WO2000052112A1 - Cold-storage material with excellent shape stability and process for producing the same - Google Patents

Cold-storage material with excellent shape stability and process for producing the same Download PDF

Info

Publication number
WO2000052112A1
WO2000052112A1 PCT/JP2000/001445 JP0001445W WO0052112A1 WO 2000052112 A1 WO2000052112 A1 WO 2000052112A1 JP 0001445 W JP0001445 W JP 0001445W WO 0052112 A1 WO0052112 A1 WO 0052112A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
storage material
water
mass
composition
Prior art date
Application number
PCT/JP2000/001445
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyoshi Watanabe
Seio Sato
Original Assignee
Toyo Eizai Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Eizai Kabushiki Kaisha filed Critical Toyo Eizai Kabushiki Kaisha
Priority to AU29404/00A priority Critical patent/AU2940400A/en
Publication of WO2000052112A1 publication Critical patent/WO2000052112A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a cold storage material having excellent shape stability, for example, a cold storage material that can be used by hanging it on a wall of a cold storage box.
  • the most common cold storage material is ice. It has been used for cold storage of fresh foods, ice sacs, ice pillows, etc. for a long time, but its use is limited because it becomes just water after thawing. For this reason, a plastic film bag or the like, which is filled with water and frozen, or a gel formed by using a water-absorbent resin together with water is used. Further, a regenerator material having a configuration in which water droplets are contained in an oily polymer constituting a gel layer is also known. However, these regenerator materials retain their shape when frozen, but only become amorphous after thawing.
  • the cooling system may be operated for a long time while cooling is required.
  • the cooling system is stopped or separated from the cooling system, and the low temperature is maintained by relying on the airtightness and heat insulation of the cool box and cool car. This is due to the cost of maintaining the cooling system.
  • the cold storage material used for such applications is thin in order to increase heat transfer efficiency and surface area. It is desirably a meat rectangular shape (it may be a square shape, hereinafter represented by “rectangular shape”).
  • the present invention has been made in view of the above-mentioned problems of the prior art, and provides a cold storage material having excellent shape stability, for example, capable of maintaining a thin rectangular shape even in a suspended state at the time of thawing. Raised as an issue. Another object is to provide a suitable method for producing such a cold storage material. Disclosure of the invention
  • the regenerator material of the present invention has a concentration of 10% by mass or more with respect to 100 parts by mass of the superabsorbent resin that has absorbed 40 to 150 times by mass of the weight of the superabsorbent resin at the time of drying.
  • the gist lies in that the composition for a cold storage material containing a vinyl alcohol aqueous solution in a proportion of 25 parts by mass or more is a frozen product. Since the cold storage material of this configuration retains a rectangular shape even after defrosting, it is most suitable as a cold storage material for cold storage and cold storage vehicles.
  • FIG. 1 is a side view for explaining a method of measuring “hip strength”
  • FIG. 2 is a side sectional view of a refrigerator
  • FIG. 3 is a sectional view taken along line AA of FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the regenerator material of the present invention is a composition for a regenerator material comprising, as essential components, a superabsorbent resin that has absorbed water at a high magnification and an aqueous solution of polyvinyl alcohol (hereinafter abbreviated as PVA) capable of forming a gel by freezing. It is obtained by freezing things.
  • PVA polyvinyl alcohol
  • the most important feature of the present invention is that the amount and concentration of the superabsorbent resin, which is an essential component for exhibiting the cool storage effect, and the amount and concentration of the PVA aqueous solution for ensuring the gel strength and shape stability are in the optimal range. It has been decided to.
  • the regenerative material of the present invention has shape stability such that it can be hung without any other member (eg, a bag or the like) for stabilizing the shape.
  • any other member eg, a bag or the like
  • the water in the superabsorbent resin and the water contained in the PVA gel that have sufficiently absorbed water are frozen, a cold storage effect is exhibited more than conventional cold storage materials.
  • even if a part of water evaporates due to freezing it can be re-absorbed and re-frozen, and the shape stability of the cold storage material itself can be maintained. It can now be used.
  • a configuration of 100 parts by mass or less is a preferred embodiment from the viewpoint of improving the gel strength.
  • the composition for a cold storage material may contain 2 to 8 parts by mass of pulp fiber based on 100 parts by mass of the superabsorbent resin that has absorbed water. Shape stability is further improved.
  • the frozen body of the composition for a cold storage material is covered with one or more sheets. Can be adopted.
  • a metal foil and a Z or breathable material are preferred. With the configuration covered with the metal foil, the shape stability can be improved without losing water during freezing and thawing.
  • the cold storage material is covered with a breathable material, a material that hinders the heat transfer effect is not used, so that the air storage medium can exhibit the cold storage effect more effectively.
  • the sheet is made of a breathable material
  • the surface of the superabsorbent resin that has absorbed water is completely or partially covered by the substance that has gelled by freezing. Lose less.
  • the cold storage material comprising the pulp-free type cold storage material composition of the present invention is capable of absorbing water in an amount of 40 to 150 mass times the weight of the superabsorbent resin at the time of drying by the superabsorbent resin, and separately An aqueous solution of polyvinyl alcohol having a concentration of 10% by mass or more is prepared, and then the water-absorbing superabsorbent resin and the aqueous solution of polyvinyl alcohol are mixed to form a composition for a cold storage material. Thereafter, the composition for a cold storage material is frozen. It is preferable to manufacture by carrying out.
  • pulp-containing type prepare pulp fiber dispersion water in which a predetermined amount of pulp fiber is dispersed in a predetermined amount of water, and add water-absorbent superabsorbent resin to this pulp fiber dispersion water to absorb water.
  • water-absorbent superabsorbent resin Depending on the weight of the superabsorbent resin at the time of drying, between 40 and 150 mass times the weight of the superabsorbent resin, and between 2 and 8 mass per 100 mass parts of the superabsorbent resin after water absorption.
  • a pulp fiber in a ratio of 10 parts by mass and a mixture of the mixture and a separately prepared aqueous solution of polyvinyl alcohol having a concentration of 10% by mass or more were mixed to form a composition for a cold storage material. It is preferable to employ a method of freezing the composition.
  • the present invention will be described in more detail.
  • the first essential component of the composition for a cold storage material used to obtain the cold storage material of the present invention is a superabsorbent resin that has absorbed water. Higher water absorption than PVA gel alone This is because the combination of resin and PVA gel has a high cooling effect.
  • the latent heat of fusion of water is about 80 kca 1 / kg, which has a large cold storage effect.
  • the latent heat of cold storage material is more than 60 kca 1 / kg, which is close to the latent heat of water.
  • the frozen regenerator material of the above composition and a gel (4.5 cm X 3.0 cm X 2 to 2.5 cm each) obtained from a 15% aqueous PVA solution were mixed at 29.5 °.
  • the time required from 15 ° C to + 5 ° C was longer for the cold storage material of the present invention (142 minutes)
  • the PVA single gel reached +5 in about 80% of the time (111 minutes) of the cold storage material of the present invention. That is, the cold storage effect of the superabsorbent resin was confirmed.
  • the melting point (solidification point) of the cold storage material of the present invention was 0 ° C. If the freezing point is too low, disadvantages such as a long freezing time may occur depending on the performance of the freezer. However, since the cold storage material of the present invention does not have a low freezing point, it can be frozen even in a home freezer. Is high.
  • the superabsorbent resin any of a crushed body, a powder, a fiber and the like can be used, but in consideration of a water absorption ratio and shape retention in a gel, the superabsorbent resin powder (crushed) (Including body shape) is preferred.
  • the amount of water to be absorbed by the superabsorbent resin is 40 to 150 times the mass of the superabsorbent resin when dried (self-weight). If the water absorption is less than 40 times, a suitable cold storage effect is not exhibited. In addition, since the water absorption is small, the swelling degree of the highly water-absorbent resin is low and it remains in a fine powder form. However, it is difficult to obtain a uniform mixture. On the other hand, if it exceeds 150 times, the strength of the gel body becomes weak, which is not preferable.
  • the PVA gel and the swelling particles may be frozen. Since the adhesive strength is hardly developed, it is preferable to absorb water to a level where free water does not exist even in the above range of water absorption, in consideration of the water absorption limit of the superabsorbent resin.
  • the superabsorbent resin examples include a cross-linked polyacrylic acid partially neutralized product, a self-cross-linked sodium polyacrylate, a starch-acrylonitrile graft copolymer or a neutralized product thereof, and a starch-acrylic acid graft copolymer. Or a neutralized product thereof, a vinyl acetate-acrylate copolymer copolymer, an acrylonitrile copolymer or a hydrolyzate or cross-linked product of an acrylamide copolymer, and maleic acid and ⁇ -one-year-old olefin copolymer.
  • easily available general-purpose crosslinked products of partially neutralized polyacrylic acid, self-crosslinked sodium polyacrylate, and starch-acrylic acid graft copolymer can be preferably used.
  • an aqueous solution of polyvinyl alcohol (PVA) is selected as the second essential component of the composition for a cold storage material, as it has a shape stability that can be gelled by freezing and can be suspended only by a frozen product.
  • PVA polyvinyl alcohol
  • a gelling substance agar, gelatin, lactogenin, agarose, pectin, sodium alginate, carboxymethylcellulose, dextran, konjac mannan, rubbers and the like are known.
  • aldehydes such as formaldehyde, daltaraldehyde, terephthalaldehyde, amines such as hexamethylenediamine, hydroxyl-containing compounds such as phenol, boric acid, and various polyvalent metal ion-containing compounds.
  • aldehydes such as formaldehyde, daltaraldehyde, terephthalaldehyde, amines such as hexamethylenediamine, hydroxyl-containing compounds such as phenol, boric acid, and various polyvalent metal ion-containing compounds.
  • the PVA aqueous solution gels by freezing, and forms a gel with very good shape stability that does not break down even when thawed. Therefore, in the present invention, PVA was selected as the gelling substance. If the degree of degradation of PVA is low, a gel having shape stability cannot be obtained. Therefore, it is preferable to select a gel having a degree of degradation of 96% or more. It is more preferably at least 98%, most preferably a completely modified type. It is preferable to select a polymerization degree of 100 or more from the viewpoint of gel shape stability.
  • the concentration of the PVA aqueous solution is an important factor that affects gel strength.
  • those having the above-mentioned high degree of polymerization and high degree of polymerization have a high viscosity when converted into an aqueous solution, so that from the viewpoint of workability, the concentration cannot be too high.
  • the ratio of the superabsorbent resin to the aqueous PVA solution in the composition for a cold storage material must be not less than 25 parts by mass of the aqueous PVA solution based on 100 parts by mass of the superabsorbent resin after absorbing water. If the amount is less than 25 parts by mass, the shape stability effect of the PVA gel cannot be sufficiently obtained, and if water is absorbed again after thawing, the swollen superabsorbent resin may fall apart. In order to obtain a strong gel which can be hung for a long time, the amount is preferably at least 30 parts by mass, more preferably at least 40 parts by mass.
  • the amount of the PVA aqueous solution is preferably 100 parts by mass or less based on 100 parts by mass of the superabsorbent resin after water absorption. More preferably 8 0 parts by mass or less, more preferably 70 parts by mass or less.
  • the superabsorbent resin absorbs water from the PVA aqueous solution and falls within the range of the present invention.
  • the amount of water absorption may be ensured, the water transfer between the PVA aqueous solution and the superabsorbent resin is not so large, and the desired gel strength cannot be obtained.
  • the composition for a cold storage material before freezing may contain relatively long fibers and the like in order to obtain further shape stability in addition to the superabsorbent resin and the aqueous solution of PVA.
  • a water-absorbing fiber having a fiber length of 1 mm or more is preferable. Since the PVA gel and the fibers are entangled with each other to hold the superabsorbent resin, a stronger gel network is obtained.
  • fibers with a fiber length of at most 4 mm should be selected.
  • ground pulp can be used, defibrated pulp obtained by defibrating a pulp board is preferable.
  • the amount is preferably 2 to 8 parts by mass based on 100 parts by mass of the water-absorbing superabsorbent resin. If the amount is less than 2 parts by mass, the effect of improving the shape stability by adding pulp fibers is small, and if the amount is more than 8 parts by mass, the workability of the production process of the composition for a cold storage material is extremely poor, which is not preferable. It is more preferably at most 6 parts by mass.
  • the regenerator material of the present invention has an excellent regenerative effect because the superabsorbent resin that has absorbed water is retained in the gel formed by the freezing of the PVA aqueous solution, and the gel network is maintained even after the frozen matter is thawed. Therefore, it has shape stability that can be suspended. Therefore, it can be used as a cold storage material in the form of a gel.
  • a cold storage material covered with a sheet It is not necessary to cover the entire surface of the cold storage material with the sheet.
  • a gas-permeable material such as a metal foil and / or a non-woven fabric having good heat conductivity is used.
  • the cold storage material does not lose moisture during freezing or thawing. Also, good shape stability is obtained. Since the cold storage material of the present invention has good shape stability, it is not necessary to increase the thickness of the metal foil. If it is too thick, the cooling effect is reduced. Therefore, it is recommended to use those having a size of 100 zm or less, preferably 50 / zm or less.
  • the material of the metal foil is not particularly limited, but an easily available aluminum foil is inexpensive and preferable. Acrylic resin, urethane resin, polyolefin, polyvinyl chloride resin, epoxy resin, etc. are used to increase the durability (such as heat resistance) of aluminum foil, or to provide heat resistance and fingerprint resistance. Coated, laminated or baked aluminum foil may be used.
  • the frozen body can come into contact with the surrounding air without any hindrance, so that the cold storage effect can be effectively exhibited.
  • the composition for a cold storage material is frozen by coating with a breathable material, it freezes and freezes, and when dried, loses some water.
  • the loss of moisture is far less than when used as a cold storage material while absorbing water with the superabsorbent resin. This is because the surface of the superabsorbent resin that has absorbed water is entirely or partially covered by the PVA gel. If the cool storage material is used repeatedly, it is advisable to replenish and absorb the water in the thawed cool storage material after use.
  • the breathable material include nonwoven fabrics, fine meshes made of woven fabric, paper, metal, synthetic resin, and the like.
  • the gel is coated with such a gas-permeable material and frozen, the gel is entangled with the openings of the gas-permeable material (the gaps between fibers such as non-woven fabric and the mesh of a mesh-like material), thereby improving the shape stability of the gel. .
  • the cold storage material By selecting the shape of the cold storage material, it is possible to obtain a cold storage material that is rigid enough to stand alone after thawing. Since the cold storage material of the present invention has good adhesion to metal foil, it is possible to produce a large (for example, 40 cm square or more) cold storage material. When using the cold storage material for a long period of time, cover it with a breathable material and then cover it with a bag of non-breathable material such as metal foil. The use of an inverted configuration is recommended. A cold storage material that is large, has good shape stability and easy handling, and has no water loss.
  • the regenerator material of the present invention includes a good thermal conductive material such as metal powder and metal fiber; an inorganic or organic antibacterial agent such as silver-based, copper-based, and imidazole-based; a fungicide; a preservative; a wood powder, a diatomaceous earth, and a clay.
  • a filler such as kaolin, bentonite, and talc may be added as appropriate.
  • the fibrous superabsorbent resin is not excluded, and any superabsorbent fiber capable of achieving the water absorption ratio specified in the present invention can be used.
  • the pattern for freezing the composition for a cold storage material containing an aqueous solution is the most preferable in terms of water absorption, price, etc.
  • the following is a preferred method for producing the composition for a cold storage material and the cold storage material having this pattern. Will be described.
  • the powdery superabsorbent resin absorbs a predetermined amount of water within the range specified in the present invention.
  • a polyvinyl alcohol aqueous solution having a high concentration is prepared, then the water-absorbing superabsorbent resin is mixed with the aqueous polyvinyl alcohol solution, and then the mixture is frozen to produce the cold storage material of the present invention. .
  • Mating means that the superabsorbent resin after water absorption is embedded in the continuous layer of the PVA aqueous solution. Specifically, a method of mixing and stirring the water-absorbing superabsorbent resin and the PVA aqueous solution in a container, loading the water-absorbing superabsorbent resin into a flat container such as a shallow tray, etc. There is a method of pouring an aqueous solution to integrate the two.
  • the water-absorbing superabsorbent resin and the PVA aqueous solution When mixing the water-absorbing superabsorbent resin and the PVA aqueous solution with a beaker or the like, it is preferable to stir the mixture so that bubbles do not enter. Bubbles may enter, but if it is in an appropriate amount, shape stability is not significantly affected, so that it may be frozen as it is, or a known defoaming means may be employed. Make the resulting mixture into a shallow tray, etc. When loaded and frozen, a thin regenerator material is obtained. Alternatively, the mixture may be loaded into a bag-like container made of a metal foil and / or a non-woven fabric and then frozen.
  • the bottom side is used as the front side, and the PVA aqueous solution is poured again from above the air-permeable material on this side to make the mixing state of the two uniform.
  • pulp fiber-containing compositions for cold storage materials it is necessary to disperse pulp fibers with a long fiber length in a viscous mixture, so the following method is recommended.
  • the pulp fiber is dispersed in water in excess of a predetermined amount to be absorbed by the superabsorbent resin. This is because pulp fibers are easily entangled and are difficult to disperse unless water is at least 30 times the weight of the pulp fibers.
  • pulp fibers that have been defibrated in advance may be added to water, or a predetermined amount of pulp board (plate pulp) may be added to water and stirred with a mixer or the like.
  • the pulp fiber dispersion water containing an excessive amount of water is obtained, a part of the water is removed until the amount of water to be absorbed by the superabsorbent resin reaches a predetermined amount (the mass may be checked). I do. To this, add superabsorbent resin powder that has not absorbed water, stir appropriately with a mixer, etc., and then leave it to absorb water. As a result, a mixture of the superabsorbent resin and the pulp fiber that has absorbed a predetermined amount of water can be obtained. Pulp fiber also has water absorption, and absorbs a small amount of water. Since the water absorption capacity of fat is overwhelmingly large, it does not significantly affect the water absorption capacity of the superabsorbent resin.
  • a composition for a cold storage material can be obtained by mixing a mixture of pulp fiber and a superabsorbent resin that has absorbed water with a separately prepared aqueous solution of PVA. Since the pulp fiber is contained, the pulp fiber cannot be mixed well without stirring in a container such as a beaker. Therefore, the above-described mixing method of pouring the PVA solution is not suitable for the pulp fiber-containing type.
  • the composition for a cold storage material of the present invention is a mixture of a relatively high-concentration PVA solution and a highly water-absorbent resin that has absorbed water at a high magnification, so that the composition is viscous regardless of the presence or absence of pulp fibers. In addition, the composition has thixotropic properties.
  • the regenerator material of the present invention can be obtained by freezing the composition for a regenerator material at a temperature of not more than freezing point, preferably not more than 110 ° C.
  • the thickness is preferably as thin as about 3 mm to 30 mm. However, if it is necessary to exert the cold storage effect for a long time, the thickness may be further increased.
  • the size of one cold storage material is not particularly limited. The design can be changed as appropriate according to the size of various cool boxes (including ice boxes, etc.).
  • the regenerator material of the present invention has shape stability that does not collapse even after thawing, it can be used not only when it is used horizontally but also when suspended.
  • it may be suspended in a gel form, or by using a part of a gas-permeable sheet covered with the gel form, or the gel form or its covering may be further suspended.
  • pulp fiber Since it can exhibit rigidity to a level that allows it to be self-supporting, it can be obtained by covering it with a breathable material or loading it into a package with a shape like a standing vouch to obtain a self-sustaining cold storage material. It can also be used on the floor. Of course, such a self-sustaining cold storage material can also be used hanging.
  • pulp fiber Since it can exhibit rigidity to a level that allows it to be self-supporting, it can be obtained by covering it with a breathable material or loading it into a package with a shape like a standing vouch to obtain a self-sustaining cold storage material. It can also be used on the floor. Of course, such a self-sustaining cold storage material can also be used hanging.
  • a predetermined amount shown in Table 1 was added to a beaker containing the superabsorbent resin having absorbed water. The mixture was gently stirred as little as possible so that air bubbles did not enter, and the water-absorbing and swollen superabsorbent resin was mixed with a PVA aqueous solution to obtain a composition for a cold storage material.
  • Acrylic resin container (inner size: 205 mm x 94 mm: height: 20 mm) and aluminum foil (thickness: 30; m: 244 mm x 133 mm, four corners cut into squares of 20 mm x 20 mm) ), And the composition for cold storage material (mixture of superabsorbent resin and PVA aqueous solution) was loaded evenly. 200 mm x 90 mm aluminum foil is placed on top, and the composition for the cold storage material together with the metal foil from the acryl resin container Take out the object, place it upside down on a flat plate, and place the flat plate on top of it to freeze the cold storage material flat, and put it in a freezer (-17 to-22 ° C).
  • the frozen regenerator material was removed from the freezer, thawed to remove the aluminum foil, and the shape stability of the gel and the retention of the superabsorbent resin were evaluated based on the following criteria.
  • a non-woven fabric made of polypropylene: basis weight 20 gZm 2
  • 0.50 g of the water-absorbent resin powder was placed in 50.0 g of tap water, stirred, and allowed to absorb water for 10 minutes or more.
  • a 14 cm x 14 cm non-woven fabric was laid in a frame with an inner size of 10 cm x 10 cm square, and the water-swollen resin was put on the non-woven fabric to make it flat.
  • a nonwoven fabric (9 cm ⁇ 9 cm) was placed on the nonwoven fabric, the four-sided extension of the lower nonwoven fabric was folded, and then a 10% aqueous PVA solution was poured over the 10 g nonwoven fabric.
  • the PVA aqueous solution easily permeated from the nonwoven fabric to the swelling resin side.
  • the frame was removed, inverted, and 10 g of a 10% aqueous PVA solution was poured over the nonwoven fabric again.
  • 17 to 1 22 t Freezer for 1 day.
  • the obtained regenerator material showed shape stability enough to be suspended with a finger even after thawing. In addition, this regenerator material was able to return its mass to the level before freezing when water was reabsorbed.
  • the mass loss of the cold storage material of this example during freezing was small. When left in the freezer for 1 day, the mass decreased by 2 to 3 g, but thereafter, it decreased only by 0.5 gZ day. As a comparison, when only the water-absorbing superabsorbent resin was frozen without pouring the PVA aqueous solution, the mass decreased by 2 to 3 g on the first day. Thereafter, the mass continued to decrease by 1.4 gZ days.
  • a composition for a cold storage material having the composition shown in Table 2 was prepared in the same manner as in Example 1.
  • the obtained composition for a cold storage material was directly loaded into the acryl resin box used in Example 1 as flatly as possible to level the surface, and the entire box was covered with a wrap film to cover the periphery. It was left to freeze in a freezer at 22 ° C for 1 day. Mixing and stirring After thawing, the gel was taken out of the box and evaluated according to the following criteria in order to evaluate the workability during loading and loading, and to evaluate properties such as the strength of the gel. The shape stability and the resin retention were evaluated according to the same criteria as in Example 1.
  • A Low viscosity and easy mixing and stirring.
  • the composition for cold storage materials has self-pelling properties, making it extremely easy to load flat.
  • High viscosity, but relatively low thixotropy, allowing mixing and stirring.
  • the composition does not have self-pelling properties, but is easy to load flat.
  • XX Can be stirred, but a lot of air is mixed in by mixing, and the composition becomes creamy.
  • the gel body is elastic when pressed with a finger, and elastically recovers to its original shape when released.
  • the shape stability after thawing was inferior, and it fell apart without sagging, so the waist strength could not be measured. Even at No. 20, the workability was poor, and the obtained gel body exhibited some degree of shape stability, but was inferior in resin retention, resin disintegration, and stiffness.
  • a cold storage material composed of a composition for a cold storage material containing pulp fibers was examined.
  • table The amount of pulp fiber (pulp board) shown in Table 6 and the amount of water in excess of the amount shown in Table 6 were placed in a mixer and stirred for 2 minutes to defibrate the board pulp. A portion of the water is discarded to obtain the amount of water shown in Table 6, and the unabsorbed superabsorbent resin powder is added thereto, and the mixture is stirred for about 15 seconds.
  • Water Transfer the mixture of resin and pulp fiber after water absorption to a beaker, add a separately prepared PVA aqueous solution (amount and concentration shown in Table 6), stir as much as possible to avoid bubbles, and use it for cold storage materials.
  • a composition was prepared.
  • the obtained composition for a cold storage material was frozen and thawed in the same manner as in Example 3, and evaluated.
  • the waist strength was measured by setting the extrusion distance (a in Fig. 1) to 80 mm for the gel after freezing and thawing once. Since the system containing pulp fiber had more excellent shape stability, resilience and self-sustainability were evaluated according to the following criteria.
  • the surface tactile sensation was also evaluated. The tactile sensation on the surface is a sensual indication of the feeling of sliminess and stickiness, and is related to the adhesion to the aluminum foil when the outermost layer is provided as a cold storage material. The results are shown in Table 7. • Rebound (frozen and thawed twice)
  • both ends of the gel body are slightly radiused.
  • Both ends of the gel body are slightly lowered.
  • the gel body stands upright and the center part is self-supporting by lightly supporting both sides of the center with one finger.
  • There is a slimy feeling and a sticky feeling. ⁇ : No slimy feeling and no sticky feeling.
  • the regenerator material of the present invention was set in a small refrigerating refrigerator (forced convection type) with a built-in freezing device, and its regenerative effect was studied.
  • the composition of the regenerator material is basically the same as that of Example 2, and it is 275 g of water, 27.5 g of superabsorbent resin, and 100 g of 11% PVA aqueous solution. After placing the aluminum foil and then the non-woven fabric in the wooden frame, loading the composition for cold storage material, placing the non-woven fabric and the aluminum foil, freezing them, and fixing the aluminum foil on all sides with adhesive tape, 500 mm width 10 pieces of sheet-shaped regenerative material having a length of 100 mm and a thickness of about 8 mm were prepared.
  • FIG. 2 is a sectional side view of the refrigerator
  • FIG. 3 is a sectional view taken along line AA of FIG.
  • the right side of Fig. 2 is the front of the refrigerator 1, 2 is a freezing device, 3 is a cooling fan (4 units), 4 is a cold storage material layer, 5 is a space, and 6 is a cold storage room (luggage room).
  • the sheet-like cold storage material 41 is arranged in five rows, two on the left and right sides of the cold storage material layer 4.
  • the cool air is sent through the fan 3 to the cool room 6 (arrow in Fig. 2).
  • Cold chamber 6 is the height H is 1 4 5 0 mm
  • the width W is 1 1 5 0 mm
  • the depth-out D is about 1 3 0 0 mm
  • its volume 2.
  • the refrigerators were placed in a constant temperature room at 32 ° C so that they would be close to the actual use conditions.
  • the sheet-like cold storage material 41 that has been thawed is set in the cold storage material layer 4, then the freezing device 2 is operated for 8 hours, and the cold storage material 41 is stored at 110 ° C. Frozen.
  • the operation of the freezing device 2 is stopped, and when the temperature of the cool room 6 exceeds + 5 ° C, cool air is sent to the cool room 6 by the cooling fan 3. Then, the temperature change of the cool room 6 in a sealed state was measured.
  • the temperature in the cool room 6 was maintained at + 5 ° C or lower for 16 hours, and then the temperature was gradually increased (about 1.6 ° C for Z hours). It was confirmed that the cool storage effect of the cool storage material was exhibited for more than 16 hours.
  • the regenerative material of the present invention utilizes a gel, but has excellent shape stability after thawing, so that it can be used alone by hanging. Therefore, it can be used in a plate shape that is thinner and has a larger surface area than a conventional cold storage material using a gel that is sealed in a non-breathable case with high thermal insulation and becomes amorphous after thawing. Therefore, the air contact area per unit mass of the cold storage material can be increased, and the center of the cold storage material can be frozen in a short time, and the cooling efficiency as the cold storage material is also high.
  • the regenerator material of the present invention has a rectangular shape even after thawing. Since it can be maintained, it can be arranged vertically in a narrow cold storage material zone, or hung on a wall using hook members ⁇ mechanical surface fasteners. Therefore, it is useful, for example, as a cold storage material for cold storage vehicles and cold storage. Further, according to the method for producing a cold storage material of the present invention, a cold storage material having excellent gel strength can be efficiently produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A cold-storage material with excellent shape stability which is obtained by freezing a composition comprising: 100 parts by weight of a highly water-absorbing resin in which water has been absorbed in an amount of 40 to 150 times by weight the amount of the highly water-absorbing resin on a dry basis; and at least 25 parts by weight of an aqueous polyvinyl alcohol solution having a concentration of 10 wt.% or higher. The process comprises causing a highly water-absorbing resin to absorb water in an amount of 40 to 150 times by weight the amount of the highly water-absorbing resin on a dry basis, separately preparing an aqueous polyvinyl alcohol solution having a concentration of 10 wt.% or higher, subsequently mixing the water-absorbing resin containing water absorbed therein with the aqueous solution to produce a composition for a cold-storage material, and then freezing the resultant composition.

Description

明 細 書 形状安定性に優れた蓄冷材およびその製造方法  Description Cold storage material with excellent shape stability and method for producing the same
技術分野 Technical field
本発明は、 形状安定性に優れた蓄冷材に関するものであり、 例えば保冷庫 の壁に吊下して使用することのできる蓄冷材に関するものである。 背景技術  The present invention relates to a cold storage material having excellent shape stability, for example, a cold storage material that can be used by hanging it on a wall of a cold storage box. Background art
従来、 蓄冷材として最も一般的なものは氷である。 古くから、 生鮮食品の 保冷、 氷嚢、 氷枕等に使用されているが、 解凍後は単なる水になってしまう ため用途に制限がある。 そこで、 プラスチックフィルム製の袋等に水を入れ て凍らせたものや、 水と共に高吸水性樹脂を併用してゲル状にしたたものが 使用されている。 また、 ゲル層を構成する油性ポリマ一中に水滴を含有させ た構成の蓄冷材も知られている。 しかしながら、 これら蓄冷材は、 凍結時に は形状を維持するものの、 解凍後には無定型状となるものばかりである。 ところで、 保冷システムを考慮すると、 気密で断熱された保冷車,保冷庫 内で冷却システムによって冷却した後は、 保冷が必要な間、 長時間冷却シス テムを稼働させる場合もあるが、 可能な場合には、 冷却システムを止めて、 あるいは冷却システムから切り離して、 保冷庫 ·保冷車等の気密性 · 断熱性 に頼ることによって低温を保持するようにしている。 これは、 冷却システム の維持にコストがかかるためである。  Conventionally, the most common cold storage material is ice. It has been used for cold storage of fresh foods, ice sacs, ice pillows, etc. for a long time, but its use is limited because it becomes just water after thawing. For this reason, a plastic film bag or the like, which is filled with water and frozen, or a gel formed by using a water-absorbent resin together with water is used. Further, a regenerator material having a configuration in which water droplets are contained in an oily polymer constituting a gel layer is also known. However, these regenerator materials retain their shape when frozen, but only become amorphous after thawing. By the way, considering the cooling system, after cooling by the cooling system in an air-tight and insulated cold storage car or refrigerator, the cooling system may be operated for a long time while cooling is required. In this case, the cooling system is stopped or separated from the cooling system, and the low temperature is maintained by relying on the airtightness and heat insulation of the cool box and cool car. This is due to the cost of maintaining the cooling system.
この観点から、 保冷車 ·保冷庫等で、 冷却システムを停止した後に蓄冷材 によって低温を保つべく、 蓄冷材を併用する試みがなされている。 このよう な用途に使用される蓄冷材は、 伝熱効率上、 表面積を大きくするために、 薄 肉の長方形状 (正方形状であってもよく、 以下 「矩形状」 で代表する。 ) と されることが望ましい。 From this point of view, attempts have been made to use cold storage materials together with cold storage vehicles and cool storages in order to maintain a low temperature with cold storage materials after shutting down the cooling system. The cold storage material used for such applications is thin in order to increase heat transfer efficiency and surface area. It is desirably a meat rectangular shape (it may be a square shape, hereinafter represented by “rectangular shape”).
しかし、 前述の従来の蓄冷材の場合、 解凍後の形状が無定型のため、 薄肉 矩形状の蓄冷材を水平に載置せざるを得ず、 床面積が限られている保冷庫 · 保冷車等では場所を取り過ぎるという問題があった。  However, in the case of the above-mentioned conventional cold storage material, the shape after defrosting is indefinite, so that a thin rectangular cold storage material must be placed horizontally and the floor space is limited. In such cases, there was a problem of taking up too much space.
こういった観点から、 保冷庫 ·保冷車の壁面等に吊り下げられることので きる蓄冷材の開発が望まれているが、 前記したように従来の蓄冷材は形状安 定性がない。 このため、 解凍時であっても吊下状態に耐えられる形状安定性 に優れた蓄冷材の開発が嘱望されていた。  From such a viewpoint, it is desired to develop a cool storage material that can be hung on the wall of a cool box or a cool car, but as described above, the conventional cool storage material has no shape stability. Therefore, the development of a regenerative material with excellent shape stability that can withstand a suspended state even during thawing has been desired.
本発明では上記従来技術の問題点を考慮して、 例えば解凍時に吊下状態で あっても薄肉矩形状を保持することができるような、 形状安定性に優れた蓄 冷材を提供することを課題として掲げた。 また、 このような蓄冷材を製造す るための好適な方法の提供も併せて課題としている。 発明の開示  The present invention has been made in view of the above-mentioned problems of the prior art, and provides a cold storage material having excellent shape stability, for example, capable of maintaining a thin rectangular shape even in a suspended state at the time of thawing. Raised as an issue. Another object is to provide a suitable method for producing such a cold storage material. Disclosure of the invention
本発明の蓄冷材は、 乾燥時の高吸水性樹脂の自重の 4 0〜 1 5 0質量倍の 水を吸水した高吸水性樹脂 1 0 0質量部に対し、 濃度 1 0質量%以上のポリ ビニルアルコール水溶液を 2 5質量部以上の割合で含有する蓄冷材用組成物 が凍結されたものであるところに要旨を有する。 この構成による蓄冷材は解 凍後であっても矩形状を保持するため、 保冷庫 ·保冷車等の蓄冷材として最 適である。 図面の簡単な説明  The regenerator material of the present invention has a concentration of 10% by mass or more with respect to 100 parts by mass of the superabsorbent resin that has absorbed 40 to 150 times by mass of the weight of the superabsorbent resin at the time of drying. The gist lies in that the composition for a cold storage material containing a vinyl alcohol aqueous solution in a proportion of 25 parts by mass or more is a frozen product. Since the cold storage material of this configuration retains a rectangular shape even after defrosting, it is most suitable as a cold storage material for cold storage and cold storage vehicles. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 「腰の強さ」 の測定方法を説明する側面図であり、 第 2図は、 冷蔵庫の側部断面図であり、 第 3図は、 第 2図の A— A線断面図である。 発明を実施するための最良の形態 FIG. 1 is a side view for explaining a method of measuring “hip strength”, FIG. 2 is a side sectional view of a refrigerator, and FIG. 3 is a sectional view taken along line AA of FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の蓄冷材は、 高倍率に吸水した高吸水性樹脂と、 凍結によってゲル 体を形成することのできるポリビニルアルコール (以下、 P V Aと省略す る。 ) 水溶液を必須成分とする蓄冷材用組成物を凍結させて得られるもので ある。 本発明の最大の特徴は、 蓄冷効果を発揮させるための必須成分である 高吸水性樹脂の量および吸水量と、 ゲル強度、 形状安定性確保のための P V A水溶液の量および濃度を、 最適範囲に決定したところにある。  The regenerator material of the present invention is a composition for a regenerator material comprising, as essential components, a superabsorbent resin that has absorbed water at a high magnification and an aqueous solution of polyvinyl alcohol (hereinafter abbreviated as PVA) capable of forming a gel by freezing. It is obtained by freezing things. The most important feature of the present invention is that the amount and concentration of the superabsorbent resin, which is an essential component for exhibiting the cool storage effect, and the amount and concentration of the PVA aqueous solution for ensuring the gel strength and shape stability are in the optimal range. It has been decided to.
この結果、 高倍率に吸水して膨潤した柔らかい高吸水性樹脂を、 P V Aゲ ルの三次元化された堅固なネッ トワーク内に保持した構成の形状安定性に優 れた蓄冷材を提供することができた。 本発明の蓄冷材は、 形状を安定させる ための他の部材 (例えば袋等) がなくても、 吊下することができるという形 状安定性を有する。 また、 充分に吸水した高吸水性樹脂中の水分および P V Aゲル中に含まれる水分が凍結することによって、 従来の蓄冷材以上に、 蓄 冷効果が発揮される。 さらに、 凍結によって水分の一部が揮発しても、 再吸 水 ·再凍結させることができ、 蓄冷材自体の形状安定性も維持できるので、 何度でも良好な蓄冷効果を発揮する蓄冷材として使用することが可能となつ た。  As a result, it is intended to provide a cold storage material with excellent shape stability in a configuration in which a soft super absorbent resin swelled by absorbing water at a high magnification is held in a solid three-dimensional network of PVA gel. Was completed. The regenerative material of the present invention has shape stability such that it can be hung without any other member (eg, a bag or the like) for stabilizing the shape. In addition, since the water in the superabsorbent resin and the water contained in the PVA gel that have sufficiently absorbed water are frozen, a cold storage effect is exhibited more than conventional cold storage materials. Furthermore, even if a part of water evaporates due to freezing, it can be re-absorbed and re-frozen, and the shape stability of the cold storage material itself can be maintained. It can now be used.
蓄冷材用組成物中のポリビニルアルコール水溶液の濃度が 1 1〜 2 0質量% である構成、 蓄冷材用組成物中のポリビニルアルコール水溶液の割合が、 吸水 した高吸水性樹脂 1 0 0質量部に対し、 1 0 0質量部以下である構成は、 ゲル 強度の向上の点から好ましい実施態様である。 また、 蓄冷材用組成物中の高吸 水性樹脂の吸水量が、 自重の 7 0〜 1 2 0質量倍であると、 蓄冷効果とゲル強 度のバランスが最適となる。  The composition in which the concentration of the aqueous polyvinyl alcohol solution in the composition for cold storage material is 11 to 20% by mass, and the ratio of the aqueous solution of polyvinyl alcohol in the composition for cold storage material is 100 parts by mass of the water-absorbing superabsorbent resin. On the other hand, a configuration of 100 parts by mass or less is a preferred embodiment from the viewpoint of improving the gel strength. When the water absorption of the superabsorbent resin in the composition for a cold storage material is 70 to 120 times the weight of its own weight, the balance between the cold storage effect and the gel strength is optimized.
蓄冷材用組成物が、 吸水した高吸水性樹脂 1 0 0質量部に対し、 2〜 8質量 部のパルプ繊維を含有するものであってもよい。 形状安定性が一層向上する。 また、 蓄冷材用組成物の凍結体が 1種類以上のシ一卜状体によって被覆されて いる構成を採用することもできる。 シート状体としては、 金属箔および Zまた は通気性素材が好ましい。 金属箔によって被覆されている構成であれば、 冷凍 時および解凍時に水分を失うことがなく、 形状安定性を向上させることができ る。 一方、 蓄冷材が通気性素材によって被覆されている構成であれば、 伝熱効 果を妨げる素材を使用しないため、 空気媒体で一層有効に蓄冷効果を発揮でき る。 また、 シート状体が通気性素材であっても、 吸水した高吸水性樹脂の表面 が、 凍結によってゲル化した物質によって全面的または部分的に覆われている ため、 冷凍時および解凍時の水分を失うことは少ない。 不織布等の通気性素材 によって被覆され、 さらに金属箔で覆われている構成を採用すると、 保形性が 高まる。 The composition for a cold storage material may contain 2 to 8 parts by mass of pulp fiber based on 100 parts by mass of the superabsorbent resin that has absorbed water. Shape stability is further improved. In addition, the frozen body of the composition for a cold storage material is covered with one or more sheets. Can be adopted. As the sheet, a metal foil and a Z or breathable material are preferred. With the configuration covered with the metal foil, the shape stability can be improved without losing water during freezing and thawing. On the other hand, if the cold storage material is covered with a breathable material, a material that hinders the heat transfer effect is not used, so that the air storage medium can exhibit the cold storage effect more effectively. Even if the sheet is made of a breathable material, the surface of the superabsorbent resin that has absorbed water is completely or partially covered by the substance that has gelled by freezing. Lose less. By adopting a configuration that is covered with a breathable material such as non-woven fabric and covered with metal foil, the shape retention is enhanced.
本発明のパルプ非含有タイプの蓄冷材組成物からなる蓄冷材は、 乾燥時の高 吸水性樹脂の自重の 4 0〜 1 5 0質量倍の水を高吸水性樹脂に吸収させると 共に、 別途、 濃度 1 0質量%以上のポリビニルアルコール水溶液を調製し、 次いで、 吸水後の高吸水性樹脂とポリビニルアルコール水溶液を混和して蓄 冷材用組成物とし、 その後、 この蓄冷材用組成物を凍結することによって製 造することが好ましい。  The cold storage material comprising the pulp-free type cold storage material composition of the present invention is capable of absorbing water in an amount of 40 to 150 mass times the weight of the superabsorbent resin at the time of drying by the superabsorbent resin, and separately An aqueous solution of polyvinyl alcohol having a concentration of 10% by mass or more is prepared, and then the water-absorbing superabsorbent resin and the aqueous solution of polyvinyl alcohol are mixed to form a composition for a cold storage material. Thereafter, the composition for a cold storage material is frozen. It is preferable to manufacture by carrying out.
パルプ含有タイプの場合は、 所定量の水に所定量のパルプ繊維が分散したパ ルプ繊維分散水を調製し、 このパルプ繊維分散水の中に未吸水の高吸水性樹脂 を加えて吸水させることによって、 乾燥時の高吸水性樹脂の自重の 4 0〜 1 5 0質量倍の水を吸水した高吸水性樹脂と、 当該吸水後の高吸水性樹脂 1 0 0質量部に対し 2〜 8質量部の割合のパルプ繊維との混合物を調製し、 この混 合物と、 別途調製した濃度 1 0質量%以上のポリビニルアルコール水溶液と を混和して蓄冷材用組成物とし、 その後、 この蓄冷材用組成物を凍結させる 方法の採用が好ましい。 以下、 本発明をより詳細に説明する。  In the case of pulp-containing type, prepare pulp fiber dispersion water in which a predetermined amount of pulp fiber is dispersed in a predetermined amount of water, and add water-absorbent superabsorbent resin to this pulp fiber dispersion water to absorb water. Depending on the weight of the superabsorbent resin at the time of drying, between 40 and 150 mass times the weight of the superabsorbent resin, and between 2 and 8 mass per 100 mass parts of the superabsorbent resin after water absorption. Of a pulp fiber in a ratio of 10 parts by mass, and a mixture of the mixture and a separately prepared aqueous solution of polyvinyl alcohol having a concentration of 10% by mass or more were mixed to form a composition for a cold storage material. It is preferable to employ a method of freezing the composition. Hereinafter, the present invention will be described in more detail.
本発明の蓄冷材を得るために用いられる蓄冷材用組成物の第 1の必須成分 は吸水した高吸水性樹脂である。 P V Aゲル単独の場合より、 含水高吸水性 樹脂と P V Aゲルの組み合わせたものが蓄冷効果が高いためである。 水の融 解潜熱は約 8 0 k c a 1 /k gであり蓄冷効果は大きいが、 吸水率 1 0 0倍 の高吸水性樹脂 1 0 1質量部と 1 5 %PVA水溶液 5 0質量部から得られた 蓄冷材の潜熱は 6 0 k c a 1 /k g以上あり、 水の潜熱に近い。 The first essential component of the composition for a cold storage material used to obtain the cold storage material of the present invention is a superabsorbent resin that has absorbed water. Higher water absorption than PVA gel alone This is because the combination of resin and PVA gel has a high cooling effect. The latent heat of fusion of water is about 80 kca 1 / kg, which has a large cold storage effect. The latent heat of cold storage material is more than 60 kca 1 / kg, which is close to the latent heat of water.
また、 凍結した上記組成の蓄冷材と、 1 5 %の P VA水溶液から得られた ゲル (それぞれ 4. 5 c m X 3. 0 c mX 2〜 2. 5 c m) とを、 2 9. 5°Cの雰囲気下に置いて、 これらの内部の温度変化を測定したところ、 一 5 °Cから + 5 °Cに至るまでの所要時間は、 本発明蓄冷材の方が長く ( 1 42 分) 、 PV A単独ゲルは本発明蓄冷材の 8割程度の時間 ( 1 1 2分) で + 5 に達した。 すなわち、 高吸水性樹脂の蓄冷効果が確認された。 なお、 本 発明の蓄冷材の融点 (凝固点) は 0°Cであった。 凝固点が低過ぎると、 冷凍 庫の性能によっては凍結に長時間要する等の不都合が生じるが、 本発明の蓄 冷材は凝固点が低くないため、 家庭用の冷凍庫でも凍結させることができ、 汎用性が高い。  Also, the frozen regenerator material of the above composition and a gel (4.5 cm X 3.0 cm X 2 to 2.5 cm each) obtained from a 15% aqueous PVA solution were mixed at 29.5 °. When the temperature change inside these was measured under an atmosphere of C, the time required from 15 ° C to + 5 ° C was longer for the cold storage material of the present invention (142 minutes), The PVA single gel reached +5 in about 80% of the time (111 minutes) of the cold storage material of the present invention. That is, the cold storage effect of the superabsorbent resin was confirmed. The melting point (solidification point) of the cold storage material of the present invention was 0 ° C. If the freezing point is too low, disadvantages such as a long freezing time may occur depending on the performance of the freezer. However, since the cold storage material of the present invention does not have a low freezing point, it can be frozen even in a home freezer. Is high.
本発明では、 高吸水性樹脂として、 破砕体状、 粉末状、 繊維状等、 いずれ も使用可能であるが、 吸水倍率やゲル中での形状保持性を考慮すると、 高吸 水性樹脂粉末 (破砕体状も含む) が好ましい。  In the present invention, as the superabsorbent resin, any of a crushed body, a powder, a fiber and the like can be used, but in consideration of a water absorption ratio and shape retention in a gel, the superabsorbent resin powder (crushed) (Including body shape) is preferred.
高吸水性樹脂に吸収させるべき水の量は、 乾燥時の高吸水性樹脂の質量 (自重) に対し、 40〜 1 5 0質量倍である。 吸水量が 40倍よりも少ない と、 好適な蓄冷効果が発揮されない。 また吸水量が少ないことから高吸水性 樹脂の膨潤度が低く微細な粉末状のままであるため、 粘稠な P V A水溶液と 混和する際にチクソトロピー性が大きく発現し、 混合時の作業性が悪く、 均 一な混和物が得難い。 一方、 1 5 0倍を超えると、 ゲル体の強度が弱くなる ため好ましくない。 これは、 膨潤した高吸水性樹脂自身の強度が弱いこと、 膨潤した高吸水性樹脂の周囲に自由水が存在して P V Aとの密着性を弱め、 高吸水性樹脂同士の間の接着力が低下すること、 等の原因によると考えられ る。 また、 1 5 0倍を超えると、 凍結—解凍の繰り返しにより、 高吸水性樹 脂から次第に離水してしまうため、 好ましくない。 より好ましい吸水倍率の 下限は 7 0倍、 より好ましい上限は 1 2 0倍である。 The amount of water to be absorbed by the superabsorbent resin is 40 to 150 times the mass of the superabsorbent resin when dried (self-weight). If the water absorption is less than 40 times, a suitable cold storage effect is not exhibited. In addition, since the water absorption is small, the swelling degree of the highly water-absorbent resin is low and it remains in a fine powder form. However, it is difficult to obtain a uniform mixture. On the other hand, if it exceeds 150 times, the strength of the gel body becomes weak, which is not preferable. This is because the strength of the swollen superabsorbent resin itself is weak, free water exists around the swollen superabsorbent resin, weakens the adhesion with PVA, and the adhesive force between the superabsorbent resins increases. Is thought to be due to You. On the other hand, if it exceeds 150 times, water is gradually released from the superabsorbent resin due to repeated freeze-thaw cycles, which is not preferable. A more preferable lower limit of the water absorption capacity is 70 times, and a more preferable upper limit is 120 times.
なお、 吸水後の膨潤粒子表面に自由に動くことのできる水 (自由水) が存 在していると、 P V A水溶液との混合物 (組成物) を凍結しても、 P V Aゲ ルと膨潤粒子の密着力が発現しにくいため、 上記吸水量の範囲であっても、 高吸水性樹脂の吸水限度量を考慮して、 自由水が存在しないレベルの倍率に 吸水させることが好ましい。  If water (free water) that can move freely is present on the surface of the swelling particles after absorbing water, even if the mixture (composition) with the PVA aqueous solution is frozen, the PVA gel and the swelling particles may be frozen. Since the adhesive strength is hardly developed, it is preferable to absorb water to a level where free water does not exist even in the above range of water absorption, in consideration of the water absorption limit of the superabsorbent resin.
高吸水性樹脂の具体例としては、 ポリアクリル酸部分中和物架橋体、 自己 架橋型ポリアクリル酸ナトリウム、 澱粉ーァクリロ二トリルグラフト共重合 体またはその中和物、 澱粉ーァクリル酸グラフ卜共重合体またはその中和物、 酢酸ビニルーァクリル酸エステル共重合体鹼化物、 ァクリロ二卜リル共重合 体あるいはァクリルアミ ド共重合体の加水分解物や架橋体、 マレイン酸と α 一才レフィン共重合体等が挙げられる。 中でも簡単に入手できる汎用品であ るポリアクリル酸部分中和物架橋体、 自己架橋型ポリアクリル酸ナトリウム, 澱粉ーァクリル酸グラフト共重合体が好ましく利用できる。  Specific examples of the superabsorbent resin include a cross-linked polyacrylic acid partially neutralized product, a self-cross-linked sodium polyacrylate, a starch-acrylonitrile graft copolymer or a neutralized product thereof, and a starch-acrylic acid graft copolymer. Or a neutralized product thereof, a vinyl acetate-acrylate copolymer copolymer, an acrylonitrile copolymer or a hydrolyzate or cross-linked product of an acrylamide copolymer, and maleic acid and α-one-year-old olefin copolymer. Can be Among them, easily available general-purpose crosslinked products of partially neutralized polyacrylic acid, self-crosslinked sodium polyacrylate, and starch-acrylic acid graft copolymer can be preferably used.
本発明では、 凍結によってゲル化して、 凍結物のみで吊下することができ る形状安定性を有するものとして、 ポリビニルアルコール (P V A ) 水溶液 を、 蓄冷材用組成物の第 2の必須成分として選択した。 ゲル化する物質とし ては、 寒天、 ゼラチン、 力ラゲ一ナン、 ァガロース、 ぺクチン、 アルギン酸 ナトリウム、 カルボキシメチルセルロース、 デキストラン、 コンニヤクマン ナン、 ゴム類等が知られている。 これらは単独で、 または、 ホルムアルデヒ ド、 ダルタルアルデヒド、 テレフタルアルデヒド等のアルデヒド類、 へキサ メチレンジアミン等のアミン類、 フエノール等のヒドロキシル基含有化合物, 硼酸、 各種多価金属イオン含有化合物等の架橋剤を添加することによって、 冷却すればゲル化する。 しかし、 得られるゲルは脆く、 安全性の点から架橋 剤の使用も好ましくない。 In the present invention, an aqueous solution of polyvinyl alcohol (PVA) is selected as the second essential component of the composition for a cold storage material, as it has a shape stability that can be gelled by freezing and can be suspended only by a frozen product. did. As a gelling substance, agar, gelatin, lactogenin, agarose, pectin, sodium alginate, carboxymethylcellulose, dextran, konjac mannan, rubbers and the like are known. These can be used alone or cross-linked with aldehydes such as formaldehyde, daltaraldehyde, terephthalaldehyde, amines such as hexamethylenediamine, hydroxyl-containing compounds such as phenol, boric acid, and various polyvalent metal ion-containing compounds. By adding the agent, it gels when cooled. However, the resulting gel is brittle and crosslinked for safety. The use of agents is also not preferred.
一方、 P V A水溶液は、 凍結によってゲル化して、 解凍しても崩れない非 常に形状安定性の良好なゲルを形成するため、 本発明ではゲル化物質として P V Aを選択した。 P V Aの鹼化度が低いと形状安定性のあるゲルが得られ ないため、 鹼化度が 9 6 %以上のものを選択することが好ましい。 9 8 %以 上がより好ましく、 完全餱化型が最も好ましい。 また、 重合度は 1 0 0 0以 上のものを選択することがゲルの形状安定性の点から好ましい。  On the other hand, the PVA aqueous solution gels by freezing, and forms a gel with very good shape stability that does not break down even when thawed. Therefore, in the present invention, PVA was selected as the gelling substance. If the degree of degradation of PVA is low, a gel having shape stability cannot be obtained. Therefore, it is preferable to select a gel having a degree of degradation of 96% or more. It is more preferably at least 98%, most preferably a completely modified type. It is preferable to select a polymerization degree of 100 or more from the viewpoint of gel shape stability.
P V A水溶液の濃度は、 ゲル強度を左右する重要な因子である。 しかし、 上記高鹼化度で高重合度のものは水溶液にすると高粘度となるため、 作業性 の点からは、 あまり高濃度にはできない。 本発明では、 ゲル強度と作業性を 考慮して、 1 0質量%以上の濃度の P V A水溶液を用いることを要件とした 1 0質量%よりも薄いと、 高度に膨潤した高吸水性樹脂を保持できず、 長時 間吊下可能な腰の強いゲル強度を有する蓄冷材にはならない。 濃度が高くな ればゲル強度は大きくなるが、 作業性の点から 2 0質量%以下のものを用い ることが好ましく、 1 1〜 1 5質量%の P V A水溶液が最も好ましい。  The concentration of the PVA aqueous solution is an important factor that affects gel strength. However, those having the above-mentioned high degree of polymerization and high degree of polymerization have a high viscosity when converted into an aqueous solution, so that from the viewpoint of workability, the concentration cannot be too high. In the present invention, in consideration of gel strength and workability, it is necessary to use a PVA aqueous solution having a concentration of 10% by mass or more, and if it is thinner than 10% by mass, a highly swollen superabsorbent resin is retained. It cannot be used as a cold storage material with strong gel strength that can be hung for a long time. As the concentration increases, the gel strength increases. However, from the viewpoint of workability, it is preferable to use one having a mass of 20% by mass or less, and most preferably a 11 to 15% by mass aqueous PVA solution.
蓄冷材用組成物中の高吸水性樹脂と P V A水溶液との比率は、 吸水後の高 吸水性樹脂 1 0 0質量部に対し、 P V A水溶液を 2 5質量部以上とすること が必要である。 2 5質量部より少ないと、 P V Aゲルによる形状安定性効果 が充分得られず、 解凍後に再吸水させると、 膨潤した高吸水性樹脂がばらば らになることがある。 長時間吊下可能な腰の強いゲルを得るには、 3 0質量 部以上が好ましく、 4 0質量部以上がさらに好ましい。  The ratio of the superabsorbent resin to the aqueous PVA solution in the composition for a cold storage material must be not less than 25 parts by mass of the aqueous PVA solution based on 100 parts by mass of the superabsorbent resin after absorbing water. If the amount is less than 25 parts by mass, the shape stability effect of the PVA gel cannot be sufficiently obtained, and if water is absorbed again after thawing, the swollen superabsorbent resin may fall apart. In order to obtain a strong gel which can be hung for a long time, the amount is preferably at least 30 parts by mass, more preferably at least 40 parts by mass.
P V A水溶液が多ければ多いほど、 ゲル強度は向上する。 しかし、 高吸水 性榭脂による蓄冷効果を考慮すると、 吸水後の高吸水性樹脂の量に対して、 P V Aゲルの量が多くなればなるほど、 蓄冷材単位質量あたりの蓄冷量が減 少することになる。 従って、 吸水後の高吸水性樹脂 1 0 0質量部に対し、 P V A水溶液量を 1 0 0質量部以下とすることが好ましい。 より好ましくは 8 0質量部以下、 さらに好ましくは 7 0質量部以下である。 The more PVA aqueous solution, the better the gel strength. However, considering the cold storage effect of the highly water-absorbing resin, the amount of cold storage per unit mass of cold storage material decreases as the amount of PVA gel increases with respect to the amount of superabsorbent resin after water absorption. become. Therefore, the amount of the PVA aqueous solution is preferably 100 parts by mass or less based on 100 parts by mass of the superabsorbent resin after water absorption. More preferably 8 0 parts by mass or less, more preferably 70 parts by mass or less.
また、 本発明範囲外の吸水率の低い高吸水性樹脂と濃度の薄い P V A水溶 液とを混合して放置すると、 高吸水性樹脂が P V A水溶液から水を吸収して、 本発明の範囲内の吸水量が確保される可能性も考えられるが、 実際には P V A水溶液と高吸水性樹脂の間の水の移動はさほど多くなく、 所望のゲル強度 は得られない。  Further, when a highly water-absorbent resin having a low water absorption outside the scope of the present invention and a low-concentration PVA aqueous solution are mixed and allowed to stand, the superabsorbent resin absorbs water from the PVA aqueous solution and falls within the range of the present invention. Although it is conceivable that the amount of water absorption may be ensured, the water transfer between the PVA aqueous solution and the superabsorbent resin is not so large, and the desired gel strength cannot be obtained.
凍結させる前の蓄冷材用組成物には、 高吸水性樹脂と P V A水溶液以外に、 より一層の形状安定性を得るために、 比較的長めの繊維等を含んでいてもよ い。 特に繊維長が 1 mm以上の吸水性を有する繊維が好ましい。 P V Aゲル と繊維が絡み合って高吸水性樹脂を保持するので、 より強固なゲルネッ トヮ ークとなる。 ただし、 長い繊維長を有する繊維を粘稠な蓄冷材用組成物中で 均一に分散させるのは作業性の点から極めて困難であるので、 せいぜい繊維 長が 4 mmまでのものを選択する。 粉碎パルプも利用可能であるが、 パルプ ボ一ドを解繊して得られる解繊パルプが好ましい。 パルプ繊維を加えるとす れば、 その量は、 吸水した高吸水性樹脂 1 0 0質量部に対し、 2〜 8質量部 が好ましい。 2質量部より少ないとパルプ繊維を入れたことによる形状安定 性向上効果が少なく、 8質量部を超えて配合すると、 蓄冷材用組成物の製造 工程の作業性が極度に劣るため好ましくない。 より好ましくは 6質量部以下 である。  The composition for a cold storage material before freezing may contain relatively long fibers and the like in order to obtain further shape stability in addition to the superabsorbent resin and the aqueous solution of PVA. In particular, a water-absorbing fiber having a fiber length of 1 mm or more is preferable. Since the PVA gel and the fibers are entangled with each other to hold the superabsorbent resin, a stronger gel network is obtained. However, it is extremely difficult to uniformly disperse fibers having a long fiber length in a viscous cold storage material composition from the viewpoint of workability. Therefore, fibers with a fiber length of at most 4 mm should be selected. Although ground pulp can be used, defibrated pulp obtained by defibrating a pulp board is preferable. If pulp fibers are added, the amount is preferably 2 to 8 parts by mass based on 100 parts by mass of the water-absorbing superabsorbent resin. If the amount is less than 2 parts by mass, the effect of improving the shape stability by adding pulp fibers is small, and if the amount is more than 8 parts by mass, the workability of the production process of the composition for a cold storage material is extremely poor, which is not preferable. It is more preferably at most 6 parts by mass.
本発明の蓄冷材は、 P V A水溶液が凍結することによって生成したゲル中 に吸水した高吸水性樹脂が保持されるため、 優れた蓄冷効果を持つと共に、 凍結物が解凍した後もゲルネッ トワークが維持されるので、 吊下可能な形状 安定性を有している。 従って、 ゲル体のままで蓄冷材として利用することが 可能である。 ただし、 製造時や、 使用時の取り扱い性を考慮すると、 シート 状体で被覆した蓄冷材を用いることが推奨される。 なお、 蓄冷材をシート状 体で必ずしも全面被覆する必要はない。 シート状体としては、 熱伝導性のよい金属箔および または不織布等の通 気性素材を用いる。 金属箔の場合は、 冷凍時や解凍時に蓄冷材が水分を失う ことはない。 また、 良好な形状安定性が得られる。 本発明の蓄冷材は形状安定 性がよいので、 金属箔の厚みを厚くする必要はない。 あまり厚いと、 冷却作用 が低下する。 従って、 1 0 0 z m以下、 好ましくは 5 0 /z m以下のものを用い ることが推奨される。 金属箔の素材は特に限定されないが、 入手の容易なアル ミ箔が安価で好ましい。 アルミ箔の耐久性 (防鲭性等) を増すため、 あるいは、 ヒ一トシ一ル性ゃ耐指紋性を付与するために、 アクリル樹脂、 ウレタン樹脂、 ポリオレフイン、 ポリ塩化ビニル樹脂、 エポキシ樹脂等がコーティング、 ラミ ネートあるいは焼付されたアルミ箔を用いてもよい。 The regenerator material of the present invention has an excellent regenerative effect because the superabsorbent resin that has absorbed water is retained in the gel formed by the freezing of the PVA aqueous solution, and the gel network is maintained even after the frozen matter is thawed. Therefore, it has shape stability that can be suspended. Therefore, it can be used as a cold storage material in the form of a gel. However, considering the ease of handling during manufacturing and use, it is recommended to use a cold storage material covered with a sheet. It is not necessary to cover the entire surface of the cold storage material with the sheet. As the sheet, a gas-permeable material such as a metal foil and / or a non-woven fabric having good heat conductivity is used. In the case of metal foil, the cold storage material does not lose moisture during freezing or thawing. Also, good shape stability is obtained. Since the cold storage material of the present invention has good shape stability, it is not necessary to increase the thickness of the metal foil. If it is too thick, the cooling effect is reduced. Therefore, it is recommended to use those having a size of 100 zm or less, preferably 50 / zm or less. The material of the metal foil is not particularly limited, but an easily available aluminum foil is inexpensive and preferable. Acrylic resin, urethane resin, polyolefin, polyvinyl chloride resin, epoxy resin, etc. are used to increase the durability (such as heat resistance) of aluminum foil, or to provide heat resistance and fingerprint resistance. Coated, laminated or baked aluminum foil may be used.
一方、 シート状体として通気性素材を用いる場合は、 凍結体と周囲の空気が 何にも妨げられることなく接触できるため、 有効に蓄冷効果を発揮できる。 た だし通気性素材で被覆して蓄冷材用組成物を凍結させると、 冷凍時、 解凍時に 乾燥して水分が若干失われる。 しかし、 その水分のロスは高吸水性樹脂に吸水 させたまま蓄冷材として利用する場合に比べ遙かに少ない。 これは、 吸水した 高吸水性樹脂の表面が、 P V Aゲルによって、 全面的または部分的に覆われて いるためである。 蓄冷材を繰り返し使用する場合は、 使用後に解凍状態の蓄冷 材に水を再度補充 ·吸収させるとよい。 再吸水によって、 ほぼ最初の蓄冷材の 質量に戻すことができる。 通気性素材としては、 不織布の他、 織布、 紙、 金 属 ·合成樹脂等からなる細かい網目状物等が挙げられる。 また、 このような通 気性素材で被覆して凍結させると、 ゲルが通気性素材の開口部 (不織布等の繊 維の隙間や網目状物の網目) と絡み合い、 ゲルの形状安定性が向上する。  On the other hand, when a breathable material is used as the sheet, the frozen body can come into contact with the surrounding air without any hindrance, so that the cold storage effect can be effectively exhibited. However, when the composition for a cold storage material is frozen by coating with a breathable material, it freezes and freezes, and when dried, loses some water. However, the loss of moisture is far less than when used as a cold storage material while absorbing water with the superabsorbent resin. This is because the surface of the superabsorbent resin that has absorbed water is entirely or partially covered by the PVA gel. If the cool storage material is used repeatedly, it is advisable to replenish and absorb the water in the thawed cool storage material after use. By reabsorbing water, it can be returned to almost the original mass of the cold storage material. Examples of the breathable material include nonwoven fabrics, fine meshes made of woven fabric, paper, metal, synthetic resin, and the like. In addition, if the gel is coated with such a gas-permeable material and frozen, the gel is entangled with the openings of the gas-permeable material (the gaps between fibers such as non-woven fabric and the mesh of a mesh-like material), thereby improving the shape stability of the gel. .
蓄冷材の形状を選択すれば、 解凍後に自立するだけの剛性のある蓄冷材を得 ることも可能である。 本発明の蓄冷材は、 金属箔との密着性もよいので、 大型 (例えば 4 0 c m角以上) の蓄冷材の製造も可能である。 蓄冷材を長期間使用 する場合には、 通気性素材で被覆してから金属箔等の非通気性素材で袋状に被 覆した構成の採用が推奨される。 大型で、 形状安定性、 取り扱い易さが良好で あると共に、 水分ロスのない蓄冷材が得られる。 By selecting the shape of the cold storage material, it is possible to obtain a cold storage material that is rigid enough to stand alone after thawing. Since the cold storage material of the present invention has good adhesion to metal foil, it is possible to produce a large (for example, 40 cm square or more) cold storage material. When using the cold storage material for a long period of time, cover it with a breathable material and then cover it with a bag of non-breathable material such as metal foil. The use of an inverted configuration is recommended. A cold storage material that is large, has good shape stability and easy handling, and has no water loss.
本発明の蓄冷材には、 金属粉末、 金属繊維等の良熱伝導性物質;銀系、 銅系、 イミダゾール系等の無機または有機抗菌剤;防かび剤; 防腐剤;木紛、 珪藻土、 クレー、 カオリン、 ベントナイト、 タルク等の充填剤等を適宜加えてもよい。 本発明では、 繊維状高吸水性樹脂を排除するものではなく、 本発明で規定す る吸水倍率を達成しうる高吸水性繊維であれば使用可能であるが、 粉末状高吸 水性樹脂と P V A水溶液とを含む蓄冷材用組成物を凍結させるパターンが、 吸 水性や価格等の点で最も好ましいものであるので、 以下、 このパターンの蓄冷 材用組成物および蓄冷材を製造するための好ましい方法を説明する。 上記蓄冷 材用組成物にはパルプ繊維非含有タイプとパルプ繊維含有タイプの 2タイプが ある。  The regenerator material of the present invention includes a good thermal conductive material such as metal powder and metal fiber; an inorganic or organic antibacterial agent such as silver-based, copper-based, and imidazole-based; a fungicide; a preservative; a wood powder, a diatomaceous earth, and a clay. A filler such as kaolin, bentonite, and talc may be added as appropriate. In the present invention, the fibrous superabsorbent resin is not excluded, and any superabsorbent fiber capable of achieving the water absorption ratio specified in the present invention can be used. Since the pattern for freezing the composition for a cold storage material containing an aqueous solution is the most preferable in terms of water absorption, price, etc., the following is a preferred method for producing the composition for a cold storage material and the cold storage material having this pattern. Will be described. There are two types of the above-mentioned composition for cold storage materials: a pulp fiber-free type and a pulp fiber-containing type.
パルプ繊維非含有タイプの場合は、 パルプ繊維の分散工程を考慮しなくても よいので、 粉末状高吸水性樹脂に前記本発明規定範囲内の所定量の水を吸収さ せると共に、 別途、 所定濃度のポリビニルアルコール水溶液を調製し、 次い で、 吸水後の高吸水性樹脂とポリビニルアルコール水溶液を混和して、 その 後この混和物を凍結することにより本発明の蓄冷材を製造することができる。  In the case of the pulp fiber-free type, it is not necessary to consider the step of dispersing the pulp fiber, so that the powdery superabsorbent resin absorbs a predetermined amount of water within the range specified in the present invention. A polyvinyl alcohol aqueous solution having a high concentration is prepared, then the water-absorbing superabsorbent resin is mixed with the aqueous polyvinyl alcohol solution, and then the mixture is frozen to produce the cold storage material of the present invention. .
「混和」 とは、 P V A水溶液の連続層の中に、 吸水後の高吸水性樹脂を埋設 することを意味する。 具体的には、 吸水した高吸水性樹脂と P V A水溶液を容 器内で混合撹拌する方法、 平坦な浅いトレイ等の容器等に吸水後の高吸水性樹 脂を装填して、 その上から P V A水溶液を注ぎかけて両者を一体化させる方法 等がある。  "Mixing" means that the superabsorbent resin after water absorption is embedded in the continuous layer of the PVA aqueous solution. Specifically, a method of mixing and stirring the water-absorbing superabsorbent resin and the PVA aqueous solution in a container, loading the water-absorbing superabsorbent resin into a flat container such as a shallow tray, etc. There is a method of pouring an aqueous solution to integrate the two.
吸水した高吸水性樹脂と P V A水溶液をビーカ一等で混合する場合は、 気泡 が入らないように撹拌することが好ましい。 気泡が入ることがあるが、 適当量 であれば形状安定性にそれほど影響を与えないので、 そのまま凍結させてもよ く、 また公知の脱泡手段を採用してもよい。 得られた混和物を浅いトレィ等に 装填してから凍結させると、 厚みの薄い蓄冷材が得られる。 また、 金属箔およ び または不織布等からなる袋状の容器に混和物を装填してから凍結させても よい。 When mixing the water-absorbing superabsorbent resin and the PVA aqueous solution with a beaker or the like, it is preferable to stir the mixture so that bubbles do not enter. Bubbles may enter, but if it is in an appropriate amount, shape stability is not significantly affected, so that it may be frozen as it is, or a known defoaming means may be employed. Make the resulting mixture into a shallow tray, etc. When loaded and frozen, a thin regenerator material is obtained. Alternatively, the mixture may be loaded into a bag-like container made of a metal foil and / or a non-woven fabric and then frozen.
蓄冷材をシ一ト状体で被覆する場合は、 シート状体をトレイ等に敷いておき、 混和物を装填した後、 トレイに敷いたシート状体と一体物または別部材の上部 被覆用部分で装填された混和物の上面を被覆して、 トレイのまま、 あるいはト レイから内容物をシート状体ごと取り出してこれのみを凍結させることができ る。 シート状体として通気性素材を用い、 かつ、 トレィ等に吸水後の高吸水性 樹脂を装填した後 P V A水溶液を注ぎ入れる方法を採用する場合は、 トレイ等 に敷いた不織布等の通気素材上に吸水後の高吸水性樹脂を装填し、 上部被覆用 通気性素材で表面を被覆した後、 その上から P V A水溶液を均一に注ぎかけて から、 一旦、 これを通気性素材ごとトレイから取り出して反転させ、 これまで 底面だった方を表面にして、 この面側の通気性素材の上から再び P V A水溶液 を注ぎ、 両者の混和状態を均一にすることが好ましい。  When covering the cold storage material with a sheet-like body, spread the sheet-like body on a tray or the like, load the mixture, and then place the sheet-like body on the tray as an integral part or a separate member for the upper covering part The top surface of the loaded mixture can be covered, and the contents can be taken out of the tray as a tray or as a sheet, and only this can be frozen. When using a breathable material as the sheet-like body, and loading the superabsorbent resin after absorbing water into a tray, etc., and then pouring the PVA aqueous solution, use a nonwoven fabric or other such material spread on a tray. After loading the superabsorbent resin after absorbing water and coating the surface with a breathable material for top coating, pour the PVA aqueous solution uniformly over it and then take it out of the tray together with the breathable material and turn it over It is preferable that the bottom side is used as the front side, and the PVA aqueous solution is poured again from above the air-permeable material on this side to make the mixing state of the two uniform.
パルプ繊維含有蓄冷材用組成物の場合は、 繊維長の長いパルプ繊維を粘稠 な混和物の中に分散させる必要があるので、 次の方法の採用が推奨される。 まず、 高吸水性樹脂に吸水させるべき所定量よりも過剰の水にパルプ繊維を分 散させる。 これは、 パルプ繊維は絡まり合いやすく、 パルプ繊維の自重の 3 0 質量倍以上の水がないと分散しにくいためである。 なお、 予め解繊したパルプ 繊維を水に加えてもよく、 水に所定量のパルプボード (板パルプ) を入れてミ キサ一等で撹拌してもよい。 過剰量の水が入ったパルプ繊維分散水が得られた ら、 高吸水性樹脂に吸水させるべき所定量の水の量になるまで (質量をチエツ クすればよい) 、 水の一部を除去する。 ここへ、 吸水させていない高吸水性樹 脂粉末を加え、 ミキサー等で適宜撹拌の後、 放置させて吸水させる。 これによ り、 所定量の水を吸水した高吸水性樹脂とパルプ繊維の混合物が得られる。 な お、 パルプ繊維も吸水性を有しており、 若干量の水を吸水するが、 高吸水性樹 脂の吸水能力が圧倒的に大きいため、 高吸水性樹脂の吸水倍率にはあまり影響 を与えない。 In the case of pulp fiber-containing compositions for cold storage materials, it is necessary to disperse pulp fibers with a long fiber length in a viscous mixture, so the following method is recommended. First, the pulp fiber is dispersed in water in excess of a predetermined amount to be absorbed by the superabsorbent resin. This is because pulp fibers are easily entangled and are difficult to disperse unless water is at least 30 times the weight of the pulp fibers. In addition, pulp fibers that have been defibrated in advance may be added to water, or a predetermined amount of pulp board (plate pulp) may be added to water and stirred with a mixer or the like. When the pulp fiber dispersion water containing an excessive amount of water is obtained, a part of the water is removed until the amount of water to be absorbed by the superabsorbent resin reaches a predetermined amount (the mass may be checked). I do. To this, add superabsorbent resin powder that has not absorbed water, stir appropriately with a mixer, etc., and then leave it to absorb water. As a result, a mixture of the superabsorbent resin and the pulp fiber that has absorbed a predetermined amount of water can be obtained. Pulp fiber also has water absorption, and absorbs a small amount of water. Since the water absorption capacity of fat is overwhelmingly large, it does not significantly affect the water absorption capacity of the superabsorbent resin.
続いて、 パルプ繊維と吸水した高吸水性樹脂との混合物と、 別途調製した P V A水溶液とを混和することにより、 蓄冷材用組成物を得ることができる。 パ ルプ繊維が含まれているので、 ビーカ一等の容器内で撹拌しないとうまく混和 できないため、 前記したような P V A溶液を注ぎ込む混和方法は、 パルプ繊維 含有タイプには不適である。 なお、. 本発明の蓄冷材用組成物は、 比較的高い 濃度の P V A溶液と、 高倍率に吸水した高吸水性樹脂を混ぜるものであるの で、 パルプ繊維の有無にかかわらず、 粘稠でかつチクソトロピー性を有する 組成物となる。 従って、 これまで説明したように、 高吸水性樹脂の吸水倍率 とその量、 P V A溶液濃度とその量を本発明の規定範囲内に制御しなければ、 製造効率と形状安定性および蓄冷効果を良好にすることはできない。  Subsequently, a composition for a cold storage material can be obtained by mixing a mixture of pulp fiber and a superabsorbent resin that has absorbed water with a separately prepared aqueous solution of PVA. Since the pulp fiber is contained, the pulp fiber cannot be mixed well without stirring in a container such as a beaker. Therefore, the above-described mixing method of pouring the PVA solution is not suitable for the pulp fiber-containing type. The composition for a cold storage material of the present invention is a mixture of a relatively high-concentration PVA solution and a highly water-absorbent resin that has absorbed water at a high magnification, so that the composition is viscous regardless of the presence or absence of pulp fibers. In addition, the composition has thixotropic properties. Therefore, as described above, unless the water absorption capacity and the amount of the superabsorbent resin and the PVA solution concentration and the amount are controlled within the ranges specified in the present invention, the production efficiency, the shape stability and the cool storage effect are good. Can not be.
本発明の蓄冷材は、 上記蓄冷材用組成物を氷点以下、 好ましくは一 1 0 °C 以下の温度で凍結させて得ることができる。 蓄冷効果を素早く発揮させるに は、 厚さ 3 mm〜 3 0 mm程度の薄さとすることが好ましいが、 長時間蓄冷 効果を発揮させる必要がある場合は、 さらに厚くてもよい。 また、 蓄冷材の 1個の大きさは特に限定されない。 各種の保冷庫 (アイスボックス等も含 む) の大きさに応じて、 適宜設計変更可能である。  The regenerator material of the present invention can be obtained by freezing the composition for a regenerator material at a temperature of not more than freezing point, preferably not more than 110 ° C. In order to quickly exert the cold storage effect, the thickness is preferably as thin as about 3 mm to 30 mm. However, if it is necessary to exert the cold storage effect for a long time, the thickness may be further increased. The size of one cold storage material is not particularly limited. The design can be changed as appropriate according to the size of various cool boxes (including ice boxes, etc.).
本発明の蓄冷材は、 解凍後においても崩れない形状安定性を有しているので、 水平において使用する場合はもとより、 吊り下げて使用することができる。 吊 り下げて使用するには、 例えば、 ゲル体のままで、 あるいいはゲル体を被覆し た通気性シート状体の一部を利用して吊り下げたり、 ゲル体またはその被覆物 をさらに金属箔で包み、 機械式面ファスナーや粘着テープ等で、 壁に貼り付け る等の態様が採用可能である。 また、 F R P、 発泡プラスチック板、 プラスチ ック段ポール等で形成されたパネルに複数個の蓄冷材を貼り付けて吊り下げ、 蓄冷槽に入れるなどの使用方法も可能である。 また、 パルプ繊維を添加すれば 自立可能なレベルまでの剛性を発現させることができるので、 通気性素材で被 覆したり、 スタンディングバウチのような形状の包装体に装填することにより、 自立可能な蓄冷材が得られ、 縦長状態で床に置いて使用することもできる。 も ちろん、 このような自立可能な蓄冷材も、 吊り下げ使用が可能である。 実施例 Since the regenerator material of the present invention has shape stability that does not collapse even after thawing, it can be used not only when it is used horizontally but also when suspended. In order to use it suspended, for example, it may be suspended in a gel form, or by using a part of a gas-permeable sheet covered with the gel form, or the gel form or its covering may be further suspended. It is possible to adopt a mode of wrapping with metal foil and attaching it to a wall with a mechanical hook-and-loop fastener or an adhesive tape. It is also possible to use a method in which a plurality of cold storage materials are attached to a panel made of FRP, foamed plastic plate, plastic step pole, etc., suspended, and put in a cold storage tank. Also, if you add pulp fiber, Since it can exhibit rigidity to a level that allows it to be self-supporting, it can be obtained by covering it with a breathable material or loading it into a package with a shape like a standing vouch to obtain a self-sustaining cold storage material. It can also be used on the floor. Of course, such a self-sustaining cold storage material can also be used hanging. Example
以下、 実施例によって本発明をさらに詳述するが、 本発明は下記実施例に限 定されるものではなく、 本発明の趣旨を逸脱しない範囲での変更実施は、 全て 本発明に包含される。 なお、 実施例中、 部、 %、 とあるのは、 質量部、 質量% を意味する。  Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples, and all modifications within the scope of the present invention are included in the present invention. . In Examples, “parts” and “%” mean “parts by mass” and “% by mass”.
実施例 1  Example 1
まず、 表 1 に示した量の水道水をビーカ一に入れ、 高吸水性樹脂粉末 ( 「アクアリック CA」 : 日本触媒社製) を加えて撹拌しながら吸水膨潤さ せた。 自由水が存在しないように、 最初はよく撹拌しながら吸水させる。 吸 水膨潤が進むと、 撹拌によって気泡が入るようになるので撹拌を止め、 1 0 分以上放置して充分に吸水させた。 次いで、 別途調製しておいた P VA ( 「クラレポバール P VA— 1 1 7 H」 :重合度 1 7 0 0、 鹼化度 9 9. 6 モル% : クラレ社製) の 1 0 %水溶液を、 吸水した高吸水性樹脂が入ってい るビーカ一に表 1に示した所定量加えた。 なるべく気泡が入らないようにゆ るやかに撹拌し、 吸水膨潤した高吸水性樹脂と P V A水溶液を混ぜ合わせ、 蓄冷材用組成物を得た。  First, the amount of tap water shown in Table 1 was placed in a beaker, a superabsorbent resin powder (“AQUALIC CA”: manufactured by Nippon Shokubai Co., Ltd.) was added, and the mixture was swollen with water while stirring. At first, absorb water with good agitation so that free water does not exist. As the water absorption and swelling progressed, air bubbles began to enter due to the stirring. The stirring was stopped, and the mixture was allowed to stand for at least 10 minutes to allow sufficient water absorption. Then, a separately prepared 10% aqueous solution of PVA (“Kuraray Povar PVA—117H”: degree of polymerization: 170,000, degree of oxidation: 99.6 mol%: manufactured by Kuraray) was added. A predetermined amount shown in Table 1 was added to a beaker containing the superabsorbent resin having absorbed water. The mixture was gently stirred as little as possible so that air bubbles did not enter, and the water-absorbing and swollen superabsorbent resin was mixed with a PVA aqueous solution to obtain a composition for a cold storage material.
アクリル樹脂製の容器 (内寸 2 0 5 mmx 94mm: 高さ 2 0mm) に、 アルミ箔 (厚み 3 0 ; m : 244 mmX 1 3 3 mmで、 四隅は 2 0 mmX 2 0mmの正方形状に切り取られている。 ) を敷き、 蓄冷材用組成物 (高吸水 性樹脂と P V A水溶液との混和物) を平らに装填した。 2 0 0mmX 9 0m mのアルミ箔を上に置き、 ァクリル樹脂製容器から金属箔ごと蓄冷材用組成 物を取り出して、 平板の上に、 上下を反転させて載せ、 さらに蓄冷材を平ら に凍結させるためこの上にも平板を載せて、 冷凍庫 (― 1 7〜― 2 2 °C ) でAcrylic resin container (inner size: 205 mm x 94 mm: height: 20 mm) and aluminum foil (thickness: 30; m: 244 mm x 133 mm, four corners cut into squares of 20 mm x 20 mm) ), And the composition for cold storage material (mixture of superabsorbent resin and PVA aqueous solution) was loaded evenly. 200 mm x 90 mm aluminum foil is placed on top, and the composition for the cold storage material together with the metal foil from the acryl resin container Take out the object, place it upside down on a flat plate, and place the flat plate on top of it to freeze the cold storage material flat, and put it in a freezer (-17 to-22 ° C).
2 4時間凍結させた。 凍結させた蓄冷材を冷凍庫から取り出し、 解凍させて アルミ箔を取り除いた後、 ゲル状物の形状安定性と高吸水性樹脂の保持性を 下記基準で評価し、 表 1に併記した。 Frozen for 24 hours. The frozen regenerator material was removed from the freezer, thawed to remove the aluminum foil, and the shape stability of the gel and the retention of the superabsorbent resin were evaluated based on the following criteria.
•形状安定性 (凍結 ·解凍 1回後)  • Shape stability (after one freeze / thaw)
◎ : 2本の指で摘んで吊り下げ可能 ◎: Can be hung by picking with two fingers
〇 ·· 4本の指で摘んで吊り下げ可能 〇 ··· Can be hung by picking with four fingers
△:両手で挟めば吊り下げ可能 △: Can be hung if sandwiched between both hands
X : 両手で挟んで吊り下げようとすると、 ゲルが崩壊して吊り下げ不可。 • 高吸水性樹脂の保持性 (凍結 ·解凍 1回後)  X: If you try to hang it with both hands, the gel collapses and you cannot hang it. • Retention of super water absorbent resin (after freezing and thawing once)
〇: ゲルの表面を指先でこすっても、 高吸水性樹脂がゲルから取れない。  〇: Even if the surface of the gel is rubbed with a fingertip, the superabsorbent resin cannot be removed from the gel.
X :ゲルの表面を指先でこすると、 高吸水性樹脂がゲルから外れる。 表 1  X: When the surface of the gel is rubbed with a fingertip, the superabsorbent resin comes off the gel. table 1
Figure imgf000016_0001
Figure imgf000016_0001
Ρ V Α水溶液が少なくなるにつれて、 ゲルの形状安定性や樹脂の保持性が 劣っていくことがわかる。 また、 吸水倍率が 2 0 0倍の実験 N o . 7では、 極度に膨潤した高吸水性樹脂粒子を PV Aゲルで保持できず、 形状安定性、 樹脂保持性に劣ることがわかった。 Ρ V に つ れ て As the amount of aqueous solution decreases, gel shape stability and resin retention It turns out that it is inferior. In the experiment No. 7 in which the water absorption ratio was 200 times, it was found that the extremely swelled superabsorbent resin particles could not be retained by the PVA gel, resulting in poor shape stability and poor resin retention.
実施例 2  Example 2
アルミ箔に変えて不織布 (ポリプロピレン製: 坪量 2 0 gZm2) をシー ト状体として用いた。 吸水性樹脂粉末 0. 5 0 gを 5 0. 0 gの水道水中に 入れて撹拌し、 1 0分以上吸水させた。 内寸 1 0 c mx 1 0 c m角の枠内に 1 4 c mx 1 4 c mの不織布を敷き、 この不織布の上に吸水膨潤した樹脂を 入れて平坦にならした。 その上に不織布 ( 9 c mX 9 c m) を載せ、 下側の 不織布の四方延出部を折り重ねてから、 1 0 % P VA水溶液を 1 0 g不織布 の上から注ぎかけた。 PV A水溶液は不織布から膨潤樹脂側へ容易に染み込 んだ。 枠を取り除き、 反転させて、 再び 1 0 % P VA水溶液を 1 0 g不織布 の上から注ぎかけた。 — 1 7〜一 2 2 t:の冷凍庫で 1 日放置して凍らせた。 得られた蓄冷材は、 解凍後にも、 指で吊り下げられるだけの形状安定性を示 した。 また、 この蓄冷材は、 水を再吸収させると、 冷凍前の水準まで質量を 戻すことができた。 Instead of aluminum foil, a non-woven fabric (made of polypropylene: basis weight 20 gZm 2 ) was used as the sheet. 0.50 g of the water-absorbent resin powder was placed in 50.0 g of tap water, stirred, and allowed to absorb water for 10 minutes or more. A 14 cm x 14 cm non-woven fabric was laid in a frame with an inner size of 10 cm x 10 cm square, and the water-swollen resin was put on the non-woven fabric to make it flat. A nonwoven fabric (9 cm × 9 cm) was placed on the nonwoven fabric, the four-sided extension of the lower nonwoven fabric was folded, and then a 10% aqueous PVA solution was poured over the 10 g nonwoven fabric. The PVA aqueous solution easily permeated from the nonwoven fabric to the swelling resin side. The frame was removed, inverted, and 10 g of a 10% aqueous PVA solution was poured over the nonwoven fabric again. — 17 to 1 22 t: Freezer for 1 day. The obtained regenerator material showed shape stability enough to be suspended with a finger even after thawing. In addition, this regenerator material was able to return its mass to the level before freezing when water was reabsorbed.
この実施例の蓄冷材の冷凍時における質量減少は少なく、 冷凍庫内で 1 日 放置した場合は 2〜 3 g減少したものの、 その後は、 0. 5 gZ日の質量減 少に過ぎなかった。 比較として、 PVA水溶液を注ぎかけずに、 吸水した高 吸水性樹脂のみを凍らせた場合は、 初日に 2〜 3 g質量が減少した。 その後 も、 1. 4 gZ日の質量減が続いた。  The mass loss of the cold storage material of this example during freezing was small. When left in the freezer for 1 day, the mass decreased by 2 to 3 g, but thereafter, it decreased only by 0.5 gZ day. As a comparison, when only the water-absorbing superabsorbent resin was frozen without pouring the PVA aqueous solution, the mass decreased by 2 to 3 g on the first day. Thereafter, the mass continued to decrease by 1.4 gZ days.
実施例 3  Example 3
表 2に示した組成の蓄冷材用組成物を実施例 1と同様にして調製した。 得 られた蓄冷材用組成物を実施例 1で用いたァクリル樹脂製ボックスに直接で きるだけ平らに装填して表面をならし、 ラップフィルムでボックスごと周囲 を被覆して、 一 1 7〜一 2 2 °Cの冷凍庫で 1 日放置して凍らせた。 混合撹拌 時および装填時の作業性を評価すると共に、 ゲル体の強度等の特性を評価す るために、 解凍後、 ボックスからゲル体を取り出し、 下記基準で評価した。 なお、 形状安定性と樹脂の保持性は実施例 1と同様の基準で評価した。 A composition for a cold storage material having the composition shown in Table 2 was prepared in the same manner as in Example 1. The obtained composition for a cold storage material was directly loaded into the acryl resin box used in Example 1 as flatly as possible to level the surface, and the entire box was covered with a wrap film to cover the periphery. It was left to freeze in a freezer at 22 ° C for 1 day. Mixing and stirring After thawing, the gel was taken out of the box and evaluated according to the following criteria in order to evaluate the workability during loading and loading, and to evaluate properties such as the strength of the gel. The shape stability and the resin retention were evaluated according to the same criteria as in Example 1.
•作業性 (実験雰囲気温度 2 0〜 2 2 °C )  • Workability (experimental ambient temperature 20 to 22 ° C)
◎:低粘度で混合撹拌が容易。 蓄冷材用組成物にはセルフレペリング性があ り、 平らに装填することが極めて容易。  A: Low viscosity and easy mixing and stirring. The composition for cold storage materials has self-pelling properties, making it extremely easy to load flat.
〇: 高粘度ではあるがチクソトロピー性が比較的小さく、 混合撹拌は可能。 組成物にはセルフレペリング性はないが、 平らに装填することが容易。  〇: High viscosity, but relatively low thixotropy, allowing mixing and stirring. The composition does not have self-pelling properties, but is easy to load flat.
△ : 高粘度でチクソトロピー性が大きい。 また平らに装填することが難しい Δ: High viscosity and large thixotropy. Also difficult to load flat
(このため、 解凍後のゲル体にボイ ドが少し認められる) 。 (Therefore, some voids are observed in the gel body after thawing).
X :高粘度でチクソトロピー性が極めて大きく、 平らに装填することが極め て難しい (このため、 解凍後のゲル体にボイ ドが認められる) 。 X: High viscosity and extremely high thixotropic properties, making it extremely difficult to load flatly (for this reason, voids are observed in the gel body after thawing).
X X :撹拌することはできるが、 混合によって多量の空気が混入し、 組成物 がクリーム状となってしまう。 XX: Can be stirred, but a lot of air is mixed in by mixing, and the composition becomes creamy.
•樹脂崩壊性 (凍結 ·解凍 1回後)  • Resin disintegration (frozen and thawed once)
〇:ゲル体を指で押さえると弾力があり、 指を離すと、 元通りの形状に弾性 回復する。  〇: The gel body is elastic when pressed with a finger, and elastically recovers to its original shape when released.
X : ゲル体を指で押さえると、 押さえた部分近傍の吸水性樹脂の膨潤粒子が ゲル体から分離し (ばらけ) て、 崩壊する。  X: When the gel body is pressed with a finger, the swelling particles of the water-absorbent resin near the pressed part are separated (separated) from the gel body and collapse.
•腰の強さ (凍結 ·解凍 2回後)  • Strength of the waist (after freezing and thawing twice)
ゲル体を机上端部から 4 0 mm (ゲル体の長手方向:第 1図中 a ) 押し出 したとき、 机上面からのゲル体がどれだけ垂れ下がるか、 その垂れ下がり長 さ (第 1図中 b ) を測定した。 この垂れ下がり長さをゲル体の 「腰の強さ」 とし、 形状安定性の微妙な違いの数値化を図った。 値が小さいほど腰が強く . 形状安定性に優れることとなる。 なお、 腰の強さは、 凍結 ·解凍を繰り返す ことによってその値は小さくなる (腰が強くなる) 。 表 3には、 凍結→解凍 凍結—解凍と、 凍結 ·解凍を 2回繰り返した後の測定値を示している When the gel body is extruded 40 mm from the top edge of the desk (longitudinal direction of the gel body: a in Fig. 1), how much the gel body hangs down from the desk top surface, and how long it hangs down (b in Fig. 1) ) Was measured. The length of the sag was defined as the “strength of the waist” of the gel body, and the subtle differences in shape stability were quantified. The smaller the value, the stronger the stiffness. The better the shape stability. The value of the waist strength is reduced by repeated freezing and thawing (the waist becomes stronger). Table 3 shows frozen → thawed Freeze-thaw and freeze-thaw are shown twice.
表 2  Table 2
Figure imgf000019_0001
Figure imgf000019_0001
*:吸水後の樹脂 1 00質量部に対する PVA水溶液の質量比  *: Mass ratio of PVA aqueous solution to 100 parts by mass of resin after water absorption
表 3  Table 3
Figure imgf000019_0002
Figure imgf000019_0002
* : 40mm押し出しテストでの垂れ下がり長さ 表 2および表 3から、 吸水倍率の低い実験 No. 8および 9は、 作業性が 悪いことがわかる。 本発明範囲内の実験 N o . 10〜 14は、 いずれも優れ た特性を示した。 *: Hanging length in 40mm extrusion test From Tables 2 and 3, it can be seen that the workability is poor in Experiments Nos. 8 and 9 having a low water absorption capacity. Experiments No. 10 to 14 all within the scope of the present invention exhibited excellent characteristics.
実施例 4  Example 4
表 4に示した組成の蓄冷材用組成物とした以外は実施例 3と同様にして解 凍後のゲル体の評価を行った。 結果を表 5に示した。 表 4  The gel body after thawing was evaluated in the same manner as in Example 3 except that the composition for a cold storage material having the composition shown in Table 4 was used. Table 5 shows the results. Table 4
Figure imgf000020_0001
Figure imgf000020_0001
* : 吸 後の樹脂 1 0 0 質量部に対する P V A 水溶液の質量比  *: Mass ratio of PVA aqueous solution to 100 parts by mass of resin after absorption
8 表 5 8 Table 5
Figure imgf000021_0001
Figure imgf000021_0001
* :40mm押し出しテストでの垂れ下がり長さ 実験 N o. 1 5〜 1 8は、 系全体の樹脂分と水の比率を同じとし、 吸水倍 率および P V A水溶液濃度を変化させた実験例である。 腰の強さに明確な差 が表れており、 この値を 2 0 mm以下にするためには、 PV A濃度が 1 0 % 以上必要であることがわかる。 実験 N o . 1 9〜 2 2は、 PVA水溶液の量 を検討した結果である。 水溶液量が本発明規定量 (2 5質量部以上) より少 ない N o. 1 9では、 蓄冷材用組成物調製段階で、 PVA水溶液の連続相を 形成することができなかった。 また、 解凍後の形状安定性等に劣り、 垂れ下 がることなくばらけてしまうので、 腰の強さは測定不能であった。 N o. 2 0でも作業性が悪く、 得られたゲル体は、 ある程度の形状安定性は発現した が、 樹脂保持性、 樹脂崩壊性、 腰の強さが劣っていた。  *: Hanging length experiment in 40 mm extrusion test No. 15 to 18 are experimental examples in which the ratio of resin to water in the entire system was the same, and the water absorption ratio and the concentration of the PVA aqueous solution were changed. There is a clear difference in waist strength, indicating that a PVA concentration of 10% or more is required to reduce this value to 20 mm or less. Experiment Nos. 19 to 22 are the results of examining the amount of the PVA aqueous solution. When the amount of the aqueous solution was smaller than the specified amount of the present invention (25 parts by mass or more), the continuous phase of the PVA aqueous solution could not be formed in the step of preparing the composition for the cold storage material. In addition, the shape stability after thawing was inferior, and it fell apart without sagging, so the waist strength could not be measured. Even at No. 20, the workability was poor, and the obtained gel body exhibited some degree of shape stability, but was inferior in resin retention, resin disintegration, and stiffness.
実施例 5  Example 5
パルプ繊維を入れた蓄冷材用組成物からなる蓄冷材について検討した。 表 6に示した量のパルプ繊維 (パルプボード) と、 表 6に示した量の水よりも 過剰の水をミキサーに入れて 2分間撹拌し、 板パルプを解繊した。 一部の水 を捨てて表 6に示した量の水としてから、 この中へ未吸水の高吸水性樹脂粉 末を加え、 約 1 5秒撹拌した後、 1 0分以上放置して、 樹脂に吸水させた。 吸水後の樹脂とパルプ繊維の混合物をビーカーに移し替え、 別途調製してお いた P V A水溶液 (表 6に示した量および濃度) を加え、 なるべく気泡が入 らないように撹拌し、 蓄冷材用組成物を調製した。 A cold storage material composed of a composition for a cold storage material containing pulp fibers was examined. table The amount of pulp fiber (pulp board) shown in Table 6 and the amount of water in excess of the amount shown in Table 6 were placed in a mixer and stirred for 2 minutes to defibrate the board pulp. A portion of the water is discarded to obtain the amount of water shown in Table 6, and the unabsorbed superabsorbent resin powder is added thereto, and the mixture is stirred for about 15 seconds. Water. Transfer the mixture of resin and pulp fiber after water absorption to a beaker, add a separately prepared PVA aqueous solution (amount and concentration shown in Table 6), stir as much as possible to avoid bubbles, and use it for cold storage materials. A composition was prepared.
得られた蓄冷材用組成物を実施例 3と同様に凍結 ·解凍し、 評価した。 な お、 この実験例では、 腰の強さは凍結 ·解凍 1回後のゲル体について押出距 離 (第 1図の a ) を 8 0 mmにして測定している。 パルプ繊維が含まれた系 は、 一層形状安定性に優れているので、 反発性、 自立性を下記基準で評価し た。 また表面の触感についても評価した。 表面の触感は、 ぬめり感およびべ とっき感の有無を官能的に示したものであり、 蓄冷材として最外層にアルミ 箔を設ける場合のアルミ箔との密着性と関連する。 結果を表 7に示した。 •反発性 (凍結 ·解凍 2回後)  The obtained composition for a cold storage material was frozen and thawed in the same manner as in Example 3, and evaluated. In this experimental example, the waist strength was measured by setting the extrusion distance (a in Fig. 1) to 80 mm for the gel after freezing and thawing once. Since the system containing pulp fiber had more excellent shape stability, resilience and self-sustainability were evaluated according to the following criteria. The surface tactile sensation was also evaluated. The tactile sensation on the surface is a sensual indication of the feeling of sliminess and stickiness, and is related to the adhesion to the aluminum foil when the outermost layer is provided as a cold storage material. The results are shown in Table 7. • Rebound (frozen and thawed twice)
◎: 掌の上にゲル体を横長に置いたときに、 ゲル体の両端部がわずかに橈む, 〇: ゲル体の両端部が少し下がる。  :: When the gel body is placed horizontally on the palm, both ends of the gel body are slightly radiused. 〇: Both ends of the gel body are slightly lowered.
△: ゲル体の両端部がかなり下がる。 Δ: Both ends of the gel body were considerably lowered.
X : ゲル体の両端部が垂れる。  X: Both ends of the gel body hang down.
• 自立性 (凍結 ·解凍 2回後)  • Independence (after freezing and thawing twice)
◎: ゲル体の長手方向を垂直に立て、 中央部の両側を指一本ずつで軽く支え るだけで自立している。  :: The gel body stands upright and the center part is self-supporting by lightly supporting both sides of the center with one finger.
〇: かろうじて自立する。 〇: Barely independent.
X : 自立しない。  X: Not independent.
*表面の触感 (凍結 ·解凍 1回後)  * Surface feel (after freezing and thawing once)
〇: ぬめり感とべとつき感がある。 △ : ぬめり感小でべとっき感はない。 〇: There is a slimy feeling and a sticky feeling. Δ: No slimy feeling and no sticky feeling.
X : ベとつき感大 (離水している) 。 X: Great stickiness (water separation).
表 6 Table 6
Figure imgf000024_0001
Figure imgf000024_0001
*:吸水後の樹脂とパルプ繊維との合計 100質量部に対する PVA水溶液の質量比 *: Mass ratio of PVA aqueous solution to total 100 parts by mass of resin and pulp fiber after water absorption
卖験 No 表面の 形 状 樹 脂 樹 脂 Test No Surface shape Resin Resin
作業性 発性 自立性 腰の強さ * 触感 安定性 保持性 崩壊性  Workability Development Independence Waist strength * Tactile stability Stability Retention
23 O Δ ◎ 〇 〇 〇 o 34. 0 23 O Δ ◎ 〇 〇 〇 o 34. 0
24 〇 Δ ◎ 〇 〇 〇 〇 36. 524 〇 Δ ◎ 〇 〇 〇 〇 36. 5
25 〇 厶 ◎ 〇 〇 〇 〇 35. 525 room ◎ 〇 〇 〇 〇 35.5
26 〇 〇 ◎ 〇 〇 △ X 44. 326 〇 ◎ ◎ 〇 〇 △ X 44.3
27 27
CO 〇 〇 〇 〇 Δ X 39. 8  CO 〇 〇 〇 〇 Δ X 39.8
28 〇 〇 ◎ 〇 〇 〇 〇 33. 8 28 〇 〇 ◎ 〇 〇 〇 〇 33. 8
29 〇 〇 ◎ 〇 〇 Δ X 46. 529 〇 ◎ ◎ 〇 〇 Δ X 46.5
30 〇 X ◎ 〇 〇 X X 51 . 030 〇 X ◎ 〇 〇 X X 51.0
31 〇 △ ◎ 〇 〇 △ X 46. 031 〇 △ ◎ 〇 〇 △ X 46.0
32 〇 Δ ◎ 〇 〇 △ X 39. 532 〇 Δ ◎ 〇 〇 △ X 39.5
33 〇 〇 ◎ ο 〇 Δ X 46. 3 33 〇 〇 ◎ ο 〇 Δ X 46.3
* : 80mm押し出しテストでの垂れ下がり長; *: Hanging length in 80mm extrusion test;
本実験では、 パルプ繊維量を高吸水性樹脂に吸水させた水 1 0 0質量部に 対し 4質量部に統一している。 実験 N o . 2 3〜3 3のうち、 N o. 3 0は 比較例である。 吸水倍率が本発明規定範囲を超えている。 パルプ繊維が含ま れているため形状安定性等は発現しているが、 腰の強さは他の実験例 (本発 明実施例) に比べて有意に劣っている。 また表面の触感は、 ベとつきすぎで あった。 In this experiment, the amount of pulp fiber was unified to 4 parts by mass with respect to 100 parts by mass of water absorbed by the superabsorbent resin. Of the experiments No. 23 to 33, No. 30 is a comparative example. The water absorption capacity exceeds the specified range of the present invention. Although pulp fiber is included, shape stability is exhibited, but the stiffness is significantly inferior to other experimental examples (Examples of the present invention). The touch on the surface was too sticky.
実施例 6  Example 6
本発明の蓄冷材を、 小型の凍結装置内蔵型蓄冷式冷蔵庫 (強制対流式) に セットして、 その蓄冷効果を検討した。 蓄冷材の組成は、 基本的には実施例 2と同様で、 水 2 7 5 0 g、 高吸水性樹脂 2 7. 5 g、 1 1 % P VA水溶液 1 0 0 0 gである。 木枠内にアルミ箔、 次いで不織布をおき、 蓄冷材用組成 物を装填した後、 不織布、 アルミ箔を載せ、 凍結させたのち、 アルミ箔の四 方を粘着テープで止め、 5 0 0 mm幅、 1 0 0 0 mm長さ、 厚さ約 8 mmの シート状蓄冷材を 1 0個作成した。  The regenerator material of the present invention was set in a small refrigerating refrigerator (forced convection type) with a built-in freezing device, and its regenerative effect was studied. The composition of the regenerator material is basically the same as that of Example 2, and it is 275 g of water, 27.5 g of superabsorbent resin, and 100 g of 11% PVA aqueous solution. After placing the aluminum foil and then the non-woven fabric in the wooden frame, loading the composition for cold storage material, placing the non-woven fabric and the aluminum foil, freezing them, and fixing the aluminum foil on all sides with adhesive tape, 500 mm width 10 pieces of sheet-shaped regenerative material having a length of 100 mm and a thickness of about 8 mm were prepared.
冷蔵庫の側部断面図を第 2図に、 第 3図には第 2図の A— A線断面図を示 した。 第 2図の右側が冷蔵庫 1の正面であり、 2は凍結装置、 3は冷却ファ ン (4機) 、 4は蓄冷材層、 5は空間、 6は保冷室 (荷物室) である。 第 3 図からわかるように、 上記シ一ト状蓄冷材 4 1を蓄冷材層 4に左右 2個ずつ 5列に並べてある。 冷気はファン 3を経て、 保冷室 6へと送られる (第 2図 の矢印) 。 保冷室 6は、 高さ Hが 1 4 5 0 mm, 幅 Wが 1 1 5 0 mm, 奥行 き Dが約 1 3 0 0 mmであり、 その容積は、 2. 2 m3である。 FIG. 2 is a sectional side view of the refrigerator, and FIG. 3 is a sectional view taken along line AA of FIG. The right side of Fig. 2 is the front of the refrigerator 1, 2 is a freezing device, 3 is a cooling fan (4 units), 4 is a cold storage material layer, 5 is a space, and 6 is a cold storage room (luggage room). As can be seen from FIG. 3, the sheet-like cold storage material 41 is arranged in five rows, two on the left and right sides of the cold storage material layer 4. The cool air is sent through the fan 3 to the cool room 6 (arrow in Fig. 2). Cold chamber 6 is the height H is 1 4 5 0 mm, the width W is 1 1 5 0 mm, the depth-out D is about 1 3 0 0 mm, its volume, 2. a 2 m 3.
蓄冷効果検討実験を行うにあたり、 実際の使用条件に近くなるように、 冷 蔵庫 1ごと 3 2 °Cの恒温室に入れた。 一旦凍結させた後、 解凍しておいたシ 一ト状蓄冷材 4 1を蓄冷材層 4にセッ卜した後、 凍結装置 2を 8時間運転し て、 蓄冷材 4 1を一 1 0°Cで凍結させた。 続いて、 凍結装置 2の運転を停止 し、 保冷室 6が + 5 °Cを超えた場合に冷却ファン 3で保冷室 6に冷気を送り ながら、 密封状態の保冷室 6の温度変化を測定した。 In conducting the cold storage effect study experiment, the refrigerators were placed in a constant temperature room at 32 ° C so that they would be close to the actual use conditions. After freezing, the sheet-like cold storage material 41 that has been thawed is set in the cold storage material layer 4, then the freezing device 2 is operated for 8 hours, and the cold storage material 41 is stored at 110 ° C. Frozen. Subsequently, the operation of the freezing device 2 is stopped, and when the temperature of the cool room 6 exceeds + 5 ° C, cool air is sent to the cool room 6 by the cooling fan 3. Then, the temperature change of the cool room 6 in a sealed state was measured.
保冷室 6は 1 6時間の間、 + 5 °C以下を維持し、 その後緩やかに昇温 (約 1 . 6 °C Z時間) した。 蓄冷材の蓄冷効果が 1 6時間以上にわたって発揮さ れたことが確認された。 産業上の利用可能性  The temperature in the cool room 6 was maintained at + 5 ° C or lower for 16 hours, and then the temperature was gradually increased (about 1.6 ° C for Z hours). It was confirmed that the cool storage effect of the cool storage material was exhibited for more than 16 hours. Industrial applicability
本発明の蓄冷材は、 ゲルを利用するものでありながら、 解凍後の形状安定 性に優れているため、 単独で吊り下げて使用することができる。 従って、 断 熱性が高く非通気性のケースに封入されて使用され、 解凍後に無定形となる 従来のゲルを用いた蓄冷材に比べ、 薄く表面積の大きな板状にして使用する ことができる。 このため、 蓄冷材単位質量あたりの空気接触面積を多くする ことができ、 短時間で蓄冷材の中心まで凍結させることができると共に、 蓄 冷材としての冷却効率も高いものである。  The regenerative material of the present invention utilizes a gel, but has excellent shape stability after thawing, so that it can be used alone by hanging. Therefore, it can be used in a plate shape that is thinner and has a larger surface area than a conventional cold storage material using a gel that is sealed in a non-breathable case with high thermal insulation and becomes amorphous after thawing. Therefore, the air contact area per unit mass of the cold storage material can be increased, and the center of the cold storage material can be frozen in a short time, and the cooling efficiency as the cold storage material is also high.
通常、 不織布やアルミ箔のようなそれ自体では無定形ゲルを矩形状に保持 することのできないようなシ一ト状体で被覆しても、 本発明の蓄冷材は解凍 後においても矩形状を維持し得るので、 狭い蓄冷材ゾーンへ立てて並べたり, フック部材ゃ機械式面ファスナー等を利用して壁に吊すことができる。 従つ て、 例えば保冷車や保冷庫用の蓄冷材として有用である。 また、 本発明の蓄 冷材の製造方法によれば、 優れたゲル強度を有する蓄冷材を効率よく製造す ることができる。  Normally, even if the amorphous gel itself is coated with a sheet-like material such as nonwoven fabric or aluminum foil which cannot hold the gel in a rectangular shape, the regenerator material of the present invention has a rectangular shape even after thawing. Since it can be maintained, it can be arranged vertically in a narrow cold storage material zone, or hung on a wall using hook members ゃ mechanical surface fasteners. Therefore, it is useful, for example, as a cold storage material for cold storage vehicles and cold storage. Further, according to the method for producing a cold storage material of the present invention, a cold storage material having excellent gel strength can be efficiently produced.

Claims

請 求 の 範 囲 The scope of the claims
1 . 乾燥時の高吸水性樹脂の自重の 4 0〜 1 5 0質量倍の水を吸水した高吸 水性樹脂 1 0 0質量部に対し、 濃度 1 0質量%以上のポリビニルアルコール 水溶液を 2 5質量部以上の割合で含有する蓄冷材用組成物が凍結されたもの であることを特徴とする形状安定性に優れた蓄冷材。 1. With respect to 100 parts by mass of the water-absorbent resin having absorbed 40 to 150 mass times its own weight of the water-absorbent resin at the time of drying, an aqueous solution of polyvinyl alcohol having a concentration of 10% by mass or more is added to 250 parts by mass. A cold storage material having excellent shape stability, characterized in that the composition for a cold storage material contained in a proportion of at least part by mass is frozen.
2 . 蓄冷材用組成物中のポリビニルアルコール水溶液の濃度が 1 1 〜 2 0質 量%である請求の範囲第 1項に記載の蓄冷材。 2. The cold storage material according to claim 1, wherein the concentration of the aqueous polyvinyl alcohol solution in the composition for a cold storage material is 11 to 20% by mass.
3 . 蓄冷材用組成物中のポリビニルアルコール水溶液の割合が、 吸水した高吸 水性樹脂 1 0 0質量部に対し、 1 0 0質量部以下である請求の範囲第 1項また は第 2項に記載の蓄冷材。 3. The method according to claim 1 or 2, wherein the ratio of the aqueous polyvinyl alcohol solution in the composition for cold storage material is 100 parts by mass or less based on 100 parts by mass of the superabsorbent resin that has absorbed water. Cold storage material as described.
4 . 蓄冷材用組成物中の高吸水性樹脂の吸水量が、 自重の 7 0〜 1 2 0質量倍 である請求の範囲第 1項〜第 3項のいずれかに記載の蓄冷材 4. The cold storage material according to any one of claims 1 to 3, wherein the water absorption of the superabsorbent resin in the composition for cold storage material is 70 to 120 times by mass of its own weight.
5 . 蓄冷材用組成物が、 吸水した高吸水性樹脂 1 0 0質量部に対し、 2〜 8質 量部のパルプ繊維を含有するものである請求の範囲第 1項〜第 4項のいずれか に記載の蓄冷材。 5. The composition for a cold storage material according to any one of claims 1 to 4, wherein the composition contains 2 to 8 parts by mass of pulp fiber based on 100 parts by mass of the superabsorbent resin that has absorbed water. The cold storage material as described in or.
6 . 蓄冷材用組成物の凍結体が 1種類以上のシート状体によって被覆されてい るものである請求の範囲第 1項〜第 5項のいずれかに記載の蓄冷材。 6. The cold storage material according to any one of claims 1 to 5, wherein the frozen body of the composition for a cold storage material is covered with at least one sheet.
7 . シート状体が金属箔である請求の範囲第 6項に記載の蓄冷材。 7. The cold storage material according to claim 6, wherein the sheet is a metal foil.
8 . シート状体が通気性素材である請求の範囲第 6項に記載の蓄冷材。 8. The cold storage material according to claim 6, wherein the sheet is a breathable material.
9 . 請求の範囲第 1項〜第 4項のいずれかに記載の蓄冷材を製造する方法であ つて、 乾燥時の高吸水性樹脂の自重の 4 0〜 1 5 0質量倍の水を高吸水性樹 脂に吸収させると共に、 別途、 濃度 1 0質量%以上のポリビニルアルコール 水溶液を調製し、 次いで、 吸水後の高吸水性樹脂とポリビニルアルコール水 溶液を混和して蓄冷材用組成物とレ、 その後、 この蓄冷材用組成物を凍結す ることを特徴とする蓄冷材の製造方法。 9. A method for producing a cold storage material as set forth in any one of claims 1 to 4, wherein the water is 40 to 150 times the weight of the weight of the superabsorbent resin when dried. In addition to absorbing the water-absorbing resin, a polyvinyl alcohol aqueous solution having a concentration of 10% by mass or more is separately prepared. Then, the water-absorbing superabsorbent resin and the polyvinyl alcohol aqueous solution are mixed to obtain a composition for a cold storage material. Then, the method for producing a cold storage material is characterized by freezing the composition for a cold storage material.
1 0 . 請求の範囲第 5項に記載の蓄冷材を製造する方法であって、 所定量の水 に所定量のパルプ繊維が分散したパルプ繊維分散水を調製し、 このパルプ繊維 分散水の中に未吸水の高吸水性樹脂を加えて吸水させることによって、 乾燥時 の高吸水性樹脂の自重の 4 0〜 1 5 0質量倍の水を吸水した高吸水性樹脂と、 当該吸水後の高吸水性樹脂 1 0 0質量部に対し 2〜 8質量部の割合のパルプ繊 維との混合物を調製し、 この混合物と、 別途調製した濃度 1 0質量%以上の ポリビニルアルコール水溶液とを混和して蓄冷材用組成物とし、 その後、 こ の蓄冷材用組成物を凍結させることを特徴とする蓄冷材の製造方法。 10. The method for producing a cold storage material according to claim 5, wherein a pulp fiber dispersion water in which a predetermined amount of pulp fiber is dispersed in a predetermined amount of water is prepared. By adding a water-absorbent resin that has not yet absorbed water to the water, the water-absorbent resin absorbs 40 to 150 times the weight of the weight of the water-absorbent resin at the time of drying. A mixture of pulp fiber in a ratio of 2 to 8 parts by mass with respect to 100 parts by mass of the water-absorbent resin is prepared, and this mixture is mixed with a separately prepared aqueous solution of polyvinyl alcohol having a concentration of 10% by mass or more. A method for producing a cold storage material, comprising: forming a composition for a cold storage material; and subsequently freezing the composition for a cold storage material.
PCT/JP2000/001445 1999-03-15 2000-03-10 Cold-storage material with excellent shape stability and process for producing the same WO2000052112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU29404/00A AU2940400A (en) 1999-03-15 2000-03-10 Cold-storage material with excellent shape stability and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6906799 1999-03-15
JP11/69067 1999-03-15
JP2000013336 2000-01-21
JP2000/13336 2000-01-21

Publications (1)

Publication Number Publication Date
WO2000052112A1 true WO2000052112A1 (en) 2000-09-08

Family

ID=26410248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001445 WO2000052112A1 (en) 1999-03-15 2000-03-10 Cold-storage material with excellent shape stability and process for producing the same

Country Status (2)

Country Link
AU (1) AU2940400A (en)
WO (1) WO2000052112A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046886A (en) * 2004-02-04 2006-02-16 Sk Kaken Co Ltd Floor heating structure
JP2011033334A (en) * 2004-02-04 2011-02-17 Sk Kaken Co Ltd Floor heating structure
CN111422498A (en) * 2020-04-16 2020-07-17 高广利 Thermal insulation bag applied to refrigeration transportation and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270867A (en) * 1988-04-22 1989-10-30 Susumu Kusaka Hydrous cooling member
JPH0280489A (en) * 1988-09-19 1990-03-20 Japan Vilene Co Ltd Low-temperature insulation material
JPH02252788A (en) * 1989-03-27 1990-10-11 Nippon Synthetic Chem Ind Co Ltd:The Cooling medium and its production
JPH02132643U (en) * 1989-04-07 1990-11-05
JPH0489887A (en) * 1990-08-01 1992-03-24 Nippon Synthetic Chem Ind Co Ltd:The Cold accumulating material
JPH04100887A (en) * 1990-08-17 1992-04-02 Nippon Synthetic Chem Ind Co Ltd:The Gel material, preparation of the same, and gel-packing material for heat insulation
JPH0586361A (en) * 1991-03-06 1993-04-06 Sanyo Chem Ind Ltd Gel-like cold storage material
JPH05239449A (en) * 1992-02-25 1993-09-17 Nippon Synthetic Chem Ind Co Ltd:The Production of gel
JPH07124461A (en) * 1993-10-29 1995-05-16 Niitaka Kagaku Kogyo Kk Cooling medium molding and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270867A (en) * 1988-04-22 1989-10-30 Susumu Kusaka Hydrous cooling member
JPH0280489A (en) * 1988-09-19 1990-03-20 Japan Vilene Co Ltd Low-temperature insulation material
JPH02252788A (en) * 1989-03-27 1990-10-11 Nippon Synthetic Chem Ind Co Ltd:The Cooling medium and its production
JPH02132643U (en) * 1989-04-07 1990-11-05
JPH0489887A (en) * 1990-08-01 1992-03-24 Nippon Synthetic Chem Ind Co Ltd:The Cold accumulating material
JPH04100887A (en) * 1990-08-17 1992-04-02 Nippon Synthetic Chem Ind Co Ltd:The Gel material, preparation of the same, and gel-packing material for heat insulation
JPH0586361A (en) * 1991-03-06 1993-04-06 Sanyo Chem Ind Ltd Gel-like cold storage material
JPH05239449A (en) * 1992-02-25 1993-09-17 Nippon Synthetic Chem Ind Co Ltd:The Production of gel
JPH07124461A (en) * 1993-10-29 1995-05-16 Niitaka Kagaku Kogyo Kk Cooling medium molding and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046886A (en) * 2004-02-04 2006-02-16 Sk Kaken Co Ltd Floor heating structure
JP2011033334A (en) * 2004-02-04 2011-02-17 Sk Kaken Co Ltd Floor heating structure
JP4656959B2 (en) * 2004-02-04 2011-03-23 エスケー化研株式会社 Floor heating structure
CN111422498A (en) * 2020-04-16 2020-07-17 高广利 Thermal insulation bag applied to refrigeration transportation and preparation method thereof
CN111422498B (en) * 2020-04-16 2022-09-16 浩添(厦门)储能股份有限公司 Thermal insulation bag applied to refrigeration transportation and preparation method thereof

Also Published As

Publication number Publication date
AU2940400A (en) 2000-09-21

Similar Documents

Publication Publication Date Title
US6017606A (en) Reusable multicompartment thermal compress
RU2194937C2 (en) Heat element with latent heat
WO2000052112A1 (en) Cold-storage material with excellent shape stability and process for producing the same
JP6480130B2 (en) Local drying cooling fan
US6132454A (en) Heat pack
JP2019180837A (en) Hardening-preventing cool feeling mat
US6402982B1 (en) Phase change composition containing a nucleating agent
JPH0459905B2 (en)
JP3177696U (en) Cooling band
JPH0541769U (en) Water absorption and water retention sheet
JP2645560B2 (en) Cooling material device
JP2003079680A (en) Cold insulation material
JPS60204485A (en) Water-absorbing packaging vessel
JPH01311187A (en) Cooling material
JPH0634171A (en) Water absorbing sheet
JPS60191165A (en) Heat insulator and heat insulating method
JP2005118059A (en) Cold reserving material
JP3866619B2 (en) Thermal insulation tool
JPH07124461A (en) Cooling medium molding and its production
JPS63283719A (en) Water absorbing mat
JP6371596B2 (en) Cooling tool
JP3018438U (en) Insulation material with flexibility
JPH11347401A (en) Absorbent material and absorber for absorption of salt-containing solution
JP2514691B2 (en) Cooling material
JP2602040B2 (en) Cooling material and manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 602726

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase