WO2000057404A1 - Magnetic disk memory - Google Patents

Magnetic disk memory Download PDF

Info

Publication number
WO2000057404A1
WO2000057404A1 PCT/JP1999/001395 JP9901395W WO0057404A1 WO 2000057404 A1 WO2000057404 A1 WO 2000057404A1 JP 9901395 W JP9901395 W JP 9901395W WO 0057404 A1 WO0057404 A1 WO 0057404A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
transistors
potential
current
circuit
Prior art date
Application number
PCT/JP1999/001395
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Hashimoto
Masaki Yoshinaga
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/001395 priority Critical patent/WO2000057404A1/en
Publication of WO2000057404A1 publication Critical patent/WO2000057404A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/12Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
    • G11B33/121Disposition of constructional parts in the apparatus, e.g. of power supply, of modules the apparatus comprising a single recording/reproducing device
    • G11B33/122Arrangements for providing electrical connections, e.g. connectors, cables, switches

Definitions

  • the present invention relates to a magnetic disk memory device.
  • the present invention relates to a technology effective when an MR (magnetoresistive effect) element is used as a read head and the head circuit is provided on a suspension.
  • the present invention relates to a technology which is effective when used for a compound head using an inductive head as an MR head for reading and a writing head.
  • the present inventors have developed a magnetic disk memory device suitable for miniaturization and high-speed operation by devising a circuit for reducing the size and weight of an IC chip such as a read amplifier.
  • the present invention provides a magnetic disk drive that realizes a compact and high-speed drive. It is intended to provide a memory device. Another object of the present invention is to provide a magnetic disk memory device that realizes operation up to high frequency with high sensitivity.
  • the outline of a typical invention disclosed in the present application is briefly described as follows.
  • the first potential of the circuit is centered on the end of the arm (the so-called suspension) attached to the MR head.
  • a semiconductor integrated circuit device that operates at a second potential set to a positive potential and a third potential set at a negative potential.
  • the semiconductor integrated circuit device is provided with the MR head with the first potential as a center voltage.
  • a bias circuit that supplies a predetermined bias voltage to both ends of the MR head; first and second amplifying transistors whose signals read from both ends of the MR head are respectively supplied to a base; A capacitor provided between the emitters of the first and second width transistors to hold a DC bias supplied to both ends of the MR head and to flow a signal current; ⁇ width transistor collection Receiving the output signal, the current having a phase opposite to that of the emitter current of the first and second amplifying transistors is returned by / j, and the signal current component flowing into the capacitor is fed back.
  • a lead amplifier for obtaining an output signal from the collectors of the first and second wide transistors is built in.
  • FIG. 1 is a diagram showing a lead used in a magnetic disk memory device according to the present invention.
  • FIG. 2 is a circuit diagram showing one embodiment
  • FIG. 2 is a circuit diagram showing another embodiment of the lead amplifier used in the magnetic disk memory device according to the present invention.
  • FIG. 3 is a circuit diagram showing another embodiment of the lead amplifier used in the magnetic disk memory device according to the present invention.
  • FIG. 4 is a circuit diagram showing still another embodiment of the read amplifier used in the magnetic disk memory device according to the present invention.
  • FIG. 5 is a layout diagram of an embodiment of the resistance element used in the read amplifier according to the present invention.
  • FIG. 6 is a block diagram showing one embodiment of a hard disk drive according to the present invention.
  • FIG. 7 is a schematic configuration diagram showing one embodiment of a hard disk drive according to the present invention.
  • FIG. 8 is a schematic structural diagram of a main part showing one embodiment of a hard disk drive according to the present invention.
  • FIG. 9 is a schematic cross-sectional view showing one embodiment of a disk rotating mechanism in the magnetic disk memory device according to the present invention.
  • FIG. 10 is a partially sectional external view showing an embodiment of an M-inductive composite head used in the magnetic disk memory device according to the present invention.
  • FIG. 11 is a magnetic disk memory according to the present invention.
  • FIG. 2 is a plan view showing an example of a flexible wiring board used in the device,
  • FIG. 12 is a plan view showing an embodiment of an arm and a suspension section used in the magnetic disk memory device according to the present invention.
  • FIG. 13 is an external view showing an embodiment of the arm and suspension unit in the magnetic disk memory device according to the present invention.
  • FIG. 1 shows a configuration of a main part of a reading system of a magnetic disk memory device according to an embodiment of the present invention, together with a read amplifier.
  • Each circuit element constituting the read amplifier is formed on a semiconductor substrate such as single crystal silicon by a known semiconductor integrated circuit manufacturing technique.
  • the device power supply forms a positive power supply SEV CC supplied to the semiconductor integrated circuit device on which the read amplifier is mounted, a negative power supply mEV EE, and 1 SEVMO supplied to the motor drive device.
  • a magnetic disk (hard disk) as a magnetic storage medium is rotated by a motor as a drive mechanism.
  • the ground potential of the circuit (first potential of the circuit) GND is applied to the surface magnetic material of the magnetic disk via the rotating shaft of this motor.
  • the application of the ground potential GND in this manner is performed by a color that is convenient for removing undesired charges accumulated on the rotating magnetic disk.
  • the MR head for reading (or the magnetoresistive effect head, the same applies hereinafter) is connected at one end to the ground potential GND of the circuit to prevent discharge from the disk, and has substantially the same potential.
  • the ground potential GND of the circuit When the ground potential GND of the circuit is applied to one end of the MR head in this way, the voltage at the other end is usually about 20 ⁇ in resistance of the MR head, and the bias current flowing through it is 1 O mA It is only about 0.2 V, which is very small.
  • the inductance ⁇ of the wire connecting the MR head and the read amplifier directly acts as described above to limit the extraction of the high-frequency signal.
  • the following bias circuit is used to extract from the other end of the MR head as a ⁇ E signal corresponding to the magnetic storage information of the magnetic disk.
  • ⁇ E at both ends of the MR head is set to a minute positive voltage centered on the ground potential and a negative value.
  • a constant current source for supplying a bias current Ib1 is provided between one end of the MR head corresponding to the positive SE and the positive power supply voltage V CC set to ⁇ E.
  • the read signal obtained at one end of the MR head is supplied to the base of an npn type wide transistor QN1.
  • the read signal obtained at the other end of the MR head is similarly supplied to the base of an npn-type wide transistor QN2.
  • the capacity transistor C 1 is provided between the emitters of the wide transistors Q N 1 and Q N 2. This capacitor C1 holds a DC bias applied to both ends of the MR head, and allows a power and a signal current to flow. Then, a differential amplification operation is performed.
  • the 3 ⁇ 4J £ VX and Vy generated at both ends of the MR head due to the flow of a constant current differ in DC level by 3 ⁇ 4 ⁇ drop in the MR head.
  • the wide transistors QN 1 and QN 2 are connected like a differential wide circuit. With emitter coupling, an offset occurs between the output RDX and RDY in a steady state with no signal.
  • a capacitor C1 is provided as a high-pass filter, and the emitter is coupled AC. By the way, if this capacitor C1 has a very small capacitance value, the impedance will look large and the low-frequency cutoff frequency will be high (the bandwidth GB product will be small).
  • the capacitance value of the capacitor C1 is set to a value such as 330 pF to l.
  • an external capacity is used.
  • the external capacity of a relatively large capacity value as described above is considered. There is no room for mounting components. If the above capacity is mounted, the size and speed of the magnetic disk memory device are correspondingly impaired.
  • the capacitor C1 having a relatively small capacitance value incorporated in the semiconductor integrated circuit device formed with the lead amplifier a circuit contrivance that acts equivalently to the above-mentioned external capacitance is used. Is what you do.
  • the capacity C1 built into the semiconductor integrated circuit device together with the other circuit elements constituting the read amplifier has a relatively small capacitance value. While using 1, the DC bias voltage applied to both ends of the MR head is held, and a current corresponding to the signal component is passed to perform differential operation on the AC width in the alternating current. Therefore, the following current feedback circuit is provided.
  • the collectors of the transistors QN1 and QN2 are connected in series with npn-type transistors QN3 and QN4 each having a base applied with a predetermined bias ⁇ ⁇ ⁇ EVa, and are connected via the transistors QN3 and QN4.
  • Load resistor Each is connected to one end of the anti-RL. The other end of the load resistor RL is supplied with the power supply voltage VCC.
  • the signal voltage generated by the load resistance RL is supplied to the bases of the pnp type differential transistors QP1 and QP2.
  • One end of an emitter resistor Ra is connected to each of the emitters of the differential transistors QP1 and QP2.
  • a constant current source Ia for forming the operating current of the differential transistors QP1 and QP2 is provided.
  • the collector currents of these transistors QP 1 and QP 2 are made to flow to the emitters of the other wide transistors QN 2 and QN 1, respectively.
  • a bias current I a is applied to the differential transistors QP 1 and QP 2 by I a / 2.
  • the X-side terminal of the MR head (the base of the amplification transistor QN1) rises AVx in response to the magnetic recording information recorded on the magnetic disk surface, and the width of the transistor changes accordingly.
  • a signal current such as ⁇ I 1 flows in 1.
  • ⁇ I1 originally corresponding to the signal current flows through the capacitor C1.
  • the Y-side terminal of the MR head corresponds to the magnetic recording information stored on the magnetic disk surface.
  • C 1 ' C 1 ⁇ I 1 / ( ⁇ I 1 - ⁇ I a) (2) If the capacitance value is increased by a factor of 10 as described above, the capacitance of the capacitor C 1 built in the semiconductor integrated circuit device This is a force to form the value as large as 330 pF to 0.1 F, and even if it is built-in, there is a problem that a large occupied area is required. Therefore, semiconductor integrated circuits Using the capacity C1 built into the device, in order to equivalently display a large capacitance value such as 3300 pF to 1F as described above, the current gain in the current feedback circuit must be adjusted. The design should be about 0.95 (20 times capacity) and 0.97 times (33 times capacity).
  • the width output obtained from the collectors of the width transistors QN 1 and QN 2 is transmitted to the input of the next-stage amplifier (2 nd AMP), where it is amplified and transmitted to a signal processing circuit described later.
  • capacitors (so-called decaps) C2 and C3 for stabilizing the voltage are provided between the power supplies EVEVC C and VEE and the ground potential GND of the circuit, respectively.
  • a bus capacitor is required to have a large capacitance value for stabilizing the power supply, and is constituted by an external capacitor of the semiconductor integrated circuit device. If there is room in the power supplies EVC C and V E, a semiconductor integrated circuit device may have a built-in power supply stabilizing circuit and the above-mentioned bus capacitor may be omitted.
  • FIG. 2 shows a circuit diagram of another embodiment of the lead amplifier.
  • a level shift diode is provided on the power supply voltage side of the load resistance RL provided to the collectors of the wide transistors QN1 and QN2.
  • a pnp type transistor in which a base and an emitter are connected can be used.
  • the current gain can be set in accordance with the resistance ratio of the load resistance R and the resistance R a.
  • FIG. 3 shows a configuration of a main part of a reading system together with a read amplifier in another embodiment of the magnetic disk memory device according to the present invention.
  • Read Door The amplifier is the same as that of the embodiment shown in FIG. 1, and a feedback amplifier FBA is used for the bias circuit of the MR head.
  • one constant current source Ib for forming a bias current is provided at one end Vx of the MR head, and an N channel as a variable current source is provided between the other end Vy and the power supply voltage VEE.
  • Flannel type MOSFET MN 1 Flannel type MOSFET MN 1
  • the output signal of the feedback amplifier FBA is supplied to the gate of the MOSFETMN1.
  • One input of the feedback amplifier FBA, the inverting input terminal (-), is the ground potential of the circuit, and the other input is the non-inverting input terminal (10). Connected to connection point.
  • the feedback amplifier FBA raises the gate voltage of the N-channel MOS FETMN1 to increase its drain current. As a result, the potential at the interconnection point of the resistor Rg is kept low. Conversely, when the potential at the interconnection point of the resistor Rg becomes lower than the ground potential GND, the feedback amplifier FBA reduces the gate voltage of the N-channel MOSFET MN1 and reduces its drain current. . Thereby, the potential of the interconnection point of the resistor Rg is corrected to be high. By such a feedback operation, the potential of the interconnection point of the resistor Rg is controlled to be equal to the ground potential GND.
  • the capacitor C4 provided at the gate of the MOSFET MN1 has a stabilizing capacitance, and can be realized by a relatively small capacitance formed in the semiconductor integrated circuit device.
  • FIG. 4 is a circuit diagram showing another embodiment of the lead amplifier provided in the magnetic disk memory device according to the present invention.
  • the ground potential GND of the circuit When the ground potential GND of the circuit is applied to one end of the MR head, the other end is forced to zero as described above. Only a small 3 ⁇ 4E of about 2 V. Therefore, a bias current is supplied from the constant current source Ib1 to the other end of the MR head via a diode for level shift (or a diode-connected transistor forcibly connected to the base and the collector). Supplied.
  • the voltage at the other end via the above-mentioned MR head diode is supplied to the base of an npn-type wide transistor QN1.
  • the emitter of the transistor QN1 is provided with a resistor R1 for setting a DC bias current and a capacitor C1 for alternatingly grounding its emitter to provide high sensitivity.
  • the signal gain of the amplifying transistor QN1 can realize a large voltage gain determined by the resistance ratio between the load resistance R provided in the collector and the emitter resistor having a small resistance value in the transistor. .
  • the collector of the wide transistor QN1 is provided with a load resistance RL through an npn-type transistor QN3 having a constant applied to its base, and an output signal is obtained from the resistance RL.
  • the calibrator C1 is built in the semiconductor integrated circuit device, and as a result, a capacitor having a relatively small capacitance value is used.
  • the capacitor C1 having such a small capacitance value is used, the impedance connected to the emitter of the wide transistor QN1 is increased, so that the large signal gain cannot be obtained.
  • a current feedback circuit is provided in order to use a capacitor having a small capacitance value as formed in a semiconductor integrated circuit device, but to make the capacitance value equivalently large as described above.
  • two dummy wide transistors QN are provided.
  • the base of the wide transistor QN2 is supplied with a DC bias voltage equivalent to the DC bias voltage supplied to the base of the transistor QN1.
  • the collector is provided with a dummy load resistor RL through a transistor QN4 similar to the above, and the voltage signal formed by the load resistor RL is connected to a P np type differential transistor QP1. It is supplied to the base of QP2, and its collector current is fed back to the emitter side of the other wide transistors QN2 and QN1.
  • the signal current flowing through the emitter of the amplification transistor QN1 corresponds to the signal current formed by the wide transistor QN1 corresponding to the input signal. Only a small current corresponding to the difference between the current supplied from the collector of the differential transistor QP2 and the phase-shifted current flows through the capacitor C1. As a result, an operation equivalent to that obtained by increasing the capacitance value of the capacitor C1 formed in the semiconductor integrated circuit device in accordance with the current gain of the differential transistor can be performed.
  • the base of the differential transistor QP1 when there is no signal is added to the base of the differential transistor QP2. It may be one that directly supplies a bias 3 ⁇ 4 ⁇ equivalent to the DC voltage applied to the power supply.
  • FIG. 5 shows a layout diagram of an embodiment of the load resistance provided in the amplification transistor and the resistance provided in the emitter of the differential transistor constituting the current feedback circuit.
  • the current feedback circuit has a large current gain setting capability and plays an important role in stabilizing the circuit operation. Therefore, if there is a large manufacturing variation in the resistance ratio between the load resistance RL and the emission resistance Ra, stable circuit operation cannot be expected. Conversely, in the case of a read amplifier in which a required capacitance value cannot be equivalently secured, a desired amplified signal cannot be obtained, resulting in a defective chip and a poor product quality. Therefore, the unit resistor R having the same size is used, and the load resistor RL is such that a plurality of unit resistors R are connected in series to obtain a desired relatively large resistance value. On the other hand, the resistor Ra provided at the emitter of the differential transistors QP1 and QP2 connects the unit resistor R in a parallel configuration to obtain a desired small resistance value.
  • the relative ratio of the same element formed in the same semiconductor integrated circuit device can be formed with high accuracy with respect to the above-mentioned manufacturing variation.
  • the current gain of the current feedback circuit can be set stably with high accuracy while using a resistor having a relatively large manufacturing variation formed in the semiconductor integrated circuit device, thereby realizing stable circuit operation.
  • the product quality can be increased.
  • FIG. 6 is a block diagram of one embodiment of the magnetic disk memory device according to the present invention.
  • the magnetic disk memory device of this embodiment is directed to a hard disk device, a plurality of disk disks as storage media, a motor for driving the disk disks, and both surfaces of the disk disks.
  • a plurality of read / write chips each having a write driver for moving the read / write chip, a control chip and a signal processing LSI for transmitting / receiving signals to / from the read / write chip, and a host device.
  • the discs are mounted on a common rotating shaft whose center is rotated by a motor, and a ground potential is applied to the rotating shaft, whereby the potential of the storage surfaces of the plurality of discs is reduced to the ground potential. It is made.
  • a plurality of discs are provided corresponding to both surfaces of the discs.
  • the configuration in which one read amplifier, one post-amplifier circuit corresponding to it, and a write driver are provided for each of the read-write chips can take the following chip mounting forms.
  • the read / write chip is placed adjacent to the composite head consisting of the MR head MR and the magnetic head IND, and the small read signal from the M head is relatively long L. It is intended to minimize signal loss when transmitted using a signal transmission path and realize high-sensitivity and high-band amplification operation.
  • FIG. 7 shows a schematic configuration diagram of an embodiment of the hard disk device according to the present invention.
  • the plurality of disk disks are concentrically connected at a certain interval by a shaft.
  • one arm extends on two disk surfaces facing each other, is branched by a suspension arm, and is mounted such that the composite head comes into contact with both surfaces.
  • the head is in contact with the disk surface.
  • the disk is rotating at high speed, it floats with a small gap due to the airflow generated by the force.
  • the read / write operation is performed with the head flying above the disk surface.
  • the lead tip is mounted on the tip side of the arm, that is, on the mounting portion with the suspension arm.
  • the signal wiring between the read-write chip and the head in other words, the MR head and the lead amplifier, and the signal wiring between the magnetic head and the write driver, have the length of the suspension arm. Accordingly, the above-described high sensitivity and high band operation are realized by setting the factors that attenuate the signal such as the parasitic resistance and the parasitic inductance component in the signal wiring to the minimum. Is what you do.
  • a controller that performs operations such as selecting one of the multiple heads Chip and signal processing LSI should be attached to the other end of the arm.
  • the force between the control chip and the read / write chip is relatively long according to the length of the arm. Signal ports can be ignored.
  • FIG. 8 is a schematic structural view of a main part of an embodiment of the hard disk device according to the present invention.
  • the read light chip is attached to the base of the suspension arm as described above.
  • a composite head consisting of the MR head and the magnetic head is attached to the tip of the suspension arm.
  • the plurality of arms and the suspension arm are connected in a state of being overlapped with each other in correspondence with a plurality of disk disks, and the control chip is mounted thereon using a side surface formed by the plurality of arms.
  • FIG. 9 is a schematic sectional view of one embodiment of the disk-circular rotary drive system mechanism.
  • the shaft of the spindle motor is made of a conductive metal, and a brush-like conductor is provided to apply a ground potential to the shaft.
  • This conductor provides the ground potential of the circuit by making contact with the surface of the shaft.
  • a plurality of disk disks as described above are attached to the shaft, and a ground potential is applied to the magnetic material formed on the front and back surfaces thereof. By supplying such a ground potential, the electric charge accumulated on the disc can be extracted, and by setting one end of the MR head to the ground potential as described above, discharge between the two can be prevented.
  • FIG. 10 shows a partially cutaway external view of the embodiment of the MR ⁇ inductive composite head.
  • the inductive element is used for writing, and is composed of an upper magnetic film, a lower magnetic film and an upper shield film, and a conductor configured to be sandwiched between the two magnetic films. Is done.
  • the MR element is fabricated on the top and bottom using the same microfabrication technology as the semiconductor element, and the MR film is formed on the lower shield film sandwiched between two electrodes.
  • a magnetic domain control film is provided between the MR film and the electrode.
  • a force film is omitted.
  • a shunt film ⁇ a SAL (Soft Adjacent Layer) film is provided below the MR film.
  • the composite head floats at a minute distance (for example, several nm to several tens nm) from the disk. At such a distance that can be regarded as almost touching, the disk disk is rotating at a high speed, and the MR head also moves to change the position corresponding to the track address. For this reason, the disk and the MR head are actually in contact many times during operation. If the potential of the MR head and the potential of the disk disk differ during such contact, a short-circuit current will flow at the time of contact, and the MR head may be destroyed.
  • the disadvantage is that the characteristics of the head are degraded or the discharge current at the time of reading is read as noise.
  • both are set to the same ground potential.
  • a bias voltage for that purpose is provided by a low-impedance power supply, which is not practical.
  • VCC and VEE power supplies as in the embodiment of FIGS. 1 to 3 are used. In the vicinity of the midpoint voltage (GND), the width transistor of the lead amplifier is bypassed.
  • FIG. 11 is a plan view of one embodiment of a wire substrate used in the magnetic disk memory device according to the present invention.
  • the wiring board of this embodiment is
  • the connection between the head shown in FIG. 7 and the like, the read / write chip, and the control chip is made by the flexible wiring substrate.
  • This flexible wiring board is formed by the well-known EI spring substrate technology, and is provided with test pads for testing the electrical characteristics of the formed wiring. In other words, an electrode is applied to the test pad, and a test is performed to determine whether or not the wiring has desired transmission characteristics. This transfer characteristic also includes DC tests such as short circuits between wires, disconnection of signal lines, and so on.
  • the flexible wiring board has an electrode connected to the composite head at one end, a lead / write IC mounting part at the middle, and an electrode to connect to the control chip at the other end. .
  • the test pad is provided on the electrode part connected to the composite head and the electrode part connected to the control chip. When the above test is completed, the test pad is cut off at the dotted line.
  • FIG. 12 is a plan view showing an embodiment of the arm and suspension unit in the magnetic disk memory device according to the present invention.
  • (A) shows the mounting surface of the read / write IC
  • (B) shows the back surface thereof.
  • the composite head is connected to the flexible wiring board on the back side, and A read drive IC is mounted in the opening at the tip of the room.
  • the mounting space in the height direction of the IC can be secured by the thickness of the arm. That is, the overall thickness when the read / write IC is mounted on the arm can be reduced, and the overall height when a plurality of arms are stacked as shown in FIG. 8 can be reduced. This makes it possible to reduce the thickness of the hard disk memory device.
  • two chip capacitors are provided at the tip of the arm in addition to the read light IC as described above. If this chip capacitor is operated with dual power supplies VCC and VEE as shown in the embodiment of FIGS. It is a bus capacitor that stabilizes the power supply voltages VCC and VEE.
  • the number of chip capacitors provided together with the read-drive IC is increased by two. It can be reduced to individual. As a result, the moment of inertia when the arm seeks at high speed can be reduced, and the head can be moved quickly and smoothly.
  • FIG. 13 is an external view of an embodiment of the arm and suspension unit in the magnetic disk memory device according to the present invention.
  • FIG. 8 shows one arm, suspension and flexible wiring.
  • An open force is provided at the selected side of the arm, in other words, at the connection with the suspension, and the element mounting surface is formed so that it faces from the bottom to the upper surface.
  • Flexible Provided.
  • a front chip that constitutes the above-described read-out IC is provided.
  • Chip capacitors (pass capacitors) provided for capacitors and power supplies.
  • the front end of the flexible wiring is connected to the composite head as described above, and the other end is connected to an electrode of a mounting board mounted on a carriage and mounted with a control chip.
  • a positive voltage centering on the first potential of the circuit is placed on the tip of the arm (so-called suspension) to which the MR head is attached.
  • a semiconductor integrated circuit device that operates at the second potential at the potential and the third voltage at the negative potential, and in the semiconductor integrated circuit device, the first potential is the center voltage of the MR head;
  • a bias circuit for supplying a predetermined bias to both ends; a first and a second amplifying transistor to which the signals read from both ends of the MR head are respectively supplied to the base;
  • a capacitor provided between the first and second amplifying transistors for holding a DC bias voltage supplied to both ends of the MR head and flowing a signal current;
  • Collector output of amplification transistor Current feedback circuit that receives a signal and is slightly smaller than the emission currents of the first and second width transistors and that feeds back a current that is out of phase to reduce the signal current component flowing into the capacitor.
  • First and second resistive elements having a sufficiently larger resistance value at both ends of the MR head and having the first potential provided at the interconnection point thereof are provided.
  • a current source that supplies a bias current to the other end of the MR head, the first and second resistance elements, Even if the head does not break down or break due to short-circuit current at the time of contact due to the difference between the potential of the disc and the potential of the disc, the characteristics of the MR head deteriorate or the discharge current at reading causes noise.
  • the readout signal is output as a voltage signal, and the inductance component of the wire connecting the MR head and the read amplifier is directly affected. This has the effect that the readout power up to high frequencies becomes possible without limiting the extraction of high-frequency signals.
  • a first current source is provided between one end of the MR head and the second 3 ⁇ 4 ⁇ , and a transistor is provided between the other end of the MR head and the third 3 ⁇ 4EE.
  • the interconnection point of the first and second resistance elements is supplied to a first input terminal, and the transistor is controlled by a feed-in pump in which the first potential is applied to a second input terminal.
  • a load resistance element is provided between the collectors of the first and second amplifying transistors and the second 3 ⁇ 4ff, and the voltage signal formed by the load resistance element is set in a differential form.
  • An emitter resistor is provided at the emitter of the third and fourth transistors, and a constant current source is provided between the interconnection point of the emitter resistor and the second ⁇ S.
  • the first and second wide transistors are npn transistors
  • the third and fourth transistors of the current feedback circuit are pnp transistors
  • the collectors of the first and second amplification transistors are An npn-type transistor with a predetermined constant voltage applied to the base is further provided between the load resistance element and the parasitic resistance on the collector side of the first and second wide transistors. This has the effect of making it equivalently smaller and allowing amplification operations up to high frequencies to be performed.
  • the other end of the load resistance element is commonly connected, and a diode that performs a level shift operation is connected between the other end of the load resistance element and the current gain of the differential transistor circuit that constitutes the current feedback circuit. Since it can be set by the resistance ratio between the load resistance and the emitter resistance, the current feedback amount can be set with high accuracy and accuracy, and the desired amplification operation can be performed stably using the built-in capacity. Is obtained.
  • the load resistance element and the emitter resistor are constituted by a plurality of unit resistances formed to have the same resistance value, and the load resistance element includes a plurality of the unit resistances connected in series.
  • a composite head consisting of an MR head, a magnetic head, and a force is attached to the top end of the suspension, and the magnetic head is driven by the semiconductor integrated circuit device equipped with the read amplifier power.
  • Built-in write driver that minimizes the loss in the signal transmission path between the head and the signal processing circuit, achieves high-sensitivity, wideband read-write operation, and reduces the size of the hard disk drive. The effect of realizing patterning is obtained.
  • one end of the MR head is connected to the first potential, and the other end is supplied with a bias current from the second potential via the level shift means to the MR.
  • a signal read from the other end of the pad through the level shift means is supplied to the base of the first amplifying transistor, and an emitter resistor is provided between the emitter and the first potential.
  • a capacitor is built in the semiconductor integrated circuit device in parallel with the resistor, holds the DC bias voltage applied to the MR head, and connects a capacitor through which power and signal current flow.
  • the current that is slightly smaller than the emitter current of the first amplification transistor and the current whose phase is reversed is fed back to reduce the signal current component flowing into the capacitor, thereby simplifying the power supply device.
  • a second amplification transistor which is provided corresponding to the first amplification transistor, is supplied with a bias voltage corresponding to the base DC voltage of the first width transistor to the base, and operates as a dummy element, Load resistance elements are provided between the collectors of the first and second wide transistors and the second voltage, respectively, and the third and third voltage signals formed by the load resistance elements are made differential.
  • the emitter resistor is provided at the third and fourth emitters, and the interconnection point between the emitter resistor and the second emitter is provided.
  • a constant current source is provided between the first and second transistors, and the collector currents of the third and fourth transistors are returned to the emitters of the other second and first wide transistors. The current that is slightly smaller than the emitter current of the transistor can be fed back stably, and the current that is in phase opposite to that of the transistor can be stably fed back, and the signal current ⁇ flowing into the capacitor can be reduced.
  • the first and second wide transistors are npn transistors
  • the third and fourth transistors of the self-current feedback circuit are pnp transistors
  • the first and second transistors are Between the collector of the amplifying transistor and the load resistance element, an npn-type transistor having a predetermined constant E applied to the base is further provided, so that the first and second wide-band transistors are connected.
  • the effect is that the parasitic resistance on the side can be reduced equivalently, and the amplification operation up to a high frequency can be performed.
  • a disk-shaped magnetic storage medium that is driven to rotate via the rotary shaft of the drive mechanism and to which the first potential of the circuit is applied, and is attached to the distal end side with a MR head through a suspension On the connection side between the arm connected to the suspension and the suspension in the arm, receiving the second voltage made positive at the first potential of the circuit above and the third m ⁇ made negative at the negative potential
  • the first read amplifier is used as the read amplifier.
  • a bias circuit for supplying a predetermined bias voltage to both ends of the MR head with the electric potential as a center, and first and second signals supplied to the base from the signals read from both ends of the MR head, respectively.
  • a capacitor supplying a signal current holds the DC bias «1I supplied to both ends of the head to the MR
  • the first A signal current that receives the collector output signals of the first and second amplifying transistors is slightly smaller than the emitter current of the first and second wide transistors, and returns a current that is in opposite phase to flow into the capacitor.
  • It consists of a current feedback circuit that reduces the component, and obtains an output signal from the collector of the first and second amplifying transistors to reduce the inertial moment of the arm and speed up its movement, The effect is obtained that the size of the entire apparatus can be reduced.
  • a brush-like conductor as means for rotating the conductive shaft to which the plurality of storage media are attached by a spindle motor and setting the shaft to the same potential as the ground potential of the circuit.
  • the drive mechanism rotates a plurality of storage media, and a plurality of the suspensions, MR heads and read amplifiers are provided for each of the plurality of storage media, thereby realizing miniaturization and high reliability. An effect is obtained that a hard disk memory device realizing the H characteristic can be obtained.
  • the circuit for supplying the DC bias EE to the head can take various embodiments.
  • the MOSFET MN 1 in FIG. 4 can be replaced with a ⁇ ⁇ ⁇ type bipolar transistor.
  • bipolar transistors such as the amplification transistors QN1 and QN2 and the differential transistors QP1 and QP2 may be replaced with MOSFETs.
  • the capacitors C1 and C4, etc. built into the semiconductor integrated circuit device having such a read-amplifier function use a MOS capacitor and a nitride as a dielectric.
  • Various embodiments can be adopted, such as one using a metal film.
  • the configuration of the MR head can employ various embodiments other than the above-described embodiment.
  • the present invention uses an MR (magnetoresistive) head as a read head, and furthermore uses an inductive head as a read MR (magnetoresistive) head and a write head. It can be widely used for magnetic disk memory devices such as hard disk memory devices using composite heads that use the same.

Landscapes

  • Digital Magnetic Recording (AREA)

Abstract

A magnetic disk memory mounted thereon with a semiconductor integrated circuit device operated under a second voltage for applying a ground potential of a circuit to a disc-shaped magnetic storage medium and being kept at a positive potential at the free end of an arm to which an MR head is attached and centering around a first potential of the above circuit and under a third voltage kept at a negative potential, wherein the semiconductor integrated circuit device has built-in therein a bias circuit for biasing the above MR head to the vicinity of a voltage centering around the first voltage, and a lead amplifier which feedbacks a current slightly smaller than emitter currents of first and second amplifier transistors and kept in an opposite phase by using a current feedback circuit for supplying a read signal by the above MR head to the bases of the above first and second amplifier transistors and providing a capacitor between the emitters of the first and second amplifier transistors to receive their collector output signals, which reduces signal current components flowing into the above capacitor, and which receives output signals from the first and second amplifier transistors.

Description

明 細 書 磁気ディスクメモリ装置 技術分野  Description Magnetic disk memory device Technical field
この発明は、 磁気ディスクメモリ装置に関するものであり、 特に読み 出しへッ ドとして M R (磁気抵抗効果) 素子を用い、 そのへッド回路を サスペンション上に設けたものに利用して有効な技術、 さらには読み出 し用の M Rへッ ドと書き込み用へッ ドとしてインダクテ ブへッ ドを使 用した複合へッ ドを用いるものに利用して有効な技 ί!ίに関するものであ る。  The present invention relates to a magnetic disk memory device. In particular, the present invention relates to a technology effective when an MR (magnetoresistive effect) element is used as a read head and the head circuit is provided on a suspension. Further, the present invention relates to a technology which is effective when used for a compound head using an inductive head as an MR head for reading and a writing head.
背景技術 Background art
書き込み及び再生制御するへッド回路をサスペンション上に設けた磁 気へッド装置として、 特開平 3 - 2 5 7 1 7号公報があり、 ハードディ スク装置のへッ ド♦サスペンション, 配線一体型技術及び C O S (チッ プ ·オン 'サスペンション) 技術に関しては、 日経 B P社 1 9 9 8年 4 月 6日付 「日経エレクトロニスク」 第 1 6 7頁から第 1 7 7頁がある。 上記のような C O S技術においては、 へッドの高速移動のために搭載 されるチップを含めた電子回路の小型軽量化カ必須の技術となる。 つま り、 チップを含めた電子回路の重量が大きいと、 へッドが搭載されたァ ームの慣性モ一メン卜が大きくなつて、 その高速移動を妨げるように作 用するからである。  As a magnetic head device provided with a head circuit for controlling writing and reproduction on a suspension, there is Japanese Patent Application Laid-Open No. 3-257177. A head suspension of a hard disk device and a wiring integrated type are disclosed. For technology and COS (chip-on-suspension) technology, see Nikkei Business Publications, Nikkei Electronics, April 6, 1989, “Nikkei Electronics”, pp. 167-177. In the above-mentioned COS technology, it is indispensable to reduce the size and weight of electronic circuits including chips mounted for high-speed movement of the head. In other words, if the weight of the electronic circuit including the chip is large, the inertia moment of the arm on which the head is mounted becomes large, which acts to prevent the arm from moving at high speed.
そこで、 本願発明者等においては、 リードアンプ等の I Cチップの小 型軽量化に向けた回路工夫により小型及び高速化に適した磁気ディスク メモリ装置の開発に至った。  Therefore, the present inventors have developed a magnetic disk memory device suitable for miniaturization and high-speed operation by devising a circuit for reducing the size and weight of an IC chip such as a read amplifier.
したがって、 この発明は、 小型及び高速ィ匕を実現した磁気ディスクメ モリ装置を提供することを目的としている。 この発明は、 高感度で高周 波までの動作を実現した磁気ディスクメモリ装置を提供することを他の 目的としている。 この発明の前記ならびにそのほかの目的と新規な特徴 は、 本明細書の記述および添付図面から明らかになるであろう。 発明の開示 Therefore, the present invention provides a magnetic disk drive that realizes a compact and high-speed drive. It is intended to provide a memory device. Another object of the present invention is to provide a magnetic disk memory device that realizes operation up to high frequency with high sensitivity. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. Disclosure of the invention
本願において開示される発明のうち代表的なものの概要を簡単に説明 すれば、 下記の通りである。 すなわち、 回路の第 1電位が与えられた円 盤状の磁気記憶媒体に対応して、 M Rへッ ド力く取り付けられるアーム先 端部 (いわゆるサスペンション) 上に上記回路の第 1電位を中心にして 正電位にされた第 2 と、 負電位にされた第 3 とで動作する半導 体集積回路装置を搭載し、 かかる半導体集積回路装置に、 上記第 1電位 を中心電圧として上記 M Rへッドの両端に所定のバイアス電圧を供給す るバイアス回路と、 上記 MRへッ ドの両端からの読み出された信号がそ れぞれベースに供給された第 1と第 2の増幅トランジスタと、 上記第 1 と第 2の增幅トランジスタのエミッ夕間に設けられ、 上記 M Rへッドの 両端に供給される直流バイアス «Ιϊを保持するとともに信号電流を流す キヤバシタと、 上記第 1と第 2の增幅トランジスタのコレクタ出力信号 を受け、 上記第 1と第 2の増幅トランジスタのェミツ夕電流よりも僅か に/ j、さく、 力、つ逆位相にされた電流を帰還させて上記キャパシ夕に流れ 込む信号電流成分を小さくする電流帰還回路とからなり、 上記第 1と第 2の增幅トランジスタのコレクタから出力信号を得るリ一ドアンプを内 蔵させる。 図面の簡単な説明  The outline of a typical invention disclosed in the present application is briefly described as follows. In other words, corresponding to the disk-shaped magnetic storage medium to which the first potential of the circuit is applied, the first potential of the circuit is centered on the end of the arm (the so-called suspension) attached to the MR head. A semiconductor integrated circuit device that operates at a second potential set to a positive potential and a third potential set at a negative potential. The semiconductor integrated circuit device is provided with the MR head with the first potential as a center voltage. A bias circuit that supplies a predetermined bias voltage to both ends of the MR head; first and second amplifying transistors whose signals read from both ends of the MR head are respectively supplied to a base; A capacitor provided between the emitters of the first and second width transistors to hold a DC bias supplied to both ends of the MR head and to flow a signal current;增 width transistor collection Receiving the output signal, the current having a phase opposite to that of the emitter current of the first and second amplifying transistors is returned by / j, and the signal current component flowing into the capacitor is fed back. A lead amplifier for obtaining an output signal from the collectors of the first and second wide transistors is built in. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明に係る磁気ディスクメモリ装置に用いられるリー )一実施例を示す回路図であり、 FIG. 1 is a diagram showing a lead used in a magnetic disk memory device according to the present invention. FIG. 2 is a circuit diagram showing one embodiment,
第 2図は、 この発明に係る磁気ディスクメモリ装置に用いられるリー ドアンプの他の一実施例を示す回路図であり、  FIG. 2 is a circuit diagram showing another embodiment of the lead amplifier used in the magnetic disk memory device according to the present invention,
第 3図は、 この発明に係る磁気ディスクメモリ装置に用いられるリー ドアンプの他の一実施例を示す回路図であり、  FIG. 3 is a circuit diagram showing another embodiment of the lead amplifier used in the magnetic disk memory device according to the present invention.
第 4図は、 この発明に係る磁気ディスクメモリ装置に用いられるリ一 ドアンプの更に他の一実施例を示す回路図であり、  FIG. 4 is a circuit diagram showing still another embodiment of the read amplifier used in the magnetic disk memory device according to the present invention.
第 5図は、 この発明に係るリードアンプに用いられる抵抗素子の一実 施例のレイアウト図であり、  FIG. 5 is a layout diagram of an embodiment of the resistance element used in the read amplifier according to the present invention,
第 6図は、 この発明に係るハ一ドディスク装置の一実施例を示すプロ ック図であり、  FIG. 6 is a block diagram showing one embodiment of a hard disk drive according to the present invention.
第 7図は、 この発明に係るハ一ドディスク装置の一実施例を示す概略 構成図であり、  FIG. 7 is a schematic configuration diagram showing one embodiment of a hard disk drive according to the present invention.
第 8図は、 この発明に係るハードディスク装置の一実施例を示す要部 概略構造図であり、  FIG. 8 is a schematic structural diagram of a main part showing one embodiment of a hard disk drive according to the present invention.
第 9図は、 この発明に係る磁気ディスクメモリ装置におけるディスク 円板回転駆動系機構の一実施例を示す概略断面図であり、  FIG. 9 is a schematic cross-sectional view showing one embodiment of a disk rotating mechanism in the magnetic disk memory device according to the present invention;
第 1 0図は、 この発明に係る磁気ディスクメモリ装置に用いられる M ·ィンダクティブ複合へッドの一実施例を示す一部断面外観図であり 第 1 1図は、 この発明に係る磁気ディスクメモリ装置に用いられるフ レキシブル配線基板の一例を示す平面図であり、  FIG. 10 is a partially sectional external view showing an embodiment of an M-inductive composite head used in the magnetic disk memory device according to the present invention. FIG. 11 is a magnetic disk memory according to the present invention. FIG. 2 is a plan view showing an example of a flexible wiring board used in the device,
第 1 2図は、 この発明に係る磁気ディスクメモリ装置に用いられるァ —ム及びサスべンション部の一実施例を示す平面図であり、  FIG. 12 is a plan view showing an embodiment of an arm and a suspension section used in the magnetic disk memory device according to the present invention.
第 1 3図には、 この発明に係る磁気ディスクメモリ装置におけるァー ム及びサスペンション部の一実施例を示す外観図である。 発明を実施するための最良の形態 FIG. 13 is an external view showing an embodiment of the arm and suspension unit in the magnetic disk memory device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
この発明をより詳細に説述するために、 添付の図面に従つてこれを説 明する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1図には、 この発明に係る磁気ディスクメモリ装置の一実施例の読 み出し系要部構成がリードアンプとともに示されている。 リードアンプ を構成する各回路素子は、 公知の半導体集積回路の製造技術により、 単 結晶シリコンのような半導体基板上にお 、て形成される。  FIG. 1 shows a configuration of a main part of a reading system of a magnetic disk memory device according to an embodiment of the present invention, together with a read amplifier. Each circuit element constituting the read amplifier is formed on a semiconductor substrate such as single crystal silicon by a known semiconductor integrated circuit manufacturing technique.
装置電源は、 上記リードアンプが搭載された半導体集積回路装置に供 給する正の電源 SEV C Cと負の電源 mEV E E及びモー夕駆動装置に 供給する1 SEVMOを形成する。 The device power supply forms a positive power supply SEV CC supplied to the semiconductor integrated circuit device on which the read amplifier is mounted, a negative power supply mEV EE, and 1 SEVMO supplied to the motor drive device.
磁気記憶媒体としての磁気ディスク円板 (ハードディスク) は、 駆動 機構としてのモータにより回転駆動される。 このモータによる回転軸を 介して磁気ディスク円板の表面磁性体には回路の接地電位 (回路の第 1 電位) G N Dが与えられる。 このように接地電位 G N Dを与えるのは、 回転する磁気ディスク円板に溜まる不所望な電荷を抜くために好都合で あるカヽらでめる。  A magnetic disk (hard disk) as a magnetic storage medium is rotated by a motor as a drive mechanism. The ground potential of the circuit (first potential of the circuit) GND is applied to the surface magnetic material of the magnetic disk via the rotating shaft of this motor. The application of the ground potential GND in this manner is performed by a color that is convenient for removing undesired charges accumulated on the rotating magnetic disk.
読み出し用の MRヘッ ド (ないし磁気抵抗効果へッ ド、 以下同じ) は 、 上記ディスク円板との放電を防ぐために、 その一端カ让記回路の接地 電位 G N Dに接続され、 実質的に同電位にされる。 このように M Rへッ ドの一端に回路の接地電位 G N Dを与えると、 その他端の電圧は、 通常 M Rへッ ドの抵抗値が 2 0 Ω程度であり、 それに流すバイアス電流は 1 O m A程度なので、 0 . 2 V程度の微小な ¾ にしかならない。  The MR head for reading (or the magnetoresistive effect head, the same applies hereinafter) is connected at one end to the ground potential GND of the circuit to prevent discharge from the disk, and has substantially the same potential. To be. When the ground potential GND of the circuit is applied to one end of the MR head in this way, the voltage at the other end is usually about 20 Ω in resistance of the MR head, and the bias current flowing through it is 1 O mA It is only about 0.2 V, which is very small.
上言己磁気ディスクの高記憶密度に対応して高周波数までの信号読み 出しを行うようにするために電圧信号として取り出す必 がある。 なぜ なら、 上記 M Rへッ ドから磁気抵抗変化に対応した電流信号を取り出す ようにした場合、 前記のように MRへッドとリードアンプとを接続する ワイヤーのィンダクタンス^が直接作用して高周波信号の取り出しを 制限してしまうからである。 上記のように MRへッ ドの他端から磁気デ イスク円板の磁気記憶情報に対応した ¾E信号として取り出すようにす るために次のようなバイアス回路が用いられる。 In order to read signals up to a high frequency corresponding to the high storage density of the magnetic disk, it is necessary to extract the signals as voltage signals. The reason is to extract the current signal corresponding to the change in magnetoresistance from the MR head. In this case, the inductance ^ of the wire connecting the MR head and the read amplifier directly acts as described above to limit the extraction of the high-frequency signal. As described above, the following bias circuit is used to extract from the other end of the MR head as a ΔE signal corresponding to the magnetic storage information of the magnetic disk.
上記 M Rへッ ドの両端には、 かかる MRへッ ドの前記のような抵抗値 に比べて十分高い抵抗値にされた抵抗 R の一端がそれぞれ接続され、 他端力共通接続されるとともに回路の接地電位 G N D ( 0 V) が与えら れる。 これにより、 上記 M Rへッドの両端の ¾Eは、 上記接地電位を中 心にした微小な正電圧と負 とにされる。  To both ends of the MR head, one end of a resistor R having a resistance value sufficiently higher than the above-described resistance value of the MR head is connected, and the other end is commonly connected and a circuit is provided. The ground potential GND (0 V) is applied. Thereby, ΔE at both ends of the MR head is set to a minute positive voltage centered on the ground potential and a negative value.
上記正 SEに対応された M Rヘッ ドの一端側と正の ¾Eにされた電源 電圧 V C Cとの間にバイアス電流 I b 1を流す定電流源力設けられる。 同様に、 負電圧に対応された M Rへッ ドの他端側と負の電圧にされた電 源電圧 V E Eとの間に上記と同じ電流値にされたバイアス電流 I b 2を 流す定電流源が設けられる。  A constant current source for supplying a bias current Ib1 is provided between one end of the MR head corresponding to the positive SE and the positive power supply voltage V CC set to ΔE. Similarly, a constant current source that flows the bias current Ib2 with the same current value as described above between the other end of the MR head corresponding to the negative voltage and the negative supply voltage VEE. Is provided.
上記 M Rへッ ドの一端側に得られる読み出し信号は、 n p n型の增幅 トランジスタ Q N 1のベースに供給される。 上記 MRへッドの他端に得 られる読み出し信号は、 同様に n p n型の增幅トランジスタ Q N 2のべ —スに供給される。 そして、 これらの增幅トランジスタ Q N 1と Q N 2 のエミッ夕間には、 キャパシ夕 C 1力く設けられる。 このキャパシ夕 C 1 は、 上記 M Rへッ ドの両端に印加される直流バイアス を保持し、 力、 つ信号電流を流すようにして、 交流的には上記増幅トランジスタのエミ ッタを共通ィヒして差動増幅動作を行われる。  The read signal obtained at one end of the MR head is supplied to the base of an npn type wide transistor QN1. The read signal obtained at the other end of the MR head is similarly supplied to the base of an npn-type wide transistor QN2. The capacity transistor C 1 is provided between the emitters of the wide transistors Q N 1 and Q N 2. This capacitor C1 holds a DC bias applied to both ends of the MR head, and allows a power and a signal current to flow. Then, a differential amplification operation is performed.
一定の電流が流れることによって M Rへッドの両端に発生する ¾J£ V Xと V yは、 上記 M Rへッ ドにおける ¾ϊ降下分だけ直流レベルが異な る。 すると、 增幅トランジスタ Q N 1と Q N 2を差動增幅回路のように エミッタ結合させると、 無信号の定常状態で出力 R D X · R D Y間にォ フセッ 卜 が発生してしまう。 この事を防ぐために、 ハイパスフィル 夕としてのキャパシ夕 C 1を設けて交流的にエミッタ結合させている。 ちなみに、 このキヤバシタ C 1があまり小さい容量値であると、 そのィ ンビーダンスが大きくみえて、 低域のカットオフ周波数が高くなつてし まう (帯域の幅 G B積が小さくなる) 。 The ¾J £ VX and Vy generated at both ends of the MR head due to the flow of a constant current differ in DC level by ¾ϊdrop in the MR head. Then, the wide transistors QN 1 and QN 2 are connected like a differential wide circuit. With emitter coupling, an offset occurs between the output RDX and RDY in a steady state with no signal. In order to prevent this, a capacitor C1 is provided as a high-pass filter, and the emitter is coupled AC. By the way, if this capacitor C1 has a very small capacitance value, the impedance will look large and the low-frequency cutoff frequency will be high (the bandwidth GB product will be small).
上記キャパシタ C 1の容量値としては、 3 3 0 0 p F〜l のよう に大きくすること力 とされる。 このような容量値を実現するには外 付け容量を用いることになるが、前記のように磁気ディスクメモリ装置 の高速化や小型化を考慮すると、 上記のような比較的大きな容量値の外 付け部品を搭載する余地はない。 仮に、 上記のような容量を搭載した場 合には、 それに対応して磁気ディスクメモリ装置の小型化や高速化が損 なわれる。  The capacitance value of the capacitor C1 is set to a value such as 330 pF to l. To realize such a capacity value, an external capacity is used. However, considering the speeding up and miniaturization of the magnetic disk memory device as described above, the external capacity of a relatively large capacity value as described above is considered. There is no room for mounting components. If the above capacity is mounted, the size and speed of the magnetic disk memory device are correspondingly impaired.
本願発明では、 リ一ドアンプカ形成される半導体集積回路装置に内蔵 される比較的小さな容量値のキャパシタ C 1を用いつつ、 上記の外付け 容量と等価的に同等の作用するような回路的な工夫を行うものである。 つまり、 上記リードアンプを構成する他の回路素子とともに半導体集積 回路装置に内蔵されるキャパシ夕 C 1は、 比較的容量値が小さいものに なってしまうものであるが、 かかる容量値の小さなキャパシタ C 1を用 いつつ、 上記 M Rへッ ドの両端に印加される直流バイアス電圧を保持し 、 かつ上記信号成分に対応した電流を流して交流的には上記增幅トラン ジス夕に差動動作を行わせるため、 次のような電流帰還回路力く設けられ る。  According to the present invention, while using the capacitor C1 having a relatively small capacitance value incorporated in the semiconductor integrated circuit device formed with the lead amplifier, a circuit contrivance that acts equivalently to the above-mentioned external capacitance is used. Is what you do. In other words, the capacity C1 built into the semiconductor integrated circuit device together with the other circuit elements constituting the read amplifier has a relatively small capacitance value. While using 1, the DC bias voltage applied to both ends of the MR head is held, and a current corresponding to the signal component is passed to perform differential operation on the AC width in the alternating current. Therefore, the following current feedback circuit is provided.
上言己增幅トランジスタ Q N 1と Q N 2のコレクタは、 ベースに所定の バイアス ¾EV aが印加された n p n型トランジスタ Q N 3と Q N 4と が直列に接続され、 かかるトランジスタ Q N 3と QN 4を介して負荷抵 抗 RLの一端にそれぞれ接続される。 上記負荷抵抗 RLの他端は、 電源 電圧 VCCが供給される。 The collectors of the transistors QN1 and QN2 are connected in series with npn-type transistors QN3 and QN4 each having a base applied with a predetermined bias ベ ー ス EVa, and are connected via the transistors QN3 and QN4. Load resistor Each is connected to one end of the anti-RL. The other end of the load resistor RL is supplied with the power supply voltage VCC.
上記負荷抵抗 R Lで発生した信号電圧は、 p n p型の差動トランジス 夕 QP 1と QP 2のベースに供給される。 これらの差動トランジスタ Q P 1と Q P 2のェミツ夕には、 それぞれにェミッタ抵抗 R aの一端が接 続される。 このらのエミッタ抵抗 R aの他端と電源電圧 VCCとの間に は、 上記差動トランジスタ QP 1と QP 2の動作電流を形成する定電流 源 I a力〈設けられる。 そして、 これらのトランジスタ QP 1と QP 2の コレクタ電流は、 互いに他方の增幅トランジスタ QN 2と QN 1のエミ ッタに流れるようにされる。  The signal voltage generated by the load resistance RL is supplied to the bases of the pnp type differential transistors QP1 and QP2. One end of an emitter resistor Ra is connected to each of the emitters of the differential transistors QP1 and QP2. Between the other end of the emitter resistor Ra and the power supply voltage VCC, a constant current source Ia for forming the operating current of the differential transistors QP1 and QP2 is provided. The collector currents of these transistors QP 1 and QP 2 are made to flow to the emitters of the other wide transistors QN 2 and QN 1, respectively.
本願発明では P n p型の差動卜ランジス夕 QP 1, QP 2で構成され る電流帰還ァンプにおいて、 無信号状態では差動トランジスタ Q P 1と QP 2には、 バイァス電流 I aが I a / 2ずつ流れる。 磁気ディスク面 に言己憶された磁気記録清報に対応して MRへッ ドの X側の端子 (増幅卜 ランジスタ QN 1のベース) が AVx上昇し、 それに対応して增幅トラ ンジス夕 Q Ν 1に Δ I 1のような信号電流が流れたとする。 この ¾ϊ Δ V Xの上昇に対応するために、 キャパシタ C 1には本来上記信号電流に 対応した△ I 1が流れる。  In the present invention, in a current feedback pump composed of a P np type differential transistor QP 1 and QP 2, in a no-signal state, a bias current I a is applied to the differential transistors QP 1 and QP 2 by I a / 2. Flow by each. The X-side terminal of the MR head (the base of the amplification transistor QN1) rises AVx in response to the magnetic recording information recorded on the magnetic disk surface, and the width of the transistor changes accordingly. Assume that a signal current such as ΔI 1 flows in 1. In order to cope with this increase in ¾ϊΔVX, △ I1 originally corresponding to the signal current flows through the capacitor C1.
しかしながら、 本願発明では上記電流帰還回路の作用によって、 キヤ パシ夕 C 1には Δ I cのような微小な電流しか流れない。 つまり、 上記 增幅トランジスタ QN 1に流れる電流△ I 1により、 負荷抵抗 RLによ り発生する電圧降下が大きくなり、 ρ ηρ型トランジスタ QP 1のべ一 ス電位を下げる。 これにより、 トランジスタ QP 1のベース力く下がりそ のコレクタ電流力増える。  However, in the present invention, only a minute current such as ΔIc flows through the capacitor C 1 due to the operation of the current feedback circuit. That is, due to the current △ I1 flowing through the width transistor QN1, the voltage drop generated by the load resistance RL increases, and the base potential of the ρηρ transistor QP1 decreases. As a result, the base force of the transistor QP1 falls, and the collector current force increases.
同図では、 省略されているが, 磁気ディスク面に記憶された磁気記録 情報に対応して MRへッ ドの Y側の端子 (増幅トランジスタ QN 2のべ —ス) は AVy下降し、 それに対応して增幅トランジスタ QN2に一△ I 2のような信号電流が流れ、 pnp型トランジスタ QP 2のべ一ス電 位を上昇させて、 そのコレクタ電流を減少させている。 つまり、 上記差 動トランジスタ QP 1のコレクタ電流は I a/2 + Δ I aのように Δ I aだけ増加し、 トランジスタ QP 2のコレクタ電流は I a/2— Δ I a のように△ I aだけ減少する。 Although not shown in the figure, the Y-side terminal of the MR head (corresponding to the amplification transistor QN2) corresponds to the magnetic recording information stored on the magnetic disk surface. ス AV AV 、 AV AV AV AV AV AV AV AV 信号 AV, 、 信号 2 、 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号. ing. That is, the collector current of the differential transistor QP1 increases by ΔIa as Ia / 2 + ΔIa, and the collector current of the transistor QP2 increases by ΔIa as Ia / 2—ΔIa. decreases by a.
上記信号電流力く増加した増幅トランジスタ QN 1のエミッ夕に着目す ると、 上記信号電流 Δ I 1力く増加する反面、 増幅トランジスタ Q N 2に 対応して設けられた p n p型の差動トランジスタ QP 2のコレク夕電流 力く— Δ I aだけ減少する。 この結果、 キャパシタ C 1に流れ込む信号電 流 Δ I cは、 上記差分の電流 Δ I 1—△ I aのように減少させられる。 このように減った分の変化を ΔΙ&とすると実際、 C 1にチャージされる 上記電流 Δ I cは、 抵抗 R aを適度に設計し、 仮にゲインを 0. 9で設 計し Δ I a = 0. 9 Δ I 1に設定したすると次式 (1) となる。  Focusing on the emitter of the amplifying transistor QN1 whose signal current has increased, the pnp differential transistor QP provided corresponding to the amplifying transistor QN2, while increasing the signal current ΔI1 The current of the collector of power 2 is reduced by Δ I a. As a result, the signal current ΔIc flowing into the capacitor C1 is reduced as the above-mentioned difference current ΔI1− △ Ia. If the change thus reduced is ΔΙ &, the current ΔIc charged to C1 is actually designed by appropriately setting the resistance Ra and setting the gain to 0.9, and ΔIa = When 0.9 I1 is set, the following equation (1) is obtained.
Δ I c =Δ I 1 (1 - 0. 9 ) = 0. 1 Δ I 1 (1) これは、 本来の信号電流 Δ I 1がキャパシ夕 C 1にチャージされるも のであるが、 上記のような電流帰還回路を設けることによって 1/1 0 の電流し力、流さないということであり、 キャパシ夕 C 1の容量値をみか け上 10倍に見せることができる。  Δ I c = Δ I 1 (1-0.9) = 0.1 Δ I 1 (1) This is the original signal current ΔI 1 that is charged to the capacitor C 1, By providing such a current feedback circuit, it is possible to make the current value of 1/10 and not to flow, and it is possible to make the capacitance value of the capacitor C 1 appear 10 times higher.
このことは、 みかけ上の容量 C Γ は、 式 (2) のように表すこと力《 できる。  This means that the apparent capacitance C 力 can be expressed as in equation (2).
C 1' =C 1 ΧΔ I 1/ (Δ I 1 -Δ I a) (2) 上記のように容量値を 10倍にみせた程度では、 半導体集積回路装置 に内蔵するキャパシ夕 C 1の容量値を 330 pF〜0. 1 Fのように まで大きく形成すること力 となり、 仮に内蔵した場合でも大きな専 有面積を必要とするという問題が生じる。 したがって、 半導体集積回路 装置に内蔵されるキャパシ夕 C 1を用いて、 等価的に上記のような 33 0 0 p F~l Fのような大きな容量値にみせるためには、 上記電流帰 還回路での電流ゲインを 0. 95 (容量は 20倍) 、 0. 9 7倍 (容量 は 33倍) 程度には設計すればよい。 C 1 '= C 1 ΧΔ I 1 / (Δ I 1 -Δ I a) (2) If the capacitance value is increased by a factor of 10 as described above, the capacitance of the capacitor C 1 built in the semiconductor integrated circuit device This is a force to form the value as large as 330 pF to 0.1 F, and even if it is built-in, there is a problem that a large occupied area is required. Therefore, semiconductor integrated circuits Using the capacity C1 built into the device, in order to equivalently display a large capacitance value such as 3300 pF to 1F as described above, the current gain in the current feedback circuit must be adjusted. The design should be about 0.95 (20 times capacity) and 0.97 times (33 times capacity).
上言己增幅トランジスタ QN 1と QN 2のコレクタから得られる增幅出 力は、 次段増幅回路 (2 n d AMP) の入力に伝えられ、 ここで增幅 されて、 後述する信号処理回路に伝えられる。  The width output obtained from the collectors of the width transistors QN 1 and QN 2 is transmitted to the input of the next-stage amplifier (2 nd AMP), where it is amplified and transmitted to a signal processing circuit described later.
特に制限されないが、 同図において電源 «EVC Cと VE Eと回路の 接地電位 GNDとの間には、 それぞれに電圧安定化のためのコンデンサ (いわゆるパスコン) C 2と C 3が設けられる。 このようなバスコンは 、 電源安定ィ匕のために大きな容量値とされること力 <必要であり、 半導体 集積回路装置の外付容量により構成される。 上記電源 ¾EVC Cと VE Eに余裕があれば、 半導体集積回路装置に電源安定ィ匕回路を内蔵して上 記バスコンを省略することもできる。  Although not particularly limited, in the figure, capacitors (so-called decaps) C2 and C3 for stabilizing the voltage are provided between the power supplies EVEVC C and VEE and the ground potential GND of the circuit, respectively. Such a bus capacitor is required to have a large capacitance value for stabilizing the power supply, and is constituted by an external capacitor of the semiconductor integrated circuit device. If there is room in the power supplies EVC C and V E, a semiconductor integrated circuit device may have a built-in power supply stabilizing circuit and the above-mentioned bus capacitor may be omitted.
第 2図には、 上記リ一ドアンプの他の一実施例の回路図が示されてい る。 この実施例では、 增幅トランジスタ QN1と QN 2のコレクタに設 けられる負荷抵抗 R Lの電源電圧側に、 レベルシフ ト用のダイォ一ドが 設けられる。 このダイオードは、 ベースとェミッタとを接続した ρ n p 型のダイォ一ド形態のトランジスタを用いることこができる。  FIG. 2 shows a circuit diagram of another embodiment of the lead amplifier. In this embodiment, a level shift diode is provided on the power supply voltage side of the load resistance RL provided to the collectors of the wide transistors QN1 and QN2. As this diode, a pnp type transistor in which a base and an emitter are connected can be used.
この実施例のようなレベルシフ卜用のダイォ一ドを設けた場合、 電流 帰還回路を構成する差動トランジスタ QP 1と QP 2のベース, エミッ 夕間 «if力 上記ダイオードの順方向 «ΙΪと相殺され、 負荷抵抗 Rしと ェミッ夕抵抗 R aの抵抗比に対応して上記電流ゲインを設定することが できる。  When a diode for level shift as in this embodiment is provided, the bases of the differential transistors QP 1 and QP 2 constituting the current feedback circuit, and the emission time «if force cancel with the forward direction« ΙΪ of the diode. Thus, the current gain can be set in accordance with the resistance ratio of the load resistance R and the resistance R a.
第 3図には、 この発明に係る磁気ディスクメモリ装置の他の一実施例 の読み出し系要部構成がリードアンプとともに示されている。 リードア ンプは、 前記第 1図の実施例と同様であり、 MRへッ ドのバイアス回路 にフィ一ドバックアンプ F B Aが用いられる。 つまり、 上記 MRへッ ド の一端側 Vxにはバイアス電流を形成する定電流源 I b 1力設けられ、 他端側 V yと電源電圧 V E Eとの間には、 可変電流源としての Nチヤン ネル型 MOSFETMN 1力く設けられる。 FIG. 3 shows a configuration of a main part of a reading system together with a read amplifier in another embodiment of the magnetic disk memory device according to the present invention. Read Door The amplifier is the same as that of the embodiment shown in FIG. 1, and a feedback amplifier FBA is used for the bias circuit of the MR head. In other words, one constant current source Ib for forming a bias current is provided at one end Vx of the MR head, and an N channel as a variable current source is provided between the other end Vy and the power supply voltage VEE. Flannel type MOSFET MN 1
この MO S F ETMN 1のゲー卜には、 フィ一ドバックアンプ F B A の出力信号が供給される。 上記フィ一ドバックアンプ F B Aの一方の入 力である反転入力端子 (―) には、 回路の接地電位 GNDが与えられ、 他方の入力である非反転入力端子 (十) は、 上記抵抗 Rgの相互接続点 と接続される。  The output signal of the feedback amplifier FBA is supplied to the gate of the MOSFETMN1. One input of the feedback amplifier FBA, the inverting input terminal (-), is the ground potential of the circuit, and the other input is the non-inverting input terminal (10). Connected to connection point.
上記フィードバックアンプ F B Aは、 上記抵抗 R gの相互接続点の電 位が接地電位 G N Dより高くなると、 Nチヤンネル型 MO S FETMN 1のゲート電圧を上昇させて、 そのドレイン電流を增加させる。 これに より、 上記抵抗 Rgの相互接続点の電位を低く抑える。 逆に、 上記抵抗 Rgの相互接続点の電位が接地電位 G N Dより低くなると、 上記フィ一 ドバックアンプ FB Aは、 Nチヤンネル型 MOSFETMN 1のゲ一卜 電圧を低下させて、 そのドレイン電流を減少させる。 これにより、 上記 抵抗 R gの相互接続点の電位を高く補正する。 このようなフィードバッ ク動作によって、 上記抵抗 R gの相互接続点の電位を接地電位 G N Dに 等しくなるように制御する。  When the potential at the interconnection point of the resistor Rg becomes higher than the ground potential GND, the feedback amplifier FBA raises the gate voltage of the N-channel MOS FETMN1 to increase its drain current. As a result, the potential at the interconnection point of the resistor Rg is kept low. Conversely, when the potential at the interconnection point of the resistor Rg becomes lower than the ground potential GND, the feedback amplifier FBA reduces the gate voltage of the N-channel MOSFET MN1 and reduces its drain current. . Thereby, the potential of the interconnection point of the resistor Rg is corrected to be high. By such a feedback operation, the potential of the interconnection point of the resistor Rg is controlled to be equal to the ground potential GND.
上記 MOSFETMN 1のゲートに設けられるキャパシタ C 4は、 安 定化容量であり、 半導体集積回路装置に形成される比較的小さな容量値 の容量により実現できる。  The capacitor C4 provided at the gate of the MOSFET MN1 has a stabilizing capacitance, and can be realized by a relatively small capacitance formed in the semiconductor integrated circuit device.
第 4図には、 この発明に係る磁気ディスクメモリ装置に設けられるリ -ドアンプの他の一実施例の回路図が示されている。 MRへッドの一端 に回路の接地電位 GNDを与えると、 その他端の ¾ϊ力く前記のように 0 . 2 V程度の微小な ¾Eにしかならない。 そこで、 M Rへッドの他端側 にはレベルシフ卜用のダイォ一ド (又はベースとコレクタと力接続され たダイォ―ド接続のトランジスタ) を介して定電流源 I b 1からバイァ ス電流が供給される。 FIG. 4 is a circuit diagram showing another embodiment of the lead amplifier provided in the magnetic disk memory device according to the present invention. When the ground potential GND of the circuit is applied to one end of the MR head, the other end is forced to zero as described above. Only a small ¾E of about 2 V. Therefore, a bias current is supplied from the constant current source Ib1 to the other end of the MR head via a diode for level shift (or a diode-connected transistor forcibly connected to the base and the collector). Supplied.
上記 M Rへッ ドのダイォ一ドを介した他端の電圧は、 n p n型の增幅 トランジスタ Q N 1のベースに供給される。 このトランジスタ Q N 1の エミ ッ夕には、 直流バイアス電流を設定するための抵抗 R 1と、 高感度 增幅を行うようそのエミッタを交流的に接地するキャパシ夕 C 1とが設 けられる。 これにより、 増幅トランジスタ Q N 1の信号利得は、 コレク 夕に設けられた負荷抵抗 Rしと、 上記トランジスタにおける小さな抵抗 値にされるェミッタ抵抗との抵抗比により決まる大きな電圧利得を実現 することができる。  The voltage at the other end via the above-mentioned MR head diode is supplied to the base of an npn-type wide transistor QN1. The emitter of the transistor QN1 is provided with a resistor R1 for setting a DC bias current and a capacitor C1 for alternatingly grounding its emitter to provide high sensitivity. As a result, the signal gain of the amplifying transistor QN1 can realize a large voltage gain determined by the resistance ratio between the load resistance R provided in the collector and the emitter resistor having a small resistance value in the transistor. .
上記增幅トランジスタ Q N 1のコレクタには、 ベースに定 が印加 された n p n型のトランジスタ Q N 3を介して負荷抵抗 R L力く設けられ るものであり、 上記抵抗 R Lから出力信号力く得られる。  The collector of the wide transistor QN1 is provided with a load resistance RL through an npn-type transistor QN3 having a constant applied to its base, and an output signal is obtained from the resistance RL.
この場合、 前記同様にキヤバシ夕 C 1を半導体集積回路装置に内蔵さ せるものであり、 その結果比較的小さな容量値のキャパシタを用いるこ とになる。 このような小さな容量値のキャパシタ C 1を用いた場合、 增 幅トランジスタ Q N 1のェミ ッタに接続されるィンビーダンスを大きく して上記大きな信号利得が得られな 、。  In this case, similarly to the above, the calibrator C1 is built in the semiconductor integrated circuit device, and as a result, a capacitor having a relatively small capacitance value is used. When the capacitor C1 having such a small capacitance value is used, the impedance connected to the emitter of the wide transistor QN1 is increased, so that the large signal gain cannot be obtained.
そこで、 半導体集積回路装置に形成されるような小さな容量値のキヤ パシ夕を用 L、ても等価的に前記のように大きな容量値にみせるようにす るために電流帰還回路が設けられる。 この実施例では、 電流帰還回路を 構成するために、 ダミーの增幅トランジスタ Q N 2力く設けられる。 この 增幅トランジスタ Q N 2のベースには、 トランジスタ Q N 1のベースに 供給される直流 くィァス電圧と同等の直流 くィ Ύス電圧が供給される。 そして、 同様にコレクタには前言己同様なトランジスタ Q N 4を介して ダミ一の負荷抵抗 R Lが設けられ、 上記の負荷抵抗 R Lにより形成され た電圧信号を、 P n p型の差動トランジスタ Q P 1と Q P 2のベースに 供給し、 そのコレクタ電流を互いに他方の增幅トランジスタ QN 2と Q N 1のェミツ夕側に帰還させる。 Therefore, a current feedback circuit is provided in order to use a capacitor having a small capacitance value as formed in a semiconductor integrated circuit device, but to make the capacitance value equivalently large as described above. In this embodiment, to form a current feedback circuit, two dummy wide transistors QN are provided. The base of the wide transistor QN2 is supplied with a DC bias voltage equivalent to the DC bias voltage supplied to the base of the transistor QN1. Similarly, the collector is provided with a dummy load resistor RL through a transistor QN4 similar to the above, and the voltage signal formed by the load resistor RL is connected to a P np type differential transistor QP1. It is supplied to the base of QP2, and its collector current is fed back to the emitter side of the other wide transistors QN2 and QN1.
この結果、 前記第 1図のリ一ドアンプの場合と同様に、 増幅トランジ スタ Q N 1のエミッタに流れる信号電流は、 入力信号に対応して增幅ト ランジスタ Q N 1で形成された信号電流と、 上言己差動トランジスタ Q P 2のコレクタから供給され、 逆位相にされた電流との差分に対応した微 小電流しかキャパシ夕 C 1に流れない。 これにより、 前記同様に半導体 集積回路装置に形成されたキャパシタ C 1の容量値をみかけ上、 上記差 動トランジスタの電流利得に対応して大きくしたものと同等の動作を行 わせることができる。  As a result, as in the case of the lead amplifier shown in FIG. 1, the signal current flowing through the emitter of the amplification transistor QN1 corresponds to the signal current formed by the wide transistor QN1 corresponding to the input signal. Only a small current corresponding to the difference between the current supplied from the collector of the differential transistor QP2 and the phase-shifted current flows through the capacitor C1. As a result, an operation equivalent to that obtained by increasing the capacitance value of the capacitor C1 formed in the semiconductor integrated circuit device in accordance with the current gain of the differential transistor can be performed.
回路の安定化のためには、 上記のようにダミ一の增幅トランジスタ Q N 2を設けるこけとが望ましい力 上記差動トランジスタ Q P 2のべ一 スに、 無信号時の差動トランジスタ Q P 1のベースに与えられる直流電 圧と同等のバイァス ¾ϊを直接に供給するものであつてもよい。  In order to stabilize the circuit, it is desirable to provide the dummy wide transistor QN2 as described above. The base of the differential transistor QP1 when there is no signal is added to the base of the differential transistor QP2. It may be one that directly supplies a bias ¾ϊ equivalent to the DC voltage applied to the power supply.
第 5図には、 上記増幅トランジスタに設けれる負荷抵抗と、 上記電流 帰還回路を構成する差動トランジスタのェミッタに設けられる抵抗との —実施例のレイアウト図が示されている。  FIG. 5 shows a layout diagram of an embodiment of the load resistance provided in the amplification transistor and the resistance provided in the emitter of the differential transistor constituting the current feedback circuit.
この実施例では、 上記電流帰還回路の電流利得の設定力く、 回路動作の 安定化のためには重要な役割を果たすのである。 そのために、 上記負荷 抵抗 R Lとエミッ夕抵抗 R aの抵抗比の製造ばらつきが大きいと、 安定 した回路動作が望めない。 逆にいうと、 等価的に必 な容量値が確保で きないリードアンプでは、 所望の増幅信号が得られなく不良チップとな り、 製品^りが悪くなる。 そこで、 同じサイズにされた単位抵抗 Rを用い、 負荷抵抗 R Lは複数 の単位抵抗 Rを直列形態に接続して所望の比較的大きな抵抗値を得るよ うにするものである。 これに対して、 差動トランジスタ Q P 1と Q P 2 のエミッ夕に設けられる抵抗 R aは、 上記単位抵抗 Rを並列形態に接続 して所望の小さな抵抗値を得るようにするものである。 In this embodiment, the current feedback circuit has a large current gain setting capability and plays an important role in stabilizing the circuit operation. Therefore, if there is a large manufacturing variation in the resistance ratio between the load resistance RL and the emission resistance Ra, stable circuit operation cannot be expected. Conversely, in the case of a read amplifier in which a required capacitance value cannot be equivalently secured, a desired amplified signal cannot be obtained, resulting in a defective chip and a poor product quality. Therefore, the unit resistor R having the same size is used, and the load resistor RL is such that a plurality of unit resistors R are connected in series to obtain a desired relatively large resistance value. On the other hand, the resistor Ra provided at the emitter of the differential transistors QP1 and QP2 connects the unit resistor R in a parallel configuration to obtain a desired small resistance value.
周知のように同じ半導体集積回路装置内に形成される同じ素子の相対 比は、 上記のような製造ばらつきに対して高い精度で形成できる。 これ により、 半導体集積回路装置に形成される比較的大きな製造ばらつきを 持つ抵抗を用いつつ、 安定的に上記電流帰還回路の電流ゲインを高い精 度で設定できることとなり安定した回路動作を実現しつつ、 製品^り を高くすることができる。  As is well known, the relative ratio of the same element formed in the same semiconductor integrated circuit device can be formed with high accuracy with respect to the above-mentioned manufacturing variation. As a result, the current gain of the current feedback circuit can be set stably with high accuracy while using a resistor having a relatively large manufacturing variation formed in the semiconductor integrated circuit device, thereby realizing stable circuit operation. The product quality can be increased.
第 6図には、 この発明に係る磁気ディスクメモリ装置の一実施例のブ ロック図が示されている。 この実施例の磁気ディスクメモリ装置はハー ドディス装置に向けられており、 記憶媒体としての複数のディスク円板 と、 それらのディスク円板を,駆動するモ一夕と、 上記ディスク円板の両 面に記憶された磁気記憶情報をそれぞれ読み出す複数からなる M Rへッ ドと、 力、かる MRへッドに対応して設けられる複数のリードアンプ、 後 段アンプ、 及び書き込み用の磁気 (インダクティブ) へッ ド I N Dとそ れを. I区動するライ卜ドライバをそれぞれ備えた複数のリードライ トチッ プと、 上記リードライトチップとの間で信号の授受を行うコントロール チップ及び信号処理 L S Iと、 上位装置とのインタ一フェイスとから構 成される。 上記ディスク円板は、 その中心部がモータにより回転させら れる共通の回転軸に取付けられ、 かかる回転軸に接地電位が与えられる ことにより、 上記複数のディスク円板の記憶面の電位が接地電位にされ る。  FIG. 6 is a block diagram of one embodiment of the magnetic disk memory device according to the present invention. The magnetic disk memory device of this embodiment is directed to a hard disk device, a plurality of disk disks as storage media, a motor for driving the disk disks, and both surfaces of the disk disks. To multiple MR heads, each of which reads the magnetic storage information stored in the memory, and to multiple read amplifiers, post-amplifiers, and write magnetism (inductive) provided for the MR head A plurality of read / write chips each having a write driver for moving the read / write chip, a control chip and a signal processing LSI for transmitting / receiving signals to / from the read / write chip, and a host device. Interface. The discs are mounted on a common rotating shaft whose center is rotated by a motor, and a ground potential is applied to the rotating shaft, whereby the potential of the storage surfaces of the plurality of discs is reduced to the ground potential. It is made.
前記のように複数のディスク円板の両面に対応して設けられた複数の リ一ドライ卜チップにそれぞれ 1個のリードアンプとそれに対応した後 段信号増幅回路とライトドライバを設けた構成は、 次のようなチップの 実装形態を採ることができる。 つまり、 リ一ドライトチップを M Rへッ ド M Rと磁気へッド I N Dとからなる複合へッ ドに隣接して配置し、 上 記 M へッドからの微小な読み出し信号が比較的長 L、信号伝達経路を使 つて伝達された場合の信号ロスを最小にして、 高感度及び高帯域増幅動 作を実現するようにするものである。 As described above, a plurality of discs are provided corresponding to both surfaces of the discs. The configuration in which one read amplifier, one post-amplifier circuit corresponding to it, and a write driver are provided for each of the read-write chips can take the following chip mounting forms. In other words, the read / write chip is placed adjacent to the composite head consisting of the MR head MR and the magnetic head IND, and the small read signal from the M head is relatively long L. It is intended to minimize signal loss when transmitted using a signal transmission path and realize high-sensitivity and high-band amplification operation.
第 7図には、 この発明に係るハードディスク装置の一実施例の概略構 成図が示されている。  FIG. 7 shows a schematic configuration diagram of an embodiment of the hard disk device according to the present invention.
上記複数のディスク円板はシャフ卜によって一定の間隔をもって同心 状に連結される。 この実施例では、 互いに向き合う 2つのディスク面に 1つのアームが伸びて、 サスペンションアームによって分岐して上記両 面に上記複合へッ ドがそれぞれ接触するように実装される。 へッ ドは、 ディスク円板が停止状態ではディスク面に接触している力 ディスクが 高速回転状態ではそれによつて発生する空気流よつて微小な間隙をもつ て浮上している。 リ一ドノライ ト動作は上記へッ ドがディスク面を浮上 した状態で行われる。  The plurality of disk disks are concentrically connected at a certain interval by a shaft. In this embodiment, one arm extends on two disk surfaces facing each other, is branched by a suspension arm, and is mounted such that the composite head comes into contact with both surfaces. When the disk is stopped, the head is in contact with the disk surface. When the disk is rotating at high speed, it floats with a small gap due to the airflow generated by the force. The read / write operation is performed with the head flying above the disk surface.
この実施例では、 上記アーム先端側、 つまりサスペンションアームと の取り付け部に上記リードライ トチップが搭載される。 これにより、 リ 一ドライ トチップとへッ ドとの間、 言い換えるならば、 MRへッドとリ ―ドアンプ、 磁気へッドとライ 卜ドライバとの間の信号配線を上記サス ペンションアームの長さに対応して短くすることができ、 これに応じて 信号配線での寄生抵抗、 寄生ィンダク夕ンス成分等のような信号を減衰 させる要因を最小に設定して上記高感度及び高帯域動作を実現するもの である。  In this embodiment, the lead tip is mounted on the tip side of the arm, that is, on the mounting portion with the suspension arm. As a result, the signal wiring between the read-write chip and the head, in other words, the MR head and the lead amplifier, and the signal wiring between the magnetic head and the write driver, have the length of the suspension arm. Accordingly, the above-described high sensitivity and high band operation are realized by setting the factors that attenuate the signal such as the parasitic resistance and the parasitic inductance component in the signal wiring to the minimum. Is what you do.
前記複数のへッドの中から 1つを選択する等の動作を行うコント口一 ルチップや信号処理 L S Iは、 アームの他端側に取り付けるようにするA controller that performs operations such as selecting one of the multiple heads Chip and signal processing LSI should be attached to the other end of the arm.
! このコントロールチップとリードライトチップとの間は、 上記アーム の長さに対応して比較的長くされる力 上記リ一ドライ卜チップが介在 しているため、 その信号成分が大きいからそこでの信号口スを無視する ことができる。 ! The force between the control chip and the read / write chip is relatively long according to the length of the arm. Signal ports can be ignored.
第 8図には、 この発明に係るハードディスク装置の一実施例の要部概 略構造図が示されている。 リ一ドライトチップは、 前記のようなサスぺ ンションアームの根元に取り付けられる。 このサスペンションアームの 先端には上記 M Rへッ ドと磁気へッ ドからなる複合へッ ドカ取り付けら れている。  FIG. 8 is a schematic structural view of a main part of an embodiment of the hard disk device according to the present invention. The read light chip is attached to the base of the suspension arm as described above. A composite head consisting of the MR head and the magnetic head is attached to the tip of the suspension arm.
複数のディスク円板に対応して上記複数のアーム及びサスペンション アームが重ね合わせた状態で連結されており、 前記コントロールチップ は、 複数からなるアームで形作られる側面を利用してそこに実装される 。 このようなリードライ トチップ及びコントロールチップの実装形態を 採用することにより、 上記のように信号伝達経路でのロスを最小にして 、 高感度で広帯域のリ一ド動作及びハードディスク装置の小型化を実現 することができるものとなる。  The plurality of arms and the suspension arm are connected in a state of being overlapped with each other in correspondence with a plurality of disk disks, and the control chip is mounted thereon using a side surface formed by the plurality of arms. By adopting such a mounting form of the read / write chip and the control chip, the loss in the signal transmission path is minimized as described above, and a high-sensitivity, wide-band read operation and a compact hard disk drive are realized. Can be done.
第 9図には、 ディスク円扳回転駆動系機構の一実施例の概略断面図が 示されている。 スピンドルモ一夕のシャフトは、 導体性を持つ金属によ り構成され、 かかるシャフ卜に接地電位を与えるためにのブラシ状の導 電体が設けられる。 この導電体は、 シャフトの表面と接触することによ り回路の接地電位を供給する。 シャフ卜には、 上記のような複数のディ スク円板が取付けられ、 その表面と裏面に形成された磁性体に接地電位 を与えるものである。 このような接地電位の供給によって、 ディスク円 板に溜まる電荷を引き抜くことができ、 前記のような MRへッドの一端 を接地電位にすることにより両者の間での放電を防ぐことができる。 第 1 0図には、 M R♦インダクティブ複合へッ ドのー実施例の一部断 面外観図が示されている。 同図 (A) は、 上記 2つの素子の全体図が示 され、 (B ) にはそのうちの M R素子の拡大図が示されている。 同図 ( A) において、 インダクティブ素子は、 書き込み用として用いられ、 上 部磁性膜と、 下部磁性膜兼上部シールド膜と、 上記 2つの磁性膜の間に 挟まれるように構成された導体から構成される。 MR素子は、 半導体素 子と同じく微細加工技術によりゥヱノ、上で作られており、 下部シールド 膜上に 2つの電極に挟まれて M R膜が形成されるものである。 上記拡大 図 (B ) に示すように、 この M R膜と電極との間には、 磁区制御膜力設 けられている。 同図においては省略されている力 <、 M R膜の下層にはシ ャント膜ゃ S A L (Soft Adjacent Layer)膜が設けられる。 FIG. 9 is a schematic sectional view of one embodiment of the disk-circular rotary drive system mechanism. The shaft of the spindle motor is made of a conductive metal, and a brush-like conductor is provided to apply a ground potential to the shaft. This conductor provides the ground potential of the circuit by making contact with the surface of the shaft. A plurality of disk disks as described above are attached to the shaft, and a ground potential is applied to the magnetic material formed on the front and back surfaces thereof. By supplying such a ground potential, the electric charge accumulated on the disc can be extracted, and by setting one end of the MR head to the ground potential as described above, discharge between the two can be prevented. FIG. 10 shows a partially cutaway external view of the embodiment of the MR ♦ inductive composite head. FIG. (A) shows an overall view of the above two elements, and (B) shows an enlarged view of the MR element. In FIG. 3A, the inductive element is used for writing, and is composed of an upper magnetic film, a lower magnetic film and an upper shield film, and a conductor configured to be sandwiched between the two magnetic films. Is done. The MR element is fabricated on the top and bottom using the same microfabrication technology as the semiconductor element, and the MR film is formed on the lower shield film sandwiched between two electrodes. As shown in the enlarged view (B), a magnetic domain control film is provided between the MR film and the electrode. In the figure, a force film is omitted. A shunt film シ a SAL (Soft Adjacent Layer) film is provided below the MR film.
上記複合へッ ドは、 ディスク円板と微小な距離 (例えば数 n m〜数十 n m) をもって浮いている。 このようなほとんど接 しているとみなさ れるような距離で、 ディスク円板は高速回転しており、 M Rへッ ドもト ラックアドレスに対応して位置を変えるために動く。 このため、 デイス ク円板と MRへッ ドは動作中において実際には何回も接触している。 こ のような接触時に、 MRへッドの電位とディスク円板の電位力異なると 、 接触時に短絡電流が流れて M Rへッ ドを破壊してしまうことや、 破壊 まで至らなくても M Rへッ ドの特性劣化あるいは読み出し時の放電電流 がノイズとして読み出されてしまうという不都合力生じる。  The composite head floats at a minute distance (for example, several nm to several tens nm) from the disk. At such a distance that can be regarded as almost touching, the disk disk is rotating at a high speed, and the MR head also moves to change the position corresponding to the track address. For this reason, the disk and the MR head are actually in contact many times during operation. If the potential of the MR head and the potential of the disk disk differ during such contact, a short-circuit current will flow at the time of contact, and the MR head may be destroyed. The disadvantage is that the characteristics of the head are degraded or the discharge current at the time of reading is read as noise.
この実施例では、 ディスク円板と M Rへッドが異電位であることによ つて起こる放電を防ぐために、 両者を同じく接地電位に設定するもので ある。 理論的には、 上記両者の電位が同じくされていれば上記のような 放電は生じないが、 そのためのバイアス電圧を低ィンピ一ダンスの電源 を設ける があり実際的ではない。 磁気デイクスメモリ装置の持つ電 源の中で一番安定していて簡単な回路の接地電位を利用することにより 、 電源装置の負担を軽くすることができる。 そして、 このような回路の 接地電位を用いつつ、 高感度でのリードアンプを構成するために、 前記 第 1図〜第 3図の実施例のような二電源 (V C Cと V E E ) を用い、 そ の中点電圧 ( G N D ) 付近でリ一ドアンプの增幅トランジスタをバイァ スし、 あるいは第 4図の実施例のように一電源 (V C C ) で動作するリ -ドアンプではレベルシフ卜用のダイォ一ドを揷入するものである。 第 1 1図には、 この発明に係る磁気ディスクメモリ装置に用いられる 線基板の一実施例の平面図が示されている。 この実施例の配線基板はIn this embodiment, in order to prevent a discharge caused by the disk disk and the MR head having different potentials, both are set to the same ground potential. Theoretically, if the two potentials are the same, the above-described discharge does not occur, but a bias voltage for that purpose is provided by a low-impedance power supply, which is not practical. By using the ground potential of the most stable and simple circuit among the power supplies of magnetic disk memory devices, However, the burden on the power supply can be reduced. In order to configure a read amplifier with high sensitivity while using the ground potential of such a circuit, two power supplies (VCC and VEE) as in the embodiment of FIGS. 1 to 3 are used. In the vicinity of the midpoint voltage (GND), the width transistor of the lead amplifier is bypassed. Alternatively, as shown in the embodiment of FIG. 4, in the lead amplifier operating with one power supply (VCC), a diode for level shift is used. What you buy. FIG. 11 is a plan view of one embodiment of a wire substrate used in the magnetic disk memory device according to the present invention. The wiring board of this embodiment is
、 フレキシブル £線基板により、 前記第 7図等に示したへッ ドとリード ライ トチップ及びコントロールチップとの接続が行われる。 このフレキ シブル配線基板は、 公知の EI泉基板技術により形成されるものであり、 形成された配線の電気的な特性を試験するために、 テスト用パッドが設 けられる。 つまり、 テス卜用パッ ドに電極を当てて、 配線の所望の伝達 特性を持つものであるか否かの試験が行われる。 この伝達特性には、 配 線相互間の短絡や、 信号線路の断線等のような直流試験も含まれる。 フレキブル配線基板は、 その一端側には複合へッドカ接続される電極 と、 その中間部にリード/ライ ト I C搭載部が設けられ、 他端側はコン トロールチップとの接続を行う電極が設けられる。 上記テスト用パッ ド は、 上記複合へッドカ接続される電極部と、 コントロールチップとの接 続が行われる電極部に設けられる。 上記のような試験が終了した時点で 、 上記テスト用パッ ド部は点線の箇所で切り捨てられる。 The connection between the head shown in FIG. 7 and the like, the read / write chip, and the control chip is made by the flexible wiring substrate. This flexible wiring board is formed by the well-known EI spring substrate technology, and is provided with test pads for testing the electrical characteristics of the formed wiring. In other words, an electrode is applied to the test pad, and a test is performed to determine whether or not the wiring has desired transmission characteristics. This transfer characteristic also includes DC tests such as short circuits between wires, disconnection of signal lines, and so on. The flexible wiring board has an electrode connected to the composite head at one end, a lead / write IC mounting part at the middle, and an electrode to connect to the control chip at the other end. . The test pad is provided on the electrode part connected to the composite head and the electrode part connected to the control chip. When the above test is completed, the test pad is cut off at the dotted line.
第 1 2図には、 この発明に係る磁気ディスクメモリ装置におけるァ一 ム及びサスベンション部の一実施例の平面図が示されている。 同図にお いて (A ) は、 リードライト I Cの実装面が示され、 (B ) はその裏面 側が示されている。  FIG. 12 is a plan view showing an embodiment of the arm and suspension unit in the magnetic disk memory device according to the present invention. In the figure, (A) shows the mounting surface of the read / write IC, and (B) shows the back surface thereof.
複合へッドは、 裏面側においてフレキシブル配線基板と接続され、 ァ —ムの先端部の開口部においてリ一ドライ 卜 I Cが実装される。 これに より、 アームの厚みにより I Cの高さ方向の実装スペースを確保するこ とができる。 つまり、 アーム上にリードライト I Cを搭載した場合の全 体の厚みを薄くすることができ、 第 8図のように複数のアームを重ね合 わせた場合の全体の高さを低くできる。 これにより、 ハードディスクメ モリ装置の薄型化が可能になる。 The composite head is connected to the flexible wiring board on the back side, and A read drive IC is mounted in the opening at the tip of the room. As a result, the mounting space in the height direction of the IC can be secured by the thickness of the arm. That is, the overall thickness when the read / write IC is mounted on the arm can be reduced, and the overall height when a plurality of arms are stacked as shown in FIG. 8 can be reduced. This makes it possible to reduce the thickness of the hard disk memory device.
特に制限されないが、 上記アームの先端部には、 前記のようなリード ライ ト I Cの他にチップコンデンサが 2個設けられている。 このチップ コンデンサは、 リ一ドライ ト I Cに搭載されるリードアンプとして、 第 1図ないし第 3図の実施例に示したように二電源 V C Cと V E Eとで動 作するものを用いた場合、 その電源電圧 V C Cと V E Eを安定ィ匕させる バスコンとされる。 この実施例では、 上記のようにリードアンプに 、要 なキャパシ夕を内蔵させるものであるので、 上記リードライ 卜 I Cとと もに設けられるチップコンデンザの数を上言己電源用のバスコンの 2個に 削減することができる。 これにより、 アームを高速にシークする場合の 慣性モ一メントを小さく し、 へッドの移動を高速にしかもスムーズに行 うようにすることができる。  Although not particularly limited, two chip capacitors are provided at the tip of the arm in addition to the read light IC as described above. If this chip capacitor is operated with dual power supplies VCC and VEE as shown in the embodiment of FIGS. It is a bus capacitor that stabilizes the power supply voltages VCC and VEE. In this embodiment, since the necessary capacity is built in the read amplifier as described above, the number of chip capacitors provided together with the read-drive IC is increased by two. It can be reduced to individual. As a result, the moment of inertia when the arm seeks at high speed can be reduced, and the head can be moved quickly and smoothly.
第 1 3図には、 この発明に係る磁気ディスクメモリ装置におけるァ一 ム及びサスペンション部の一実施例の外観図が示されている。  FIG. 13 is an external view of an embodiment of the arm and suspension unit in the magnetic disk memory device according to the present invention.
前記第 8図に示したように複数の磁気ディスクに対応して複数のァ一 ムが重ね合わせて構成されるものであるが、 同図にはそのうちの 1つの アーム、 サスペンションとフレキシブル配線を示している。 アームの選 択側、 言い換えるとサスペンションとの接続部に開口力設けられて、 了 ームの下側から上面を向くように素子実装面が形成されたフレキシブル |¾泉 (配線付ポリミ ド) 力く設けられる。 このアーム開口部のフレシキブ ル配線の素子実装面には、 前記リ一ドライ 卜 I Cを構成するフロン卜チ ップ及び電源用に設けられたチップコンデンサ (パスコン) 力設けられ る。 フレキシブル配線の先端側は前記のような複合へッドと接続され、 他端側はキヤリッジに設けられるコントロールチップ力搭載される実装 基板の電極と接続される。 As shown in FIG. 8, a plurality of arms are superposed to correspond to a plurality of magnetic disks, and FIG. 8 shows one arm, suspension and flexible wiring. ing. An open force is provided at the selected side of the arm, in other words, at the connection with the suspension, and the element mounting surface is formed so that it faces from the bottom to the upper surface. Flexible | Provided. On the element mounting surface of the flexible wiring in the arm opening, a front chip that constitutes the above-described read-out IC is provided. Chip capacitors (pass capacitors) provided for capacitors and power supplies. The front end of the flexible wiring is connected to the composite head as described above, and the other end is connected to an electrode of a mounting board mounted on a carriage and mounted with a control chip.
上記の実施例から得られる作用効果は、 下記の通りである。  The operational effects obtained from the above embodiment are as follows.
( 1 ) 回路の第 1電位が与えられた円盤状の磁気記 '«体に対応して 、 M Rヘッドが取り付けられるアーム先端部 (いわゆるサスペンション ) 上に上記回路の第 1電位を中心にして正電位にされた第 2 と、 負 電位にされた第 3電圧とで動作する半導体集積回路装置を搭載し、 かか る半導体集積回路装置において上記第 1電位を中心電圧として上記 M R へッ ドの両端に所定のバイアス «Εを供給するバイアス回路と、 上記 M Rへッ ドの両端からの読み出された信号がそれぞれべ一スに供給された 第 1と第 2の増幅トランジスタと、 上言己第 1と第 2増幅トランジスタの エミ ッ夕間に設けられ、 上記 M Rへッ ドの両端に供給される直流バイァ ス電圧を保持するとともに信号電流を流すキャパシ夕と、 上記第 1と第 2の増幅トランジスタのコレクタ出力信号を受け、 上記第 1と第 2の增 幅トランジスタのエミッ夕電流よりも僅かに小さく、 かつ逆位相にされ た電流を帰還させて上記キャパシ夕に流れ込む信号電流成分を小さくす る電流帰還回路とからなり、 上記第 1と第 2の増幅トランジスタのコレ クタから出力信号を得るリードアンプを内蔵させることにより、 アーム の慣性モーメントを小さくしてその移動を高速化するともに、 装置全体 の小型化も実現することができるという効果が得られる。  (1) Corresponding to a disk-shaped magnetic recording body to which the first potential of the circuit is applied, a positive voltage centering on the first potential of the circuit is placed on the tip of the arm (so-called suspension) to which the MR head is attached. A semiconductor integrated circuit device that operates at the second potential at the potential and the third voltage at the negative potential, and in the semiconductor integrated circuit device, the first potential is the center voltage of the MR head; A bias circuit for supplying a predetermined bias to both ends; a first and a second amplifying transistor to which the signals read from both ends of the MR head are respectively supplied to the base; A capacitor provided between the first and second amplifying transistors for holding a DC bias voltage supplied to both ends of the MR head and flowing a signal current; Collector output of amplification transistor Current feedback circuit that receives a signal and is slightly smaller than the emission currents of the first and second width transistors and that feeds back a current that is out of phase to reduce the signal current component flowing into the capacitor. By incorporating a read amplifier that obtains an output signal from the collector of the first and second amplification transistors, the moment of inertia of the arm is reduced to speed up its movement, and the size of the entire device is reduced. Can be realized.
( 2 ) 上記 M Rへッ ドの両端にそれよりも十分に大きな抵抗値にされ 、 かつその相互接続点に上記第 1電位が与えられた第 1と第 2の抵抗素 子を設け、 上記第 1と第 2の抵抗素子及び MRへッドの他端に与えられ るバイアス電流を供給する電流源を設けることにより、 M Rへッドの電 位とディスク円板の電位が異なることによる接触時の短絡電流での M R へッ ドの破壊や破壌まで至らなくても M Rへッ ドの特性劣化あるいは読 み出し時の放電電流がノィズを防止して高感度で安定した読み出し動作 を実現することができ、 かつ読み出し信号を電圧信号として出力させる ものであるので、 M Rへッ ドとリードアンプとを接続するワイヤ一のィ ンダクタンス成分が直接作用して高周波信号の取り出しを制限してしま うことがなく高周波数までの読み出し力 <可能になるという効果が得られ る。 (2) First and second resistive elements having a sufficiently larger resistance value at both ends of the MR head and having the first potential provided at the interconnection point thereof are provided. By providing a current source that supplies a bias current to the other end of the MR head, the first and second resistance elements, Even if the head does not break down or break due to short-circuit current at the time of contact due to the difference between the potential of the disc and the potential of the disc, the characteristics of the MR head deteriorate or the discharge current at reading causes noise. The readout signal is output as a voltage signal, and the inductance component of the wire connecting the MR head and the read amplifier is directly affected. This has the effect that the readout power up to high frequencies becomes possible without limiting the extraction of high-frequency signals.
( 3 ) 上記 M Rへッドの一端と上記第 2 ¾±との間に第 1電流源を設 け、 上記 M Rへッ ドの他端と上記第 3 ¾EEとの間にトランジスタを設け 、 上記第 1と第 2抵抗素子の相互接続点が第 1入力端子に供給され、 第 2入力端子に上記第 1電位が与えられたフィ一ドノくックァンプにより、 上記卜ランジスタを制御して上記第 1と第 2抵抗素子の相互接続点の電 位と上記第 1電位とを等しくさせることにより、 MRへッ ドに対して必 要なバイァス電流とバイァス電圧を高精度で供給することができるとい う効果が得られ。  (3) A first current source is provided between one end of the MR head and the second ¾ ±, and a transistor is provided between the other end of the MR head and the third ¾EE. The interconnection point of the first and second resistance elements is supplied to a first input terminal, and the transistor is controlled by a feed-in pump in which the first potential is applied to a second input terminal. By making the potential at the interconnection point between the first and second resistance elements equal to the first potential, it is possible to supply the required bias current and bias voltage to the MR head with high accuracy. Effect is obtained.
( 4 ) 上言己第 1と第 2の増幅トランジスタのコレクタと第 2の ¾ffと の間に負荷抵抗素子をそれぞれ設け、 上記負荷抵抗素子で形成された電 圧信号を差動形態にされた第 3と第 4のトランジスタで受け、 上記第 3 と第 4のトランジスタのエミッ夕にエミッ夕抵抗を設け、 上記エミッ夕 抵抗の相互接続点と上記第 2の ¾Sとの間に定電流源を設け、 上記第 3 と第 4のトランジスタのコレクタ電流を互いに他方の第 2と第 1の增幅 トランジスタのエミッタ側に帰還することにより、 上言己第 1と第 2の增 幅トランジスタのエミッ夕電流よりも僅かに小さく、 かつ逆位相にされ た電流を帰還させて上記キャパシタに流れ込む信号電流成分を小さくす ることができるという効果が得られる。 ( 5 ) 上記第 1と第 2の增幅トランジスタを n p n型トランジスタと し、 上記電流帰還回路の第 3と第 4のトランジスタを p n p型トランジ スタとし、 上記第 1と第 2の増幅トランジスタのコレクタと上記負荷抵 抗素子との間には、 ベースに所定の定 «Εが印加された n p n型トラン ジス夕を更に設けることにより、 第 1と第 2の增幅トランジスタのコレ クク夕側の寄生抵抗を等価的に小さくでき、 高周波数までの増幅動作を 行わせることができるという効果が得られる。 (4) A load resistance element is provided between the collectors of the first and second amplifying transistors and the second ¾ff, and the voltage signal formed by the load resistance element is set in a differential form. An emitter resistor is provided at the emitter of the third and fourth transistors, and a constant current source is provided between the interconnection point of the emitter resistor and the second ΔS. By returning the collector currents of the third and fourth transistors to the emitters of the other second and first wide transistors, the emitter currents of the first and second wide transistors are changed. An effect is obtained that the signal current component flowing into the capacitor can be reduced by feeding back a current that is slightly smaller than the above and that has an opposite phase. (5) The first and second wide transistors are npn transistors, the third and fourth transistors of the current feedback circuit are pnp transistors, and the collectors of the first and second amplification transistors are An npn-type transistor with a predetermined constant voltage applied to the base is further provided between the load resistance element and the parasitic resistance on the collector side of the first and second wide transistors. This has the effect of making it equivalently smaller and allowing amplification operations up to high frequencies to be performed.
( 6 ) 上記負荷抵抗素子の他端を共通接続して、 上記第 2 ¾Eとの間 にレベルシフト動作を行うダイオードを接続することにより、 電流帰還 回路を構成する差動トランジスタ回路の電流ゲインを負荷抵抗とエミッ 夕抵抗との抵抗比により設定できるから、 高 、精度での電流帰還量を設 定することができ、 内蔵のキャパシ夕を用いつつ安定的に所望の増幅動 作を行わせることができるという効果が得られる。  (6) The other end of the load resistance element is commonly connected, and a diode that performs a level shift operation is connected between the other end of the load resistance element and the current gain of the differential transistor circuit that constitutes the current feedback circuit. Since it can be set by the resistance ratio between the load resistance and the emitter resistance, the current feedback amount can be set with high accuracy and accuracy, and the desired amplification operation can be performed stably using the built-in capacity. Is obtained.
( 7 ) 上記負荷抵抗素子と上記ェミッタ抵抗を同じ抵抗値を持つよう に形成された単位抵抗の複数個で構成し、 上記負荷抵抗素子は上記単位 抵抗の複数個が直列形態に接続し、 上記エミッ夕抵抗は上記単位抵抗の 複数個が並列形態に接続することにより、 所望の抵抗値を実現しつつ、 その抵抗比を素子の製造ばらつきに無関係にほぼ一定にできるから、 上 記電流帰還量を高 、精度で設定でき、 内蔵のキャパシタを用いつついつ そう安定的に所望の増幅動作を行わせることができるという効果が得ら れる。  (7) The load resistance element and the emitter resistor are constituted by a plurality of unit resistances formed to have the same resistance value, and the load resistance element includes a plurality of the unit resistances connected in series. By connecting a plurality of the above-mentioned unit resistors in parallel, the desired resistance value can be achieved and the resistance ratio can be made almost constant irrespective of the manufacturing variation of the element. Therefore, the desired amplification operation can be performed more stably while using the built-in capacitor.
( 8 ) 上記サスペンションの先端側には M Rヘッ ドと磁気へッ ドと力、 らなる複合へッ ドを取り付け、 上記リードアンプ力搭載された半導体集 積回路装置に上記磁気へッ ドを駆動するライトドライバも内蔵されるこ とにより、 ヘッ ドと信号処理回路との間での号伝達経路でのロスを最小 にして、 高感度で広帯域のリードライ ト動作とハードディスク装置の小 型化を実現することができるという効果が得られる。 (8) A composite head consisting of an MR head, a magnetic head, and a force is attached to the top end of the suspension, and the magnetic head is driven by the semiconductor integrated circuit device equipped with the read amplifier power. Built-in write driver that minimizes the loss in the signal transmission path between the head and the signal processing circuit, achieves high-sensitivity, wideband read-write operation, and reduces the size of the hard disk drive. The effect of realizing patterning is obtained.
( 9 ) 上記サスペンション力く取り付けられたアームの根元に上記リ一 ドアンプの複数個に対応したコントロールチップを設けることにより、 へッ ドと信号処理回路との間での号伝達経路での口スを最小にして、 高 感度で広帯域のリードライ 卜動作とハ一ドディスク装置の小型化を実現 することができるという効果が得られる。  (9) By providing a control chip corresponding to a plurality of the read amplifiers at the base of the arm attached with the suspension force, the mouth of the signal transmission path between the head and the signal processing circuit can be controlled. By minimizing the size of the hard disk drive, it is possible to obtain a high sensitivity and wide band read / write operation.
(10) 上言己リ一ドアンプとして、 上記第 1電位に MRへッ ドの一端を 接続し、 他端にレベルシフト手段を介して上記第 2電位からバイアス電 流を供給し、 上記 MRへッ ドの他端側からレベルシフ卜手段を介した読 み出された信号を第 1増幅トランジスタのベースに供給し、 そのエミ ッ 夕と上記第 1電位の間にェミッタ抵抗を設け、 上記ェミッ夕抵抗に並列 形態に半導体集積回路装置に内蔵され、 上記 M Rへッ ドに与えられる直 流バイアス電圧を保持し、 力、つ信号電流を流すキャパシ夕を接続し、 上 記第 1増幅トランジスタのコレクタ出力信号を受け、 上記第 1増幅トラ ンジス夕のエミッタ電流よりも僅かに小さく、 かつ逆位相にされた電流 を帰還させて上記キャパシ夕に流れ込む信号電流成分を小さくすること により、 電源装置の簡素化をも可能となり、 アームの慣性モーメントを 小さくしてその移動を高速化するともに、 装置全体の小型化も実現する ことができるという効果が得られる。  (10) As a self-lead amplifier, one end of the MR head is connected to the first potential, and the other end is supplied with a bias current from the second potential via the level shift means to the MR. A signal read from the other end of the pad through the level shift means is supplied to the base of the first amplifying transistor, and an emitter resistor is provided between the emitter and the first potential. A capacitor is built in the semiconductor integrated circuit device in parallel with the resistor, holds the DC bias voltage applied to the MR head, and connects a capacitor through which power and signal current flow. Receiving the output signal, the current that is slightly smaller than the emitter current of the first amplification transistor and the current whose phase is reversed is fed back to reduce the signal current component flowing into the capacitor, thereby simplifying the power supply device. In addition, it is possible to reduce the moment of inertia of the arm to increase the speed of its movement and to achieve the effect of downsizing the entire device.
(11) 上記第 1増幅トランジスタに対応して設けられ、 ベースに第 1 增幅トランジスタのベース直流 ¾ϊに対応したバイ了ス電圧が供給され 、 ダミー素子として動作する第 2増幅トランジスタを設け、 上記第 1と 第 2の增幅トランジスタのコレクタと第 2の電圧との間には負荷抵抗素 子をそれぞれに設け、 上記負荷抵抗素子で形成された電圧信号を差動形 態にされた第 3と第 4のトランジスタで受け、 上言己第 3と第 4のエミッ 夕にエミッタ抵抗を設け、 上記エミッ夕抵抗の相互接続点と上記第 2の 電圧との間に定電流源を設け、 上記第 3と第 4のトランジスタのコレク 夕電流を互いに他方の第 2と第 1の增幅トランジスタのェミツ夕側に帰 還することにより、 上記第 1増幅トランジスタのエミッタ電流よりも僅 力、に小さく、 力、つ逆位相にされた電流を安定的に帰還させることができ 、 上記キャパシ夕に流れ込む信号電流 ^を小さくすることができると いう効果が得られる。 (11) A second amplification transistor, which is provided corresponding to the first amplification transistor, is supplied with a bias voltage corresponding to the base DC voltage of the first width transistor to the base, and operates as a dummy element, Load resistance elements are provided between the collectors of the first and second wide transistors and the second voltage, respectively, and the third and third voltage signals formed by the load resistance elements are made differential. The emitter resistor is provided at the third and fourth emitters, and the interconnection point between the emitter resistor and the second emitter is provided. A constant current source is provided between the first and second transistors, and the collector currents of the third and fourth transistors are returned to the emitters of the other second and first wide transistors. The current that is slightly smaller than the emitter current of the transistor can be fed back stably, and the current that is in phase opposite to that of the transistor can be stably fed back, and the signal current ^ flowing into the capacitor can be reduced. Can be
(12) 上記第 1と第 2の增幅トランジスタは n p n型トランジスタと し、 上言己電流帰還回路の第 3と第 4のトランジスタを p n p型トランジ ス夕とし、 上言己第 1と第 2の増幅トランジスタのコレクタと上記負荷抵 抗素子との間には、 ベースに所定の定 ¾Eが印加された n p n型トラン ジスタを更に設けることにより、 第 1と第 2の增幅卜ランジス夕のコレ クク夕側の寄生抵抗を等価的に小さくでき、 高周波数までの増幅動作を 行わせることができるという効果が得られる。  (12) The first and second wide transistors are npn transistors, the third and fourth transistors of the self-current feedback circuit are pnp transistors, and the first and second transistors are Between the collector of the amplifying transistor and the load resistance element, an npn-type transistor having a predetermined constant E applied to the base is further provided, so that the first and second wide-band transistors are connected. The effect is that the parasitic resistance on the side can be reduced equivalently, and the amplification operation up to a high frequency can be performed.
(13) 駆動機構の回転シャフ卜を介して回転駆動されるとともに回路 の第 1電位が与えられた円盤状の磁気記憶媒体と、 先端側にサスペンシ ョンを介して M Rへッド力く取り付けられたアームと、 上記アームにおけ るサスペンションとの接続側に上記回路の第 1電位を中心にして正電位 にされた第 2電圧と、 負電位にされた第 3 m±とを受けて動作する半導 体集積回路装置で構成され、 上記 M Rへッ ドから出力された読み出し信 号を增幅するリ一ドアンプが搭載されてなる磁気ディスクメモリ装置に おいて、 上記リ一ドアンプとして上記第 1電位を中心 として上記 M Rへッドの両端に所定のバイアス電圧を供給するバイアス回路と、 上記 M Rへッ ドの両端からの読み出された信号がそれぞれベースに供給され た第 1と第 2の第 2増幅トランジスタと、 上記第 1と第 2増幅トランジ ス夕のエミッタ間に設けられ、 上記 M Rへッドの両端に供給される直流 バイアス «1Ϊを保持するとともに信号電流を流すキャパシタと、 上記第 1と第 2増幅トランジスタのコレクタ出力信号を受け、 上記第 1と第 2 の增幅トランジスタのェミツ夕電流よりも僅かに小さく、 かつ逆位相に された電流を帰還させて上記キャパシ夕に流れ込む信号電流成分を小さ くする電流帰還回路とからなり、 上記第 1と第 2増幅トランジスタのコ レクタから出力信号を得ることにより、 アームの慣性モ一メントを小さ く してその移動を高速化するともに、 装置全体の小型化も実現すること ができるという効果が得られる。 (13) A disk-shaped magnetic storage medium that is driven to rotate via the rotary shaft of the drive mechanism and to which the first potential of the circuit is applied, and is attached to the distal end side with a MR head through a suspension On the connection side between the arm connected to the suspension and the suspension in the arm, receiving the second voltage made positive at the first potential of the circuit above and the third m ± made negative at the negative potential In a magnetic disk memory device comprising a semiconductor integrated circuit device having a read amplifier output from the MR head and a read amplifier for controlling the read signal output from the MR head, the first read amplifier is used as the read amplifier. A bias circuit for supplying a predetermined bias voltage to both ends of the MR head with the electric potential as a center, and first and second signals supplied to the base from the signals read from both ends of the MR head, respectively. With the second amplification transistor Provided between the first and the second amplifier transient scan evening emitter, a capacitor supplying a signal current holds the DC bias «1I supplied to both ends of the head to the MR, the first A signal current that receives the collector output signals of the first and second amplifying transistors, is slightly smaller than the emitter current of the first and second wide transistors, and returns a current that is in opposite phase to flow into the capacitor. It consists of a current feedback circuit that reduces the component, and obtains an output signal from the collector of the first and second amplifying transistors to reduce the inertial moment of the arm and speed up its movement, The effect is obtained that the size of the entire apparatus can be reduced.
(14) 上記円盤状の磁気記憶媒体をハ一ドディスクに適用することに より、 小型で高速ィ匕を実現したハ一ドディスクメモリ装置を得ることが できるという効果が得られる。  (14) By applying the disk-shaped magnetic storage medium to a hard disk, it is possible to obtain an effect that a hard disk memory device which is small and realizes high-speed operation can be obtained.
(15) 上記駆動機構として、 上記複数の記憶媒体が取り付けられる導 電性のシャフ卜をスピンドルモータによって回転駆動し、 上記シャフト を回路の接地電位と同電位に設定する手段としてのブラシ状導電体とを 用いることにより、 簡単な構成でディスク円板に接地電位を与えること ができ、 MRへッドの電位とディスク円板の電位力く異なることによる接 触時に短絡電流での M Rへッドの破壊や破壊まで至らなくても MRへッ ドの特性劣化ある 、は読み出し時の放電電流がノィズを防止して高感度 で安定した読み出し動作を実現することができるという効果が得られる  (15) As the driving mechanism, a brush-like conductor as means for rotating the conductive shaft to which the plurality of storage media are attached by a spindle motor and setting the shaft to the same potential as the ground potential of the circuit. With the use of the above, the ground potential can be applied to the disk disk with a simple configuration, and the MR head has a short-circuit current at the time of contact due to the potential difference between the MR head and the potential of the disk disk. Degradation of the MR head even if it does not lead to destruction or destruction of the MR head has the effect that the discharge current at the time of reading prevents noise and realizes a highly sensitive and stable reading operation.
(16) 上記駆動機構は複数の記憶媒体を回転させ、 かかる複数の記憶 媒体のそれぞれに対応して、 上記サスペンションと MRへッ ド及びリー ドアンプの複数個を設けることにより、 小型化と高信 H性とを実現した ハードディスクメモリ装置を得ることができるという効果が得られる。 以上本発明者よりなされた発明を実施例に基づき具体的に説明したが 、 本願発明は前記実施例に限定されるものではなく、 その要旨を逸脱し ない範囲で種々変更可能であることはいうまでもない。 例えば、 MRへ ッ ドに直流バイアス «EEを供給する回路は種々の実施形態を採ることが できる。 第 4図の MOSFETMN 1は、 η ρ η型のバイポーラ型トラ ンジス夕に置き換えることができる。 逆に、 増幅トランジスタ QN1, QN 2や差動トランジスタ QP 1, QP 2等のバイポーラ型トランジス 夕は MOSFETに置き換えるものであってもよい。 (16) The drive mechanism rotates a plurality of storage media, and a plurality of the suspensions, MR heads and read amplifiers are provided for each of the plurality of storage media, thereby realizing miniaturization and high reliability. An effect is obtained that a hard disk memory device realizing the H characteristic can be obtained. Although the invention made by the inventor has been specifically described based on the embodiment, the invention of the present application is not limited to the embodiment, and it can be said that various modifications can be made without departing from the gist of the invention. Not even. For example, to MR The circuit for supplying the DC bias EE to the head can take various embodiments. The MOSFET MN 1 in FIG. 4 can be replaced with a η ρ η type bipolar transistor. Conversely, bipolar transistors such as the amplification transistors QN1 and QN2 and the differential transistors QP1 and QP2 may be replaced with MOSFETs.
上言己リ一ドアンプを構成するために、 かかるリ一ドアンプ力形成され た半導体集積回路装置に内蔵されるキャパシタ C 1や C 4等は、 MOS 容量を用いるもの他、 誘電体としてナイ卜ライ ド膜を用いるもの等種々 の実施形態を採ることができる。 MRへッドの構成は、 前記実施例の他 種々の実施形態を採ることができるものである。 産業上の利用可肯  In order to form the self-read amplifier, the capacitors C1 and C4, etc. built into the semiconductor integrated circuit device having such a read-amplifier function use a MOS capacitor and a nitride as a dielectric. Various embodiments can be adopted, such as one using a metal film. The configuration of the MR head can employ various embodiments other than the above-described embodiment. Industrial applicability
この発明は、 読み出しへッドとして MR (磁気抵抗効果) へッ ドを用 いるもの、 さらには読み出し用の MR (磁気抵抗効果) へッ ドと書き込 み用へッ ドとしてインダクティブへッ ドを使用した複合へッ ドを用いる ハードディスクメモリ装置を代表とするような磁気ディスクメモリ装置 に広く利用することができるものである。  The present invention uses an MR (magnetoresistive) head as a read head, and furthermore uses an inductive head as a read MR (magnetoresistive) head and a write head. It can be widely used for magnetic disk memory devices such as hard disk memory devices using composite heads that use the same.

Claims

請 求 の 範 囲 The scope of the claims
1 . 回路の第 1電位が与えられた円盤状の磁気記憶媒体と、  1. a disk-shaped magnetic storage medium to which the first potential of the circuit is applied;
先端側にサスペンションを介して M Rへッ ドが取り付けられたァ一 ムと、  An arm with an MR head attached to the tip side via a suspension,
上記アームにおけるサスペンションとの接続側に上記回路の第 1電 位を中心にして正電位にされた第 2電圧と、 負電位にされた第 3 ¾ffiと を受けて動作する半導体集積回路装置で構成され、 上記 M Rへッ ドから 出力された読み出し信号を増幅するリ一ドアンプ力搭載されてなる磁気 ディスクメモリ装置であって、  A semiconductor integrated circuit device, which operates on the connection side of the arm with the suspension, receiving a second voltage made positive about the first potential of the circuit and a third Δffi made negative, around the first potential of the circuit. A magnetic disk memory device equipped with a read amplifier for amplifying a read signal output from the MR head,
上記リードアンプは、  The above read amplifier,
上記第 1電位を中心電圧として M Rへッ ドの両端に所定のバイ ァス ¾ϊを供給するバイアス回路と、  A bias circuit for supplying a predetermined bias to both ends of the MR head with the first potential as a center voltage,
上記 M Rへッ ドの一端側からの読み出された信号がベースに供 給された第 1増幅トランジスタと、  A first amplification transistor to which a signal read from one end of the MR head is supplied to a base;
上記 M Rへッ ドの他端側からの読み出された信号がベースに供 給された第 2増幅トランジスタと、  A second amplification transistor to which a signal read from the other end of the MR head is supplied to a base;
上言己第 1と第 2増幅トランジスタのエミッタ間に設けられ、 半 導体集積回路装置に内蔵され、 上記 M Rへッ ドの両端に供給される上記 ノくィ Ύス を保持し、 かつ信号電流成分を流すキヤパシ夕と、  It is provided between the emitters of the first and second amplifying transistors, is built in the semiconductor integrated circuit device, holds the noise supplied to both ends of the MR head, and generates a signal current. With a capayu evening flowing ingredients,
上記第 1と第 2増幅トランジスタのコレクタ出力信号を受け、 上記第 1と第 2の増幅トランジスタのエミッタ電流よりも僅かに小さく 、 かつ逆位相にされた電流を帰還させて上記キャパシタに流れ込む信号 電流 を小さくする電流帰還回路とを含み、  A signal which receives the collector output signals of the first and second amplifying transistors, feeds back a current that is slightly smaller than the emitter currents of the first and second amplifying transistors, and has an opposite phase, and flows into the capacitor. And a current feedback circuit for reducing
上記第 1と第 2増幅トランジスタのコレクタから出力信号を得 るようにしたことを特徴とする磁気ディスクメモリ装置。  A magnetic disk memory device wherein an output signal is obtained from the collectors of the first and second amplification transistors.
2 . 請求の範囲第 1項において上記バイアス回路は、 上記 M Rへッ ドの両端に直列接続され、 M Rへッ ドよりも十分に大 きな抵抗値にされ、 カヽっその相互接続点に上記第 1電位が与えられた第 1と第 2の抵抗素子と、 2. In claim 1, the bias circuit is First and second resistors that are connected in series to both ends of the MR head, have a resistance value sufficiently larger than that of the MR head, and have the first potential applied to their interconnection points. Element and
上記第 1と第 2の抵抗素子及び M Rへッドの他端に与えられるバイ ァス電流を供給する電流源とからなることを特徴とする磁気ディスクメ モリ装置。  A magnetic disk memory device comprising: the first and second resistance elements; and a current source that supplies a bias current supplied to the other end of the MR head.
3 . 請求の範囲第 1項において上記バイアス回路は、  3. The bias circuit in claim 1,
上記 M Rへッドの両端に直列接続され、 MRへッドよりも十分に大 きな抵抗値にされ、 第 1と第 2の抵抗素子と、  The first and second resistance elements are connected in series to both ends of the MR head, and have a sufficiently larger resistance value than the MR head.
上記 M Rへッドの一端と上記第 2 «Εとの間に設けられた第 1電流 源と、  A first current source provided between one end of the MR head and the second «Ε,
上記 MRへッドの他端と上記第 3 «Εとの間に設けられたトランジ ス夕と、  A transistor provided between the other end of the MR head and the third «Ε,
上記第 1と第 2抵抗素子の相互接続点が第 1入力端子に供給され、 第 2入力端子に上記第 1電位が与えられ、 その出力信号を上記トランジ ス夕の入力端子に供給して上記第 1と第 2抵抗素子の相互接続点の電位 と上記第 1電位とを等しくさせるフィ一ドバックアンプとを備えてなる ことを特徴とする磁気ディスクメモリ装置。  The interconnection point between the first and second resistance elements is supplied to a first input terminal, the first potential is applied to a second input terminal, and the output signal is supplied to the input terminal of the transistor to provide A magnetic disk memory device comprising: a feedback amplifier for making a potential at an interconnection point between first and second resistance elements equal to the first potential.
4 . 請求の範囲第 3項において、  4. In Claim 3,
上記第 1と第 2の増幅トランジスタのコレクタと第 2の SEとの間 には負荷抵抗素子がそれぞれに設けられ、  Load resistance elements are provided between the collectors of the first and second amplification transistors and the second SE, respectively.
上記電流帰還回路は、  The current feedback circuit,
上記負荷抵抗素子で形成された電圧信号を受ける差動形態にさ れた第 3と第 4のトランジスタと、  A third transistor and a fourth transistor in a differential form for receiving a voltage signal formed by the load resistance element;
上記第 3と第 4のェミッタにそれぞれ設けられたェミッ夕抵抗 と、 上記ェミッ夕抵抗の相互接続点と上記第 2の «ΕΕとの間に設け られた定電流源からなり、 The emitter resistors provided in the third and fourth emitters, respectively; A constant current source provided between the interconnection point of the emitter resistor and the second «,
上記第 3と第 4のトランジスタのコレク夕電流力互いに他方の 第 2と第 1の增幅トランジスタのエミッタ側に供給されるものであるこ とを特徵とする磁気ディスクメモリ装置。  A magnetic disk memory device characterized in that the collector currents of the third and fourth transistors are supplied to the emitters of the other second and first wide transistors, respectively.
5 . 請求の範囲第 4項において、  5. In Claim 4,
上言己第 1と第 2の増幅トランジスタは n p n型トランジスタからな り、  The first and second amplifying transistors are npn-type transistors,
上言己電流帰還回路の第 3と第 4のトランジスタは p n p型トランジ スタからなり、  The third and fourth transistors of the self-current feedback circuit are pnp-type transistors,
上記第 1と第 2の増幅トランジスタのコレクタと上記負荷抵抗素子 との間には、 ベースに所定の定電圧が印加された n p n型トランジスタ が更に設けられてなることを特徴とする磁気ディスクメモリ装置。 A magnetic disk memory device, further comprising an npn-type transistor having a base applied with a predetermined constant voltage, between the collectors of the first and second amplifying transistors and the load resistance element. .
6 . 請求の範囲第 5項において、 6. In Claim 5,
上記負荷抵抗素子の他端は共通接続されて、 上記第 2電圧との間に レベルシフ卜動作を行うダイォ一ドが接続されるものであることを特徴 とする磁気ディスクメモリ装置。  The other end of the load resistance element is commonly connected, and a diode for performing a level shift operation with the second voltage is connected to the load resistance element.
7 . 請求の範囲第 4項において、  7. In Claim 4,
上言己負荷抵抗素子と上記ェミッ夕抵抗は、 同じ抵抗値を持つように 形成された単位抵抗の複数個からなり、  The self-load resistance element and the above-mentioned resistance are composed of a plurality of unit resistors formed to have the same resistance value.
上記負荷抵抗素子は上記単位抵抗の複数個が直列形態に接続されて 構成され、  The load resistance element is configured by connecting a plurality of the unit resistors in series.
上記エミッタ抵抗は上記単位抵抗の複数個が並列形態に接続されて 構成されてなることを特徴とする磁気ディスクメモリ装置。  The magnetic disk memory device according to claim 1, wherein the emitter resistor is configured by connecting a plurality of the unit resistors in parallel.
8 . 請求の範囲第 1項において、  8. In Claim 1,
上記サスペンションの先端側には M Rへッ ドと磁気へッ ドと力、らな る複合へッドが取り付けられ、 The MR head, the magnetic head, the force, and the Composite head is attached,
上記リ―ドアンプが搭載された半導体集積回路装置には、 上記磁気 へッ ドを環区動するライトドライバも内蔵されるものであることを特徴と する磁気ディスクメモリ装置。  A magnetic disk memory device characterized in that a semiconductor integrated circuit device on which the above-mentioned lead amplifier is mounted also incorporates a write driver for circulating the magnetic head.
9 . 請求の範囲第 8項において、 9. In Claim 8,
上記サスペンション力く取り付けられたアームの根元には、 上記リー ドアンプの複数個に対応したコントロールチップが設けられてなること を特徴とする磁気ディスクメモリ装置。  A magnetic disk memory device, characterized in that a control chip corresponding to a plurality of the lead amplifiers is provided at the base of the arm attached with the suspension force.
10. 回路の第 1電位が与えられた円盤状の磁気記憶媒体と、  10. A disk-shaped magnetic storage medium to which the first potential of the circuit is applied;
先端側にサスペンションを介して MRへッ ドカ取り付けられたァ一 ムと、  A arm attached to the MR head via a suspension at the distal end,
上記ァ一ムにおけるサスペンションとの接続側に上記回路の第 1電 位と第 2 ¾ϊとを受けて動作する半導体集積回路装置で構成され、 上記 M Rへッ ドから出力された読み出し信号を増幅するリ一ドアンプが搭載 されてなる磁気ディスクメモリ装置であって、  A semiconductor integrated circuit device that operates on the connection side with the suspension in the above-mentioned arm, receiving the first potential and the second line of the above-mentioned circuit, and amplifies a read signal output from the above-mentioned MR head. A magnetic disk memory device equipped with a read amplifier,
上記リードアンプは、  The above read amplifier,
上記第 1電位に一端が接続され他端にレベルシフ 卜手段を介し て上記第 2電位からバイァス電流が供給されるようにされた M Rヘッ ド と、  An MR head having one end connected to the first potential and the other end supplied with a bias current from the second potential via a level shift means;
上記 M Rへッドの他端側からレベルシフ卜手段を介した読み出 された信号がベースに供給された第 1増幅トランジスタと、  A first amplifying transistor to which a signal read from the other end of the MR head via the level shift means is supplied to a base;
上記第 1増幅トランジスタのェミ ッタと上記第 1電位の間に設 けられたエミッタ抵抗と、  An emitter resistance provided between the emitter of the first amplification transistor and the first potential;
上記エミッタ抵抗に並列形態に設けられ、 半導体集積回路装置 に内蔵され、 上記 M Rへッドに与えられる直流バイアス電圧を保持し、 かつ信号電流を流すキャパシ夕と、 上記第 1増幅トランジスタのコレクタ出力信号を受け、 上記第 1增幅トランジスタのエミ ッ夕電流よりも僅かに小さく、 かつ逆位相に された電流を帰還させて上記キャパシタに流れ込む信号電流 を小さ くする電流帰還回路とを含み、 A capacity provided in parallel with the emitter resistor, built in the semiconductor integrated circuit device, holding a DC bias voltage applied to the MR head, and flowing a signal current; A current that receives the collector output signal of the first amplification transistor, is slightly smaller than the emitter current of the first width transistor, and feeds back an inverted current to reduce the signal current flowing into the capacitor. Including a feedback circuit,
上記第 1増幅トランジスタのコレクタから出力信号を得るよう にしたことを特徴とする磁気ディスクメモリ装置。  A magnetic disk memory device wherein an output signal is obtained from a collector of the first amplification transistor.
11. 請求の範囲第 10項において、  11. In claim 10,
上言己第 1増幅トランジスタに対応して設けられ、 ベ一スに第 1增幅 トランジスタのベース直流 ®ϊに対応したバイアス電圧が供給され、 ダ ミー素子として動作する第 2増幅トランジスタと、  A second amplification transistor that is provided corresponding to the first amplification transistor, is supplied with a bias voltage corresponding to the base DC voltage of the first width transistor, and operates as a dummy element;
上言己第 1と第 2の增幅トランジスタのコレクタと第 2の «ΙΪとの間 には負荷抵抗素子がそれぞれに設けられてなり、  A load resistance element is provided between each of the collectors of the first and second wide transistors and the second «ΙΪ,
上記電流帰還回路は、  The current feedback circuit,
上記負荷抵抗素子で形成された電圧信号を受ける差動形態にさ れた第 3と第 4のトランジスタと、  A third transistor and a fourth transistor in a differential form for receiving a voltage signal formed by the load resistance element;
上記第 3と第 4のェミッタにそれぞれ設けられたェミッ夕抵抗 と、  The emitter resistors provided in the third and fourth emitters, respectively;
上記ェミッ夕抵抗の相互接続点と上記第 2の との間に設け られた定電流源からなり、  A constant current source provided between the interconnection point of the emitter resistor and the second,
上記第 3と第 4のトランジスタのコレク夕電流が互いに他方の 第 2と第 1の増幅トランジスタのエミッタ側に供給されるものであるこ とを特徴とする磁気ディスクメモリ装置。  A magnetic disk memory device, wherein the collector currents of the third and fourth transistors are supplied to the emitters of the other second and first amplification transistors.
12. 請求の範囲第 11項において、  12. In Claim 11,
上記第 1と第 2の增幅トランジスタは η ρ η型トランジスタからな り、  The first and second wide transistors are η ρ η type transistors,
上記電流帰還回路の第 3と第 4のトランジスタは ρ η ρ型トランジ ス夕からなり、 The third and fourth transistors of the current feedback circuit are ρηρ type transistors. It consists of
上記第 1と第 2の増幅トランジスタのコレクタと上記負荷抵抗素子 との間には、 ベースに所定の定電圧が印加された n p n型トランジスタ が更に設けられてなることを特徴とする磁気デイスクメモリ装置。  A magnetic disk memory device characterized by further comprising an npn transistor having a base applied with a predetermined constant voltage between the collectors of the first and second amplifying transistors and the load resistance element. .
13. 駆動機構と、 13. drive mechanism;
上記駆動機構の回転シャフ卜を介して回転駆動されるとともに回路 の第 1電位が与えられた円盤状の磁気記憶媒体と、  A disk-shaped magnetic storage medium that is rotationally driven through a rotary shaft of the drive mechanism and is supplied with a first potential of a circuit;
先端側にサスペンションを介して MRへッ ドカ《取り付けられたァ一 ムと、  MR head via suspension on the tip side 《Attached arm and
上記アームにおけるサスペンションとの接続側に上記回路の第 1電 位を中心にして正電位にされた第 2電圧と、 負電位にされた第 3 ¾ϊと を受けて動作する半導体集積回路装置で構成され、 上記 MRへッ ドから 出力された読み出し信号を増幅するリ―ドアンプが搭載されてなる磁気 ディスクメモリ装置であって、  A semiconductor integrated circuit device, which operates on the connection side of the arm with the suspension, receiving a second voltage made positive about the first potential of the circuit and a third ¾ϊ made negative, around the first potential of the circuit. A magnetic disk memory device including a read amplifier for amplifying a read signal output from the MR head,
上記リードアンプは、  The above read amplifier,
上記第 1電位を中心電圧として M Rへッ ドの両端に所定のバイ ァス «ΙΪを供給するバイアス回路と、  A bias circuit for supplying a predetermined bias to both ends of the MR head with the first potential as a center voltage,
上記 M Rへッドの一端側からの読み出された信号がベースに供 給された第 1増幅トランジスタと、  A first amplification transistor to which a signal read from one end of the MR head is supplied to a base;
上記 M Rへッドの他端側からの読み出された信号がベ一スに供 給された第 2増幅トランジスタと、  A second amplification transistor to which a signal read from the other end of the MR head is supplied to a base;
上記第 1と第 2増幅トランジスタのエミッタ間に設けられ、 半 導体集積回路装置に内蔵され、 上記 M Rへッ ドの両端に供給されるバイ ァス ¾ϊを保持し、 カヽっ信号電流を流すキャパシ夕と、  A capacitor is provided between the emitters of the first and second amplifying transistors, is built in the semiconductor integrated circuit device, holds a bias supplied to both ends of the MR head, and flows a cap signal current. Evening and
上記第 1と第 2増幅トランジスタのコレクタ出力信号を受け、 上記第 1と第 2の増幅トランジスタのェミツタ電流よりも僅かに小さく 、 かつ逆位相にされた電流を帰還させて上記キャパシタに流れ込む信号 電流成分を小さくする電流帰還回路とを含み、 Receiving the collector output signals of the first and second amplifying transistors, and slightly smaller than the emitter current of the first and second amplifying transistors; And a current feedback circuit that feeds back the inverted current to reduce the signal current component flowing into the capacitor,
上記第 1と第 2増幅トランジスタのコレクタから出力信号を得 るようにしたことを特徴とする磁気ディスクメモリ装置。  A magnetic disk memory device wherein an output signal is obtained from the collectors of the first and second amplification transistors.
14. 請求の範囲第 13項において、 14. In claim 13,
上記円盤状の磁気記憶媒体は、 ハードディスクであることを特徴と する磁気ディスクメモリ装置。  A magnetic disk memory device, wherein the disk-shaped magnetic storage medium is a hard disk.
15 青求の範囲第 14項において、 15 In section 14 of the blueprint,
上記駆動機構は、  The drive mechanism is
スピンドルモータと、  A spindle motor,
上記複数の記憶媒体力城り付けられると共に、 上記スピンドル モータによって回転される導電性のシャフトと、  A conductive shaft attached to the plurality of storage media and rotated by the spindle motor;
上記シャフ 卜を回路の接地電位と同電位に設定する手段として のブラシ状導電体とを含むことを特徴とする磁気ディスクメモリ装置。 16. 請求の範囲第 15項において、  A magnetic disk memory device comprising: a brush-like conductor as means for setting the shaft to the same potential as the ground potential of a circuit. 16. In claim 15,
上記駆動機構は複数の記憶媒体を回転させるものであり、 かかる複 数の言己' It媒体のそれぞれに対応して、 上記サスペンションと MRへッ ド 及びリ一ドアンプの複数個が設けられるものであることを特徴とする磁 気ディスクメモリ装置。  The drive mechanism is for rotating a plurality of storage media, and is provided with the suspension, a plurality of MR heads, and a plurality of lead amplifiers corresponding to each of the plurality of media. A magnetic disk memory device characterized in that:
PCT/JP1999/001395 1999-03-19 1999-03-19 Magnetic disk memory WO2000057404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001395 WO2000057404A1 (en) 1999-03-19 1999-03-19 Magnetic disk memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001395 WO2000057404A1 (en) 1999-03-19 1999-03-19 Magnetic disk memory

Publications (1)

Publication Number Publication Date
WO2000057404A1 true WO2000057404A1 (en) 2000-09-28

Family

ID=14235245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001395 WO2000057404A1 (en) 1999-03-19 1999-03-19 Magnetic disk memory

Country Status (1)

Country Link
WO (1) WO2000057404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11587580B2 (en) 2021-04-21 2023-02-21 Showa Denko K.K. Magnetic storage apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169009A (en) * 1993-12-14 1995-07-04 Fujitsu Ltd Signal reproducing circuit for magneto-resistance effect type head
JPH0935214A (en) * 1995-07-17 1997-02-07 Fujitsu Ltd Power source control circuit and storage device
JPH0991604A (en) * 1995-09-28 1997-04-04 Hitachi Ltd Reed amplifier
JPH09185803A (en) * 1996-01-08 1997-07-15 Hitachi Ltd Magnetic recording information detecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169009A (en) * 1993-12-14 1995-07-04 Fujitsu Ltd Signal reproducing circuit for magneto-resistance effect type head
JPH0935214A (en) * 1995-07-17 1997-02-07 Fujitsu Ltd Power source control circuit and storage device
JPH0991604A (en) * 1995-09-28 1997-04-04 Hitachi Ltd Reed amplifier
JPH09185803A (en) * 1996-01-08 1997-07-15 Hitachi Ltd Magnetic recording information detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11587580B2 (en) 2021-04-21 2023-02-21 Showa Denko K.K. Magnetic storage apparatus

Similar Documents

Publication Publication Date Title
US6163218A (en) Signal amplifier apparatus and magnetic disk storage apparatus using the same
US7082004B2 (en) Disk storage systems
JP3514461B2 (en) Information reading device
US7190541B2 (en) Hi-speed preamplifier write driver for hard drive with improved symmetry
JP3883037B2 (en) Medium recording / playback system
JPS594769B2 (en) Transducer output sensing circuit
US6252735B1 (en) Voltage-biasing, voltage-sensing differential preamplifier for magnetoresistive elements
JP2994522B2 (en) Preamplifier for magnetoresistive element
US7251091B2 (en) Current-sense bias circuit for a magnetoresistive head and method of sensing a current therethrough
WO2000057404A1 (en) Magnetic disk memory
US6532127B1 (en) Differential voltage bias, voltage sense preamplifier architecture
US6724556B2 (en) Single pole voltage bias loop for increased stability
US6172548B1 (en) Input stage with reduced transient time for use in multiplexing transducers that require a switched DC bias
US6154333A (en) Amplification circuit
US6700719B2 (en) Preamp reader design for high resistance read heads
KR20000062710A (en) Readback amplifier for wideband readout of magneto-resistive heads for data storage
US6696896B2 (en) Method for implementing high frequency programmable poles and zeros in disk drive preamplifiers
Klein et al. A 0.8 nV//spl radic/Hz CMOS preamplifier for IC-magneto-resistive read elements
JP3232229B2 (en) Magnetic recording information detection device and magnetic disk device
JP3344925B2 (en) Playback device and storage device
US6947239B2 (en) Magnetic storage device equipped with write driver circuit capable of performing impedance matching by a simple circuit
JP3816002B2 (en) Magnetic disk unit
WO2000016316A1 (en) Magnetic disk memory and a hard disk drive
US20010022699A1 (en) Differentially driven, current mirror based coil driver
JPH07176002A (en) Magnetic disk device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 607204

Kind code of ref document: A

Format of ref document f/p: F