WO2000060104A1 - Gene rat kiaa0001 - Google Patents

Gene rat kiaa0001 Download PDF

Info

Publication number
WO2000060104A1
WO2000060104A1 PCT/US2000/008918 US0008918W WO0060104A1 WO 2000060104 A1 WO2000060104 A1 WO 2000060104A1 US 0008918 W US0008918 W US 0008918W WO 0060104 A1 WO0060104 A1 WO 0060104A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
sequence
seq
isolated
Prior art date
Application number
PCT/US2000/008918
Other languages
English (en)
Inventor
Ping Tsui
Original Assignee
Smithkline Beecham Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smithkline Beecham Corporation filed Critical Smithkline Beecham Corporation
Publication of WO2000060104A1 publication Critical patent/WO2000060104A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants

Definitions

  • This invention relates to newly identified polypeptides and polynucleotides encoding such polypeptides, to their use in diagnosis and m identifying compounds that may be agonists, antagonists that are potentially useful m therapy, and to production of such polypeptides and polynucleotides.
  • the drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics,” that is, high throughput genome- or gene-based biology. This approach as a means to identify genes and gene products as therapeutic targets is rapidly superseding earlier approaches based on “positional cloning.” A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.
  • proteins participating m signal transduction pathways that involve G-protems and/or second messengers, e.g., cAMP (Lefkowitz, Nature, 1991, 351:353-354).
  • these proteins are referred to as proteins participating in pathways with G-proteins or PPG proteins.
  • Some examples of these proteins include the GPC receptors, such as those for adrenergic agents and dopamme (Kobilka, B.K., et al.,
  • G-protems themselves, effector proteins, e.g., phosphohpase C, adenyl cyclase, and phosphodiesterase, and actuator proteins, e.g., protein kmase A and protein kinase C (Simon, M.I., et al., Science, 1991, 252:802-8).
  • effector proteins e.g., phosphohpase C, adenyl cyclase, and phosphodiesterase
  • actuator proteins e.g., protein kmase A and protein kinase C (Simon, M.I., et al., Science, 1991, 252:802-8).
  • the effect of hormone binding is activation of the enzyme, adenylate cyclase, inside the cell.
  • Enzyme activation by hormones is dependent on the presence of the nucleotide, GTP.
  • GTP also influences hormone binding.
  • a G-protem connects the hormone receptor to adenylate cyclase.
  • G-protem was shown to exchange GTP for bound GDP when activated by a hormone receptor. The GTP-carrying form then binds to activated adenylate cyclase.
  • the G-protem serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls the duration of the signal.
  • G-protein coupled receptors The membrane protein gene superfamily of G-protein coupled receptors has been characterized as having seven putative transmembrane domains. The domains are believed to represent transmembrane ⁇ -hehces connected by extracellular or cytoplasmic loops.
  • G-protein coupled receptors include a wide range of biologically active receptors, such as hormone, viral, growth factor and neuroreceptors.
  • G-protem coupled receptors (otherwise known as 7TM receptors) have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 ammo acids, connecting at least eight divergent hydrophihc loops.
  • the G-protein family of coupled receptors includes dopamme receptors which bind to neuroleptic drugs used for treating psychotic and neurological disorders.
  • members of this family include, but are not limited to, calcitonin, adrenergic, endothehn, cAMP, adenosme, musca ⁇ nic, acetylchohne, serotonin, histamine, thrombm, kinm, follicle stimulating hormone, opsms, endothehal differentiation gene-1, rhodopsms, odorant, and cytomegalovirus receptors.
  • G-protem coupled receptors have single conserved cysteme residues in each of the first two extracellular loops which form disulfide bonds that are believed to stabilize functional protein structure.
  • the 7 transmembrane regions are designated as TM1, TM2, TM3, TM4, TM5, TM6, and TM7.
  • TM3 has been implicated m signal transduction.
  • Phosphorylation and hpidation (palmitylation or farnesylation) of cysteme residues can influence signal transduction of some G-protem coupled receptors
  • Most G-protem coupled receptors contain potential phosphorylation sites within the third cytoplasmic loop and/or the carboxy terminus.
  • G-protem coupled receptors such as the ⁇ -adrenoreceptor
  • phosphorylation by protein kmase A and/or specific receptor kinases mediates receptor desensitization.
  • the hgand binding sites of G-protem coupled receptors are believed to comprise hydrophihc sockets formed by several G-protem coupled receptor transmembrane domains, said sockets being surrounded by hydrophobic residues of the G-protein coupled receptors.
  • the hydrophihc side of each G-protem coupled receptor transmembrane helix is postulated to face mward and form a polar hgand binding site.
  • TM3 has been implicated in several G-protein coupled receptors as having a hgand binding site, such as the TM3 aspartate residue.
  • TM6 or TM7 phenylalanmes or tyrosmes are also implicated in hgand binding.
  • G-protem coupled receptors can be mtracellularly coupled by heterot ⁇ me ⁇ c G-protems to various mtracellular enzymes, ion channels and transporters (see, Johnson et al., Endoc Rev., 1989, 10.317-331)
  • Different G-protem ⁇ -subunits preferentially stimulate particular effectors to modulate va ⁇ ous biological functions in a cell Phosphorylation of cytoplasmic residues of G-protem coupled receptors has been identified as an important mechanism for the regulation of G-protein coupling of some G-protein coupled receptors.
  • G-protein coupled receptors are found in numerous sites within a mammalian host. Over the past 15 years, nearly 350 therapeutic agents targeting 7 transmembrane (7 TM) receptors have been successfully introduced onto the market. Summary of the Invention
  • the present invention relates to KiaaOOOl, in particular KiaaOOOl polypeptides and KiaaOOOl polynucleotides, recombinant materials and methods for their production.
  • Such polypeptides and polynucleotides are of interest in relation to methods of treatment of certain diseases, including, but not limited to, infections such as bacterial, fungal, protozoan and viral infections, particularly infections caused by HIV-1 or HTV-2; pain; cancers; diabetes, obesity; anorexia; bulimia; asthma; Parkinson's disease; acute heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; stroke; ulcers; asthma; allergies; benign prostatic hypertrophy; migraine; vomiting; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, depression, delirium, dementia, and severe mental retardation; and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, herein
  • the invention relates to methods for identifying agonists and antagonists (e.g. , inhibitors) using the materials provided by the invention, and treating conditions associated with KiaaOOOl imbalance with the identified compounds.
  • the invention relates to diagnostic assays for detecting diseases associated with inappropriate KiaaOOO 1 activity or levels. Description of the Invention
  • the present invention relates to KiaaOOOl polypeptides.
  • Such polypeptides include:
  • Polypeptides of the present invention are believed to be members of the G protein coupled receptor family of polypeptides. They are therefore of interest because G-protein coupled receptors (7TM), more than any other gene family, are the targets of pharmaceutical intervention.
  • the biological properties of the KiaaOOOl are hereinafter referred to as "biological activity of KiaaOOOl” or "KiaaOOOl activity.”
  • a polypeptide of the present invention exhibits at least one biological activity of KiaaOOOl.
  • Polypeptides of the present invention also mclude va ⁇ ants of the aforementioned polypeptides, including all allehc forms and splice va ⁇ ants. Such polypeptides vary from the reference polypeptide by insertions, deletions, and substitutions that may be conservative or non-conservative, or any combination thereof. Particularly preferred va ⁇ ants are those in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 ammo acids are inserted, substituted, or deleted, m any combination.
  • Preferred fragments of polypeptides of the present invention include an isolated polypeptide comprising an ammo acid sequence having at least 30, 50 or 100 contiguous ammo acids from the ammo acid sequence of SEQ LD NO: 2, or an isolated polypeptide comp ⁇ sing an ammo acid sequence having at least 30, 50 or 100 contiguous ammo acids truncated or deleted from the ammo acid sequence of SEQ LD NO: 2.
  • Preferred fragments are biologically active fragments that mediate the biological activity of KiaaOOO 1 , including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also preferred are those fragments that are antigenic or lmmunogemc in an animal, especially in a human.
  • Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these va ⁇ ants may be employed as intermediates for producing the full-length polypeptides of the invention.
  • the polypeptides of the present invention may be in the form of the "mature" protein or may be a part of a larger protein such as a precursor or a fusion protein. It is often advantageous to include an additional ammo acid sequence that contains secretory or leader sequences, pro-sequences, sequences that aid in purification, for instance multiple histidine residues, or an additional sequence for stability during recombinant production.
  • Polypeptides of the present invention can be prepared m any suitable manner, for instance by isolation form naturally occumng sources, from genetically engineered host cells comp ⁇ sing expression systems (vide infra) or by chemical synthesis, using for instance automated peptide synthesizers, or a combination of such methods. Means for prepa ⁇ ng such polypeptides are well understood m the art.
  • the present invention relates to KiaaOOOl polynucleotides. Such polynucleotides mclude:
  • Preferred fragments of polynucleotides of the present invention include an isolated polynucleotide comp ⁇ sing an nucleotide sequence having at least 15, 30, 50 or 100 contiguous nucleotides from the sequence of SEQ LD NO: 1 , or an isolated polynucleotide comp ⁇ smg an sequence having at least 30, 50 or 100 contiguous nucleotides truncated or deleted from the sequence of SEQ LD NO: 1.
  • va ⁇ ants of polynucleotides of the present invention mclude splice va ⁇ ants, allehc va ⁇ ants, and polymorphisms, including polynucleotides having one or more single nucleotide polymorphisms (SNPs).
  • SNPs single nucleotide polymorphisms
  • Polynucleotides of the present invention also mclude polynucleotides encodmg polypeptide va ⁇ ants that comp ⁇ se the ammo acid sequence of SEQ LD NO:2 and in which several, for instance from 50 to 30, from 30 to 20, from 20 to 10, from 10 to 5, from 5 to 3, from 3 to 2, from 2 to 1 or 1 ammo acid residues are substituted, deleted or added, in any combination.
  • the present invention provides polynucleotides that are RNA transc ⁇ pts of the DNA sequences of the present invention. Accordingly, there is provided an RNA polynucleotide that:
  • (a) comprises an RNA transc ⁇ pt of the DNA sequence encoding the polypeptide of SEQ LD
  • (d) is the RNA transc ⁇ pt of the DNA sequence of SEQ LD NO: 1 ; and RNA polynucleotides that are complementary thereto.
  • the polynucleotide sequence of SEQ LD NO: 1 shows homology with rat VTR15-20 (Accession Number U76206).
  • the polynucleotide sequence of SEQ LD NO: 1 is a cDNA sequence that encodes the polypeptide of SEQ LD NO:2
  • the polynucleotide sequence encoding the polypeptide of SEQ LD NO: 2 may be identical to the polypeptide encoding sequence of SEQ LD NO: 1 or it may be a sequence other than SEQ LD NO:l, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptide of SEQ LD NO:2.
  • the polypeptide of SEQ LD NO:2 is related to other proteins of the G protein coupled receptor family, having homology and/or structural simila ⁇ ty with rat VTR15-20 (Accession Number U76206).
  • Preferred polypeptides and polynucleotides of the present invention are expected to have, inter alia, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides and polynucleotides of the present invention have at least one KiaaOOOl activity.
  • Polynucleotides of the present invention may be obtained using standard cloning and screening techniques from a cDNA library de ⁇ ved from mRNA in cells of rat liver, (see for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Sp ⁇ ng Harbor Laboratory Press, Cold Sp ⁇ ng Harbor, N Y (1989))
  • Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA bra ⁇ es or can be synthesized using well known and commercially available techniques.
  • the polynucleotide may include the coding sequence for the mature polypeptide, by itself, or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encodmg a leader or secretory sequence, a pre-, or pro- or prepro- protem sequence, or other fusion peptide portions.
  • a marker sequence that facilitates pu ⁇ fication of the fused polypeptide can be encoded.
  • the marker sequence is a hexa-histidine peptide, as provided m the pQE vector (Qiagen, Inc.) and desc ⁇ bed in Gentz et al , Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag.
  • the polynucleotide may also contain non-coding 5' and 3' sequences, such as transc ⁇ bed, non-translated sequences, splicing and polyadenylation signals, ⁇ bosome binding sites and sequences that stabilize mRNA.
  • Polynucleotides that are identical, or have sufficient identity to a polynucleotide sequence of SEQ LD NO: 1, may be used as hyb ⁇ dization probes for cDNA and genomic DNA or as p ⁇ mers for a nucleic acid amplification reaction (for instance, PCR). Such probes and p ⁇ mers may be used to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encodmg paralogs from human sources and orthologs and paralogs from species other than rat) that have a high sequence similarity to SEQ LD NO: 1 , typically at least 95% identity.
  • Preferred probes and primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50, if not at least 100 nucleotides.
  • Particularly preferred probes will have between 30 and 50 nucleotides.
  • Particularly preferred primers will have between 20 and 25 nucleotides.
  • a polynucleotide encoding a polypeptide of the present invention may be obtained by a process comprising the steps of screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ LD NO: 1 or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-length cDNA and genomic clones containing said polynucleotide sequence.
  • a labeled probe having the sequence of SEQ LD NO: 1 or a fragment thereof, preferably of at least 15 nucleotides; and isolating full-length cDNA and genomic clones containing said polynucleotide sequence.
  • Preferred stringent hybridization conditions include overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA; followed by washing the filters in O.lx SSC at about 65°C.
  • the present invention also includes isolated polynucleotides, preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ LD NO: 1 or a fragment thereof, preferably of at least 15 nucleotides.
  • isolated polynucleotides preferably with a nucleotide sequence of at least 100, obtained by screening a library under stringent hybridization conditions with a labeled probe having the sequence of SEQ LD NO: 1 or a fragment thereof, preferably of at least 15 nucleotides.
  • PCR Nucleic acid amplification
  • PCR Nucleic acid amplification
  • the PCR reaction is then repeated using 'nested' primers, that is, primers designed to anneal within the amplified product (typically an adapter specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the known gene sequence).
  • the products of this reaction can then be analyzed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full- length PCR using the new sequence information for the design of the 5' primer.
  • Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems comprising a polynucleotide or polynucleotides of the present invention, to host cells which are genetically engineered with such expression systems and to the production of polypeptides of the invention by recombinant techniques.
  • Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.
  • host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention.
  • Polynucleotides may be introduced into host cells by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook et al.(ibid).
  • Preferred methods of introducing polynucleotides into host cells include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, micro-injection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.
  • Representative examples of appropriate hosts include bacterial cells, such as Streptococci,
  • Staphylococci E. coli, Streptomyces and Bacillus subtilis cells
  • fungal cells such as yeast cells and Aspergillus cells
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells
  • plant cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells.
  • expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids.
  • the expression systems may contain control regions that regulate as well as engender expression.
  • any system or vector that is able to maintain, propagate or express a polynucleotide to produce a polypeptide in a host may be used.
  • the appropriate polynucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al., (ibid).
  • Appropriate secretion signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.
  • a polypeptide of the present invention is to be expressed for use in screening assays, it is generally preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If the polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide. If produced intracellularly, the cells must first be lysed before the polypeptide is recovered.
  • Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular synthesis, isolation and/or purification. Polynucleotides of the present invention may be used as diagnostic reagents, through detecting mutations in the associated gene.
  • Detection of a mutated form of the gene characterized by the polynucleotide of SEQ LD NO: 1 in the cDNA or genomic sequence and which is associated with a dysfunction will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, or susceptibility to a disease, which results from under-expression, over-expression or altered spatial or temporal expression of the gene. Individuals carrying mutations in the gene may be detected at the
  • DNA level by a variety of techniques well known in the art.
  • Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material.
  • the genomic DNA may be used directly for detection or it may be amplified enzymatically by using PCR, preferably RT-PCR, or other amplification techniques prior to analysis.
  • RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeled KiaaOOOl nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence difference may also be detected by alterations in the electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct
  • oligonucleotides probes comprising KiaaOOOl polynucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g. , genetic mutations.
  • arrays are preferably high density arrays or grids.
  • Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability, see, for example, M. Chee et al., Science, 274, 610-613 (1996) and other references cited therein. Detection of abnormally decreased or increased levels of polypeptide or mRNA expression may also be used for diagnosing or determining susceptibility of a subject to a disease of the invention.
  • Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, nucleic acid amplification, for instance PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.
  • Assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art.
  • Such assay methods include radio-immunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.
  • the present invention relates to a diagnostic kit comprising: (a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ LD NO: 1 , or a fragment or an RNA transcript thereof;
  • polypeptide of the present invention preferably the polypeptide of SEQ LD NO:2 or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide of SEQ LD
  • kits may comprise a substantial component.
  • a kit will be of use in diagnosing a disease or susceptibility to a disease, particularly diseases of the invention, amongst others.
  • the polynucleotide sequences of the present invention are valuable for chromosome localisation studies.
  • the sequence is specifically targeted to, and can hybridize with, a particular location on an individual human chromosome.
  • the mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data.
  • RH panels are available from Research Genetics (Huntsville, AL, USA) e.g. the GeneB ⁇ dge4 RH panel (Hum Mol Genet 1996 Mar;5(3):339-46 A radiation hyb ⁇ d map of the human genome. Gyapay G, Schmitt K, Fizames C, Jones H, Vega-Czarny N, Spillett D, Muselet D, Prud'Homme JF, Dib C, Auffray C,
  • the polynucleotide sequences of the present invention are also valuable tools for tissue expression studies. Such studies allow the determination of expression patterns of polynucleotides of the present invention which may give an indication as to the expression patterns of the encoded polypeptides in tissues, by detecting the mRNAs that encode them.
  • the techniques used are well known m the art and include in situ hyb ⁇ dization techniques to clones arrayed on a grid, such as cDNA microarray hyb ⁇ dization (Schena et al, Science, 270, 467-470, 1995 and Shalon et al, Genome Res, 6, 639-645, 1996) and nucleotide amplification techniques such as PCR.
  • a preferred method uses the TAQMAN (Trade mark) technology available from Perkin Elmer. Results from these studies can provide an indication of the normal function of the polypeptide in the organism.
  • comparative studies of the normal expression pattern of mRNAs with that of mRNAs encoded by an alternative form of the same gene can provide valuable insights into the role of the polypeptides of the present invention, or that of mapprop ⁇ ate expression thereof in disease.
  • mapprop ⁇ ate expression may be of a temporal, spatial or simply quantitative nature.
  • polypeptides of the present invention are expressed m rat liver and bram.
  • a further aspect of the present invention relates to antibodies.
  • the polypeptides of the invention or their fragments, or cells expressing them, can be used as lmrnunogens to produce antibodies that are lmmunospecific for polypeptides of the present invention.
  • “lmmunospecific” means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the p ⁇ or art.
  • Antibodies generated against polypeptides of the present invention may be obtained by admmiste ⁇ ng the polypeptides or epitope-bea ⁇ ng fragments, or cells to an animal, preferably a non- human animal, using routine protocols For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C, Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al, Immunology Today (1983) 4:72) and the EBV- hybridoma technique (Cole et al, Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).
  • any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C, Nature (1975) 256:495-497), the triom
  • single chain antibodies such as those described in U.S. Patent No. 4,946,778, can also be adapted to produce single chain antibodies to polypeptides of this invention.
  • transgenic mice, or other organisms, including other mammals may be used to express humanized antibodies.
  • the above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography.
  • Antibodies against polypeptides of the present invention may also be employed to treat diseases of the invention, amongst others.
  • polypeptides and polynucleotides of the present invention may also be used as vaccines. Accordingly, in a further aspect, the present invention relates to a method for inducing an immunological response in a mammal that comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response, including, for example, cytokine-producing T cells or cytotoxic T cells, to protect said animal from disease, whether that disease is already established within the individual or not.
  • An immunological response in a mammal may also be induced by a method comprises delivering a polypeptide of the present invention via a vector directing expression of the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases of the invention.
  • One way of administering the vector is by accelerating it into the desired cells as a coating on particles or otherwise.
  • Such nucleic acid vector may comprise DNA, RNA, a modified nucleic acid, or a DNA/RNA hybrid.
  • a polypeptide or a nucleic acid vector will be normally provided as a vaccine formulation (composition).
  • the formulation may further comprise a suitable carrier.
  • a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, subcutaneous, intra-muscular, intravenous, or intra-dermal injection).
  • parenterally for instance, subcutaneous, intra-muscular, intravenous, or intra-dermal injection.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that may contain anti-oxidants, buffers, bacteriostats and solutes that render the formulation isotonic with the blood of the recipient; and aqueous and non- aqueous sterile suspensions that may include suspending agents or thickening agents.
  • the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use.
  • the vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil -in water systems and other systems known
  • Polypeptides of the present invention have one or more biological functions that are of relevance in one or more disease states, m particular the diseases of the invention hereinbefore mentioned. It is therefore useful to identify compounds that stimulate or inhibit the function or level of the polypeptide. Accordingly, m a further aspect, the present invention provides for a method of screening compounds to identify those that stimulate or inhibit the function or level of the polypeptide. Such methods identify agonists or antagonists that may be employed for therapeutic and prophylactic purposes for such diseases of the invention as hereinbefore mentioned. Compounds may be identified from a va ⁇ ety of sources, for example, cells, cell-free preparations, chemical hbra ⁇ es, collections of chemical compounds, and natural product mixtures.
  • Such agonists or antagonists so-identified may be natural or modified substrates, gands, receptors, enzymes, etc., as the case may be, of the polypeptide; a structural or functional mimetic thereof (see Cohgan et al , Current Protocols in Immunology 1(2). Chapter 5 (1991)) or a small molecule
  • Such small molecules preferably have a molecular weight below 2,000 daltons, more preferably between 300 and 1 ,000 daltons, and most preferably between 400 and 700 daltons. It is preferred that these small molecules are organic molecules.
  • the screening method may simply measure the binding of a candidate compound to the polypeptide, or to cells or membranes bea ⁇ ng the polypeptide, or a fusion protein thereof, by means of a label directly or indirectly associated with the candidate compound.
  • the screening method may involve measuring or detecting (qualitatively or quantitatively) the competitive binding of a candidate compound to the polypeptide against a labeled competitor (e g agonist or antagonist). Further, these screening methods may test whether the candidate compound results m a signal generated by activation or inhibition of the polypeptide, using detection systems appropriate to the cells bearing the polypeptide Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed.
  • the screening methods may simply comp ⁇ se the steps of mixing a candidate compound with a solution containing a polypeptide of the present invention, to form a mixture, measu ⁇ ng a KiaaOOOl activity in the mixture, and comparing the KiaaOOOl activity of the mixture to a control mixture which contains no candidate compound.
  • Polypeptides of the present invention may be employed in conventional low capacity screening methods and also in high-throughput screening (HTS) formats
  • HTS formats include not only the well-established use of 96- and, more recently, 384-well micotiter plates but also emerging methods such as the nanowell method described by Schullek et al, Anal Biochem., 246, 20-29, (1997).
  • Fusion proteins such as those made from Fc portion and KiaaOOOl polypeptide, as hereinbefore described, can also be used for high-throughput screening assays to identify antagonists for the polypeptide of the present invention (see D. Bennett et al., J Mol Recognition, 8:52-58 (1995); and K. Johanson et al, J Biol Chem, 270(16):9459-9471 (1995)).
  • One screening technique includes the use of cells which express receptors of this invention (for example, transfected CHO cells) in a system which measures extracellular pH or intracellular calcium changes caused by receptor activation.
  • compounds may be contacted with cells expressing a receptor polypeptide of the present invention.
  • a second messenger response e.g., signal transduction, pH changes, or changes in calcium level, is then measured to determine whether the potential compound activates or inhibits the receptor.
  • Another method involves screening for receptor inhibitors by determining inhibition or stimulation of receptor-mediated cAMP and/or adenylate cyclase accumulation.
  • Such a method involves transfecting a eukaryotic cell with the receptor of this invention to express the receptor on the cell surface. The cell is then exposed to potential antagonists in the presence of the receptor of this invention. The amount of c AMP accumulation is then measured. If the potential antagonist binds the receptor, and thus inhibits receptor binding, the levels of receptor-mediated cAMP, or adenylate cyclase, activity will be reduced or increased.
  • Another method for detecting agonists or antagonists for the receptor of the present invention is the yeast based technology as described in U.S. Patent No. 5,482,835.
  • polypeptides and antibodies to the polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and polypeptide in cells.
  • an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.
  • a polypeptide of the present invention may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, Hgand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, 1 ⁇ 1), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptors, if any. Standard methods for conducting such assays are well understood in the art.
  • antagonists of polypeptides of the present invention include antibodies or, in some cases, oligonucleotides or proteins that are closely related to the ligands, substrates, receptors, enzymes, etc., as the case may be, of the polypeptide, e.g. , a fragment of the ligands, substrates, receptors, enzymes, etc.; or a small molecule that bind to the polypeptide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented.
  • Screening methods may also involve the use of transgenic technology and KiaaOOOl gene.
  • the art of constructing transgenic animals is well established.
  • the KiaaOOOl gene may be introduced through microinjection into the male pronucleus of fertilized oocytes, retroviral transfer into pre- or post-implantation embryos, or injection of genetically modified, such as by electroporation, embryonic stem cells into host blastocysts.
  • Particularly useful transgenic animals are so-called "knock-in” animals in which an animal gene is replaced by the human equivalent within the genome of that animal. Knock-in transgenic animals are useful in the drug discovery process, for target validation, where the compound is specific for the human target.
  • transgenic animals are so-called "knock-out" animals in which the expression of the animal ortholog of a polypeptide of the present invention and encoded by an endogenous DNA sequence in a cell is partially or completely annulled.
  • the gene knock-out may be targeted to specific cells or tissues, may occur only in certain cells or tissues as a consequence of the limitations of the technology, or may occur in all, or substantially all, cells in the animal.
  • Transgenic animal technology also offers a whole animal expression-cloning system in which introduced genes are expressed to give large amounts of polypeptides of the present invention
  • Screening kits for use in the above described methods form a further aspect of the present invention.
  • Such screening kits comprise: (a) a polypeptide of the present invention.
  • Antibodies as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library.
  • Isolated means altered “by the hand of man” from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both.
  • a polynucleotide or a polypeptide naturally present in a living organism is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated”, as the term is employed herein.
  • a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated” even if it is still present in said organism, which organism may be living or non-living.
  • Polynucleotide generally refers to any polyribonucleotide (RNA) or polydeoxribonucleotide (DNA), which may be unmodified or modified RNA or DNA.
  • Polynucleotides include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double- stranded regions.
  • polynucleotide refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons.
  • Modified bases include, for example, tritylated bases and unusual bases such as inosine.
  • polynucleotide embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells.
  • Polynucleotide also embraces relatively short polynucleotides, often referred to as oligonucleotides.
  • Polypeptide refers to any polypeptide comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres.
  • Polypeptide refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids.
  • Polypeptides mclude amino acid sequences modified either by natural processes, such as post-translational processing, or by chemical modification techniques that are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature.
  • Modifications may occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present to the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods.
  • Modifications include acetylation, acylation, ADP-ribosylation, amidation, biotinylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma- carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination (see, for instance, Proteins
  • “Fragment” of a polypeptide sequence refers to a polypeptide sequence that is shorter than the reference sequence but that retains essentially the same biological function or activity as the reference polypeptide. “Fragment” of a polynucleotide sequence refers to a polynucleotide sequence that is shorter than the reference sequence of SEQ LD NO: 1.
  • Variant refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains the essential properties thereof.
  • a typical variant of a polynucleotide differs in nucleotide sequence from the reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below.
  • a typical variant of a polypeptide differs in amino acid sequence from the reference polypeptide.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, insertions, deletions in any combination.
  • a substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Typical conservative substitutions include Gly, Ala; Val, lie, Leu; Asp, Glu; Asn, Gin; Ser, Thr; Lys, Arg; and Phe and Tyr.
  • a variant of a polynucleotide or polypeptide may be naturally occurring such as an allele, or it may be a variant that is not known to occur naturally.
  • Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. Also included as variants are polypeptides having one or more post-translational modifications, for instance glycosylation, phosphorylation, methylation, ADP ribosylation and the like. Embodiments include methylation of the N-terminal amino acid, phosphorylations of serines and threonines and modification of C-terminal glycines.
  • Allele refers to one of two or more alternative forms of a gene occurring at a given locus in the genome.
  • Polymorphism refers to a variation in nucleotide sequence (and encoded polypeptide sequence, if relevant) at a given position in the genome within a population.
  • SNP Single Nucleotide Polymorphism
  • SNPs refers to the occurrence of nucleotide variability at a single nucleotide position in the genome, within a population.
  • An SNP may occur within a gene or within intergenic regions of the genome.
  • SNPs can be assayed using Allele Specific Amplification (ASA).
  • ASA Allele Specific Amplification
  • a common primer is used in reverse complement to the polymorphism being assayed. This common primer can be between 50 and 1500 bps from the polymorphic base.
  • the other two (or more) primers are identical to each other except that the final 3' base wobbles to match one of the two (or more) alleles that make up the polymorphism.
  • Two (or more) PCR reactions are then conducted on sample DNA, each using the common primer and one of the Allele Specific Primers.
  • RNA Variant refers to cDNA molecules produced from RNA molecules initially transcribed from the same genomic DNA sequence but which have undergone alternative RNA splicing.
  • Alternative RNA splicing occurs when a primary RNA transcript undergoes splicing, generally for the removal of introns, which results in the production of more than one mRNA molecule each of that may encode different amino acid sequences.
  • the term splice variant also refers to the proteins encoded by the above cDNA molecules.
  • Identity reflects a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, determined by comparing the sequences. In general, identity refers to an exact nucleotide to nucleotide or amino acid to amino acid correspondence of the two polynucleotide or two polypeptide sequences, respectively, over the length of the sequences being compared.
  • % Identity For sequences where there is not an exact correspondence, a “% identity” may be determined.
  • the two sequences to be compared are aligned to give a maximum correlation between the sequences. This may include inserting "gaps" in either one or both sequences, to enhance the degree of alignment.
  • a % identity may be determined over the whole length of each of the sequences being compared (so-called global alignment), that is particularly suitable for sequences of the same or very similar length, or over shorter, defined lengths (so-called local alignment), that is more suitable for sequences of unequal length.
  • Similarity is a further, more sophisticated measure of the relationship between two polypeptide sequences.
  • similarity means a comparison between the amino acids of two polypeptide chains, on a residue by residue basis, taking into account not only exact correspondences between a between pairs of residues, one from each of the sequences being compared (as for identity) but also, where there is not an exact correspondence, whether, on an evolutionary basis, one residue is a likely substitute for the other. This likelihood has an associated "score" from which the "% similarity" of the two sequences can then be determined.
  • GAP aligns two sequences, finding a "maximum similarity", according to the algorithm of Neddleman and Wunsch (J Mol Biol, 48, 443-453, 1970). GAP is more suited to comparing sequences that are approximately the same length and an alignment is expected over the entire length.
  • the parameters "Gap Weight” and “Length Weight” used in each program are 50 and 3, for polynucleotide sequences and 12 and 4 for polypeptide sequences, respectively.
  • % identities and similarities are determined when the two sequences being compared are optimally aligned.
  • NCBI National Center for Biotechnology Information
  • NCBI National Center for Biotechnology Information
  • FASTA Pearson W R and Lipman D J, Proc Nat Acad Sci USA, 85, 2444-2448,1988, available as part of the Wisconsin Sequence Analysis Package
  • BLOSUM62 amino acid substitution matrix Henikoff S and Henikoff J G, Proc. Nat. Acad Sci. USA, 89, 10915-10919, 1992
  • the program BESTFIT is used to determine the % identity of a query polynucleotide or a polypeptide sequence with respect to a reference polynucleotide or a polypeptide sequence, the query and the reference sequence being optimally aligned and the parameters of the program set at the default value, as hereinbefore described.
  • Identity Index is a measure of sequence relatedness which may be used to compare a candidate sequence (polynucleotide or polypeptide) and a reference sequence.
  • a candidate polynucleotide sequence having, for example, an Identity Index of 0.95 compared to a reference polynucleotide sequence is identical to the reference sequence except that the candidate polynucleotide sequence may include on average up to five differences per each 100 nucleotides of the reference sequence. Such differences are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion.
  • a candidate polypeptide sequence having, for example, an Identity Index of 0.95 compared to a reference polypeptide sequence is identical to the reference sequence except that the polypeptide sequence may include an average of up to five differences per each 100 amino acids of the reference sequence. Such differences are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non- conservative substitution, or insertion. These differences may occur at the amino- or carboxy- terminal positions of the reference polypeptide sequence or anywhere between these terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence.
  • an average of up to 5 in every 100 of the amino acids in the reference sequence may be deleted, substituted or inserted, or any combination thereof, as hereinbefore described.
  • n a is the number of nucleotide or amino acid differences
  • x a is the total number of nucleotides or amino acids in SEQ LD NO:l or SEQ LD NO:2, respectively
  • is the symbol for the multiplication operator, and in which any non-integer product of x a and I is rounded down to the nearest integer prior to subtracting it from x a .
  • “Homolog” is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a reference sequence. Such relatedness may be quantified by determining the degree of identity and/or similarity between the two sequences as hereinbefore defined. Falling within this generic term are the terms “ortholog”, and “paralog”. "Ortholog” refers to a polynucleotide or polypeptide that is the functional equivalent of the polynucleotide or polypeptide in another species. "Paralog” refers to a polynucleotideor polypeptide that within the same species which is functionally similar.
  • Fusion protein refers to a protein encoded by two, often unrelated, fused genes or fragments thereof.
  • EP-A-0 464 533-A discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof.
  • employing an immunoglobulin Fc region as a part of a fusion protein is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties [see, e.g., EP-A 0232 262].
  • the receptors of the present invention are expressed in either human embryonic kidney 293 (HEK293) cells or adherent dhfr CHO cells.
  • HEK293 human embryonic kidney 293
  • adherent dhfr CHO cells typically all 5' and 3' untranslated regions (UTRs) are removed from the receptor cDNA prior to insertion into a pCDN or pCDNA3 vector.
  • the cells are transfected with individual receptor cDNAs by lipofectin and selected in the presence of 400 mg/ml G418. After 3 weeks of selection, individual clones are picked and expanded for further analysis.
  • HEK293 or CHO cells transfected with the vector alone serve as negative controls.
  • To isolate cell lines stably expressing the individual receptors about 24 clones are typically selected and analyzed by Northern blot analysis. Receptor mRNAs are generally detectable in about 50% of the G418-resistant clones analyzed.
  • Example 2 Ligand bank for binding and functional assay
  • a bank of over 600 putative receptor ligands has been assembled for screening.
  • the bank comprises: transmitters, hormones and chemokines known to act via a human seven transmembrane (7TM) receptor; naturally occurring compounds which may be putative agonists for a human 7TM receptor, non-mammalian, biologically active peptides for which a mammalian counterpart has not yet been identified; and compounds not found in nature, but which activate 7TM receptors with unknown natural ligands.
  • This bank is used to initially screen the receptor for known ligands, using both functional (i.e . calcium, cAMP, microphysiometer, oocyte electrophysiology, etc, see below) as well as binding assays.
  • Ligand binding assays provide a direct method for ascertaining receptor pharmacology and are adaptable to a high throughput format.
  • the purified ligand for a receptor is radiolabeled to high specific activity (50-2000 Ci/mmol) for binding studies. A determination is then made that the process of radiolabeling does not diminish the activity of the ligand towards its receptor.
  • Assay conditions for buffers, ions, pH and other modulators such as nucleotides are optimized to establish a workable signal to noise ratio for both membrane and whole cell receptor sources.
  • specific receptor binding is defined as total associated radioactivity minus the radioactivity measured in the presence of an excess of unlabeled competing ligand. Where possible, more than one competing ligand is used to define residual nonspecific binding.
  • RNA transcripts from linearized plasmid templates encoding the receptor cDNAs of the invention are synthesized in vitro with RNA polymerases in accordance with standard procedures. In vitro transcripts are suspended in water at a final concentration of 0.2 mg/ml. Ovarian lobes are removed from adult female toads, Stage V defolliculated oocytes are obtained, and RNA transcripts (10 ng/oocyte) are injected in a 50 nl bolus using a microinjection apparatus. Two electrode voltage clamps are used to measure the currents from individual Xenopus oocytes in response to agonist exposure. Recordings are made in Ca2+ free Barth's medium at room temperature.
  • the Xenopus system can be used to screen known ligands and tissue/cell extracts for activating ligands.
  • Example 5 Microphysiometric Assays Activation of a wide variety of secondary messenger systems results in extrusion of small amounts of acid from a cell. The acid formed is largely as a result of the increased metabolic activity required to fuel the intracellular signalling process. The pH changes in the media surrounding the cell are very small but are detectable by the CYTOSENSOR microphysiometer (Molecular Devices Ltd., Menlo Park, CA). The CYTOSENSOR is thus capable of detecting the activation of a receptor that is coupled to an energy utilising intracellular signalling pathway such as the G-protein coupled receptor of the present invention.
  • Example 6 Extract/Cell Supernatant Screening
  • the 7TM receptor of the invention is also functionally screened (using calcium, cAMP, microphysiometer, oocyte electrophysiology, etc., functional screens) against tissue extracts to identify natural ligands. Extracts that produce positive functional responses can be sequentially subfractionated until an activating ligand is isolated and identified.
  • Example 7 Calcium and cAMP Functional Assays
  • HEK 293 cells which are expressed in HEK 293 cells have been shown to be coupled functionally to activation of PLC and calcium mobilization and/or cAMP stimulation or inhibition.
  • Basal calcium levels in the HEK 293 cells in receptor-transfected or vector control cells were observed to be in the normal, 100 nM to 200 nM, range.
  • HEK 293 cells expressing recombinant receptors are loaded with fura 2 and in a single day > 150 selected ligands or tissue/cell extracts are evaluated for agonist induced calcium mobilization.
  • HEK 293 cells expressing recombinant receptors are evaluated for the stimulation or inhibition of cAMP production using standard cAMP quantitation assays.
  • Agonists presenting a calcium transient or cAMP fluctuation are tested in vector control cells to determine if the response is unique to the transfected cells expressing receptor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne des polypeptides et des polynucléotides Kiaa0001 ainsi que des procédés permettant de produire ces polypeptides par des techniques recombinantes. Font aussi l'objet de cette invention des procédés d'utilisation des polypeptides et des polynucléotides Kiaa0001 dans des tests diagnostiques.
PCT/US2000/008918 1999-04-05 2000-04-04 Gene rat kiaa0001 WO2000060104A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12777699P 1999-04-05 1999-04-05
US60/127,776 1999-04-05
US53135800A 2000-03-21 2000-03-21
US09/531,358 2000-03-21

Publications (1)

Publication Number Publication Date
WO2000060104A1 true WO2000060104A1 (fr) 2000-10-12

Family

ID=26825962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/008918 WO2000060104A1 (fr) 1999-04-05 2000-04-04 Gene rat kiaa0001

Country Status (1)

Country Link
WO (1) WO2000060104A1 (fr)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE GENEMBL 2 October 1997 (1997-10-02), CHARLTON ET AL.: "The isolation and characterization of a novel G protein-coupled receptor regulated by immunologic challenge" *
DATABASE SWISSPROT_38 15 July 1998 (1998-07-15), CHARLTON ET AL.: "Probable G protein-coupled receptor VTR 15-20" *
NOMURA ET AL.: "Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1", DNA RES., vol. 1, 1994, pages 27 - 35, XP002931201 *

Similar Documents

Publication Publication Date Title
WO2001014577A1 (fr) Clonage moleculaire d'une galanine comme recepteur 7tm (axor40)
WO2001016159A1 (fr) Gpcr, ant
WO2001012673A1 (fr) Polypeptides pgpcr-3 et leurs sequences d'adn
WO2001032864A2 (fr) Nouveaux polypeptides de type gpcr_kd5 et sequences d'adn correspondantes
EP1194551A1 (fr) Recepteur couple a la proteine g et ses sequences d'adn
WO2001053308A1 (fr) Clonage d'un recepteur 7tm d'un singe (axor8)
WO2000064942A1 (fr) Axor-27, recepteur couple a une proteine g
EP1226247A1 (fr) Polypeptides du type gp27 et leurs sequences d'adn
AU2001281836B2 (en) A g-protein coupled receptor
AU2001283930B2 (en) Novel g-protein coupled receptor
US20050054034A1 (en) Thyrotropin-releasing hormone receptor-like gpcr(gprfwki)
WO2001094580A1 (fr) Nouveau recepteur couple a la proteine g
WO2001053337A1 (fr) Recepteur humain axor33 7 fois transmembranaire
WO2001064836A2 (fr) Clonage d'un variant de gpr38
GB2367295A (en) AXOR69 polypeptides and polynucleotides
US20060154244A1 (en) Novel g-protein coupled receptor
WO2001025280A1 (fr) Paul, recepteur couple a une proteine g
GB2365009A (en) AXOR polypeptides and polynucleotides
WO2001068665A1 (fr) Variant-1 du gene h3 de l'histamine humaine
EP1232265A2 (fr) Recepteur htogh35 couple a la proteine g
GB2367822A (en) CD97 polypeptides
GB2368065A (en) AXOR52, a NPY-like G protein coupled receptor
WO2000060104A1 (fr) Gene rat kiaa0001
WO2001016177A1 (fr) Recepteurs couples par la proteine g ou recepteurs a 7 regions transmembranaires de souris ou canoman
AU2001295566A1 (en) G-protein coupled receptor HFRBN63

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09868247

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP