Verfahren zum Bestimmen von KenngrößenMethod for determining parameters
Die Erfindung betrifft ein Verfahren zum Bestimmen von Kenngrößen für die Viskosität und/oder Temperatur einer Bremsflüssigkeit eines Fahrzeugs.The invention relates to a method for determining parameters for the viscosity and / or temperature of a brake fluid of a vehicle.
Bekanntlich ist die Viskosität einer Bremsflüssigkeit oder Hydraulikflüssigkeit in hohem Maße temperaturabhängig. Die hohe Viskosität bei niedriger Flüssigkeitstemperatur, nämlich bei tiefer Temperatur z.B. unterhalb -10 Grad C, in der Startphase eines Kraftfahrzeugs, beeinträchtigt die Regelbarkeit des Bremsdruckes einer geregelten hydraulischen Bremsanlage. Problematisch ist, wenn Bremsflüssigkeit, beispielsweise im Rahmen einer Fahrstabilitätsregelfunktion, d.h. ohne Beeinflussung durch den Fahrer, besonders schnell von dem Bremsflüssigkeitsreservoir zu einer Radbremse verlagert werden soll. Bei sinkenden Temperaturen steigt die Viskosität der Bremsflüssigkeit überproportional an. Dies führt bei sehr niedrigen Temperaturen dazu, dass die Bremsflüssigkeit nicht schnell genug angesaugt werden kann, wobei noch hinzu kommt, dass mit steigender Viskosität der Druckverlust in der Rohrleitung zunimmt. Diese Hemmnisse führen zu einem verlangsamten Bremseneingriff. Bei einer Fahrstabilitätsre- gelung besteht allerdings die generelle Anforderung, einen schnellen Bremseingriff zu bewirken. Zur Lösung des Problems wurden bereits Einrichtungen vorgeschlagen, die eine Hilfs- druckquelle bzw. eine Vorladepumpe vorsehen (WO 96/20102) . Weil dies mit erheblichen Mehrkosten verbunden ist, nimmt man zunehmend von diesen Einrichtungen Abstand.
Aufgabe der vorliegenden Erfindung ist es daher, die Funktion einer hydraulischen Fahrzeug-Bremsanlage mit all ihren Teilfunktionen, wie Antiblockierfunktion, Antriebsschlupf- funktion und Fahrstabilitätsfunktion bei allen, auch bei sehr niedrigen Außentemperaturen mit geringem Aufwand zu gewährleisten.As is known, the viscosity of a brake fluid or hydraulic fluid is highly temperature-dependent. The high viscosity at low fluid temperature, namely at low temperature, for example below -10 degrees C, in the starting phase of a motor vehicle, impairs the controllability of the brake pressure of a regulated hydraulic brake system. It is problematic if brake fluid is to be shifted from the brake fluid reservoir to a wheel brake particularly quickly, for example as part of a driving stability control function, ie without being influenced by the driver. With falling temperatures, the viscosity of the brake fluid increases disproportionately. At very low temperatures, this means that the brake fluid cannot be sucked in quickly enough, with the fact that the pressure loss in the pipeline increases with increasing viscosity. These obstacles lead to slow braking intervention. In the case of a driving stability control, however, there is a general requirement to effect a quick brake intervention. To solve the problem, devices have already been proposed which provide an auxiliary pressure source or a precharging pump (WO 96/20102). Because this is associated with considerable additional costs, people are increasingly refraining from these facilities. The object of the present invention is therefore to ensure the function of a hydraulic vehicle brake system with all its sub-functions, such as anti-lock function, traction slip function and driving stability function, with little effort, even at very low outside temperatures.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst .This object is solved by the features of claim 1.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.
Vorteilhaft wird das Verfahren bei einem fahrdynamischen Regelsystem eingesetzt, das dazu dient, den Fahrer eines Fahrzeugs bei kritischen Fahrsituationen zu unterstützen. Mit Fahrzeug ist in diesem Zusammenhang ein Kraftfahrzeug mit vier Rädern gemeint, welches mit einer hydraulischen Bremsanlage ausgerüstet ist. In der hydraulischen Bremsanlage kann mittels eines pedalbetätigten HauptZylinders vom Fahrer ein Bremsdruck aufgebaut werden. Jedes Rad besitzt eine Bremse, welchem mindestens jeweils ein Einlassventil und ein Auslassventil zugeordnet ist. Über die Einlassventile stehen die Radbremsen mit dem Hauptzylinder in Verbindung, während die Auslassventile zu einem drucklosen Behälter bzw. Niederdruckspeicher führen. Schließlich ist noch eine Hilfs- druckquelle, in der Regel ein Motor-Pumpen-Aggregat, vorhanden, welche auch unabhängig von der Stellung des Bremspedals einen Druck in den Radbremsen aufzubauen vermag. Die Ein- lass- und Auslassventile sowie die im Bremskreis angeordneten weiteren Ventile sind zur Druckregelung in den Radbremsen elektromagnetisch durch Ansteuerung von Ventilspulen betätigbar. Zur Erfassung von fahrdynamischen Zuständen sind
vier Drehzahlsensoren, pro Rad einer, ein Giergeschwindigkeitssensor, ein Querbeschleunigungssensor, ein Lenkwinkel - sensor und mindestens ein Drucksensor für den vom Bremspedal mittelbar oder unmittelbar erzeugten Bremsdruck vorhanden. Ein elektronisches Regelsystem, das üblicherweise zusammen mit einem die Ventile und Pumpe aufnehmenden Hydraulikblock eine Baueinheit bildet und an dessen einen Seite der Pumpenmotor angeordnet ist, regelt die fahrdynamischen Fahrzustände des Fahrzeugs bei instabiler Fahrt. Die Funktion der Fahrstabilitätsregelung besteht also darin, innerhalb der physikalischen Grenzen in kritischen (instabilen) Situationen dem Fahrzeug das vom Fahrer gewünschte Fahrzeugverhalten zu verleihen.The method is advantageously used in a driving dynamics control system which serves to support the driver of a vehicle in critical driving situations. In this context, a vehicle is a motor vehicle with four wheels, which is equipped with a hydraulic brake system. The driver can build up brake pressure in the hydraulic brake system using a pedal-operated master cylinder. Each wheel has a brake, which is assigned at least one inlet valve and one outlet valve. The wheel brakes are connected to the master cylinder via the inlet valves, while the outlet valves lead to an unpressurized container or low-pressure accumulator. Finally, there is an auxiliary pressure source, usually a motor-pump unit, which can also build up pressure in the wheel brakes regardless of the position of the brake pedal. The inlet and outlet valves and the further valves arranged in the brake circuit can be actuated electromagnetically for controlling the pressure in the wheel brakes by actuating valve coils. For the detection of dynamic driving conditions Four speed sensors, one for each wheel, a yaw rate sensor, a lateral acceleration sensor, a steering angle sensor and at least one pressure sensor for the brake pressure generated directly or indirectly by the brake pedal. An electronic control system, which usually forms a structural unit together with a hydraulic block that receives the valves and pump, and on one side of which the pump motor is arranged, regulates the driving dynamics of the vehicle during unstable driving. The function of the driving stability control therefore consists in giving the vehicle the vehicle behavior desired by the driver within the physical limits in critical (unstable) situations.
Bei ESP-Regelsystemen (ESP = elektronisches Stabilitätsprogramm) wird aus der ermittelten Instabilität des Fahrzeugs eine radindividuelle Druckanforderung berechnet, die notwendig ist, um das Fahrzeug wieder auf den vom Fahrer gewünschten Kurs zu bringen. Dabei sorgt eine Giermomentenregelung für stabile Fahrzustände beim Durchfahren einer Kurvenbahn. Zur Giermomentenregelung kann auf unterschiedliche Fahrzeug- Referenzmodelle zurückgegriffen werden, beispielsweise auf das Einspur-Modell . Bei den ESP-Regelsystemen werden stets Eingangsgrößen, welche aus dem vom Fahrer gewünschten Weg resultieren (beispielsweise dem Lenkradwinkel, der Geschwindigkeit u.dgl.) der Fahrzeug-Modellschaltung zugeführt, welche aus diesen Eingangsgrößen und für das Fahrverhalten des Fahrzeugs charakteristischen Parametern aber auch durch Eigenschaften der Umgebung vorgegebene Größen (Reibwert der Fahrbahn, Fahrbahnneigung) ein Soll-Wert für die Gierrate bestimmt, die mit der gemessenen tatsächlichen Gierrate verglichen wird. Die Gierratendifferenz wird mittels eines sog. Giermomentenreglers - oder genauer - einem Giermoment-
Regelgesetz, in ein Giermoment umgerechnet, welches die Eingangsgröße einer Verteilungslogik bildet. Die Verteilungslogik selbst bestimmt in -Abhängigkeit von einem Bremsdruckmodell, den an den einzelnen Radbremsen aufzubringenden Bremsdruck. Die Ansteuerung der Ein- und Auslassventile erfolgt dabei über eine Drucksteuerung, die in Abhängigkeit von der im Druckmodell nachgebildeten realen Druckaufbau- und Druckabbaucharakteristik in den Radbremsen, Druckgrößen in Ventilschaltsignale umrechnet. Das Druckmodell empfängt hierzu benötigte Eingangsgrößen und bildet daraus sowie nach Maßgabe von Systemparametern den in der Bremse herrschenden Druck nach. Insbesondere kann das Druckmodell die Steuersignale empfangen, die den Bremsdruck an der jeweils betrachteten Bremse beeinflussen, also beispielsweise Signale für die Einlassventile, die Auslassventile, für die Hydraulikpumpe oder ähnliches. Aus diesen Signalen sowie aus Systemparametern (beispielsweise Leitungsquerschnitte, Schaltcharakteristika usw.) kann das Druckmodell den Druck in den Radbremsen parallel zum Aufbau des Raddrucks nachbilden, so dass durch Ausgabe des so anhand des Druckmodells ermittelten Drucks der Regelkreis geschlossen werden kann.In ESP control systems (ESP = electronic stability program), the instability of the vehicle is used to calculate a wheel-specific pressure requirement that is necessary in order to get the vehicle back on the course desired by the driver. A yaw moment control ensures stable driving conditions when driving through a curved track. Different vehicle reference models can be used for yaw moment control, for example the single-track model. In the ESP control systems, input variables which result from the route desired by the driver (for example the steering wheel angle, speed and the like) are always fed to the vehicle model circuit, but also from these input variables and parameters characteristic of the driving behavior of the vehicle Properties of the environment predefined variables (coefficient of friction of the road, lane inclination) determines a target value for the yaw rate, which is compared with the measured actual yaw rate. The yaw rate difference is determined by means of a so-called yaw moment controller - or more precisely - a yaw moment Control law, converted into a yaw moment, which forms the input variable of a distribution logic. The distribution logic itself, depending on a brake pressure model, determines the brake pressure to be applied to the individual wheel brakes. The control of the intake and exhaust valves takes place via a pressure control, which converts pressure variables into valve switching signals depending on the real pressure build-up and pressure reduction characteristics in the wheel brakes, which are modeled in the pressure model. The pressure model receives the input variables required for this and, based on it and in accordance with system parameters, simulates the pressure prevailing in the brake. In particular, the pressure model can receive the control signals that influence the brake pressure on the brake under consideration, that is to say, for example, signals for the intake valves, the exhaust valves, for the hydraulic pump or the like. From these signals and from system parameters (e.g. line cross-sections, switching characteristics, etc.), the pressure model can simulate the pressure in the wheel brakes parallel to the build-up of the wheel pressure, so that the control loop can be closed by outputting the pressure determined in this way using the pressure model.
Eine Schwierigkeit bestehender Systeme liegt darin, den Ein- fluss schwankender Temperaturen zu berücksichtigen. Bei niedrigen Temperaturen sinkt die Viskosität der Bremsflüssigkeit. Damit ändert sich eine in die Nachbildung des Raddrucks in das Druckmodell eingehende Eingangsgröße, die Pumpenförderleistung bzw. das Fördervolumen der Pumpe, die bzw. das sich in Abhängigkeit von der temperaturabhängigen Viskosität der Bremsflüssigkeit erhöht oder verringert.One difficulty with existing systems is taking into account the influence of fluctuating temperatures. At low temperatures, the viscosity of the brake fluid drops. This changes an input variable, the pump delivery rate or the delivery volume of the pump, which is included in the simulation of the wheel pressure in the pressure model and which increases or decreases as a function of the temperature-dependent viscosity of the brake fluid.
Um Abweichungen zwischen dem im Druckmodell nachgebildeten Raddruck und dem tatsächlichen Raddruck zu vermeiden, wäre
eine Anpassung der im Druckmodell abgelegten bzw. der dem Druckmodell zur Verfügung gestellten Parameter, insbesondere des Pumpenfördervolumens, wünschenswert.To avoid deviations between the wheel pressure simulated in the pressure model and the actual wheel pressure, would be an adjustment of the parameters stored in the pressure model or of the parameters made available to the pressure model, in particular the pump delivery volume, is desirable.
Die erfindungsgemäße Ausbildung schlägt daher ein Verfahren zum Bestimmen von Kenngrößen für die Viskosität und/oder Temperatur einer Bremsflüssigkeit eines Fahrzeugs, die über ansteuerbare Spulen betätigbare Bremsventile den Radbremsen zugeführt wird, vor, wobei die Kenngrößen über die temperaturabhängige Widerstandsänderung mindestens einer Spule bestimmt werden. Die temperaturabhängige Widerstandsänderung der Ventilspule kann nach den BeziehungenThe design according to the invention therefore proposes a method for determining parameters for the viscosity and / or temperature of a brake fluid of a vehicle, which brake valves, which can be actuated via controllable coils, are fed to the wheel brakes, the parameters being determined via the temperature-dependent change in resistance of at least one coil. The temperature-dependent change in resistance of the valve coil can vary according to the relationships
R3 = R20[l + α(5 - 20°C)] undR 3 = R 20 [l + α (5 - 20 ° C)] and
• _ Venti,l = 20° C+ ^ R™ a*R 20 mit Rθ = Widerstand bei der Temperatur & , α = Temperatur¬• _ Venti, l = 20 ° C + ^ R ™ a * R 20 with R θ = resistance at temperature &, α = temperature¬
koeffizient ( a = 3,9 für Cu ), R20 = Widerstand bei der Temperatur von 20°C und &VeMύ = Temperatur im Regler, bestimmt werden. Erfindungsgemäß werden dann in der Auswerteeinheit die Kenngrößen für die Viskosität bzw. Temperatur der im Regler angeordneten Ventilspule ermittelt. Die Auswerteeinheit kann als Mikroprozessor ausgebildet und Bestandteil des Druckmodells sein. Die in dem Druckmodell abgelegte Pumpenförderleistung kann in der Auswerteeinheit in Abhängigkeit von dem über die Widerstandsänderung der Ventilspule ermittelten Temperaturverlauf oder von einem Temperatur- Schwellenwert unter Einbeziehung von Korrekturfaktoren bestimmt werden. Der Temperaturwert wird beim Start des Fahrzeugs oder unmittelbar nach dem Start des Fahrzeugs bestimmt. Die-
ser Start-Temperaturwert wird im weiteren Verlauf als Funktion der Reglerstromaufnahme, insbesondere der Ventilstromaufnahme, und der Erwärmung bzw. Abkühlung des von der Bremsflüssigkeit durchströmten Hydraulikblocks, korrigiert. Die Temperaturdifferenz zwischen dem Hydraulickblock (HCU = Hydraulik Control Unit) und dem Regelsystem bzw. dem Regler (ECU = Electronic Control Unit) mit der als Temperatursensor verwendeten Ventilspule ist bei nicht betätigter Ventilansteuerung bzw. Pu penansteuerung konstant. Dieser konstante Temperatur- Differnzwert 3 τ_0f tset einer Regler-/ Hydraulikblock-Einheit wird zur Korrektur des von dem über die Widerstandsänderung der Ventilspule ermittelten Temperaturwertes 9Ventil herangezogen. Die Korrektur der Temperatur $ kann mittels eines Korrekturfaktors k, der den Verlauf der Temperaturdifferenz zwischen dem Messort (dem Regler) der Temperatur und dem Hydraulikblock, wiedergibt, nachcoefficient (a = 3.9 for Cu), R 20 = resistance at the temperature of 20 ° C and & VeMύ = temperature in the controller. According to the invention, the parameters for the viscosity or temperature of the valve coil arranged in the controller are then determined in the evaluation unit. The evaluation unit can be designed as a microprocessor and can be part of the print model. The pump delivery capacity stored in the pressure model can be determined in the evaluation unit as a function of the temperature profile determined via the change in resistance of the valve coil or of a temperature threshold value, including correction factors. The temperature value is determined when the vehicle starts or immediately after the vehicle starts. The- In the further course, this start temperature value is corrected as a function of the controller current consumption, in particular the valve current consumption, and the heating or cooling of the hydraulic block through which the brake fluid flows. The temperature difference between the hydraulic block (HCU = Hydraulic Control Unit) and the control system or the controller (ECU = Electronic Control Unit) with the valve coil used as the temperature sensor is constant when the valve control or pump control is not actuated. This constant temperature difference value 3 τ _ 0 f tset of a controller / hydraulic block unit is used to correct the 9 valve value determined by the change in resistance of the valve coil. The correction of the temperature $ can be followed by means of a correction factor k, which represents the course of the temperature difference between the measuring location (the controller), the temperature and the hydraulic block
$venm * k = &τ_Hcu oder nach &vemi ~ &offse, = T HCU in er Auswerteein- heit erfolgen. Darüber hinaus kann in der Auswerteeinheit unter Einbeziehung von in Tabellen, Kennlinien oder Modellen abgelegten, berechneten oder geschätzten Korrekturgrößen oder Korrekturwerten, die die Ventilstromaufnähme wiedergeben, der Temperaturwert 3Brems ermittelt werden. Nach einer Ausführung wird der Temperaturwert als Funktion des von der Bremsflüssigkeit durchströmten Hydraulikblocks nach der Beziehung$ ve n m * k = & τ_ H cu or according to & vemi ~ & o ff se, = T HCU in the evaluation unit. In addition, the temperature value 3 brake can be determined in the evaluation unit, including correction values or correction values that are stored, calculated or estimated in tables, characteristic curves or models and reflect the valve current consumption . According to one embodiment, the temperature value is a function of the hydraulic block through which the brake fluid flows according to the relationship
d& Bremsd & brake
— / Ventil T_HCU Offset > ' ■ ' - \J T Umgebung ) dt d&B mit ≡ - =Temperatur der Bremsflüssigkeit (über die Tempera- dt tur des Hydraulikblocks), θVeMll =Temperatur über die Widerstandsänderung der im Regler angeordneten Ventilspule,
&τ neu =Temperatur des Hydraulikblocks, 30ffsel =Regler/ Hydraulikblock-Temperaturdifferenz, t= Zeit, V= Ventilstromaufnahme und ιr [/mgetoπg=Umgebungstemperatur, bestimmt. - / valve T_HCU offset>' ■ ' - \ JT environment) dt d & B with ≡ - = temperature of the brake fluid (via the temperature of the hydraulic block ), θ VeMll = temperature via the change in resistance of the valve coil arranged in the controller, & τ new = temperature of the hydraulic block , 3 0ffsel = controller / hydraulic block temperature difference, t = time, V = valve current consumption and ι r [/ mgetoπg = ambient temperature, determined.
Die so ermittelten Temperaturwerte geben mit ausreichender Genauigkeit die Temperatur der Bremsflüssigkeit wieder. Mittels eines Korrekturfaktors ki können Temperaturabweichungen zwischen der Temperatur des Hydraulikblocks und der Bremsflüssigkeit berücksichtigt werden.The temperature values determined in this way reflect the temperature of the brake fluid with sufficient accuracy. Using a correction factor ki, temperature deviations between the temperature of the hydraulic block and the brake fluid can be taken into account.
Diese Kenngrößen werden dem, die tatsächlichen Drücke der Bremsflüssigkeit in den Radbremsen nachbildenden Druckmodell als Eingangsgrößen zur Verfügung gestellt. In Abhängigkeit von den Kenngrößen, insbesondere den Temperaturwerten, werden die Druckaufbau- und /oder Druckabbaukennlinien des Druckmodells modifiziert. Diese Modifizierung über die dem Bremsdruckmodell zur Verfügung gestellten Kenngrößen erfolgt mittels einer temperaturabhängigen Bestimmung der Pumpenförderleistung oder davon abgeleiteten Größen. Dabei wird die Pumpenförderleistung beim Unterschreiten eines vorgegebenen Temperatur-Grenzwertes, insbesondere beim Unterschreiten des Temperatur-Grenzwertes -10°C, um einen festgelegten Betrag modifiziert, insbesondere erhöht oder kontinuierlich in Abhängigkeit des Temperaturwertes modifiziert.These parameters are provided as input variables for the pressure model that simulates the actual pressures of the brake fluid in the wheel brakes. The pressure build-up and / or pressure reduction characteristics of the pressure model are modified as a function of the parameters, in particular the temperature values. This modification via the parameters provided to the brake pressure model is carried out by means of a temperature-dependent determination of the pump delivery rate or variables derived therefrom. The pump delivery rate is modified by a predetermined amount when the temperature falls below a predetermined temperature, in particular when the temperature falls below -10 ° C., in particular increased or continuously modified depending on the temperature value.
Nach den modifizierten Druckkurven des Druckmodells, werden Ventilschaltsignale berechnet, über welche die Bremsventile an den Rädern angesteuert und der Druck in den einzelnen Radbremsen individuell geregelt wird.According to the modified pressure curves of the pressure model, valve switching signals are calculated, via which the brake valves on the wheels are controlled and the pressure in the individual wheel brakes is individually regulated.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben:
Es zeigenAn embodiment of the invention is shown in the drawing and is described in more detail below: Show it
Fig. 1 ein erfindungsgemäßes Motor-Pumpen-Aggregat mit von Ventilspulen betätigbaren VentilenFig. 1 shows an inventive motor-pump unit with valves actuated by valve coils
Fig. 2 die erfindungsgemäße Schaltung zur temperaturabhängigen Widerstandsmessung an der Spule nach Fig. 1.2 shows the circuit according to the invention for temperature-dependent resistance measurement on the coil according to FIG. 1.
Fig. 3 ein Ventilblock-Temperatur-ModellFig. 3 shows a valve block temperature model
Fig. 4 die Abhängigkeit der Pumpenförderleistung von der Temperatur der BremsflüssigkeitFig. 4 shows the dependence of the pump delivery rate on the temperature of the brake fluid
Fig. 1 zeigt eine Druckregelvorrichtung, die im wesentlichen aus einem Hydraulik- bzw. Ventilblock 24 oder Ventilaufnahmekörper und aus einem Deckel oder Gehäuse 29 besteht. Aus diesem Hydraulikblock 24 ragen in bekannter Weise die einzelnen Ventildome oder Ventilgehäuse 25, in denen sich die durch Magnetkraft beweglichen (nicht gezeigten) Ventilteile befinden, hervor. Ein derartiger Ventilblock für ein ABS mit radindividueller Regelung enthält im allgemeinen 8, ein Ventilblock für ein ESP mit radindividueller Regelung im allgemeinen 12 derartige Ventile, nämlich vier Einlass- und vier Auslassventile sowie zwei Trennventile und zwei Umschaltventile. Die Ventilbetätigungskraft wird bekanntlich durch ein Magnetfeld erzeugt, das von einer Ventilspule 26 durch das Ventilgehäuse 25 hindurch auf nicht dargestellte, im Inneren der Ventilgehäuse 25 angeordnete Ventilkörper einwirkt.Fig. 1 shows a pressure control device which consists essentially of a hydraulic or valve block 24 or valve receiving body and a cover or housing 29. From this hydraulic block 24, the individual valve domes or valve housings 25, in which the valve parts (not shown) which are movable by magnetic force, protrude in a known manner. Such a valve block for an ABS with wheel-specific control generally contains 8, a valve block for an ESP with wheel-specific control generally contains 12 such valves, namely four inlet and four outlet valves as well as two separating valves and two changeover valves. As is known, the valve actuation force is generated by a magnetic field, which acts from a valve coil 26 through the valve housing 25 on valve bodies (not shown) arranged inside the valve housing 25.
Die Ventilspulen 26 sind in dem Deckel oder Gehäuse 29 so elastisch angeordnet und gehaltert, dass sie beim Aufsetzen
des Gehäuses 29 auf den Ventilblock 24 auf den zugehörigen Ventilgehäusen 25 und auf der Grundfläche 30 des Ventilaufnahmekörpers 24 zur Anlage kommen. Mit Hilfe von flexiblen Anschlussdrähten 31 sind die Ventilspulen 26 mit einer Leistungsplatine 32 und einer die Steuerelektronik tragenden Leiterplatte 33 verbunden.The valve coils 26 are arranged and held elastically in the cover or housing 29 such that they are in place when they are put on of the housing 29 come to rest on the valve block 24 on the associated valve housings 25 and on the base 30 of the valve receiving body 24. With the aid of flexible connecting wires 31, the valve coils 26 are connected to a power board 32 and a printed circuit board 33 carrying the control electronics.
Die einzelnen Ventilspulen 26 bestehen aus einer (nicht dargestellten) Wicklung, insbesondere einer Kupferwicklung, und aus einem Stahlmantel, der den Verlauf der magnetischen Feldlinien beeinflusst .The individual valve coils 26 consist of a winding (not shown), in particular a copper winding, and a steel jacket which influences the course of the magnetic field lines.
Ein Element 21 verbindet das elektronische Regelsystem 22 (den Regler) , in der das elektronische Stabilitätsprogramm (ESP) abgelegt ist, mit dem dem Regler gegenüber liegend am Hydraulikblock 24 angeordneten Pumpenmotor 23. Das Verbindungselement 21 ist als elektrisch steckbares Versorgungselement ausgebildet, welches den Pumpenmotor 23 und/oder die Ventile der Bremsanlage mit der von dem elektronischen Regelsystem zur Verfügung gestellten elektrischen Energie versorgt. Motor-Pumpen-Aggregate sind bekannt und müssen daher nicht näher beschrieben werden. Das Verbindungselement 21 ist beispielsweise zylinderförmig ausgebildet und weist ein Steck-Kontaktelement 27 zur elektrisch leitenden Befestigung auf, das in einer dem Pumpenmotor zugeordneten Klemme eingesteckt wird. Das Verbindungselement 21 ist innerhalb einer Öffnung 28 des Hydraulikblocks 24 angeordnet und kontaktiert über am Umfang vorgesehene elastische Elemente 34 die Durchgangsbohrung 28 des Hydraulikblocks 24. In Fig. 2 ist eine Einrichtung zur Ansteuerung der Ventilspulen schematisch dargestellt, die im wesentlichen aus einem Mikroprozessor 40 oder entsprechender Signalverarbeitungseinheit bzw. Auswerteeinheit mit einem Analog- /Digitalwandler 41, der über ei-
nen Spannungsregler 42 mit der Energieversorgung 43 des Fahrzeugs verbunden ist, besteht. Über eine Parallelschaltung ist der Eingang 55 des A- /D-Wandlers 41 an den Versorger 43 angeschlossen. Dem Mikroprozessor wird über Eingang 55 die im A- /D-Wandler digitalisierte Versorgungsspannung als Referenzspannung zugeführt. Der Versorger 43 ist über eine Versorgungsleitung 44 mit der Spule 26 verbunden. Bei der Spule 26 handelt es sich um die in Fig. 1 genannte Ventilspule. In der Leitung sind zwei elektronische Schalter 46, 47 (Halbleiterschalter) zwischen dem Masse-Anschluss 48 und der Spule sowie vor dem Versorgungsanschluss 49 in der Leitung 44 vorgesehen. Wird aufgrund eines Regelungsvorganges über die Schalter 46, 47 die Ventilspule mit Strom versorgt, fällt an der Spule 26 eine von dem Strom abhängige Spannung ab. Mittels des Eingangs AI und des Eingangs A2 eines Operationsverstärkers 50 wird die Differenz- Eingangsspannung der Ventilspule abgegriffen und das vom temperaturabhängigen Widerstandswert der Spule 26 abhängige Ausgangsspannungssignal dem A- /D-Wandler des Mikroprozessors zugeführt. In dem Mikroprozessor 40 wird die über Eingang 55 zugeführte Versorgungsspannung mit dem Ausgangssignal des Operationsverstärkers 50 korreliert und ein von der temperaturabhängigen Widerstandsänderung der Ventilspule 26 abhängige Temperatur 3VeMi, gebildet . Die temperaturabhängige Widerstandsänderung der Ventilspule kann nach den BeziehungenAn element 21 connects the electronic control system 22 (the regulator), in which the electronic stability program (ESP) is stored, with the pump motor 23 arranged opposite the regulator on the hydraulic block 24. The connecting element 21 is designed as an electrically pluggable supply element which holds the pump motor 23 and / or the valves of the brake system are supplied with the electrical energy made available by the electronic control system. Motor-pump units are known and therefore do not need to be described in more detail. The connecting element 21 is, for example, cylindrical and has a plug-in contact element 27 for electrically conductive fastening, which is inserted into a terminal assigned to the pump motor. The connecting element 21 is arranged within an opening 28 of the hydraulic block 24 and contacts the through-hole 28 of the hydraulic block 24 via elastic elements 34 provided on the circumference. In FIG. 2, a device for controlling the valve coils is shown schematically, which essentially consists of a microprocessor 40 or corresponding signal processing unit or evaluation unit with an analog / digital converter 41, which NEN voltage regulator 42 is connected to the power supply 43 of the vehicle. The input 55 of the A / D converter 41 is connected to the supplier 43 via a parallel connection. The supply voltage digitized in the A / D converter is fed to the microprocessor as a reference voltage via input 55. The supplier 43 is connected to the coil 26 via a supply line 44. The coil 26 is the valve coil mentioned in FIG. 1. Two electronic switches 46, 47 (semiconductor switches) are provided in the line between the ground connection 48 and the coil and in front of the supply connection 49 in the line 44. If the valve coil is supplied with current due to a control process via the switches 46, 47, a voltage dependent on the current drops at the coil 26. By means of the input AI and the input A2 of an operational amplifier 50, the differential input voltage of the valve coil is tapped and the output voltage signal, which is dependent on the temperature-dependent resistance value of the coil 26, is fed to the A / D converter of the microprocessor. In the microprocessor 40, the supply voltage supplied via input 55 is correlated with the output signal of the operational amplifier 50 and a temperature 3 VeMi , which is dependent on the temperature-dependent change in resistance of the valve coil 26 , is formed. The temperature-dependent change in resistance of the valve coil can vary according to the relationships
R9 ~ R2d 1 + α(, - 20° c) und R 9 ~ R 2d 1 + α (, - 20 ° c) and
RQ - R 20R Q - R 20
>S> „•, = 20° C +> S> "•, = 20 ° C +
Va"" " ~ a* R20 mit R5 = Widerstand bei der Temperatur 3 , α = Temperatur-
koeffizient ( a = 3,9 für Cu j, R20 = Widerstand bei der Temperatur von 20°C und 3VeMύ = Temperatur im Regler, bestimmt werden. In dem Mikroprozessor 40 werden die Kenngrößen für die Viskosität bzw. Temperatur der im Regler angeordneten Ventilspule ermittelt. Der Mikroprozessor kann Bestandteil des Druckmodells sein. Die in dem Druckmodell abgelegte Pumpenförderleistung kann in dem Mikroprozessor in Abhängigkeit von dem über die Widerstandsänderung der Ventilspule ermittelten Temperaturverlauf oder von einem Temperatur- Schwellenwert unter Einbeziehung von Korrekturfaktoren modifiziert werden. Figur 4 zeigt den Zusammenhang der von der Temperatur der Bremsflüssigkeit und damit der Viskosität beein- flussten Pumpenförderleistung. Fällt die Temperatur der Bremsflüssigkeit unter -10°C, nimmt die Leistung der Pumpe nahezu proportional zur Temperatur ab. Va """~ a * R 20 with R 5 = resistance at temperature 3, α = temperature coefficient (a = 3.9 for Cu j, R 20 = resistance at the temperature of 20 ° C. and 3 VeMύ = temperature in the controller). The parameters for the viscosity or temperature of the controller are arranged in the microprocessor 40 The microprocessor can be part of the pressure model. The pump delivery rate stored in the pressure model can be modified in the microprocessor depending on the temperature curve determined by the change in resistance of the valve coil or on a temperature threshold value including correction factors. Figure 4 shows the relationship the pump delivery capacity, which is influenced by the temperature of the brake fluid and thus the viscosity. If the temperature of the brake fluid falls below -10 ° C, the performance of the pump decreases almost proportionally to the temperature.
Wie Figur 3 zeigt, wird der Temperaturwert beim Start des Fahrzeugs oder unmittelbar nach dem Start des Fahrzeugs bestimmt. Dieser Start -Temperaturwert wird im weiteren Verlauf als Funktion der Reglerstromaufnahme, insbesondere der Ventilstromaufnahme, und der Erwärmung bzw. Abkühlung des von der Bremsflüssigkeit durchströmten Hydraulikblocks, korrigiert. Die Temperaturdifferenz zwischen dem Hydraulick- block(HCU = Hydraulik Control Unit) und dem Regelsystem bzw. dem Regler (ECU = Electronic Control Unit) mit der als Temperatursensor verwendeten Ventilspule ist bei nicht betätigter Ventilansteuerung bzw. Pumpenansteuerung konstant. Dieser konstante Temperatur- Differnzwert 3 τ__0ffset einer Regler-/ Hydraulikblock-Einheit wird zur Korrektur des von dem über die Widerstandsänderung der Ventilspule ermittelten Temperaturwertes 3Vmύ herangezogen. Die Korrektur der Temperatur ,9 Ventil kann mittels eines Korrekturfaktors k, der den Verlauf
der Temperaturdifferenz zwischen dem Messort (dem Regler) der Temperatur und dem Hydraulikblock, wiedergibt, in dem Mikroprozessor erfolgen. Darüber hinaus kann in dem Mikroprozessor unter Einbeziehung von in Tabellen, Kennlinien oder Modellen abgelegten, berechneten oder geschätzten Korrekturgrößen oder Korrekturwerten, die die Ventilstromaufnahme wiedergeben, der Temperaturwert 3Brems ermittelt werden. Nach einer Ausführung wird der Temperaturwert als Funktion des von der Bremsflüssigkeit durchströmten Hydraulikblocks nach der BeziehungAs FIG. 3 shows, the temperature value is determined when the vehicle starts or immediately after the vehicle starts. This start temperature value is subsequently corrected as a function of the controller current consumption, in particular the valve current consumption, and the heating or cooling of the hydraulic block through which the brake fluid flows. The temperature difference between the hydraulic block (HCU = hydraulic control unit) and the control system or the controller (ECU = electronic control unit) with the valve coil used as the temperature sensor is constant when the valve control or pump control is not actuated. This constant temperature difference value 3 τ __ 0 ffset of a controller / hydraulic block unit is used to correct the temperature value 3 Vmύ determined by the change in resistance of the valve coil . The correction of the temperature, 9 valve can be done by means of a correction factor k, the course the temperature difference between the measuring point (the controller), the temperature and the hydraulic block, in the microprocessor. In addition, the temperature value 3 brake can be determined in the microprocessor, including correction values or correction values which are stored, calculated or estimated in tables, characteristic curves or models and reflect the valve current consumption . According to one embodiment, the temperature value is a function of the hydraulic block through which the brake fluid flows according to the relationship
d$Brems dt f[ *&? Ventil ^T^HCU " Offset ' ' » ' ' \J T_Umgebung ) d3 mit Brems =Temperatur der Bremsflüssigkeit (über die Tempera- dt tur des Hydraulikblocks), 3Ventil =Temperatur über die Widerstandsänderung der im Regler angeordneten Ventilspule, &τ HCU =Temperatur des Hydraulikblocks, 30ffiel =Regler/ Hydraulikblock-Temperaturdifferenz, t= Zeit, V= Ventilstromaufnahme und #r ü έ Umgebungstemperatur, bestimmt.d $ brake dt f [* &? Valve ^ T ^ HCU "Offset ''» '' \ J T_environment) d3 with brake = temperature of the brake fluid (via the temperature of the hydraulic block), 3 valve = temperature via the change in resistance of the valve coil arranged in the controller, & τ HCU = Temperature of the hydraulic block , 3 0ffiel = controller / hydraulic block temperature difference, t = time, V = valve current consumption and # r ü έ ambient temperature, determined.
In Abhängigkeit von den Temperaturwerten wird die im Druckmodell abgelegte Pumpenförderleistung korrigiert und damit die Druckaufbau- und Druckabbaukurven modfiziert, mittels denen die tatsächlichen Raddrücke nachgebildet werden. In Folge der veränderten Druckaufbau- und Druckabbaukurven des Druckmodells werden bei höherer Viskosität der Bremsflüssigkeit, insbesondere unterhalb einer Temperatur von -10°C oder -15°C, die Ventile der Bremsanlage beim Bremsdruckaufbau z.B. länger angesteuert. Damit erreicht der tatsächliche Raddruck den von der Fahrdynamikregelung angeforderten Bremsdruck zeitlich früher.
Eine Zeitglied stellt sicher, daß zwischen Beendigung des alten und Wiederaufnahme eines neuen Fahrzyklus eine Abkühl - Zeitspanne zur Verfügung steht, innerhalb der die Ventilspule Umgebungstemperatur annimmt .
Depending on the temperature values, the pump delivery rate stored in the pressure model is corrected and the pressure build-up and pressure reduction curves are modified, by means of which the actual wheel pressures are simulated. As a result of the changed pressure build-up and pressure reduction curves of the pressure model, the valves of the brake system are activated for a longer time when the brake pressure builds up, for example, when the brake fluid has a higher viscosity, especially below a temperature of -10 ° C or -15 ° C. The actual wheel pressure thus reaches the brake pressure requested by the driving dynamics control earlier in time. A timer ensures that a cooling down period is available between the end of the old driving cycle and the resumption of a new driving cycle, within which the valve coil reaches ambient temperature.