WO2000055618A2 - Manifold - Google Patents

Manifold Download PDF

Info

Publication number
WO2000055618A2
WO2000055618A2 PCT/DE2000/000768 DE0000768W WO0055618A2 WO 2000055618 A2 WO2000055618 A2 WO 2000055618A2 DE 0000768 W DE0000768 W DE 0000768W WO 0055618 A2 WO0055618 A2 WO 0055618A2
Authority
WO
WIPO (PCT)
Prior art keywords
manifold
manifold according
working chamber
fluid
circuit
Prior art date
Application number
PCT/DE2000/000768
Other languages
German (de)
French (fr)
Other versions
WO2000055618A3 (en
Inventor
Steffen Howitz
Mario Bürger
Lars Rebenklau
Original Assignee
GeSIM Gesellschaft für Silizium-Mikrosysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GeSIM Gesellschaft für Silizium-Mikrosysteme mbH filed Critical GeSIM Gesellschaft für Silizium-Mikrosysteme mbH
Priority to DE10080648T priority Critical patent/DE10080648D2/en
Priority to AU40993/00A priority patent/AU4099300A/en
Publication of WO2000055618A2 publication Critical patent/WO2000055618A2/en
Publication of WO2000055618A3 publication Critical patent/WO2000055618A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/185Means for temperature control using fluid heat transfer medium using a liquid as fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices

Definitions

  • Manifold with at least one microscope chamber in particular for biological or genetic engineering studies, with devices for supplying and discharging fluids.
  • the manifold forms the system basis with which fluidic components are networked together to form the microsystem.
  • the manifold has the task of keeping individual components mechanically defined, fluidly connecting them to one another and, if necessary, electrically coupling them.
  • Such microsystems are created by combining sensors, actuators and electronic components on the manifold, with devices for supplying and discharging fluids being integrated at the same time.
  • Such a manifold usually consists of a composite of different materials, for example a silicon-glass composite, the fluid channels in the manifold, possibly chemical microsensors and other functional units, being structured in silicon before the glass-silicon composite is joined. If new microsystems are to be designed, then one assumes fixed geometric conditions of the components to be integrated and fits them
  • Manifold accordingly is therefore changeable and fixed components are integrated.
  • Customized manifolds for microfluidics in silicon-glass construction are currently customary on the market.
  • the joining of the different materials into a composite is carried out with the aid of the known technology of anodic bonding.
  • the choice of material is determined by the application and the technological know-how. Different material combinations are practically feasible.
  • a manifold can be produced from a silicon-glass composite by anodic bonding, which enables extremely short iteration times with a module concept that is easy to implement.
  • the actual channel system is created by anodic bonding, which is extremely reliable and robust and can also be easily linked using conventional techniques.
  • the advantages of a silicon-glass composite are high reagent compatibility and the possibility of realizing structure sizes down to the sub- ⁇ m range.
  • the actual duct system is created by anodic bonding, which is extremely reliable and robust and can also be easily linked with conventional techniques.
  • Another possibility for realizing a manifold is to implement a silicon-silicon composite. Extremely short iteration cycles are achieved here with a module concept that is easy to implement.
  • the advantages of a silicon-silicon composite are high reagent compatibility and the possibility of realizing structure sizes down to the sub- ⁇ m range.
  • a manifold can also be produced from a polymethyl methacrylate (PMMA) or polydimethylsiloxane (PDMS).
  • PMMA polymethyl methacrylate
  • PDMS polydimethylsiloxane
  • LTCC Low Temperature Cofiring Technology
  • This technology is characterized by the use of individual layers of green ceramic. These layers are mechanically structured separately and provided with vias and electrical functional layers. After the lamination of the individual layers, that is to say the actual layer structure, this takes place in a subsequent technological step Burning out and sintering to a stable ceramic wiring carrier with several control levels.
  • the wiring carriers created in this way are used as ceramic multi-chip modules (MCM-C), especially in high-frequency technology, although the three-dimensional shape and the integration of non-electrical functions are also increasingly being added. Another focus is the use of photo-structurable thick-film pastes.
  • the invention is based on the object of creating a manifold with at least one microscope chamber, in particular for biological or genetic engineering investigations, which can be structured in a completely universal and cost-effective manner and which permits the combination of any desired fluidic, electrical and mechanical components.
  • the object on which the invention is based is achieved in a manifold of the type mentioned at the outset in that the working chamber extends through a sandwich-like multilayer arrangement which consists of a combination of layers produced in thick-film and thin-film technology, in that the working chamber is fixed or reversible by means of a glass cover is closed that the devices for supplying and discharging fluids are designed as buried structures in at least one of the levels of the sandwich-like multilayer arrangement and that the devices for supplying and discharging fluids are designed in the form of several mutually independent fluid circuits.
  • the multilayer arrangement can consist of a stack of alternating glass and silicon layers, or of a stack of a large number of ceramic layers (multilayer ceramic).
  • the ceramic layers are produced from an LTCC ceramic, particularly cost-effective production is made possible.
  • the devices for supplying and discharging the fluids are designed as three-dimensionally intersecting fluid channels and can additionally be equipped with control valves, the membrane of the control valve should be made of silicon.
  • control valves If the passage cross section of the control valves is designed to be switchable or controllable, simple metering of the fluids passed through the valves can be achieved.
  • the control valves can be actuated pneumatically, fluidically or electrically, or also by changing the pressure in the fluid circuit.
  • each control valve is designed as a thermoelectric valve with a heating element, wherein it is also possible to arrange the heating element spatially separated from the control valve.
  • the heating element can be implemented particularly easily if it is designed as a printed interconnect.
  • each control valve is equipped with a silicon membrane over the valve chamber, which is firmly connected at the edge to the LTCC ceramic.
  • the working chamber is provided with electrodes for generating an electrical field.
  • electrodes can advantageously be realized in that the microscope camera is provided with an internal metalization, which is electrically connected to the electrical connections of the manifold.
  • a further development of the invention is characterized in that a fluid connection strip is provided in which all fluid channels and hydraulic fluid channels and the fluid channels of the cooling circuit open.
  • This fluid connection strip is advantageously arranged on an outer edge of the manifold.
  • an electrical connection strip is provided, in which all electrical functional connections are combined.
  • This electrical connection strip should advantageously also be arranged on an outer edge of the manifold, it being particularly favorable for the user of the manifold if the electrical connection strip is arranged on the outer edge of the manifest, which is opposite the fluid connection strip.
  • the invention enables complex, planar microfluidic manifolds to be implemented using the LTCC technology and the hybrid technology for integrating microfluidic components that have been produced with other than the LTCC technology.
  • Such manifolds can be used for the purposes of cell therapy or pharmaceutical development / testing in biological test systems.
  • Controlled fluid management means the serial or parallel execution of functions. These functions concern the controlled heating and cooling of a working chamber as well as the exact temperature measurement by integrated temperature sensors. They concern a freely selectable number of microfluidic inflows and outflows in this working chamber. The rate of the liquids in these inlets and outlets can be regulated with the aid of microvalves or can be switched off completely or completely. The flow rate of the fluids in these channel systems can be measured online by means of integrated high-resolution flow sensors.
  • Electrochemical eg: pH electrodes
  • micromechanical sensors eg: pressure sensors
  • the working chamber is reversibly or irreversibly closed by substrates mounted on the top and bottom.
  • These substrates preferably consist of the materials glass, silicon or a biocompatible polymer, it being possible for these substrates themselves to be carriers of electrically active microelectrodes (for example: micro-T sensor, micro heater).
  • the manifolds can be combined in combination with all microscopes (e.g. high-resolution fluorescence microscopes, light-optical microscopes, inverse microscopes, microscopes with optical or dielectric cell tweezers).
  • Figure 1 is a plan view of an inventive manifold of a microscope chamber.
  • FIG. 2 shows a plan view of a middle buried layer of the manifold with electrical functional assemblies and electrical external connections
  • Fig. 3 shows a first fluid level for supplying the fluid for Chamber of Labor
  • Fig. 5 shows a third fluid level with a cooling circuit for the manifold.
  • the manifold here consists of a ceramic base body in LTCC technology, the microscopy chamber K, which is formed by a glass cover (not shown) in a central hole in the ceramic body, and the hybrid-integrated microsensors and microactuators, the electrical and fluidic connection elements.
  • a fluid connection strip FL is provided for the fluid connection for all required functions, which is connected to the fluid channels FK and the hydraulic channels HF of the manifold.
  • the flui connection strip FL is arranged along an edge of the manifold.
  • the opposite edge of the manifold is connected to an electrical connection strip EL for connecting the electrical components of the manifold. This significantly improves the handling of the manifold.
  • the ceramic base body BK consists of individual ceramic layers with a thickness of 150 to 200 ⁇ m and contains three fluid circuits (FIGS. 3 to 5) which have different functions.
  • the first fluid circuit is the working chamber circuit, which combines all the fluidic channels that lead into or out of the working chamber.
  • the second circuit is the valve circuit (FIG. 4) which summarizes all the channels that are required for filling and operating the thermoelectric silicon microvalves.
  • the third fluid circuit is the cooling circuit KK (FIG. 5), with the aid of which the temperature in the working chamber can be kept constant even in the event of any electrical heat loss. Conversely, the cooling circuit KK prevents the flow of heat from a possibly high microscope chamber K or working chamber A to the thermoelectric microvalves V.
  • each ceramic layer is mechanically structured separately in the unsintered state and provided with vias and electrical functional layers by means of screen printing. After the lamination of the individual layers, in a subsequent technological step, the burnout and sintering takes place to form a stable ceramic multilayer structure. In addition to mechanical and electrical functions, this structure also fulfills microfluidic functions.
  • the manifold shown in FIGS. 1 to 5 consists of 16 ceramic individual layers with a microscope chamber K, the fluidic working chamber circuit has 3 fluid inlet channels and a fluid outlet channel, as well as two valve circuits and a cooling channel that encompasses the working chamber A. All fluidic circuits are arranged on an area of 45x45 mm 2 , crossing three-dimensionally.
  • Two of the fluid inlet channels in the working chamber circuit have an integrated silicon-based microvalve V, which allows the setting of a defined closing rate in the range from 0 to a few 100 microliters per minute.
  • This microvalve V is designed as a thermoelectric valve, in which the actuator of the thermoelectric valve is geometrically separated from its place of action of the Si membrane.
  • the LTCC allows the construction of a microfluidic hydraulic circuit, which separates the heater and the microchannel to be switched. The advantage is that the channel fluid is not heated when valve V is switched. The switching process itself takes place by heating an actuator fluid circuit (valve circuit), the expansion of which deforms the Si membrane at valve V and the valve seat is closed or opened.
  • the heater of the valve can also benefit from the KK cooling circuit through the integration in the manifold, which makes valve V faster in its switching dynamics. If, for example, a normally open valve is used to activate the actuator fluid has to cool down in order to release the valve seat, you only have to wait until the actuator fluid is cool enough again, which can be accelerated by the cooling circuit.
  • a flow sensor is integrated in each of the microchannels FK, which can be designed, for example, as a miniaturized electrocaloric flow sensor F.
  • the cooling duct comprises the working chamber A and, in another position, overlapping three dimensions, has a thick-film heater comprising the working chamber.
  • a cooling fluid for active cooling can be pumped through the manifold.
  • the thick film heater allows the fluid in the working chamber A to be heated in the temperature range from room temperature to 100 ° C with settling times of approx. 1 minute.
  • the cooling fluid circulating in the cooling circuit KK prevents, on the one hand, the heating of the manifold when heating is required in the working chamber A.
  • the cooling duct also thermally decouples the micro heater and the working chamber. This is important because the silicon microvalves used in the exemplary embodiment each have a thermoelectric actuator which must be heated to approximately 42 to 45 ° C. during operation.
  • the fluidically usable working chamber A is created by covering the central hole on both sides, which extends through all the ceramic individual layers, with a glass substrate.
  • one of the glass substrates is irreversible and one is reversibly connected to the manifold.
  • the irreversible glass substrate consists of a 500 ⁇ m thick Pyrex glass plate. This also has a temperature sensor T that extends into the working chamber A. As a result, the temperature of the fluid in the working chamber A can be determined continuously at any time.
  • the reversibly mounted glass substrate can be placed on the manifold in a thickness from 150 ⁇ m, which can also be used to perform confocal microscopy on biological objects in the working chamber.
  • the working chamber is provided with an inner hole metallization.
  • This inner hole metallization can be designed as electrodes that extend over the entire bore depth of the working chamber. With these electrodes, an electric field acting on biological cells to be examined can be generated.

Abstract

The invention relates to a manifold with at least one microexamination chamber, especially for use in examinations carried out in the field of biology or genetic engineering, and with devices for supplying and discharging fluids. The aim of the invention is to provide a manifold with at least one microexamination chamber, especially for use in examinations carried out in the field of biology or genetic engineering, that is completely universal, can be structured at low costs and allows the combination of fluid, electric and mechanical components. To this end, the working chamber (A) extends through a sandwich multi-layer system that consists of a combination of layers produced by thin-film or thick-film technology. Said working chamber (A) can be firmly or reversibly closed by way of a glass lid. Devices for supplying and discharging fluids are provided in the form of trench structures in at least one of the layers of the sandwich multi-layer system. Said devices for supplying and discharging fluids are configured as several independent fluid circuits.

Description

Manifold Manifold
Manifold mit wenigstens einer Mikroskopierkammer , insbesondere für biologische oder gentechnische Untersuchungen, mit Einrichtungen zum Zu- und Ableiten von Fluiden.Manifold with at least one microscope chamber, in particular for biological or genetic engineering studies, with devices for supplying and discharging fluids.
Im fluidischen Mikrosystem bildet das Manifold die Systembasis, mit dem fluidische Komponenten miteinander zum Mikro- system vernetzt werden. Das Manifold hat dabei die Aufgabe, einzelne Komponenten mechanisch definiert zu halten, sie untereinander fluidisch zu verbinden und bei Bedarf elektrisch zu verkoppeln. Derartige Mikrosysteme entstehen durch die Kombination von Sensoren, Aktoren und elektronischen Bauele- menten auf dem Manifold, wobei gleichzeitig Einrichtungen zum Zu- und Ableiten von Fluiden integriert sind.In the fluidic microsystem, the manifold forms the system basis with which fluidic components are networked together to form the microsystem. The manifold has the task of keeping individual components mechanically defined, fluidly connecting them to one another and, if necessary, electrically coupling them. Such microsystems are created by combining sensors, actuators and electronic components on the manifold, with devices for supplying and discharging fluids being integrated at the same time.
Üblicherweise besteht ein derartiges Manifold aus einem Verbund unterschiedlicher Materialien, zum Beispiel einem Sili- zium-Glas-Verbund, wobei die Fluidkanäle im Manifold, gegebenenfalls chemische Mikrosensoren und andere Funktionseinheiten vor dem Zusammenfügen des Glas-Silizium-Verbundes im Silizium strukturiert werden. Sollen neue Mikrosysteme entworfen werden, so geht man von feststehenden geometrischen Bedin- gungen der zu integrierenden Komponenten aus und paßt dasSuch a manifold usually consists of a composite of different materials, for example a silicon-glass composite, the fluid channels in the manifold, possibly chemical microsensors and other functional units, being structured in silicon before the glass-silicon composite is joined. If new microsystems are to be designed, then one assumes fixed geometric conditions of the components to be integrated and fits them
Manifold entsprechend an. Das Manifold ist demzufolge veränderlich und feststehende Komponenten werden integriert. Marktüblich sind gegenwärtig kundenwunschgerechte Manifolde für die Mikrofluidik in Silizium-Glasbauweise. Das Zusammenfügen der unterschiedlichen Materialien zu einem Verbund erfolgt mit Hilfe der bekannten Technologie des anodischen Bon- dens. Die Materialauswahl wird durch die Applikation und das technologische Know-How bestimmt. Verschiedene Materialkombinationen sind praktisch realisierbar.Manifold accordingly. The manifold is therefore changeable and fixed components are integrated. Customized manifolds for microfluidics in silicon-glass construction are currently customary on the market. The joining of the different materials into a composite is carried out with the aid of the known technology of anodic bonding. The choice of material is determined by the application and the technological know-how. Different material combinations are practically feasible.
So kann ein Manifold aus einem Silizium-Glas-Verbund durch anodisches Bonden hergestellt werden, was extrem kurze Iterationszeiten bei einem gut umsetzbaren Modulkonzept ermöglicht. Das eigentliche Kanalsystem entsteht durch das anodische Bonden, was extrem zuverlässig und robust ist und auch mit konventionellen Techniken einfach verknüpft werden kann. Vorteile eines Silizium-Glas-Verbundes sind eine hohe Reagenzienverträglichkeit und die Möglichkeit, Strukturgrößen bis in den sub-μm-Bereich realisieren zu können. Das eigentliche Kanalsystem entsteht durch das anodische Bonden, was extrem zuverlässig und robust ist und auch mit konventionellen Techni- ken einfach verknüpft werden kann.A manifold can be produced from a silicon-glass composite by anodic bonding, which enables extremely short iteration times with a module concept that is easy to implement. The actual channel system is created by anodic bonding, which is extremely reliable and robust and can also be easily linked using conventional techniques. The advantages of a silicon-glass composite are high reagent compatibility and the possibility of realizing structure sizes down to the sub-μm range. The actual duct system is created by anodic bonding, which is extremely reliable and robust and can also be easily linked with conventional techniques.
Die Nachteile dieser Technik sind darin zu sehen, daß das Material relativ teuer ist und daß die Realisierung eines Mehrebenen-Manifoldes sehr aufwendig ist.The disadvantages of this technique can be seen in the fact that the material is relatively expensive and that the realization of a multi-level manifold is very complex.
Eine andere Möglichkeit besteht in der Realisierung des Mani- foldes aus einem Quarz-Glas-Verbund, was eine ideale Paarung für die Kapillar-Elektrophorese darstellt. Allerdings sind die verwendeten Materialien teuer und das Fügen der Materialien kritisch.Another possibility is to realize the manifold from a quartz-glass composite, which is an ideal pairing for capillary electrophoresis. However, the materials used are expensive and the joining of the materials is critical.
Auch besteht die Möglichkeit der Herstellung eines Glas-Glas- Verbundes, wobei das Fügen der Einzelteile durch Diffusionsschweißen bei hohen Temperaturen erfolgen muß. Hier ist das Fügeverfahren als problematisch anzusehen.There is also the possibility of producing a glass-glass composite, the individual parts having to be joined by diffusion welding at high temperatures. The joining process is problematic here.
Eine weitere Möglichkeit zur Realisierung eines Manifoldes besteht in der Realisierung eines Silizium-Silizium-Verbundes. Hier werden extrem kurze Iterationszyklen bei einem gut umsetzbaren Modulkonzept erreicht. Vorteile eines Silizium-Silizium-Verbundes sind eine hohe Reagenzienverträglichkeit und die Möglichkeit, Strukturgrößen bis in den sub-μm-Bereich realisieren zu können.Another possibility for realizing a manifold is to implement a silicon-silicon composite. Extremely short iteration cycles are achieved here with a module concept that is easy to implement. The advantages of a silicon-silicon composite are high reagent compatibility and the possibility of realizing structure sizes down to the sub-μm range.
Nachteilig ist hier, daß das Fügeverfahren als riskant und aufwendig anzusehen ist und daß die verwendeten Materialien teuer sind.The disadvantage here is that the joining process is risky and time-consuming and that the materials used are expensive.
Auch kann ein Manifold aus einem Polymethylmetacrylat (PMMA) oder Polydimethylsiloxan (PDMS) hergestellt werden. Dieses Material ist sehr billig und gestattet eine Strukturierung bis in den sub-μm-Bereich. Auch ist das Modulkonzept gut umsetz- bar. Nachteilig ist allerdings die geringe Betändigkeit gegenüber organischen Lösungsmitteln. Außerdem ist die Technologie bei sehr langen Iterationszyklen sehr teuer. Da die Manifolde durch Deckelung von oben und unten hergestellt werden, ist die Technologie als relativ aufwendig und wenig geeignet für die Massenfertigung anzusehen.A manifold can also be produced from a polymethyl methacrylate (PMMA) or polydimethylsiloxane (PDMS). This material is very cheap and allows structuring down to the sub-μm range. The module concept is also easy to implement. The disadvantage, however, is the low resistance to organic solvents. The technology is also very expensive with very long iteration cycles. Since the manifolds are produced by capping from above and below, the technology is relatively complex and not very suitable for mass production.
Wird für die Herstellung des Manifoldes ein Festresist als extrem billiges Material verwendet, so gestaltet sich die Fügetechnologie als sehr einfach und es lassen sich kurze Iterationszeiten realisieren. Allerdings ist als Nachteil zu verzeichnen, daß das Material bei der Verwendung von wassrigen Flüssigkeiten quillt und daß eine geringe Beständigkeit gegenüber organischen Lösungsmitteln zu verzeichnen ist.If a fixed resist is used as an extremely cheap material for the production of the manifold, the joining technology is very simple and short iteration times can be realized. However, it is a disadvantage that the material swells when aqueous liquids are used and that the resistance to organic solvents is poor.
Weiterhin ist die sogenannte Low Temperature Cofiring Technologie (LTCC) bekannt geworden, die eine Weiterentwicklung der klassischen Dickschicht-Hybridtechnologie ist. Diese Technologie ist gekennzeichnet durch die Verwendung einzelner Lagen ungesinterter Keramik. Diese Lagen werden gesondert mechanisch strukturiert, sowie mit Durchkontaktierungen und mit elektrischen Funktionsschichten versehen. Nach der Lamination der einzelnen Lagen, daß heißt dem eigentlichen Schichtaufbau, erfolgt in einem anschließenden technologischen Schritt das Ausbrennen und Sintern zu einem stabilen keramischen Verdrahtungsträger mit mehreren Leitebenen.Furthermore, the so-called Low Temperature Cofiring Technology (LTCC) has become known, which is a further development of the classic thick-film hybrid technology. This technology is characterized by the use of individual layers of green ceramic. These layers are mechanically structured separately and provided with vias and electrical functional layers. After the lamination of the individual layers, that is to say the actual layer structure, this takes place in a subsequent technological step Burning out and sintering to a stable ceramic wiring carrier with several control levels.
Die so entstehenden Verdrahtungsträger finden ihren Einsatz als keramische Multi Chip Module (MCM-C) speziell in der Hochfrequenztechnik, wobei zunehmend jedoch auch die dreidimensionale Formgebung sowie die Integration nichtelektrischer Funktionen hinzukommt. Ein weiterer Schwerpunkt ist die Nutzung fotostrukturierbarer Dickschichtpasten.The wiring carriers created in this way are used as ceramic multi-chip modules (MCM-C), especially in high-frequency technology, although the three-dimensional shape and the integration of non-electrical functions are also increasingly being added. Another focus is the use of photo-structurable thick-film pastes.
Untersuchungen zur Nutzung vergrabener Kanalsysteme beschränken sich jedoch auf die fluidische Kühlung von elektronischen LTCC-Multi Chip Modulen.However, studies on the use of buried channel systems are limited to the fluidic cooling of electronic LTCC multi-chip modules.
Der Erfindung liegt nunmehr die Aufgabe zugrunde, ein Manifold mit wenigstens einer Mikroskopierkammer, insbesondere für biologische oder gentechnische Untersuchungen zu schaffen, das vollkommen universell und kostengünstig strukturierbar ist und die Kombination beliebiger fluidischer, elektrischer und me- chanischer Komponenten gestattet.The invention is based on the object of creating a manifold with at least one microscope chamber, in particular for biological or genetic engineering investigations, which can be structured in a completely universal and cost-effective manner and which permits the combination of any desired fluidic, electrical and mechanical components.
Die der Erfindung zugrundeliegende Aufgabenstellung wird bei einem Manifold der eingangs genannten Art dadurch gelöst, daß sich die Arbeitskammer durch eine sandwichartig ausgebildete Multilayeranordnung erstreckt, die aus einer Kombination von in Dickschicht- und Dünnschichttechnik gefertigten Schichten besteht, daß die Arbeitskammer mittels einer Glasabdeckung fest oder reversibel verschlossen ist, daß die Einrichtungen zum Zu- und Ableiten von Fluiden als vergrabene Strukturen in wenigstens einer der Ebenen der sandwichartigen Multilayeranordnung ausgebildet sind und daß die Einrichtungen zum Zu- und Ableiten von Fluiden in Form von mehreren voneinander unabhängigen Fluidkreisläufe ausgebildet sind.The object on which the invention is based is achieved in a manifold of the type mentioned at the outset in that the working chamber extends through a sandwich-like multilayer arrangement which consists of a combination of layers produced in thick-film and thin-film technology, in that the working chamber is fixed or reversible by means of a glass cover is closed that the devices for supplying and discharging fluids are designed as buried structures in at least one of the levels of the sandwich-like multilayer arrangement and that the devices for supplying and discharging fluids are designed in the form of several mutually independent fluid circuits.
Ein derartiges Manifold kann besonders kostengünstig hergestellt werden und erlaubt die einfache Integration verschiedenster Funktionseinheiten. Die Multilayeranordnung kann dabei aus einem Stapel sich einander abwechselnder Glas- und Siliziumschichten, oder aus einer einem Stapel einer Vielzahl von Keramikschichten (Multi- layer-Keramik) bestehen.Such a manifold can be produced particularly inexpensively and allows the simple integration of a wide variety of functional units. The multilayer arrangement can consist of a stack of alternating glass and silicon layers, or of a stack of a large number of ceramic layers (multilayer ceramic).
Werden die Keramikschichten aus einer LTCC-Keramik hergestellt, so wird eine besonders kostengünstige Fertigung ermöglicht .If the ceramic layers are produced from an LTCC ceramic, particularly cost-effective production is made possible.
In Fortführung der Erfindung sind die Einrichtungen zum Zu- und Ableiten der Fluide als sich dreidimensional kreuzende Fluidkanäle ausgebildet und können zusätzlich mit Steuerventilen ausgestattet sein, wobei die Membran des Steuerventiles aus Silizium bestehen sollte.In continuation of the invention, the devices for supplying and discharging the fluids are designed as three-dimensionally intersecting fluid channels and can additionally be equipped with control valves, the membrane of the control valve should be made of silicon.
Wird der Durchlaßquerschnitt der Steuerventile schalt- oder regelbar ausgestaltet, so läßt sich eine einfache Dosierung der durch die Ventile geleiteten Fluide realisieren. Dabei können die Steuerventile pneumatisch, fluidisch oder elek- trisch, oder auch durch eine Druckveränderung im Fluidkreis betätigbar sein.If the passage cross section of the control valves is designed to be switchable or controllable, simple metering of the fluids passed through the valves can be achieved. The control valves can be actuated pneumatically, fluidically or electrically, or also by changing the pressure in the fluid circuit.
Eine besondere Ausgestaltung der Erfindung kann darin bestehen, daß jedes Steuerventil als thermoelektrisches Ventil mit einem Heizelement ausgebildet ist, wobei es auch möglich ist, das Heizelement vom Steuerventil räumlich getrennt anzuordnen.A special embodiment of the invention can consist in the fact that each control valve is designed as a thermoelectric valve with a heating element, wherein it is also possible to arrange the heating element spatially separated from the control valve.
Besonders einfach läßt sich das Heizelement realisieren, wenn dieses als gedruckte Leitbahn ausgebildet ist.The heating element can be implemented particularly easily if it is designed as a printed interconnect.
Eine weitere Fortführung der Erfindung ist dadurch gekennzeichnet, daß jedes Steuerventil mit einer Siliziummembran über der Ventilkammer ausgestattet ist, die am Rand mit der LTCC-Keramik fest verbunden ist.A further development of the invention is characterized in that each control valve is equipped with a silicon membrane over the valve chamber, which is firmly connected at the edge to the LTCC ceramic.
In einer weiteren Ausgestaltung der Erfindung ist die Arbeitskammer mit Elektroden zur Erzeugung eines elektrischen Feldes versehen. Diese Elektroden können vorteilhaft dadurch realisiert werden, daß die Mikroskopierkamer mit einer innenmetalisierung versehen wird, die mit den elektrischen Anschlüssen des Manifoldes elektrisch verbunden sind.In a further embodiment of the invention, the working chamber is provided with electrodes for generating an electrical field. These electrodes can advantageously be realized in that the microscope camera is provided with an internal metalization, which is electrically connected to the electrical connections of the manifold.
Eine weitere Fortbildung der Erfindung ist dadurch gekennzeichnet, daß eine Fluidanschlußleiste vorgesehen ist, in der sämtliche Fluidkanäle und Hydraulik-Fluidkanäle und die Fluid- kanäle des Kühlkreislaufes münden. Diese Fluidanschlußleiste ist vorteilhafterweise an einer Außenkante des Manifoldes angeordnet .A further development of the invention is characterized in that a fluid connection strip is provided in which all fluid channels and hydraulic fluid channels and the fluid channels of the cooling circuit open. This fluid connection strip is advantageously arranged on an outer edge of the manifold.
Weiterhin ist eine elektrische Anschlußleiste vorgesehen, in der sämtliche elektrischen Funktionsanschlüsse zusammengefaßt sind. Diese elektrische Anschlußleiste sollte vorteilhafterweise ebenfalls an eine Außenkante des Manifoldes angeordnet sein, wobei für den Anwender des Manifoldes besonders günstig ist, wenn die elektrische Anschlußleiste an der Außenkante des Manifoldes angeordnet wird, die der Fluidanschlußleiste gegen- über liegt.Furthermore, an electrical connection strip is provided, in which all electrical functional connections are combined. This electrical connection strip should advantageously also be arranged on an outer edge of the manifold, it being particularly favorable for the user of the manifold if the electrical connection strip is arranged on the outer edge of the manifest, which is opposite the fluid connection strip.
Es ist auch problemlos möglich, mehrere Fluidkreisläufe für einen Arbeitskammerkreis, einen Ventilkreis zur Steuerung des Arbeitskammerkreises und einen Kühlkreis vorzusehen.It is also easily possible to provide several fluid circuits for one working chamber circuit, a valve circuit for controlling the working chamber circuit and a cooling circuit.
Durch die Erfindung können komplexe, planare mikrofluidische Manifolde unter Verwendung der LTCC-Technologie und der Hybridtechnologie zur Integration von Mikrofluidbauelementen, die mit anderen als der LTCC-Technologie hergestellt worden sind, realisiert werden. Derartige Manifolde können für Zwecke der Zelltherapie oder Pharmaentwicklung/Testung in biologischen Testsystemen Einsatz finden.The invention enables complex, planar microfluidic manifolds to be implemented using the LTCC technology and the hybrid technology for integrating microfluidic components that have been produced with other than the LTCC technology. Such manifolds can be used for the purposes of cell therapy or pharmaceutical development / testing in biological test systems.
Mit den in den Unteransprüchen formulierten erfindungsgemäßen Weiterentwicklungen und Vorrichtungen wird das kontrollierte Fluid anagement im LTCC-basierten Mikrosystem ermöglicht, wobei Durchflußraten von einigen 10 Pikolitern pro Minute bis zu einigen 10 Mililitern pro Minute erreicht werden können. Unter dem kontrollierten Fluidmanagement ist hier das serielle oder parallele Ausführen von Funktionen zu verstehen. Diese Funktionen betreffen das geregelte Heizen und Kühlen einer Arbeitskammer sowie die exakte Temperaturmessung durch inte- grierte Temperatursensoren. Sie betreffen eine frei wählbare Anzahl von mikrofluidischen Zu- und Abläufen in dieser Arbeitskammer. Dabei sind die Flüssigkeiten in diesen Zu- und Abläufen mit Hilfe von Mikroventilen in der Rate regelbar bzw. sind ganz zu oder vollständig abschaltbar. Die Durchflußrate der Fluide in diesen Kanalsystemen ist mittels integrierter hochauflösender Flowsensoren online meßbar. In die Mikrokanäle können elektrochemische (z.B.: ph-Elektroden ) oder mikromechanische Sensoren (z.B.: Drucksensoren) integriert werden. Die Arbeitskammer wird durch ober- und unterseitig montierte Sub- strate reversibel oder irreversibel verschlossen. Diese Substrate bestehen vorzugsweise aus den Werkstoffen Glas, Silizium oder einem biokompatiblen Polymer, wobei diese Substrate auch selbst Träger von elektrisch aktiven Mikroelektroden (z.B.: Mikro-T-Sensor , Mikroheizer) sein können. Durch den planaren Aufbau können die Manifolde in Kombination mit allen Mikroskopen (z.B.: hochauflösenden Floureszenzmikroskopen, lichtoptischen Mikroskopen, Inversmikroskopen, Mikroskopen mit optischen oder bielektrischen Zellpinzetten) kombiniert werden.With the further developments and devices according to the invention formulated in the subclaims, the controlled fluid management in the LTCC-based microsystem is made possible, with flow rates of a few 10 picoliters per minute up to a few 10 mililiters per minute. Controlled fluid management here means the serial or parallel execution of functions. These functions concern the controlled heating and cooling of a working chamber as well as the exact temperature measurement by integrated temperature sensors. They concern a freely selectable number of microfluidic inflows and outflows in this working chamber. The rate of the liquids in these inlets and outlets can be regulated with the aid of microvalves or can be switched off completely or completely. The flow rate of the fluids in these channel systems can be measured online by means of integrated high-resolution flow sensors. Electrochemical (eg: pH electrodes) or micromechanical sensors (eg: pressure sensors) can be integrated into the microchannels. The working chamber is reversibly or irreversibly closed by substrates mounted on the top and bottom. These substrates preferably consist of the materials glass, silicon or a biocompatible polymer, it being possible for these substrates themselves to be carriers of electrically active microelectrodes (for example: micro-T sensor, micro heater). Due to the planar structure, the manifolds can be combined in combination with all microscopes (e.g. high-resolution fluorescence microscopes, light-optical microscopes, inverse microscopes, microscopes with optical or dielectric cell tweezers).
Die Erfindung soll nachfolgend an einem Ausführungsbeispiel näher erläutert werden.The invention will be explained in more detail using an exemplary embodiment.
In den zugehörigen Zeichnungen zeigen:In the accompanying drawings:
Fig. 1 eine Draufsicht auf ein erfindungsgemäßes Manifold einer Mikroskopierkammer;Figure 1 is a plan view of an inventive manifold of a microscope chamber.
Fig. 2 eine Draufsicht auf eine mittlere vergrabene Schicht des Manifoldes mit elektrischen Funktionsbaugruppen und elektrischen Außenanschlüssen;2 shows a plan view of a middle buried layer of the manifold with electrical functional assemblies and electrical external connections;
Fig. 3 eine erste Fluidebene zur Zuführung des Fluides zur Arbeitskammer;Fig. 3 shows a first fluid level for supplying the fluid for Chamber of Labor;
Fig. 4 eine zweite Fluidebene mit einem Hydraulikkreis zur Betätigung der Funktionsbaugruppen und Ventile; und4 shows a second fluid level with a hydraulic circuit for actuating the functional assemblies and valves; and
Fig. 5 eine dritte Fluidebene mit einem Kühlkreislauf für das Manifold.Fig. 5 shows a third fluid level with a cooling circuit for the manifold.
Aus den Fig. 1 bis 5 ist eine erfindungsgemäße Ausführung eines Manifolds mit einer Mikroskopierkammer K bzw. Arbeitskammer A dargestellt. Das Manifold besteht hier aus einem keramischen Basiskörper in LTCC-Technologie, aus der Mikroskopierkammer K, die durch eine Glasabdeckung (nicht dargestellt) einer zentralen Bohrung im Keramikkörper gebildet wird sowie aus den hybridintegrierten Mikrosensoren und Mikroaktoren, den elektrischen und fluidischen Anschlußelementen. Für den Fluid- anschluß für sämtliche benötigte Funktionen ist eine Fluidanschlußleiste FL vorgesehen, die mit den Fluidkanälen FK und den Hydraulikkanälen HF des Manifolds verbunden ist. Die Flui danschlußleiste FL ist entlang einer Kante des Manifolds angeordnet. Die gegenüberliegende Kante des Manifolds ist mit einer elektrischen Anschlußleiste EL zum Anschluß der elektrischen Komponenten des Manifolds verbunden. Damit wird eine erhebliche Verbesserung der Handhabung des Manifolds erreicht.1 to 5, an embodiment of a manifold according to the invention with a microscope chamber K or working chamber A is shown. The manifold here consists of a ceramic base body in LTCC technology, the microscopy chamber K, which is formed by a glass cover (not shown) in a central hole in the ceramic body, and the hybrid-integrated microsensors and microactuators, the electrical and fluidic connection elements. A fluid connection strip FL is provided for the fluid connection for all required functions, which is connected to the fluid channels FK and the hydraulic channels HF of the manifold. The flui connection strip FL is arranged along an edge of the manifold. The opposite edge of the manifold is connected to an electrical connection strip EL for connecting the electrical components of the manifold. This significantly improves the handling of the manifold.
Der keramische Basiskörper BK besteht aus einzelnen Keramiklagen mit einer Dicke von 150 bis 200 μm und enthält drei Fluid- kreise (Fig. 3 bis 5) die unterschiedliche Funktionen aufweisen. Der erste Fluidkreis ist der Arbeitskammerkreis, der alle fluidischen Kanäle zusammenfaßt, die in oder aus der Arbeitskammer führen. Der zweite Kreis ist der Ventilkreis (Fig. 4) der sämtliche Kanäle zusammenfaßt, die zum Befüllen und Betreiben der thermoelektrischen Silizium-Mikroventile benötigt wird. Der dritte Fluidkreis ist der Kühlkreislauf KK (Fig. 5), mit dessen Hilfe die Temperatur in der Arbeitskammer auch bei gegebenenfalls anfallender elektrischer Verlustwärme konstant gehalten werden kann. Umgekehrt verhindert der Kühlkreislauf KK den Wärmefluß von einer gegebenenfalls bei hö- heren Temperaturen betriebenen Mikroskopierkammer K oder auch Arbeitskammer A an die thermoelektrischen Mikroventile V.The ceramic base body BK consists of individual ceramic layers with a thickness of 150 to 200 μm and contains three fluid circuits (FIGS. 3 to 5) which have different functions. The first fluid circuit is the working chamber circuit, which combines all the fluidic channels that lead into or out of the working chamber. The second circuit is the valve circuit (FIG. 4) which summarizes all the channels that are required for filling and operating the thermoelectric silicon microvalves. The third fluid circuit is the cooling circuit KK (FIG. 5), with the aid of which the temperature in the working chamber can be kept constant even in the event of any electrical heat loss. Conversely, the cooling circuit KK prevents the flow of heat from a possibly high microscope chamber K or working chamber A to the thermoelectric microvalves V.
Im Herstellungsprozeß des Manifoldes wird jede Keramiklage im ungesinterten Zustand gesondert mechanisch strukturiert und mittels Siebdruck mit Durchkontaktierungen und elektrischen Funktionsschichten versehen. Nach der Lamination der einzelnen Lagen erfolgt in einem anschließenden technologischen Schritt das Ausbrennen und Sintern zu einem stabilen keramischen Mul- tilayer-Aufbau. Dieser Aufbau erfüllt neben mechanischen und elektrischen Funktionen auch mikrofluidische Funktionen.In the manufacturing process of the manifold, each ceramic layer is mechanically structured separately in the unsintered state and provided with vias and electrical functional layers by means of screen printing. After the lamination of the individual layers, in a subsequent technological step, the burnout and sintering takes place to form a stable ceramic multilayer structure. In addition to mechanical and electrical functions, this structure also fulfills microfluidic functions.
Das in den Fig. 1 bis 5 dargestellte Manifold besteht aus 16 keramischen Einzellagen mit einer Mikroskopierkammer K der fluidische Arbeitskammerkreis besitzt 3 Fluidzulaufkanäle und einen Fluidauslaufkanal , sowie zwei Ventilkreise und ein die Arbeitskammer A unfassenden Kühlkanal. Sämtliche fluidische Kreisläufe sind auf einer Fläche von 45x45 mm2, sich dreidimensional kreuzend angeordnet.The manifold shown in FIGS. 1 to 5 consists of 16 ceramic individual layers with a microscope chamber K, the fluidic working chamber circuit has 3 fluid inlet channels and a fluid outlet channel, as well as two valve circuits and a cooling channel that encompasses the working chamber A. All fluidic circuits are arranged on an area of 45x45 mm 2 , crossing three-dimensionally.
Zwei der Fluidzulaufkanäle im Arbeitskammerkreis besitzen ein integriertes siliziumbasiertes Mikroventil V, welches die Einstellung einer definierten Schließrate im Bereich von 0 bis einigen 100 Mikrolitern pro Minute gestattet. Dieses Mikroven- til V ist als thermoelektrisches Ventil ausgebildet, bei dem der Aktor des thermoelektrischen Ventiles geometrisch von seinen Wirkungsort der Si-Membran getrennt ist. Die LTCC gestattet den Aufbau eines mikrofluidischen hydraulischen Kreises, wodurch man den Heizer und den zu schaltenden Mikrokanal trennt. Der Vorteil ist darin zu sehen, daß das Kanalfluid beim Schalten des Ventils V nicht erwärmt wird. Der Schaltvorgang selbst erfolgt durch Erwärmung eines Aktorfluidkreises (Ventilkreis), dessen Ausdehnung deformiert die Si-Membran am Ventil V und der Ventilsitz wird verschlossen oder geöffnet. Der Heizer des Ventils kann durch die Integration in das Manifold auch vom Kühlkreislauf KK profitieren, wodurch das Ventil V in seiner Schaltdynamik schneller wird. Wenn zum Beispiel ein Schließer-Ventil das zur Ventilbetätigung geheizte Aktor- fluid abkühlen muß, um den Ventilsitz wieder freizugeben, ist lediglich solange zu warten, bis das Aktorfluid wieder kühl genug ist, was durch den Kühlkreislauf beschleunigt erfolgen kann .Two of the fluid inlet channels in the working chamber circuit have an integrated silicon-based microvalve V, which allows the setting of a defined closing rate in the range from 0 to a few 100 microliters per minute. This microvalve V is designed as a thermoelectric valve, in which the actuator of the thermoelectric valve is geometrically separated from its place of action of the Si membrane. The LTCC allows the construction of a microfluidic hydraulic circuit, which separates the heater and the microchannel to be switched. The advantage is that the channel fluid is not heated when valve V is switched. The switching process itself takes place by heating an actuator fluid circuit (valve circuit), the expansion of which deforms the Si membrane at valve V and the valve seat is closed or opened. The heater of the valve can also benefit from the KK cooling circuit through the integration in the manifold, which makes valve V faster in its switching dynamics. If, for example, a normally open valve is used to activate the actuator fluid has to cool down in order to release the valve seat, you only have to wait until the actuator fluid is cool enough again, which can be accelerated by the cooling circuit.
Zur Online-Detektion der Fließrate ist in jedem der Mikro- kanäle FK ein Flowsensor integriert, der beispielsweise als miniaturisierter elektrokalorischer Flowsensor F ausgebildet sein kann.For online detection of the flow rate, a flow sensor is integrated in each of the microchannels FK, which can be designed, for example, as a miniaturized electrocaloric flow sensor F.
Im Ausführungsbeispiel umfaßt der Kühlkanal die Arbeitskammer A und besitzt in einer anderen Lage, dreidimensional überlappend einen die Arbeitskammer umfassenden Dickfilmheizer.In the exemplary embodiment, the cooling duct comprises the working chamber A and, in another position, overlapping three dimensions, has a thick-film heater comprising the working chamber.
Durch Nutzung externer Pumpen kann ein Kühlfluid zur aktiven Kühlung durch das Manifold gepumpt werden. Der Dickfilmheizer gestattet die Erwärmung des Fluides der Arbeitskammer A im Temperaturbereich von Raumtemperatur bis 100 °C mit Einschwingzeiten von ca. 1 Minute. Das im Kühlkreislauf KK zirkulierende Kühlfluid verhindert einerseits die Erwärmung des Manifoldes wenn in der Arbeitskammer A geheizt werden muß. Andererseits entkoppelt der Kühlkanal auch den Mikroheizer und die Arbeitskammer thermisch. Dies ist insofern bedeutsam, da die im Ausführungsbeispiel eingesetzten Silizium-Mikroventile je einem thermoelektrischen Aktuator haben, der bei Betrieb auf ca. 42 bis 45 °C erwärmt werden muß.By using external pumps, a cooling fluid for active cooling can be pumped through the manifold. The thick film heater allows the fluid in the working chamber A to be heated in the temperature range from room temperature to 100 ° C with settling times of approx. 1 minute. The cooling fluid circulating in the cooling circuit KK prevents, on the one hand, the heating of the manifold when heating is required in the working chamber A. On the other hand, the cooling duct also thermally decouples the micro heater and the working chamber. This is important because the silicon microvalves used in the exemplary embodiment each have a thermoelectric actuator which must be heated to approximately 42 to 45 ° C. during operation.
Die fluidisch nutzbare Arbeitskammer A entsteht durch die beidseitige Abdeckung der zentralen Bohrung, die sich durch sämtliche keramische Einzellagen erstreckt, mit einem Glassub- strat. Im Ausführungsbeispiel ist eines der Glassubstrate irreversibel und eines reversibel mit dem Manifold verbunden. Das irreversible Glassubstrat besteht aus einer 500 μm dicken Pyrex-Glasplatte . Diese besitzt zusätzlich einen in die Ar- beitskammer A hineinreichenden Temperatursensor T. Dadurch ist die Temperatur des Fluides in der Arbeitskammer A ständig aktuell bestimmbar. Das reversibel montierte Glassubstrat kann in einer Dicke ab 150 μm auf das Manifold aufgesetzt werden, womit auch konfokale Mikroskopie an biologischen Objekten in der Arbeitskammer durchgeführt werden kann.The fluidically usable working chamber A is created by covering the central hole on both sides, which extends through all the ceramic individual layers, with a glass substrate. In the exemplary embodiment, one of the glass substrates is irreversible and one is reversibly connected to the manifold. The irreversible glass substrate consists of a 500 μm thick Pyrex glass plate. This also has a temperature sensor T that extends into the working chamber A. As a result, the temperature of the fluid in the working chamber A can be determined continuously at any time. The reversibly mounted glass substrate can be placed on the manifold in a thickness from 150 μm, which can also be used to perform confocal microscopy on biological objects in the working chamber.
Ebenso ist es möglich, die reversibel integrierbaren Glassub- strafe vor dem Einbau in das Manifold mit biologischem Material bewachsen zu lassen.It is also possible to have the reversibly integrable glass substrate covered with biological material before it is installed in the manifold.
Um in der Arbeitskammer A ein elektrisches Feld mit einer speziellen Feldgeometrie aufbauen zu können, ist die Arbeits- kammer mit einer Innenlochmetallisierung versehen. Diese In- nenlochmetallisierung kann als Elektroden gestaltet werden, die sich über die gesamte Bohrungstiefe der Arbeitskammer erstrecken. Mit diesen Elektroden kann ein auf zu untersuchende biologische Zellen einwirkendes elektrisches Feld er- zeugt werden. In order to be able to build up an electric field in the working chamber A with a special field geometry, the working chamber is provided with an inner hole metallization. This inner hole metallization can be designed as electrodes that extend over the entire bore depth of the working chamber. With these electrodes, an electric field acting on biological cells to be examined can be generated.
ManifoldManifold
BezugszeichenlisteReference list
A Arbeitskammer K MikroskopierkammerA working chamber K microscope chamber
FL FluidanschlußleisteFL fluid connector
V VentilV valve
F FlowsensorF flow sensor
EL Elektrische Anschlußleiste T TemperatursensorEL electrical terminal strip T temperature sensor
FK FluidkanalFK fluid channel
KK KühlkreislaufKK cooling circuit
HF HydraulikfluidkanalHF hydraulic fluid channel
E Elektrode E electrode

Claims

ManifoldPatentansprüche Manifold patent claims
1. Manifold mit wenigstens einer Mikroskopierkammer bzw. Arbeitskammer, insbesondere für biologische oder gentechnische Untersuchungen, mit Einrichtungen zum Zu- und Ableiten von Fluiden, d a d u r c h g e k e n n - z e i c h n e t, daß sich die Arbeitskammer (A) durch eine sandwichartig ausgebildete Multilayeranordnung erstreckt, die aus einer Kombination von in Dickschicht- und Dünnschichttechnik gefertigten Schichten besteht, daß die Arbeitskammer (A) mittels einer Glasabdeckung fest oder reversibel verschlossen ist, daß die Einrichtungen zum Zu- und Ableiten von Fluiden als vergrabene Strukturen in wenigstens einer der Schichten der sandwichartigen Multilayeranordnung ausgebildet sind und daß die Einrichtungen zum Zu- und Ableiten von Fluiden in Form von mehreren voneinander unabhängigen Fluidkreisläufen ausgebildet sind.1. Manifold with at least one microscope chamber or working chamber, in particular for biological or genetic engineering studies, with devices for supplying and discharging fluids, characterized in that the working chamber (A) extends through a sandwich-like multilayer arrangement, which consists of a combination of layers produced in thick-film and thin-film technology, the working chamber (A) is firmly or reversibly closed by means of a glass cover, the devices for supplying and discharging fluids are designed as buried structures in at least one of the layers of the sandwich-like multilayer arrangement and that the devices for supplying and discharging fluids are designed in the form of a plurality of independent fluid circuits.
2. Manifold nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die sandwichartige Multilayeranord- nung aus einem Stapel sich einander abwechselnder Glas- und Siliziumschichten besteht.2. Manifold according to claim 1, so that the sandwich-like multilayer arrangement consists of a stack of alternating glass and silicon layers.
3. Manifold nach Anspruch 1, d a d u r c h g e k e n n - z e i c h n e t, daß die sandwichartige Multilayeranord- nung aus einem Stapel einer Vielzahl von Keramikschichten besteht .3. Manifold according to claim 1, characterized - shows that the sandwich-like multilayer arrangement consists of a stack of a plurality of ceramic layers.
4. Manifold nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß die Keramikschichten aus einer LTCC- Keramik hergestellt sind.4. Manifold according to claim 3, so that the ceramic layers are made of an LTCC ceramic.
5. Manifold nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß die Einrichtungen zum5. Manifold according to one of claims 1 to 4, d a d u r c h g e k e n n z e i c h n e t that the devices for
Zu- und Ableiten der Fluide als sich dreidimensional kreuzende Fluidkanäle ausgebildet sind.The supply and discharge of the fluids are designed as three-dimensionally intersecting fluid channels.
6. Manifold nach Anspruch 5, d a d u r c h g e k e n n - z e i c h n e t, daß die Fluidkanäle mit Steuerventilen6. Manifold according to claim 5, d a d u r c h g e k e n n - z e i c h n e t that the fluid channels with control valves
(V) ausgestattet sind.(V) are equipped.
7. Manifold nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die Membran des Steuerventiles (V) aus Silizium besteht.7. Manifold according to claim 6, d a d u r c h g e k e n n z e i c h n e t that the membrane of the control valve (V) consists of silicon.
8. Manifold nach Anspruch 6 und 7, d a d u r c h g e k e n n z e i c h n e t, daß der Durchlaßquerschnitt der Steuerventile (V) schalt- oder regelbar ist.8. Manifold according to claim 6 and 7, so that the passage cross-section of the control valves (V) is switchable or controllable.
9. Manifold nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß die Steuerventile (V) pneumatisch, fluidisch oder elektrisch betätigbar sind.9. Manifold according to one of claims 1 to 8, d a d u r c h g e k e n n z e i c h n e t that the control valves (V) are pneumatically, fluidically or electrically actuated.
10. Manifold nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß die Steuerventile (V) durch eine Druckveränderung im Fluidkreis betätigbar sind.10. Manifold according to claim 9, so that the control valves (V) can be actuated by a change in pressure in the fluid circuit.
11. Manifold nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t, daß jedes Steuerventil (V) als thermoelektrisches Ventil mit einem Heizelement ausgebildet ist. 11. Manifold according to one of claims 1 to 10, characterized in that each control valve (V) is designed as a thermoelectric valve with a heating element.
12. Manifold nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß das Heizelement vom Steuerventil (V) räumlich getrennt angeordnet ist.12. Manifold according to claim 11, so that the heating element is arranged spatially separated from the control valve (V).
13. Manifold nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, daß das Heizelement als gedruckte Leitbahn ausgebildet ist.13. Manifold according to claim 12, d a d u r c h g e k e n n z e i c h n e t that the heating element is designed as a printed interconnect.
14. Manifold nach einem der Ansprüche 1 bis 13, d a d u r c h g e k e n n z e i c h n e t, daß jedes Steuerventil (V) mit einer Siliziummembran über der Ventilkammer ausgestattet ist, die am Rand mit der LTCC-Keramik fest verbunden ist.14. Manifold according to one of claims 1 to 13, so that each control valve (V) is equipped with a silicon membrane above the valve chamber, which is firmly connected at the edge to the LTCC ceramic.
15. Manifold nach einem der Ansprüche 1 bis 14, d a d u r c h g e k e n n z e i c h n e t, daß die Arbeitskammer (K) mit Elektroden (E) zur Erzeugung eines elektrischen Feldes versehen ist.15. Manifold according to one of claims 1 to 14, so that the working chamber (K) is provided with electrodes (E) for generating an electric field.
16. Manifold nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t, daß die Arbeitskammer (A) mit einer Innenmetallisierung versehen ist, die mit den elektrischen Anschlüssen des Manifoldes elektrisch verbunden ist.16. Manifold according to claim 15, so that the working chamber (A) is provided with an internal metallization that is electrically connected to the electrical connections of the manifold.
17. Manifold nach einem der Ansprüche 1 bis 16, d a d u r c h g e k e n n z e i c h n e t, daß eine Fluidanschlußleiste (FL) vorgesehen ist, in der sämtliche Fluidkanäle und Hydraulik-Fluidkanäle und die Fluidkanäle des Kühlkreislaufes münden.17. Manifold according to one of claims 1 to 16, d a d u r c h g e k e n n z e i c h n e t that a fluid connection bar (FL) is provided in which all fluid channels and hydraulic fluid channels and the fluid channels of the cooling circuit open.
18. Manifold nach Anspruch 17, d a d u r c h g e k e n n z e i c h n e t, daß Fluidanschlußleiste an einer Außenkante des Manifoldes angeordnet ist.18. Manifold according to claim 17, d a d u r c h g e k e n n z e i c h n e t that fluid connection strip is arranged on an outer edge of the manifold.
19. Manifold nach einem der Ansprüche 1 bis 18, d a d u r c h g e k e n n z e i c h n e t, daß eine elektrische Anschlußleiste (EL) vorgesehen ist, in der sämtliche elektrischen Funktionsanschlüsse zusammengefaßt sind. 19. Manifold according to one of claims 1 to 18, characterized in that an electrical terminal block (EL) is provided in which all the electrical functional connections are combined.
0. Manifold nach einem der Ansprüche 1 bis 29, d a d u r c h g e k e n n z e i c h n e t, daß mehrere Fluidkreisläufe für einen Arbeitskammerkreis, einen Ventilkreis zur Steuerung des Arbeitskammerkreises und einen Kühlkreis vorgesehen sind. 0. Manifold according to one of claims 1 to 29, d a d u r c h g e k e n n z e i c h n e t that several fluid circuits are provided for a working chamber circuit, a valve circuit for controlling the working chamber circuit and a cooling circuit.
PCT/DE2000/000768 1999-03-15 2000-03-14 Manifold WO2000055618A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10080648T DE10080648D2 (en) 1999-03-15 2000-03-14 Manifold
AU40993/00A AU4099300A (en) 1999-03-15 2000-03-14 Manifold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19911345 1999-03-15
DE19911345.9 1999-03-15

Publications (2)

Publication Number Publication Date
WO2000055618A2 true WO2000055618A2 (en) 2000-09-21
WO2000055618A3 WO2000055618A3 (en) 2000-12-28

Family

ID=7900940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000768 WO2000055618A2 (en) 1999-03-15 2000-03-14 Manifold

Country Status (3)

Country Link
AU (1) AU4099300A (en)
DE (1) DE10080648D2 (en)
WO (1) WO2000055618A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489404A1 (en) * 2003-06-16 2004-12-22 GeSIM Gesellschaft für Silizium-Mikrosysteme mbH Method for producing a 3-D microscope flowcell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028664A1 (en) * 1995-03-14 1996-09-19 Baxter International Inc. Electrofluidic standard module and custom circuit board assembly
WO1996035971A2 (en) * 1995-05-10 1996-11-14 Epigem Limited Micro relief element and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996028664A1 (en) * 1995-03-14 1996-09-19 Baxter International Inc. Electrofluidic standard module and custom circuit board assembly
WO1996035971A2 (en) * 1995-05-10 1996-11-14 Epigem Limited Micro relief element and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489404A1 (en) * 2003-06-16 2004-12-22 GeSIM Gesellschaft für Silizium-Mikrosysteme mbH Method for producing a 3-D microscope flowcell

Also Published As

Publication number Publication date
AU4099300A (en) 2000-10-04
WO2000055618A3 (en) 2000-12-28
DE10080648D2 (en) 2002-02-28

Similar Documents

Publication Publication Date Title
EP2531760B1 (en) Micro-fluidic component for manipulating a fluid, and microfluidic chip
US7195036B2 (en) Thermal micro-valves for micro-integrated devices
EP1054735B1 (en) Miniaturized temperature-zone flow reactor
DE10041853C1 (en) Configurable microreactor network
DE10227593A1 (en) Flow circuit microdevice
DE102016207845B4 (en) Fluid handling device and method of fluid handling
WO2009149986A1 (en) Compression valve and method for producing it
EP3592463B1 (en) Method for centrifugo-pneumatic switching of liquid
DE102009035291B4 (en) Device for producing a microfluidic channel structure in a chamber, method for its production and its use
EP2686595B1 (en) Microfluidic valve and microfluidic platform
EP2340386B1 (en) Ceramic multilayer microvalve and use thereof
DE102009035292A1 (en) Device for controlling the flow of fluids through microfluidic channels, methods of their operation and their use
CN101460246B (en) Microfluidic device with variable volume material
DE102019209746A1 (en) Microfluidic device for processing and aliquoting a sample liquid, method and control device for operating a microfluidic device and microfluidic system for performing an analysis of a sample liquid
DE102012206042B4 (en) Method and device for targeted process control in a microfluidic processor with integrated active elements
DE102014209188B4 (en) Apparatus and method for processing a biological sample and analysis system for analyzing a biological sample
DE102010038445B4 (en) Process for the production of a microfluidic system
DE102011107046B4 (en) micropump
US7059339B2 (en) Pyrotechnically actuated microvalve
EP1489404A1 (en) Method for producing a 3-D microscope flowcell
WO2000055618A2 (en) Manifold
EP2783143B1 (en) Microfluidic membrane-valve device, and a corresponding production method
DE102010035606A1 (en) Fabricating microstructure with inner metal structure, comprises preparing substrate structure with internal fluid channel, introducing electrolyte solution into fluid channel, and forming internal metal structure
CN210860050U (en) Programmable micro valve device
DE102011075127A1 (en) Microvalve structure with a polymer actuator and Lab-on-a-chip module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REF Corresponds to

Ref document number: 10080648

Country of ref document: DE

Date of ref document: 20020228

WWE Wipo information: entry into national phase

Ref document number: 10080648

Country of ref document: DE

122 Ep: pct application non-entry in european phase