WO2000049958A1 - A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body - Google Patents
A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body Download PDFInfo
- Publication number
- WO2000049958A1 WO2000049958A1 PCT/IL2000/000113 IL0000113W WO0049958A1 WO 2000049958 A1 WO2000049958 A1 WO 2000049958A1 IL 0000113 W IL0000113 W IL 0000113W WO 0049958 A1 WO0049958 A1 WO 0049958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- patient
- structural
- instrument
- target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000001225 therapeutic effect Effects 0.000 title claims abstract description 23
- 238000003384 imaging method Methods 0.000 claims description 26
- 238000002591 computed tomography Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 10
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 9
- 238000002603 single-photon emission computed tomography Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000002600 positron emission tomography Methods 0.000 claims description 4
- 230000033001 locomotion Effects 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 description 26
- 210000000056 organ Anatomy 0.000 description 11
- 238000001574 biopsy Methods 0.000 description 9
- 238000003745 diagnosis Methods 0.000 description 8
- 238000002725 brachytherapy Methods 0.000 description 6
- 230000002792 vascular Effects 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 238000009206 nuclear medicine Methods 0.000 description 4
- 239000012217 radiopharmaceutical Substances 0.000 description 4
- 229940121896 radiopharmaceutical Drugs 0.000 description 4
- 230000002799 radiopharmaceutical effect Effects 0.000 description 4
- 206010025323 Lymphomas Diseases 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- 238000013170 computed tomography imaging Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 238000012633 nuclear imaging Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000033912 thigmotaxis Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- AOYNUTHNTBLRMT-SLPGGIOYSA-N 2-deoxy-2-fluoro-aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](F)C=O AOYNUTHNTBLRMT-SLPGGIOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 238000012879 PET imaging Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 201000010989 colorectal carcinoma Diseases 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 238000002672 stereotactic surgery Methods 0.000 description 1
- ACTRVOBWPAIOHC-XIXRPRMCSA-N succimer Chemical compound OC(=O)[C@@H](S)[C@@H](S)C(O)=O ACTRVOBWPAIOHC-XIXRPRMCSA-N 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/12—Arrangements for detecting or locating foreign bodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5235—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5247—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/11—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
Definitions
- the present invention is generally in the field of the diagnosis and treatment of ailments such as cancer, and relates to a method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body.
- Diagnostic and therapeutic techniques aimed at diagnosing and treating cancerous tumors are known and widely used. Some of them involve the insertion of an mstrument such as a needle, from outside the patient into a tumor that is suspected of being cancerous.
- a biopsy needle commonly is inserted into a tumor to withdraw a tissue sample for biopsy.
- a radioisotope is placed at the tip of a needle, and the tip of the needle is inserted into the tumor to deliver radiation to the tumor with minimal irradiation of the surrounding healthy tissue.
- chemotherapeutic agents also may be injected into the tumor using a needle.
- Such needles are often inserted into the patient utilizing a series of structural images of the patient, such as ultrasound images, images obtained with Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) techniques. These images are acquired before and during the insertion of the instrument, to verify that the instrument is being directed towards the correct target and is bypassing organs such as blood vessels, which should not be penetrated by the instrument. Since a tumor may include both cancerous tissue and non-cancerous tissue, it is important to be able to direct an instrument specifically to a cancerous portion of a tumor, and to avoid misdiagnosis from the non-cancerous portion of a tumor. In the case of a biopsy, the needle should be directed towards the portion of the tumor that is most likely to be cancerous.
- MRI Magnetic Resonance Imaging
- CT Computed Tomography
- the needle In the case of brachytherapy, the needle should be directed towards the cancerous portion of the tumor.
- Structural imaging modalities such as CT and MRI, that have enough spatial accuracy and resolution to distinguish and resolve tumors, are nevertheless unable to differentiate cancerous tissue from non-cancerous tissue.
- Functional imaging modalities including tomographic nuclear imaging modalities, such as Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), can distinguish cancerous tissue from non-cancerous tissue, but lack the spatial accuracy and resolution that is needed for the accurate positioning of instruments such as biopsy needles and brachytherapy needles.
- SPECT Single Photon Emission Computed Tomography
- PET Positron Emission Tomography
- Stereotaxis is a known technique for localizing a region inside the body of a patient from outside the body of the patient, and for directing an instrument such as a needle, or a narrow beam of therapeutic radiation, to the target region.
- the degree of accuracy obtained from stereotaxis is relatively high, so this technique has been considered useful mainly on the brain and the breast.
- a CT localization frame is attached rigidly to the head of a patient and a CT image of the patient's brain is acquired with the CT localization frame in place.
- the position of the CT localization frame in the CT image is used to position the patient with respect to a surgical instrument utilizing a source of radiation so that the beam or beams of radiation intersects the desired target.
- CT localization frame is removed from the patient's head before the therapeutic irradiation commences.
- information on the physical dimensions of the instrument can be obtained by one of the following means: prompting the user to enter all relevant physical dimensions; keeping a software library of known instruments and prompting the user for a specific model type; or prompting the user to perform a series of actions with a calibration device. Needless to say, these are cumbersome and time-consuming procedures, and require caregiver assistance.
- the main idea of the present invention consists of the utilization of a combined image, obtained by registering structural and functional images of at least a portion of the patient's body including a target region, for guiding an instrument (diagnostic or therapeutic) towards the target.
- the structural and functional images are obtained using, respectively, structural and functional modalities, namely suitable known techniques, and the combined image is obtained by using any known suitable technique, for example, those disclosed in the above publications.
- target refers to a structurally discrete portion in the patient's body, such as an organ or a tumor, that is suspected of containing diseas (e.g., cancerous tissue). This diseased tissue (target) is surrounded by healthy tissues (e.g., non-cancerous tissue).
- diseas e.g., cancerous tissue
- healthy tissues e.g., non-cancerous tissue
- instrument refers to a diagnostic or treatment instrument that can access and, if desired, be inserted into the target from outside the patient for the purpose of either diagnosis or treatment of a disease.
- Typical examples of such instruments include biopsy needles and needles for brachytherapy and chemotherapy.
- a method for guiding an instrument towards a correct target inside the patient's body comprising the steps of:
- the structural and functional images are obtained with, respectively, structural and functional modalities and registered. While directing the instrument towards the target, at least one additional image of the at least portion of the patient's body is preferably acquired with at least one of structural or functional modalities, for obtaining at least one additional combined image. Several additional images may be periodically or continuously acquired, and consequently, several additional combined images be obtained.
- the structural and functional images used for obtaining the combined image may be, respectively, high-resolution and relatively low resolution.
- the resolution of 3-5mm pixel size is considered to be low, and that of less than 1mm pixel size is considered to be high resolution.
- the at least one additional image may be a low-resolution functional image or relatively higher resolution structural images (the so-called "medium-resolution" structural image).
- the structural and functional images used for obtaining the combined image may each be of a low resolution, in which case the at least one additional image is acquired with high-resolution structural modality.
- a guiding device having an indicator associated with the instrument.
- the guiding device may comprise a frame attachable to the patient's body and a stereotactic guide.
- the indicator is in the form of at least three markers on the frame.
- the frame is rigidly secured to the patient, and then the high-resolution structural image is acquired using a high-resolution structural imaging modality, such as CT or MRI.
- This high-resolution structural image includes at least the portion of the patient's body.
- the markers are used by taking a series of structural images that covers all of them, since they are located in different planes.
- a suitable radiopharmaceutical that is taken up preferentially by cancerous tissue (i.e., target) is injected into the patient, and the portion of the patient's body that was imaged with the structural modality is again imaged using a lower-resolution functional imaging modality that records radiation emitted by the radiopharmaceutical to acquire an image of the target.
- the structural image and the functional image are then registered to provide the combined image that shows the relative location of the target relative to other elements in the combined image.
- the combined image shows which part of a tumor mass seen in the structural image contains cancer, and where the cancerous areas are located on the high-resolution structural image.
- the stereotactic guide Prior to performing step (iii), the stereotactic guide is rigidly attached to the frame. Since the position of the target (e.g., cancerous tissue) relative to the frame is known, the position of the target relative to the stereotactic guide is also known.
- the stereotactic guide then is used, under computer control, to guide the instrument, such as a biopsy needle or a brachytherapy needle, to the target, with reference to the pixels of the combined image that represent the markers and the target.
- the trajectory of the instrument is programmed in advance so that the instrument does not penetrate organs, such as vascular structures, that should not be penetrated.
- a method for accessing a target in a patient's body with an instrument comprising the steps of:
- the guiding device is a so-called tracking system composed of a guiding reference unit providing data indicative of space coordinates of the indicator that is in the form of a sensor attachable to the instrument at its handle portion, and a guiding controller.
- the latter is interconnected between the indicator and the guiding reference, and is connected to a computer device displaying the combined image.
- a tracking system may be of any known type, e.g., magnetic, optical, inertial, sound-waves, GPS.
- the construction and operation of the tracking system are known per se, and do not form part of the present invention. Therefore, the operation of the tracking system does not need to be specifically described, except to note the following.
- the controller is capable of tracking the position of a sensor and obtaining the information indicative of six degrees of freedom (i.e., 3 position coordinates and 3 rotation angles).
- the controller is installed with suitable hardware and is operated by suitable software for performing a signal processing technique and generating data indicative of the sensor's position in the coordinate space defined by the guiding reference.
- the computer device analyzes this data to generate a graphic representation of instrument location on the structural or functional image, or direction instructions for guiding the instrument towards the target.
- Magnetic tracking systems are based on a magnetic/electronic field transmitter (guiding reference) and a relatively small receiver (indicator).
- a magnetic/electronic field transmitter guiding reference
- a relatively small receiver indicator
- Such a system may, for example, be the mmiBIRD model, commercially available from
- Optical tracking systems apply a visual perception technique that observes either light reflected items or small light emitters, for example POLARIS models, commercially available from Northern
- the indicator may comprise an identification electronic chip attached to the handle-portion of the instrument. This is actually a chip with an embedded application, such as a miniature electronic memory chip programmed during the manufacture of the specific instrument.
- the chip may be equipped with a transmitting utility generating and transmitting data indicative of the physical dimensions of the instrument or its corresponding code in accordance with a coded library.
- the chip may comprise a magnetic strip or a bar code to be read by a suitable reading head associated with the computer device.
- a system for guiding an instrument towards a correct target inside the patient's body comprising:
- the system also comprises an additional imaging modality capable of acquiring at least one of structural and functional images of said at least portion of the patient's body.
- This additional imaging modality is operable for acquiring at least one image, used for obtaining at least one additional combined image (a so-called "updated combined image"). This at least one additional combined image is utilized, while directing the instrument towards the target.
- the scope of the present invention includes the diagnosis and treatment of any diseased tissue, the present invention is described below in terms of the primary application thereof, the diagnosis and treatment of cancer.
- Fig. 1 shows a patient wearing a frame
- Figs. 2 A to 2C schematically illustrate axial sections of a Ga-67, a CT and a combined image of a chest of a patient
- Fig. 3 shows the patient of FIG. 1 with a stereotactic guide attached to the frame;
- Fig. 4 illustrates the main constructional parts of a system according to another embodiment of the invention.
- Fig. 5 illustrates another feature of the present invention suitable to be used in the embodiment of Figs. 1 and 3, or the embodiment of Fig. 4;
- Figs. 6a and 6b illustrate two more examples of an indicator suitable to be used in the present invention
- Fig. 7 illustrates some more features of a method and system according the invention.
- FIG. 1 shows a patient 10 wearing a rigid frame 12. By virtue of being snugly fitted to the shoulders, waist and groin of patient 10, frame 12 is rigidly secured to patient 10.
- Frame 12 bears thereon three markers 14 (constituting an indicator) that include a material that shows up well in a high-resolution structural image of the patient 10 and frame 12. For example, if CT is used for structural imaging, markers 14 are lead blocks. If MRI is used for structural imaging, markers 14 are hollow plastic blocks filled with a solution of Gd-DTPA.
- Frame 12 also bears three attachment points 16 for a stereotactic guide. A high-resolution structural image of the portion of patient 10 that contains the target is acquired while patient 10 wears frame 12 as shown in Fig. 1.
- markers 14 are shown in Fig. 1 as three blocks only for illustrational clarity. Any suitable marker geometry or form may be used, for example, vertical and diagonal rods, as are used in the BRW CT localization frame commercially available from Radionics. Inc., of Burlington MA and from Sofamor Danek, of Elektra, Sweden, for stereotactic treatment of the patient's brain.
- the positioning of markers 14 and attachment points 16 on frame 12 in Fig. 1 also is only illustrative, as an example of appropriate positions of markers 14 and attachment points 16 for treatment of the abdomen of patient 10.
- a lower resolution functional (e.g., nuclear medicine) image of the same portion of patient 10 is acquired for the purpose of imaging the target in the entire portion imaged by the structural modality.
- the preferred imaging modality is nuclear imaging, and the patient is injected before imaging with a radiopharmaceutical that is preferentially taken up by cancerous tissue.
- radiopharmaceuticals include Ga-67, Tc-99m MtBI, Tl-201, F-18 fluorodeoxy glucose and In-Ill octreotide.
- the most preferred nuclear imaging modalities are tomographic modalities such as SPECT and PET.
- the functional and structural images then are registered, for example as described in the paper by Weber and Ivanovic cited above, to produce a combined image.
- Fig. 2A is a schematic illustration of an axial section of a Ga-67 image I fun c of a chest of a cancer patient, showing a tumor T containing a lymphoma that constitutes the target TG to be accessed by an instrument (not shown).
- Fig. 2B is a schematic illustration of an axial section of a CT image I str uct of the same patient's chest. A portion P of the patient's body including the tumor T is imaged. The target TG is not seen in the structural image I str uct, since there is typically no visual contrast in such image between the lymphoma and the rest of the tumor.
- Fig. 2C is an axial section of a combined image I CO m, showing the functional image I f u n c of Fig. 2A registered on the structural image Istruct of Fig. 2B. Any known suitable technique can be used for registering images of Figs. 2A and 2B to obtain the combined image of Fig. 2C, for example the techniques described in the above-indicated publications. Biopsy and therapy directed towards the tumor should be aimed specifically at the lymphoma.
- Fig. 3 shows patient 10 with a stereotactic guide 18 firmly and rigidly attached to frame 12 at attachment points 16, and with a diagnostic or therapeutic instrument 20, such as a biopsy needle or a brachytherapy needle, mounted in stereotactic guide 18 in its ready-for-insertion position to be inserted into the abdomen of patient 10 under the control of a computer device 24.
- Computer 24 is equipped with suitable hardware and operated by suitable software for sending control signals, including the relevant Cartesian coordinates, to stereotactic guide 18 via suitable signal communication means, for example electrical connection such as a cable 22. It should be understood, although not specifically shown, that wireless connection could be used.
- Computer 24 also includes a suitable display mechanism, such as a video terminal, for displaying the combined image.
- a physician programs the trajectory of instrument 22 in computer 24 in advance, with reference to the position of the target TG and the other internal organs OR of patient 10, and with reference to markers 14, as seen in the combined image I CO m.
- Computer 24 is installed with suitable software that transforms data indicative of the coordinate system of the combined image, as defined by markers 14, into the coordinate system of stereotactic guide 18.
- This software is used to transform the coordinates of the trajectory, which is defined by the physician in the coordinate system of the combined image, into the coordinate system of stereotactic guide 18, to enable stereotactic guide 18 to steer instrument 20 along the desired trajectory.
- the physician designs the trajectory to avoid vascular structures and other organs that should not be penetrated by instrument 20.
- vascular structures such as blood vessels
- Another functional image of the portion of patient 10 that includes the target is acquired, for the purpose of imaging the blood vessels.
- the preferred imaging modality for imaging vascular structures is Tc-99m labeled red blood cells SPECT.
- patient 10 is first injected with Tc-99m, to label the red blood cells of patient 10.
- the SPECT image of the vascular structures is registered with the structural image initially obtained and utilized in the initial combined image shown in Fig. 2C, and a resulting second combined image is displayed by computer 24 and is used by the physician in planning the trajectory of instrument 20 to avoid penetration of the imaged vascular structures.
- this second functional image is a SPECT image obtained using Tc-99 DMSA.
- the SPECT image of the organ or organs is registered with the structural image, and the resulting second combined image is displayed by computer 24 and is used by the physician in planning the trajectory of instrument 20 to avoid penetration of the imaged organs.
- computer 24 is programmed to avoid penetration of blood vessels and organs with a high blood pool, and other organs that should not be penetrated, such as the gut, the kidneys, the pancreas and the heart.
- the biopsy needle guidance utilizes the stereotactic guide assembly, with reference to the diseased portion of the patient's body and to the markers as imaged on the first combined image.
- a guiding device is constituted by the frame with markers and by the stereotactic guide assembly.
- other guidance and motion tracking systems are suitable as well. Such systems are, but not limited to magnetic and optical systems.
- System 100 is composed of an indicator 126 appropriately attached to a handle portion 122 of an instrument 120, a guiding reference unit 128 and a guiding controller 130 connected to the computer 24.
- such a system may be of magnetic or optical kind,for example, commercially available from Ascension Technology Corporation and Northern Digital Inc., respectively.
- the guiding reference unit 128 and the indicator 126 operate together to generate data indicative of the indicator position in a 6D coordinate space (3 position coordinates and 3 rotation angles) and transmit this data to the guiding controller 130.
- the latter transmits corresponding data to the computer device 24, which registers this data with the combined image to generate a graphic representation of the mstrument' s location on the structural or functional image or direction instructions for guiding the instrument 120 towards the target, as described above.
- an instrument 220 having a handle portion 222 formed with an identification chip 226.
- the diagnostic or therapeutic instrument 220 is equipped with the chip 226 with an embedded application enabling the identification of the physical dimensions of the specific instrument.
- the chip provides data indicative of the instrument's physical parameters, which may be dimensions themselves, or coded data that can be identified by the software installed in the computer 24 (i.e., library storing information corresponding to various Serial Numbers of diagnostic and therapeutic instruments manufactured by various manufacturers).
- the computer 24 itself may have a special utility for communicating with the embedded application of the chip.
- diagnosis and/or treatment are performed with respect to an image of the target region in the patient's body that combines a high-resolution structural image, such as a CT or MRI image, with a lower resolution functional image, such as a nuclear image.
- the combined image may be used to assist the caregiver in locating the instrument with respect to the target.
- Pieces of materials that are clearly shown in one of the modalities may be used to gain information in the combined image.
- Such materials are, but not limited to, radioactive emitters that are clearly seen by means of the nuclear medicine image, and lead capsules that are highly visible in a CT image.
- Such pieces can be attached to known locations on the therapeutic instrument, thereby serving as indicators. These indicators are useful in the procedure navigation process, where the physician inserts the instrument toward the target.
- a verification phase where the physician validates the location of the instrument with respect to the target.
- both the tissue and the highlight indicator are clearly seen in the combined image. This increases the degree of confidence that the procedure instrument was correctly applied.
- Fig. 6A shows the main principles of the above concept.
- an indicator 326 e.g., radioactive emitters
- Fig. 6B illustrates an example where treatment of the target is needed.
- a therapeutic instrument 420 is at its distal end formed with a suitable material 422 that can be clearly seen in an image of one of the modalities to gain information in the combined image.
- the therapeutic instrument 420 is initially inserted by its distal end into a vessel containing material 422, and is then directed towards the target TG.
- Such materials are, but not limited to, radioactive materials that are clearly seen by means of the nuclear medicine image, and iodine that is highly visible in a CT image.
- the highlight material may also be mixed with the therapeutic chemical in advance. The highlight materials are injected together with therapeutic chemical substances and are used to track the absorption of the substances with respect to the tumor while minimizing damage to the surrounding healthy tissue.
- diagnosis is performed with respect to an image of the target region of the patient that combines a high-resolution structural image, such as a CT or MRI image, with a lower resolution functional image, such as a nuclear image.
- a physician may prefer to perform the clinical procedure under single modality equipment that may be different from the equipment originally used to make the combined image.
- the combined image is made of a relatively high-resolution structural image, lower resolution functional image, and another image that may be either structural or functional of a different resolution.
- a low-resolution PET image may be combined with a medium-resolution CT image, which images are collected during a preliminary diagnostic procedure. The actual procedure is carried out under a high-resolution CT or MRI imaging, that was designed for such procedures.
- a system 500 utilizing low-resolution CT imaging modality (as compared to that used during the instrument insertion procedure) and low-resolution PET imaging modality, generally at 502, that obtain a combined image of a portion of the patient's body including a target and transmit data to a computer device 24 and to a high-resolution CT modality 504 through a computer network.
- a guiding device 506 associated with a diagnostic or therapeutic instrument 520 and coupled to the computer 24, is used for guiding the instrument towards the target with simultaneous image acquisition with the high-resolution CT imaging modality 504.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Pulmonology (AREA)
- Robotics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002362981A CA2362981C (en) | 1999-02-22 | 2000-02-22 | A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body |
IL14478600A IL144786A0 (en) | 1999-02-22 | 2000-02-22 | A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside a patient's copy |
AU28232/00A AU766301B2 (en) | 1999-02-22 | 2000-02-22 | A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body |
EP00906576A EP1162921A1 (en) | 1999-02-22 | 2000-02-22 | A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body |
JP2000600573A JP2002541885A (en) | 1999-02-22 | 2000-02-22 | Method and system for guiding a diagnostic or therapeutic instrument towards a target area inside a patient's body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/253,779 US6173201B1 (en) | 1999-02-22 | 1999-02-22 | Stereotactic diagnosis and treatment with reference to a combined image |
US09/253,779 | 1999-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000049958A1 true WO2000049958A1 (en) | 2000-08-31 |
Family
ID=22961669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2000/000113 WO2000049958A1 (en) | 1999-02-22 | 2000-02-22 | A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body |
Country Status (7)
Country | Link |
---|---|
US (1) | US6173201B1 (en) |
EP (1) | EP1162921A1 (en) |
JP (1) | JP2002541885A (en) |
AU (1) | AU766301B2 (en) |
CA (1) | CA2362981C (en) |
IL (1) | IL144786A0 (en) |
WO (1) | WO2000049958A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7787926B2 (en) | 2003-12-17 | 2010-08-31 | Check-Cap LLC | Intra-lumen polyp detection |
US8150495B2 (en) | 2003-08-11 | 2012-04-03 | Veran Medical Technologies, Inc. | Bodily sealants and methods and apparatus for image-guided delivery of same |
US8483801B2 (en) | 2003-08-11 | 2013-07-09 | Veran Medical Technologies, Inc. | Methods, apparatuses, and systems useful in conducting image guided interventions |
US9138165B2 (en) | 2012-02-22 | 2015-09-22 | Veran Medical Technologies, Inc. | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
US9218663B2 (en) | 2005-09-13 | 2015-12-22 | Veran Medical Technologies, Inc. | Apparatus and method for automatic image guided accuracy verification |
US9392961B2 (en) | 2003-12-17 | 2016-07-19 | Check-Cap Ltd. | Intra-lumen polyp detection |
US9844354B2 (en) | 2007-02-06 | 2017-12-19 | Check-Cap Ltd. | Intra-lumen polyp detection |
US10165928B2 (en) | 2010-08-20 | 2019-01-01 | Mark Hunter | Systems, instruments, and methods for four dimensional soft tissue navigation |
US10617324B2 (en) | 2014-04-23 | 2020-04-14 | Veran Medical Technologies, Inc | Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue |
US10624701B2 (en) | 2014-04-23 | 2020-04-21 | Veran Medical Technologies, Inc. | Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter |
US11304630B2 (en) | 2005-09-13 | 2022-04-19 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7853311B1 (en) * | 1999-04-23 | 2010-12-14 | 3M Innovative Properties Company | Surgical targeting system |
CA2374040C (en) * | 1999-07-02 | 2010-10-19 | Hypermed Imaging, Inc. | Integrated imaging apparatus |
SE515683C2 (en) * | 1999-12-20 | 2001-09-24 | Jan A G Willen | Device for compression of the throat pillar for medical image acquisition purposes |
US7826889B2 (en) * | 2000-08-21 | 2010-11-02 | Spectrum Dynamics Llc | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US8565860B2 (en) * | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
US8489176B1 (en) * | 2000-08-21 | 2013-07-16 | Spectrum Dynamics Llc | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US8036731B2 (en) * | 2001-01-22 | 2011-10-11 | Spectrum Dynamics Llc | Ingestible pill for diagnosing a gastrointestinal tract |
US8909325B2 (en) * | 2000-08-21 | 2014-12-09 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
EP1359845B1 (en) * | 2001-01-22 | 2012-11-14 | Spectrum Dynamics LLC | Ingestible device |
US20030055436A1 (en) * | 2001-09-14 | 2003-03-20 | Wolfgang Daum | Navigation of a medical instrument |
WO2003083779A2 (en) | 2002-04-03 | 2003-10-09 | Segami S.A.R.L. | Image registration process |
US20050277823A1 (en) * | 2002-06-10 | 2005-12-15 | Robert Sutherland | Angiogram display overlay technique for tracking vascular intervention sites |
US7106892B2 (en) * | 2002-09-19 | 2006-09-12 | Koninklijke Philips Electronics, N.V. | Display of image data information |
US20040116807A1 (en) * | 2002-10-17 | 2004-06-17 | Roni Amrami | Blood vessels wall imaging catheter |
US20040204646A1 (en) * | 2002-11-04 | 2004-10-14 | V-Target Technologies Ltd. | Intracorporeal-imaging head |
EP1573495B1 (en) | 2002-11-04 | 2009-11-04 | Spectrum Dynamics LLC | Apparatus and methods for imaging and attenuation correction |
US7968851B2 (en) | 2004-01-13 | 2011-06-28 | Spectrum Dynamics Llc | Dynamic spect camera |
WO2006075333A2 (en) | 2005-01-13 | 2006-07-20 | Spectrum Dynamics Llc | Multi-dimensional image reconstruction and analysis for expert-system diagnosis |
US7176466B2 (en) * | 2004-01-13 | 2007-02-13 | Spectrum Dynamics Llc | Multi-dimensional image reconstruction |
US8571881B2 (en) * | 2004-11-09 | 2013-10-29 | Spectrum Dynamics, Llc | Radiopharmaceutical dispensing, administration, and imaging |
US9470801B2 (en) * | 2004-01-13 | 2016-10-18 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
WO2007010534A2 (en) | 2005-07-19 | 2007-01-25 | Spectrum Dynamics Llc | Imaging protocols |
WO2007010537A2 (en) * | 2005-07-19 | 2007-01-25 | Spectrum Dynamics Llc | Reconstruction stabilizer and active vision |
US8586932B2 (en) | 2004-11-09 | 2013-11-19 | Spectrum Dynamics Llc | System and method for radioactive emission measurement |
US9040016B2 (en) * | 2004-01-13 | 2015-05-26 | Biosensors International Group, Ltd. | Diagnostic kit and methods for radioimaging myocardial perfusion |
WO2006051531A2 (en) * | 2004-11-09 | 2006-05-18 | Spectrum Dynamics Llc | Radioimaging |
EP1778957A4 (en) | 2004-06-01 | 2015-12-23 | Biosensors Int Group Ltd | Radioactive-emission-measurement optimization to specific body structures |
EP1766550A2 (en) | 2004-06-01 | 2007-03-28 | Spectrum Dynamics LLC | Methods of view selection for radioactive emission measurements |
US8423125B2 (en) | 2004-11-09 | 2013-04-16 | Spectrum Dynamics Llc | Radioimaging |
US8615405B2 (en) | 2004-11-09 | 2013-12-24 | Biosensors International Group, Ltd. | Imaging system customization using data from radiopharmaceutical-associated data carrier |
US9316743B2 (en) | 2004-11-09 | 2016-04-19 | Biosensors International Group, Ltd. | System and method for radioactive emission measurement |
US9943274B2 (en) | 2004-11-09 | 2018-04-17 | Spectrum Dynamics Medical Limited | Radioimaging using low dose isotope |
WO2008059489A2 (en) | 2006-11-13 | 2008-05-22 | Spectrum Dynamics Llc | Radioimaging applications of and novel formulations of teboroxime |
EP1824520B1 (en) * | 2004-11-17 | 2016-04-27 | Biosensors International Group, Ltd. | Methods of detecting prostate cancer |
US7831293B2 (en) * | 2005-05-10 | 2010-11-09 | Advanced Clinical Solutions, Inc. | Method of defining a biological target for treatment |
US7628957B1 (en) * | 2005-06-27 | 2009-12-08 | Moseley Patrick T | Carbon dioxide sensor |
US8837793B2 (en) | 2005-07-19 | 2014-09-16 | Biosensors International Group, Ltd. | Reconstruction stabilizer and active vision |
US7831075B2 (en) * | 2005-10-20 | 2010-11-09 | Case Western Reserve University | Imaging system |
US7705316B2 (en) * | 2005-11-09 | 2010-04-27 | Spectrum Dynamics Llc | Dynamic SPECT camera |
WO2007074466A2 (en) | 2005-12-28 | 2007-07-05 | Starhome Gmbh | Late forwarding to local voicemail system of calls to roaming users |
US8894974B2 (en) * | 2006-05-11 | 2014-11-25 | Spectrum Dynamics Llc | Radiopharmaceuticals for diagnosis and therapy |
US20080086059A1 (en) * | 2006-10-04 | 2008-04-10 | Cynthia Keppel | Method and apparatus for lesion localization using a dual modality x-ray/gamma biopsy system |
US9275451B2 (en) * | 2006-12-20 | 2016-03-01 | Biosensors International Group, Ltd. | Method, a system, and an apparatus for using and processing multidimensional data |
US20080221443A1 (en) * | 2007-03-07 | 2008-09-11 | Ritchie Paul G | Integrated Imaging and Biopsy System with Ancillary Device Authentication |
US8521253B2 (en) * | 2007-10-29 | 2013-08-27 | Spectrum Dynamics Llc | Prostate imaging |
US7795591B2 (en) * | 2008-07-16 | 2010-09-14 | Dilon Technologies, Inc. | Dual-capillary obturator for real-time verification in gamma guided stereotactic localization |
US8338788B2 (en) | 2009-07-29 | 2012-12-25 | Spectrum Dynamics Llc | Method and system of optimized volumetric imaging |
US8781186B2 (en) | 2010-05-04 | 2014-07-15 | Pathfinder Therapeutics, Inc. | System and method for abdominal surface matching using pseudo-features |
US10987069B2 (en) | 2012-05-08 | 2021-04-27 | Spectrum Dynamics Medical Limited | Nuclear medicine tomography systems, detectors and methods |
WO2017115370A1 (en) * | 2015-12-28 | 2017-07-06 | Xact Robotics Ltd. | Adjustable registration frame |
CN113075599B (en) * | 2020-01-03 | 2023-05-16 | 上海联影医疗科技股份有限公司 | Magnetic resonance signal acquisition method, magnetic resonance system and medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376795A (en) * | 1990-07-09 | 1994-12-27 | Regents Of The University Of California | Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data |
EP0676178A1 (en) * | 1994-04-08 | 1995-10-11 | The Cleveland Clinic Foundation | Apparatus for orienting and guiding the application of tools |
EP0728446A1 (en) * | 1995-01-26 | 1996-08-28 | The Cleveland Clinic Foundation | Stereotaxy systems |
WO1998035720A2 (en) * | 1997-02-14 | 1998-08-20 | Biosense Inc. | X-ray guided surgical location system with extended mapping volume |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6021342A (en) * | 1997-06-30 | 2000-02-01 | Neorad A/S | Apparatus for assisting percutaneous computed tomography-guided surgical activity |
-
1999
- 1999-02-22 US US09/253,779 patent/US6173201B1/en not_active Expired - Lifetime
-
2000
- 2000-02-22 WO PCT/IL2000/000113 patent/WO2000049958A1/en not_active Application Discontinuation
- 2000-02-22 AU AU28232/00A patent/AU766301B2/en not_active Expired
- 2000-02-22 JP JP2000600573A patent/JP2002541885A/en active Pending
- 2000-02-22 CA CA002362981A patent/CA2362981C/en not_active Expired - Lifetime
- 2000-02-22 IL IL14478600A patent/IL144786A0/en not_active IP Right Cessation
- 2000-02-22 EP EP00906576A patent/EP1162921A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376795A (en) * | 1990-07-09 | 1994-12-27 | Regents Of The University Of California | Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data |
EP0676178A1 (en) * | 1994-04-08 | 1995-10-11 | The Cleveland Clinic Foundation | Apparatus for orienting and guiding the application of tools |
EP0728446A1 (en) * | 1995-01-26 | 1996-08-28 | The Cleveland Clinic Foundation | Stereotaxy systems |
WO1998035720A2 (en) * | 1997-02-14 | 1998-08-20 | Biosense Inc. | X-ray guided surgical location system with extended mapping volume |
Non-Patent Citations (2)
Title |
---|
LANG T F ET AL: "Description of a Prototype Emission - Transmission Computed Tomography Imaging System", THE JOURNAL OF NUCLEAR MEDICINE, vol. 33, no. 10, October 1992 (1992-10-01), pages 1881 - 1887, XP002901050 * |
WEBER D A ET AL: "Correlative image registration", SEMINARS IN NUCLEAR MEDICINE, vol. XXIV, no. 1, January 1994 (1994-01-01), pages 311 - 323, XP002901049 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11154283B2 (en) | 2003-08-11 | 2021-10-26 | Veran Medical Technologies, Inc. | Bodily sealants and methods and apparatus for image-guided delivery of same |
US8483801B2 (en) | 2003-08-11 | 2013-07-09 | Veran Medical Technologies, Inc. | Methods, apparatuses, and systems useful in conducting image guided interventions |
US10470725B2 (en) | 2003-08-11 | 2019-11-12 | Veran Medical Technologies, Inc. | Method, apparatuses, and systems useful in conducting image guided interventions |
US11426134B2 (en) | 2003-08-11 | 2022-08-30 | Veran Medical Technologies, Inc. | Methods, apparatuses and systems useful in conducting image guided interventions |
US8150495B2 (en) | 2003-08-11 | 2012-04-03 | Veran Medical Technologies, Inc. | Bodily sealants and methods and apparatus for image-guided delivery of same |
US7787926B2 (en) | 2003-12-17 | 2010-08-31 | Check-Cap LLC | Intra-lumen polyp detection |
US9392961B2 (en) | 2003-12-17 | 2016-07-19 | Check-Cap Ltd. | Intra-lumen polyp detection |
US11304630B2 (en) | 2005-09-13 | 2022-04-19 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
US10617332B2 (en) | 2005-09-13 | 2020-04-14 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
US11304629B2 (en) | 2005-09-13 | 2022-04-19 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
US9218663B2 (en) | 2005-09-13 | 2015-12-22 | Veran Medical Technologies, Inc. | Apparatus and method for automatic image guided accuracy verification |
US9218664B2 (en) | 2005-09-13 | 2015-12-22 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
US9844354B2 (en) | 2007-02-06 | 2017-12-19 | Check-Cap Ltd. | Intra-lumen polyp detection |
US10898057B2 (en) | 2010-08-20 | 2021-01-26 | Veran Medical Technologies, Inc. | Apparatus and method for airway registration and navigation |
US11109740B2 (en) | 2010-08-20 | 2021-09-07 | Veran Medical Technologies, Inc. | Apparatus and method for four dimensional soft tissue navigation in endoscopic applications |
US11690527B2 (en) | 2010-08-20 | 2023-07-04 | Veran Medical Technologies, Inc. | Apparatus and method for four dimensional soft tissue navigation in endoscopic applications |
US10165928B2 (en) | 2010-08-20 | 2019-01-01 | Mark Hunter | Systems, instruments, and methods for four dimensional soft tissue navigation |
US10264947B2 (en) | 2010-08-20 | 2019-04-23 | Veran Medical Technologies, Inc. | Apparatus and method for airway registration and navigation |
US10249036B2 (en) | 2012-02-22 | 2019-04-02 | Veran Medical Technologies, Inc. | Surgical catheter having side exiting medical instrument and related systems and methods for four dimensional soft tissue navigation |
US10977789B2 (en) | 2012-02-22 | 2021-04-13 | Veran Medical Technologies, Inc. | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
US9972082B2 (en) | 2012-02-22 | 2018-05-15 | Veran Medical Technologies, Inc. | Steerable surgical catheter having biopsy devices and related systems and methods for four dimensional soft tissue navigation |
US11830198B2 (en) | 2012-02-22 | 2023-11-28 | Veran Medical Technologies, Inc. | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
US11403753B2 (en) | 2012-02-22 | 2022-08-02 | Veran Medical Technologies, Inc. | Surgical catheter having side exiting medical instrument and related systems and methods for four dimensional soft tissue navigation |
US9138165B2 (en) | 2012-02-22 | 2015-09-22 | Veran Medical Technologies, Inc. | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
US11551359B2 (en) | 2012-02-22 | 2023-01-10 | Veran Medical Technologies, Inc | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
US10460437B2 (en) | 2012-02-22 | 2019-10-29 | Veran Medical Technologies, Inc. | Method for placing a localization element in an organ of a patient for four dimensional soft tissue navigation |
US10140704B2 (en) | 2012-02-22 | 2018-11-27 | Veran Medical Technologies, Inc. | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
US10624701B2 (en) | 2014-04-23 | 2020-04-21 | Veran Medical Technologies, Inc. | Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter |
US10617324B2 (en) | 2014-04-23 | 2020-04-14 | Veran Medical Technologies, Inc | Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue |
US11553968B2 (en) | 2014-04-23 | 2023-01-17 | Veran Medical Technologies, Inc. | Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter |
Also Published As
Publication number | Publication date |
---|---|
EP1162921A1 (en) | 2001-12-19 |
AU2823200A (en) | 2000-09-14 |
CA2362981A1 (en) | 2000-08-31 |
CA2362981C (en) | 2009-01-06 |
US6173201B1 (en) | 2001-01-09 |
IL144786A0 (en) | 2002-12-01 |
JP2002541885A (en) | 2002-12-10 |
AU766301B2 (en) | 2003-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6368331B1 (en) | Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body | |
AU766301B2 (en) | A method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body | |
US10582879B2 (en) | Method and apparatus for registration, verification and referencing of internal organs | |
US7826889B2 (en) | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures | |
EP1795142B1 (en) | Medical tracking system using a gamma camera | |
US6546279B1 (en) | Computer controlled guidance of a biopsy needle | |
US6678546B2 (en) | Medical instrument guidance using stereo radiolocation | |
US11766298B2 (en) | Systems, methods, and devices for registering and tracking organs during interventional procedures | |
EP3021940B1 (en) | Portal imaging for brachytherapy | |
CN102077248B (en) | For in the equipment of experimenter's inner position objects and method | |
US8315690B2 (en) | Dynamic reference method and system for interventional procedures | |
CN101243332A (en) | Tissue interventions using nuclear-emission image guidance | |
EP1545365A1 (en) | Medical device positioning system and method | |
CN108289714B (en) | System and workflow for mesh-free transperineal prostate intervention | |
CN105491951A (en) | Registering nuclear medicine data | |
US8489176B1 (en) | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures | |
US20230090468A1 (en) | Systems, methods, and devices for registering and tracking organs during interventional procedures | |
RU2130759C1 (en) | Method for directing stereotactic instrument to a target point |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 28232/00 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 144786 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000906576 Country of ref document: EP |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2362981 Country of ref document: CA Ref country code: CA Ref document number: 2362981 Kind code of ref document: A Format of ref document f/p: F Ref country code: JP Ref document number: 2000 600573 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 2000906576 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 28232/00 Country of ref document: AU |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000906576 Country of ref document: EP |