WO2000053722A2 - Delivery of nucleic acids and proteins to cells - Google Patents
Delivery of nucleic acids and proteins to cells Download PDFInfo
- Publication number
- WO2000053722A2 WO2000053722A2 PCT/GB2000/000897 GB0000897W WO0053722A2 WO 2000053722 A2 WO2000053722 A2 WO 2000053722A2 GB 0000897 W GB0000897 W GB 0000897W WO 0053722 A2 WO0053722 A2 WO 0053722A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition according
- cells
- aggregated composition
- polypeptide
- protein
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- This invention relates to aggregated compositions for delivery of substances such as nucleic acids and proteins into cells.
- the invention relates to such compositions in themselves, and to methods for their manufacture and use.
- WO 97/05265 (Marie Curie Cancer Care: P O'Hare et al.) relates to transport proteins, in particular VP22 and homologues thereof, and to methods of delivering these proteins and any associated molecules to a target population of cells.
- This transport protein has applications in gene therapy and methods of targeting agents to cells where targeting at high efficiency is required.
- WO 98/32866 (Marie Curie Cancer Care: P O'Hare et al.) discusses coupled polypeptides and fusion polypeptides for intracellular transport, and their preparation and use, e.g. (i) an aminoacid sequence with the transport function of herpesviral VP22 protein (or homologue, e.g. from VZV, BHV or MDV) and (ii) another protein sequence selected from (a) proteins for cell cycle control; (b) suicide proteins; (c) antigenic sequences or antigenic proteins from microbial and viral antigens and tumour antigens; (d) immunomodulating proteins and (e) therapeutic proteins.
- an aminoacid sequence with the transport function of herpesviral VP22 protein or homologue, e.g. from VZV, BHV or MDV
- another protein sequence selected from a) proteins for cell cycle control; (b) suicide proteins; (c) antigenic sequences or antigenic proteins from microbial and viral antigens and tumour antigens; (
- the coupled proteins can be used for intracellular delivery of protein sequences (ii), to exert the corresponding effectorfunction in the target cell, and the fusion polypeptides can be expressed from corresponding polynucleotides, vectors and host cells.
- Elliott and O'Hare (1997) Cell, vol. 88 pp.223-233, relates to intercellular trafficking and protein delivery by a herpesvirus structural protein.
- the present invention provides aggregated compositions comprising VP22 protein or another polypeptide with the transport function of VP22, and oligonucleotides or polynucleotides.
- the aggregated compositions can be formulated as a composition suitable for delivery to cells either ex-vivo, or in culture, or in-vivo as a pharmaceutical composition, for delivery of the polypeptide and/or nucleotide to the cells.
- a method of intracellular delivery of a polypeptide to a cell which comprises administering to a cell an aggregate as described herein.
- a method of intracellular delivery of a nucleotide to a cell which comprises administering to a cell an aggregate as described herein.
- the invention further provides a method of expressing a nucleotide in a cell which comprises administering to a cell an aggregate as described herein that comprises a nucleotide that can be expressed and allowing its expression in the treated cell.
- the mixing of oligonucleotides or polynucleotides with VP22 protein can result in association between the nucleotide and protein to form stable aggregates with particle sizes for example in the range 0.1-5 microns e.g. 1-3 microns.
- Ratios of between 2: 1 and 1 : 1 of protein to nucleotide are most preferred for formation of aggregates. Higher ratios of protein can be used, but lower ratios are less preferred.
- aggregates we mean associations of molecules forming particles for example particles of 0.1-5 microns in size e.g. of 1-3 micron in size. 'Aggregate' here is not intended to imply a state of denaturation or inactivity: the aggregates usefully contain active protein and/or functionally active oligo- or polynucleotides.
- Oligo- or polynucleotides suitable for forming part of the aggregates of the invention can preferably comprise at least 10 bases(nucleotides) and in length can range widely in size (e.g. in the range 10-50 e.g. 20) e.g. they can be about 4 kilobases in size, and they can comprise plasmids, mini-circles of DNA, or single or double stranded DNAorRNA, orotherfunctionally active nucleotide sequences.
- nucleotide sequences can also be associated with a DNA condenser, e.g. protamine sulphate.
- a DNA condenser e.g. protamine sulphate.
- compositions according to the invention can comprise a protein with a sub-sequence less than the whole sequence of the wild-type VP22 protein, that retains the transport functionality of wild-type VP22 protein.
- a sub-sequence can be, for example, a protein corresponding in sequence to amino acid residues 159-301 of VP22.
- Native VP22 is believed to form stable multimers readily, either dimers or tetramers.
- the sub-sequence based on amino acids 159- 301 of VP22 is believed to form dimers readily.
- the VP22 protein, or protein based on a functional sub-sequence can further comprise other sequences, e.g. at least one flanking tag fused at the N terminus or at the C terminus of the VP22 or sub-sequence.
- the tag can be for example, a T7 tag which is an example of an epitope tag enabling antibody detection, e.g. at the N terminus, or it can be for example, a his tag which enables purification of the protein on a nickel containing column, e.g. at the C terminus.
- the oligonucleotides or polynucleotides contained in the aggregated composition can be DNA or RNA, that is the nucleotides contained therein can have either an RNA structure wherein the sugar is ribose, or they can have the structure found in DNA wherein the sugar is deoxyribose.
- the nucleotides forming the aggregates are RNA
- the ribose sugar can be 2'-O-methylated for increased nucleotide stability.
- the nucleotides can comprise negatively charged modified derivatives of nucleotides e.g. phosphonate derivatives or phosphorothioate derivatives.
- the aggregates can form part of a streptavidin-biotin complex in which the oligo- or polynucleotide is labelled with biotin, e.g. at the 5' end, and this can then be mixed with streptavidin, e.g. streptavidin Alexa 594 (TM), which is streptavidin bound to a fiuorophore molecule.
- streptavidin e.g. streptavidin Alexa 594 (TM)
- the streptavidin molecule is modified so that it can be coupled to a molecule, e.g. a drug, which it is desired to deliver to cells , e.g. so that it comprises a disulphide bond which can be used to link it to a molecule which it is desired to deliver to cells and thereby promote subsequent release of the molecule within the cell by intracellular cleavage of the disulphide bond.
- Aggregates containing nucleotides such as phosphorothioate derivatives can be of good stability in serum, in spite of the presence of Dnases in serum. They can also be stable in high concentrations of denaturants such as urea, e.g.7M urea.
- oligo- or polynucleotides contain phosphorothioate or other modified nucleotide units as mentioned above, they can be especially stable against degradation by components of serum.
- the oligo-or polynucleotides contained in the aggregated compositions can contain ordinary nucleotide phosphodiester linkages. Alternatively, e.g. for achieving longer life and stability against hydrolysis, they can contain phosphorothioate linkages in place of phosphodiester linkages.
- the oligo- or polynucleotide can also be useful to label the the oligo- or polynucleotide, for example with a dtectable label to facilitate detection and monitoring of the aggregate.
- the label can be at either the 5' or at the 3' end of the synthetic nucleotide.
- any label capable of detection can be used, such as radio-label, or a fluorochrome label.
- the nucleotide can be a fluorescent-labelled 20 base oligonucleotide (20- mer) containing phosphorothioate linkages. It can be labelled atthe 5' end with 5' fluorescein phosphoroamidite (Genosys), or at the 3' end with fluorescein
- Aggregates according to the invention can be used to deliver their constituents into target cells.
- Cells to which the aggregates can be delivered can be cells of a tissue or an organ in a mammalian subject e.g. a human subject, or they can be explanted cells, orthey can be cultured cells e.g.for production of a desired protein.
- Cultured cells that can be used include but are not limited to: CHO, COS, HeLa and Vero cells, rat aortic smooth muscle cells (RASMC; obtainable from the American tissue culture collection (ATCC)), human aortic smooth muscle cells (HASMC; obtainable from the ATCC), T24 human bladder carcinoma cells (obtainable from the ATCC), RAW 246 macrophage cells, A549 human Caucasian lung carcinoma cells (obtainable from the European collection of cell culture), KB-3-1 human cervix carcinoma cells (derived from HeLa cells and obtainable from German collection of cell cultures (DSMZ)), and KB-v1 human cervix carcinoma cells (derived from
- RASMC rat aortic smooth muscle cells
- HASMC human aortic smooth muscle cells
- T24 human bladder carcinoma cells obtainable from the ATCC
- RAW 246 macrophage cells obtainable from the European collection of cell culture
- A549 human Caucasian lung carcinoma cells obtainable from the European collection of cell culture
- HeLa cells and obtainable from German collection of cell cultures (DSMZ)) .
- compositions of the invention can be immunogenic compositions, for example they can be vaccines, e.g. DNA or protein vaccines, or both.
- the VP22 protein can usefully be a fusion protein in which the protein fusion partner possesses enzymatic activity.
- a VP22-TK fusion protein can be used in the compositions e.g. where the target cells are cancer cells e.g. neuroblastoma cells.
- the compositions can be delivered to target cells, and this can be followed by treatment of the target cells with ganciclovir or equivalent drugs, whereby the TK activity in the composition transported into the cell activates the ganciclovir for cell killing in per se known manner.
- VP22 or a sub-sequence thereof, is fused to a cell targeting peptide, such as a peptide that binds to a cell surface receptor, to facilitate cell specific targeting of the complex, e.g. VP22 can be fused to a tumour targeting molecule such as transferrin, or folate.
- VP22, or a sub- sequence thereof can usefully be fused to a peptide comprising an amino acid sequence which consists of the amino acids arginine, followed by glutamine and aspartate (also known as an RGD motif ; SL Hart, et al. , 1996, Gene Therapy 3, pp 1032-1033) and used to target epithelial and endothelial cells.
- VP22 can be conjugated, using standard methods known in the art for conjugation of sugars to proteins some of which are described in N Sdiqui et al., 1995, Drug delivery 2, pp 63-72 and E Bonifils et al., 1992, Bioconjugate Chemistry 3, pp 277- 284, e.g. to a glycoside or lectin molecule such as those mentioned in N Sdiqui et al., 1995, Drug delivery 2, pp 63-72 and E Bonifils et al., 1992, Bioconjugate Chemistry 3, pp 277-284, to facilitate targetting of certain lectin expressing cells, e.g. lectin expressing tumour cells, macrophages, hepatocytes and parenchymal cells.
- certain lectin expressing cells e.g. lectin expressing tumour cells, macrophages, hepatocytes and parenchymal cells.
- the oligonucleotide or polynucleotide contained in the aggregated composition according to the invention can be a substance which it is desired to deliver to a target cell.
- the oligonucleotide or polynucleotide can be single stranded DNA or RNA, such as a 20mer, and it can have a base sequence that enables it, or its transcription product, to function as an antisense or ribozyme molecule in per se known manner, in effect to suppress functional expression of a chosen gene.
- the polynucleotide can be the synthetic hammerhead ribozyme, or any functional homologues or modifications thereof, which can recognise and cleave c-myb RNA, and thereby inhibit cell proliferation (Jarvisetal., J. Biol. Chem., 1996,
- the oligo -or polynucleotide can be antisense in sequence, e.g. antisense to a protein which inhibits apoptosis, such as the Bel protein, or antiviral antisense e.g. antisense which can bind to a viral AUG start codon or anti-HIV antisense which is complementary to a region of the HIV gag mRNA (J Lisziewicz etal., 1994, PNAS 91 , PP 7942-7946), orantitumoral antisense, e.g.
- the oligo- or polynucleotide can have the function of correcting splicing defects.
- the oligo- or polynucleotides can also usefully be chimeroplasts, which are chimeric RNA/DNA oligo- or polynucleotides and which can correct mutations.
- the oligo- or polynucleotides can also usefully be DNA encoding endogenous ribozymes.
- the oligonucleotide or polynucleotide can be single stranded DNA of appropriate sequence to enable it to bind to a specific sequence of DNA in the target cell, by forming a triple helix in per se known manner, to block transcription of the gene to which the nucleotide has bound.
- the oligonucleotide or polynucleotide can be double stranded DNA and can be of appropriate sequence to function as a binding site that binds a specific transcription factor in a target cell, thereby sequestering the transcription factor in the cell (in per se known manner) and suppressing expression of genes that depend for expression on the sequestered transcription factor.
- the protein contained in the aggregated composition according to the invention can be a substance which it is desired to deliver to a target cell.
- it can comprise VP22 or a protein comprising sub-sequence thereof, or a fusion protein comprising VP22, e.g. for use as a vaccine.
- compositions according to the invention can also comprise further or other substances for delivery to target cells, such as nucleotides, proteins or peptides fused to VP22.
- the aggregated composition can comprise and deliver to a target cell circular or linear DNA of a size sufficient to encode a gene, e.g. to encode a protein.
- the delivered DNA can also comprise the necessary gene expression elements needed for its expression in the target cell.
- the aggregated composition can comprise and deliver single stranded mRNA molecules, of size sufficient to be translated into a protein or peptide, into the cytoplasm of a target cell where the mRNA can be translated into protein or peptide.
- the VP22 component of the aggregate contains a VP22 sequence and a further component, which can be either the remaining part of a fusion protein, a protein sequence of a desired functionality which it is desired to deliver within the target cell or a nucleotide sequence which it is desired to deliver within the target cell.
- the further component can be linked to the VP22 by a cleavage-susceptible amino acid sequence which is susceptible to cleavage by intracellular protease within the target cell.
- the proteolytic site can be e.g. a site cleaved by a virus encoded protease, such as for example an HIV-encoded protease (D. Serio et al., 1997, PNAS 94, pp 3346-3351 ) so that cleavage only occurs in virus infected cells, or alternatively the cleavage site can be one which is only cleaved by a cell-specific protease, thereby enabling delivery to a specific cell type.
- the fusion protein or coupling product can be delivered within the target cell and cleaved there by protease to release the coupling partner of the VP22, that is, the chosen protein or the nucleotide.
- Fusogenic peptides which can facilitate release from endocytic vesicles within the cell, can also be present in the aggregates according to the invention, e.g. influenza haemagluttinin for selective cell targeting and intraceliulardelivery.
- Peptides which can facilitate intracellulartargetting can also usefully be present in the aggregates, e.g. the NES peptide (nuclear export signal; L Meunier et al.
- oligo- or polynucleotide can be coupled to a molecule which it is desired to deliver to a cell, for example through a disulphide bridge which can be reduced within the cell and thereby facilitate release of the molecule for delivery.
- the aggregates can be delivered to target cells in vivo, such as cells of a tissue or an organ in a mammalian subject, e.g. a human subject. It can for example, be advantageous to deliver aggregates to cancer cells e.g. to introduce an antisense molecule which is of appropriate (per se known) sequence to target a chimeric oncogene, orto suppress a cancergene, e.g. ras or p53, orto suppress an anti-apoptotic gene such as a member of the Bel gene family.
- the aggregates can be delivered to target cells in vivo, by for example, direct injection into target cells, such as a tumour cell mass, or they can be delivered systemically.
- the aggregates can be formulated using perse known methods for topical delivery, e.g. for use as part of a therapy for psoriasis, eczema or skin cancer.
- the aggregates can be encapsulated into slow release capsules suitable for oral delivery using standard methods well known in the art.
- the aggregates can also be associated with other delivery systems, for example they can be coupled to liposomes, such as cationic liposomes, or they can be associated with condensing agents, such as DNA condensing agents, e.g. hydrophilic polymers.
- suitable condensing agents are protamine sulphate, and DNA condensing agents such as poly-lysine and histones. They can then be delivered by e.g. direct injection into the target cells, such as tumour cells, orthey can be delivered systemically, e.g. using a catheter based approach, orthey can be formulated for topical delivery, nasal delivery or oral delivery.
- compositions comprising aggregates as described herein can be formulated according to known methods fortherapeutically useful compositions, whereby the aggregates are combined in admixture with a pharmaceutically acceptable carrier. Suitable vehicles and their formulation are described in Remingtons Pharmaceutical Science by E.W. Martin (Mack Publishing Company, 1990).
- the active ingredients are often mixed with pharmaceutically acceptable excipients compatible with the active ingredient.
- the compositions may contain minor amounts of auxiliary substances such as other stabilisers and/or pH buffering agents.
- the VP22 component of the aggregates can be stored for long periods at - 70 deg C, for example in a solution of PBS, or alternatively it can be lyophilised and re-constituted before use.
- the oligonucleotide component of the aggregates can be stored for long periods at - 20 deg C or at 4 deg C, for example in a solution ofTris buffer (pH 7.0 or preferably pH7.5).
- the VP22 and oligonucleotide components can then be mixed at room temperature for at least 10 mins to enable formation of aggregates according to the invention just prior to delivery of aggregates to cells.
- the aggregates can be delivered to target cells which are cells cultured in vitro, for example to CHO, COS, HeLa and Vero cells.
- the cultured cells containing the aggregates can be used, for example, fortarget validation in in- vitro testing of gene expression products.
- cells treated with compositions according to the invention can be explanted cells and can then be re-introduced in vivo, e.g. into a mammalian subject.
- the aggregates can be substantially resistant to trypsinisation of cultured cells containing them. Therefore cells containing the aggregates in culture can be trypsinised prior to use.
- exposure to light such as fluorescent light or visible (white) light can be used to promote more rapid disaggregation of the aggregates.
- target cells in vitro can be exposed to fluorescent light, and where those cells are in vivo they can be exposed to a laser e.g. during photosurgery.
- the target cells are cultured cells it can also be useful to produce a cell suspension prior to illumination of the cells, e.g. by trypsinisation of the cells in culture using per se known methods, as cells in suspension can be illuminated for a shorter time period than adherent cells to promote disaggregation of the aggregates.
- the aggregated compositions can also comprise a photosensitising molecule, e.g.
- fluoroscein, rhodamine, orTRITC which can be linked to the 5' or 3' end of the synthetic nucleotide.
- This can facilitate the disaggregation of the aggregates in the presence of irradiation, e.g. during phototherapy, for example, as part of a treatment for skin cancer or psoriasis.
- Irradiation can be achieved in vivo, for example, by introducing into a patient to be treated an endoscope comprising laser optic lines for emitting radiation.
- Dissociation of aggregates can also be facilitated in the absence of light by introduction of a cleavage site, such as a protease site, or a fusogenic peptide, e.g. the FLU fusion peptide.
- Aggregates according to the invention can be useful as cell delivery systems for substances such as proteins or nucleotides, fused with VP22 protein, or a functional part thereof, and can enable delivery into target cells of large amounts of protein or nucleotides.
- the aggregates Following exposure of a cell population to such aggregates, they can be taken up by the cells and the VP22 fusion protein can cause transport to the cell nucleus. Once the aggregates are taken up into a cell they have been observed in certain examples to remain within the cell for some days, and can also resist cell trypsinisation.
- Also provided by the invention is a method of making such aggregates, comprising (a) mixing a VP22 protein or a suitable sub-sequence thereof as mentioned above, optionally fused or covalently coupled to a protein sequence or a nucelotide for delivery to a target cell, with an oligonucleotide or polynucleotide followed by (b) incubating the mix obtained in step (a).
- the invention also provides a method for transporting substances into cells, comprising contacting target cells with an aggregated composition according to the invention.
- the invention in a further aspect also provides a method of producing/purifying a preparation oftheVP22 protein, or a sub-sequence thereof, e.g. a sub-sequence comprising amino acids 159-301 of VP22, comprising treating the protein by affinity chromatography or ion exchange, e.g. using DEAE
- Sepharose and (e.g. in a subsequent stage) by purification on a nickel-NTA column.
- This example concerns preparation of an aggregate comprising (i) a fragment of VP22, herein designated 159-301 protein, and consisting of amino acids 159-301 of the VP22 sequence of HSV2 VP22 protein along with (in this example) a his ⁇ tag at the C-terminal end, (ii) and an oligonucleotide which is a
- the 159-301 protein can be prepared for example as follows: 159-301 protein can be made in an E.coli expression system expressing a plasmid encoding 159-301 protein, which is a PET-based plasmid containing an IPTG sensitive promoter. The his tag is placed at the C terminus of the protein.
- 50 ml of bacterial culture expressing the plasmid mentioned above can be grown in nutrient broth suitable for the growth of E. coli, such as L nutrient broth (Oxoid), and also containing kanamycin and chloramphenicol.
- the recombinant bacteria can be induced by addition of IPTG (0.5mM) to a logarithmic phase culture, and the cells harvested by centrifugation ( ⁇ OOOrpm, 4 degC, 20 min).
- the cells After pelleting the cells can be resuspended in 60 ml of cold lysis buffer containing: 50mM sodium phosphate (pH ⁇ .O), 300mM sodium chloride, 5mM imidazole (pH 8.0), 5mM beta-mercaptoethanol, 5 microg/ml Rnase and 5 microg/ml of Dnase-I, 0.5mM PMSF, 1 microg/ml of leupeptin, 1 microg/ml of pepstatin and 1mg/ml of lysozyme.
- 50mM sodium phosphate pH ⁇ .O
- 300mM sodium chloride 300mM sodium chloride
- 5mM imidazole (pH 8.0) 5mM beta-mercaptoethanol
- 5 microg/ml Rnase and 5 microg/ml of Dnase-I 0.5mM PMSF, 1 microg/ml of leupeptin, 1 microg/ml of pepstatin and
- the lysis mixture is incubated for 30 min with occasional shaking, and is then sonicated on ice three times for 15 seconds followed by addition of 0.1 % NP-40. Dnase and Rnase are then added to 10 microg/ml and incubated on ice for 20 min with occasional shaking. The lysate is then drawn through a narrow gauge syringe three times. This is followed by centrifugation of the lysate at 14000rpm for 15 min at 4 degC. The supernatant containing the protein is retained.
- the 159-301 protein can be purified as follows:
- the protein can be partially purified on DEAE sepharose (Pharmacia) followed by centrifugation (3000rpm, 4degC, 5 min) in the presence of lysis buffer comprising 50mM sodium phosphate (pH8), 300mM sodium chloride, 5mM imidazole (pH8), 5mM beta-mercaptoethanol, 5 microgram/ml Rnase and 5 microgram/ml Dnase, 0.5mM PMSF and 10% glycerol, 0.1% NP-40,40mM imidazole (pH8.0), and 1 microgram/ml leupeptin and 1 microgram/ml pepstatin.
- lysis buffer comprising 50mM sodium phosphate (pH8), 300mM sodium chloride, 5mM imidazole (pH8), 5mM beta-mercaptoethanol, 5 microgram/ml Rnase and 5 microgram/ml Dnase, 0.5mM PMSF and 10% glycerol, 0.
- the supernatant obtained can then be further purified on a nickel-NTA column. Unbound protein can be discarded . , and the column is then washed in wash buffer which has the same composition as lysis buffer except that it contains 10% glycerol, 0.1 % NP-40,40mM imidazole (pH8.0), and lacks RNase and DNase. Bound protein is then eluted in eluate buffer which has the same composition as lysis buffer except that it contains 10% glycerol, 0.1 % NP-40, 500mM imidazole (pH ⁇ .O), and lacks RNase and Dnase. Alternatively, the protein can be eluted in buffer comprising increasing concentrations of imidazole, e.g. concentrations of imidazole from about 40mM to about 500mM.
- the 159-301 protein in solution in eluate buffer is used for the formation of the aggregates. Alternatively, it can be dialysed for 12 hours in PBS before use.
- Aggregates can be produced as follows: 25 microlitres of 20mer phosphorothioate-linked oligonucleotide as described above (lOmicromolar solution in PBS) labelled at the 5' end with fluorescein is added to 25 microlitres of 159-301 protein solution in PBS (20 micromolar solution which contains approximately 150mM sodium chloride and 10mM phosphate at a pH between 7 and 7.2).
- the final concentration of 159-301 protein in 50 microlitres of PBS is about 10 micromolar and the final concentration of oligonucleotide is about 5 micromolar.
- the mixture is mixed and left at least 10 min at room temperature. Fifty microlitres of this mixture is then added to 450 microlitres of tissue culture medium (with or without added)serum and can be stored at about 4degC.
- the formation of the aggregates of the invention can be monitored by using microscopy e.g. phase contrast or fluorescence microscopy, or by agarose gel electrophoresis of the aggregates.
- Aggregates can be delivered to cells as follows:
- Aggregates produced by the method previously described can be diluted in pre-warmed tissue culture medium and then added to HeLa cells and incubated for about 12 hours at a temperature of 37degC.
- An aggregate can be made by a method similar to that described in Example 1 , except that the oligonucleotide used in the preparation is a oligonucleotide which is a 40mer phosphorothioate labelled at the 5' end with Texas red and with a base sequence as follows:
- This sequence is commercially available and is complementary to a segment of GFP mRNA.
- Example 3 This example is similar to Example 2, except that the oligonucleotide sequence is as follows: 5 * CCC TTG CTC ACC ATG GTG GC 3'.
- Example 4 This example is similar to Example 1 , except that the oligonucleotide sequence is as follows: 5' ACC ATG GTG GCG ACC GGT GGA TCC C 3'.
- Example 5 This example is similar to Example 1 , except in that a) the oligonucleotide sequence is as follows: 5' CCC TTG CTC ACC ATG GTG GC 3', and b) that the aggregates are added to the cells and are incubated with the cells for about 2 hours at a temperature of 37degC.
- This example is similar to Example 5, except in that the oligonucleotide is a phosphodiester linked oligonucleotide instead of phosphorothioate and is added to cells in PBS and not cell culture medium.
- the oligonucleotide is a phosphodiester linked oligonucleotide instead of phosphorothioate and is added to cells in PBS and not cell culture medium.
- Example 6 An aggregate can be made by a method analogous to that described in Example 1 , except that (i) the fragment of VP22 consists of amino acids 159-257 of the VP22 sequence of HSV2 VP22 protein, and (ii) the oligonucleotide is a 20mer phosphorothioate labelled at the 5' end with fluorescein and with a base sequence as follows:
- This sequence is commercially available and is complementary to a segment of mRNA encoding an intracellular- adhesion molecule, or ICAM.
- the 159-257 protein can be prepared and purified as described in Example 1 for preparation and purification of the 159-301 protein, except for the use of an otherwise corresponding plasmid encoding 159-257 protein.
- final concentrations of protein and oligonucleotide in 50 microlitres of solution can be about 13.5 micromolar protein and 5 micromolar oligonucleotide.
- An aggregate can be made by a method analogous to that described in Example 1 , except that (i) The VP22 '159-301 ' protein is present as a fusion with the BH3 domain of the bak protein, and (ii) the oligonucleotide is labelled at the 5' end with FITC.
- a BH3-VP22 '159-301' protein fusion protein can be made as follows:
- a double stranded oligonucleotide with the following sequence corresponding to BH3 can be made and cloned into the Bam H1 site of the VP22 '159-301' expression plasmid used to encode the VP22 '159-301' protein, as mentioned above in Example 1 :
- GTCCCACCTGCCCCATG The above strands are complementary such that the seq uence of the first strand from the seventh residue (adenine) in the 5' to 3' direction is complementary with the sequence of the second strand from the second residue from the end (thymine) in the 3' to 5' direction.
- BL21 E. coli cells can be transformed with this BH3-VP22 ' 159-301 'expression plasmid, and are grown, induced and the cells harvested as described in Example 1.
- the cells After harvesting the cells can be resuspended in 40ml of cold lysis buffer containing: 50mM sodium phosphate (pH 8.0), 300mM sodium chloride, 5mM imidazole (pH 8.0), 5mM beta-mercaptoethanol, 1 microg/ml of leupeptin, 1 microg/ml pepstatin and 1 mg/ml lysozyme.
- the lysis mixture can be incubated for 30 min with occasional shaking, and is then sonicated on ice three times for 15 seconds followed by addition of 0.1 % NP- 40. Dnase and Rnase can then be added to 10 microg/ml and incubated on ice for 20 min with occassional shaking. The lysate can then be drawn through a narrow gauge syringe three times. This can be followed by centrifugation of the lysate at 20,000rpm for 15 min at 4degC. The supernatant containing the VP22-BH3 fusion protein can be retained.
- the BH3-VP22 '159-301 'fusion protein can be purified as follows:
- the protein can be enriched on DEAE sepharose (Pharmacia) by using a batch method, in the presence of lysis buffer comprising 50mM sodium phosphate (pH
- the supernatant can then be further purified on nickel-NTA beads in a batch method.
- Protein can be bound to the beads at 4degC for 1 h.
- the beads can then be washed three times for 30 mins in wash buffer of the same composition as lysis buffer except that it contains 10% glycerol, 0.1% NP-40, 40mM imidazole (pH 8.0).
- Bound protein can then be eluted three times in 1 ml of eluate buffer each time.
- the eluate buffer can have the same composition as lysis buffer except that it contains 10% glycerol, 0.1 % NP-40, 500mM imidazole (pH 8.0).
- the eluate buffer can then be exchanged by PD-10 sephadex column chromatography into PBS, 10% glycerol, 5mM B-mercaptoethanol.
- the BH3-VP22'159-301 ' fusion protein obtained by the method described above can be used in the formation of aggregated compositions using a method analogous to that described in example 1 :
- BH3-VP22 '159-301 ' protein in PBS can be added to 2.5 microlitres of PBS and 0.5 microlitres of the oligonucleotide
- the final concentration of BH3-VP22 '159-301' fusion protein can be about 18 micrograms per ml and the final concentration of oligonucleotide is about 500nM.
- Example 8 A p27-VP22 '159-301 ' fusion protein can be made by a method analogous to that described in Example 7 for making a BH3-VP22 '159-301' fusion protein, except forthe use of an oligonucleotide with a sequence corresponding to the p27 sequence (GenBank Accession Number U10906) which can be made and cloned into the Nde I and Bam H1 sites of the VP22 '159-301 ' expression plasmid.
- the p27-VP22 '159-301' fusion protein obtained by the method described above can be used in the formation of aggregates using a method analogous to that described in Example 1 : 37 microlitres of p27-VP22 '159-301' protein in PBS can be added to 463 microlitres of PBS and 5 microlitres of the oligonucleotide: The final concentration of p27-VP22 '159-301 ' fusion protein can be about 185 micrograms per millilitre and the final concentration of oligonucleotide about 2.5 micromolar.
- An aggregate can be made by a method analogous to that described in example 1 , except that the oligonucleotide is a 36mer ribozyme which is a 36mer ribozyme as described by Jarvis et al., J. Biol. Chem. 1996, 271 , 29107-29112, which can recognise and cleave c-myb and so inhibit cell proliferation, and which is fluorescein labelled at the 5' end and has the following sequence and can be obtained from Cruachem, Glasgow, UK: 5" GUUUUCCCUGAU GAGGCCGAAAGGCCGAAAUUCUCC 3'.
- nucleotides are 2'-0-methyl nucleotides with the exception of the following: U at position U5 which is 2'-0-allyl uridine (i.e. the fifth U residue counting from the 5' end of the sequence), G at positions G2, G3 and G9, A at positions A1 and A8 are 2' hydroxyl (ribo)nucleotides.
- the U at position U5 indicates 2'-0-allyl uridine, whereas the ribozyme described by Jarvis et al. had a 2'-C-allyl uridine linkage at this position (this being the only difference between the ribozyme described here and that of Jarvis et al.).
- Aggregates can be produced by adding the 36mer oligonucleotide to the VP22 ' 159-301 ' protein solution in PBS as previously described in Example 1 , so that the final concentrations in 50 microlitres of solution can be about 18 micrograms per ml (or alternatively about 32 micrograms per ml) protein and about 500nM oligonucleotide. Monitoring of the formation of the aggregates and delivery of the aggregates to cells can be carried out as described in Example 1.
- Example 10 Example 10:
- An aggregate can be made as described in example 9, except that the oligonucleotide sequences differs as follows: the second G residue (counting from the 5' end) has been changed to 2'-0-methyl uridine, and the seventh A residue (counting from the 5' end) has been changed to 2'-0-methyl uridine.
- An aggregate can be made by a method similar to that described in Example 1 , except that the oligonucleotide is labelled with biotin at the 5' end and has the following sequence:
- the aggregates can be prepared as follows: 12.5 microlitres of the biotin labelled oligonucleotide (20 microM in PBS) can be mixed with 12.5 microlitres of streptavidin-Alexa 594 (400 nanoM in PBS) and the mixture incubated for2 hours at room temperature with occasional stirring. Twenty five microlitres of VP22 protein (360 micrograms per ml in PBS) can then be added to the mixture and this mixture incubated for 10 mins at room temperature.
- the aggregates can be prepared as follows: 12.5 microlitres of the biotin labelled oligonucleotide (20 microM in PBS) can be mixed with 12.5 microlitres of VP22 (720 micrograms per ml in PBS) and the mixture incubated for
- aggregates can be delivered to COS cells using the following method: aggregates can be diluted 10 times in cell culture medium containing 10% serum at final concentrations of about 500nM biotin labelled oligonucleotide, about 10nM streptavidin-Alexa594 and about 1 ⁇ micrograms per ml VP22. The cells can then be incubated with the complexes overnight.
- An aggregate can be made by a method similar to that described in Example
- nucleotide used in the preparation is an oligonucleotide encoding an antisense sequence complementary to a sequence of the ras oncogene (G Chen et al., 1996, J Biol Chem 271 , pp28259-28265) labelled with fluorescein at the 5' end and with the following sequence:
- Formation of the aggregates can be monitored as described in Example 1.
- the aggregates can then be delivered to cultured T24 cells human bladder carcinoma cells as described in example 1 for delivery to HeLa cells.
- T24 cells incubated with the aggregates as described above can then be illuminated for 10 minutes with visible (white light) using a fibre optic cold light (Schott KL 2500 LCD obtainable from Schott Fibre Optics Ltd., Doncaster, UK).
- a fibre optic cold light Schott KL 2500 LCD obtainable from Schott Fibre Optics Ltd., Doncaster, UK.
- the extent of proliferation of the illuminated T24 cells can then be determined using the crystal violet assay described in N Sdiqui et al., 1995, Drug delivery 2, pp63-72.
- Treatment of T24 cells by incubating with aggregates comprising the ras antisense sequence, followed by illumination of the cells as described above, can reduce cell proliferation.
- An aggregate can be made and delivered to T24 cells as described in example
- a suspension of T24 cells can then be made by treating the cultured cells with trypsin using perse known methods for trypsinisation of cultured cells , followed by washing of the trypsinised cells.
- the cell suspension so produced can then be illuminated for 3 minutes with white light.
- Reduction of cell proliferation can then be determined as follows: the illuminated cell suspension can then be plated onto cell culture plates. The plated cells can then be trypsinised and the number of cells counted under a microscope.
- T24 cells Treatment of T24 cells by incubating with aggregates comprising ras antisense DNA, followed by trypsinising the cells to obtain a cell suspension and then illumination of the suspension as described above, can reduce T24 cell proliferation.
- An aggregate can be made by a method similar to that described in Example 1 , except that the nucleotide used in the preparation is an oligonucleotide encoding an antisense sequence complementary to a sequence of the gene encoding human
- the aggregates can then be delivered to HeLa cells as described in example 1.
- a HeLa cell suspension can then be made and illuminated as described in example 13, for T24 cells.
- Reduction of cell proliferation can be determined as described in example 13.
- Treatment of HeLa cells by incubating with aggregates comprising raf antisense DNA, followed by trypsinising the cells to obtain a cell suspension and then illumination of the suspension as described above, can reduce HeLa cell proliferation.
- Example 15 Aggregates can be made as described in example 14, and delivered to A549 cells as described in example 1 , for delivery to HeLa cells.
- An A549 cell suspension can then be made and illuminated as described in example 13, for T24 cells. Reduction of cell proliferation can be determined as described in example 13.
- Treatment of A549 cells by incubating with aggregates comprising raf antisense DNA, followed by trypsinising the cells to obtain a cell suspension and then illumination of the suspension as described above, can reduce A549 cell proliferation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Dermatology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00909483A EP1159441B8 (en) | 1999-03-10 | 2000-03-10 | Delivery of nucleic acids and proteins to cells |
DE60040274T DE60040274D1 (en) | 1999-03-10 | 2000-03-10 | ADMINISTRATION OF NUCLEIC ACIDS AND PROTEINS ON CELLS |
MXPA01009073A MXPA01009073A (en) | 1999-03-10 | 2000-03-10 | Delivery of substances to cells. |
JP2000603347A JP2002537828A (en) | 1999-03-10 | 2000-03-10 | Delivery of substances to cells |
CA002365625A CA2365625A1 (en) | 1999-03-10 | 2000-03-10 | Delivery of substances to cells |
AU31765/00A AU767195B2 (en) | 1999-03-10 | 2000-03-10 | Delivery of substances to cells |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9905444.7A GB9905444D0 (en) | 1999-03-10 | 1999-03-10 | Delivery of sustances to cells |
GBGB9930499.0A GB9930499D0 (en) | 1999-12-24 | 1999-12-24 | Delivery of substances to cells |
GB9930499.0 | 1999-12-24 | ||
GB9905444.7 | 1999-12-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000053722A2 true WO2000053722A2 (en) | 2000-09-14 |
WO2000053722A3 WO2000053722A3 (en) | 2001-07-12 |
Family
ID=26315249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2000/000897 WO2000053722A2 (en) | 1999-03-10 | 2000-03-10 | Delivery of nucleic acids and proteins to cells |
Country Status (9)
Country | Link |
---|---|
US (1) | US20040171044A1 (en) |
EP (1) | EP1159441B8 (en) |
JP (1) | JP2002537828A (en) |
AT (1) | ATE408699T1 (en) |
AU (1) | AU767195B2 (en) |
CA (1) | CA2365625A1 (en) |
DE (1) | DE60040274D1 (en) |
MX (1) | MXPA01009073A (en) |
WO (1) | WO2000053722A2 (en) |
Cited By (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002020060A1 (en) * | 2000-09-08 | 2002-03-14 | Phogen Limited | Vp22 protein/nucleic acid aggregates, uses thereof |
WO2005026202A1 (en) * | 2003-09-12 | 2005-03-24 | Phogen Limited | Compositions comprising a fragment of the herpesviral protein vp22 for delivery of substances to cells |
WO2005066371A2 (en) | 2003-12-31 | 2005-07-21 | The Penn State Research Foundation | Methods for predicting and overcoming resistance to chemotherapy in ovarian cancer and for predicting colon cancer occurrence |
WO2006009575A1 (en) | 2004-06-22 | 2006-01-26 | The Board Of Trustees Of The University Of Illinois | METHODS OF INHIBITING TUMOR CELL PROLIFERATION WITH FOXM1 siRNA |
US7176304B2 (en) | 2002-02-20 | 2007-02-13 | Mcswiggen James | RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA) |
US7223600B2 (en) | 2000-11-29 | 2007-05-29 | The Norwegian Radium Hospital Research Foundation | Photochemical internalization for delivery of molecules into the cytosol |
WO2007084631A2 (en) | 2006-01-20 | 2007-07-26 | Cell Signaling Technology, Inc. | Translocation and mutant ros kinase in human non-small cell lung carcinoma |
JP2007526253A (en) * | 2004-02-19 | 2007-09-13 | コーリー ファーマシューティカル グループ,インコーポレイテッド | Immunostimulatory viral RNA oligonucleotide |
US7393529B2 (en) | 1998-04-09 | 2008-07-01 | Idexx Laboratories, Inc. | Methods and compositions for inhibiting binding of IgE to a high affinity receptor |
WO2008106551A2 (en) | 2007-02-28 | 2008-09-04 | The Govt. Of The U.S.A. As Represented By The Secretary Of The Dept. Of Health & Human Serv. | Brachyury polypeptides and methods for use |
WO2008137758A2 (en) | 2007-05-04 | 2008-11-13 | Mdrna, Inc. | Amino acid lipids and uses thereof |
EP2042510A2 (en) | 2002-02-20 | 2009-04-01 | Sirna Therapeutics Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleid acid (siNA) |
US7521239B2 (en) | 2000-11-29 | 2009-04-21 | Pci Biotech As | Photochemical internalization for virus-mediated molecule delivery into the cyosol |
WO2009055487A1 (en) | 2007-10-22 | 2009-04-30 | The Regents Of The University Of California | Biomarkers for prenatal diagnosis of congenital cytomegalovirus |
WO2009129281A2 (en) | 2008-04-15 | 2009-10-22 | Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for delivering inhibitory oligonucleotides |
WO2009140679A2 (en) | 2008-05-16 | 2009-11-19 | The Children's Hospital Of Philadelphia | Genetic alterations on chromosomes 21q, 6q and 15q and methods of use thereof for the diagnosis and treatment of type i diabetes |
WO2009149182A1 (en) | 2008-06-04 | 2009-12-10 | The Board Of Regents Of The University Of Texas System | Modulation of gene expression through endogenous small rna targeting of gene promoters |
WO2009155100A1 (en) | 2008-05-30 | 2009-12-23 | Yale University | Targeted oligonucleotide compositions for modifying gene expression |
EP2165710A1 (en) | 2008-09-19 | 2010-03-24 | Institut Curie | Tyrosine kinase receptor Tyro3 as a therapeutic target in the treatment of a bladder tumor |
US7718629B2 (en) | 2006-03-31 | 2010-05-18 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of Eg5 gene |
US7737265B2 (en) | 2005-06-27 | 2010-06-15 | Alnylam Pharmaceuticals, Inc. | RNAi modulation of HIF-1 and therapeutic uses thereof |
EP2198879A1 (en) | 2008-12-11 | 2010-06-23 | Institut Curie | CD74 modulator agent for regulating dendritic cell migration and device for studying the motility capacity of a cell |
WO2010093928A2 (en) | 2009-02-12 | 2010-08-19 | Cell Signaling Technology, Inc. | Mutant ros expression in human cancer |
WO2010091878A2 (en) | 2009-02-13 | 2010-08-19 | Silence Therapeutics Ag | Means for inhibiting the expression of opa1 |
WO2010094491A1 (en) | 2009-02-18 | 2010-08-26 | Silence Therapeutics Ag | Means for inhibiting the expression of ang2 |
WO2010107955A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF BTB AND CNC HOMOLOGY 1, BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 1 (BACH 1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) SEQUENCE LISTING |
WO2010107957A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107952A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107958A1 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 6 (STAT6) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111468A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE NERVE GROWTH FACTOR BETA CHAIN (NGFß) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (SINA) |
WO2010111471A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1 (STAT1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111490A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE THYMIC STROMAL LYMPHOPOIETIN (TSLP) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111497A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE INTERCELLULAR ADHESION MOLECULE 1 (ICAM-1)GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111464A1 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010115993A1 (en) | 2009-04-10 | 2010-10-14 | Association Institut De Myologie | Tricyclo-dna antisense oligonucleotides, compositions, and methods for the treatment of disease |
WO2010124231A2 (en) | 2009-04-24 | 2010-10-28 | The Board Of Regents Of The University Of Texas System | Modulation of gene expression using oligomers that target gene regions downstream of 3' untranslated regions |
US7846908B2 (en) | 2006-03-16 | 2010-12-07 | Alnylam Pharmaceuticals, Inc. | RNAi modulation of TGF-beta and therapeutic uses thereof |
WO2010146055A1 (en) | 2009-06-15 | 2010-12-23 | Institut Curie | Antagonists of beta-catenin for preventing and/or treating neurodegenerative disorders |
US7919473B2 (en) | 2004-03-12 | 2011-04-05 | Alnylam Pharmaceuticals, Inc. | IRNA agents targeting VEGF |
US7923547B2 (en) | 2002-09-05 | 2011-04-12 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
WO2011094759A2 (en) | 2010-02-01 | 2011-08-04 | The Regents Of The University Of California | Novel diagnostic and therapeutic targets associated with or regulated by n-cadherin expression and/or epithelial to mesenchymal transition (emt) in prostate cancer and other malignancies |
WO2011120023A1 (en) | 2010-03-26 | 2011-09-29 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting survivin gene expression uses thereof |
WO2011133584A2 (en) | 2010-04-19 | 2011-10-27 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting hras gene expression and uses thereof |
WO2011139842A2 (en) | 2010-04-28 | 2011-11-10 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting fgfr3 gene expression and uses thereof |
WO2011146938A1 (en) | 2010-05-21 | 2011-11-24 | NanoOncology, Inc. | Reagents and methods for treating cancer |
WO2011151321A1 (en) | 2010-05-31 | 2011-12-08 | Institut Curie | Asf1b as a prognosis marker and therapeutic target in human cancer |
WO2011163436A1 (en) | 2010-06-24 | 2011-12-29 | Quark Pharmaceuticals, Inc. | Double stranded rna compounds to rhoa and use thereof |
WO2012017208A1 (en) | 2010-08-04 | 2012-02-09 | Cizzle Biotechnology Limited | Methods and compounds for the diagnosis and treatment of |
WO2012019132A2 (en) | 2010-08-06 | 2012-02-09 | Cell Signaling Technology, Inc. | Anaplastic lymphoma kinase in kidney cancer |
WO2012018754A2 (en) | 2010-08-02 | 2012-02-09 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CATENIN (CADHERIN-ASSOCIATED PROTEIN), BETA 1 (CTNNB1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2012024170A2 (en) | 2010-08-17 | 2012-02-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF HEPATITIS B VIRUS (HBV) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2012027206A1 (en) | 2010-08-24 | 2012-03-01 | Merck Sharp & Dohme Corp. | SINGLE-STRANDED RNAi AGENTS CONTAINING AN INTERNAL, NON-NUCLEIC ACID SPACER |
WO2012027467A1 (en) | 2010-08-26 | 2012-03-01 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF PROLYL HYDROXYLASE DOMAIN 2 (PHD2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
EP2426140A1 (en) | 2003-08-15 | 2012-03-07 | University of Florida Research Foundation, Inc. | Identification of porphyromonas gingivalis virulence polynucleotides in the diagnosis, treatment, and monitoring periodontal diseases |
WO2012044979A2 (en) | 2010-10-01 | 2012-04-05 | The Goverment Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Manipulation of stem cell function by p53 isoforms |
WO2012047631A2 (en) | 2010-09-27 | 2012-04-12 | The Children's Hospital Of Philadelphia | Compositions and methods useful for the treatment and diagnosis of inflammatory bowel disease |
EP2447360A1 (en) | 2006-04-14 | 2012-05-02 | Cell Signaling Technology, Inc. | Gene defects and mutant ALK kinase in human solid tumors |
WO2012058210A1 (en) | 2010-10-29 | 2012-05-03 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACIDS (siNA) |
WO2012061443A2 (en) | 2010-11-01 | 2012-05-10 | NanoOncology, Inc. | Compositions of a peptide-based system for cell-specific targeting |
EP2455456A1 (en) | 2010-11-22 | 2012-05-23 | Institut Curie | Use of kinesin inhibitors in HIV infection treatment and a method for screening them |
US8202979B2 (en) | 2002-02-20 | 2012-06-19 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid |
WO2012112691A1 (en) | 2011-02-15 | 2012-08-23 | Immune Design Corp. | Methods for enhancing immunogen specific immune responses by vectored vaccines |
WO2012118910A2 (en) | 2011-03-03 | 2012-09-07 | Quark Pharmaceuticals, Inc. | Compositions and methods for treating lung disease and injury |
WO2012141984A1 (en) | 2011-04-08 | 2012-10-18 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
US8299236B2 (en) | 2004-05-04 | 2012-10-30 | Marina Biotech, Inc. | Compositions and methods for enhancing delivery of nucleic acids into cells and for modifying expression of target genes in cells |
EP2518509A2 (en) | 2008-03-05 | 2012-10-31 | The Regents of the University of California | Molecular prognosis and classification of malignant melanoma based upon markers selected from the list consisting of RGS1, NCOA3, SPP1, PHIP. |
EP2522752A1 (en) | 2007-08-13 | 2012-11-14 | Baxter International Inc. | IVIG modulation of chemokines for treatment of Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease |
WO2012162373A1 (en) | 2011-05-23 | 2012-11-29 | Cell Signaling Technology, Inc. | Ros kinase in lung cancer |
WO2012175481A1 (en) | 2011-06-20 | 2012-12-27 | Institut Curie | Compositions and methods for treating leukemia |
EP2546337A1 (en) | 2006-07-21 | 2013-01-16 | Silence Therapeutics AG | Means for inhibiting the expression of protein kinase 3 |
WO2013010998A2 (en) | 2011-07-15 | 2013-01-24 | Fundació Institut D'investigació Biomèdica De Bellvitge (Idibell) | Compositions and methods for immunomodulation |
US8377448B2 (en) | 2006-05-15 | 2013-02-19 | The Board Of Trustees Of The Leland Standford Junior University | CD47 related compositions and methods for treating immunological diseases and disorders |
EP2581448A1 (en) | 2011-10-13 | 2013-04-17 | Association Institut de Myologie | Tricyclo-phosphorothioate DNA |
EP2589961A2 (en) | 2006-09-06 | 2013-05-08 | The Regents of the University of California | Molecular diagnosis and classification of malignant melanoma |
WO2013071154A1 (en) | 2011-11-11 | 2013-05-16 | Fred Hutchinson Cancer Research Center | Cyclin a1-targeted t-cell immunotherapy for cancer |
WO2013106494A1 (en) | 2012-01-12 | 2013-07-18 | Quark Pharmaceuticals, Inc. | Combination therapy for treating hearing and balance disorders |
EP2617434A1 (en) | 2012-01-20 | 2013-07-24 | Laboratorios Del. Dr. Esteve, S.A. | HIV-1 integrase deficient immunogens and methods for loading dendritic cells with said immunogens |
WO2013123996A1 (en) | 2012-02-24 | 2013-08-29 | Astrazeneca Uk Limited | Novel sirna inhibitors of human icam-1 |
US8541385B2 (en) | 2005-08-10 | 2013-09-24 | The Rockefeller University | Chemically modified oligonucleotides for use in modulation micro RNA and uses thereof |
WO2014043292A1 (en) | 2012-09-12 | 2014-03-20 | Quark Pharmaceuticals, Inc. | Double-stranded oligonucleotide molecules to p53 and methods of use thereof |
WO2014043289A2 (en) | 2012-09-12 | 2014-03-20 | Quark Pharmaceuticals, Inc. | Double-stranded oligonucleotide molecules to ddit4 and methods of use thereof |
US8710209B2 (en) | 2009-12-09 | 2014-04-29 | Nitto Denko Corporation | Modulation of HSP47 expression |
WO2014138687A1 (en) | 2013-03-08 | 2014-09-12 | Irm Llc | Peptides and compositions for treatment of joint damage |
WO2014135655A1 (en) | 2013-03-06 | 2014-09-12 | Institut Curie | Compositions and methods for treating muscle-invasive bladder cancer |
WO2014154898A1 (en) | 2013-03-29 | 2014-10-02 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Prognosis and treatment of cancers |
WO2015020960A1 (en) | 2013-08-09 | 2015-02-12 | Novartis Ag | Novel lncrna polynucleotides |
EP2853595A1 (en) | 2013-09-30 | 2015-04-01 | Soluventis GmbH | NOTCH 1 specific siRNA molecules |
EP2902013A1 (en) | 2008-10-16 | 2015-08-05 | Marina Biotech, Inc. | Processes and Compositions for Liposomal and Efficient Delivery of Gene Silencing Therapeutics |
WO2015123496A1 (en) | 2014-02-14 | 2015-08-20 | Immune Design Corp. | Immunotherapy of cancer through combination of local and systemic immune stimulation |
US9181551B2 (en) | 2002-02-20 | 2015-11-10 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
WO2015175487A1 (en) | 2014-05-13 | 2015-11-19 | Novartis Ag | Compounds and compositions for inducing chondrogenesis |
WO2015195628A2 (en) | 2014-06-17 | 2015-12-23 | Arrowhead Research Corporation | Compositions and methods for inhibiting gene expression of alpha-1 antitrypsin |
WO2016011083A1 (en) | 2014-07-15 | 2016-01-21 | Immune Design Corp. | Prime-boost regimens with a tlr4 agonist adjuvant and a lentiviral vector |
WO2016032595A1 (en) | 2014-08-27 | 2016-03-03 | Peptimed, Inc. | Anti-tumor compositions and methods |
WO2016083624A1 (en) | 2014-11-28 | 2016-06-02 | Silence Therapeutics Gmbh | Means for inhibiting the expression of edn1 |
EP3072963A1 (en) | 2007-10-18 | 2016-09-28 | Cell Signaling Technology, Inc. | Translocation and mutant ros kinase in human non-small cell lung carcinoma |
WO2016196366A1 (en) | 2015-05-29 | 2016-12-08 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Extension of replicative lifespan in diseases of premature aging using p53 isoforms |
US9587249B2 (en) | 2008-10-27 | 2017-03-07 | Baxalta GmbH | Models of thrombotic thrombocytopenic purpura and methods of use thereof |
US9597346B2 (en) | 2010-01-15 | 2017-03-21 | Cornell University | Methods for reducing protein levels in a cell |
EP3156497A1 (en) | 2015-10-16 | 2017-04-19 | Centre National de la Recherche Scientifique (C.N.R.S.) | Trpv2 as a biomarker and as a therapeutic target for melanoma |
US9657294B2 (en) | 2002-02-20 | 2017-05-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
WO2017184586A1 (en) | 2016-04-18 | 2017-10-26 | The Trustees Of Columbia University In The City Of New York | Therapeutic targets involved in the progression of nonalcoholic steatohepatitis (nash) |
US9803205B2 (en) | 2015-03-17 | 2017-10-31 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of factor XII |
WO2017214112A1 (en) | 2016-06-06 | 2017-12-14 | Arrowhead Pharmaceuticals, Inc. | 5'-cyclo-phosphonate modified nucleotides |
EP3269734A1 (en) | 2016-07-15 | 2018-01-17 | Fundació Privada Institut d'Investigació Oncològica de Vall-Hebron | Methods and compositions for the treatment of cancer |
WO2018027106A2 (en) | 2016-08-04 | 2018-02-08 | Arrowhead Pharmaceuticals, Inc. | RNAi AGENTS FOR HEPATITIS B VIRUS INFECTION |
US9932586B2 (en) | 2015-10-01 | 2018-04-03 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of LPA |
US9976141B2 (en) | 2015-05-29 | 2018-05-22 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of Hif2alpha |
US9994915B2 (en) | 2010-10-11 | 2018-06-12 | Sanford-Burnham Medical Research Institute | miR-211 expression and related pathways in human melanoma |
US9994853B2 (en) | 2001-05-18 | 2018-06-12 | Sirna Therapeutics, Inc. | Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference |
EP3336181A1 (en) | 2012-04-18 | 2018-06-20 | Cell Signaling Technology, Inc. | Egfr and ros1 in cancer |
EP3449978A1 (en) | 2017-09-01 | 2019-03-06 | Universite Paris Descartes | Inhibitors of aryl hydrocarbon receptor for treating soft-tissue sarcoma and preventing neurofibroma growth and/or transformation to malignant peripheral nerve sheath tumors |
WO2019068326A1 (en) | 2017-10-05 | 2019-04-11 | Université D'aix-Marseille | Lsd1 inhibitors for the treatment and prevention of cardiomyopathies |
US10485879B2 (en) | 2008-04-15 | 2019-11-26 | Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, National Institutes Of Health | Plasma cell cytokine vehicle containing fusion proteins for targeted introduction of siRNA into cells and tissues |
US10508277B2 (en) | 2004-05-24 | 2019-12-17 | Sirna Therapeutics, Inc. | Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference |
US10590416B2 (en) | 2017-07-06 | 2020-03-17 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of alpha-ENaC and methods of use |
US10597657B2 (en) | 2017-09-11 | 2020-03-24 | Arrowhead Pharmaceuticals, Inc. | RNAi agents and compositions for inhibiting expression of apolipoprotein C-III (APOC3) |
WO2020163747A1 (en) | 2019-02-07 | 2020-08-13 | Arrowhead Pharmaceuticals, Inc. | Rnai agents for hepatitis b virus infection |
WO2020187998A1 (en) | 2019-03-19 | 2020-09-24 | Fundació Privada Institut D'investigació Oncològica De Vall Hebron | Combination therapy with omomyc and an antibody binding pd-1 or ctla-4 for the treatment of cancer |
WO2020214974A1 (en) | 2019-04-18 | 2020-10-22 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
WO2020214976A1 (en) | 2019-04-18 | 2020-10-22 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
WO2020255008A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | COMBINATION OF HEPATITIS B VIRUS (HBV) VACCINES AND HBV-TARGETING RNAi |
WO2020255007A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and hbv-targeting rnai |
EP3808763A1 (en) | 2019-10-17 | 2021-04-21 | Fundació Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) | Compounds for immunomodulation |
US10995335B2 (en) | 2017-09-14 | 2021-05-04 | Arrowhead Pharmaceuticals, Inc. | RNAi agents and compositions for inhibiting expression of angiopoietin-like 3 (ANGPTL3), and methods of use |
WO2021178612A1 (en) | 2020-03-05 | 2021-09-10 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
WO2021175966A1 (en) | 2020-03-04 | 2021-09-10 | Ninovax | Products for suppressing or reducing the expression or activity of a snorna and uses thereof in the treatment of cancer |
WO2021195467A2 (en) | 2020-03-26 | 2021-09-30 | Arrowhead Pharmaceuticals, Inc. | RNAi AGENTS FOR INHIBITING EXPRESSION OF PNPLA3, PHARMACEUTICAL COMPOSITIONS THEREOF, AND METHODS OF USE |
US11208662B2 (en) | 2007-06-15 | 2021-12-28 | Arrowhead Pharmaceuticals, Inc. | RNAi inhibition of alpha-ENaC expression |
WO2021263271A1 (en) | 2020-06-22 | 2021-12-30 | Janssen Pharmaceuticals, Inc. | Compositions and methods for treatment of hepatitis d virus infection |
US11261444B2 (en) | 2013-02-28 | 2022-03-01 | Arrowhead Pharmaceuticals, Inc. | Organic compositions to treat EPAS1-related diseases |
WO2022056266A2 (en) | 2020-09-11 | 2022-03-17 | Arrowhead Pharmaceuticals, Inc. | Rnai agents for inhibiting expression of dux4, compositions thereof, and methods of use |
WO2022056273A1 (en) | 2020-09-11 | 2022-03-17 | Arrowhead Pharmaceuticals, Inc. | Lipid conjugates for the delivery of therapeutic agents |
WO2022056277A1 (en) | 2020-09-11 | 2022-03-17 | Arrowhead Pharmaceuticals, Inc. | Skeletal muscle delivery platforms and methods of use |
WO2022133230A1 (en) | 2020-12-18 | 2022-06-23 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
WO2022152869A1 (en) | 2021-01-15 | 2022-07-21 | Janssen Sciences Ireland Unlimited Company | Use of oligonucleotides for individuals with hepatic impairment |
US11492624B2 (en) | 2017-10-17 | 2022-11-08 | Arrowheads Pharmaceuticals, Inc. | RNAi agents and compositions for inhibiting expression of Asialoglycoprotein receptor 1 |
US11534453B2 (en) | 2015-08-07 | 2022-12-27 | Arrowhead Pharmaceuticals, Inc. | RNAi therapy for hepatitis B virus infection |
US11549112B1 (en) | 2021-06-21 | 2023-01-10 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of xanthine dehydrogenase (XDH), pharmaceutical compositions thereof, and methods of use |
WO2023281434A1 (en) | 2021-07-09 | 2023-01-12 | Janssen Pharmaceuticals, Inc. | Use of oligonucleotides for individuals with renal impairment |
WO2023069987A1 (en) | 2021-10-20 | 2023-04-27 | University Of Rochester | Rejuvenation treatment of age-related white matter loss cross reference to related application |
US11725194B2 (en) | 2017-12-19 | 2023-08-15 | Janssen Sciences Ireland Unlimited Company | Hepatitis B virus (HBV) vaccines and uses thereof |
WO2023233290A1 (en) | 2022-05-31 | 2023-12-07 | Janssen Sciences Ireland Unlimited Company | Rnai agents targeting pd-l1 |
US11884920B2 (en) | 2017-01-10 | 2024-01-30 | Arrowhead Pharmaceuticals, Inc. | Alpha-1 antitrypsin (AAT) RNAi agents, compositions including AAT RNAi agents, and methods of use |
US11912997B2 (en) | 2022-06-15 | 2024-02-27 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of Superoxide Dismutase 1 (SOD1), compositions thereof, and methods of use |
WO2024089013A1 (en) | 2022-10-25 | 2024-05-02 | Peptomyc, S.L. | Combination therapy for the treatment of cancer |
WO2024126765A1 (en) | 2022-12-16 | 2024-06-20 | Université De Strasbourg | Rnai-based therapies targeting claudin-1 for the treatment and prevention of fibrotic diseases |
EP4410825A1 (en) | 2023-02-03 | 2024-08-07 | Servizo Galego de Saude | Fragments of the n-terminal domain of gsdmb for the treatment of cancer |
WO2024163747A2 (en) | 2023-02-02 | 2024-08-08 | University Of Rochester | Competitive replacement of glial cells |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2008015841A1 (en) * | 2006-08-02 | 2009-12-17 | 梅澤 喜夫 | Kinase inhibitory fusion proteins and pharmaceutical compositions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997005265A1 (en) * | 1995-07-28 | 1997-02-13 | Marie Curie Cancer Care | Transport proteins and their uses |
WO1997024453A1 (en) * | 1995-12-28 | 1997-07-10 | Chiron Corporation | Receptor specific chimeric viral surface polypeptides for viral and particle incorporation and internalization in target cells |
WO1998032866A1 (en) * | 1997-01-23 | 1998-07-30 | Marie Curie Cancer Care | Fusion proteins for intracellular and intercellular transport and their uses |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935777A (en) * | 1991-02-19 | 1999-08-10 | University Of Florida Research Foundation, Inc. | Entomopoxvirus expression system |
US6051429A (en) * | 1995-06-07 | 2000-04-18 | Life Technologies, Inc. | Peptide-enhanced cationic lipid transfections |
US6034135A (en) * | 1997-03-06 | 2000-03-07 | Promega Biosciences, Inc. | Dimeric cationic lipids |
GB9705903D0 (en) * | 1997-03-21 | 1997-05-07 | Elliott Gillian D | VP22 Proteins and uses thereof |
DE69827260T2 (en) * | 1997-07-24 | 2006-02-16 | PerSeptive Biosystems, Inc., Framingham | CONJUGATES OF TRANSPORTEPEPTIDES AND NUCLEIC ACID ANALOGUES AND THEIR USE |
GB9816761D0 (en) * | 1998-07-31 | 1998-09-30 | Phogen Limited | Herpesvirus preparations and their uses |
GB9930519D0 (en) * | 1999-12-24 | 2000-02-16 | Phogen Limited | Uses of transport proteins |
-
2000
- 2000-03-10 AT AT00909483T patent/ATE408699T1/en not_active IP Right Cessation
- 2000-03-10 WO PCT/GB2000/000897 patent/WO2000053722A2/en active IP Right Grant
- 2000-03-10 DE DE60040274T patent/DE60040274D1/en not_active Expired - Fee Related
- 2000-03-10 EP EP00909483A patent/EP1159441B8/en not_active Expired - Lifetime
- 2000-03-10 JP JP2000603347A patent/JP2002537828A/en active Pending
- 2000-03-10 MX MXPA01009073A patent/MXPA01009073A/en unknown
- 2000-03-10 CA CA002365625A patent/CA2365625A1/en not_active Abandoned
- 2000-03-10 AU AU31765/00A patent/AU767195B2/en not_active Ceased
-
2003
- 2003-12-02 US US10/727,109 patent/US20040171044A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997005265A1 (en) * | 1995-07-28 | 1997-02-13 | Marie Curie Cancer Care | Transport proteins and their uses |
WO1997024453A1 (en) * | 1995-12-28 | 1997-07-10 | Chiron Corporation | Receptor specific chimeric viral surface polypeptides for viral and particle incorporation and internalization in target cells |
WO1998032866A1 (en) * | 1997-01-23 | 1998-07-30 | Marie Curie Cancer Care | Fusion proteins for intracellular and intercellular transport and their uses |
Non-Patent Citations (1)
Title |
---|
PHELAN A ET AL: "Intercellular delivery of functional p53 by the herpesvirus protein VP22." NATURE BIOTECHNOLOGY, vol. 16, no. 5, May 1998 (1998-05), pages 440-443, XP002157802 ISSN: 1087-0156 * |
Cited By (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7393529B2 (en) | 1998-04-09 | 2008-07-01 | Idexx Laboratories, Inc. | Methods and compositions for inhibiting binding of IgE to a high affinity receptor |
US7931898B2 (en) | 1998-04-09 | 2011-04-26 | Idexx Laboratories, Inc. | Methods and compositions for inhibiting binding of IgE to a high affinity receptor |
US8252907B2 (en) | 1998-04-09 | 2012-08-28 | Idexx Laboratories, Inc. | Methods and compositions for inhibiting binding of IgE to a high affinity receptor |
WO2002020060A1 (en) * | 2000-09-08 | 2002-03-14 | Phogen Limited | Vp22 protein/nucleic acid aggregates, uses thereof |
US8008077B2 (en) | 2000-11-29 | 2011-08-30 | Pci Biotech As | Photochemical internalization for delivery of molecules into the cytosol |
US7223600B2 (en) | 2000-11-29 | 2007-05-29 | The Norwegian Radium Hospital Research Foundation | Photochemical internalization for delivery of molecules into the cytosol |
US7521239B2 (en) | 2000-11-29 | 2009-04-21 | Pci Biotech As | Photochemical internalization for virus-mediated molecule delivery into the cyosol |
US9994853B2 (en) | 2001-05-18 | 2018-06-12 | Sirna Therapeutics, Inc. | Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference |
EP2042510A2 (en) | 2002-02-20 | 2009-04-01 | Sirna Therapeutics Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleid acid (siNA) |
EP2287305A1 (en) | 2002-02-20 | 2011-02-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA) |
EP3926046A2 (en) | 2002-02-20 | 2021-12-22 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina) |
US10889815B2 (en) | 2002-02-20 | 2021-01-12 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US10662428B2 (en) | 2002-02-20 | 2020-05-26 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US9657294B2 (en) | 2002-02-20 | 2017-05-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US9732344B2 (en) | 2002-02-20 | 2017-08-15 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US9738899B2 (en) | 2002-02-20 | 2017-08-22 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US9771588B2 (en) | 2002-02-20 | 2017-09-26 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
EP2287306A1 (en) | 2002-02-20 | 2011-02-23 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA) |
EP2902406A1 (en) | 2002-02-20 | 2015-08-05 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA) |
US8202979B2 (en) | 2002-02-20 | 2012-06-19 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid |
US9957517B2 (en) | 2002-02-20 | 2018-05-01 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US7176304B2 (en) | 2002-02-20 | 2007-02-13 | Mcswiggen James | RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA) |
US9181551B2 (en) | 2002-02-20 | 2015-11-10 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US10000754B2 (en) | 2002-02-20 | 2018-06-19 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
EP3354656A1 (en) | 2002-02-20 | 2018-08-01 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina) |
EP3459963A1 (en) | 2002-02-20 | 2019-03-27 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina) |
EP2278004A1 (en) | 2002-02-20 | 2011-01-26 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA) |
US10351852B2 (en) | 2002-02-20 | 2019-07-16 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US7923547B2 (en) | 2002-09-05 | 2011-04-12 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
EP2426140A1 (en) | 2003-08-15 | 2012-03-07 | University of Florida Research Foundation, Inc. | Identification of porphyromonas gingivalis virulence polynucleotides in the diagnosis, treatment, and monitoring periodontal diseases |
WO2005026202A1 (en) * | 2003-09-12 | 2005-03-24 | Phogen Limited | Compositions comprising a fragment of the herpesviral protein vp22 for delivery of substances to cells |
EP2395112A1 (en) | 2003-12-31 | 2011-12-14 | The Penn State Research Foundation | Methods for predicting and overcoming resistance to chemotherapy in ovarian cancer and for predicting colon cancer occurrence |
US7700280B2 (en) | 2003-12-31 | 2010-04-20 | The Penn State Research Foundation | Methods for assessing cisplatin resistance, disease progression, and treatment efficacy in ovarian cancer |
US8192935B2 (en) | 2003-12-31 | 2012-06-05 | The Penn State Research Foundation | Methods for assessing cisplatin resistance, disease progression, and treatment efficacy in ovarian cancer as related to MetAP2 expression |
WO2005066371A2 (en) | 2003-12-31 | 2005-07-21 | The Penn State Research Foundation | Methods for predicting and overcoming resistance to chemotherapy in ovarian cancer and for predicting colon cancer occurrence |
JP2007526253A (en) * | 2004-02-19 | 2007-09-13 | コーリー ファーマシューティカル グループ,インコーポレイテッド | Immunostimulatory viral RNA oligonucleotide |
EP2636739A1 (en) | 2004-03-12 | 2013-09-11 | Alnylam Pharmaceuticals Inc. | iRNA agents targeting VEGF |
EP2365077A1 (en) | 2004-03-12 | 2011-09-14 | Alnylam Pharmaceuticals, Inc. | iRNA agents targeting VEGF |
US7919473B2 (en) | 2004-03-12 | 2011-04-05 | Alnylam Pharmaceuticals, Inc. | IRNA agents targeting VEGF |
US7947659B2 (en) | 2004-03-12 | 2011-05-24 | Alnylam Pharmaceuticals, Inc. | iRNA agents targeting VEGF |
EP2899278A1 (en) | 2004-03-12 | 2015-07-29 | Alnylam Pharmaceuticals Inc. | iRNA agents targeting VEGF |
US8299236B2 (en) | 2004-05-04 | 2012-10-30 | Marina Biotech, Inc. | Compositions and methods for enhancing delivery of nucleic acids into cells and for modifying expression of target genes in cells |
US10508277B2 (en) | 2004-05-24 | 2019-12-17 | Sirna Therapeutics, Inc. | Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference |
WO2006009575A1 (en) | 2004-06-22 | 2006-01-26 | The Board Of Trustees Of The University Of Illinois | METHODS OF INHIBITING TUMOR CELL PROLIFERATION WITH FOXM1 siRNA |
EP2298896A1 (en) | 2004-06-22 | 2011-03-23 | The Board of Trustees of the University of Illinois | Methods of inhibiting tumor cell proliferation with FOXM1 siRNA |
US7737265B2 (en) | 2005-06-27 | 2010-06-15 | Alnylam Pharmaceuticals, Inc. | RNAi modulation of HIF-1 and therapeutic uses thereof |
US8541385B2 (en) | 2005-08-10 | 2013-09-24 | The Rockefeller University | Chemically modified oligonucleotides for use in modulation micro RNA and uses thereof |
EP3360965A1 (en) | 2006-01-20 | 2018-08-15 | Cell Signaling Technology, Inc. | Translocation and mutant ros kinase in human non-small cell lung carcinoma |
EP2671954A2 (en) | 2006-01-20 | 2013-12-11 | Cell Signaling Technology, Inc. | Translocation and mutant ROS kinase in human non-small cell lung carcinoma |
WO2007084631A2 (en) | 2006-01-20 | 2007-07-26 | Cell Signaling Technology, Inc. | Translocation and mutant ros kinase in human non-small cell lung carcinoma |
EP3936621A1 (en) | 2006-01-20 | 2022-01-12 | Cell Signaling Technology, Inc. | Translocation and mutant ros kinase in human non-small cell lung carcinoma |
US7846908B2 (en) | 2006-03-16 | 2010-12-07 | Alnylam Pharmaceuticals, Inc. | RNAi modulation of TGF-beta and therapeutic uses thereof |
US7718629B2 (en) | 2006-03-31 | 2010-05-18 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of Eg5 gene |
EP3266867A1 (en) | 2006-04-14 | 2018-01-10 | Cell Signaling Technology, Inc. | Gene defects and mutant alk kinase in human solid tumors |
EP2447359A1 (en) | 2006-04-14 | 2012-05-02 | Cell Signaling Technology, Inc. | Gene defects and mutant ALK kinase in human solid tumors |
EP2450437A2 (en) | 2006-04-14 | 2012-05-09 | Cell Signaling Technology, Inc. | Gene defects and mutant ALK kinase in human solid tumors |
EP2447360A1 (en) | 2006-04-14 | 2012-05-02 | Cell Signaling Technology, Inc. | Gene defects and mutant ALK kinase in human solid tumors |
US8377448B2 (en) | 2006-05-15 | 2013-02-19 | The Board Of Trustees Of The Leland Standford Junior University | CD47 related compositions and methods for treating immunological diseases and disorders |
EP2546337A1 (en) | 2006-07-21 | 2013-01-16 | Silence Therapeutics AG | Means for inhibiting the expression of protein kinase 3 |
EP2589961A2 (en) | 2006-09-06 | 2013-05-08 | The Regents of the University of California | Molecular diagnosis and classification of malignant melanoma |
EP2679998A1 (en) | 2006-09-06 | 2014-01-01 | The Regents of the University of California | Molecular diagnosis and classification of malignant melanoma |
EP2679999A1 (en) | 2006-09-06 | 2014-01-01 | The Regents of the University of California | Molecular diagnosis and classification of malignant melanoma |
EP2680000A1 (en) | 2006-09-06 | 2014-01-01 | The Regents of the University of California | Molecular diagnosis and classification of malignant melanoma |
WO2008106551A2 (en) | 2007-02-28 | 2008-09-04 | The Govt. Of The U.S.A. As Represented By The Secretary Of The Dept. Of Health & Human Serv. | Brachyury polypeptides and methods for use |
EP2918598A1 (en) | 2007-02-28 | 2015-09-16 | The Govt. Of U.S.A. As Represented By The Secretary Of The Department Of Health And Human Services | Brachyury polypeptides and methods for use |
WO2008137758A2 (en) | 2007-05-04 | 2008-11-13 | Mdrna, Inc. | Amino acid lipids and uses thereof |
EP3434259A1 (en) | 2007-05-04 | 2019-01-30 | Marina Biotech, Inc. | Amino acid lipids and uses thereof |
EP2494993A2 (en) | 2007-05-04 | 2012-09-05 | Marina Biotech, Inc. | Amino acid lipids and uses thereof |
US11208662B2 (en) | 2007-06-15 | 2021-12-28 | Arrowhead Pharmaceuticals, Inc. | RNAi inhibition of alpha-ENaC expression |
EP2522753A1 (en) | 2007-08-13 | 2012-11-14 | Baxter International Inc. | IVIG modulation of chemokines for treatment of Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease |
EP2522754A1 (en) | 2007-08-13 | 2012-11-14 | Baxter International Inc. | IVIG modulation of chemokines for treatment of Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease |
EP2522755A1 (en) | 2007-08-13 | 2012-11-14 | Baxter International Inc | IVIG modulation of chemokines for treatment of Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease |
EP2522752A1 (en) | 2007-08-13 | 2012-11-14 | Baxter International Inc. | IVIG modulation of chemokines for treatment of Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease |
EP3741851A1 (en) | 2007-10-18 | 2020-11-25 | Cell Signaling Technology, Inc. | Translocation and mutant ros kinase in human non-small cell lung carcinoma |
EP3072963A1 (en) | 2007-10-18 | 2016-09-28 | Cell Signaling Technology, Inc. | Translocation and mutant ros kinase in human non-small cell lung carcinoma |
EP2924435A2 (en) | 2007-10-22 | 2015-09-30 | The Regents of The University of California | Biomarkers for prenatal diagnosis of congenital cytomegalovirus |
WO2009055487A1 (en) | 2007-10-22 | 2009-04-30 | The Regents Of The University Of California | Biomarkers for prenatal diagnosis of congenital cytomegalovirus |
EP2518509A2 (en) | 2008-03-05 | 2012-10-31 | The Regents of the University of California | Molecular prognosis and classification of malignant melanoma based upon markers selected from the list consisting of RGS1, NCOA3, SPP1, PHIP. |
US10485879B2 (en) | 2008-04-15 | 2019-11-26 | Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, National Institutes Of Health | Plasma cell cytokine vehicle containing fusion proteins for targeted introduction of siRNA into cells and tissues |
JP2015096073A (en) * | 2008-04-15 | 2015-05-21 | アメリカ合衆国GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTHAND HUMAN SERVICES | Composition and method for delivering inhibitory oligonucleotides |
WO2009129281A2 (en) | 2008-04-15 | 2009-10-22 | Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for delivering inhibitory oligonucleotides |
AU2009236270B2 (en) * | 2008-04-15 | 2014-06-26 | Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for delivering inhibitory oligonucleotides |
US8703921B2 (en) | 2008-04-15 | 2014-04-22 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for delivering inhibitory oligonucleotides |
JP2011520424A (en) * | 2008-04-15 | 2011-07-21 | アメリカ合衆国 | Compositions and methods for delivering inhibitory oligonucleotides |
WO2009129281A3 (en) * | 2008-04-15 | 2010-12-16 | Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for delivering inhibitory oligonucleotides |
US10765694B2 (en) | 2008-04-15 | 2020-09-08 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions and methods for delivering inhibitory oligonucleotides |
US9415116B2 (en) | 2008-04-15 | 2016-08-16 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Compositions and methods for delivering inhibitory oligonucleotides |
WO2009140679A2 (en) | 2008-05-16 | 2009-11-19 | The Children's Hospital Of Philadelphia | Genetic alterations on chromosomes 21q, 6q and 15q and methods of use thereof for the diagnosis and treatment of type i diabetes |
WO2009155100A1 (en) | 2008-05-30 | 2009-12-23 | Yale University | Targeted oligonucleotide compositions for modifying gene expression |
WO2009149182A1 (en) | 2008-06-04 | 2009-12-10 | The Board Of Regents Of The University Of Texas System | Modulation of gene expression through endogenous small rna targeting of gene promoters |
EP2165710A1 (en) | 2008-09-19 | 2010-03-24 | Institut Curie | Tyrosine kinase receptor Tyro3 as a therapeutic target in the treatment of a bladder tumor |
EP2902013A1 (en) | 2008-10-16 | 2015-08-05 | Marina Biotech, Inc. | Processes and Compositions for Liposomal and Efficient Delivery of Gene Silencing Therapeutics |
EP3495488A1 (en) | 2008-10-27 | 2019-06-12 | Baxalta GmbH | Models of thrombotic thrombocytopenic purpura and methods of use thereof |
US9587249B2 (en) | 2008-10-27 | 2017-03-07 | Baxalta GmbH | Models of thrombotic thrombocytopenic purpura and methods of use thereof |
EP2198879A1 (en) | 2008-12-11 | 2010-06-23 | Institut Curie | CD74 modulator agent for regulating dendritic cell migration and device for studying the motility capacity of a cell |
EP3266795A1 (en) | 2009-02-12 | 2018-01-10 | Cell Signaling Technology, Inc. | Method for detecting a fig-ros fusion polynucleotide |
EP2881402A1 (en) | 2009-02-12 | 2015-06-10 | Cell Signaling Technology, Inc. | Mutant ROS expression in human liver cancer |
WO2010093928A2 (en) | 2009-02-12 | 2010-08-19 | Cell Signaling Technology, Inc. | Mutant ros expression in human cancer |
WO2010091878A2 (en) | 2009-02-13 | 2010-08-19 | Silence Therapeutics Ag | Means for inhibiting the expression of opa1 |
WO2010094491A1 (en) | 2009-02-18 | 2010-08-26 | Silence Therapeutics Ag | Means for inhibiting the expression of ang2 |
WO2010107955A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF BTB AND CNC HOMOLOGY 1, BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 1 (BACH 1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) SEQUENCE LISTING |
WO2010107957A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107952A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010107958A1 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 6 (STAT6) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111471A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1 (STAT1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111468A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE NERVE GROWTH FACTOR BETA CHAIN (NGFß) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (SINA) |
WO2010111464A1 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111497A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE INTERCELLULAR ADHESION MOLECULE 1 (ICAM-1)GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010111490A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE THYMIC STROMAL LYMPHOPOIETIN (TSLP) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2010115993A1 (en) | 2009-04-10 | 2010-10-14 | Association Institut De Myologie | Tricyclo-dna antisense oligonucleotides, compositions, and methods for the treatment of disease |
WO2010124231A2 (en) | 2009-04-24 | 2010-10-28 | The Board Of Regents Of The University Of Texas System | Modulation of gene expression using oligomers that target gene regions downstream of 3' untranslated regions |
WO2010146055A1 (en) | 2009-06-15 | 2010-12-23 | Institut Curie | Antagonists of beta-catenin for preventing and/or treating neurodegenerative disorders |
US9206424B2 (en) | 2009-12-09 | 2015-12-08 | Nitto Denko Corporation | Modulation of HSP47 expression |
US10093923B2 (en) | 2009-12-09 | 2018-10-09 | Nitto Denko Corporation | Modulation of HSP47 expression |
EP3434773A2 (en) | 2009-12-09 | 2019-01-30 | Nitto Denko Corporation | Modulation of hsp47 expression |
US8710209B2 (en) | 2009-12-09 | 2014-04-29 | Nitto Denko Corporation | Modulation of HSP47 expression |
EP3012324A2 (en) | 2009-12-09 | 2016-04-27 | Nitto Denko Corporation | Modulation of hsp47 expression |
US9597346B2 (en) | 2010-01-15 | 2017-03-21 | Cornell University | Methods for reducing protein levels in a cell |
WO2011094759A2 (en) | 2010-02-01 | 2011-08-04 | The Regents Of The University Of California | Novel diagnostic and therapeutic targets associated with or regulated by n-cadherin expression and/or epithelial to mesenchymal transition (emt) in prostate cancer and other malignancies |
WO2011120023A1 (en) | 2010-03-26 | 2011-09-29 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting survivin gene expression uses thereof |
WO2011133584A2 (en) | 2010-04-19 | 2011-10-27 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting hras gene expression and uses thereof |
WO2011139842A2 (en) | 2010-04-28 | 2011-11-10 | Marina Biotech, Inc. | Nucleic acid compounds for inhibiting fgfr3 gene expression and uses thereof |
WO2011139843A2 (en) | 2010-04-28 | 2011-11-10 | Marina Biotech, Inc. | Multi-sirna compositions for reducing gene expression |
WO2011146938A1 (en) | 2010-05-21 | 2011-11-24 | NanoOncology, Inc. | Reagents and methods for treating cancer |
EP3190187A1 (en) | 2010-05-21 | 2017-07-12 | Peptimed, Inc. | Reagents and methods for treating cancer |
WO2011151321A1 (en) | 2010-05-31 | 2011-12-08 | Institut Curie | Asf1b as a prognosis marker and therapeutic target in human cancer |
WO2011163436A1 (en) | 2010-06-24 | 2011-12-29 | Quark Pharmaceuticals, Inc. | Double stranded rna compounds to rhoa and use thereof |
EP3330377A1 (en) | 2010-08-02 | 2018-06-06 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of catenin (cadherin-associated protein), beta 1 (ctnnb1) gene expression using short interfering nucleic acid (sina) |
WO2012018754A2 (en) | 2010-08-02 | 2012-02-09 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CATENIN (CADHERIN-ASSOCIATED PROTEIN), BETA 1 (CTNNB1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2012017208A1 (en) | 2010-08-04 | 2012-02-09 | Cizzle Biotechnology Limited | Methods and compounds for the diagnosis and treatment of |
WO2012019132A2 (en) | 2010-08-06 | 2012-02-09 | Cell Signaling Technology, Inc. | Anaplastic lymphoma kinase in kidney cancer |
WO2012024170A2 (en) | 2010-08-17 | 2012-02-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF HEPATITIS B VIRUS (HBV) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
EP4079856A1 (en) | 2010-08-17 | 2022-10-26 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of hepatitis b virus (hbv) gene expression using short interfering nucleic acid (sina) |
WO2012027206A1 (en) | 2010-08-24 | 2012-03-01 | Merck Sharp & Dohme Corp. | SINGLE-STRANDED RNAi AGENTS CONTAINING AN INTERNAL, NON-NUCLEIC ACID SPACER |
EP3372684A1 (en) | 2010-08-24 | 2018-09-12 | Sirna Therapeutics, Inc. | Single-stranded rnai agents containing an internal, non-nucleic acid spacer |
WO2012027467A1 (en) | 2010-08-26 | 2012-03-01 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF PROLYL HYDROXYLASE DOMAIN 2 (PHD2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
WO2012047631A2 (en) | 2010-09-27 | 2012-04-12 | The Children's Hospital Of Philadelphia | Compositions and methods useful for the treatment and diagnosis of inflammatory bowel disease |
WO2012044979A2 (en) | 2010-10-01 | 2012-04-05 | The Goverment Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Manipulation of stem cell function by p53 isoforms |
US9994915B2 (en) | 2010-10-11 | 2018-06-12 | Sanford-Burnham Medical Research Institute | miR-211 expression and related pathways in human melanoma |
EP3327125A1 (en) | 2010-10-29 | 2018-05-30 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of gene expression using short interfering nucleic acids (sina) |
EP3766975A1 (en) | 2010-10-29 | 2021-01-20 | Sirna Therapeutics, Inc. | Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina) |
US9260471B2 (en) | 2010-10-29 | 2016-02-16 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA) |
US11932854B2 (en) | 2010-10-29 | 2024-03-19 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA) |
US9970005B2 (en) | 2010-10-29 | 2018-05-15 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA) |
US11193126B2 (en) | 2010-10-29 | 2021-12-07 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA) |
WO2012058210A1 (en) | 2010-10-29 | 2012-05-03 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACIDS (siNA) |
WO2012061443A2 (en) | 2010-11-01 | 2012-05-10 | NanoOncology, Inc. | Compositions of a peptide-based system for cell-specific targeting |
EP2455456A1 (en) | 2010-11-22 | 2012-05-23 | Institut Curie | Use of kinesin inhibitors in HIV infection treatment and a method for screening them |
WO2012069432A1 (en) | 2010-11-22 | 2012-05-31 | Institut Curie | Use of kinesin inhibitors in hiv infection treatment and a method for screening them |
WO2012112691A1 (en) | 2011-02-15 | 2012-08-23 | Immune Design Corp. | Methods for enhancing immunogen specific immune responses by vectored vaccines |
WO2012118910A2 (en) | 2011-03-03 | 2012-09-07 | Quark Pharmaceuticals, Inc. | Compositions and methods for treating lung disease and injury |
WO2012141984A1 (en) | 2011-04-08 | 2012-10-18 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
US9044420B2 (en) | 2011-04-08 | 2015-06-02 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
EP3632463A1 (en) | 2011-04-08 | 2020-04-08 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
WO2012162373A1 (en) | 2011-05-23 | 2012-11-29 | Cell Signaling Technology, Inc. | Ros kinase in lung cancer |
EP3182128A1 (en) | 2011-05-23 | 2017-06-21 | Cell Signaling Technology, Inc. | Ros kinase in lung cancer |
EP3492918A1 (en) | 2011-05-23 | 2019-06-05 | Cell Signaling Technology, Inc. | Ros kinase in lung cancer |
WO2012175481A1 (en) | 2011-06-20 | 2012-12-27 | Institut Curie | Compositions and methods for treating leukemia |
EP3048111A1 (en) | 2011-07-15 | 2016-07-27 | Fundació Institut de Recerca Biomèdica de Bellvitge | Compositions and methods for immunomodulation |
WO2013010998A2 (en) | 2011-07-15 | 2013-01-24 | Fundació Institut D'investigació Biomèdica De Bellvitge (Idibell) | Compositions and methods for immunomodulation |
EP2557089A2 (en) | 2011-07-15 | 2013-02-13 | Fundació Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) | Compositions and methods for immunomodulation |
EP2581448A1 (en) | 2011-10-13 | 2013-04-17 | Association Institut de Myologie | Tricyclo-phosphorothioate DNA |
WO2013053928A1 (en) | 2011-10-13 | 2013-04-18 | Association Institut De Myologie | Tricyclo-phosphorothioate dna |
WO2013071154A1 (en) | 2011-11-11 | 2013-05-16 | Fred Hutchinson Cancer Research Center | Cyclin a1-targeted t-cell immunotherapy for cancer |
WO2013106494A1 (en) | 2012-01-12 | 2013-07-18 | Quark Pharmaceuticals, Inc. | Combination therapy for treating hearing and balance disorders |
EP2617434A1 (en) | 2012-01-20 | 2013-07-24 | Laboratorios Del. Dr. Esteve, S.A. | HIV-1 integrase deficient immunogens and methods for loading dendritic cells with said immunogens |
WO2013123996A1 (en) | 2012-02-24 | 2013-08-29 | Astrazeneca Uk Limited | Novel sirna inhibitors of human icam-1 |
EP3336181A1 (en) | 2012-04-18 | 2018-06-20 | Cell Signaling Technology, Inc. | Egfr and ros1 in cancer |
WO2014043292A1 (en) | 2012-09-12 | 2014-03-20 | Quark Pharmaceuticals, Inc. | Double-stranded oligonucleotide molecules to p53 and methods of use thereof |
WO2014043289A2 (en) | 2012-09-12 | 2014-03-20 | Quark Pharmaceuticals, Inc. | Double-stranded oligonucleotide molecules to ddit4 and methods of use thereof |
US11261444B2 (en) | 2013-02-28 | 2022-03-01 | Arrowhead Pharmaceuticals, Inc. | Organic compositions to treat EPAS1-related diseases |
WO2014135655A1 (en) | 2013-03-06 | 2014-09-12 | Institut Curie | Compositions and methods for treating muscle-invasive bladder cancer |
WO2014138687A1 (en) | 2013-03-08 | 2014-09-12 | Irm Llc | Peptides and compositions for treatment of joint damage |
EP3391900A1 (en) | 2013-03-08 | 2018-10-24 | Novartis AG | Peptides and compositions for treatment of joint damage |
WO2014154898A1 (en) | 2013-03-29 | 2014-10-02 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Prognosis and treatment of cancers |
WO2015020960A1 (en) | 2013-08-09 | 2015-02-12 | Novartis Ag | Novel lncrna polynucleotides |
EP2853595A1 (en) | 2013-09-30 | 2015-04-01 | Soluventis GmbH | NOTCH 1 specific siRNA molecules |
WO2015043768A1 (en) | 2013-09-30 | 2015-04-02 | Soluventis Gmbh | Notch 1 specific sirna molecule |
EP3542816A1 (en) | 2014-02-14 | 2019-09-25 | Immune Design Corp. | Immunotherapy of cancer through combination of local and systemic immune stimulation |
WO2015123496A1 (en) | 2014-02-14 | 2015-08-20 | Immune Design Corp. | Immunotherapy of cancer through combination of local and systemic immune stimulation |
WO2015175487A1 (en) | 2014-05-13 | 2015-11-19 | Novartis Ag | Compounds and compositions for inducing chondrogenesis |
US10006025B2 (en) | 2014-06-17 | 2018-06-26 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of alpha-1 AntiTrypsin |
WO2015195628A2 (en) | 2014-06-17 | 2015-12-23 | Arrowhead Research Corporation | Compositions and methods for inhibiting gene expression of alpha-1 antitrypsin |
US11384355B2 (en) | 2014-06-17 | 2022-07-12 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of alpha-1 AntiTrypsin |
WO2016011083A1 (en) | 2014-07-15 | 2016-01-21 | Immune Design Corp. | Prime-boost regimens with a tlr4 agonist adjuvant and a lentiviral vector |
WO2016032595A1 (en) | 2014-08-27 | 2016-03-03 | Peptimed, Inc. | Anti-tumor compositions and methods |
US10111898B2 (en) | 2014-08-27 | 2018-10-30 | Peptimed, Inc. | Anti-tumor compositions and methods |
WO2016083624A1 (en) | 2014-11-28 | 2016-06-02 | Silence Therapeutics Gmbh | Means for inhibiting the expression of edn1 |
US9803205B2 (en) | 2015-03-17 | 2017-10-31 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of factor XII |
US10308941B2 (en) | 2015-03-17 | 2019-06-04 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of factor XII |
US10858658B2 (en) | 2015-03-17 | 2020-12-08 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of factor XII |
US10927373B2 (en) | 2015-05-29 | 2021-02-23 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of Hif2alpha |
WO2016196366A1 (en) | 2015-05-29 | 2016-12-08 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Extension of replicative lifespan in diseases of premature aging using p53 isoforms |
US11840688B2 (en) | 2015-05-29 | 2023-12-12 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of Hif2alpha |
US9976141B2 (en) | 2015-05-29 | 2018-05-22 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of Hif2alpha |
US11534453B2 (en) | 2015-08-07 | 2022-12-27 | Arrowhead Pharmaceuticals, Inc. | RNAi therapy for hepatitis B virus infection |
US10662427B2 (en) | 2015-10-01 | 2020-05-26 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of LPA |
EP4029941A1 (en) | 2015-10-01 | 2022-07-20 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of lpa |
US9932586B2 (en) | 2015-10-01 | 2018-04-03 | Arrowhead Pharmaceuticals, Inc. | Compositions and methods for inhibiting gene expression of LPA |
EP3156497A1 (en) | 2015-10-16 | 2017-04-19 | Centre National de la Recherche Scientifique (C.N.R.S.) | Trpv2 as a biomarker and as a therapeutic target for melanoma |
WO2017064159A1 (en) | 2015-10-16 | 2017-04-20 | Centre National De La Recherche Scientifique - Cnrs - | Trpv2 as a biomarker and as a therapeutic target for melanoma |
WO2017184586A1 (en) | 2016-04-18 | 2017-10-26 | The Trustees Of Columbia University In The City Of New York | Therapeutic targets involved in the progression of nonalcoholic steatohepatitis (nash) |
US11078227B2 (en) | 2016-06-06 | 2021-08-03 | Arrowhead Pharmaceuticals, Inc. | 5′-cyclo-phosphonate modified nucleotides |
WO2017214112A1 (en) | 2016-06-06 | 2017-12-14 | Arrowhead Pharmaceuticals, Inc. | 5'-cyclo-phosphonate modified nucleotides |
EP3269734A1 (en) | 2016-07-15 | 2018-01-17 | Fundació Privada Institut d'Investigació Oncològica de Vall-Hebron | Methods and compositions for the treatment of cancer |
WO2018011433A1 (en) | 2016-07-15 | 2018-01-18 | Fundació Privada Institut D'investigació Oncològica De Vall Hebron | Methods and compositions for the treatment of cancer |
US11427621B2 (en) | 2016-07-15 | 2022-08-30 | Institucio Catalana De Recerca I Estudis Avancats | Methods and compositions for the treatment of cancer |
US11590156B2 (en) | 2016-08-04 | 2023-02-28 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for hepatitis B virus infection |
US11517584B2 (en) | 2016-08-04 | 2022-12-06 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for Hepatitis B virus infection |
US10780108B2 (en) | 2016-08-04 | 2020-09-22 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for Hepatitis B virus infection |
WO2018027106A2 (en) | 2016-08-04 | 2018-02-08 | Arrowhead Pharmaceuticals, Inc. | RNAi AGENTS FOR HEPATITIS B VIRUS INFECTION |
EP4364808A2 (en) | 2016-08-04 | 2024-05-08 | Arrowhead Pharmaceuticals, Inc. | Rnai agents for hepatitis b virus infection |
US11884920B2 (en) | 2017-01-10 | 2024-01-30 | Arrowhead Pharmaceuticals, Inc. | Alpha-1 antitrypsin (AAT) RNAi agents, compositions including AAT RNAi agents, and methods of use |
US10590416B2 (en) | 2017-07-06 | 2020-03-17 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of alpha-ENaC and methods of use |
US11214802B2 (en) | 2017-07-06 | 2022-01-04 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of alpha-ENaC and methods of use |
EP3449978A1 (en) | 2017-09-01 | 2019-03-06 | Universite Paris Descartes | Inhibitors of aryl hydrocarbon receptor for treating soft-tissue sarcoma and preventing neurofibroma growth and/or transformation to malignant peripheral nerve sheath tumors |
US11214801B2 (en) | 2017-09-11 | 2022-01-04 | Arrowhead Pharmaceuticals, Inc. | RNAi agents and compositions for inhibiting expression of apolipoprotein C-III (APOC3) |
US10597657B2 (en) | 2017-09-11 | 2020-03-24 | Arrowhead Pharmaceuticals, Inc. | RNAi agents and compositions for inhibiting expression of apolipoprotein C-III (APOC3) |
US10995335B2 (en) | 2017-09-14 | 2021-05-04 | Arrowhead Pharmaceuticals, Inc. | RNAi agents and compositions for inhibiting expression of angiopoietin-like 3 (ANGPTL3), and methods of use |
WO2019068326A1 (en) | 2017-10-05 | 2019-04-11 | Université D'aix-Marseille | Lsd1 inhibitors for the treatment and prevention of cardiomyopathies |
US11492624B2 (en) | 2017-10-17 | 2022-11-08 | Arrowheads Pharmaceuticals, Inc. | RNAi agents and compositions for inhibiting expression of Asialoglycoprotein receptor 1 |
US11725194B2 (en) | 2017-12-19 | 2023-08-15 | Janssen Sciences Ireland Unlimited Company | Hepatitis B virus (HBV) vaccines and uses thereof |
WO2020163747A1 (en) | 2019-02-07 | 2020-08-13 | Arrowhead Pharmaceuticals, Inc. | Rnai agents for hepatitis b virus infection |
WO2020187998A1 (en) | 2019-03-19 | 2020-09-24 | Fundació Privada Institut D'investigació Oncològica De Vall Hebron | Combination therapy with omomyc and an antibody binding pd-1 or ctla-4 for the treatment of cancer |
WO2020214974A1 (en) | 2019-04-18 | 2020-10-22 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
WO2020214976A1 (en) | 2019-04-18 | 2020-10-22 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
WO2020255007A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and hbv-targeting rnai |
WO2020255008A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | COMBINATION OF HEPATITIS B VIRUS (HBV) VACCINES AND HBV-TARGETING RNAi |
EP3808763A1 (en) | 2019-10-17 | 2021-04-21 | Fundació Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) | Compounds for immunomodulation |
WO2021074449A1 (en) | 2019-10-17 | 2021-04-22 | Fundació Institut D'investigació Biomèdica De Bellvitge (Idibell) | Compounds for immunomodulation |
WO2021175966A1 (en) | 2020-03-04 | 2021-09-10 | Ninovax | Products for suppressing or reducing the expression or activity of a snorna and uses thereof in the treatment of cancer |
WO2021178612A1 (en) | 2020-03-05 | 2021-09-10 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
US12054718B2 (en) | 2020-03-26 | 2024-08-06 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of PNPLA3, pharmaceutical compositions thereof, and methods of use |
WO2021195467A2 (en) | 2020-03-26 | 2021-09-30 | Arrowhead Pharmaceuticals, Inc. | RNAi AGENTS FOR INHIBITING EXPRESSION OF PNPLA3, PHARMACEUTICAL COMPOSITIONS THEREOF, AND METHODS OF USE |
WO2021263271A1 (en) | 2020-06-22 | 2021-12-30 | Janssen Pharmaceuticals, Inc. | Compositions and methods for treatment of hepatitis d virus infection |
US11845937B2 (en) | 2020-09-11 | 2023-12-19 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of DUX4, compositions thereof, and methods of use |
WO2022056277A1 (en) | 2020-09-11 | 2022-03-17 | Arrowhead Pharmaceuticals, Inc. | Skeletal muscle delivery platforms and methods of use |
WO2022056273A1 (en) | 2020-09-11 | 2022-03-17 | Arrowhead Pharmaceuticals, Inc. | Lipid conjugates for the delivery of therapeutic agents |
WO2022056266A2 (en) | 2020-09-11 | 2022-03-17 | Arrowhead Pharmaceuticals, Inc. | Rnai agents for inhibiting expression of dux4, compositions thereof, and methods of use |
WO2022133230A1 (en) | 2020-12-18 | 2022-06-23 | Janssen Pharmaceuticals, Inc. | Combination therapy for treating hepatitis b virus infection |
WO2022152869A1 (en) | 2021-01-15 | 2022-07-21 | Janssen Sciences Ireland Unlimited Company | Use of oligonucleotides for individuals with hepatic impairment |
US11629349B2 (en) | 2021-06-21 | 2023-04-18 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of xanthine dehydrogenase (XDH), pharmaceutical compositions thereof, and methods of use |
US11549112B1 (en) | 2021-06-21 | 2023-01-10 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of xanthine dehydrogenase (XDH), pharmaceutical compositions thereof, and methods of use |
WO2023281434A1 (en) | 2021-07-09 | 2023-01-12 | Janssen Pharmaceuticals, Inc. | Use of oligonucleotides for individuals with renal impairment |
WO2023069987A1 (en) | 2021-10-20 | 2023-04-27 | University Of Rochester | Rejuvenation treatment of age-related white matter loss cross reference to related application |
WO2023069979A1 (en) | 2021-10-20 | 2023-04-27 | University Of Rochester | Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss |
WO2023233290A1 (en) | 2022-05-31 | 2023-12-07 | Janssen Sciences Ireland Unlimited Company | Rnai agents targeting pd-l1 |
US11912997B2 (en) | 2022-06-15 | 2024-02-27 | Arrowhead Pharmaceuticals, Inc. | RNAi agents for inhibiting expression of Superoxide Dismutase 1 (SOD1), compositions thereof, and methods of use |
WO2024089013A1 (en) | 2022-10-25 | 2024-05-02 | Peptomyc, S.L. | Combination therapy for the treatment of cancer |
WO2024126765A1 (en) | 2022-12-16 | 2024-06-20 | Université De Strasbourg | Rnai-based therapies targeting claudin-1 for the treatment and prevention of fibrotic diseases |
WO2024163747A2 (en) | 2023-02-02 | 2024-08-08 | University Of Rochester | Competitive replacement of glial cells |
EP4410825A1 (en) | 2023-02-03 | 2024-08-07 | Servizo Galego de Saude | Fragments of the n-terminal domain of gsdmb for the treatment of cancer |
WO2024161037A1 (en) | 2023-02-03 | 2024-08-08 | Servizo Galego De Saúde | Fragments of the n-terminal domain of gsdmb for the treatment of cancer. |
Also Published As
Publication number | Publication date |
---|---|
AU3176500A (en) | 2000-09-28 |
WO2000053722A3 (en) | 2001-07-12 |
EP1159441B1 (en) | 2008-09-17 |
US20040171044A1 (en) | 2004-09-02 |
ATE408699T1 (en) | 2008-10-15 |
CA2365625A1 (en) | 2000-09-14 |
DE60040274D1 (en) | 2008-10-30 |
AU767195B2 (en) | 2003-11-06 |
MXPA01009073A (en) | 2002-05-06 |
EP1159441B8 (en) | 2008-10-29 |
JP2002537828A (en) | 2002-11-12 |
EP1159441A2 (en) | 2001-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1159441B1 (en) | Delivery of nucleic acids and proteins to cells | |
AU683400B2 (en) | Use of a bacterial component to enhance targeted delivery of polynucleotides to cells | |
US6740524B1 (en) | Nucleic acid transfer phage | |
JP2002502243A (en) | Integrin-targeting vector with transfection activity | |
CA2241923C (en) | Receptor-mediated gene transfer system for targeting tumor gene therapy | |
CA2406233A1 (en) | Compositions for drug delivery | |
US20070098702A1 (en) | Recombinant protein polymer vectors for systemic gene delivery | |
US20060189558A1 (en) | Delivery of substances to cells | |
US20070054401A1 (en) | Composition for intracellular transport of biological particles or macromolecules | |
US20090186413A1 (en) | Mussel adhesive protein as gene delivery | |
Farnia et al. | Increased production of soluble vascular endothelial growth factors receptor-1 in CHO-cell line by using new combination of chitosan-protein lipid nanoparticles | |
US20030125239A1 (en) | Compositions for drug delivery | |
US20070105765A1 (en) | Compositions comprising a fragment of the herpesviral protein vp22 for delivery of substances to cells | |
JP3095248B2 (en) | Nucleic acid carrier | |
WO2021222899A1 (en) | Controlled modification of adeno-associated virus (aav) for enhanced gene therapy | |
KR20010019371A (en) | Tissue-specific gene delivery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
ENP | Entry into the national phase |
Ref document number: 2365625 Country of ref document: CA Ref country code: CA Ref document number: 2365625 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000909483 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 603347 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2001/009073 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 31765/00 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2000909483 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 31765/00 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000909483 Country of ref document: EP |