WO2000059018A1 - Plasma processing system - Google Patents

Plasma processing system Download PDF

Info

Publication number
WO2000059018A1
WO2000059018A1 PCT/JP2000/002003 JP0002003W WO0059018A1 WO 2000059018 A1 WO2000059018 A1 WO 2000059018A1 JP 0002003 W JP0002003 W JP 0002003W WO 0059018 A1 WO0059018 A1 WO 0059018A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
plasma
processing apparatus
plasma processing
lower electrode
Prior art date
Application number
PCT/JP2000/002003
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Kubota
Atsushi Kawabata
Shigeki Tozawa
Hiraku Ishikawa
Haruhito Nishibe
Original Assignee
Tokyo Electron Limited
Semiconductor Leading Edge Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Semiconductor Leading Edge Technologies, Inc. filed Critical Tokyo Electron Limited
Publication of WO2000059018A1 publication Critical patent/WO2000059018A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a plasma processing apparatus for performing a plasma process such as an etching process or a film forming process on a processing target such as a semiconductor wafer.
  • plasma processing such as dry etching and plasma CVD (Chemical Vapor Deposition) is frequently used.
  • FIG. 7 As an apparatus for performing such plasma processing, for example, an apparatus shown in FIG. 7 is used.
  • reference numeral 1 denotes a grounded chamber.
  • a lower electrode 2 for horizontally supporting a semiconductor wafer W to be processed is provided in the chamber 1.
  • the lower electrode 2 is placed on a metal support 4 via an insulating member 3.
  • the lower electrode 2 and the support 4 can be moved up and down by an elevating mechanism (not shown).
  • a baffle plate 5 for gas diffusion is provided outside the support 4, a baffle plate 5 for gas diffusion is provided.
  • the lower central part of the support 4 is covered with bellows 6. This bellows 6 separates the vacuum part from the atmospheric part.
  • a bellows cover 7 composed of a lower member 7a and an upper member 7b is provided outside the bellows 6.
  • a high-frequency power supply 11 provided below the chamber 11 is connected to the lower electrode 2 via a matching box 10 and a power supply rod 8.
  • a metal grounding pipe 9 extending downward from the support 4 is provided around the power supply rod 8.
  • a slide contact 26 is provided between the ground pipe 9 and the chamber 11 so as to establish conduction between them.
  • the slide contact 26 has a large number of resilient contacts on its inner periphery, and even if the ground pipe 9 slides in the slide contact 26, the ground pipe 9 and the slide contact 26, that is, a stable electrical connection with the chamber 11 can be obtained.
  • a coolant passage 13 is formed in the lower electrode 2, and the coolant flows through the coolant supply pipe 14. It's swelling.
  • a shower head 16 is provided on the top wall of the chamber 11 so as to face the lower electrode 2.
  • the processing gas introduced from the gas introduction unit 18 is discharged toward the semiconductor wafer W from a number of gas discharge holes 17 provided on the lower surface.
  • Reference numeral 22 denotes a transfer port for loading and unloading the semiconductor wafer W that can be opened and closed by the gate valve 23.
  • Reference numeral 24 denotes an exhaust port for evacuating the inside of the chamber 11.
  • the semiconductor wafer W is transferred from the transfer port 22 to the lower electrode 2 located at the transfer position.
  • the lower electrode 2 is raised by the lifting mechanism, and the semiconductor wafer W is arranged at the processing position.
  • the semiconductor wafer W is suction-held on the lower electrode 2 by an electrostatic chuck (not shown).
  • the inside of the chamber 11 is maintained at a predetermined degree of vacuum through the exhaust port 24, and a predetermined processing gas is introduced into the chamber 11 from the shower head 16. Further, a high frequency is applied from the high frequency power supply 11 to the lower electrode 2 via the matching box 10 and the power supply rod 8 to generate plasma, and the semiconductor wafer W is subjected to predetermined plasma processing.
  • the return current of the high-frequency current applied to the lower electrode 2 from the high-frequency power supply 11 changes the inner wall of the chamber 11 according to the arrow in the figure.
  • the bottom wall of the chamber 11 and the bellows cover 7 and the bellows 6 are screwed and electrically connected to each other. Therefore, the return current flows from the bottom wall of the chamber 1 to the surface of the lower member 7 a of the bellows force bar 7, the outer surface of the bellows 6, the surface of the upper member 7 b of the bellows cover 7, the surface of the support 4, and the ground pipe.
  • the high frequency power supply 11 through the inside of 9. Since the contact impedance between the slide contact 26 and the ground pipe 9 is higher than the impedance of the current path near the bellows 6, the current flowing through the slide contact 26 is small.
  • the present invention has been made in view of such circumstances, and has as its object to provide a plasma processing apparatus in which abnormal discharge due to a high-frequency current return current is unlikely to occur. It is another object of the present invention to provide a plasma processing apparatus capable of detecting an abnormal state of plasma such as abnormal discharge during plasma processing. Summary of the invention
  • a chamber whose inside can be maintained in a vacuum state
  • An exhaust mechanism that evacuates the chamber.
  • a lower electrode disposed in the chamber and supporting the object to be processed
  • An upper electrode provided to face the lower electrode
  • a high-frequency power supply provided outside the chamber,
  • a recurrent current circuit which returns from the plasma of the processing gas formed between the upper electrode and the lower electrode by the high frequency power applied to the lower electrode via the power supply member to the high frequency power through at least the inner wall of the chamber.
  • Impedance adjustment means for adjusting the impedance;
  • a capacitor having a variable capacity can be provided as the impedance adjusting means.
  • the impedance can be easily adjusted to the optimum value by adjusting the capacitance of the capacitor.
  • the capacitor By controlling the impedance by adjusting the capacitance, it is possible to adjust the error between the return current circuits (eg, manufacturing error). Even if the impedance changes over time due to long-term use of the device, it can be adjusted to an appropriate value by adjusting the capacitor capacity.
  • the plasma apparatus further includes a detector for detecting plasma emission in an area inside the chamber where plasma emission is not substantially observed when the plasma processing apparatus is in a normal state; and a detector for the capacitor according to an output of the detector. It is preferable to add control means for adjusting the capacity. In this case, when the detector detects the plasma emission due to the abnormal discharge, the capacitor can be adjusted to adjust the capacitance and eliminate the abnormal discharge, and the impedance of the return current circuit can be adjusted in real time so that abnormal discharge does not occur. Value can be controlled.
  • the apparatus further comprises a lifting mechanism for raising and lowering the lower electrode in the chamber.
  • the elevating mechanism has a driving unit extending below the lower electrode, and is provided between the lower surface of the lower electrode and a bottom surface in the chamber so as to be extendable and contractible.
  • the power supply member is a bar member that forms a part of the drive unit. Further, preferably, a grounding pipe forming a part of the driving unit is provided around the power supply member.
  • a slide contact is provided between the bottom wall of the chamber and the grounding pipe to realize sliding between the two and stable electrical conduction.
  • the impedance adjusting means shunts the return current returning to the high-frequency power supply at least through the inner wall of the chamber to the bellows side and the ground pipe side, and adjusts the impedance of the return current circuits. It is preferable that
  • the impedance adjusting means divides the return current returning from the plasma to the high-frequency power source from the inner wall of the chamber to the bellows and the ground pipe,
  • the impedance adjusting means divides the return current returning from the plasma to the high-frequency power source from the inner wall of the chamber to the bellows and the ground pipe,
  • the impedance adjusting means a means having a capacitor of a predetermined capacity provided between the bottom wall of the chamber and the bellows is preferable.
  • an insulating member is interposed between the bottom wall of the chamber and the bellows.
  • the insulating member polyetheretherketone or polyimide is preferable. Since these materials have high load-bearing capacity and low dielectric constant, they can have a thickness of, for example, about 5 mm, which is sufficiently lower than the capacity of a single capacitor. As a result, the capacitance can be adjusted with only one capacitor.
  • the capacity of the capacitor one can be easily adjusted to an optimum value. Then, as in the case described above, by adjusting the capacitance of the capacitor and controlling the impedance, it becomes possible to adjust an error between devices (such as a manufacturing error) of the return current circuit. Even if the impedance changes over time due to long-term use of the device, it can be adjusted to an appropriate value by adjusting the capacitance of one capacitor.
  • Plasma generating means for converting a processing gas into plasma in order to perform plasma processing on the object to be processed
  • a detector for detecting plasma emission in an area inside the chamber such that plasma emission is not substantially observed when the plasma processing apparatus is in a normal state As described above, by providing the detector for detecting the plasma light emission in the region inside the chamber where the plasma light emission is not substantially observed when the plasma processing apparatus is in the normal state, the detector can prevent the abnormal discharge in the chamber one. At the time when the accompanying plasma emission is detected, it is possible to take appropriate measures to eliminate the abnormal discharge, thereby reducing the adverse effect on the processing of the object.
  • FIG. 1 is a sectional view showing a plasma processing apparatus according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an impedance adjustment mechanism in the device of FIG.
  • FIG. 3 is a diagram showing a condenser-mounting portion on the bottom wall of the chamber in the apparatus of FIG.
  • FIG. 4 is a diagram showing the relationship between the thickness of the insulating member used in the impedance adjusting mechanism of FIG. 1 and the capacitance.
  • FIG. 5 is a circuit diagram showing an equivalent circuit of the plasma processing apparatus of the present invention.
  • FIG. 6 is a cross-sectional view showing a main part of a plasma processing apparatus according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a conventional plasma processing apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a sectional view showing a plasma processing apparatus according to one embodiment of the present invention.
  • reference numeral 1 denotes a conductive chamber made of, for example, aluminum whose surface is anodized. This chamber 11 is grounded.
  • a lower electrode 2 for horizontally supporting a semiconductor wafer W as an object to be processed is provided in the chamber 11.
  • the lower electrode 2 is made of a conductor such as aluminum, and is placed on a support 4 made of a conductor such as aluminum via an insulating member 3.
  • a disk-shaped gas diffusion baffle plate 5 having a large number of gas passage holes is provided on the outer peripheral side of the support base 4.
  • the baffle plate 5 is made of a conductor such as aluminum, and is screwed to the support 4 to be electrically connected thereto.
  • the lower electrode 2 has a semiconductor An electrostatic chuck (not shown) for holding the wafer W by suction is provided.
  • the lower central portion of the support 4 is covered with a bellows 6 made of, for example, stainless steel.
  • This bellows 6 separates the vacuum part from the atmospheric part.
  • the upper end and the lower end of the bellows 6 are screwed to the lower surface of the support 4 and the upper surface of the bottom wall of the chamber 11, respectively.
  • a bellows cover 7 is provided outside the bellows 6.
  • the bellows cover 7 is separated into a lower member 7a and an upper member 7b so as to be able to cope with expansion and contraction of the bellows 6.
  • a high-frequency power supply 11 provided below the chamber 11 is connected to the lower electrode 2 via a matching box 10 and a power supply rod 8.
  • a metal ground pipe 9 extending downward from the support 4 is provided.
  • the lower electrode 2 is formed with a refrigerant flow path 13, through which the refrigerant flows through a refrigerant supply pipe 14. Although not shown, the lower electrode 2 is provided with lift pins that can be protruded and retracted in order to transfer the semiconductor wafer W.
  • a shower head 16 functioning as an upper electrode facing the lower electrode 2 is provided on the top wall 1 a of the chamber 11.
  • a large number of discharge holes 17 are formed on the lower surface of the shower head 16.
  • a gas inlet 18 is provided above the shower head 16.
  • a processing gas supply source 20 for supplying a predetermined processing gas into the chamber 11 through the shower head 16 is connected to the gas inlet 18. Then, a processing gas is supplied into the chamber 11, and a high-frequency power is applied to the lower electrode 2, whereby plasma is formed between the lower electrode 2 and the shower bed 16, and a predetermined amount is formed on the semiconductor wafer W. The plasma processing is performed.
  • a transfer port 22 for loading and unloading the semiconductor wafer W is provided on the side wall 1 b of the chamber 1 so as to be opened and closed by a gate valve 23.
  • the lower electrode 2 When loading and unloading the semiconductor wafer W, the lower electrode 2 is moved to a position corresponding to the transfer boat 22. At this time, the lower electrode 2 is moved integrally with the insulating member 3 and the support base 4 by a lifting mechanism (not shown).
  • -An exhaust port 24 is provided near the bottom of the side wall 1b of the chamber 11.
  • An exhaust device 25 is connected to the exhaust port 24 via a pipe. Soshi By operating the exhaust device 25, the inside of the chamber 11 can be evacuated to a predetermined degree of vacuum.
  • a slide contact 26 is provided between the ground pipe 9 and the bottom wall 1c of the chamber 11 so as to establish electrical continuity therebetween.
  • the slide connector 26 has a large number of resilient contacts on its inner periphery, and even if the ground pipe 9 slides in the slide contact 26 (the lower part). Even if the electrode 2 moves up and down), stable electrical continuity between the grounding pipe 9 and the slide contact 26, that is, the chamber 11 can be obtained.
  • the plasma passes through the chamber 1, passes through the support 4 and the inside of the grounding pipe 9, and returns to the high-frequency power supply 1 1.
  • An impedance adjustment mechanism 30 for adjusting the impedance of the circuit is provided.
  • the impedance adjusting mechanism 30 includes an insulating member 31 interposed between the bottom wall 1 c of the chamber 11 and the support 6 a of the bellows 6, and a bottom of the chamber 11.
  • the support base 6a made of stainless steel is screwed by screws 33 with an insulating member 31 interposed between the support base 6a and the bottom wall 1c of the chamber 11.
  • the insulating member 31 is used to insulate the bottom wall 1c of the chamber 11 from the support 6a of the bellows 6, and has a large withstand load and a small dielectric constant.
  • a material polyetheretherketone (PEEK) or polyimide is preferable.
  • the capacitor 132 adjusts the voltage applied to the bellows 6 to reduce the impedance of the return current circuit.
  • the capacitor 32 can adjust the voltage applied to the bellows 6 to a voltage value at which abnormal discharge does not occur around the support 4.
  • the condenser 32 distributes the return current of the bottom wall 1 c of the chamber 1 to the bellows 6 side and the slide contact 26 side. It has the function of lowering the impedance of the entire return current circuit (the required capacity of the capacitor 32 is different depending on the setting of the device, for example, about 120 OO pF.
  • the required capacity of the capacitor 32 is different depending on the setting of the device, for example, about 120 OO pF.
  • a plurality of capacitors 1 may be used, and for this purpose, a plurality of capacitor mounting portions 35 may be provided on the bottom wall 1c of the chamber 11 as shown in FIG. In order to obtain a capacity of 0 PF, two capacitors of 5000 pF and two capacitors of l OOO pF may be attached to the four attachment portions 35.
  • the bottom wall 1c of the chamber 11 and the support 6a of the bellows 6 are both conductors. Therefore, a kind of capacitor is formed by interposing the insulating member 31 between them.
  • the insulating member 31 relatively thick using a resin having a low dielectric constant, the capacitance of the insulating member 31 as a capacitor can be ignored. That is, the capacity can be adjusted only by the attached capacitor 132.
  • the relationship between the thickness and the capacitance is as shown in FIG. As shown in FIG. 4, for example, when the thickness is set to 5 mm, the capacitance is about 400 pF. This value is negligible compared to the capacitance of the capacitor 132 of 1200 pF.
  • the lower electrode 2 is arranged at the transfer position by a lifting mechanism (not shown).
  • the gate valve 23 is opened, and the semiconductor wafer W is carried into the chamber 11 via the transfer port 22 by a transfer arm or the like (not shown) and placed on the lower electrode 2.
  • the semiconductor wafer W is sucked and held on the lower electrode 2 by an electrostatic chuck (not shown).
  • the lower electrode 2 is raised by the elevating mechanism, and is positioned so that the gap between the lower electrode 2 and the shower head 16 becomes a predetermined distance.
  • the coolant flows through the coolant channel 13 and the lower electrode 2 is controlled to a predetermined temperature.
  • the interior of the chamber 11 is evacuated by the exhaust device 25 through the exhaust port 24 to be in a high vacuum state.
  • a predetermined processing gas is supplied from the processing gas supply source 20 through the processing gas inlet 18 and the gas discharge hole 17 of the shower head 16 forming the top wall of the conductive container 15,
  • the liquid is discharged toward the semiconductor wafer W, and the inside of the chamber 11 is set to several tens of mTorr.
  • high-frequency power of a predetermined frequency and voltage is applied to the lower electrode 2 from the high-frequency power supply 11 via the matching box 10 and the power supply rod 8.
  • plasma of the processing gas is generated in the space between the lower electrode 2 and the shower head 16.
  • a predetermined plasma process is performed on the semiconductor wafer W.
  • the return current returning from the plasma to the high-frequency power supply 11 is diverted to the bellows 6 side and the slide contact 26 side.
  • the high-frequency power from the high-frequency power supply (RF power supply) 11 is supplied to the lower electrode 2 via the matching box 10 and the power supply rod 8, and forms plasma.
  • the return current from the plasma reaches the bellows 6 via the top wall la, the side wall 1 b and the bottom wall 1 c of the chamber 1.
  • the capacitance C h between the capacitor one 3 2 forces the bottom wall 1 c preparative bellows 6 of Inpi one dance adjusting mechanism 3 0, the current I p of the bottom wall lc, the bellows side of the current lb And the current on the slide contact side.
  • the return current Ib on the bellows side returns to the high-frequency power supply 11 through the outside of the bellows 6, the surface of the support 4, and the inside of the grounding pipe 9.
  • the return current I c on the slide contact side returns to the high-frequency power supply 11 through the outside of the grounding pipe 9, the surface of the support 4, and the inside of the grounding pipe 9.
  • the current IP Is divided into a current I on the bellows side and a current Ie on the slide contact side, thereby reducing the impedance of the entire return current circuit.
  • Both V,, and v w can be made lower than before. Therefore, abnormal discharge does not occur in the portion between the lower member 7a and the upper member 7b of the bellows cover 7 and in the peripheral portion of the support 4, so that plasma leakage can be prevented, and the semiconductor can be prevented from leaking.
  • the plasma density on the wafer W is unlikely to decrease.
  • the reaction product does not accumulate on the periphery of the support base 4 and the lower portion of the side wall 1b of the chamber, and the generation of particles due to the separation can be prevented.
  • the gap between the lower electrode 2 and the shear head 16 (gap between the upper and lower electrodes) was set to 40 mm, and the inside of the chamber 11 was set.
  • the processing gas is introduced into the chamber, the internal pressure of the chamber is set to 5 OmTorr, and a high-frequency power supply of 11 W to 43.5 W is supplied from the high-frequency power supply of 11 to 3.6 W.
  • Plasma was generated by variously changing the capacitance of a plurality of 30 capacitors 13 and the plasma state was visually observed. As a result, it was confirmed that no abnormal discharge or plasma leakage occurred when the total capacity of the capacitor 132 was set to 1200 pF.
  • the value of the present invention is not to minimize the impedance of the return current circuit, but to visually check the light emission state of the plasma, and to set the capacitor 32 so that there is no abnormal discharge or plasma leakage.
  • the value can be set to the optimum value, that is, the impedance of the return current circuit of high frequency power can be adjusted. The point is that.
  • the example in which the capacity of the capacitor is fixed has been described, but it is also possible to use a capacitor having a variable capacity (a variable capacitor).
  • the impedance of the return current circuit can be more easily controlled to the optimum value.
  • an error between devices (such as a manufacturing error) of the return current circuit can be adjusted.
  • the impedance can be adjusted to an appropriate value by adjusting the capacitor and capacitance.
  • FIG. 6 is a cross-sectional view showing a main part of a plasma processing apparatus capable of controlling the impedance of a return current circuit using a variable capacitor. 6, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
  • a variable capacitor is provided in place of the capacitor 32 in FIG.
  • One terminal of the variable capacitor 40 is connected to the support 6 a of the bellows 6, and the other terminal is connected to the bottom wall 1 c of the chamber 11.
  • the shaft 40a of the variable capacitor 140 is connected to a drive mechanism 44 composed of, for example, a stepping motor. Then, for example, the capacity of the variable capacitor 40 can be changed by rotating the stepping motor.
  • a plasma detection window 41 made of, for example, quartz is provided below the side wall 1 b of the chamber 11.
  • a photodetector 42 for detecting light from plasma passing through the detection window 41 is provided near the outside of the plasma detection window 41. Since the detection window 41 is provided below the side wall 1 b of the chamber 11, the photodetector 42 does not generate plasma emission if the plasma processing apparatus is in a normal state or does not generate plasma emission.
  • the system detects plasma emission in an area inside the chamber where only weak emission occurs. In such a region, strong plasma emission is generated only when an abnormal discharge occurs substantially. Therefore, the detector 42 detects the plasma emission only when an abnormal discharge occurs substantially.
  • the detector 42 is connected to a control device 43, which controls the drive mechanism 44 of the variable condenser 40.
  • the detector 42 when the plasma device is operating normally, the detector 42 does not substantially detect the emission of plasma, but when an abnormal discharge occurs, the plasma associated therewith is not detected. Is detected. Then, a signal from the photodetector 42 is sent to the control device 43, and a control signal is output from the control device 43 to the drive mechanism 44 in accordance with the degree of abnormal discharge, that is, the intensity of plasma emission. The capacity of the variable capacitor 140 is adjusted.
  • the control device 43 may monitor the output of the photodetector 42 and output a signal to an alarm device (not shown) to generate an alarm when abnormal discharge is detected.
  • the control signal from the controller 43 to the drive mechanism 44 adjusts the capacity of the capacitor 140, so that Abnormal discharge can be eliminated. That is, the impedance of the return current circuit can be controlled in real time to an appropriate value that does not cause abnormal discharge.
  • the device configuration to which the present invention is applied is not limited to the above-described embodiment, but may be applied to any device of a type in which high frequency is applied to the lower electrode and the lower electrode is movable.
  • the present invention is applicable to various processes such as etching and CVD film formation, regardless of the processing form, as long as a plasma is generated by applying a high frequency and the object to be processed is processed by the plasma. be able to.
  • the object to be processed is not limited to a semiconductor wafer, but may be another object such as a glass substrate of a liquid crystal display device.
  • the impedance adjusting means for adjusting the impedance of the return current circuit returning from the plasma to the high-frequency power supply through at least the inner wall of the chamber and the bellows is provided, and the impedance of the return current circuit is optimized.
  • the potential difference between the bellows ends and the potential difference between the chamber and the inner wall and the high-frequency ground can be reduced by setting the value of the bellows.
  • the impedance adjusting means diverts the return current returning from the plasma to the high-frequency power source from the inner wall of the chamber to the bellows and the grounding pipe, thereby lowering the impedance of the return current circuit. Therefore, the potential difference between both ends of the bellows and the potential difference between the inner wall of the chamber and the high-frequency ground portion can be reduced.As a result, abnormal discharge around the lower electrode and plasma leakage can be reduced. it can.
  • Such impedance adjustment can be easily realized by providing a capacitor between the bottom wall of the chamber and the bellows and adjusting the capacitance.
  • the impedance can be easily adjusted to an optimum value.
  • the capacitance of the capacitor and controlling the impedance in this manner it is possible to adjust the error between the return current circuits (such as a manufacturing error). Even if the impedance changes over time due to long-term use of the device, it can be adjusted to an appropriate value by adjusting the capacitance of the capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A plasma processing system comprises a chamber capable of maintaining a vacuum inside, a discharge unit for evacuating the chamber, a gas supply unit for supplying process gas to the chamber, a lower electrode arranged in the chamber and adapted to support an object to be processed, and an upper electrode arranged opposite to the lower electrode. Outside the chamber is provided a high-frequency power supply, from which a power feeder extends to the lower electrode. Impedance adjustment means adjusts the impedance of a return current path that extends from the plasma of the process gas produced between the upper electrode and the lower electrode energized through the feeder by the high-frequency power supply back to the high-frequency power supply through the inner wall of the chamber.

Description

明 細 書 プラズマ処理装置 技 術 分 野  Description Plasma processing equipment Technical field
本発明は、 半導体ウェハ等の被処理体に対して、 エッチング処理や成膜処理等 のプラズマ処理を行うブラズマ処理装置に関する。 背 景 技 術  The present invention relates to a plasma processing apparatus for performing a plasma process such as an etching process or a film forming process on a processing target such as a semiconductor wafer. Background technology
半導体デバイスの製造においては、 ドライエッチングやプラズマ C V D (Chemi cal Vapor Depos i t i on) 等のプラズマ処理が多用されている。  In the manufacture of semiconductor devices, plasma processing such as dry etching and plasma CVD (Chemical Vapor Deposition) is frequently used.
このようなプラズマ処理を行う装置として、 例えば、 図 7に示すようなものが 用いられている。 図 7中、 参照符号 1は接地されたチャンバ一を示す。 このチヤ ンバ一 1内には、 被処理体である半導体ウェハ Wを水平に支持するための下部電 極 2が設けられている。 下部電極 2は、 絶縁部材 3を介して金属製の支持台 4に 載置されている。 そして、 下部電極 2と支持台 4とは、 図示しない昇降機構によ り昇降可能となっている。 支持台 4の外側には、 ガス拡散用のバッフル板 5が設 けられている。 支持台 4の下方中央の大気部分は、 ベローズ 6で覆われている。 このべローズ 6は、 真空部分と大気部分とを分離している。 ベローズ 6の外側に は、 下部材 7 aと上部材 7 bとからなるベロ一ズカバ一 7が設けられている。 下部電極 2には、 チャンバ一 1の下方に設けられた高周波電源 1 1が、 整合器 1 0及び給電棒 8を介して接続されている。 給電棒 8の周囲には、 支持台 4から 下方に延びる金属製の接地パイプ 9が設けられている。 接地パイプ 9とチャンバ 一 1との間には、 これらの間の導通をとるようにスライドコンタクト 2 6が設け られている。 この場合、 スライドコンタクト 2 6は、 そのの内周に多数の弾力性 を有する接触子を有しており、 スライドコンタクト 2 6内を接地パイプ 9が摺動 しても、 接地パイプ 9とスライドコンタクト 2 6すなわちチャンバ一 1との間の 安定した電気的導通を得ることができるようになつている。 また、 下部電極 2に は冷媒通路 1 3が形成されており、 冷媒供給管 1 4を介して冷媒が通流されるよ うになつている。 As an apparatus for performing such plasma processing, for example, an apparatus shown in FIG. 7 is used. In FIG. 7, reference numeral 1 denotes a grounded chamber. A lower electrode 2 for horizontally supporting a semiconductor wafer W to be processed is provided in the chamber 1. The lower electrode 2 is placed on a metal support 4 via an insulating member 3. The lower electrode 2 and the support 4 can be moved up and down by an elevating mechanism (not shown). Outside the support 4, a baffle plate 5 for gas diffusion is provided. The lower central part of the support 4 is covered with bellows 6. This bellows 6 separates the vacuum part from the atmospheric part. A bellows cover 7 composed of a lower member 7a and an upper member 7b is provided outside the bellows 6. A high-frequency power supply 11 provided below the chamber 11 is connected to the lower electrode 2 via a matching box 10 and a power supply rod 8. Around the power supply rod 8, a metal grounding pipe 9 extending downward from the support 4 is provided. A slide contact 26 is provided between the ground pipe 9 and the chamber 11 so as to establish conduction between them. In this case, the slide contact 26 has a large number of resilient contacts on its inner periphery, and even if the ground pipe 9 slides in the slide contact 26, the ground pipe 9 and the slide contact 26, that is, a stable electrical connection with the chamber 11 can be obtained. Further, a coolant passage 13 is formed in the lower electrode 2, and the coolant flows through the coolant supply pipe 14. It's swelling.
チャンバ一 1の天壁には、 下部電極 2に対向するようにシャワーへッド 1 6が 設けられている。 ガス導入部 1 8から導入される処理ガスは、 その下面に設けら れた多数のガス吐出孔 1 7から半導体ウェハ Wに向けて吐出される。  A shower head 16 is provided on the top wall of the chamber 11 so as to face the lower electrode 2. The processing gas introduced from the gas introduction unit 18 is discharged toward the semiconductor wafer W from a number of gas discharge holes 17 provided on the lower surface.
なお、 参照符号 2 2は、 ゲートバルブ 2 3により開閉可能な半導体ウェハ Wの 搬入出用の搬送ポートである。 また、 参照符号 2 4は、 チャンバ一 1内を真空排 気するための排気ポートである。  Reference numeral 22 denotes a transfer port for loading and unloading the semiconductor wafer W that can be opened and closed by the gate valve 23. Reference numeral 24 denotes an exhaust port for evacuating the inside of the chamber 11.
このような装置においては、 まず、 半導体ウェハ Wが、 搬送ポート 2 2から搬 送位置にある下部電極 2に搬送される。 次いで、 昇降機構により下部電極 2が上 昇されて、 半導体ウェハ Wが処理位置に配置される。 半導体ウェハ Wは、 不図示 の静電チャックにより下部電極 2に吸着保持される。  In such an apparatus, first, the semiconductor wafer W is transferred from the transfer port 22 to the lower electrode 2 located at the transfer position. Next, the lower electrode 2 is raised by the lifting mechanism, and the semiconductor wafer W is arranged at the processing position. The semiconductor wafer W is suction-held on the lower electrode 2 by an electrostatic chuck (not shown).
その後、 排気ポート 2 4を介して、 チャンバ一 1内が所定の真空度に保持され、 シャワーヘッド 1 6からチャンバ一 1内に所定の処理ガスが導入される。 さらに、 高周波電源 1 1から整合器 1 0および給電棒 8を介して下部電極 2に高周波が印 加されて、 プラズマが生成され、 半導体ウェハ Wに所定のプラズマ処理が施され る。  After that, the inside of the chamber 11 is maintained at a predetermined degree of vacuum through the exhaust port 24, and a predetermined processing gas is introduced into the chamber 11 from the shower head 16. Further, a high frequency is applied from the high frequency power supply 11 to the lower electrode 2 via the matching box 10 and the power supply rod 8 to generate plasma, and the semiconductor wafer W is subjected to predetermined plasma processing.
ところで、 高周波電流が導体の表面近くだけに局在するという表皮効果により、 高周波電源 1 1から下部電極 2に印加された高周波電流のリターン電流は、 図中 の矢印に従って、 チャンバ一 1の内壁を通って底壁に至る。 ここで、 チャンバ一 1の底壁とベロ一ズカバー 7およびべローズ 6とはねじ止めされており、 互いに 導通している。 従って、 リターン電流は、 チャンバ一 1の底壁から、 ベローズ力 バー 7の下部材 7 aの表面、 ベローズ 6の外側、 ベローズカバ一 7の上部材 7 b の表面、 支持台 4の表面および接地パイプ 9の内側を通って高周波電源 1 1に戻 る。 スライドコンタクト 2 6と接地パイプ 9との接触インピーダンスが、 ベロー ズ 6近傍の電流経路のインピーダンスよりも高いため、 スライドコンタクト 2 6 を流れる電流はわずかである。  By the way, due to the skin effect that the high-frequency current is localized only near the surface of the conductor, the return current of the high-frequency current applied to the lower electrode 2 from the high-frequency power supply 11 changes the inner wall of the chamber 11 according to the arrow in the figure. Through to the bottom wall. Here, the bottom wall of the chamber 11 and the bellows cover 7 and the bellows 6 are screwed and electrically connected to each other. Therefore, the return current flows from the bottom wall of the chamber 1 to the surface of the lower member 7 a of the bellows force bar 7, the outer surface of the bellows 6, the surface of the upper member 7 b of the bellows cover 7, the surface of the support 4, and the ground pipe. Return to the high frequency power supply 11 through the inside of 9. Since the contact impedance between the slide contact 26 and the ground pipe 9 is higher than the impedance of the current path near the bellows 6, the current flowing through the slide contact 26 is small.
したがって、 ほとんどのリターン電流は、 ベローズ 6に流れる。 このため、 ベ ローズ 6の両端で大きな電位差が生じ、 例えばべローズカバー 7の上部材 7 bと 下部材 7 aとの間や、 支持台 4の周辺部分で異常放電が発生し、 プラズマ漏れ等 が生じる。 このため、 半導体ウェハ W上でのプラズマ密度が低下し得る。 また、 このように異常放電が発生すると、 処理に悪影響を及ぼす。 しかしながら、 この ような異常放電は、 プラズマ処理中には把握されることができない。 Therefore, most of the return current flows through the bellows 6. As a result, a large potential difference is generated at both ends of the bellows 6, for example, abnormal discharge occurs between the upper member 7 b and the lower member 7 a of the bellows cover 7, or around the support 4, and plasma leakage occurs. Occurs. For this reason, the plasma density on the semiconductor wafer W may decrease. In addition, the occurrence of such abnormal discharge adversely affects the processing. However, such abnormal discharge cannot be detected during plasma processing.
本発明はかかる事情に鑑みてなされたものであって、 高周波電流のリタ一ン電 流による異常放電が生じ難いプラズマ処理装置を提供することを目的とする。 ま た、 異常放電のようなプラズマの異常状態を、 プラズマ処理中に把握することが できるプラズマ処理装置を提供することを目的とする。 発 明 の 要 旨  The present invention has been made in view of such circumstances, and has as its object to provide a plasma processing apparatus in which abnormal discharge due to a high-frequency current return current is unlikely to occur. It is another object of the present invention to provide a plasma processing apparatus capable of detecting an abnormal state of plasma such as abnormal discharge during plasma processing. Summary of the invention
上記課題を解決するために、 本発明のプラズマ処理装置は、  In order to solve the above problems, a plasma processing apparatus of the present invention
内部が真空状態に保持可能なチャンバ一と、  A chamber whose inside can be maintained in a vacuum state,
前記チヤンバ一内を真空排気する排気機構と、  An exhaust mechanism that evacuates the chamber.
前記チャンバ一内に処理ガスを導入するガス導入機構と、  A gas introduction mechanism for introducing a processing gas into the chamber;
前記チヤンバ一内に配置され、 被処理体を支持する下部電極と、  A lower electrode disposed in the chamber and supporting the object to be processed;
前記下部電極に対向して設けられた上部電極と、  An upper electrode provided to face the lower electrode,
前記チャンバ一外に設けられた高周波電源と、  A high-frequency power supply provided outside the chamber,
前記高周波電源から前記下部電極に至る給電部材と、  A power supply member extending from the high-frequency power supply to the lower electrode,
給電部材を介して下部電極に印加される高周波電源によって上部電極および下 部電極の間に形成される処理ガスのプラズマから、 少なくともチャンバ一内壁を 通って高周波電源へ戻るリ夕一ン電流回路のインピーダンスを調整するインピー ダンス調整手段と、  A recurrent current circuit which returns from the plasma of the processing gas formed between the upper electrode and the lower electrode by the high frequency power applied to the lower electrode via the power supply member to the high frequency power through at least the inner wall of the chamber. Impedance adjustment means for adjusting the impedance;
を備えたことを特徴とする。 It is characterized by having.
このように、 プラズマから少なくともチャンバ一内壁を通って高周波電源へ戻 るリターン電流回路のインピーダンスを調整するインピーダンス調整手段を設け、 リターン電流回路のインピーダンスを最適値に設定することにより、 下部電極の 周辺での異常放電およびプラズマ漏れを軽減することができる。  In this way, by providing the impedance adjusting means for adjusting the impedance of the return current circuit returning from the plasma to the high frequency power supply through at least the inner wall of the chamber and setting the impedance of the return current circuit to the optimum value, Abnormal discharge and plasma leakage can be reduced.
この場合に、 インピーダンス調整手段として、 容量が可変のコンデンサ一を設 けることができる。 この場合、 コンデンサーの容量を調整することにより、 容易 にインピーダンスを最適値に調整することができる。 このようにコンデンサーの 容量を調整してインピーダンスを制御することにより、 リターン電流回路の装置 間誤差 (製造誤差等) を調整することが可能となる。 また、 装置を長期間使用す ることによりインピーダンスが経時変化しても、 コンデンサー容量を調整するこ とにより適正な値に調整することができる。 In this case, a capacitor having a variable capacity can be provided as the impedance adjusting means. In this case, the impedance can be easily adjusted to the optimum value by adjusting the capacitance of the capacitor. In this way, the capacitor By controlling the impedance by adjusting the capacitance, it is possible to adjust the error between the return current circuits (eg, manufacturing error). Even if the impedance changes over time due to long-term use of the device, it can be adjusted to an appropriate value by adjusting the capacitor capacity.
また、 上記プラズマ装置に、 プラズマ処理装置が正常状態にあるときにはブラ ズマ発光が実質的に観察されないチャンバ一内領域におけるプラズマ発光を検出 する検出器と、 この検出器の出力に応じて前記コンデンサの容量を調整する制御 手段とを付加することが好ましい。 この場合、 検出器によって異常放電にともな うプラズマ発光を検出した時点で、 コンデンサ一容量を調整して異常放電を解消 することができ、 リターン電流回路のインピーダンスをリアルタイムで異常放電 の生じない適正値に制御することができる。  The plasma apparatus further includes a detector for detecting plasma emission in an area inside the chamber where plasma emission is not substantially observed when the plasma processing apparatus is in a normal state; and a detector for the capacitor according to an output of the detector. It is preferable to add control means for adjusting the capacity. In this case, when the detector detects the plasma emission due to the abnormal discharge, the capacitor can be adjusted to adjust the capacitance and eliminate the abnormal discharge, and the impedance of the return current circuit can be adjusted in real time so that abnormal discharge does not occur. Value can be controlled.
好ましくは、 下部電極を前記チヤンバー内で昇降させる昇降機構をさらに備え る。  Preferably, the apparatus further comprises a lifting mechanism for raising and lowering the lower electrode in the chamber.
この場合、 好ましくは、 前記昇降機構は、 前記下部電極の下方に延びる駆動部 を有しており、 前記下部電極の下面と前記チャンバ一内の底面との間に伸縮可能 に設けられると共に、 前記駆動部を前記チャンバ一内から隔離する導電性のベロ ーズと、 をさらに備える。  In this case, preferably, the elevating mechanism has a driving unit extending below the lower electrode, and is provided between the lower surface of the lower electrode and a bottom surface in the chamber so as to be extendable and contractible. A conductive bellows for isolating the driving unit from the inside of the chamber.
この場合、 好ましくは、 前記給電部材は、 前記駆動部の一部を形成する棒部材 である。 また、 好ましくは、 前記給電部材の周囲には、 前記駆動部の一部を形成 する接地パイプが設けられている。  In this case, preferably, the power supply member is a bar member that forms a part of the drive unit. Further, preferably, a grounding pipe forming a part of the driving unit is provided around the power supply member.
この場合、 前記チャンバ一の底壁と前記接地パイプとの間には、 両者の摺動と 安定な電気的導通とを実現させるスライドコンタク卜が設けられていることが好 ましい。  In this case, it is preferable that a slide contact is provided between the bottom wall of the chamber and the grounding pipe to realize sliding between the two and stable electrical conduction.
この場合、 インピーダンス調整手段は、 少なくともチャンバ一内壁を通って高 周波電源へ戻るリターン電流を前記べローズ側と前記接地パイプ側とに分流する と共に、 それらリターン電流回路のインピーダンスを調整するようになっている ことが好ましい。  In this case, the impedance adjusting means shunts the return current returning to the high-frequency power supply at least through the inner wall of the chamber to the bellows side and the ground pipe side, and adjusts the impedance of the return current circuits. It is preferable that
このように、 インピーダンス調整手段が、 プラズマから高周波電源に戻るリタ —ン電流を、 チャンバ一内壁から前記べローズと前記接地パイプとに分流させて、 リターン電流回路のインピーダンスを低下させることにより、 ベロ一ズ両端に係 る電位差、 および、 チャンバ一内壁と高周波のグランド部との間の電位差を減少 させることができ、 結果として、 下部電極の周辺での異常放電およびプラズマ漏 れを軽減することができる。 In this way, the impedance adjusting means divides the return current returning from the plasma to the high-frequency power source from the inner wall of the chamber to the bellows and the ground pipe, By lowering the impedance of the return current circuit, the potential difference between both ends of the bellows and the potential difference between the inner wall of the chamber and the high-frequency ground can be reduced, and as a result, around the lower electrode Abnormal discharge and plasma leakage can be reduced.
インピーダンス調整手段としては、 前記チャンバ一の底壁と前記べローズとの 間に設けられた所定容量のコンデンサーを有するものが好適である。 このように コンデンサーを用いることにより、 ベロ一ズ側へ流れる電流を調整することがで き、 プラズマから高周波電源に戻るリターン電流を、 チャンバ一内壁から前記べ ローズと前記接地パイプとに効果的に分流させることが可能となる。  As the impedance adjusting means, a means having a capacitor of a predetermined capacity provided between the bottom wall of the chamber and the bellows is preferable. By using the condenser in this manner, the current flowing to the bellows side can be adjusted, and the return current returning from the plasma to the high frequency power supply can be effectively transmitted from the inner wall of the chamber to the bellows and the ground pipe. It becomes possible to diverge.
また、 チャンバ一の底壁とベローズとの間には、 絶縁部材を介在させることが 好ましい。 絶縁部材としては、 ポリエーテルエーテルケトンまたはポリイミドが 好ましい。 これらの材料は、 耐荷重性が高く、 しかも誘電率が低いので、 例えば 5 mm程度の厚さで、 コンデンサ一の容量よりも十分に低い容量とすることがで きる。 この結果、 コンデンサ一のみで容量調整を行うことができる。  It is preferable that an insulating member is interposed between the bottom wall of the chamber and the bellows. As the insulating member, polyetheretherketone or polyimide is preferable. Since these materials have high load-bearing capacity and low dielectric constant, they can have a thickness of, for example, about 5 mm, which is sufficiently lower than the capacity of a single capacitor. As a result, the capacitance can be adjusted with only one capacitor.
さらに、 前記コンデンサ一の容量を可変とすることにより、 コンデンサ一の容 量を容易に最適値に調整することができる。 そして、 上述した場合と同様、 コン デンサ一の容量を調整してインピーダンスを制御することにより、 リターン電流 回路の装置間誤差 (製造誤差等) を調整することが可能となる。 また、 装置を長 期間使用することによりインピーダンスが経時変化しても、 コンデンサ一容量を 調整することにより適正な値に調整することができる。  Further, by making the capacity of the capacitor one variable, the capacity of the capacitor one can be easily adjusted to an optimum value. Then, as in the case described above, by adjusting the capacitance of the capacitor and controlling the impedance, it becomes possible to adjust an error between devices (such as a manufacturing error) of the return current circuit. Even if the impedance changes over time due to long-term use of the device, it can be adjusted to an appropriate value by adjusting the capacitance of one capacitor.
また、 本発明のプラズマ処理装置は、  Further, the plasma processing apparatus of the present invention,
内部が真空状態に保持可能なチヤンバーと、  A chamber that can maintain a vacuum inside,
前記チヤンバー内を真空排気する排気機構と、  An exhaust mechanism for evacuating the chamber,
前記チャンバ一内に処理ガスを導入するガス導入機構と、  A gas introduction mechanism for introducing a processing gas into the chamber;
被処理体にプラズマ処理を施すために処理ガスをプラズマ化するプラズマ生成 手段と、  Plasma generating means for converting a processing gas into plasma in order to perform plasma processing on the object to be processed;
プラズマ処理装置が正常状態にあるときにはプラズマ発光が実質的に観察され ないようなチャンバ一内領域におけるプラズマ発光を検出する検出器と、 を備えたことを特徴とする。 このように、 プラズマ処理装置が正常状態にあるときにはプラズマ発光が実質 的に観察されないチャンバ一内領域におけるプラズマ発光を検出する検出器を具 備することにより、 検出器によってチャンバ一内の異常放電にともなうプラズマ 発光を検出した時点で、 異常放電を解消する適切な処置をすることが可能となり、 被処理体の処理への悪影響を小さくすることができる。 図面の簡単な説明 And a detector for detecting plasma emission in an area inside the chamber such that plasma emission is not substantially observed when the plasma processing apparatus is in a normal state. As described above, by providing the detector for detecting the plasma light emission in the region inside the chamber where the plasma light emission is not substantially observed when the plasma processing apparatus is in the normal state, the detector can prevent the abnormal discharge in the chamber one. At the time when the accompanying plasma emission is detected, it is possible to take appropriate measures to eliminate the abnormal discharge, thereby reducing the adverse effect on the processing of the object. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態に係るプラズマ処理装置を示す断面図である。 図 2は、 図 1の装置におけるインピーダンス調整機構を示す断面図である。 図 3は、 図 1の装置におけるチャンバ一底壁のコンデンサ一取り付け部を示す ための図である。  FIG. 1 is a sectional view showing a plasma processing apparatus according to one embodiment of the present invention. FIG. 2 is a cross-sectional view showing an impedance adjustment mechanism in the device of FIG. FIG. 3 is a diagram showing a condenser-mounting portion on the bottom wall of the chamber in the apparatus of FIG.
図 4は、 図 1のインピーダンス調整機構に用いた絶縁部材の厚さと容量との関 係を示す図である。  FIG. 4 is a diagram showing the relationship between the thickness of the insulating member used in the impedance adjusting mechanism of FIG. 1 and the capacitance.
図 5は、 本発明のプラズマ処理装置の等価回路を示す回路図である。  FIG. 5 is a circuit diagram showing an equivalent circuit of the plasma processing apparatus of the present invention.
図 6は、 本発明の他の実施形態に係るプラズマ処理装置の要部を示す断面図で ある。  FIG. 6 is a cross-sectional view showing a main part of a plasma processing apparatus according to another embodiment of the present invention.
図 7は、 従来のプラズマ処理装置を示す断面図である。 発明を実施するための最良の形態  FIG. 7 is a cross-sectional view showing a conventional plasma processing apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図 1は、 本発明の一実施形態に係るプラズマ処理装置を示す断面図である。 図 中、 参照符号 1は、 例えば表面がアルマイト処理されたアルミニウムからなる導 電性のチャンバ一である。 このチャンバ一 1は、 接地されている。 チャンバ一 1 内には、 被処理体である半導体ウェハ Wを水平に支持する下部電極 2が設けられ ている。 この下部電極 2は、 アルミニウム等の導電体で構成され、 絶縁部材 3を 介して、 アルミニウム等の導電体からなる支持台 4に載置されている。 支持台 4 の外周側には、 多数のガス通過孔を有する円板状をなすガス拡散用のバッフル板 5が設けられている。 このバッフル板 5は、 アルミニウム等の導電体で構成され、 支持台 4にねじ止めされて電気的に接続されている。 下部電極 2には、 半導体ゥ ェハ Wを吸着保持するための静電チャック (図示せず) が設けられている。 FIG. 1 is a sectional view showing a plasma processing apparatus according to one embodiment of the present invention. In the figure, reference numeral 1 denotes a conductive chamber made of, for example, aluminum whose surface is anodized. This chamber 11 is grounded. A lower electrode 2 for horizontally supporting a semiconductor wafer W as an object to be processed is provided in the chamber 11. The lower electrode 2 is made of a conductor such as aluminum, and is placed on a support 4 made of a conductor such as aluminum via an insulating member 3. A disk-shaped gas diffusion baffle plate 5 having a large number of gas passage holes is provided on the outer peripheral side of the support base 4. The baffle plate 5 is made of a conductor such as aluminum, and is screwed to the support 4 to be electrically connected thereto. The lower electrode 2 has a semiconductor An electrostatic chuck (not shown) for holding the wafer W by suction is provided.
支持台 4の下方中央の大気部分は、 例えばステンレス鋼からなるベロ一ズ 6で 覆われている。 このべローズ 6は、 真空部分と大気部分とを分離している。 ベロ ーズ 6は、 その上端と下端とが、 それぞれ支持台 4の下面およびチャンバ一 1の 底壁上面にねじ止めされている。 ベローズ 6の外側には、 ベローズカバー 7が設 けられている。 ベロ一ズカバー 7は、 ベローズ 6の伸縮に対応可能なように、 下 部材 7 aと上部材 7 bとに分離されている。  The lower central portion of the support 4 is covered with a bellows 6 made of, for example, stainless steel. This bellows 6 separates the vacuum part from the atmospheric part. The upper end and the lower end of the bellows 6 are screwed to the lower surface of the support 4 and the upper surface of the bottom wall of the chamber 11, respectively. A bellows cover 7 is provided outside the bellows 6. The bellows cover 7 is separated into a lower member 7a and an upper member 7b so as to be able to cope with expansion and contraction of the bellows 6.
下部電極 2には、 チャンバ一 1の下方に設けられた高周波電源 1 1が、 整合器 1 0および給電棒 8を介して接続されている。 給電棒 8の周囲には、 支持台 4か ら下方に延びる金属製の接地パイプ 9が設けられている。  A high-frequency power supply 11 provided below the chamber 11 is connected to the lower electrode 2 via a matching box 10 and a power supply rod 8. Around the power supply rod 8, a metal ground pipe 9 extending downward from the support 4 is provided.
下部電極 2には、 冷媒流路 1 3が形成されており、 この中に冷媒供給管 1 4を 介して冷媒が通流されるようになつている。 また、 図示してはいないが、 下部電 極 2には、 半導体ウェハ Wの受け渡しをするために、 突没可能なリフトピンが設 けられている。  The lower electrode 2 is formed with a refrigerant flow path 13, through which the refrigerant flows through a refrigerant supply pipe 14. Although not shown, the lower electrode 2 is provided with lift pins that can be protruded and retracted in order to transfer the semiconductor wafer W.
チャンバ一 1の天壁 1 aには、 下部電極 2に対向する上部電極として機能する シャワーヘッド 1 6が設けられている。 このシャワーヘッド 1 6の下面には、 多 数の吐出孔 1 7が形成されている。 シャワーヘッド 1 6の上部には、 ガス導入口 1 8が設けられている。 ガス導入口 1 8には、 所定の処理ガスをシャワーヘッド 1 6を介してチャンバ一 1内に供給するための処理ガス供給源 2 0力 接続され ている。 そして、 チャンバ一 1内に処理ガスが供給され、 下部電極 2に高周波電 力が印加されることにより、 下部電極 2とシャワーベッド 1 6との間にプラズマ が形成され、 半導体ウェハ Wに所定のプラズマ処理が施されるようになっている。 チヤンバ一 1の側壁 1 bには、 半導体ウェハ Wの搬入出用の搬送ポ一ト 2 2が ゲートバルブ 2 3により開閉可能に設けられている。 半導体ウェハ Wの搬入出時 には、 下部電極 2力 搬送ボート 2 2に対応する位置に移動される。 この際の下 部電極 2の移動は、 図示しない昇降機構により、 絶縁部材 3および支持台 4と一 体的に行われる。 - チャンバ一 1の側壁 1 bの底部近傍には、 排気ポート 2 4が設けられている。 この排気ポート 2 4には、 配管を介して、 排気装置 2 5が接続されている。 そし て、 排気装置 2 5を作動させることにより、 チャンバ一 1内が所定の真空度まで 真空排気されることが可能となっている。 On the top wall 1 a of the chamber 11, a shower head 16 functioning as an upper electrode facing the lower electrode 2 is provided. On the lower surface of the shower head 16, a large number of discharge holes 17 are formed. A gas inlet 18 is provided above the shower head 16. A processing gas supply source 20 for supplying a predetermined processing gas into the chamber 11 through the shower head 16 is connected to the gas inlet 18. Then, a processing gas is supplied into the chamber 11, and a high-frequency power is applied to the lower electrode 2, whereby plasma is formed between the lower electrode 2 and the shower bed 16, and a predetermined amount is formed on the semiconductor wafer W. The plasma processing is performed. A transfer port 22 for loading and unloading the semiconductor wafer W is provided on the side wall 1 b of the chamber 1 so as to be opened and closed by a gate valve 23. When loading and unloading the semiconductor wafer W, the lower electrode 2 is moved to a position corresponding to the transfer boat 22. At this time, the lower electrode 2 is moved integrally with the insulating member 3 and the support base 4 by a lifting mechanism (not shown). -An exhaust port 24 is provided near the bottom of the side wall 1b of the chamber 11. An exhaust device 25 is connected to the exhaust port 24 via a pipe. Soshi By operating the exhaust device 25, the inside of the chamber 11 can be evacuated to a predetermined degree of vacuum.
接地パイプ 9とチャンバ一 1の底壁 1 cとの間には、 これらの間の電気的導通 をとるようにスライドコンタクト 2 6が設けられている。 この場合、 スライドコ ン夕クト 2 6は、 そのの内周に多数の弾力性を有する接触子を有しており、 スラ ィドコンタクト 2 6内を接地パイプ 9が摺動しても (下部電極 2が上下に移動し ても) 、 接地パイプ 9とスライドコンタクト 2 6すなわちチャンバ一 1との間の 安定した電気的導通を得ることができるようになつている。  A slide contact 26 is provided between the ground pipe 9 and the bottom wall 1c of the chamber 11 so as to establish electrical continuity therebetween. In this case, the slide connector 26 has a large number of resilient contacts on its inner periphery, and even if the ground pipe 9 slides in the slide contact 26 (the lower part). Even if the electrode 2 moves up and down), stable electrical continuity between the grounding pipe 9 and the slide contact 26, that is, the chamber 11 can be obtained.
ベロ一ズ 6とチャンバ一 1の底壁 1 cとの接続部分には、 プラズマからチャン バー 1を経て支持台 4および接地パイプ 9の内側を通って高周波電源 1 1に戻る リ夕一ン電流回路のインピーダンスを調整するためのインピーダンス調整機構 3 0が設けられている。  At the connection between the bellows 6 and the bottom wall 1 c of the chamber 11, the plasma passes through the chamber 1, passes through the support 4 and the inside of the grounding pipe 9, and returns to the high-frequency power supply 1 1. An impedance adjustment mechanism 30 for adjusting the impedance of the circuit is provided.
このインピーダンス調整機構 3 0は、 図 2に示すように、 チャンバ一 1の底壁 1 cとべローズ 6の支持台 6 aとの間に介装された絶縁部材 3 1と、 チャンバ一 1の底壁 1 cとべローズ 6の支持台 6 aとに接続された所定容量のコンデンサー 3 2と、 を備えている。 そして、 ステンレス鋼からなる支持台 6 aは、 チャンバ 一 1の底壁 1 cとの間に絶縁部材 3 1を介装させた状態でねじ 3 3によりねじ止 めされている。  As shown in FIG. 2, the impedance adjusting mechanism 30 includes an insulating member 31 interposed between the bottom wall 1 c of the chamber 11 and the support 6 a of the bellows 6, and a bottom of the chamber 11. A condenser 32 of a predetermined capacity connected to the wall 1 c and the support 6 a of the bellows 6. The support base 6a made of stainless steel is screwed by screws 33 with an insulating member 31 interposed between the support base 6a and the bottom wall 1c of the chamber 11.
この絶縁部材 3 1は、 チャンバ一 1の底壁 1 cとべローズ 6の支持台 6 aとを 絶縁するためのものであり、 耐荷重が大きく、 誘電率が小さいものが用いられる。 このような材料としては、 ポリエーテルエ一テルケトン (P E E K) またはポリ イミドが好ましい。  The insulating member 31 is used to insulate the bottom wall 1c of the chamber 11 from the support 6a of the bellows 6, and has a large withstand load and a small dielectric constant. As such a material, polyetheretherketone (PEEK) or polyimide is preferable.
コンデンサ一 3 2は、 ベローズ 6に印加される電圧を調整することにより、 リ ターン電流回路のインピーダンスを低下させるようになつている。 例えばコンデ ンサ 3 2は、 ベローズ 6に印加される電圧を、 支持台 4の周辺に異常放電が生じ ない程度の電圧値に調整可能である。  The capacitor 132 adjusts the voltage applied to the bellows 6 to reduce the impedance of the return current circuit. For example, the capacitor 32 can adjust the voltage applied to the bellows 6 to a voltage value at which abnormal discharge does not occur around the support 4.
このような調整の結果、 リターン電流はスライドコンタクト 2 6を経て接地パ イブ 9へも流れるようになる。 すなわち、 コンデンサー 3 2は、 チャンバ一 1の 底壁 1 cのリターン電流を、 ベロ一ズ 6側とスライドコンタクト 2 6側とに分流 させて、 リターン電流回路全体のインピーダンスを低下させる機能を有している ( コンデンサー 3 2の必要容量は、 装置の設定によって異なる力 例えば 1 2 0 O O p F程度である。 必要な容量を得るために、 複数のコンデンサ一を用いるよ うにしてもよい。 そのためには、 図 3のように、 チャンバ一 1の底壁 1 cに複数 のコンデンサー取り付け部 3 5が設けられ得る。 例えば 1 2 0 0 0 P Fの容量を 得るためには、 5 0 0 0 p Fのコンデンサ一 2個と、 l O O O p Fのコンデンサ —2個とを、 4箇所の取り付け部 3 5にそれぞれ取り付ければよい。 As a result of such adjustment, the return current also flows to the ground tube 9 via the slide contact 26. That is, the condenser 32 distributes the return current of the bottom wall 1 c of the chamber 1 to the bellows 6 side and the slide contact 26 side. It has the function of lowering the impedance of the entire return current circuit ( the required capacity of the capacitor 32 is different depending on the setting of the device, for example, about 120 OO pF. To obtain the required capacity For this purpose, a plurality of capacitors 1 may be used, and for this purpose, a plurality of capacitor mounting portions 35 may be provided on the bottom wall 1c of the chamber 11 as shown in FIG. In order to obtain a capacity of 0 PF, two capacitors of 5000 pF and two capacitors of l OOO pF may be attached to the four attachment portions 35.
チャンバ一 1の底壁 1 cおよびべローズ 6の支持台 6 aは、 いずれも導電体で ある。 従って、 絶縁部材 3 1を両者の間に介在させることにより、 一種のコンデ ンサーを形成することとなる。 しかしながら、 上述したように誘電率の低い樹脂 を用いて比較的厚く絶縁部材 3 1を形成することにより、 絶縁部材 3 1のコンデ ンサとしての容量は無視することができる。 すなわち、 取り付けられるコンデン サ一 3 2のみによって容量の調整を行うことができる。  The bottom wall 1c of the chamber 11 and the support 6a of the bellows 6 are both conductors. Therefore, a kind of capacitor is formed by interposing the insulating member 31 between them. However, as described above, by forming the insulating member 31 relatively thick using a resin having a low dielectric constant, the capacitance of the insulating member 31 as a capacitor can be ignored. That is, the capacity can be adjusted only by the attached capacitor 132.
例えば、 絶縁部材 3 1に P E E Kを用いた場合、 厚さと容量の関係は図 4に示 すようになる。 図 4に示すように、 例えば厚さを 5 mmに設定すれば、 その容量 は 4 0 0 p F程度となる。 この値は、 コンデンサ一 3 2の容量の 1 2 0 0 0 p F に比較して無視できる程度のものである。  For example, when PEEEK is used for the insulating member 31, the relationship between the thickness and the capacitance is as shown in FIG. As shown in FIG. 4, for example, when the thickness is set to 5 mm, the capacitance is about 400 pF. This value is negligible compared to the capacitance of the capacitor 132 of 1200 pF.
次に、 このように構成されるプラズマ処理装置の動作について説明する。  Next, the operation of the plasma processing apparatus configured as described above will be described.
まず、 図示しない昇降機構により、 下部電極 2が搬送位置に配置される。 次に、 ゲ一卜バルブ 2 3が開いて、 図示しない搬送アーム等により搬送ポート 2 2を介 して半導体ウェハ Wがチャンバ一 1内に搬入され、 下部電極 2上に載置される。 半導体ウェハ Wは、 不図示の静電チャックにより、 下部電極 2に吸着保持される。 その後、 昇降機構により下部電極 2が上昇されて、 下部電極 2とシャワーへッ ド 1 6とのギャップが所定の距離となるように位置決めされる。 この状態で、 冷 媒流路 1 3に冷媒が通流され、 下部電極 2が所定の温度に制御される。 一方、 排 気装置 2 5により排気ポート 2 4を介してチヤンバ一 1内が排気され、 高真空状 態とされる。  First, the lower electrode 2 is arranged at the transfer position by a lifting mechanism (not shown). Next, the gate valve 23 is opened, and the semiconductor wafer W is carried into the chamber 11 via the transfer port 22 by a transfer arm or the like (not shown) and placed on the lower electrode 2. The semiconductor wafer W is sucked and held on the lower electrode 2 by an electrostatic chuck (not shown). Thereafter, the lower electrode 2 is raised by the elevating mechanism, and is positioned so that the gap between the lower electrode 2 and the shower head 16 becomes a predetermined distance. In this state, the coolant flows through the coolant channel 13 and the lower electrode 2 is controlled to a predetermined temperature. On the other hand, the interior of the chamber 11 is evacuated by the exhaust device 25 through the exhaust port 24 to be in a high vacuum state.
次いで、 所定の処理ガスが、 処理ガス供給源 2 0から処理ガス導入口 1 8及び 導電性容器 1 5の天壁を構成するシャワーヘッド 1 6のガス吐出孔 1 7を介して、 半導体ウェハ Wに向けて吐出され、 チャンバ一 1内を数 1 O mT o r rとする。 それと同時に、 高周波電源 1 1から整合器 1 0および給電棒 8を介して、 所定の 周波数および電圧の高周波電力が、 下部電極 2に印加される。 これにより、 下部 電極 2とシャワーへッド 1 6との間の空間には、 処理ガスのプラズマが生成され る。 これにより、 半導体ウェハ Wに対して所定のプラズマ処理が施される。 Next, a predetermined processing gas is supplied from the processing gas supply source 20 through the processing gas inlet 18 and the gas discharge hole 17 of the shower head 16 forming the top wall of the conductive container 15, The liquid is discharged toward the semiconductor wafer W, and the inside of the chamber 11 is set to several tens of mTorr. At the same time, high-frequency power of a predetermined frequency and voltage is applied to the lower electrode 2 from the high-frequency power supply 11 via the matching box 10 and the power supply rod 8. As a result, plasma of the processing gas is generated in the space between the lower electrode 2 and the shower head 16. Thus, a predetermined plasma process is performed on the semiconductor wafer W.
このプラズマ処理の際に、 プラズマから高周波電源 1 1に戻るリターン電流は、 ベローズ 6側とスライドコンタクト 2 6側に分流される。  During this plasma processing, the return current returning from the plasma to the high-frequency power supply 11 is diverted to the bellows 6 side and the slide contact 26 side.
このことを、 図 5に示す等価回路を参照して説明する。 高周波電源 (R F電 源) 1 1からの高周波電力は、 整合器 1 0及び給電棒 8を介して、 下部電極 2に 供給され、 プラズマを形成する。 プラズマからのリターン電流は、 チャンバ一 1 の天壁 l a、 側壁 1 bおよび底壁 1 cを経てべローズ 6に至る。 この時、 インピ 一ダンス調整機構 3 0のコンデンサ一 3 2力 底壁 1 cとべローズ 6との間の容 量 C h を調整して、 底壁 l cの電流 I p を、 ベローズ側の電流 l b と、 スライド コンタクト側の電流 とに分流させる。 ベロ一ズ側のリターン電流 I b は、 ベ ローズ 6の外側、 支持台 4の表面、 接地パイプ 9の内側を通って高周波電源 1 1 に戻る。 スライドコンタクト側のリターン電流 I c は、 接地パイプ 9の外側、 支 持台 4の表面、 接地パイプ 9の内側を通って高周波電源 1 1に戻る。 This will be described with reference to an equivalent circuit shown in FIG. The high-frequency power from the high-frequency power supply (RF power supply) 11 is supplied to the lower electrode 2 via the matching box 10 and the power supply rod 8, and forms plasma. The return current from the plasma reaches the bellows 6 via the top wall la, the side wall 1 b and the bottom wall 1 c of the chamber 1. At this time, by adjusting the capacitance C h between the capacitor one 3 2 forces the bottom wall 1 c preparative bellows 6 of Inpi one dance adjusting mechanism 3 0, the current I p of the bottom wall lc, the bellows side of the current lb And the current on the slide contact side. The return current Ib on the bellows side returns to the high-frequency power supply 11 through the outside of the bellows 6, the surface of the support 4, and the inside of the grounding pipe 9. The return current I c on the slide contact side returns to the high-frequency power supply 11 through the outside of the grounding pipe 9, the surface of the support 4, and the inside of the grounding pipe 9.
従来のようにべローズとチャンバ一の底壁とを導通させた場合、 スライドコン タク卜のインピーダンスが大きいため、 スライドコンタクトにはわずかしか電流 が流れないで、 ほとんどの電流がベロ一ズ側へ流れる。 したがって、 ベローズの 電圧 およびチャンバ一壁の電圧 Vw がいずれも高くなつて、 異常放電が生じ る。  When the bellows is connected to the bottom wall of the chamber as in the past, only a small amount of current flows through the slide contact because the impedance of the slide contact is large, and most of the current flows to the bellows side. Flows. Therefore, abnormal discharge occurs when both the voltage of the bellows and the voltage Vw of the chamber wall increase.
一方、 ベローズとチャンバ一の底壁とを絶縁した場合には、 ベローズには電流 が流れず、 I ,> = I c となる。 この場合、 スライドコンタクト 2 6と接地パイプ 9との間の接触インピーダンスが高いので、 チャンバ一壁の電圧 Vw が高くなつ て、 やはり異常放電が生じる。 さらに、 L b と C t) とを共振させることにより、 チャンバ一壁の電圧 V w が 0となり得るが、 この場合べローズの電圧 V b が高く なってしまう。 On the other hand, when the bellows and the bottom wall of the chamber are insulated, no current flows through the bellows, and I,> = Ic. In this case, since the contact impedance between the slide contact 26 and the ground pipe 9 is high, the abnormal discharge also occurs when the voltage Vw on the wall of the chamber increases. Furthermore, by resonating the L b and C t) and, although may be a voltage V w is 0 the chamber one wall, the voltage V b of the base in this case rose becomes high.
これに対して、 上述のように の値を適切に調整して、 底壁 l cの電流 I P を、 ベロ一ズ側の電流 I と、 スライドコンタクト側の電流 I e とに分流させる ことにより、 リターン電流回路全体のインピーダンスを低下させることができ、On the other hand, by appropriately adjusting the value of as described above, the current IP Is divided into a current I on the bellows side and a current Ie on the slide contact side, thereby reducing the impedance of the entire return current circuit.
V ,, および vw をともに従来よりも低下させることができる。 したがって、 ベロ ーズカバー 7の下部材 7 aと上部材 7 bとの間の部分や支持台 4の周辺部に異常 放電が生じることはなく、 プラズマ漏れが生じることを防止することができ、 半 導体ウェハ W上でのプラズマ密度の低下が生じ難くなる。 また、 支持台 4の周辺 部やチャンバ一側壁 1 bの下部に反応生成物が堆積することもなくなり、 その剥 離によるパーティクルの発生を防止することができる。 Both V,, and v w can be made lower than before. Therefore, abnormal discharge does not occur in the portion between the lower member 7a and the upper member 7b of the bellows cover 7 and in the peripheral portion of the support 4, so that plasma leakage can be prevented, and the semiconductor can be prevented from leaking. The plasma density on the wafer W is unlikely to decrease. In addition, the reaction product does not accumulate on the periphery of the support base 4 and the lower portion of the side wall 1b of the chamber, and the generation of particles due to the separation can be prevented.
実際に、 3 0 0 mmウェハ用のプラズマ処理装置において、 下部電極 2とシャ ヮ一へッド 1 6との間のギャップ (上下電極間ギャップ) を 4 0 mmに設定し、 チャンバ一 1内に処理ガスを導入してチャンバ一内圧力を 5 O mT o r rに設定 し、 高周波電源 1 1から 1 3 . 5 6 MH zで 4 0 0 0 Wの高周波を供給し、 イン ピ一ダンス調整機構 3 0の複数のコンデンサ一 3 2の容量を種々変化させてブラ ズマを生成し、 プラズマ状態を目視で観察した。 この結果、 コンデンサ一 3 2の 容量を合計で 1 2 0 0 0 p Fとなるようにした場合に、 異常放電やプラズマ漏れ が生じていないことが確認された。  Actually, in a plasma processing apparatus for a wafer of 300 mm, the gap between the lower electrode 2 and the shear head 16 (gap between the upper and lower electrodes) was set to 40 mm, and the inside of the chamber 11 was set. The processing gas is introduced into the chamber, the internal pressure of the chamber is set to 5 OmTorr, and a high-frequency power supply of 11 W to 43.5 W is supplied from the high-frequency power supply of 11 to 3.6 W. Plasma was generated by variously changing the capacitance of a plurality of 30 capacitors 13 and the plasma state was visually observed. As a result, it was confirmed that no abnormal discharge or plasma leakage occurred when the total capacity of the capacitor 132 was set to 1200 pF.
これは理論的には、 以上述べたように、 高周波電力のリターン電流回路のイン ピーダンスが小さくなつた結果と推測される。 しかし、 ベロ一ズゃチャンバ一各 部の電圧値を実際に測定することは困難であり、 コンデンサ 3 2の値が 1 2 0 0 0 p Fのときにリ夕一ン電流回路のインピーダンスが最小になっているとは必ず しも断定できない。  This is theoretically presumed to be the result of the reduced impedance of the high-frequency power return current circuit, as described above. However, it is difficult to actually measure the voltage value of each part of the bellows-chamber, and when the value of the capacitor 32 is 1200 pF, the impedance of the restart current circuit becomes minimum. It is not always possible to determine that it is.
また、 リターン電流回路のインピーダンスばかりでなく、 ベローズを流れる電 流量とスライドコンタクトを流れる電流量との比や、 ベロ一ズを流れる電流の位 相とスライドコンタクトを流れる電流の位相との関係も、 プラズマ状態に微妙な 影響を及ぼすことが考えられる。  Also, not only the impedance of the return current circuit, but also the ratio of the amount of current flowing through the bellows to the amount of current flowing through the slide contact, and the relationship between the phase of the current flowing through the bellows and the phase of the current flowing through the slide contact, It may have a subtle effect on the plasma state.
本発明の価値は、 リターン電流回路のインピーダンスを最小にすることにある のではなく、 プラズマの発光状態を目視で確認して、 異常放電やプラズマ漏れの ない状態となるように、 コンデンサ 3 2の値を最適値に設定することができる、 つまり、 高周波電力のリターン電流回路のインピーダンスを調整することができ るという点にある。 The value of the present invention is not to minimize the impedance of the return current circuit, but to visually check the light emission state of the plasma, and to set the capacitor 32 so that there is no abnormal discharge or plasma leakage. The value can be set to the optimum value, that is, the impedance of the return current circuit of high frequency power can be adjusted. The point is that.
以上の実施形態では、 コンデンサーの容量が固定された例を示したが、 容量が 可変のコンデンサ一 (可変コンデンサ一) を用いることも可能である。 この場合、 リターン電流回路のインピーダンスをより容易に最適値に制御することができる。 そして、 このようにコンデンサ一の容量を調整してインピーダンスを制御するこ とにより、 リターン電流回路の装置間誤差 (製造誤差等) が調整され得る。 また、 装置を長期間使用することによりインピーダンスが経時変化しても、 コンデンサ —容量を調整することによりインピ一ダンスを適正な値に調整することができる。 このような可変コンデンサ一を用いたプラズマ処理装置について図 6を参照し ながら説明する。 図 6は可変コンデンサ一を用いてリターン電流回路のインピー ダンスを制御することが可能なプラズマ処理装置の要部を示す断面図である。 図 6中、 図 1および図 2と同じものについては、 同じ符号を付して説明を省略する。 可変コンデンサ一 4 0力 図 2のコンデンサー 3 2の代わりに設けられている。 可変コンデンサ 4 0の一方の端子がベローズ 6の支持台 6 aに接続されており、 他方の端子がチャンバ一 1の底壁 1 cに接続されている。 可変コンデンサ一 4 0 のシャフト 4 0 aは、 例えばステッピングモ一夕からなる駆動機構 4 4に接続さ れている。 そして、 例えばステッピングモータを回転させることに伴って、 可変 コンデンサ 4 0の容量を変化させることが可能となっている。  In the above embodiment, the example in which the capacity of the capacitor is fixed has been described, but it is also possible to use a capacitor having a variable capacity (a variable capacitor). In this case, the impedance of the return current circuit can be more easily controlled to the optimum value. By adjusting the capacitance of one capacitor and controlling the impedance in this way, an error between devices (such as a manufacturing error) of the return current circuit can be adjusted. Even if the impedance changes over time due to long-term use of the device, the impedance can be adjusted to an appropriate value by adjusting the capacitor and capacitance. A plasma processing apparatus using such a variable capacitor will be described with reference to FIG. FIG. 6 is a cross-sectional view showing a main part of a plasma processing apparatus capable of controlling the impedance of a return current circuit using a variable capacitor. 6, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted. A variable capacitor is provided in place of the capacitor 32 in FIG. One terminal of the variable capacitor 40 is connected to the support 6 a of the bellows 6, and the other terminal is connected to the bottom wall 1 c of the chamber 11. The shaft 40a of the variable capacitor 140 is connected to a drive mechanism 44 composed of, for example, a stepping motor. Then, for example, the capacity of the variable capacitor 40 can be changed by rotating the stepping motor.
チャンバ一 1の側壁 1 bの下部には、 例えば石英からなるプラズマ検出窓 4 1 が設けられている。 このプラズマ検出窓 4 1の外側近傍部分には、 検出窓 4 1を 透過するプラズマからの光を検出する光検出器 4 2が設けられている。 検出窓 4 1は、 チャンバ一 1の側壁 1 bの下部に設けられているので、 光検出器 4 2は、 プラズマ処理装置が正常状態であればプラズマ発光が生じないかまたは生じたと しても弱い発光しか生じないようなチャンバ一内領域のプラズマ発光を検出する ようになつている。 このような領域は、 実質的に異常放電が生じた場合にのみ強 いプラズマ発光が生じる。 従って、 検出器 4 2は、 実質的に異常放電を生じた場 合にのみプラズマ発光を検出する。 この検出器 4 2は、 制御装置 4 3に接続され ており、 この制御装置 4 3は、 上記可変コンデンサー 4 0の駆動機構 4 4を制御 するようになつている。 このように構成される装置においては、 プラズマ装置が通常に作動している場 合には検出器 4 2は実質的にプラズマの発光を検出しないが、 異常放電があった 場合にはそれにともなうプラズマの発光を検出する。 そして、 光検出器 4 2から の信号が制御装置 4 3に送られ、 異常放電の度合いすなわちプラズマ発光の強さ に応じて、 制御装置 4 3から駆動機構 4 4に制御信号が出力されて、 可変コンデ ンサ一 4 0の容量が調整される。 なお、 制御装置 4 3は、 光検出器 4 2の出力を 監視し、 異常放電を検出した場合に警報装置 (図示せず) に信号を出力して警報 を出すようにしてもよい。 A plasma detection window 41 made of, for example, quartz is provided below the side wall 1 b of the chamber 11. A photodetector 42 for detecting light from plasma passing through the detection window 41 is provided near the outside of the plasma detection window 41. Since the detection window 41 is provided below the side wall 1 b of the chamber 11, the photodetector 42 does not generate plasma emission if the plasma processing apparatus is in a normal state or does not generate plasma emission. The system detects plasma emission in an area inside the chamber where only weak emission occurs. In such a region, strong plasma emission is generated only when an abnormal discharge occurs substantially. Therefore, the detector 42 detects the plasma emission only when an abnormal discharge occurs substantially. The detector 42 is connected to a control device 43, which controls the drive mechanism 44 of the variable condenser 40. In the device configured as described above, when the plasma device is operating normally, the detector 42 does not substantially detect the emission of plasma, but when an abnormal discharge occurs, the plasma associated therewith is not detected. Is detected. Then, a signal from the photodetector 42 is sent to the control device 43, and a control signal is output from the control device 43 to the drive mechanism 44 in accordance with the degree of abnormal discharge, that is, the intensity of plasma emission. The capacity of the variable capacitor 140 is adjusted. The control device 43 may monitor the output of the photodetector 42 and output a signal to an alarm device (not shown) to generate an alarm when abnormal discharge is detected.
このように、 光検出器 4 2によって異常放電にともなうプラズマ発光を検出し た時点で、 制御装置 4 3から駆動機構 4 4への制御信号によりコンデンサ一 4 0 の容量が調整されるため、 速やかに異常放電を解消することができる。 つまり、 リターン電流回路のインピーダンスを、 リアルタイムで異常放電の生じない適正 値に制御することができる。  As described above, when the photodetector 42 detects the plasma emission accompanying the abnormal discharge, the control signal from the controller 43 to the drive mechanism 44 adjusts the capacity of the capacitor 140, so that Abnormal discharge can be eliminated. That is, the impedance of the return current circuit can be controlled in real time to an appropriate value that does not cause abnormal discharge.
なお、 上記実施形態では、 インピ一ダンス調整手段にコンデンサ一を用いる場 合について説明したが、 異常放電やプラズマ漏れのない状態を実現することがで きるならば、 コンデンサーの代わりにコイルを用いてもよい。 また、 本発明が適 用される装置構成は上記実施形態のものに限らず、 下部電極に高周波を印加し、 下部電極が移動可能なタイプのものであれば全てに適用することができる。  In the above embodiment, the case where a capacitor is used as the impedance adjustment means has been described.However, if a state without abnormal discharge or plasma leakage can be realized, a coil is used instead of the capacitor. Is also good. Further, the device configuration to which the present invention is applied is not limited to the above-described embodiment, but may be applied to any device of a type in which high frequency is applied to the lower electrode and the lower electrode is movable.
さらに、 本発明は、 高周波を印加してプラズマを生成し、 そのプラズマで被処 理体を処理するものであれば、 その処理形態は問わず、 エッチング、 C V D成膜 等種々の処理に適用することができる。 さらにまた、 被処理体としては、 半導体 ウェハに限らず、 液晶表示装置のガラス基板等他のものであってもよい。 以上説明したように、 本発明によれば、 プラズマから少なくともチャンバ一内 壁およびべローズを通って高周波電源へ戻るリターン電流回路のインピーダンス を調整するインピーダンス調整手段を設け、 リターン電流回路のインピーダンス を最適の値に設定することにより、 ベローズ両端に係る電位差、 およびチャンバ —内壁と高周波のグランド部との間の電位差を減少させることができ、 結果とし て、 下部電極の周辺での異常放電、 およびプラズマ漏れを軽減することができる。 より具体的には、 インピーダンス調整手段により、 プラズマから高周波電源に 戻るリターン電流を、 チャンバ一内壁から前記べローズと前記接地パイプとに分 流させて、 リタ一ン電流回路のインピーダンスを低下させるので、 ベローズ両端 に係る電位差、 およびチャンバ一内壁と高周波のグランド部との間の電位差を減 少させることができ、 結果として、 下部電極の周辺での異常放電、 およびプラズ マ漏れを軽減することができる。 このようなインピーダンスの調整は、 前記チヤ ンバーの底壁と前記べローズとの間にコンデンサ一を設けその容量を調整するこ とにより容易に実現される。 Furthermore, the present invention is applicable to various processes such as etching and CVD film formation, regardless of the processing form, as long as a plasma is generated by applying a high frequency and the object to be processed is processed by the plasma. be able to. Furthermore, the object to be processed is not limited to a semiconductor wafer, but may be another object such as a glass substrate of a liquid crystal display device. As described above, according to the present invention, the impedance adjusting means for adjusting the impedance of the return current circuit returning from the plasma to the high-frequency power supply through at least the inner wall of the chamber and the bellows is provided, and the impedance of the return current circuit is optimized. The potential difference between the bellows ends and the potential difference between the chamber and the inner wall and the high-frequency ground can be reduced by setting the value of the bellows. As a result, abnormal discharge around the lower electrode and plasma Leakage can be reduced. More specifically, the impedance adjusting means diverts the return current returning from the plasma to the high-frequency power source from the inner wall of the chamber to the bellows and the grounding pipe, thereby lowering the impedance of the return current circuit. Therefore, the potential difference between both ends of the bellows and the potential difference between the inner wall of the chamber and the high-frequency ground portion can be reduced.As a result, abnormal discharge around the lower electrode and plasma leakage can be reduced. it can. Such impedance adjustment can be easily realized by providing a capacitor between the bottom wall of the chamber and the bellows and adjusting the capacitance.
このように、 下部電極周辺での異常放電、 およびプラズマ漏れが軽減される結 果、 被処理体上のプラズマ密度を高めることができる。  As described above, abnormal discharge around the lower electrode and plasma leakage are reduced, so that the plasma density on the object to be processed can be increased.
また、 容量が可変のコンデンサ一を設け、 コンデンサ一の容量を調整すること により、 容易にインピーダンスを最適値に調整することができる。 このようにコ ンデンサ一の容量を調整してインピ一ダンスを制御することにより、 リターン電 流回路の装置間誤差 (製造誤差等) を調整することが可能となる。 また、 装置を 長期間使用することによりインピーダンスが経時変化しても、 コンデンサ一容量 を調整することにより適正な値に調整することができる。  Further, by providing a capacitor having a variable capacitance and adjusting the capacitance of the capacitor, the impedance can be easily adjusted to an optimum value. By adjusting the capacitance of the capacitor and controlling the impedance in this manner, it is possible to adjust the error between the return current circuits (such as a manufacturing error). Even if the impedance changes over time due to long-term use of the device, it can be adjusted to an appropriate value by adjusting the capacitance of the capacitor.
また、 チャンバ一内の、 プラズマ処理装置が正常状態にあるときにはプラズマ 発光が実質的に観察されないチャンバ一内領域におけるプラズマ発光を検出する 検出器と、 この検出器の出力に応じて前記コンデンサの容量を調整する制御手段 とを付加することにより、 検出器によって異常放電にともなうプラズマ発光を検 出した時点でコンデンサ一容量を調整して異常放電を解消することができ、 リタ —ン電流回路のインピーダンスをリアルタイムで異常放電の生じない適正値に制 御することができる。  A detector for detecting plasma emission in a region of the chamber where plasma emission is not substantially observed when the plasma processing apparatus is in a normal state; and a capacitance of the capacitor according to an output of the detector. By adding control means to adjust the capacitance, it is possible to eliminate the abnormal discharge by adjusting the capacitance of the capacitor when the detector detects the plasma emission accompanying the abnormal discharge, and to reduce the impedance of the return current circuit. Can be controlled in real time to an appropriate value that does not cause abnormal discharge.
さらに、 プラズマ処理装置が正常状態にあるときにはプラズマ発光が実質的に 観察されないチャンバ一内領域におけるプラズマ発光を検出する検出器を具備す ることにより、 検出器によってチャンバ一内の異常放電にともなうプラズマ発光 を検出した時点で、 異常放電を解消する適切な処置をすることが可能となり、 被 処理体の処理への悪影響を小さくすることができる。  Further, by providing a detector for detecting plasma emission in an area inside the chamber where plasma emission is not substantially observed when the plasma processing apparatus is in a normal state, plasma generated by an abnormal discharge in the chamber by the detector is provided. When light emission is detected, it is possible to take appropriate measures to eliminate abnormal discharge, and to reduce the adverse effect on the processing of the object.

Claims

請 求 の 範 囲 The scope of the claims
1 . 内部が真空状態に保持可能なチャンバ一と、 1. A chamber whose interior can be maintained in a vacuum state,
前記チャンバ一内を真空排気する排気機構と、  An exhaust mechanism for evacuating the inside of the chamber,
前記チャンバ一内に処理ガスを導入するガス導入機構と、  A gas introduction mechanism for introducing a processing gas into the chamber;
前記チヤンバー内に配置され、 被処理体を支持する下部電極と、  A lower electrode disposed in the chamber and supporting the object to be processed;
前記下部電極に対向して設けられた上部電極と、  An upper electrode provided to face the lower electrode,
前記チャンバ一外に設けられた高周波電源と、  A high-frequency power supply provided outside the chamber,
前記高周波電源から前記下部電極に至る給電部材と、  A power supply member extending from the high-frequency power supply to the lower electrode,
給電部材を介して下部電極に印加される高周波電源によって上部電極および下 部電極の間に形成される処理ガスのプラズマから、 少なくともチャンバ一内壁を 通って高周波電源へ戻るリターン電流回路のインピーダンスを調整するインピー ダンス調整手段と、  The impedance of the return current circuit that returns from the plasma of the processing gas formed between the upper electrode and the lower electrode to the high-frequency power supply through at least one inner wall of the chamber by the high-frequency power supply applied to the lower electrode via the power supply member Means for adjusting impedance
を備えたことを特徴とするプラズマ処理装置。 A plasma processing apparatus comprising:
2 . 下部電極を前記チヤンバ一内で昇降させる昇降機構  2. Elevating mechanism for raising and lowering the lower electrode in the chamber
をさらに備えたことを特徴とする請求項 1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, further comprising:
3 . 前記昇降機構は、 前記下部電極の下方に延びる駆動部を有しており、 前記下部電極の下面と前記チャンバ一内の底面との間に伸縮可能に設けられる と共に、 前記駆動部を前記チャンバ一内から隔離する導電性のベローズと をさらに備えたことを特徴とする請求項 2に記載のプラズマ処理装置。  3. The elevating mechanism has a driving unit extending below the lower electrode, and is provided so as to be expandable and contractible between a lower surface of the lower electrode and a bottom surface in the chamber. 3. The plasma processing apparatus according to claim 2, further comprising: a conductive bellows isolated from the inside of the chamber.
4 . 前記給電部材は、 前記駆動部の一部を形成する棒部材である  4. The power supply member is a rod member forming a part of the drive unit.
ことを特徴とする請求項 3に記載のプラズマ処理装置。 4. The plasma processing apparatus according to claim 3, wherein:
5 . 前記給電部材の周囲には、 前記駆動部の一部を形成する接地パイプが設 けられている  5. A ground pipe forming a part of the drive unit is provided around the power supply member.
ことを特徴とする請求項 4に記載のブラズマ処理装置。 5. The plasma processing apparatus according to claim 4, wherein:
6 . 前記チャンバ一の底壁と前記接地パイプとの間には、 両者の摺動と安定 な電気的導通とを実現させるスライドコンタク卜が設けられている  6. Between the bottom wall of the chamber and the ground pipe, there is provided a slide contact that realizes sliding between the two and stable electrical conduction.
ことを特徴とする請求項 5に記載のプラズマ処理装置。 6. The plasma processing apparatus according to claim 5, wherein:
7 . インピーダンス調整手段は、 少なくともチャンバ一内壁を通って高周波 電源へ戻るリ夕一ン電流を前記べローズ側と前記接地パイプ側とに分流すると共 に、 それらリターン電流回路のインピーダンスを調整するようになっている ことを特徴とする請求項 5または 6に記載のプラズマ処理装置。 7. Impedance adjustment means should be at least high frequency 7. The method according to claim 5, wherein the return current returning to the power supply is divided into the bellows side and the ground pipe side, and the impedance of the return current circuit is adjusted. The plasma processing apparatus as described in the above.
8 . 前記インピーダンス調整手段は、 前記チャンバ一の底壁と前記べローズ との間に設けられたコンデンサ一を有する  8. The impedance adjusting means includes a capacitor provided between a bottom wall of the chamber and the bellows.
ことを特徴とする請求項 3乃至 7のいずれかに記載のプラズマ処理装置。  The plasma processing apparatus according to any one of claims 3 to 7, wherein:
9 . 前記コンデンサは、 その容量が可変である  9. The capacitor has a variable capacity
ことを特徴とする請求項 8に記載のプラズマ処理装置。 9. The plasma processing apparatus according to claim 8, wherein:
1 0 . プラズマ処理装置が正常状態にあるときにはプラズマ発光が実質的に 観察されないようなチャンバ一内領域、 におけるプラズマ発光を検出する検出器 と、  10. A detector for detecting plasma emission in an area in the chamber where plasma emission is not substantially observed when the plasma processing apparatus is in a normal state;
この検出器の出力に応じて前記コンデンサの容量を調整する制御手段と、 をさらに備えたことを特徴とする請求項 9に記載のプラズマ処理装置。  10. The plasma processing apparatus according to claim 9, further comprising: control means for adjusting a capacity of the capacitor according to an output of the detector.
1 1 . 前記インピーダンス調整手段は、 前記チャンバ一の底壁と前記べ口一 ズとの間に介在された絶縁部材を有する  11. The impedance adjusting means has an insulating member interposed between the bottom wall of the chamber and the vent.
ことを特徴とする請求項 3乃至 1 0のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 3 to 10, wherein:
1 2 . 前記絶縁部材は、 ポリエーテルエーテルケトンまたはポリイミドであ る  12. The insulating member is made of polyetheretherketone or polyimide
ことを特徴とする請求項 1 1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 11, wherein:
1 3 . 前記インピーダンス調整手段は、 その容量が可変のコンデンサ一であ る  1 3. The impedance adjustment means is a capacitor whose capacity is variable.
ことを特徴とする請求項 1乃至 7のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 7, wherein:
1 4 . プラズマ処理装置が正常状態にあるときにはプラズマ発光が実質的に 観察されないようなチャンバ一内領域、 におけるプラズマ発光を検出する検出器 と、  14. A detector for detecting plasma emission in an area in the chamber where plasma emission is not substantially observed when the plasma processing apparatus is in a normal state;
この検出器の出力に応じて前記コンデンサの容量を調整する制御手段と、 をさらに備えたことを特徴とする請求項 1 3に記載のプラズマ処理装置。  14. The plasma processing apparatus according to claim 13, further comprising: control means for adjusting a capacity of the capacitor according to an output of the detector.
1 5 . 内部が真空状態に保持可能なチャンバ一と、  1 5. A chamber whose inside can be maintained in a vacuum state,
前記チャンバ一内を真空排気する排気機構と、 前記チャンバ一内に処理ガスを導入するガス導入機構と、 An exhaust mechanism for evacuating the inside of the chamber, A gas introduction mechanism for introducing a processing gas into the chamber;
被処理体にプラズマ処理を施すために処理ガスをプラズマ化するプラズマ生成 手段と、  Plasma generating means for converting a processing gas into plasma in order to perform plasma processing on the object to be processed;
プラズマ処理装置が正常状態にあるときにはプラズマ発光が実質的に観察され ないようなチャンバ一内領域におけるプラズマ発光を検出する検出器と、 を備えたことを特徴とするプラズマ処理装置。  A plasma processing apparatus, comprising: a detector for detecting plasma emission in an inner region of the chamber such that plasma emission is not substantially observed when the plasma processing apparatus is in a normal state.
PCT/JP2000/002003 1999-03-30 2000-03-30 Plasma processing system WO2000059018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/87743 1999-03-30
JP08774399A JP4450883B2 (en) 1999-03-30 1999-03-30 Plasma processing equipment

Publications (1)

Publication Number Publication Date
WO2000059018A1 true WO2000059018A1 (en) 2000-10-05

Family

ID=13923425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002003 WO2000059018A1 (en) 1999-03-30 2000-03-30 Plasma processing system

Country Status (3)

Country Link
JP (1) JP4450883B2 (en)
KR (1) KR100408084B1 (en)
WO (1) WO2000059018A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037548A1 (en) * 2000-10-31 2002-05-10 Tokyo Electron Limited Method and apparatus for forming multicomponent metal oxide thin film
WO2009158192A2 (en) * 2008-06-25 2009-12-30 Applied Materials, Inc. Rf power delivery system in a semiconductor apparatus
WO2015047722A1 (en) * 2013-09-26 2015-04-02 Applied Materials, Inc. Rotatable substrate support having radio frequency applicator
CN112530776A (en) * 2019-09-18 2021-03-19 中微半导体设备(上海)股份有限公司 Plasma processing device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370789B2 (en) 2002-07-12 2009-11-25 東京エレクトロン株式会社 Plasma processing apparatus and variable impedance means calibration method
KR100752800B1 (en) * 2003-03-12 2007-08-29 동경 엘렉트론 주식회사 Substrate holding structure for semiconductor processing, and plasma processing device
JP4553247B2 (en) * 2004-04-30 2010-09-29 東京エレクトロン株式会社 Plasma processing equipment
KR100897176B1 (en) * 2005-07-20 2009-05-14 삼성모바일디스플레이주식회사 Inductively Coupled Plasma Processing Apparatus
US8485128B2 (en) * 2010-06-30 2013-07-16 Lam Research Corporation Movable ground ring for a plasma processing chamber
JP5666888B2 (en) * 2010-11-25 2015-02-12 東京エレクトロン株式会社 Plasma processing apparatus and processing system
JP2015162266A (en) * 2014-02-26 2015-09-07 株式会社日立ハイテクノロジーズ plasma processing apparatus
JP2016046357A (en) * 2014-08-22 2016-04-04 株式会社日立ハイテクノロジーズ Plasma processing device
US20190119815A1 (en) * 2017-10-24 2019-04-25 Applied Materials, Inc. Systems and processes for plasma filtering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226296A (en) * 1992-02-10 1993-09-03 Fujitsu Ltd Monitoring method for abnormal discharge of sputter etching apparatus
JPH06333879A (en) * 1993-05-24 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH1032171A (en) * 1996-05-16 1998-02-03 Sharp Corp Electric device manufacturing device and method
JPH10237675A (en) * 1996-12-17 1998-09-08 Shinko Pantec Co Ltd Firing furnace
EP0887836A2 (en) * 1997-06-26 1998-12-30 Sharp Kabushiki Kaisha Electronic device fabrication apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226296A (en) * 1992-02-10 1993-09-03 Fujitsu Ltd Monitoring method for abnormal discharge of sputter etching apparatus
JPH06333879A (en) * 1993-05-24 1994-12-02 Tokyo Electron Ltd Plasma processing device
JPH1032171A (en) * 1996-05-16 1998-02-03 Sharp Corp Electric device manufacturing device and method
JPH10237675A (en) * 1996-12-17 1998-09-08 Shinko Pantec Co Ltd Firing furnace
EP0887836A2 (en) * 1997-06-26 1998-12-30 Sharp Kabushiki Kaisha Electronic device fabrication apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037548A1 (en) * 2000-10-31 2002-05-10 Tokyo Electron Limited Method and apparatus for forming multicomponent metal oxide thin film
WO2009158192A2 (en) * 2008-06-25 2009-12-30 Applied Materials, Inc. Rf power delivery system in a semiconductor apparatus
WO2009158192A3 (en) * 2008-06-25 2010-03-11 Applied Materials, Inc. Rf power delivery system in a semiconductor apparatus
US8206552B2 (en) 2008-06-25 2012-06-26 Applied Materials, Inc. RF power delivery system in a semiconductor apparatus
WO2015047722A1 (en) * 2013-09-26 2015-04-02 Applied Materials, Inc. Rotatable substrate support having radio frequency applicator
US10460915B2 (en) 2013-09-26 2019-10-29 Applied Materials, Inc. Rotatable substrate support having radio frequency applicator
CN112530776A (en) * 2019-09-18 2021-03-19 中微半导体设备(上海)股份有限公司 Plasma processing device
CN112530776B (en) * 2019-09-18 2024-02-09 中微半导体设备(上海)股份有限公司 Plasma processing device

Also Published As

Publication number Publication date
JP2000286235A (en) 2000-10-13
KR20010052447A (en) 2001-06-25
JP4450883B2 (en) 2010-04-14
KR100408084B1 (en) 2003-12-01

Similar Documents

Publication Publication Date Title
JP4421874B2 (en) Plasma processing apparatus and plasma processing method
US7837828B2 (en) Substrate supporting structure for semiconductor processing, and plasma processing device
US11830747B2 (en) Plasma reactor having a function of tuning low frequency RF power distribution
US8293068B2 (en) Plasma processing apparatus
US20080236492A1 (en) Plasma processing apparatus
JP3969081B2 (en) Plasma processing equipment
KR101676875B1 (en) Plasma processing apparatus
US5683537A (en) Plasma processing apparatus
KR100351646B1 (en) Plasma processing apparatus
JP4146905B2 (en) Processing equipment
US9520276B2 (en) Electrode assembly and plasma processing apparatus
US20090126634A1 (en) Plasma processing apparatus
US8377255B2 (en) Plasma processing apparatus and method of controlling distribution of a plasma therein
US20080236493A1 (en) Plasma processing apparatus
US20100243608A1 (en) Plasma processing apparatus and plasma processing method
US20060288934A1 (en) Electrode assembly and plasma processing apparatus
WO2000059018A1 (en) Plasma processing system
JP2013038433A (en) Apparatuses for adjusting electrode gap in capacitively-coupled high frequency plasma reactor
US6492612B1 (en) Plasma apparatus and lower electrode thereof
KR20020005462A (en) Inductive coupling plasma processing apparatus
JP4137419B2 (en) Plasma processing equipment
KR20070098588A (en) Plasma processing apparatus and plasma processing method
JP3167820B2 (en) Abnormal discharge detection method
CN211507566U (en) Plasma processing device with radio frequency power distribution adjusting function
JP2000331996A (en) Plasma processing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR

WWE Wipo information: entry into national phase

Ref document number: 1020007013471

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020007013471

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007013471

Country of ref document: KR