WO2000057051A1 - High-pressure plunger pump - Google Patents

High-pressure plunger pump Download PDF

Info

Publication number
WO2000057051A1
WO2000057051A1 PCT/JP2000/001746 JP0001746W WO0057051A1 WO 2000057051 A1 WO2000057051 A1 WO 2000057051A1 JP 0001746 W JP0001746 W JP 0001746W WO 0057051 A1 WO0057051 A1 WO 0057051A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
check valve
suction
chamber
back pressure
Prior art date
Application number
PCT/JP2000/001746
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Araki
Yukihiro Shoji
Kenichi Katoh
Yuji Egami
Original Assignee
Nachi-Fujikoshi Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi-Fujikoshi Corp. filed Critical Nachi-Fujikoshi Corp.
Priority to GB0027159A priority Critical patent/GB2352780A/en
Priority to DE10081174T priority patent/DE10081174T1/en
Publication of WO2000057051A1 publication Critical patent/WO2000057051A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/04Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps
    • F02M59/06Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps with cylinders arranged radially to driving shaft, e.g. in V or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/365Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages valves being actuated by the fluid pressure produced in an auxiliary pump, e.g. pumps with differential pistons; Regulated pressure of supply pump actuating a metering valve, e.g. a sleeve surrounding the pump piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening

Definitions

  • the present invention relates to a high-pressure plunger and a high-pressure plunger pump capable of variably controlling a discharge rate suitable for controlling a high-pressure fluid, and more particularly to a control method of a high-pressure plunger-pump, for example, a discharge rate for pumping high-pressure fuel into an accumulator or a common rail.
  • the present invention relates to a variable discharge rate control mechanism for a high-pressure plunger pump that can be used for a variable high-pressure fuel pump.
  • high-pressure fuel is stored in a pressure accumulator or a pressure accumulating pipe called a common rail shown in FIG. 7, and this pressure accumulating fuel is injected into the engine through an electromagnetic injector.
  • a high-pressure fuel pump used in the system is disclosed in Japanese Patent Application Laid-Open Nos. 6-257533 and 1-73166.
  • a sub-valve directly driven by a switching solenoid valve opens and closes a port of a back pressure chamber of a suction check valve body, thereby causing a back pressure.
  • the suction check valve body hates the main valve chamber according to the pressure difference between the main valve chamber and the pump chamber and the biasing force of the main valve spring, thereby controlling the main valve chamber and the main valve chamber.
  • the effective pumping stroke in the pumping stroke of the pump plunger is adjusted by opening and closing the pump chambers and adjusting the valve closing timing of the suction chuck. Disclosure of the invention
  • the object of the present invention has been made in view of the above-described problems. In spite of an increase in the size and speed of an engine, the size of a switching solenoid valve is reduced, and wear and leakage of a valve body and a valve seat of the switching solenoid valve are reduced.
  • the object is to provide a high-pressure plunger pump that is a high-pressure fuel pump that can prevent high-speed response, achieve low production cost, accurately follow electric signals, and precisely control the pump discharge rate. .
  • the present invention relates to a pump plunger formed in a pump housing and reciprocating via a cam mechanism urged by a spring force, and a pump pressurized by the pump plunger.
  • a high-pressure plunger pump pumped by a suction check and a discharge valve connected to a discharge port of the pump chamber, which are disposed at a suction port of the pump chamber and communicate with the feed fuel passage.
  • a small back pressure chamber having a main body for closing the sliding hole of the suction check valve housing into which the check valve element is fitted is provided.
  • the switching valve is operated by an electric signal given in synchronization with the stroke of the pump plunger, so that the drive unit of the switching valve closes the port hole of the small back pressure chamber, Controlling the valve opening position even if it receives the check valve spring force and the pressure of the pump chamber, which urges the suction check valve body in the closing direction, thereby making the pump discharge amount variable, and
  • the fuel passage communicates with a suction port of the pump chamber, and when the suction check valve body operates, feed fuel discharged from a port hole of the small back pressure chamber is supplied to the suction port of the pump chamber.
  • the high pressure plunger pump is characterized in that the fuel is discharged so that the feed fuel in the small back pressure chamber is sequentially replaced.
  • the small port hole of the small back pressure chamber which closes the end of the sliding hole of the suction check valve body, is pilot operated by a small solenoid-operated switching valve, and suction is performed by the pressure generated in the compression stroke of the pump plunger. Choi Since the force against the force to close the lock valve can be strengthened and a small solenoid-operated switching valve is sufficient, high-speed response is possible, the manufacturing cost is kept low, and precision with respect to electrical signals is reduced.
  • the small back pressure chamber has an inner diameter smaller than the inner diameter of the sliding hole, and has a small volume.
  • both surfaces having different taper angles from the taper angles of the seal portions are provided between the seal portions of the pump housing and the suction check valve housing for closing the pump chamber.
  • a pump comprising: a hollow metal spring receiver having a double-sided sealing surface having a taper angle formed therein; and a suction check valve spring disposed between a large diameter portion of the suction check valve body and the spring receiver. The pressure oil in the room can be sealed to the seal part of the pump housing and the seal part of the suction check valve housing.
  • the material of the hollow metal spring receiver having the double-sided sealing surfaces is made of a material softer than the hardness of the material of each seal portion of the pump housing and the suction valve housing.
  • the suction check valve housing slides.
  • the cylindrical portion of the suction check valve body that fits into the hole has substantially the same diameter as the large-diameter portion, thereby facilitating processing accuracy.
  • a hollow seal ring member having a double-sided sealing surface having a double-sided taper angle between the suction check valve housing of the suction check valve and the cup-shaped small back pressure chamber main body Since the small back pressure chamber is provided, the small back pressure chamber can be more securely sealed from the pump chamber, and a decrease in volumetric efficiency can be suppressed.
  • the switching valve is a NO (normally open) type switching valve, and when an electric signal is ON, a driving portion of the switching valve is connected to the small-back pressure chamber.
  • the port hole was closed, and when the electric signal was turned off, the drive unit of the switching valve opened the port hole of the small back pressure chamber so as to communicate with the feed fuel passage.
  • the small back pressure chamber that communicates with the sliding hole of the suction check valve body communicates with the low-pressure pressurized feed fuel passage.
  • the drive unit of the small electromagnetic switching valve that is activated by an electric signal from the ECU is open. Due to the differential pressure between the suction negative pressure and the feed pressure generated by the suction operation due to the expansion of the volume of the pump chamber accompanying the movement of the pump brander, the suction chuck valve is piled on the spring force attached to the suction chuck valve. The sheet is pushed open and the fluid is guided from the suction port to the pump chamber to fill the pump chamber. At this time, the suction check valve will automatically open.
  • the spring attached to the suction check valve will cause the differential pressure between the pressure on the feed side and the pressure in the pump chamber to be determined by the spring force. Pressure, so that the influence of the flow caused by the inflow and outflow of the feed fluid into and out of the small back pressure chamber for controlling the suction and discharge of the pump chamber that generates high pressure and the suction check valve element is reduced. Operation is stabilized.
  • Another advantage is that the opening / closing timing of the suction check valve can be changed with respect to the electric signal from the ECU by changing the spring f.
  • the switching valve is an NC (normally closed) type switching valve, and when the electric signal is ON, the drive unit of the switching valve closes the port hole of the small back pressure chamber. It may be so arranged that it communicates with the feed fuel passage so that the drive unit of the switching valve closes the port hole of the small back pressure chamber when the electric signal is OFF.
  • the pump plunger When the stroke position is detected, the speed of the reciprocating stroke movement of the pump plunger is near the highest speed, or is set in advance according to the rotation near the time when the suction check valve body reaches the maximum suction stroke.
  • the switching valve By energizing (or de-energizing) the switching valve with the delay time or timing, the port of the small back pressure chamber is closed, so that the seat portion of the suction check valve is kept open. You may.
  • the suction check valve element has the property of having the maximum stroke near the point where the speed of the suction stroke movement of the pump plunger is the fastest or near the point where the suction check ⁇ reaches the maximum suction stroke.
  • the switching valve When the switching valve is energized (or de-energized) near this maximum stroke and the fluid in the small back pressure chamber that communicates with the sliding hole of the suction check valve is closed, the seat of the suction check ⁇ opens. It is kept as a valve. At this time, the rotation of the input camshaft or the position of the plunger is detected, and the small electromagnetic switching valve is driven to open and close the port of the small back pressure chamber with a delay timing or delay time set in advance by the ECU. This makes it possible to make the discharge amount variable, and it is necessary to precisely and variably control the discharge flow rate, which is significantly different from conventional mechanisms.
  • the suction check valve When the switching valve is energized (or de-energized) and the port is opened, the suction check valve is pressed by the spring force that presses the suction check valve to the sheet side and the pressure generated in the pump plunger by the compression of the pump plunger.
  • the valve body moves to the seat side of the suction check valve housing and sits down, becoming a seat state, and the pump chamber is sealed.
  • the pump plunger further strokes, the pressure in the pump chamber further rises, and when the pressure in the pump plunger chamber becomes higher than the opening pressure of the discharge check valve, the pressurized fluid is discharged through the discharge check valve. At this time, it is possible to stop the energization of the switching valve from the ECU at any time during the stroke of the compression stroke. Since the amount of fluid to be compressed changes accordingly, it is possible to control the variable discharge flow rate.
  • a pump plunger which is formed in the pump housing and is reciprocated by a spring force and reciprocates via a force mechanism, a pump chamber pressurized by the pump plunger, and a suction port of the pump chamber Suction valve connected to the feed fuel passage and a discharge port connected to the discharge port of the pump chamber.
  • a back valve having a cap-shaped small back pressure chamber body for closing an end of a sliding hole of a suction check valve housing in which the suction check valve body is fitted.
  • the small back pressure chamber has a port hole communicating with the feed fuel passage, and the port hole is selectively communicated with the feed fuel passage by opening and closing a drive unit of the small electromagnetic switching valve.
  • the switching valve When the suction check valve body is operated, the switching valve is operated by an electric signal given in synchronization with the stroke of the pump plunger, so that the driving portion of the switching valve operates the small back pressure chamber.
  • the suction check By closing the port hole, the suction check is urged in the closing direction.Control is performed so that the valve opening position can be maintained even when the check valve spring force and the pressure in the pump chamber are received.
  • the pump discharge amount is variable, and the feed fuel passage is communicated with a suction port of the pump chamber.
  • the suction chinic operates, the feed fuel discharged from the port hole of the small back pressure chamber is discharged. Is discharged to the suction port of the pump chamber so that the feed fuel in the small back pressure chamber is sequentially replaced.
  • the small back pressure chamber has an inner diameter smaller than the inner diameter of the sliding hole, and has a small volume.
  • a double-sided sealing surface having a double-sided taper angle having a taper angle different from the taper angle of each of the seal portions is provided between each seal portion of the pump housing and the suction check valve housing for closing the pump chamber.
  • a suction check valve spring disposed between the formed hollow metal spring receiver and the large-diameter portion and the spring receiver.
  • the seal part of the jig and the seal part of the suction chuck valve housing can be sealed, and the material of the hollow metal spring receiver having the double-sided sealing surface is made of a material of the pump housing and the suction chuck valve housing.
  • FIG. 1 is an enlarged sectional view of a main part of a high-pressure plunger pump according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a main part of a high-pressure plunger pump according to a second embodiment of the present invention.
  • FIG. 3 is a schematic sectional view of the entire high-pressure plunger pump according to the third embodiment of the present invention.
  • FIG. 4 is an enlarged sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger pump according to a fourth embodiment of the present invention.
  • FIG. 5 is an enlarged sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger pump according to a fifth embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing the concept of delay time / timing.
  • FIG. 7 is a block diagram showing a schematic configuration of a common rail fuel injection device using the high-pressure plunger pump of the present invention.
  • FIG. 1 is an enlarged sectional view of a main part of a high-pressure plunger pump according to a first embodiment of the present invention.
  • This high-pressure plunger pump 1 is a conventional common-rail type fuel injection device shown in FIG. It is used as a high-pressure fuel pump of a hydraulic pressure generator of the type.
  • fuel in a fuel tank 11 is sent by a fuel feed pump 12 to a high-pressure plunger pump 13 which is a high-pressure fuel pump.
  • the fuel sent from 12 is pressurized to high-pressure fuel of about 100 MPa corresponding to the injection pressure, and this high-pressure fuel is sent to a common rail 16 via a discharge check valve 14 and a discharge pipe 15.
  • a plurality of distribution pipes 17 are connected to the common rail 16, and each distribution pipe 17 is connected to an electromagnetic injector 19 installed in each cylinder of the engine 18.
  • the electromagnetic control valve 20 When the electromagnetic control valve 20 is actuated, the electromagnetic injector 19 opens an injector (not shown), and high-pressure fuel in the common rail 16 is supplied to each cylinder of the engine 18 via the injector 19. It is designed to be injected.
  • Electromagnetic control of injector 19 The valve 20 is controlled by an electronic control unit ECU 21.
  • the ECU 21 receives information on the engine speed and load state from, for example, the engine speed sensor 22 and the load sensor 23, determines the operating state of the engine based on these signals, and optimizes the engine according to the operating state of the engine.
  • An injection timing and an injection amount are calculated and a control signal is issued to the electromagnetic control valve 20. Therefore, an optimal injection timing and an optimal injection amount of fuel are injected into each cylinder of the engine 18 according to the operating state of the engine. Also, the fuel consumed by the injection drops in the common rail 16 and the fuel pressure in the common rail 16 must be constantly maintained at a pressure corresponding to the injection pressure to compensate for the consumption. There is. For this reason, the fuel of the above consumption is supplied from the high-pressure plunger pump 13 to the common rail 16.
  • the common rail 16 is provided with a pressure sensor 24 for detecting the fuel pressure in the common rail, and the ECU 21 sends a command signal to the high-pressure plunger pump 13 by a signal from the pressure sensor 24,
  • the discharge amount of the plunger pump 13 is controlled. Therefore, the high-pressure plunger pump 13 must be a pump capable of controlling the discharge amount according to the engine load and the number of revolutions. For this reason, this type of high-pressure pump is described in each of the above publications. Is adopted.
  • FIG. 1 shows a high-pressure plunger pump 1 according to a first embodiment of the present invention, which is reciprocated via a cam mechanism (not shown) urged by a spring force (not shown) formed in a pump housing 50.
  • the pump plunger 3 that moves, the pump chamber 2 to which the pump plunger 3 pressurizes, the suction check valve body 51 disposed in the suction port 26 of the pump chamber 2 and communicated with the feed fuel passage 4, and the discharge port 27 of the pump chamber 2 A pump is actuated by the discharge check valve 30 connected to.
  • the small back pressure chamber main body 6 is provided with a small volume pressure-type back pressure chamber body 6 that closes the end of the sliding hole 52 of the suction check valve nosing 50 into which the suction check valve 51 is fitted. Is the feed fuel passage
  • the small back pressure chamber 62 in the small back pressure chamber main body 6 has an inner diameter smaller than the inner diameter of the sliding hole 8.
  • the small back pressure chamber 62 in the small back pressure chamber body 6 is selectively connected to the feed fuel and the fuel passage 4 by opening and closing the port hole 61 by opening and closing the rod 71, which is the drive unit of the small electromagnetic switching valve 7.
  • the small solenoid-operated switching valve 7 has a solenoid coil 72, a fixed magnetic pole 73 fixed to a pressure-resistant tube 76, and a rod 71, which is a driving unit, fixed by a spring 75. It has a movable magnetic pole 74 that is energized and reciprocates within a pressure-resistant tube 76.
  • the switching valve 7 When the suction check valve element 51 is operated, the switching valve 7 is operated by an electric signal (not shown) provided in synchronization with the stroke of the pump plunger 3, so that the rod 71, which is the driving unit of the switching valve 7, has a small height.
  • the port hole 61 of the pressure chamber 62 By closing the port hole 61 of the pressure chamber 62, control is performed so that the valve can be maintained in the open position even when receiving the force of the check valve spring 54 that urges the suction check valve body 51 in the closing direction and the pressure of the pump chamber 2.
  • the pump discharge amount is variable, and the feed fuel passage 4 is communicated with the suction port 26 of the pump chamber 2.
  • the port hole 61 of the small back pressure chamber 62 is operated.
  • the suction check valve spring 54 is guided by a spring guide 53 supported by a snap ring 59 on the suction check valve body 51 and urges the suction check # 51 upward.
  • a clearance is provided between the cylindrical portion 56 of the suction check valve element 51 and the sliding hole 8 that slides so that even if the pressure in the small back pressure chamber 62 increases, the amount of leakage is small.
  • the small electromagnetic switching valve 7 shown in Fig. 1 is N 1 type
  • the feed fuel passage 4 provided in the pump housing 28 is turned on by a fuel pump (not shown) with a key switch (not shown) turned on, and a pressure of about 0.3 MPa set by a relief valve (not shown) before the engine is started.
  • a fuel pump not shown
  • a key switch not shown
  • a pressure of about 0.3 MPa set by a relief valve (not shown) before the engine is started.
  • the pump plunger 3 descends, the negative pressure in the pump chamber 2 overcomes the force of the suction check valve spring 54, and feed fuel is introduced into the pump chamber 2 from the suction port 26.
  • the pump plunger 3 rises while the port hole 61 of the small back pressure chamber 62 is open, the large diameter portion 55 of the suction check valve body 51 closes the suction port 26 and is pressurized in the pump chamber 56.
  • the high-pressure fuel pushes and opens the check valve body 32 of the discharge check valve 30, whereby the high-pressure fuel pressurized in the pump chamber 56 is sent to the common rail 16 shown in FIG.
  • the small port hole 61 of the small back pressure chamber 62 having a small volume closing the end of the sliding hole 8 of the suction check valve body 51 is connected to the small electromagnetic switching valve 7.
  • the force generated in the compression stroke of the pump plunger 3 can increase the force against the force for closing the suction check valve element 51, and the small electromagnetic switching valve 7 can be used.
  • FIG. 2 is an enlarged sectional view of a main part of a high-pressure plunger-pump according to a second embodiment of the present invention.
  • each taper different from the taper angle of each of the seal portions 89 and 92 is provided between the seal portions 89 and 92 of the pump housing 150 and the suction check valve housing 152 for closing the pump chamber 2.
  • Hollow metal spring receiver 88 formed with double-sided taper angled double-sided sealing surfaces 90, 91 and suction check valve spring 84 disposed between large-diameter portion 155 and spring receiver 88. The pressure oil in the pump chamber 2 can be sealed to the seal portions 89 and 92 of the pump nozzle 150 and the suction check valve housing 152.
  • the pump chamber 150 and the seal chambers 89 and 92 of the suction check valve housing 152 are closed to reduce the size of the pump chamber, which reduces the leakage of pressurized oil.
  • each sealing part 89, 92 comes in line contact, so processing accuracy such as flatness and surface roughness is not required.
  • the holding force is small and the structure is completely sealed.
  • the spring receiver 88 has a taper angle (25 to 45 °) on both sides, and the taper angle is larger than the taper angle (2 to 10 °) of the pump housing 150 and the check valve housing 152.
  • the check valve housing 152 and the pump housing 150 are sealed by the sealing portions 89 and 92 inside the pump housing 150 by the tightening force of the screw portions 93 of the pump housing 150.
  • Spring receiver The material hardness of 88 is set to be lower (300 to 450 HV) than the hardness (HV 1000) of the pump housing 150 and the check valve housing 152, which causes deformation at each seal part 89, 92 to ensure Sealing can suppress a decrease in volumetric efficiency.
  • FIG. 3 is a schematic sectional view of the entire high-pressure plunger pump according to the third embodiment of the present invention. 2 except that the cylindrical portion 256 that fits into the sliding hole 208 of the suction check valve housing 205 of the suction check valve 205 has substantially the same diameter as the large-diameter portion 155. It has the same structure as.
  • a cylinder hole 66 is installed in the pump housing 250 to convert rotational motion into linear motion by rotation of a cam 64 fixed to a shaft 63, and the pump plunger 3 can reciprocate in the cylinder hole 66. It is inserted in.
  • the outer ring 165 is rotated via the bearing 65 mounted on the cam 64, and the pump plunger 3 in contact with the bearing 65 is reciprocated in the cylinder hole 66. .
  • the reciprocating stroke of the pump plunger 3 is determined by the height difference of the cam 64. 12 is a feed pump and 67 is a relief valve.
  • the cylindrical portion 256 that fits into the sliding hole 208 of the check valve housing 252 has substantially the same diameter as the large-diameter portion 155, thereby facilitating processing accuracy.
  • the upper part of Fig. 3 shows a state in which the pump plunger 3 is at the bottom dead center, and the fluid in the pump chamber 2 is before compression starts.
  • FIG. 3 shows a state in which the pump plunger 3 is at the top dead center, and the fluid in the pump chamber 2 is discharged from the discharge port 27 through the discharge check valve 30 to a residual pressure state. Therefore, the large-diameter portion 256 of the suction check valve body 251 is seated on the seating portion of the check valve housing 252 to close the discharge port 27. At this time, the small electromagnetic switching valve 7 is not supplied with the electric signal from the ECU 21 in FIG. 7 and the port hole 61 of the small back pressure chamber 62 is open. Therefore, the fluid in the small back pressure chamber 62 communicates with the feed fuel passage 4.
  • the suction check valve element 251 reaches the maximum suction stroke near the point where the speed of the stroke movement of the pump plunger 3 becomes the highest.
  • the switching valve 7 is energized by an electric signal from the ECU 21 at the timing when the suction check valve body 251 reaches the maximum suction stroke, and the small back pressure chamber 62 communicating with the suction check valve body 251 is turned on.
  • the large-diameter portion 255 of the suction tip ⁇ : 251 is kept open. That is, the stroke position of the pump plunger 3 is detected, and the rotation of the pump plunger 3 near the maximum reciprocating stroke speed or near the suction check ⁇ 251 reaching the maximum suction stroke is determined according to the rotation.
  • the suction chuck ⁇ By energizing (or de-energizing) the switching valve with a preset delay time or timing and closing the port hole 61 of the small back pressure chamber 62, the suction chuck ⁇ : the large-diameter portion 255 of the 251 remains open It was kept.
  • the timing is the time point at the stroke position corresponding to the movement of the pump plunger.
  • the stroke position of the pump plunger such as the rotation angle of the cam shaft and the rotation angle of the input shaft is detected and converted into an electric signal. It is something that can be processed to specify the time point.
  • Figure 6 shows an example of the delay time.
  • Figure 6 (1) shows the concept of repetition of the suction and pumping steps in the stroke process of the pump plunger.
  • the displacement X indicates the stroke position.
  • FIG. 6 shows one cycle of the repetition of the suction step and the pumping step of the pump plunger.
  • Figure 6 (2) shows an example of the characteristics of the automatic opening and closing of the suction check valve when the switching valve drive is open. Fig.
  • FIG. 6 (3) shows a state in which the drive unit of the switching valve is closed by an electric signal to close the small back pressure chamber and the suction check valve body is kept open near the maximum stroke of the suction chuck.
  • FIG. 6 (4) shows a state in which the drive unit of the switching valve is closed by an electric signal to close the small back pressure chamber near the maximum stroke of the suction check valve body, and the suction check valve body is kept open. Indicates that the open state ratio can be changed by the ON time (or timing).
  • the switching valve 7 When the suction chuck 251 reaches the maximum suction stroke, the switching valve 7 is energized and the port 61 of the small back pressure chamber 62 communicating with the suction check valve 251 is closed.
  • FIG. 4 is an enlarged cross-sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger pump according to a fourth embodiment of the present invention.
  • an NC (normally closed) switching valve is shown.
  • the small electromagnetic switching valve 7 shown in Figs. 1 and 3 is a NO type (normally open type) switching valve.
  • the rod 71 of the switching valve 7 is connected to the port hole 61 of the small back pressure chamber 62.
  • the port hole 61 of the small back pressure chamber 62 communicates with the feed fuel passage 75 when it is OFF.
  • the opening 471 of the switching valve 407 feeds the port hole 61 of the small back pressure chamber 62 to the fuel passage. It communicates with 404 and closes the port hole 61 of the small back pressure chamber 62 when it is OFF.
  • the fixed magnetic pole 473 is fixed to a pressure-resistant tube 476, and the movable magnetic pole 474 is fixed to a rod 471.
  • NC type normally closed type
  • the switching valve must also be able to control the opening and closing timing of the suction pick-up valve in response to the electric signal so that the discharge flow rate corresponds to those shown in Figs. 1 and 3 Needless to say.
  • FIG. 5 is an enlarged sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger-pump according to a fifth embodiment of the present invention.
  • the suction check valve 505 of the fifth embodiment is a hollow seal ring member having double-sided sealing surfaces 97 and 98 having double-sided taper angles between the check valve housing 252 and the cup-shaped small back pressure chamber body 6.
  • 95 is provided.
  • 96 is a hollow hole.
  • a pilot operation is performed by a small electromagnetic switching valve.

Abstract

A high-pressure plunger pump for high-pressure fuel pump capable of varying a pump discharge rate thereof, wherein a small back pressure chamber (62) is provided to close the end parts of sliding holes (8, 108, 208) for suction check valve discs (51, 151, 251), the small back pressure chamber (62) communicates with a feed fuel path (4) selectively by opening and closing its port hole (61) by drive parts (71, 471) of small solenoid switching valves (7, 407) and, when the suction check valve discs are operated, the feed fuel discharged through the port hole (61) of the small back pressure chamber (62) is discharged to a suction port (26) of a pump chamber (2) so as to replace the feed fuel inside the small back pressure chamber (62) sequentially with new one, whereby, because a small solenoid switching valve may be used, a high-speed response is enabled, production cost can also be minimized, follow-up to electric signals can be made accurate, and a pump discharge can be controlled precisely.

Description

明細書 高圧プランジャーポンプ 技術分野  Description High pressure plunger pump Technical field
本発明は高圧流体の制御に適する吐出量の可変制御が可能な高圧ブランジャー 及び高圧ブランジャーポンプに関し、 特に高圧ブランジャ一ポンプの制御方法、 例えば蓄圧器あるいはコモンレール内に高圧燃料を圧送する吐出量可変式高圧燃 料ポンプに使用できる高圧ブランジャーポンプの可変吐出量制御機構に関する。 背景技術  The present invention relates to a high-pressure plunger and a high-pressure plunger pump capable of variably controlling a discharge rate suitable for controlling a high-pressure fluid, and more particularly to a control method of a high-pressure plunger-pump, for example, a discharge rate for pumping high-pressure fuel into an accumulator or a common rail. The present invention relates to a variable discharge rate control mechanism for a high-pressure plunger pump that can be used for a variable high-pressure fuel pump. Background art
ディーゼル機関ゃガソリン機関に燃料を供給する燃料噴射装置としては、 蓄圧 器または図 7に示すコモンレールと呼ばれる蓄圧配管に高圧燃料を蓄積し、 この 蓄圧燃料を電磁式インジヱクタを通じて機関に噴射するようにしたシステムに使 用する高圧燃料ポンプが特開平 6-257533号公報、 特開平 1-73166号公報などに開 示されている。  As a fuel injection device that supplies fuel to diesel engines and gasoline engines, high-pressure fuel is stored in a pressure accumulator or a pressure accumulating pipe called a common rail shown in FIG. 7, and this pressure accumulating fuel is injected into the engine through an electromagnetic injector. A high-pressure fuel pump used in the system is disclosed in Japanese Patent Application Laid-Open Nos. 6-257533 and 1-73166.
特開平 6- 257533号公報に記載されている従来の高圧燃料ポンプは、 切替電磁弁 に直接駆動される副弁体が、 吸入チヱック弁体の背圧室のポ一卜を開閉して背圧 室の圧力を制御するもので、 それにより吸入チェック弁体は主弁室とポンプ室間 の差圧及び主弁スプリングの付勢力に応じて主弁室内を憎動し、 それにより主弁 室及びポンプ室間を開閉し、 この吸入チヱック の弁閉タイミングの調節によ り、 ポンププランジャーの圧送行程における有効圧送ストロークが調節されるも のである。 発明の開示  In the conventional high-pressure fuel pump described in Japanese Patent Application Laid-Open No. 6-257533, a sub-valve directly driven by a switching solenoid valve opens and closes a port of a back pressure chamber of a suction check valve body, thereby causing a back pressure. The suction check valve body hates the main valve chamber according to the pressure difference between the main valve chamber and the pump chamber and the biasing force of the main valve spring, thereby controlling the main valve chamber and the main valve chamber. The effective pumping stroke in the pumping stroke of the pump plunger is adjusted by opening and closing the pump chambers and adjusting the valve closing timing of the suction chuck. Disclosure of the invention
しかしなカ ら、 例えば、 車両用の内燃機関のように運転状態が時間とともに著 しく変化したり高速回転や高圧燃料ポンプの 200〜400MPaなどへの高圧化や大型 化および吸入チェック弁体の開閉ストロークの増大などが要求される場合には、 この種の吸入チェック弁体は、 切替電磁弁に直接駆動される大きい副^を有す ることから、 大きい切替電磁弁が必要で、 また高速応答性と、 作動の安定化に問 題があった。 However, for example, as in the case of internal combustion engines for vehicles, the operating conditions change significantly with time, high-speed rotation, high pressure fuel pumps with pressures of 200 to 400 MPa, etc. When an increase in stroke is required, this type of suction check valve has a large auxiliary that is directly driven by the switching solenoid valve. As a result, a large switching solenoid valve was required, and there were problems with high-speed response and stable operation.
本発明の目的は、 上記した問題点に鑑みなされたものであり、 機関の大型化、 高速化にかかわらず、 切替電磁弁を小型化し、 切替電磁弁の弁体、 弁座の摩耗、 リークを防止し、 高速応答が可能となり、 製造コストも低く抑えられ、 電気信号 に対して精密に追従でき、 精密なポンプ吐出量制御ができる高圧燃料ポンプであ る高圧プランジャーポンプを提供することにある。  The object of the present invention has been made in view of the above-described problems. In spite of an increase in the size and speed of an engine, the size of a switching solenoid valve is reduced, and wear and leakage of a valve body and a valve seat of the switching solenoid valve are reduced. The object is to provide a high-pressure plunger pump that is a high-pressure fuel pump that can prevent high-speed response, achieve low production cost, accurately follow electric signals, and precisely control the pump discharge rate. .
( 1 ) 上記目的を達成するために、 本発明は、 ポンプハウジング内にそれぞれ形 成された、 スプリング力に付勢されかつカム機構を介して往復運動するポンププ ランジャー、 ポンププランジャーが加圧するポンプ室、 ポンプ室の吸入ポートに 配置されフィード燃料通路と連通された吸入チェック^及びポンプ室の吐出ポ ―卜に接続された吐出チヱック弁と、 によりポンプ作用する高圧プランジャーポ ンプにおいて、 前記吸入チエック弁体が嵌合する吸入チェック弁ハウジングの摺 動穴の端部を閉じる力ップ状小背圧室本体を有する小背圧室が設けられており、 前記小背圧室はフィ一ド燃料通路と連通するポ一ト穴を有し、 前記ポート穴を小 型電磁切替弁の駆動部の開閉により前記フィード燃料通路と選択的に連通される ようにし、 前記吸入チエック弁体が作動するときに前記切替弁がポンププランジ ヤーのストロークに同期して与えられる電気信号によって作動することによって 切替弁の駆動部が小背圧室のポート穴を閉じることにより、 前記吸入チ ック弁 体が閉じ方向に付勢するチェック弁スプリング力とポンプ室の圧力を受けても開 弁位置を保持できるように制御して、 ポンプ吐出量を可変にし、 かつ前記フィー ド燃料通路は前記ポンプ室の吸入ポートに連通されており、 前記吸入チェック弁 体が作動するとき前記小背圧室のポー卜穴から排出されたフィ一ド燃料が前記ポ ンプ室の吸入ポー卜まで排出されて前記小背圧室内のフィ一ド燃料が順次入替え られるようにされたことを特徴とする高圧プランジャーポンプとしたものである 以上のように構成した本発明においては、 吸入チヱック弁体の摺動穴の端部を 閉じる小背圧室の小さいポート穴を小型電磁切替弁によってパイロット作動させ ることにより、 ポンププランジャーの圧縮行程で発生する圧力によって吸入チェ ック弁体を閉じようとする力に抗する力を強くすることができ、 小型電磁切替弁 でよいので、 高速応答が可能となり、 製造コストも低く抑えられ、 電気信号に対 して精密に追従でき、 精密なポンプ吐出量制御ができ、 かつ吸入チヱック弁体が 作動するとき小背圧室のポー卜から排出されたフィード燃料がポンプ室の吸入ポ ―卜まで送出するようにされ、 小背圧室内のフィ一ド燃料は順次入替えられるよ うにされより精密なポンプ吐出量制御ができる。 (1) In order to achieve the above object, the present invention relates to a pump plunger formed in a pump housing and reciprocating via a cam mechanism urged by a spring force, and a pump pressurized by the pump plunger. A high-pressure plunger pump pumped by a suction check and a discharge valve connected to a discharge port of the pump chamber, which are disposed at a suction port of the pump chamber and communicate with the feed fuel passage. A small back pressure chamber having a main body for closing the sliding hole of the suction check valve housing into which the check valve element is fitted is provided. A port hole communicating with the fuel passage, wherein the port hole is selectively communicated with the feed fuel passage by opening and closing a drive unit of the small electromagnetic switching valve; When the suction check valve body is operated, the switching valve is operated by an electric signal given in synchronization with the stroke of the pump plunger, so that the drive unit of the switching valve closes the port hole of the small back pressure chamber, Controlling the valve opening position even if it receives the check valve spring force and the pressure of the pump chamber, which urges the suction check valve body in the closing direction, thereby making the pump discharge amount variable, and The fuel passage communicates with a suction port of the pump chamber, and when the suction check valve body operates, feed fuel discharged from a port hole of the small back pressure chamber is supplied to the suction port of the pump chamber. The high pressure plunger pump is characterized in that the fuel is discharged so that the feed fuel in the small back pressure chamber is sequentially replaced. In this case, the small port hole of the small back pressure chamber, which closes the end of the sliding hole of the suction check valve body, is pilot operated by a small solenoid-operated switching valve, and suction is performed by the pressure generated in the compression stroke of the pump plunger. Choi Since the force against the force to close the lock valve can be strengthened and a small solenoid-operated switching valve is sufficient, high-speed response is possible, the manufacturing cost is kept low, and precision with respect to electrical signals is reduced. It is possible to follow up, control the pump discharge rate precisely, and feed the fuel discharged from the port of the small back pressure chamber to the suction port of the pump chamber when the suction check valve is activated. The feed fuel in the back pressure chamber is sequentially replaced, and more precise pump discharge control can be performed.
( 2 ) 上記 (1 ) において、 好ましくは、 前記小背圧室は前記摺動穴の内径より 小さい内径を持ち、 小容積とした。  (2) In the above (1), preferably, the small back pressure chamber has an inner diameter smaller than the inner diameter of the sliding hole, and has a small volume.
これにより、 小型電磁切替弁によってパイロッ ト作動させることにより、 ポン ププランジャ一の圧縮行程で発生する圧力によつて吸入チエック を閉じょう とする力に抗する力をより強くすることができ、 より小型電磁切替弁にできる。 Thus, by operating the pilot by the small solenoid-operated directional control valve, it is possible to further increase the force that resists the force that closes the suction check due to the pressure generated in the compression stroke of the pump plunger. Can be a small electromagnetic switching valve.
( 3 ) 上記 (2 ) において、 好ましくは、 前記ポンプ室を締め切るポンプハウジ ング及び吸入チヱック弁ハウジングの各シール部間に、 各前記シール部のテ一パ 角度と異なる各テ一パ角度をもつ両面テーパ角度を持った両面シ一ル面が形成さ れた中空金属製スプリング受け及び吸入チヱック弁体の大径部とスプリング受け との間に配置された吸入チェック弁スプリング、 を有し、 前記ポンプ室内の圧油 を、 前記ポンプハウジングのシ一ル部及び吸入チヱック弁ハウジングのシ一ル部 に対しシール可能にした。 (3) In the above (2), preferably, both surfaces having different taper angles from the taper angles of the seal portions are provided between the seal portions of the pump housing and the suction check valve housing for closing the pump chamber. A pump comprising: a hollow metal spring receiver having a double-sided sealing surface having a taper angle formed therein; and a suction check valve spring disposed between a large diameter portion of the suction check valve body and the spring receiver. The pressure oil in the room can be sealed to the seal part of the pump housing and the seal part of the suction check valve housing.
これにより、 ポンプハウジング及び吸入チエック弁ハウジングが締め切るボン プ室内を小さくしかつ圧油の漏れを少なくし、 かつ各前記シール部を角度の異な る両面テ一パ角度を持った両面シール面で受けることにより、 各前記シール部が 線接触するため平面度や面粗さなどの加工精度を必要とせず、 また押さえる力も 小さくて完全にシールする構造とした。  This reduces the size of the pump chamber which the pump housing and the suction check valve housing shut off, reduces leakage of pressurized oil, and receives each of the seal portions with a double-sided sealing surface having a different double-sided taper angle. Thus, since the sealing portions are in line contact with each other, processing accuracy such as flatness and surface roughness is not required, and the holding force is small, so that the structure is completely sealed.
( 4 ) 上記 (3 ) において、 好ましくは、 両面シール面が形成された中空金属製 スプリング受けの材質は、 ポンプハウジング及び吸入チヱック弁ハウジングの各 シール部の材質の硬度より柔らかい材質にされて、 前記吸入チヱック弁ノ、ゥジン グ及びポンプハウジングの各前記シ一ル部で変形を起こさせ、 より確実にポンプ 室内の圧油をシールし容積効率の低下を押さえることができる。  (4) In the above (3), preferably, the material of the hollow metal spring receiver having the double-sided sealing surfaces is made of a material softer than the hardness of the material of each seal portion of the pump housing and the suction valve housing. By deforming the seal parts of the suction check valve, the paging and the pump housing, it is possible to more reliably seal the pressure oil in the pump chamber and to suppress a decrease in volumetric efficiency.
( 5 ) 上記 ( 4 ) において、 好ましくは、 前記吸入チェック弁ハウジングの摺動 穴に嵌合する吸入チェック弁体の円筒部は前記大径部とほぼ同径にされ、 加工精 度が出易くされている。 (5) In the above (4), preferably, the suction check valve housing slides. The cylindrical portion of the suction check valve body that fits into the hole has substantially the same diameter as the large-diameter portion, thereby facilitating processing accuracy.
( 6 ) 上記 (5 ) において、 好ましくは、 前記吸入チェック弁の吸入チェック弁 ハウジングとカップ状小背圧室本体との間に両面テ一パ角度を持った両面シール 面を有する中空シールリング部材を設けたので、 小背圧室をポンプ室に対し、 よ り確実にシールし容積効率の低下を押さえることができる。  (6) In the above (5), preferably, a hollow seal ring member having a double-sided sealing surface having a double-sided taper angle between the suction check valve housing of the suction check valve and the cup-shaped small back pressure chamber main body. Since the small back pressure chamber is provided, the small back pressure chamber can be more securely sealed from the pump chamber, and a decrease in volumetric efficiency can be suppressed.
( 7 ) 上記 (1 ) 又は (3 ) において、 好ましくは、 前記切替弁は N O (ノーマ ルオープン) 形切替弁であり、 電気信号が O Nのとき切替弁の駆動部が前記小背 圧室のポ一ト穴を閉じるようにし、 電気信号が O F Fのとき切替弁の駆動部が小 背圧室のポート穴を開き前記フィ一ド燃料通路と連通させるようにした。  (7) In the above (1) or (3), preferably, the switching valve is a NO (normally open) type switching valve, and when an electric signal is ON, a driving portion of the switching valve is connected to the small-back pressure chamber. The port hole was closed, and when the electric signal was turned off, the drive unit of the switching valve opened the port hole of the small back pressure chamber so as to communicate with the feed fuel passage.
かかる構成により、 ポンププランジャーが吸入工程のとき、 吸入チェック弁体 の摺動穴と連通する小背圧室は、 低圧で加圧されたフィ一ド燃料通路と連通され ており、 電子制御ュニット ECUからの電気信号によって作動する小型電磁切替弁 の駆動部は開状態となつている。 ポンプブランジヤーの移動に伴うポンプ室の容 積の膨張による吸入作動によつて生ずる吸入負圧とフィード圧との差圧によって 吸入チヱック弁体に取り付けられたバネ力に杭して吸入チヱック弁体のシ一ト部 を押し開き、 流体が吸入ポートからポンプ室に導かれてポンプ室を満たす。 この とき、 吸入チェック弁体は自動的に開弁することになるカ^ 吸入チェック弁体に 装着されたバネによって、 フィード側の圧力とポンプ室の圧力との差圧がバネカ で決まる一定のクラッキング圧となるようにしてあり、 高圧を発生するポンプ室 の吸入 ·吐出、 及び吸入チヱック弁体を制御するための小背圧室へのフィード流 体の流入 ·排出にともなう流れによる影響を少なくして作動を安定化している。 また、 このバネカ f を変えることによって吸入チェック弁体の開閉タイミングを ECUからの電気信号に対して変えることができると 、う長所を有する。  With this configuration, when the pump plunger is in the suction process, the small back pressure chamber that communicates with the sliding hole of the suction check valve body communicates with the low-pressure pressurized feed fuel passage. The drive unit of the small electromagnetic switching valve that is activated by an electric signal from the ECU is open. Due to the differential pressure between the suction negative pressure and the feed pressure generated by the suction operation due to the expansion of the volume of the pump chamber accompanying the movement of the pump brander, the suction chuck valve is piled on the spring force attached to the suction chuck valve. The sheet is pushed open and the fluid is guided from the suction port to the pump chamber to fill the pump chamber. At this time, the suction check valve will automatically open. ^ The spring attached to the suction check valve will cause the differential pressure between the pressure on the feed side and the pressure in the pump chamber to be determined by the spring force. Pressure, so that the influence of the flow caused by the inflow and outflow of the feed fluid into and out of the small back pressure chamber for controlling the suction and discharge of the pump chamber that generates high pressure and the suction check valve element is reduced. Operation is stabilized. Another advantage is that the opening / closing timing of the suction check valve can be changed with respect to the electric signal from the ECU by changing the spring f.
( 8 ) 上記 (1 ) 又は (3 ) において、 好ましくは、 前記切替弁は N C (ノーマ ルクローズ) 形切替弁とし、 電気信号が O Nのとき切替弁の駆動部が小背圧室の ポート穴を前記フィード燃料通路と連通するようにし、 電気信号が O F Fのとき 切替弁の駆動部が小背圧室のポート穴を閉じるようにしてもよい。  (8) In the above (1) or (3), preferably, the switching valve is an NC (normally closed) type switching valve, and when the electric signal is ON, the drive unit of the switching valve closes the port hole of the small back pressure chamber. It may be so arranged that it communicates with the feed fuel passage so that the drive unit of the switching valve closes the port hole of the small back pressure chamber when the electric signal is OFF.
( 9 ) 上記 ( 1 ) 又は (3 ) において、 好ましくは、 前記ポンププランジャーの ストローク位置を検出して、 ポンププランジャーの往復ストローク運動の速度が 最も速くなる付近あるし、は前記吸入チエック弁体が最大吸入ストロ一クに到達す る付近でその回転に応じてあらかじめ設定されたディレイ時間またはタイミング で切替弁へ通電 (または非通電) して前記小背圧室のポートを閉止することによ り、 吸入チェック弁のシ一ト部が開弁のまま保持されるようにしてもよい。 かかる構成により、 吸入チヱック弁体はポンププランジヤーの吸入ストロ一ク 運動の速度が最も速くなる付近あるいは前記吸入チェック ^が最大吸入スト口 —クする付近で最大のストロークとなる性質があり、 カム軸の回転速度に応じて 決まる一定のタイミングとなるもので、 ディレイ時間またはディレイタイミング と呼ぶ。 この最大ストローク付近で切替弁へ通電 (または非通電) して吸入チェ ック弁体の摺動穴と連通する小背圧室の流体を閉止することにより、 吸入チェッ ク^のシート部は開弁のまま保持される。 このとき、 入力カム軸の回転または プランジャーの位置を検出して ECU によりあらかじめ設定されたディレイタイミ ングまたはディレイ時間で、 小背圧室のポー卜の開閉を前記小型電磁切替弁を駆 動することによって吐出量を可変にでき、 また、 吐出流量を精密に可変制御する ために必要で、 従来の機構とは大きく異なる点である。 (9) In the above (1) or (3), preferably, the pump plunger When the stroke position is detected, the speed of the reciprocating stroke movement of the pump plunger is near the highest speed, or is set in advance according to the rotation near the time when the suction check valve body reaches the maximum suction stroke. By energizing (or de-energizing) the switching valve with the delay time or timing, the port of the small back pressure chamber is closed, so that the seat portion of the suction check valve is kept open. You may. With this configuration, the suction check valve element has the property of having the maximum stroke near the point where the speed of the suction stroke movement of the pump plunger is the fastest or near the point where the suction check ^ reaches the maximum suction stroke. This is a fixed timing determined according to the shaft rotation speed, and is called delay time or delay timing. When the switching valve is energized (or de-energized) near this maximum stroke and the fluid in the small back pressure chamber that communicates with the sliding hole of the suction check valve is closed, the seat of the suction check ^ opens. It is kept as a valve. At this time, the rotation of the input camshaft or the position of the plunger is detected, and the small electromagnetic switching valve is driven to open and close the port of the small back pressure chamber with a delay timing or delay time set in advance by the ECU. This makes it possible to make the discharge amount variable, and it is necessary to precisely and variably control the discharge flow rate, which is significantly different from conventional mechanisms.
切替弁への通電 (または非通電) してポートを開くと、 吸入チェック弁体をシ 一ト側に押圧するバネ力とポンププランジャーの圧縮によってポンププランジャ —室に発生した圧力によって、 吸入チエック弁体は吸入チエック弁ハウジングの シート側に移動して着座し、 シート状態となりポンプ室が密封される。 ポンププ ランジャーがさらにストロークするとポンプ室の圧力がさらに上昇し、 ポンププ ランジャー室の圧力が吐出チヱック弁の開弁圧よりも高くなると加圧流体を吐出 チェック弁を通り吐出する。 このとき切替弁への ECU からの通電を停止するタイ ミングを圧縮行程のストローク中の任意の時点とすることが可能である。 それに 応じて圧縮される流体量が変わるので可変吐出流量の制御が可能となる。  When the switching valve is energized (or de-energized) and the port is opened, the suction check valve is pressed by the spring force that presses the suction check valve to the sheet side and the pressure generated in the pump plunger by the compression of the pump plunger. The valve body moves to the seat side of the suction check valve housing and sits down, becoming a seat state, and the pump chamber is sealed. When the pump plunger further strokes, the pressure in the pump chamber further rises, and when the pressure in the pump plunger chamber becomes higher than the opening pressure of the discharge check valve, the pressurized fluid is discharged through the discharge check valve. At this time, it is possible to stop the energization of the switching valve from the ECU at any time during the stroke of the compression stroke. Since the amount of fluid to be compressed changes accordingly, it is possible to control the variable discharge flow rate.
( 1 0 ) 好ましくは、 ポンプハウジング内にそれぞれ形成された、 スプリング力 に付勢されかつ力ム機構を介して往復運動するポンププランジャー、 ポンプブラ ンジャーが加圧するポンプ室、 ポンプ室の吸入ポー卜に配置されフィード燃料通 路と連通された吸入チェック弁体及びポンプ室の吐出ポ一卜に接続された吐出チ ヱック弁と、 によりポンプ作用する高圧プランジャーポンプにおいて、 前記吸入 チェック弁体が嵌合する吸入チェック弁ハウジングの摺動穴の端部を閉じるカツ プ状小背圧室本体を有する小背圧室が設けられており、 前記小背圧室はフィード 燃料通路と連通するポート穴を有し、 前記ポート穴を小型電磁切替弁の駆動部の 開閉により前記フィード燃料通路と選択的に連通されるようにし、 前記吸入チエ ック弁体が作動するときに前記切替弁がポンププランジャーのストロークに同期 して与えられる電気信号によつて作動することによつて切替弁の駆動部が小背圧 室のポ一ト穴を閉じることにより、 前記吸入チェック が閉じ方向に付勢する チェック弁スプリング力とボンプ室の圧力を受けても開弁位置を保持できるよう に制御して、 ポンプ吐出量を可変にし、 かつ前記フィード燃料通路は前記ポンプ 室の吸入ポー卜に連通されており、 前記吸入チニック^が作動するとき前記小 背圧室のポート穴から排出されたフィ一ド燃料が前記ポンプ室の吸入ポートまで 排出されて前記小背圧室内のフィ一ド燃料が順次入替えられるようにされ、 前記 小背圧室は前記摺動穴の内径より小さい内径を持ち、 小容積とし、 前記ポンプ室 を締め切るポンプハウジング及び吸入チヱック弁ハウジングの各シ一ル部間に、 各前記シール部のテーパ角度と異なる各テ一パ角度をもつ両面テ一パ角度を持つ た両面シール面が形成された中空金属製スプリング受け及び大径部とスプリング 受けとの間に配置された吸入チェック弁スプリング、 を有し、 前記ポンプ室内の 圧油を、 前記ポンプハウジングのシール部及び吸入チヱック弁ハウジングのシ一 ル部に対しシール可能にし、 前記両面シール面が形成された中空金属製スプリン グ受けの材質は、 ポンプハウジング及び吸入チヱック弁 ヽゥジングの各シ一ル部 の材質の硬度より柔ら力、 、材質にされ、 前記吸入チエック弁 ヽゥジングの摺動穴 に嵌合する吸入チェック弁体の円筒部は前記大径部とほぼ同径にされ、 前記吸入 チエツク弁の吸入チヱック弁ハウジングと力ップ状小背圧室本体との間に両面テ —パ角度を持った両面シール面を有する中空シ一ルリング部材を設けた高圧ブラ ンジャーポンプとした。 これにより、 ( 1 ) 乃至 (6 ) に記載した構成と効果を 有するものとなった。 図面の簡単な説明 図 1は、 本発明の第 1の実施の形態に係わる高圧プランジャーポンプの要部拡 大断面図である。 (10) Preferably, a pump plunger, which is formed in the pump housing and is reciprocated by a spring force and reciprocates via a force mechanism, a pump chamber pressurized by the pump plunger, and a suction port of the pump chamber Suction valve connected to the feed fuel passage and a discharge port connected to the discharge port of the pump chamber. A back valve having a cap-shaped small back pressure chamber body for closing an end of a sliding hole of a suction check valve housing in which the suction check valve body is fitted. The small back pressure chamber has a port hole communicating with the feed fuel passage, and the port hole is selectively communicated with the feed fuel passage by opening and closing a drive unit of the small electromagnetic switching valve. When the suction check valve body is operated, the switching valve is operated by an electric signal given in synchronization with the stroke of the pump plunger, so that the driving portion of the switching valve operates the small back pressure chamber. By closing the port hole, the suction check is urged in the closing direction.Control is performed so that the valve opening position can be maintained even when the check valve spring force and the pressure in the pump chamber are received. The pump discharge amount is variable, and the feed fuel passage is communicated with a suction port of the pump chamber. When the suction chinic operates, the feed fuel discharged from the port hole of the small back pressure chamber is discharged. Is discharged to the suction port of the pump chamber so that the feed fuel in the small back pressure chamber is sequentially replaced. The small back pressure chamber has an inner diameter smaller than the inner diameter of the sliding hole, and has a small volume. A double-sided sealing surface having a double-sided taper angle having a taper angle different from the taper angle of each of the seal portions is provided between each seal portion of the pump housing and the suction check valve housing for closing the pump chamber. And a suction check valve spring disposed between the formed hollow metal spring receiver and the large-diameter portion and the spring receiver. The seal part of the jig and the seal part of the suction chuck valve housing can be sealed, and the material of the hollow metal spring receiver having the double-sided sealing surface is made of a material of the pump housing and the suction chuck valve housing. The cylindrical portion of the suction check valve body, which is made softer and harder than the hardness of the material of the pipe portion and is fitted into the sliding hole of the suction check valve housing, has substantially the same diameter as the large diameter portion. A high-pressure plunger pump having a hollow sealing ring member having a double-sided taper angle and a double-sided taper angle is provided between the suction check valve housing of the check valve and the main body of the small back pressure chamber. As a result, the configuration and effects described in (1) to (6) are obtained. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is an enlarged sectional view of a main part of a high-pressure plunger pump according to a first embodiment of the present invention.
図 2は、 本発明の第 2の実施の形態に係わる高圧プランジャーポンプの要部拡 大断面図である。  FIG. 2 is an enlarged sectional view of a main part of a high-pressure plunger pump according to a second embodiment of the present invention.
図 3は、 本発明の第 3の実施の形態に係わる高圧ブランジャーポンプ全体の概 略断面図である。  FIG. 3 is a schematic sectional view of the entire high-pressure plunger pump according to the third embodiment of the present invention.
図 4は、 本発明の第 4の実施の形態に係わる高圧ブランジャーポンプの吸入チ ェック弁及び小型電磁切替弁の要部拡大断面図である。  FIG. 4 is an enlarged sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger pump according to a fourth embodiment of the present invention.
図 5は、 本発明の第 5の実施の形態に係わる高圧ブランジャーポンプの吸入チ ヱック弁及び小型電磁切替弁の要部拡大断面図である。  FIG. 5 is an enlarged sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger pump according to a fifth embodiment of the present invention.
図 6は、 ディレイ時間/タイミングのコンセプトを示す説明図である。  FIG. 6 is an explanatory diagram showing the concept of delay time / timing.
図 7は、 本発明の高圧プランジャーポンプが使用される、 コモンレール式燃料 噴射装置の概略的構成を示すプロック図である。 発明を実施する最良の形態  FIG. 7 is a block diagram showing a schematic configuration of a common rail fuel injection device using the high-pressure plunger pump of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の実施形態を図面を用 、て設明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本発明の第 1の実施の形態に係わる高圧プランジャーポンプの要部拡大 断面図で、 この高圧プランジャーポンプ 1は図 7に示すような従来のコモンレ一 ル式燃料噴射装置ゃ蓄圧式の油圧発生装置の高圧燃料ポンプとして使用される。 図 7に示す従来のコモンレール式燃料噴射装置では、 燃料タンク 11内の燃料を燃 料フィ一ドポンプ 12により高圧燃料ポンプである高圧プランジャーポンプ 13に送 り、 この高圧プランジャーポンプ 13でフィードポンプ 12から送られてきた燃料を 噴射圧に相当する 100 MPa 程度の高圧燃料に加圧し、 この高圧燃料を吐出チヱッ ク弁 14および吐出管 15を介してコモンレール 16に送るようになっている。 コモン レール 16には複数の分配管 17が連結されており、 各分配管 17はエンジン 18の各気 筒に設置された電磁式インジヱクタ 19に接続されている。 これら電磁式ィンジェ クタ 19は電磁制御弁 20を作動させると図示しないィンジヱクタ二一ドルが開弁作 動され、 これによりコモンレール 16内の高圧燃料がィンジェクタ 19を介してェン ジン 18の各気筒に噴射されるようになっている。 上記インジェクタ 19の電磁制御 弁 20は、 電子制御ュニット ECU 21により制御される。 ECU 21は、 例えばエンジン 回転数センサ 22や負荷センサ 23によりェンジンの回転数や負荷状態の情報が入力 され、 これらの信号によりエンジンの運転状態を判断し、 このエンジンの運転状 態に応じて最適噴射時期および噴射量を演算して上記電磁制御弁 20に制御信号を 発する。 よって、 エンジン 18の各気筒には、 エンジンの運転状態に応じた最適噴 射時期および最適噴射量の燃料が噴射されるようになっている。 また、 コモンレ ール 16内では噴射によつて消費された燃料分の圧力低下が生じ、 この消費分を補 つてコモンレール 16内の燃料圧力を常に噴射圧に相当する圧力に維持しておく必 要がある。 このため、 上記消費分の燃料を高圧プランジャーポンプ 13からコモン レール 16に供給するようになっている。 すなわち、 コモンレール 16にはコモンレ —ル内の燃料圧力を検出する圧力センサ 24が設けられており、 この圧力センサ 24 からの信号により上記 ECU 21が高圧プランジャーポンプ 13に指令信号を送り、 高 圧プランジャーポンプ 13の吐出量を制御するようになっている。 したがって、 高 圧ブランジャーポンプ 13は、 ェンジンの負荷や回転数に応じて吐出量を制御でき るポンプでなければならず、 このため、 この種の高圧ポンプは、 前記各公報に記 載されているような構造が採用されている。 FIG. 1 is an enlarged sectional view of a main part of a high-pressure plunger pump according to a first embodiment of the present invention. This high-pressure plunger pump 1 is a conventional common-rail type fuel injection device shown in FIG. It is used as a high-pressure fuel pump of a hydraulic pressure generator of the type. In the conventional common rail fuel injection device shown in FIG. 7, fuel in a fuel tank 11 is sent by a fuel feed pump 12 to a high-pressure plunger pump 13 which is a high-pressure fuel pump. The fuel sent from 12 is pressurized to high-pressure fuel of about 100 MPa corresponding to the injection pressure, and this high-pressure fuel is sent to a common rail 16 via a discharge check valve 14 and a discharge pipe 15. A plurality of distribution pipes 17 are connected to the common rail 16, and each distribution pipe 17 is connected to an electromagnetic injector 19 installed in each cylinder of the engine 18. When the electromagnetic control valve 20 is actuated, the electromagnetic injector 19 opens an injector (not shown), and high-pressure fuel in the common rail 16 is supplied to each cylinder of the engine 18 via the injector 19. It is designed to be injected. Electromagnetic control of injector 19 The valve 20 is controlled by an electronic control unit ECU 21. The ECU 21 receives information on the engine speed and load state from, for example, the engine speed sensor 22 and the load sensor 23, determines the operating state of the engine based on these signals, and optimizes the engine according to the operating state of the engine. An injection timing and an injection amount are calculated and a control signal is issued to the electromagnetic control valve 20. Therefore, an optimal injection timing and an optimal injection amount of fuel are injected into each cylinder of the engine 18 according to the operating state of the engine. Also, the fuel consumed by the injection drops in the common rail 16 and the fuel pressure in the common rail 16 must be constantly maintained at a pressure corresponding to the injection pressure to compensate for the consumption. There is. For this reason, the fuel of the above consumption is supplied from the high-pressure plunger pump 13 to the common rail 16. That is, the common rail 16 is provided with a pressure sensor 24 for detecting the fuel pressure in the common rail, and the ECU 21 sends a command signal to the high-pressure plunger pump 13 by a signal from the pressure sensor 24, The discharge amount of the plunger pump 13 is controlled. Therefore, the high-pressure plunger pump 13 must be a pump capable of controlling the discharge amount according to the engine load and the number of revolutions. For this reason, this type of high-pressure pump is described in each of the above publications. Is adopted.
図 1は本発明の第 1の実施の形態に係わる高圧プランジャーポンプ 1 は、 ポン プハウジング 50内にそれぞれ形成された、 図示しないスプリング力に付勢されか つ図示しないカム機構を介して往復運動するポンププランジャー 3 、 ポンプブラ ンジャー 3 が加圧するポンプ室 2 、 ポンプ室 2 の吸入ポート 26に配置されフィ一 ド燃料通路 4 と連通された吸入チェック弁体 51及びポンプ室 2 の吐出ポート 27に 接続された吐出チェック弁 30と、 によりポンプ作用をする。 吸入チェック弁 51 が嵌合する吸入チヱック弁ノヽゥジング 50の摺動穴 52の端部を閉じる小容積の力ッ プ状小背圧室本体 6が設けられており、 前記小背圧室本体 6はフィ一ド燃料通路 FIG. 1 shows a high-pressure plunger pump 1 according to a first embodiment of the present invention, which is reciprocated via a cam mechanism (not shown) urged by a spring force (not shown) formed in a pump housing 50. The pump plunger 3 that moves, the pump chamber 2 to which the pump plunger 3 pressurizes, the suction check valve body 51 disposed in the suction port 26 of the pump chamber 2 and communicated with the feed fuel passage 4, and the discharge port 27 of the pump chamber 2 A pump is actuated by the discharge check valve 30 connected to. The small back pressure chamber main body 6 is provided with a small volume pressure-type back pressure chamber body 6 that closes the end of the sliding hole 52 of the suction check valve nosing 50 into which the suction check valve 51 is fitted. Is the feed fuel passage
4と連通するポ一ト穴 61を有し、 小背圧室本体 6内の小背圧室 62は前記摺動穴 8 の内径より小さい内径を持つ。 小背圧室本体 6 内の小背圧室 62は、 ポー卜穴 61を 小型電磁切替弁 7 の駆動部であるロッド 71の開閉によりフィード燃、料通路 4 と選 択的に連通されるようにされる。 小型電磁切替弁 7 は、 ソレノィドコイル 72、 耐 圧チューブ 76に固定された固定磁極 73、 駆動部であるロッド 71を固定しバネ 75で 付勢され耐圧チューブ 76内を往復動する可動磁極 74を有する。 吸入チヱック弁体 51が作動するときに切替弁 7 がポンププランジャー 3 のストロークに同期して与 えられる図示しない電気信号によって作動することによって、 切替弁 7 の駆動部 であるロッド 71が小背圧室 62のポート穴 61を閉じることにより、 吸入チェック弁 体 51が閉じ方向に付勢するチェック弁スプリング 54の力とポンプ室 2 の圧力を受 けても開弁位置を保持できるように制御して、 ポンプ吐出量を可変にされており 、 かつフィード燃料通路 4 はポンプ室 2 の吸入ポート 26に連通されており、 吸入 チェック弁体 51が作動するとき小背圧室 62のポート穴 61から排出されたフィ一ド 燃料がポンプ室 2 の吸入ポ一ト 26まで排出されて小背圧室 62内のフィード燃料が 順次入替えられるようにされている。 ポンプハウジング 50の図でみて下方には、 例えば図 3の 64で示すような力ムが形成されている。 吸入チエック弁スプリング 54は吸入チェック弁体 51にスナップリング 59で支持されたスプリングガイド 53に 案内されて吸入チヱック #51を上方に付勢している。 吸入チヱック弁体 51の円 筒部 56と摺動する摺動穴 8との間は小背圧室 62の圧力が上昇しても漏れ量は僅か となるようなクリアランスとなっている。 図 1に示す小型電磁切替弁 7 は N〇形The small back pressure chamber 62 in the small back pressure chamber main body 6 has an inner diameter smaller than the inner diameter of the sliding hole 8. The small back pressure chamber 62 in the small back pressure chamber body 6 is selectively connected to the feed fuel and the fuel passage 4 by opening and closing the port hole 61 by opening and closing the rod 71, which is the drive unit of the small electromagnetic switching valve 7. To be. The small solenoid-operated switching valve 7 has a solenoid coil 72, a fixed magnetic pole 73 fixed to a pressure-resistant tube 76, and a rod 71, which is a driving unit, fixed by a spring 75. It has a movable magnetic pole 74 that is energized and reciprocates within a pressure-resistant tube 76. When the suction check valve element 51 is operated, the switching valve 7 is operated by an electric signal (not shown) provided in synchronization with the stroke of the pump plunger 3, so that the rod 71, which is the driving unit of the switching valve 7, has a small height. By closing the port hole 61 of the pressure chamber 62, control is performed so that the valve can be maintained in the open position even when receiving the force of the check valve spring 54 that urges the suction check valve body 51 in the closing direction and the pressure of the pump chamber 2. As a result, the pump discharge amount is variable, and the feed fuel passage 4 is communicated with the suction port 26 of the pump chamber 2. When the suction check valve body 51 is operated, the port hole 61 of the small back pressure chamber 62 is operated. Is discharged to the suction port 26 of the pump chamber 2 so that the feed fuel in the small back pressure chamber 62 is sequentially replaced. In the lower part of the pump housing 50 in the drawing, a force is formed, for example, as shown at 64 in FIG. The suction check valve spring 54 is guided by a spring guide 53 supported by a snap ring 59 on the suction check valve body 51 and urges the suction check # 51 upward. A clearance is provided between the cylindrical portion 56 of the suction check valve element 51 and the sliding hole 8 that slides so that even if the pressure in the small back pressure chamber 62 increases, the amount of leakage is small. The small electromagnetic switching valve 7 shown in Fig. 1 is N 1 type
(ノーマル 'オープン形) 切替弁であり、 電気信号が O Nのとき、 可動電極 74が 固定電極 73にバネ 75の力に杭して吸着され、 切替弁 7 のロッド 71が小背圧室 62の ポート穴 61を閉じるようにし、 O F Fのとき、 バネ 74の力によりロッド 71は可動 電極 74と共に上方に戻され、 小背圧室 62のポート穴 61をフィード燃料通路 4 と連 通させるようにされている。 (Normal 'open type') Switching valve. When the electric signal is ON, the movable electrode 74 is stuck to the fixed electrode 73 by the force of the spring 75, and the rod 71 of the switching valve 7 is connected to the small back pressure chamber 62. The port hole 61 is closed, and when OFF, the rod 71 is returned upward together with the movable electrode 74 by the force of the spring 74 so that the port hole 61 of the small back pressure chamber 62 communicates with the feed fuel passage 4. ing.
作動においては、 ポンプハウジング 28に設けたフィード燃料通路 4 には、 図示 しない燃料ポンプによって、 図示しないキースィッチ O Nと共に、 エンジン始動 前から、 図示しないリリーフバルブで設定された約 0. 3 MPaの圧力が加えられて いる。 ポンププランジャー 3が下降すると、 ポンプ室 2 の負圧が吸入チェック弁 スプリング 54の力に勝って、 フィード燃料がポンプ室 2 に吸入ポート 26から導入 される。 小背圧室 62のポート穴 61が開のとき、 ポンププランジャー 3 が上昇する と吸入チェック弁体 51の大径部 55が吸入ポ一ト 26を閉じ、 ポンプ室 56内で加圧さ れた高圧燃料は、 吐出チヱック弁 30のチヱック弁体 32を押し開き、 これによりポ ンプ室 56で加圧された高圧燃料が図 7に示すコモンレール 16に圧送される。 以上のように構成した図 1に示す本発明においては、 吸入チェック弁体 51の摺 動穴 8の端部を閉じる小さい容積の小背圧室 62の小さいポート穴 61を小型電磁切 替弁 7 によってパイロッ ト作動させることにより、 ポンププランジャー 3 の圧縮 行程で発生する圧力によって吸入チェック弁体 51を閉じようとする力に抗する力 を強くすることができ、 小型電磁切替弁 7 でよいので、 高速応答が可能となり、 製造コストも低く抑えられ、 電気信号に対して精密に追従でき、 精密なポンプ吐 出量制御ができ、 力、つ吸入チ ツク^:が作動するとき小背圧室 62のポ一ト穴 61 から排出されたフィ一ド燃料がポンプ室 2 の吸入ポ一ト 26まで送出するようにさ れ、 小背圧室 62内のフィード燃料は順次入替えられるようにされより精密なボン プ吐出量制御ができる。 In operation, the feed fuel passage 4 provided in the pump housing 28 is turned on by a fuel pump (not shown) with a key switch (not shown) turned on, and a pressure of about 0.3 MPa set by a relief valve (not shown) before the engine is started. Has been added. When the pump plunger 3 descends, the negative pressure in the pump chamber 2 overcomes the force of the suction check valve spring 54, and feed fuel is introduced into the pump chamber 2 from the suction port 26. When the pump plunger 3 rises while the port hole 61 of the small back pressure chamber 62 is open, the large diameter portion 55 of the suction check valve body 51 closes the suction port 26 and is pressurized in the pump chamber 56. The high-pressure fuel pushes and opens the check valve body 32 of the discharge check valve 30, whereby the high-pressure fuel pressurized in the pump chamber 56 is sent to the common rail 16 shown in FIG. In the present invention configured as described above and shown in FIG. 1, the small port hole 61 of the small back pressure chamber 62 having a small volume closing the end of the sliding hole 8 of the suction check valve body 51 is connected to the small electromagnetic switching valve 7. By performing the pilot operation, the force generated in the compression stroke of the pump plunger 3 can increase the force against the force for closing the suction check valve element 51, and the small electromagnetic switching valve 7 can be used. , High-speed response, low manufacturing cost, precise tracking of electrical signals, precise pump discharge control, and small back pressure chamber when the power and suction The feed fuel discharged from the port hole 61 of 62 is sent out to the suction port 26 of the pump chamber 2, and the feed fuel in the small back pressure chamber 62 is sequentially replaced. Precise pump discharge control Can be.
図 2は、 本発明の第 2の実施の形態に係わる高圧ブランジャ一ポンプの要部拡 大断面図である。 本実施の形態では、 前記ポンプ室 2を締め切るポンプハウジン グ 150及び吸入チヱック弁ハウジング 152の各シール部 89、92間に、 各前記シ一 ル部 89、92のテーパ角度と異なる各テ一パ角度をもつ両面テ一パ角度を持った両 面シール面 90、91が形成された中空金属製スプリング受け 88及び大径部 155とス プリング受け 88との間に配置された吸入チェック弁スプリング 84、 からなり、 前 記ポンプ室 2内の圧油を、 ポンプノヽウジング 150及び吸入チヱック弁ハウジング 152の各シール部 89、92に対しシール可能にした。  FIG. 2 is an enlarged sectional view of a main part of a high-pressure plunger-pump according to a second embodiment of the present invention. In the present embodiment, each taper different from the taper angle of each of the seal portions 89 and 92 is provided between the seal portions 89 and 92 of the pump housing 150 and the suction check valve housing 152 for closing the pump chamber 2. Hollow metal spring receiver 88 formed with double-sided taper angled double-sided sealing surfaces 90, 91 and suction check valve spring 84 disposed between large-diameter portion 155 and spring receiver 88. The pressure oil in the pump chamber 2 can be sealed to the seal portions 89 and 92 of the pump nozzle 150 and the suction check valve housing 152.
図 2の実施の形態により、 ポンプハウジング 150及び吸入チヱック弁ハウジン グ 152の各シール部 89、92が締め切るポンプ室内を小さくしかつ圧油の漏れを少 なくし、 かつ各前記シール部 89、92を角度の異なる両面テ一パ角度を持った両面 シール面 90、91で受けることにより、 各前記シール部 89、92が線接触するため平 面度や面粗さなどの加工精度を必要とせず、 また押さえる力も小さくて完全にシ —ルする構造とした。  According to the embodiment shown in FIG. 2, the pump chamber 150 and the seal chambers 89 and 92 of the suction check valve housing 152 are closed to reduce the size of the pump chamber, which reduces the leakage of pressurized oil. By receiving on both sides sealing surfaces 90, 91 having different taper angles with different taper angles, each sealing part 89, 92 comes in line contact, so processing accuracy such as flatness and surface roughness is not required. In addition, the holding force is small and the structure is completely sealed.
図 2の実施の形態では、 スプリング受け 88に両面とも、 テーパ角(25 〜45° ) を持ち、 その角度がポンプハウジング 150及びチェック弁ハウジング 152のテ一 パ角度 (2〜10° ) より大きく しており、 チェック弁ハウジング 152とポンプハウ ジング 150のネジ部 93の締め付け力により、 チェック弁ノヽウジング 152とポンプ ハウジング 150内側各シール部 89、92でシールするものである。 スプリング受け 88の材質硬さをポンプハウジング 150及びチヱック弁ハウジング 152の硬さ (HV 1000) より低く (300〜450HV ) にされており、 これにより、 各シール部 89、92 で変形を起こさせ、 確実にシールし容積効率の低下を押さえることができる。 図 3は、 本発明の第 3の実施の形態に係わる高圧プランジャーポンプ全体の概 略断面図である。 吸入チヱック弁 205の吸入チヱック弁ハウジング 252の摺動穴 208に嵌合する円筒部 256が大径部 155とほぼ同径にされている他は、 図 2の実 施の形態の吸入チヱック弁 105と同じ構造である。 ポンプハウジング 250内には シャフト 63に固定されたカム 64の回転によって回転運動を直線運動に変換するシ リンダ穴 66が取付けられており、 このシリンダ穴 66内にはポンププランジャー 3 が往復移動可能に嵌挿されている。 図示しない外部動力によってシャフ卜 63が回 転するとカム 64に装着されたべァリング 65を介して外輪 165が回転され、 ベアリ ング 65に当接したポンププランジャー 3 がシリンダ穴 66内を往復駆動される。 ポ ンププランジャー 3 の往復ストロークはカム 64の高低差により決定される。 12は フィードポンプ、 67はリリーフ弁である。 図 3の吸入チェック弁 205は、 チエツ ク弁ハウジング 252の摺動穴 208に嵌合する円筒部 256が大径部 155とほぼ同径 にされ、 加工精度が出易くされている。 図 3の上側はポンププランジャー 3 は下 死点にある状態であり、 ポンプ室 2 の流体は圧縮を始める前にある。 図 3の下側 はポンププランジャー 3 は上死点にある状態であり、 ポンプ室 2 の流体は吐出ポ ―卜 27から吐出チエック弁 30を通り吐出され残圧の状態となつており、 このため 吸入チヱック弁体 251の大径部 256は、 チェック弁ノヽウジング 252の着座部に着 座して吐出ポート 27を閉止している。 なお、 このときは、 小型電磁切替弁 7 には 図 7の ECU 21からの電気信号が与えられていなく小背圧室 62のポート穴 61は開い ている。 従って小背圧室 62の流体はフィード燃料通路 4 と連通している。 In the embodiment of FIG. 2, the spring receiver 88 has a taper angle (25 to 45 °) on both sides, and the taper angle is larger than the taper angle (2 to 10 °) of the pump housing 150 and the check valve housing 152. The check valve housing 152 and the pump housing 150 are sealed by the sealing portions 89 and 92 inside the pump housing 150 by the tightening force of the screw portions 93 of the pump housing 150. Spring receiver The material hardness of 88 is set to be lower (300 to 450 HV) than the hardness (HV 1000) of the pump housing 150 and the check valve housing 152, which causes deformation at each seal part 89, 92 to ensure Sealing can suppress a decrease in volumetric efficiency. FIG. 3 is a schematic sectional view of the entire high-pressure plunger pump according to the third embodiment of the present invention. 2 except that the cylindrical portion 256 that fits into the sliding hole 208 of the suction check valve housing 205 of the suction check valve 205 has substantially the same diameter as the large-diameter portion 155. It has the same structure as. A cylinder hole 66 is installed in the pump housing 250 to convert rotational motion into linear motion by rotation of a cam 64 fixed to a shaft 63, and the pump plunger 3 can reciprocate in the cylinder hole 66. It is inserted in. When the shaft 63 is rotated by an external power (not shown), the outer ring 165 is rotated via the bearing 65 mounted on the cam 64, and the pump plunger 3 in contact with the bearing 65 is reciprocated in the cylinder hole 66. . The reciprocating stroke of the pump plunger 3 is determined by the height difference of the cam 64. 12 is a feed pump and 67 is a relief valve. In the suction check valve 205 shown in FIG. 3, the cylindrical portion 256 that fits into the sliding hole 208 of the check valve housing 252 has substantially the same diameter as the large-diameter portion 155, thereby facilitating processing accuracy. The upper part of Fig. 3 shows a state in which the pump plunger 3 is at the bottom dead center, and the fluid in the pump chamber 2 is before compression starts. The lower part of FIG. 3 shows a state in which the pump plunger 3 is at the top dead center, and the fluid in the pump chamber 2 is discharged from the discharge port 27 through the discharge check valve 30 to a residual pressure state. Therefore, the large-diameter portion 256 of the suction check valve body 251 is seated on the seating portion of the check valve housing 252 to close the discharge port 27. At this time, the small electromagnetic switching valve 7 is not supplied with the electric signal from the ECU 21 in FIG. 7 and the port hole 61 of the small back pressure chamber 62 is open. Therefore, the fluid in the small back pressure chamber 62 communicates with the feed fuel passage 4.
このような図 3の下側の状態からポンプブランジャー 3 が上昇を始めて吸入行 程に移ると、 ポンプ室 2 の容積が増大して圧力が低下する。 このとき、 ポンプ室 の圧力はフィ一ド側吸入ポ一ト 27の圧力よりも低くなる。 そしてこの差圧が吸入 チェック弁体 251に取り付けられたスプリング 254の力で設定されるクラツキン グ圧よりも大きくなると、 吸入チェック弁体 251を押し開く。 したがって吸入チ ェック弁体の大径シ一ト部 255が着座部から離れ、 フィ一ド側吸入ポ一ト 27の流 体がポンプ室 2 に流入する。 ポンププランジャー 3 がさらに吸入工程を続けると 、 吸入チヱック弁体 251はポンププランジャー 3 のストローク運動の速度が最も 速くなる付近で最大吸入ストロークとなる。 この、 吸入チェック弁体 251が最大 吸入ストロークに到達したタイミングに合わせて ECU 21からの電気信号により切 替弁 7 に通電して吸入チェック弁体 251と連通する小背圧室 62のポ一卜 61を閉じ ることにより、 吸入チヱツク^: 251の大径部 255は開弁状態のまま保持される 。 すなわち、 ポンププランジャー 3 のストローク位置を検出して、 ポンププラン ジャー 3 の往復ストローク運動の速度が最も速くなる付近、 あるいは吸入チェッ ク^ 251が最大吸入ストロークに到達する付近でその回転に応じてあらかじめ 設定されたディレイ時間またはタイミングで切替弁へ通電 (または非通電) して 小背圧室 62のポート穴 61を閉じることにより、 吸入チヱツク^: 251の大径部 2 55が開弁のまま保持されるようにした。 When the pump plunger 3 starts rising from the lower state in FIG. 3 and moves to the suction stroke, the volume of the pump chamber 2 increases and the pressure decreases. At this time, the pressure of the pump chamber becomes lower than the pressure of the feed-side suction port 27. When the pressure difference is greater than the clamping pressure set by the force of the spring 254 attached to the suction check valve 251, the suction check valve 251 is pushed open. Therefore, the large-diameter sheet portion 255 of the suction check valve element is separated from the seating portion, and the flow of the feed-side suction port 27 is reduced. The body flows into the pump chamber 2. When the pump plunger 3 further continues the suction process, the suction check valve element 251 reaches the maximum suction stroke near the point where the speed of the stroke movement of the pump plunger 3 becomes the highest. The switching valve 7 is energized by an electric signal from the ECU 21 at the timing when the suction check valve body 251 reaches the maximum suction stroke, and the small back pressure chamber 62 communicating with the suction check valve body 251 is turned on. By closing 61, the large-diameter portion 255 of the suction tip ^: 251 is kept open. That is, the stroke position of the pump plunger 3 is detected, and the rotation of the pump plunger 3 near the maximum reciprocating stroke speed or near the suction check ^ 251 reaching the maximum suction stroke is determined according to the rotation. By energizing (or de-energizing) the switching valve with a preset delay time or timing and closing the port hole 61 of the small back pressure chamber 62, the suction chuck ^: the large-diameter portion 255 of the 251 remains open It was kept.
ここでタイミングとはポンププランジャーの動きに対応したストローク位置に ある時間点のことで、 カム軸の回転角や入力軸の回転角度などポンププランジャ —のストローク位置を検出して、 電気信号として該時間点を特定することが処理 可能なものをいう。 ディレイ時間の例を図 6に示す。 図 6 (1) はポンププランジ ヤーのストローク工程における吸入工程と圧送工程の繰り返しの概念を示す。 変 位 Xはストローク位置を表す。 また図 6は、 ポンププランジャーの吸入工程と圧 送工程の繰り返しの、 1サイクル分を示す。 図 6 (2) は切替弁の駆動部が開の場 合の吸入チェック弁体の自動開弁、 自動閉弁の特性例を示す。 図 6 (3) は吸入チ ヱツク^^の最大ストローク付近で電気信号により切替弁の駆動部を閉として小 背圧室を閉止し、 吸入チェック弁体を開状態に保持する様子を示す。 図 6 (4) も 同様に吸入チェック弁体の最大ストローク付近で電気信号により切替弁の駆動部 を閉として小背圧室を閉止し、 吸入チェック弁体を開状態に保持する様子を示し 、 O N時間 (またはタイミング) によって開状態の割合を可変にできることを示 す。  Here, the timing is the time point at the stroke position corresponding to the movement of the pump plunger. The stroke position of the pump plunger such as the rotation angle of the cam shaft and the rotation angle of the input shaft is detected and converted into an electric signal. It is something that can be processed to specify the time point. Figure 6 shows an example of the delay time. Figure 6 (1) shows the concept of repetition of the suction and pumping steps in the stroke process of the pump plunger. The displacement X indicates the stroke position. FIG. 6 shows one cycle of the repetition of the suction step and the pumping step of the pump plunger. Figure 6 (2) shows an example of the characteristics of the automatic opening and closing of the suction check valve when the switching valve drive is open. Fig. 6 (3) shows a state in which the drive unit of the switching valve is closed by an electric signal to close the small back pressure chamber and the suction check valve body is kept open near the maximum stroke of the suction chuck. Similarly, FIG. 6 (4) shows a state in which the drive unit of the switching valve is closed by an electric signal to close the small back pressure chamber near the maximum stroke of the suction check valve body, and the suction check valve body is kept open. Indicates that the open state ratio can be changed by the ON time (or timing).
吸入チヱツク^ 251が最大吸入ストロークに到達したタイミングで、 切換弁 7 に通電して吸入チェック弁体 251と連通する小背圧室 62のポ一ト 61が閉止され  When the suction chuck 251 reaches the maximum suction stroke, the switching valve 7 is energized and the port 61 of the small back pressure chamber 62 communicating with the suction check valve 251 is closed.
-3 が上死点に達し、 逆に下昇に移るとポンプ室 2 の容積が 減少し、 ポンプ室 2 の流体が加圧されて圧力が上昇する。 このような圧縮行程に おいて、 ポンプ室 2 の圧力が上昇してフィード側の圧力 P f 及び吸入チェック弁 スプリング 254の力を加えた圧力よりも高くなると、 ポンプ室 2 で加圧された流 体は、 連通穴 94、 大径部 255と着座部との間隙、 吸入ポート 27及びフィード燃料 通路 4 を通ってフィ一ドポンプ 212で加圧されたフィード側に押し戻しされる。 押し戻しされた流体は、 フィード燃料通路 4 に連通されたリリーフバルブ 67によ つてフィード燃料通路 4 の圧力を一定に保持される。 したがって、 ポンプ室 2 で 燃料が加圧されても、 フィード燃料が吐出ポート 27、 吐出チック弁 30を通じて図 7に示すコモンレール 16へ圧送されることはない。 When -3 reaches the top dead center and moves downward, the volume of pump chamber 2 is increased. The pressure decreases and the pressure in the pump chamber 2 increases, increasing the pressure. In such a compression stroke, when the pressure in the pump chamber 2 rises and becomes higher than the pressure Pf on the feed side and the pressure obtained by adding the force of the suction check valve spring 254, the flow pressurized in the pump chamber 2 is increased. The body is pushed back to the feed side pressurized by the feed pump 212 through the communication hole 94, the gap between the large diameter portion 255 and the seating portion, the suction port 27 and the feed fuel passage 4. The pressure of the feed fuel passage 4 is kept constant by the relief valve 67 connected to the feed fuel passage 4. Therefore, even if the fuel is pressurized in the pump chamber 2, the feed fuel is not pumped to the common rail 16 shown in FIG. 7 through the discharge port 27 and the discharge tick valve 30.
図 4は、 本発明の第 4の実施の形態に係わる高圧ブランジャーポンプの吸入チ エック弁及び小型電磁切替弁の要部拡大断面図で、 特に N C形 (ノーマル.クロ ーズ形) 切替弁 401を示す。 図 1及び図 3に示す小型電磁切替弁 7 は N O形 (ノ —マル ·オープン形) 切替弁であり、 電気信号が O Nのとき切替弁 7 のロッド 71 が小背圧室 62のポート穴 61を閉じるようにし、 O F Fのとき小背圧室 62のポート 穴 61をフィード燃料通路 75と連通するようにされている。 これに対し、 図 4の小 型電磁切替弁 407は、 N C形切替弁であり、 電気信号が O Nのとき切替弁 407の 口ッド 471が小背圧室 62のポート穴 61をフィード燃料通路 404と連通するように し、 O F Fのとき小背圧室 62のポ一卜穴 61を閉じるようにしている。 固定磁極 4 73は耐圧チューブ 476に固定され、 ロッド 471に可動磁極 474が固定されている 。 N C形 (ノーマル.クローズ形) 切替弁としても、 図 1及び図 3に示すものと 同様に電気信号に対応して吸入チヱック弁体の開閉タイミングを吐出流量が対応 するように制御可能であることはいうまでもない。  FIG. 4 is an enlarged cross-sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger pump according to a fourth embodiment of the present invention. In particular, an NC (normally closed) switching valve is shown. Indicates 401. The small electromagnetic switching valve 7 shown in Figs. 1 and 3 is a NO type (normally open type) switching valve. When the electric signal is ON, the rod 71 of the switching valve 7 is connected to the port hole 61 of the small back pressure chamber 62. And the port hole 61 of the small back pressure chamber 62 communicates with the feed fuel passage 75 when it is OFF. On the other hand, the small electromagnetic switching valve 407 in FIG. 4 is an NC type switching valve, and when the electric signal is ON, the opening 471 of the switching valve 407 feeds the port hole 61 of the small back pressure chamber 62 to the fuel passage. It communicates with 404 and closes the port hole 61 of the small back pressure chamber 62 when it is OFF. The fixed magnetic pole 473 is fixed to a pressure-resistant tube 476, and the movable magnetic pole 474 is fixed to a rod 471. NC type (normally closed type) The switching valve must also be able to control the opening and closing timing of the suction pick-up valve in response to the electric signal so that the discharge flow rate corresponds to those shown in Figs. 1 and 3 Needless to say.
図 5は、 本発明の第 5の実施の形態に係わる高圧ブランジャ一ポンプの吸入 チエツク弁及び小型電磁切替弁の要部拡大断面図である。 第 5の実施の形態の吸 入チヱック弁 505は、 チヱック弁ハウジング 252とカップ状小背圧室本体 6 との 間に両面テーパ角度を持った両面シール面 97、98を有する中空シ一ルリング部材 95を設けたものである。 96は中空穴である。 かかる構成により、 小背圧室内 62を ポンプ室 2 に対し、 より確実にシールし容積効率の低下を押さえ、 電気信号に対 してより精密に追従でき、 精密なポンプ吐出量制御ができる。 産業上の利用可能性 FIG. 5 is an enlarged sectional view of a main part of a suction check valve and a small electromagnetic switching valve of a high-pressure plunger-pump according to a fifth embodiment of the present invention. The suction check valve 505 of the fifth embodiment is a hollow seal ring member having double-sided sealing surfaces 97 and 98 having double-sided taper angles between the check valve housing 252 and the cup-shaped small back pressure chamber body 6. 95 is provided. 96 is a hollow hole. With such a configuration, the small back pressure chamber 62 is more reliably sealed with respect to the pump chamber 2 and a reduction in volumetric efficiency is suppressed, the electric signal can be followed more precisely, and the pump discharge amount can be precisely controlled. Industrial applicability
本発明によれば、 蓄圧器あるいはコモンレール内に高圧燃料を圧送する吐出量 可変式高圧燃料ポンプに使用できる高圧ブランジャ一ポンプの可変吐出量制御機 構において、 小型電磁切替弁によってパイロット作動させることにより、 高速応 答が可能となり、 製造コストも低く抑えられ、 電気信号に対して精密に追従でき 、 精密なポンプ吐出量制御ができ、 かつ吸入チヱック弁体が作動するとき小背圧 室のポ一ト穴から排出されたフィ一ド燃料がポンプ室の吸入ポー卜まで送出する ようにされ、 小背圧室内のフィ一ド燃料は順次入替えられるようにされより精密 なボンプ吐出量制御ができる。  According to the present invention, in a variable discharge amount control system of a high pressure plunger-pump which can be used for a variable discharge high pressure fuel pump for pumping high pressure fuel into an accumulator or a common rail, a pilot operation is performed by a small electromagnetic switching valve. , High-speed response is possible, manufacturing costs are kept low, it is possible to precisely follow the electric signal, it is possible to precisely control the discharge rate of the pump, and when the suction check valve element operates, the small back pressure chamber po The feed fuel discharged from the through hole is sent to the suction port of the pump chamber, and the feed fuel in the small back pressure chamber is sequentially replaced, so that the pump discharge amount can be controlled more precisely.

Claims

請求の範囲 The scope of the claims
1 . ポンプハウジング (50)内にそれぞれ形成された、 スプリング (9)力に付勢 されかつカム機構 (9)を介して往復運動するポンププランジャー (3)、 ポンププ ランジャー (3)が加圧するポンプ室 (2)、 ポンプ室 (2)の吸入ポート(26)に配置 されフィ一ド燃料通路 (4)と連通された吸入チェック弁体 (51、151、251)及びボン プ室 (2)の吐出ポート(27)に接続された吐出チヱック弁 (30)と、 によりポンプ作 用をする高圧プランジャーポンプにおいて、 前記吸入チェック弁体 (51、151、251) が嵌合する吸入チエック弁ハウジング (52、 152、252)の摺動穴 (8、 108、208)の端部 を閉じるカップ状小背圧室本体 (6)を有する小背圧室 (62)が設けられており、 前 記小背圧室 (62)はフィード燃料通路 (4)と連通するポート穴 (61)を有し、 前記ポ 一ト穴 (61)を小型電磁切替弁 (7、407)の駆動部 (71、471)の開閉によりフィ一ド燃 料通路 (4)と選択的に連通されるようにされ、 吸入チェック弁体 (51、151、251)が 作動するときに切替弁 (7、407)がポンププランジャー (3)のストロークに同期し て与えられる電気信号によって作動することによって、 切替弁 (7、407)の駆動部 (71、471)が小背圧室 (62)のポ一ト穴 (61)を閉じることにより、 吸入チェック^ (51、151、251)が閉じ方向に付勢するチ ック弁スプリング (54、i54、254)の力とポ ンプ室 (2)の圧力を受けても開弁位置を保持できるように制御して、 ポンプ吐出 量を可変に制御しており、 かつ前記フィード燃料通路 (4)はポンプ室 (2)の吸入 ポート(26)に連通されており、 吸入チェック弁体が作動するとき小背圧室 (62)の ポート穴 (61)から排出されたフィ一ド燃料がポンプ室 (2)の吸入ポート(26)まで 排出されて小背圧室 (62)内のフィ一ド燃料が順次入替えられるようにされたこと を特徴とする高圧プランジャーポンプ。 1. The pump plunger (3) and the pump plunger (3) formed in the pump housing (50) and reciprocated by the spring (9) force and reciprocating via the cam mechanism (9) pressurize. Pump chamber (2), suction check valve (51, 151, 251) and pump chamber (2) located at the suction port (26) of the pump chamber (2) and connected to the feed fuel passage (4) A discharge check valve (30) connected to a discharge port (27) of the high pressure plunger pump operated by the suction check valve body (51, 151, 251). A small back pressure chamber (62) having a cup-shaped small back pressure chamber body (6) for closing the end of the sliding hole (8, 108, 208) of (52, 152, 252) is provided. The small back pressure chamber (62) has a port hole (61) communicating with the feed fuel passage (4), and the port hole (61) is small. Opening and closing of the drive unit (71, 471) of the electromagnetic switching valve (7, 407) enables selective communication with the feed fuel passage (4), and the suction check valve body (51, 151, 251) When the switching valve (7, 407) is actuated by an electric signal given in synchronization with the stroke of the pump plunger (3) when the valve operates, the drive unit (71, 471) of the switching valve (7, 407) is actuated. By closing the port hole (61) of the small back pressure chamber (62), the suction check ^ (51, 151, 251) is urged in the closing direction (54, i54, 254). The pump discharge amount is variably controlled by controlling the valve opening position even when receiving the force of the pump chamber (2) and the pressure of the pump chamber (2). 2) is connected to the suction port (26). When the suction check valve operates, the fuel discharged from the port hole (61) of the small back pressure chamber (62) is discharged. High-pressure plunger pump but which is characterized in that is discharged to the suction port (26) of the pump chamber (2) is Fi once fuel in the small back pressure chamber (62) is adapted be successively replaced.
2 . 請求項 1記載の高圧プランジャーポンプにおいて、 2. The high-pressure plunger pump according to claim 1,
前記小背圧室 (62)は前記摺動穴 (8、108、208)の内径より小さい内径を持つこと を特徴とする高圧プランジャーポンプ。 The high-pressure plunger pump, wherein the small back pressure chamber (62) has an inner diameter smaller than the inner diameter of the sliding hole (8, 108, 208).
3 . 請求項 2記載の高圧プランジャーポンプにおいて、 3. The high-pressure plunger pump according to claim 2,
前記ポンプ室 (2)を締め切るポンプハウジング (150、250)及び吸入チェック弁 ハウジング(152、252) の各シール部 (89、92)間に、 各前記シール部 (89、92)のテ —パ角度と異なる各テーパ角度をもつ両面テーパ角度を持った両面シール面 (90 、91)が形成された中空金属製スプリング受け及び前記吸入チェック弁体の大径部 (155、255)とスプリング受け(88)との間に配置された吸入チェック弁スプリング (84)、 を有し、 前記ポンプ室 (2)内の圧油を、 前記ポンプハウジング (50)及び吸 入チヱック弁ハウジング (52、152、252)の各シール部 (89、92)に対しシール可能に したことを特徴とする高圧プランジャーポンプ。  The tape of each of the seals (89, 92) is inserted between the seals (89, 92) of the pump housing (150, 250) and the suction check valve housing (152, 252) which closes the pump chamber (2). A hollow metal spring receiver having a double-sided sealing surface (90, 91) having a taper angle on both sides having a different taper angle from the angle, and a large-diameter portion (155, 255) of the suction check valve body and a spring receiver ( 88), and a suction check valve spring (84) disposed between the pump housing (2) and the pump housing (50) and the suction check valve housing (52, 152, 252) A high-pressure plunger pump characterized by being able to seal against each seal part (89, 92).
4 . 請求項 3記載の高圧プランジャーポンプにおいて、 4. The high-pressure plunger pump according to claim 3,
前記スプリング受け (88)の材質の硬度は、 前記ポンプハウジング (150、250)及 び吸入チェック弁ハウジング (152、252) の各シール部 (89、92)の材質の硬度より 柔らかい材質にされて、 シーノレ性を確保するようにされたことを特徴とする高圧 プランジャーポンプ。  The hardness of the material of the spring receiver (88) is made softer than the hardness of the material of each seal portion (89, 92) of the pump housing (150, 250) and the suction check valve housing (152, 252). , A high-pressure plunger pump characterized by ensuring a seamlessness.
5 . 請求項 4言己載の高圧ブランジャーポンプにおいて、 5. The high-pressure plunger pump according to claim 4
前記吸入チェック弁ハウジング (252)の摺動穴 (208)に嵌合する円筒部 (256) は前記大径部とほぼ同径にされたことを特徴とする高圧ブランジャ一ポンプ。  A high-pressure plunger pump, wherein a cylindrical portion (256) fitted into a sliding hole (208) of the suction check valve housing (252) has substantially the same diameter as the large-diameter portion.
6 . 請求項 5記載の高圧プランジャーポンプにおいて、 6. The high pressure plunger pump according to claim 5,
前記吸入チェック弁 (505)は、 チェック弁ノヽウジング (252)とカップ状小背圧 室本体 (6)との間に両面テーパ角度を持った両面シール面 (97、98)を有する中空 シ一ルリング部材 (95)を設けたことを特徴とする高圧プランジャーポンプ。  The suction check valve (505) has a double-sided sealing surface (97, 98) having a double-sided taper angle between the check valve nozzle (252) and the cup-shaped small back pressure chamber body (6). A high-pressure plunger pump characterized by having a ruling member (95).
7 . 請求項 1又は 3に記載の高圧ブランジャ一ボンプにおし、て、 7. The high-pressure plunger pump according to claim 1 or 3,
前記切替弁 (7)は N O (ノーマルオープン) 形切替弁であり、 電気信号が〇N のとき切替弁の駆動部 (71) が前記小背圧室 (62)のポート穴 (61)を閉じるように し、 O F Fのとき切替弁 (7)の駆動部 (71) が小背圧室 (62)のポ一ト穴 (61)を前 記フィ一ド燃料通路 (4)と連通させるようにしたことを特徴とする高圧プランジ ヤーポンプ。 The switching valve (7) is a NO (normally open) type switching valve, and when the electric signal is 〇N, the driving portion (71) of the switching valve closes the port hole (61) of the small back pressure chamber (62). When it is OFF, the drive part (71) of the switching valve (7) is positioned in front of the port hole (61) of the small back pressure chamber (62). A high-pressure plunger pump characterized in that it communicates with the feed fuel passage (4).
8 . 請求項 1又は 3に記載の高圧プランジャーポンプにおいて、 前記切替弁( 407)は N C (ノーマルクローズ) 形切替弁であり、 電気信号が O Nのとき切替弁8. The high-pressure plunger pump according to claim 1 or 3, wherein the switching valve (407) is an NC (normally closed) type switching valve, and the switching valve when the electric signal is ON.
(407)の駆動部 (471)が小背圧室 (62)のポ一ト穴 (61)を前記フィード燃料通路 ( 4)と連通するようにし、 O F Fのとき小背圧室 (62)のポート穴 (61)を閉じるよう にしたことを特徴とする高圧プランジャーポンプ。 The drive section (471) of the (407) communicates the port hole (61) of the small back pressure chamber (62) with the feed fuel passage (4). A high-pressure plunger pump characterized in that the port hole (61) is closed.
9 . 請求項 1又は 3に記載の高圧ブランジャーポンプにおいて、 9. The high pressure plunger pump according to claim 1 or 3,
前記ポンププランジャー (3)のストローク位置を検出して、 ポンププランジャ ―の往復ストロ一ク運動の速度が最も速くなる付近ある L、は前記吸入チヱック弁 体 (51、151、251)が最大吸入ストロークに到達する付近でその回転に応じてあらか じめ設定されたディレイ時間またはタイミングで切替弁へ通電 (または非通電) して前記小背圧室のポ一トを閉止することにより、 吸入チェック^:をシート部 に対し開状態に保持されるようにしたことを特徴とする高圧プランジャーポンプ  Detecting the stroke position of the pump plunger (3), and near the point where the speed of the reciprocating stroke movement of the pump plunger is the highest, the suction chuck valve body (51, 151, 251) sucks the maximum. When the stroke reaches the stroke, the switching valve is energized (or de-energized) with a delay time or timing set in advance according to the rotation, and the port of the small back pressure chamber is closed, so that suction is performed. High pressure plunger pump characterized in that Check ^: is held open with respect to the seat part
1 0 . ポンプハウジング (50)内にそれぞれ形成された、 スプリング (9)力に付 勢されかつカム機構 (9)を介して往復運動するポンププランジャー (3)、 ポンプ プランジャー (3)が加圧するポンプ室 (2)、 ポンプ室 (2)の吸入ポート(26)に配 置されフィード燃料通路 (4)と連通された吸入チェック弁体 (51、151、251)及びポ ンプ室 (2)の吐出ポート(27)に接続された吐出チェック弁 (30)と、 によりポンプ 作用をする高圧プランジャーポンプにおいて、 前記吸入チェック弁体 (51、151、25 1)が嵌合する吸入チェック弁ハウジング (52、152、252)の摺動穴 (8、108、208)の端 部を閉じるカップ状小背圧室本体 (6)を有する小背圧室 (62)が設けられており、 前記小背圧室 (62)はフィード燃料通路 (4)と連通するポート穴 (61)を有し、 前記 ポート穴 (61)を小型電磁切替弁 (7、407)の駆動部 (71、471)の開閉によりフィ一ド 燃料通路 (4)と選択的に連通されるようにされ、 吸入チェック弁体 (51、151、251) が作動するときに切替弁 (7、407)がポンププランジャー (3)のストロークに同期 して与えられる電気信号によって作動することによって、 切替弁 (7、407)の駆動 部 (71、471)が小背圧室 (62)のポ一ト穴 (61)を閉じることにより、 吸入チェック弁 体 (51、151、251)が閉じ方向に付勢するチェック弁スプリング (54、154、254)の力と ポンプ室 (2)の圧力を受けても開弁位置を保持できるように制御して、 ポンプ吐 出量を可変に制御しており、 かつ前記フィード燃料通路 (4)はポンプ室 (2)の吸 入ポ一ト(26)に連通されており、 吸入チェック弁体が作動するとき小背圧室 (62) のポ一ト穴 (61)から排出されたフィ一ド燃料がポンプ室 (2)の吸入ポート(26)ま で排出されて小背圧室 (62)内のフィ一ド燃料が順次入替えられるようにされ、 前 記小背圧室 (62)は前記摺動穴 (8、108、208)の内径より小さい内径を持ち、 前記ポ ンプ室 (2)を締め切るポンプハウジング (150、250)及び吸入チェック弁ハウジン グ (152、252) の各シール部 (89、92)間に、 各前記シール部 (89、92)のテーパ角度 と異なる各テーパ角度をもつ両面テ一パ角度を持った両面シール面 (90、91)が形 成された中空金属製スプリング受け及び大径部 (155)とスプリング受け (88)との 間に配置された吸入チェック弁スプリング (84)、 からなり、 前記ポンプ室 (2)内 の圧油を、 前記ポンプハウジング (50)及び吸入チ ック弁ハウジング (52、 152、25 2)の各シール部 (89、92)に対しシール可能にし、 前記スプリング受け(88)の材質 の硬度は、 前記ポンプハウジング (150、250)及び吸入チヱック弁ハウジング (152 、252) の各シール部 (89、92)の材質の硬度より柔らかい材質にされて、 シール性 を確保するようにされ、 前記吸入チェック弁ハウジング (252)の摺動穴 (208)に 嵌合する円筒部 (256)は大径部 (155)とほぼ同径にされ、 かつ前記吸入チェック 弁 (505)は、 チヱック弁ハウジング (252)とカップ状小背圧室本体 (6)との間に 両面テーパ角度を持った両面シール面 (97、98)を有する中空シ一ルリング部材 (9 5)を設けたことを特徴とする高圧プランジャーポンプ。 10. The pump plunger (3) and the pump plunger (3) formed in the pump housing (50) and reciprocated via the cam mechanism (9) urged by the spring (9) Pump chamber (2) to be pressurized, suction check valve (51, 151, 251) and pump chamber (2) arranged in the suction port (26) of the pump chamber (2) and communicated with the feed fuel passage (4). ), A discharge check valve (30) connected to the discharge port (27), and a high-pressure plunger pump that performs a pumping operation with the suction check valve (51, 151, 251) fitted with the suction check valve. A small back pressure chamber (62) having a cup-shaped small back pressure chamber body (6) for closing an end of a sliding hole (8, 108, 208) of the housing (52, 152, 252); The small back pressure chamber (62) has a port hole (61) communicating with the feed fuel passage (4), and the port hole (61) is small. Magnetic switching valve by opening and closing drive unit (7,407) (71,471) are to be selectively communicating with Fi once fuel passage (4), suction check valve (51,151,251) When the switching valve (7, 407) is actuated by an electric signal given in synchronization with the stroke of the pump plunger (3) when the valve operates, the drive unit (71, 471) of the switching valve (7, 407) is actuated. By closing the port hole (61) of the small back pressure chamber (62), the check valve spring (54, 154, 254) that urges the suction check valve body (51, 151, 251) in the closing direction The pump discharge amount is variably controlled by controlling the valve opening position even when receiving the force and the pressure of the pump chamber (2), and the feed fuel passage (4) is connected to the pump chamber (2). ) Is connected to the suction port (26), and the feed fuel discharged from the port hole (61) of the small back pressure chamber (62) when the suction check valve body operates is supplied to the pump chamber. The fuel is discharged to the suction port (26) of (2) and the feed fuel in the small back pressure chamber (62) is sequentially replaced. Each seal portion of the pump housing (150, 250) and the suction check valve housing (152, 252) having an inner diameter smaller than the inner diameter of the sliding hole (8, 108, 208) and closing the pump chamber (2). A hollow metal formed between (89, 92) and a double-sided sealing surface (90, 91) having a double-sided taper angle having a different taper angle from the taper angle of each of the seal portions (89, 92). And a suction check valve spring (84) disposed between the spring receiver and the large diameter portion (155) and the spring receiver (88), and pressurized oil in the pump chamber (2) is supplied to the pump housing (2). 50) and each of the seal portions (89, 92) of the suction check valve housing (52, 152, 252), and the hardness of the material of the spring receiver (88) is as follows. 250) and the material of each seal (89, 92) of the suction check valve housing (152, 252) The cylindrical part (256) that fits into the sliding hole (208) of the suction check valve housing (252) is made of a material that is softer than the hardness of the large diameter part (155). The suction check valve (505) has substantially the same diameter, and has a double-sided tapered angle between the check valve housing (252) and the cup-shaped small back pressure chamber body (6). A high-pressure plunger pump characterized by comprising a hollow sealing ring member (95) having the following structure.
PCT/JP2000/001746 1999-03-23 2000-03-22 High-pressure plunger pump WO2000057051A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0027159A GB2352780A (en) 1999-03-23 2000-03-22 High pressure plunger pump
DE10081174T DE10081174T1 (en) 1999-03-23 2000-03-22 High pressure piston pump

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/77185 1999-03-23
JP7718599 1999-03-23
JP12347999 1999-04-30
JP11/123479 1999-04-30

Publications (1)

Publication Number Publication Date
WO2000057051A1 true WO2000057051A1 (en) 2000-09-28

Family

ID=26418292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001746 WO2000057051A1 (en) 1999-03-23 2000-03-22 High-pressure plunger pump

Country Status (3)

Country Link
DE (1) DE10081174T1 (en)
GB (1) GB2352780A (en)
WO (1) WO2000057051A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058279A1 (en) * 2007-10-31 2009-05-07 Caterpillar Inc. High-pressure pump
WO2009108131A2 (en) * 2008-02-29 2009-09-03 How Kiap Gueh Hydrocarbon synthesis and production onboard a marine system using varied feedstock
JP2010156259A (en) * 2008-12-26 2010-07-15 Denso Corp High-pressure pump
KR20140099549A (en) * 2011-12-07 2014-08-12 콘티넨탈 오토모티브 게엠베하 Valve assembly arrangement for an injection valve and injection valve
CN114746651A (en) * 2020-11-09 2022-07-12 深圳市大疆创新科技有限公司 Plunger pump, overvoltage protection method, spraying control method and plant protection unmanned aerial vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20010625A1 (en) * 2001-10-12 2003-04-12 Magneti Marelli Powertrain Spa VARIABLE FLOW HIGH PRESSURE PUMP
AT413234B (en) * 2002-09-19 2005-12-15 Hoerbiger Kompressortech Hold PISTON COMPRESSOR AND METHOD FOR THE STAGE-FREE DELIVERY RATE CONTROL THEREOF
AU2003275676A1 (en) * 2002-10-29 2004-05-25 Bosch Automotive Systems Corporation High flow rate fuel valve and fuel supply pump with the valve
DE102004028998A1 (en) * 2004-06-16 2006-01-05 Robert Bosch Gmbh High-pressure pump for a fuel injection device of an internal combustion engine
EP2252787A2 (en) * 2008-03-13 2010-11-24 Ganser-Hydromag AG High-pressure delivery pump having a cylinder head, particularly for injection systems for internal combustion engines
DE102008018018A1 (en) * 2008-04-09 2009-10-15 Continental Automotive Gmbh Pump for conveying a fluid
DE102013210036A1 (en) * 2013-05-29 2014-12-04 Robert Bosch Gmbh High pressure pump for a fuel injection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020962U (en) * 1973-06-22 1975-03-10
JPS62166379U (en) * 1986-04-11 1987-10-22
JPH06257533A (en) * 1993-03-09 1994-09-13 Nippondenso Co Ltd Fuel injection pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257533A (en) * 1984-06-05 1985-12-19 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020962U (en) * 1973-06-22 1975-03-10
JPS62166379U (en) * 1986-04-11 1987-10-22
JPH06257533A (en) * 1993-03-09 1994-09-13 Nippondenso Co Ltd Fuel injection pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058279A1 (en) * 2007-10-31 2009-05-07 Caterpillar Inc. High-pressure pump
WO2009108131A2 (en) * 2008-02-29 2009-09-03 How Kiap Gueh Hydrocarbon synthesis and production onboard a marine system using varied feedstock
WO2009108131A3 (en) * 2008-02-29 2012-10-11 How Kiap Gueh Hydrocarbon synthesis and production onboard a marine system using varied feedstock
JP2010156259A (en) * 2008-12-26 2010-07-15 Denso Corp High-pressure pump
KR20140099549A (en) * 2011-12-07 2014-08-12 콘티넨탈 오토모티브 게엠베하 Valve assembly arrangement for an injection valve and injection valve
US10094348B2 (en) 2011-12-07 2018-10-09 Continental Automotive Gmbh Valve assembly arrangement for an injection valve and injection valve
KR101964166B1 (en) * 2011-12-07 2019-04-01 콘티넨탈 오토모티브 게엠베하 Valve assembly arrangement for an injection valve and injection valve
CN114746651A (en) * 2020-11-09 2022-07-12 深圳市大疆创新科技有限公司 Plunger pump, overvoltage protection method, spraying control method and plant protection unmanned aerial vehicle

Also Published As

Publication number Publication date
GB0027159D0 (en) 2000-12-27
GB2352780A (en) 2001-02-07
DE10081174T1 (en) 2001-09-27

Similar Documents

Publication Publication Date Title
JP4474428B2 (en) High pressure fuel supply pump for internal combustion engine
JP4701227B2 (en) Plunger high pressure fuel pump
WO2000057051A1 (en) High-pressure plunger pump
JP6689178B2 (en) High pressure fuel supply pump
JP3539959B2 (en) Fuel injection device for internal combustion engine
US11002236B2 (en) High-pressure fuel supply pump
CN114127409B (en) Electromagnetic suction valve and high-pressure fuel supply pump
CN111480000A (en) Fuel supply pump
WO2021049247A1 (en) Fuel pump
US20230003215A1 (en) Electromagnetic valve mechanism and high-pressure fuel supply pump
US10961962B2 (en) High-pressure fuel supply pump
JP2020172901A (en) High pressure fuel supply pump and suction valve mechanism
JP3693463B2 (en) Variable discharge high pressure pump
JPH09100759A (en) Variable discharge high pressure pump
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump
JPH11257191A (en) Variable displacement high-pressure pump
US20240003322A1 (en) Fuel pump
WO2022269977A1 (en) Electromagnetic suction valve mechanism and fuel pump
JP2002054531A (en) Piston type high pressure pump
JP7025997B2 (en) Pulsation damper
JP3893707B2 (en) Variable discharge high pressure pump
JP2000274326A (en) High pressure plunger pump
KR20010019594A (en) High pressure supply for fuel injection device
JPH10141176A (en) Variable displacement high-pressure pump and fuel injector using the same
JP2004124915A (en) Piston type high pressure pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP

ENP Entry into the national phase

Ref document number: 200027159

Country of ref document: GB

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 10081174

Country of ref document: DE

Date of ref document: 20010927

WWE Wipo information: entry into national phase

Ref document number: 10081174

Country of ref document: DE