量%以 下であり、 該混合物の 1 0 0°Cにおける半結晶化時間が 3 0秒以下であ る請求の範囲 1〜 1 0項のいずれかに記載の複合材。 1 3. A mixture of (a) a polypropylene resin having a melting point of at most 150 C and a (b) polyethylene resin having a melting point of at least 130 C and having a melting point different from that of the resin (a). from it, the amount of the resin (a) is 1 ◦ less than 0 wt% total weight of 5 0 wt% or more of the resin (a) and (b), the amount of the resin (b) is a resin (a) The semi-crystallization time at 100 ° C. of the mixture is not more than 50% by weight and not more than 0% by weight and not more than 50% by weight of the total weight of (b). The composite according to any one of the above.
1 4. 前記熱可塑性樹脂層が 1 5 5 °Cを超える融点を持つポリプロピ レン樹脂からなる請求の範囲 1〜 1 0項のいずれかに記載の複合材。  14. The composite material according to any one of claims 1 to 10, wherein the thermoplastic resin layer is made of a polypropylene resin having a melting point of more than 150 ° C.
1 5. 前記熱可塑性樹脂層が融点 1 3 0 °C以上のポリエチレン樹脂か らなる請求の範囲 1〜 1 0項のいずれかに記載の複合材。  1 5. The composite material according to any one of claims 1 to 10, wherein the thermoplastic resin layer is made of a polyethylene resin having a melting point of 130 ° C or more.
PCT/JP1999/005996 1999-04-09 1999-10-28 Composite material comprising polystyrene resin foam layer and thermoplastic resin layer WO2000061368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU63671/99A AU6367199A (en) 1999-04-09 1999-10-28 Composite material comprising polystyrene resin foam layer and thermoplastic resin layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10325899A JP4059415B2 (en) 1998-04-24 1999-04-09 Polystyrene resin foam / polyolefin resin multilayer
JP11/103258 1999-04-09
JP13916499 1999-05-19
JP11/139164 1999-05-19

Publications (1)

Publication Number Publication Date
WO2000061368A1 true WO2000061368A1 (en) 2000-10-19

Family

ID=26443898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005996 WO2000061368A1 (en) 1999-04-09 1999-10-28 Composite material comprising polystyrene resin foam layer and thermoplastic resin layer

Country Status (3)

Country Link
AU (1) AU6367199A (en)
TW (1) TW473430B (en)
WO (1) WO2000061368A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479178B (en) * 2010-07-13 2015-04-01 Chien Chin Mai Protective film for optical film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917628Y2 (en) * 1978-01-17 1984-05-22 日本スチレンペ−パ−株式会社 composite sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917628Y2 (en) * 1978-01-17 1984-05-22 日本スチレンペ−パ−株式会社 composite sheet

Also Published As

Publication number Publication date
TW473430B (en) 2002-01-21
AU6367199A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
JP2013237206A (en) Multilayer sheet for thermoforming and container
JP4446412B2 (en) Polycarbonate resin foam / polycarbonate resin multilayer body
JP4616042B2 (en) Polypropylene resin laminate foam and molded product thereof
JP4518353B2 (en) Laminated foam for thermoforming
JP4059415B2 (en) Polystyrene resin foam / polyolefin resin multilayer
JP4079293B2 (en) Thermoplastic resin foam and method for producing the same
JP5824271B2 (en) Packaging container
WO2000061368A1 (en) Composite material comprising polystyrene resin foam layer and thermoplastic resin layer
JP2008274031A (en) Antistatic resin composition and thermoplastic resin multilayered sheet
JP2002219781A (en) Laminated expanded molding of polypropylene resin, laminated foam used for manufacture of laminated expanded molding, and manufacturing method for laminated foam
JP2009034934A (en) Laminated sheet for container
JP4428815B2 (en) Polyester resin laminated polystyrene resin foam
JP2008073939A (en) Foamed laminated sheet, foamed multilayer sheet, method for producing foamed multilayer sheet, and food container of foamed multilayer sheet
JP6589117B2 (en) Polypropylene resin foam laminated sheet and molded product
JP6551589B2 (en) Polypropylene-based resin foam sheet
JP4225442B2 (en) Polystyrene resin foam / polyolefin resin multilayer
JP2007131766A (en) Polypropylene-based resin foamed sheet, polypropylene-based resin laminated foamed sheet and container obtained by thermally molding the same
JP4976530B2 (en) Polypropylene resin laminate foam and molded product thereof
JP2005307024A (en) Polypropylene resin foamed sheet and molded product
JP3024114B2 (en) Thermoplastic resin sheet
JP2014054830A (en) Multilayer sheet for thermoforming and container
JP2000334896A (en) Polystyrene-based resin multilayered foam and container made of the same
JP2003300291A (en) Laminated foamed sheet of polypropylene resin, manufacturing method therefor, and molded body thereof
JP3459354B2 (en) Laminated foam and foam molded article using the same
JP3432139B2 (en) Laminated foam and foam molded article using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09958159

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase