WO2000048801A1 - Circular saw - Google Patents

Circular saw Download PDF

Info

Publication number
WO2000048801A1
WO2000048801A1 PCT/JP2000/000576 JP0000576W WO0048801A1 WO 2000048801 A1 WO2000048801 A1 WO 2000048801A1 JP 0000576 W JP0000576 W JP 0000576W WO 0048801 A1 WO0048801 A1 WO 0048801A1
Authority
WO
WIPO (PCT)
Prior art keywords
circular saw
natural frequency
slits
rotation speed
base metal
Prior art date
Application number
PCT/JP2000/000576
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Nishio
Yasutaka Nakajima
Original Assignee
Kanefusa Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanefusa Kabushiki Kaisha filed Critical Kanefusa Kabushiki Kaisha
Publication of WO2000048801A1 publication Critical patent/WO2000048801A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/02Circular saw blades
    • B23D61/025Details of saw blade body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/005Vibration-damping

Definitions

  • the present invention relates to a circular saw capable of satisfactorily cutting a workpiece without causing meandering of a base metal even when the rotation speed reaches a minimum rotation speed or more.
  • the rotational speed in use becomes the minimum critical rotational speed as the minimum critical rotational speed decreases.
  • the rotation speed of the circular saw reaches the minimum critical rotation speed in this manner, the lateral rigidity of the base metal in that mode becomes extremely small, and the base metal is left and right due to the lateral load applied during wood cutting. It begins to meander. This is a kind of buckling phenomenon.Even if the rotation speed of the circular saw is increased from the minimum critical rotation speed, the base metal continues to meander in that mode, and the degree of the meandering increases from the critical rotation speed. It increases in proportion to the amount. For this reason, it is not possible to cut a workpiece with a circular saw above the minimum critical rotation speed, and in general, it is used in the rotation speed range below 85% of the minimum critical rotation speed.
  • the thickness of circular saws used for cutting wood is required to reduce the thickness of circular saws used for cutting wood. This is because the greater the thickness of the circular saw, the more material is lost in cutting the wood.
  • the critical rotation speed will also decrease. As described above, since the circular saw must be used at, for example, 85% or less of the minimum critical rotation speed, the rotation speed of the circular saw must necessarily be reduced. For example, if the thickness of the circular saw and the thickness of the base metal are set to half that of the conventional base metal, the minimum critical rotation speed will be halved.
  • Circular saws used at 5,000 rpm will have to be used at 2,500 rpm, half of the normal rotation speed.
  • the rigidity of the metal base is proportional to the cube of the thickness, reducing the metal base thickness to half reduces the rigidity to 1/8.
  • the speed is the same, the depth of cut per tooth is doubled, but the cutting force per tooth is the same, but considering that the rigidity is reduced to 1/8 as described above, the feed rate of the work Has to be reduced to 1/8, which has the disadvantage that the machining efficiency is greatly reduced. It is pointed out that the cutting of the ffi becomes difficult and the appearance becomes poor.
  • the present invention has been proposed in order to suitably solve the above-mentioned problems, and can provide a base metal capable of cutting even in a rotation range higher than the minimum critical rotation speed. And the saw thickness can be reduced by the thickness of the base metal, so the cutting force per tooth can be reduced by that much and the feed rate can be set high. And a circular saw capable of improving efficiency. Disclosure of the invention
  • the present invention relates to a circular saw which can be used in a region of a minimum critical rotation speed or more at the time of cutting a work, and a metal circle of a base metal in the circular saw.
  • a circular saw which can be used in a region of a minimum critical rotation speed or more at the time of cutting a work, and a metal circle of a base metal in the circular saw.
  • Another object of the present invention is to overcome the above-mentioned problem and achieve a desired object by providing a circular saw that can be used in a region of the minimum critical rotation speed or more when cutting a work.
  • a circular saw that can be used in a region of the minimum critical rotation speed or more when cutting a work.
  • FIG. 1 is a graph showing the relationship between the rotational speed N and the backward wave frequency fb for a circular saw having no outer slit.
  • FIG. 2 is a graph showing test results of work cutting of a circular saw having no perimeter slit.
  • FIG. 3 is a graph showing the relationship between the rotation speed, the backward wave frequency, and the displacement of the base metal in the circular saw of No. 6S30.
  • FIG. 4 is a graph showing the test results of the circular saw NO.2S60-2S45.
  • Fig. 5 shows that, of the four slits with the same center angle, the length of two slits facing each other with the center in between is set to the same length, and the length of the adjacent slit is set to the same length. It is the schematic of the circular saw which changed.
  • FIG. 6 is a graph showing the results of finite element analysis performed on the circular saw shown in FIG. 5 using a shell model.
  • Figure 7 shows a circular saw in which two slits opposing each other across the center of the four slits of equal length have different center angles with respect to the adjacent slits. It is a schematic diagram.
  • FIG. 8 is a graph showing the results of finite element analysis performed on the circular saw shown in FIG. 7 using a shell model.
  • FIG. 9 is a graph showing the relationship between the ratio A / B of the flange diameter and the base metal outer diameter to the critical speed function S (A / B) for a circular saw without slits.
  • Figure 10 is a schematic diagram showing that there are two vibration modes, the first mode shown in (A) and the second mode shown in (B), at the number of knot circles of the circular saw m and the number of knot diameters n.
  • FIG. 11 is a schematic explanatory diagram when displacement of a base metal in a circular saw is measured by, for example, an eddy current sensor.
  • Figure 12 shows the artificially induced vibration of a circular saw, for example, two non-contact displacements. It is a schematic explanatory view at the time of measuring with a sensor.
  • FIG. 13 shows an example in which a circular saw is virtually divided into eight regions, and a slit is included in the middle of two of these regions. It is a schematic explanatory diagram when avoiding every other region and performing partial squatting. BEST MODE FOR CARRYING OUT THE INVENTION
  • the vibration Un 2 (r, ⁇ , t) in the direction in which the circular saw is rotated by ⁇ from the nodal diameter position in the second mode can be expressed as follows.
  • Un (r, ⁇ , t) Un (r) sin [2 ⁇ (fn-nN / 60) t]
  • the lowest one of the Nncrs in each node diameter mode is called the minimum critical rotation speed (Ncrniin).
  • the buckling refers to a phenomenon in which the natural frequency of the backward wave becomes zero (0) and the rigidity is lost with respect to the base of the circular saw viewed from the space.
  • the meandering of the circular saw base during the cutting of the workpiece at the critical rotation speed is caused by the coupling of the first mode and the second mode with the same critical rotation speed as the nodal diameter number n. It is.
  • the above-mentioned buckling phenomenon in the rotation speed region above the minimum critical rotation speed is actually nonlinear, and this has not been sufficiently elucidated until now.
  • buckling phenomenon in the backward wave is thought to be the natural frequency f ⁇ fn 2 Tosureba inhibition of each mode, formed continuously you release to what extent the natural frequency of the first mode and the second mode Whether it disappeared was studied through various tests.
  • the conditions for the cutting test using a circular saw are as follows.
  • FIG. 1 shows the relationship between the rotational speed (horizontal axis) and the backward wave frequency (vertical axis) (forward waves are omitted).
  • the critical rotation speed at which the natural frequency of the backward wave becomes zero (0) is as follows.
  • Figure 2 shows the results of a test for cutting a workpiece with a circular saw in which the slit is not drilled in the base.
  • W on the vertical axis indicates the maximum radius (the maximum value of the displacement) at the position where the displacement sensor S is disposed.
  • the right vertical axis indicates the rotational speed and the reverse frequency in each mode
  • the left vertical axis represents the number of rotations and the amount of deflection.
  • Table 1 shows the relationship between the critical rotation speed N ncr for each mode and the buckling rotation speed Nb when actually buckled
  • Table 2 shows the relationship between the natural frequency separation and buckling.
  • SO indicates a circular saw without a slit
  • 6S indicates a circular saw with six slits.
  • the two digits following 6S Indicates the j-length (mm) of the slit.
  • 1 “ ⁇ ” indicates that buckling occurred in the corresponding mode
  • 2 “X” indicates that buckling did not occur in the corresponding mode
  • 3 “-” indicates This indicates that the buckling speed Nb did not reach the critical speed for the mode.
  • FIG. 3 shows the relationship between the rotational speed N, the backward wave frequency fb, and the displacement W of the base metal in a circular saw having a flange diameter of 110 and a NO. 6S30.
  • the lengths of the two slits facing each other with the center in between are set to the same length.
  • the length dimension of the slit to be engaged was changed.
  • the model of the circular saw base metal was the same as the shape described above except for the thickness, and was 0305 (circular saw diameter) 1.0 (base metal thickness)> ⁇ 60? (Number of saw blades).
  • the flange diameter is 0110.
  • the material properties are the modulus of longitudinal elasticity
  • Figure 6 shows the results of finite element analysis performed using the shell model. Since the natural frequency fn is proportional to the base metal thickness, the relative natural frequency difference n / frii is independent of the base metal thickness. If the slit length Ls is 50 mm or less or 60 mm or more, claim 1 of the present application is satisfied, and if the slit length Ls is 50 mm or 60 mm or more, the claim of the present application is satisfied. This satisfies item 2.
  • Figure 8 shows the results of the finite element analysis performed on the shell model.
  • the deviation center angle 0 s is set to 15 ° or more, the base of the circular saw becomes rigidly unbalanced.
  • H is the thickness of the circular saw base (mm)
  • B is the outer diameter (mm)
  • A is the flange diameter (mm)
  • S is the critical velocity function (mm / min).
  • a / B is 0.5 or less, so if the A / B is 0.26 or more, the specification of claim 1 of the present application is used. If the A / B is 0.26 or less, claim 2 is used. It is considered appropriate to design a circular saw according to the specifications.
  • a wiper chip is fixed to the slit or a separately provided slit portion (this wiper chip is a chip fixed to the inside of the slit). Therefore, the thickness is set slightly smaller than the saw thickness and larger than the base metal thickness, and functions to prevent the workpiece from directly pinching the base metal during work cutting.) .
  • the above-mentioned slit was drilled so as to have one end opened on the outer periphery (tooth pouch) of the circular saw base metal. Internal slit that does not open to the outer periphery May be bored. In this case, there is almost no effect on the separation of the natural frequency. Also, the slit may be filled with a viscoelastic resin to improve the damping performance, thereby suppressing the vibration of the standing wave in the critical rotation speed range.
  • the tendency to increase c increases sharply as the flange diameter increases.
  • the meandering (buckling) of the base metal is suppressed by the means described above, it is not strictly possible to completely suppress the deflection at the minimum critical rotation speed. Therefore, a vibration is further suppressed by attaching a wiper tip to the slit or a separately provided slit portion so that at least one of the wiper tips comes into contact with a workpiece (work material) during cutting.
  • the slit is not limited to the one drilled in a portion near the outer periphery of the circular saw base, and the slit may be drilled in a portion near the inside of the base. In this case, the natural frequency separation has little effect. Further, by filling the inside of the slit with a viscoelastic resin, the damping ability can be improved, and the vibration of the standing wave in the critical rotation speed region can be suppressed. The invention's effect
  • the circular saw according to the present invention it is possible to provide a base metal shape that can be cut even in a rotation range equal to or higher than the minimum critical rotation speed, and can be used in a high speed rotation range even if the base metal is thinned. . Therefore, the loss of material during peak cutting can be suppressed by reducing the thickness of the circular saw base, and the cutting force per tooth is reduced. Since the feed rate can be set higher, work efficiency can be greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sawing (AREA)

Abstract

A circular saw capable of being provided with a base metal which can cut even in a rotating zone of min. critical rotation speed or higher, being used in a high-rotation-speed zone even if the base metal is thin, reducing a saw thickness by an amount equal to the reduced amount of the base metal, setting a high feed rate because a cutting force per tooth can be reduced by that amount, and thus increasing a work machining efficiency and an operating efficiency, characterized in that it can be used in a zone of min. critical rotation speed or higher at the time of cutting of a work and, in two modes where the node circular number of the base metal of the circle saw (m) is 0 and the same node diameter number is (n), a relative difference in natural frequency between the circular saw natural frequency and a natural frequency difference Δfn/fn1 is 3.0 % or more for the node diameter number n = 3 and 3.5 % or more for the node diameter number n = 4, where the natural frequencies of the circular saw are fn1 (Hz) and fn2 (Hz) (where fn2 ⊃ fn1) and the natural frequency difference Δfn = fn2-fn1.

Description

明細書  Specification
丸鋸 技術分野  Circular saw technology
この発明は、 最低臨界回転数以上の回転域に到達しても、 台金に蛇行 を生ずることなくワークを良好に切削し得る丸鋸に関するものである。 背景技術  The present invention relates to a circular saw capable of satisfactorily cutting a workpiece without causing meandering of a base metal even when the rotation speed reaches a minimum rotation speed or more. Background art
木材や樹脂系材料その他非鉄金属等のワークは、 一般に特殊鋼を材質 とする台金の外周部に超硬チップをロー付けした丸鋸(所謂チッブソー) によって切削される。 この丸鋸はワーク切削時に高速で回転されるが、 該丸鋸の最高回転数は台金に固有の「最低臨界回転数」により制限される ことが知られている。 すなわち、 丸鋸は切削時のワークと切刃との摩擦 や切屑と台金との摩擦等によって、 一般に台金外周部の発熱温度は中央 のフランジ近傍よりも高くなり、その最低臨界回転数は低下するに至る。 そして各丸鋸に固有の最低臨界回転数より少し下の回転数で使用してい ると、 該最低臨界回転数の低下に伴い使用中の回転数が最低臨界回転数 となる。 このように丸鋸の回転数が前記最低臨界回転数に達すると、 そ のモードにおいて該台金に関する横方向の剛性が極めて小さくなり、 該 台金は木材切削中に加わる横方向の荷重により左右に蛇行するようにな る。 これは一種の座屈現象であって、 丸鋸の回転数を最低臨界回転数よ り上昇させても該台金はそのモードで蛇行を継続し、 その蛇行の程度は 臨界回転数からの上昇量に比例して大きくなる。 このため最低臨界回転 数以上での丸鋸によるワークの切削は不可能であって、 一般に最低臨界 回転数の 85 %以下の回転数域で使用しているのが実情である。  Work such as wood, resin materials and other non-ferrous metals is generally cut by a circular saw (so-called chip saw) in which a carbide tip is brazed to the outer periphery of a base metal made of special steel. It is known that this circular saw is rotated at a high speed when cutting a workpiece, but the maximum rotational speed of the circular saw is limited by the “minimum critical rotational speed” inherent to the base metal. In other words, in a circular saw, the heat generated at the outer periphery of the base metal is generally higher than that near the center flange due to the friction between the workpiece and the cutting blade during cutting and the friction between the chips and the base metal. Leads to decline. When the circular saw is used at a rotational speed slightly lower than the minimum critical rotational speed inherent to each circular saw, the rotational speed in use becomes the minimum critical rotational speed as the minimum critical rotational speed decreases. When the rotation speed of the circular saw reaches the minimum critical rotation speed in this manner, the lateral rigidity of the base metal in that mode becomes extremely small, and the base metal is left and right due to the lateral load applied during wood cutting. It begins to meander. This is a kind of buckling phenomenon.Even if the rotation speed of the circular saw is increased from the minimum critical rotation speed, the base metal continues to meander in that mode, and the degree of the meandering increases from the critical rotation speed. It increases in proportion to the amount. For this reason, it is not possible to cut a workpiece with a circular saw above the minimum critical rotation speed, and in general, it is used in the rotation speed range below 85% of the minimum critical rotation speed.
前述した台金の温度上昇に伴なう最低臨界回転数の低下を抑制するた めの手段として、 丸鋸の台金に複数のスリ ッ トを穿設することが提案さ れている。 この場合、 相互に隣接し合うスリ ッ トの中心角は等問隔また は不等間隔であり、 該スリ ッ 卜の長さは一般に同じで台金半径の略 5〜 10 %程度の寸法になっている(特殊な場合は中央のフランジ近くまで及 んでいる)。 また隣接し合うスリ ッ トの長さを異ならせ、 一つ置きに隣接 し合うスリ ッ 卜の長さは同じとした丸鋸も提案されている。この場合は、 スリ ッ トの本数は偶数であると共に中心角は等間隔であり、 かつ中心を 挟んで直径方向に対向する 2本のスリ ッ トの長さの和は全て同じである。 しかしこの提案も完全なものではなく、 台金の温度上昇が激しくなると 最低臨界回転数は大きく低下し、先に述べた蛇行現象を生起するに至る。 In order to suppress the lowering of the minimum critical rotation speed due to the rise in As a means for this, it has been proposed to drill multiple slits in the circular saw base. In this case, the center angles of the slits adjacent to each other are equidistant or unequal, and the length of the slits is generally the same, and is about 5 to 10% of the radius of the base metal. (In special cases, it extends to near the center flange). Circular saws have also been proposed in which adjacent slits have different lengths, and every other adjacent slit has the same length. In this case, the number of slits is even and the center angles are equally spaced, and the sum of the lengths of the two slits diametrically opposite each other across the center is the same. However, this proposal is not perfect, and if the temperature rise of the metal base becomes severe, the minimum critical rotation speed will drop significantly, causing the meandering phenomenon described above.
ところで限りある木材資源を有効に利用する観点から、 木材の切断に 使われる丸鋸の厚みを減少することが要求されている。 これは丸鋸の厚 みが大きければ、 それだけ木材切断に材料のロスを生ずるからである。 しかしこの要請に答えるべく丸鋸の厚みと共に台金の厚みを小さくする と、 臨界回転数も低下する。 前述したように該丸鋸は最低臨界回転数の 例えば 85 %以下で使用する必要があるために、 必然的に丸鋸の回転数を 下げざるを得なかった。 例えば、 丸鋸の厚みと台金の厚みとを従来の台 金の半分に設定すると、 その最低臨界回転数は半分になるので、  However, from the viewpoint of effectively using limited wood resources, it is required to reduce the thickness of circular saws used for cutting wood. This is because the greater the thickness of the circular saw, the more material is lost in cutting the wood. However, if the thickness of the base metal is reduced along with the thickness of the circular saw to meet this demand, the critical rotation speed will also decrease. As described above, since the circular saw must be used at, for example, 85% or less of the minimum critical rotation speed, the rotation speed of the circular saw must necessarily be reduced. For example, if the thickness of the circular saw and the thickness of the base metal are set to half that of the conventional base metal, the minimum critical rotation speed will be halved.
5,000r.p.m.で使用していた丸鋸は、 前記常用回転数の半分の 2,500r.p.m. で使用しなければならなくなる。しかも台金の剛性は厚みの 3乗に比例す るために、その台金厚みを半分にすると剛性は 1/8にまで低下してしまう ( 丸鋸の回転数を半分にすると、ワークの送り速度が同じ場合は 1歯当たり の切込み量は 2倍になるが、 1歯当りの切削力は同じである。 しかし前記 の如く剛性が 1 /8に低下することを考慮すると、 ワークの送り速度は 1/8 にまで下げる必要があり、従って加工能率が大幅に低下する欠点がある。 更に送り速度を充分に下げることなく丸鋸の回転数を下げると、 ワーク の切断而が ffiくなって見映えが悪くなる難点も指摘される。 Circular saws used at 5,000 rpm will have to be used at 2,500 rpm, half of the normal rotation speed. Moreover, since the rigidity of the metal base is proportional to the cube of the thickness, reducing the metal base thickness to half reduces the rigidity to 1/8. When the speed is the same, the depth of cut per tooth is doubled, but the cutting force per tooth is the same, but considering that the rigidity is reduced to 1/8 as described above, the feed rate of the work Has to be reduced to 1/8, which has the disadvantage that the machining efficiency is greatly reduced. It is pointed out that the cutting of the ffi becomes difficult and the appearance becomes poor.
本発明は、 前述した課題を好適に解決するために提案されたものであ つて Γ最低臨界回転数以上の回転域でも切削できる台金が提供でき、 該 台金が薄くても高速回転数域での使用が可能となり、 該台金を薄く した 分だけ鋸厚を薄くできるために、その分だけ 1歯当りの切削力を低くする ことが可能で送り速度を大きく設定でき、 従ってワーク加工効率および 能率を向上させることが可能な丸鋸を提供することを目的とする。 発明の開示  The present invention has been proposed in order to suitably solve the above-mentioned problems, and can provide a base metal capable of cutting even in a rotation range higher than the minimum critical rotation speed. And the saw thickness can be reduced by the thickness of the base metal, so the cutting force per tooth can be reduced by that much and the feed rate can be set high. And a circular saw capable of improving efficiency. Disclosure of the invention
前記課題を克服し、 所期の目的を達成するため本発明は、 ワークの切 削時に最低臨界回転数以上の領域で使用可能な丸鋸であって、 該丸鋸に おける台金の節円数 mが 0で、 かつ同じ節直径数が nとなる 2つのモ一ドに おいて、  In order to overcome the above-mentioned problems and achieve the intended object, the present invention relates to a circular saw which can be used in a region of a minimum critical rotation speed or more at the time of cutting a work, and a metal circle of a base metal in the circular saw. In two modes where the number m is 0 and the number of nodal diameters is n,
前記丸鋸の固有振動数を f n^Hz )と f n2(Hz ) (ここに f n2 > f )、 固有 振動数差 n = f n2— f とした場合に、 その相対的な固有振動数差If the natural frequency of the circular saw is fn ^ Hz) and fn 2 (Hz) (where fn 2 > f), the natural frequency difference n = fn 2 — f, the relative natural frequency difference
△ f n/ f を節直径数 n = 3で 3.0 %以上および節直径数 n = 4で 3.5 %以 上としたことを特徴とする。 △ f n / f is characterized by being 3.0% or more when the number of nodes is n = 3 and 3.5% or more when the number of nodes is n = 4.
また前記課題を克服し、所期の目的を達成するため本願の別の発明は、 ワークの切削時に最低臨界回転数以上の領域で使用可能な丸鋸であって. 該丸鋸における台金の節円数 mが 0で、 かつ同じ節直径数が nとなる 2つの モードにおいて、  Another object of the present invention is to overcome the above-mentioned problem and achieve a desired object by providing a circular saw that can be used in a region of the minimum critical rotation speed or more when cutting a work. In two modes where the number of knot circles m is 0 and the number of knot diameters is n,
前記丸鋸の固有振動数を f n^ Hz )と f n2(Hz ) (ここに f n2 > f )、 固有 振動数差 n = f n2— f とした場合に、 その相対的な固有振動数差If the natural frequency of the circular saw is fn ^ Hz) and fn 2 (Hz) (where fn 2 > f) and the natural frequency difference n = fn 2 — f, the relative natural frequency difference
△ f n/ f n,を節直径数 n = 2で 15 %以上および節直径数 n = 3で 3.0 %以上 としたことを特徴とする。 図面の簡単な説明 △ fn / fn is 15% or more when the number of nodes is n = 2 and 3.0% or more when the number of nodes is n = 3. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 外周ス リ ッ トが穿設されていない丸鋸に関して、 回転数 Nと後 進波周波数 f bとの関係を示すグラフ図である。  FIG. 1 is a graph showing the relationship between the rotational speed N and the backward wave frequency fb for a circular saw having no outer slit.
図 2は、 外周スリ ッ トが穿設されていない丸鋸に関して、 ワーク切削の 試験結果を示すグラフ図である。  FIG. 2 is a graph showing test results of work cutting of a circular saw having no perimeter slit.
図 3は、 No.6S30の丸鋸における回転数、 後進波周波数および台金の変 位量の関係を示すグラフ図である。  FIG. 3 is a graph showing the relationship between the rotation speed, the backward wave frequency, and the displacement of the base metal in the circular saw of No. 6S30.
図 4は、 丸鋸 NO.2S60-2S45の試験結果を示すグラフ図である。  FIG. 4 is a graph showing the test results of the circular saw NO.2S60-2S45.
図 5は、 中心角が等しい 4本のスリ ツ 卜の内で、 中心を挟んで対向する 2 本のスリ ッ トの長さ寸法を同じに設定し、 隣り合うスリ ッ トの長さ寸法 を変化させた丸鋸の概略図である。  Fig. 5 shows that, of the four slits with the same center angle, the length of two slits facing each other with the center in between is set to the same length, and the length of the adjacent slit is set to the same length. It is the schematic of the circular saw which changed.
図 6は、 図 5に示した丸鋸について、 シェルモデルで有限要素解析を行 なった結果を示すグラフ図である。  FIG. 6 is a graph showing the results of finite element analysis performed on the circular saw shown in FIG. 5 using a shell model.
図 7は、 長さの等しい 4本のスリ ッ トの内で、 中心を挟んで対向する 2 本のスリ ッ 卜が隣接するスリ ッ トに対して形成する中心角を変化させた 丸鋸の概略図である。  Figure 7 shows a circular saw in which two slits opposing each other across the center of the four slits of equal length have different center angles with respect to the adjacent slits. It is a schematic diagram.
図 8は、 図 7に示した丸鋸について、 シェルモデルで有限要素解析を行 なった結果を示すグラフ図である。  FIG. 8 is a graph showing the results of finite element analysis performed on the circular saw shown in FIG. 7 using a shell model.
図 9は、 スリ ッ トを施してない丸鋸に関して、 フランジ直径および台金 外径の比 A/Bと臨界速度関数 S(A/B)との関係を示すグラフ図である。 図 10は、 丸鋸の節円数 mで節直径の数 nにおける振動モードが、 (A)に 示す第 1モードと、 (B)に示す第 2モードとの 2つ存在することを示す概略 説明図である。  FIG. 9 is a graph showing the relationship between the ratio A / B of the flange diameter and the base metal outer diameter to the critical speed function S (A / B) for a circular saw without slits. Figure 10 is a schematic diagram showing that there are two vibration modes, the first mode shown in (A) and the second mode shown in (B), at the number of knot circles of the circular saw m and the number of knot diameters n. FIG.
図 11は、 丸鋸における台金の変位を、 例えば渦電流型センサで測定す る際の概略説明図である。  FIG. 11 is a schematic explanatory diagram when displacement of a base metal in a circular saw is measured by, for example, an eddy current sensor.
図 12は、丸鋸に人工的に生じさせた振動を、 例えば 2つの非接触型変位 センサで測定する際の概略説明図である。 Figure 12 shows the artificially induced vibration of a circular saw, for example, two non-contact displacements. It is a schematic explanatory view at the time of measuring with a sensor.
図 13は、 一例として丸鋸を 8つの領域に仮想的に分割し、 この内の 2つ の領域の内部中間にスリ ッ トが含まれるようにした場合に、 該スリ ッ ト を有する領域を避けて 1つ置きの領域に部分腰入れを施すときの概略説 明図である。 発明を実施するための最良の形態  FIG. 13 shows an example in which a circular saw is virtually divided into eight regions, and a slit is included in the middle of two of these regions. It is a schematic explanatory diagram when avoiding every other region and performing partial squatting. BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明に係る丸鋸について、 その理解に必要な技術的背景を先に 述べた後に、 各種の実験例を挙げて添付図面を参照しながら説明する。 回転中の丸鋸に外部から何等かの応力を加えると、 該丸鋸には振動が 励起される。 この振動は、 丸鋸の直径方向に延在する節直径を境として 丸鋸の台金が表面側および裏面側に交互に振動して生ずるものである。 節円数 mで節直怪の数 nにおける振動モードは、 n=0を除いて、 図 10に示 す如く 2つのモードが存在する(degenerate pairs)。 すなわち図 10の(A)に示 す第 1モードにおける節直径 dの位置は、 図 10の(B)に示す第 2モードにお ける節直径 dの位置の中間にある。なお、 ここで問題となる座屈現象は一 般に節円数 m=0の場合であるので、 以下の記述も全て m=0の場合に関す るものとする。 また図 10(A),(B)は、 節円数 m = 0、 節直径数 n=2の例である ( 第 1モードおよび第 2モードにおける丸鋸に関して、その半径 rでの最大 振幅の形状を表す関数を Un^r), Un2(r)、 固有振動数を f , f n2とす ると、 丸鋸を第 1モ一ドの節直径位置から 0だけ回転させた方向の振動 !! , ^ )は、 次のように表すことができる。 Next, the technical background required for understanding the circular saw according to the present invention will be described first, and then various experimental examples will be described with reference to the accompanying drawings. When any stress is applied to the rotating circular saw from the outside, vibration is excited in the circular saw. This vibration is caused by the base metal of the circular saw alternately vibrating on the front side and the back side at the node diameter extending in the diameter direction of the circular saw. Except for n = 0, there are two modes (degenerate pairs) as shown in Fig. 10, except for n = 0, where the number of knots is m and the number of knots is n. That is, the position of the node diameter d in the first mode shown in FIG. 10A is intermediate between the positions of the node diameter d in the second mode shown in FIG. 10B. Note that the buckling phenomenon in question here is generally the case where the number of section circles is m = 0, so the following description also relates to the case where m = 0. Figures 10 (A) and 10 (B) are examples of the number of knot circles m = 0 and the number of knot diameters n = 2 (for the circular saw in the first and second modes, the maximum amplitude at the radius r is shown). If the function representing the shape is Un ^ r), Un 2 (r), and the natural frequencies are f and fn 2 , the vibration in the direction in which the circular saw is rotated by 0 from the nodal diameter position in the first mode ! ! , ^) Can be expressed as follows.
Un,(r, Θ ,t) = Un1sin(n0 )cos( 2 ττ f n,t) Un, (r, Θ, t) = Un 1 sin (n0) cos (2 ττ fn, t)
また前記丸鋸を第 2モードの節直径位置から Θだけ回転させた方向の 振動 Un2(r, Θ ,t)は、 次のように表すことができる。 The vibration Un 2 (r, Θ, t) in the direction in which the circular saw is rotated by Θ from the nodal diameter position in the second mode can be expressed as follows.
Un2(r, 0,t): Un2cos(n Θ ) cos ( 27Γ f n2t + ø ) ここに(^は、 2つのモードの間の位相角である。 Un 2 (r, 0, t): Un 2 cos (n Θ) cos (27Γ fn 2 t + ø) Where (^ is the phase angle between the two modes.
そこで最大振幅の形状関数
Figure imgf000008_0001
f n2- f n、位相角 φ =— 7Γ./2とすると、 丸鋸の回転数 Νの場合の後進波(丸鋸の 回転方向と逆方向に伝播する波)は、 外部からの観測者に対して
So the maximum amplitude shape function
Figure imgf000008_0001
Assuming that fn 2 -fn and phase angle φ = 7Γ. / 2, the backward wave (wave propagating in the direction opposite to the circular saw rotation direction) at the circular saw rotation Ν is transmitted to an external observer. for
Un(r, Θ ,t) = Un(r)sin [ 2 ττ( fn-nN/ 60 )t]  Un (r, Θ, t) = Un (r) sin [2 ττ (fn-nN / 60) t]
で振動することになる。 この後進波の周波数は fb= f n_ nN/60であ つて、 該周波数が零 (0)になる回転数が先に述べた臨界回転数(Nncr = 60· f η/η)である。 なお、 各節直径数モ一ドの Nncrの内、 最低のものを 最低臨界回転数( Ncrniin)と云う。 Will vibrate. The frequency of this backward wave is fb = f n — nN / 60, and the rotation speed at which the frequency becomes zero (0) is the above-mentioned critical rotation speed (Nncr = 60 · f η / η). In addition, the lowest one of the Nncrs in each node diameter mode is called the minimum critical rotation speed (Ncrniin).
前述した如く座屈は、 空間から見た丸鋸の台金に関して、 前記後進波 の固有振動数が零 (0)になって剛性を喪失する現象を云うものである。 そ して臨界回転数でワークの切削中に丸鋸の台金が蛇行するのは、 臨界回 転数が同じ節直径数 nの前記第 1モードおよび第 2モ一ドが連成されるた めである。 しかし最低臨界回転数以上の回転数領域での前記座屈現象は 実際には非線形であって、 これについて今迄充分な解明はなされていな かった。 しかし前記後進波における座屈現象は、 各モードの固有振動数 f ≠ f n2とすれば抑制されると考え、 第 1モードおよび第 2モードでの 固有振動数をどの程度に離せば連成されなくなるかを、 各種の試験を通 じて研究した。 As described above, the buckling refers to a phenomenon in which the natural frequency of the backward wave becomes zero (0) and the rigidity is lost with respect to the base of the circular saw viewed from the space. The meandering of the circular saw base during the cutting of the workpiece at the critical rotation speed is caused by the coupling of the first mode and the second mode with the same critical rotation speed as the nodal diameter number n. It is. However, the above-mentioned buckling phenomenon in the rotation speed region above the minimum critical rotation speed is actually nonlinear, and this has not been sufficiently elucidated until now. However buckling phenomenon in the backward wave is thought to be the natural frequency f ≠ fn 2 Tosureba inhibition of each mode, formed continuously you release to what extent the natural frequency of the first mode and the second mode Whether it disappeared was studied through various tests.
この試験に供した丸鋸の仕様は次の通りである。 なお、 以下の寸法単 111は mmでめる。  The specifications of the circular saw used in this test are as follows. Note that the following dimensions 111 are expressed in mm.
• B型チッブソー 03O5X2.2X1.6X25.4X6OP  • B type chip saw 03O5X2.2X1.6X25.4X6OP
(丸鋸径)χ(鋸厚) χ(台金厚) χ(軸孔径) χ(鋸刃数) (Circular saw diameter) χ (Saw thickness) χ (Base metal thickness) χ (Shaft hole diameter) χ (Number of saw blades)
• すくい角 20° 横すくい角 0° 先端逃げ角 15° 先端傾き角 0° 側面逃げ角 3 ° 側面向心角 • Rake angle 20 ° Side rake angle 0 ° Tip clearance angle 15 ° Tip inclination angle 0 ° Side clearance angle 3 ° Side centroid angle
• フランジ径 080 0110 0120 130 •外部スリ ヅ ト数 2本で Ls = 0〜45(スリ ツ ト長さ) • Flange diameter 080 0110 0120 130 • With two external slits, Ls = 0 to 45 (slit length)
6本で Ls = 0〜45(スリ ツ ト長さ)  Ls = 0 to 45 (slit length) with 6 wires
2本で Ls = (45〜60)および 2本で  Ls = (45-60) with 2 pieces and 2 pieces
Ls二(30〜50)の組合わせ  Combination of Ls two (30-50)
丸鋸による切断試験の条件は次の通りである。  The conditions for the cutting test using a circular saw are as follows.
•被削材 木目の影響を最小限にするために、 中密度ファイバ一ボード • Work material Medium density fiber board to minimize the effect of grain
(; MDF)で厚み 12mmのものを使用した。 (; MDF) having a thickness of 12 mm was used.
• 回転数 最低臨界回転数以下から丸鋸が蛇行する回転数まで(上限は 機械的に振動の生じる 7900r.p.m.) • Rotational speed From below the minimum critical rotational speed to the rotational speed at which the circular saw meanders (upper limit is 7900r.p.m., Where mechanical vibration occurs)
'送り(F) 毎分 7.0m 'Feed (F) 7.0m per minute
• 変位 図 11に示す如く、 丸鋸台金の変位は渦電流型センサ S (非接 触型変位センサ)の出力を 10Hzの口一パスフィル夕を用いてペンレ コーダに記録した。 このペンレコーダで記録した台金の変位(絶対 値)が 0.1mm以上になったときを座屈回転数 Nbとした。 • Displacement As shown in Fig. 11, the displacement of the circular saw base metal was recorded on the pen recorder using the output of the eddy current sensor S (non-contact displacement sensor) using a 10 Hz mouth-to-pass filter. The displacement of the pen recorder having recorded the base metal (absolute value) was at or over 0.1mm and buckling rotational speed N b.
スリ ッ トのない丸鋸について About a circular saw without a slit
前述したスリ ッ トが穿設されていない丸鋸について、 回転数 Nと後進 波周波数 f bとの関係を確認した。 この場合のフランジ直径は 110mmで ある。図 1に、 回転数 (横軸)と後進波周波数 (縦軸)との関係を示す(前進波 は省略する)。 図 1から分かるように、 後進波の固有振動数が零 (0)になる 臨界回転数は、 以下の通りである。  The relationship between the rotation speed N and the backward frequency fb was confirmed for a circular saw without the slit described above. The flange diameter in this case is 110 mm. Figure 1 shows the relationship between the rotational speed (horizontal axis) and the backward wave frequency (vertical axis) (forward waves are omitted). As can be seen from Fig. 1, the critical rotation speed at which the natural frequency of the backward wave becomes zero (0) is as follows.
•節直径数 n=2 N2cr=6369r.p.m. Nodal diameter n = 2 N 2cr = 6369r.pm
'節直径数 n=3 N;,cr=6039r.p.ffl. 'Nodal diameter n = 3 N ;, cr = 6039r.p.ffl.
•節直径数 n=4 N,cr=6887r.p.m. • Nodal diameter n = 4 N, cr = 6887r.pm
•節直径数 n=5 N2cr=7914r.p.m. Nodal diameter n = 5 N 2cr = 7914r.pm
これによれば最低臨界回転数は n=3の場合で、 Nermin=6039r.p.m.であ る。 なお各モードの固有振動数 f , f n2は、 静止状態の丸鋸をハンマで 打撃して生じさせた振動を、例えば図 12に示す 2つの非接触型変位センサ S,Sで測定することによって求めた。 Minimum critical rotational speed according to the in the case of n = 3, Ru N er min = 6039r.pm der. Note that the natural frequencies f and fn 2 of each mode are determined by using The vibration generated by the impact was measured by, for example, two non-contact displacement sensors S, S shown in FIG.
図 2に、台金の部分にスリ ッ トが穿設されていない丸鋸によるワーク切 削の試験結果を示す。縦軸の Wは、 変位センサ Sの配設位置における最大 橈み量(変位の最大値)を示している。  Figure 2 shows the results of a test for cutting a workpiece with a circular saw in which the slit is not drilled in the base. W on the vertical axis indicates the maximum radius (the maximum value of the displacement) at the position where the displacement sensor S is disposed.
なお、図 2において右縦軸は回転数と各モ一ドにおける後進周波数を示 し、 実線は n=3、 破線は n=2および一点鎖線は n=4を表している。 また、 左縦軸は回転数とたわみ量を表している。  In FIG. 2, the right vertical axis indicates the rotational speed and the reverse frequency in each mode, the solid line indicates n = 3, the broken line indicates n = 2, and the dashed line indicates n = 4. The left vertical axis represents the number of rotations and the amount of deflection.
図から丸鋸にスリ ツ 卜がない場合は、 最低臨界回転数である n=3の臨 界回転数(N ermin = 6039r.p. m. )に達すると該モードで座屈し、 丸鋸の台 金は左右に蛇行した。 このように一旦蛇行を生ずると、 それ以上に丸鋸 の回転数を上げても引続いて蛇行し、 その振幅は回転数の増大に伴って 大きくなった。 If no Sri tool Bok within circular saw from the figure, buckled the mode is reached the critical number of revolutions of n = 3 is the minimum critical rotational speed (N er min = 6039r.p. M .), Circular saw The metal meandered to the left and right. Once the meandering occurred, the circular saw continued to meander even if the rotation speed was further increased, and the amplitude increased as the rotation speed increased.
6本のスリ ッ トを有する丸鋸について  Circular saw with 6 slits
先に述べた如くスリ ッ トが穿設されていない丸鋸では、 節直怪数 n=3 の臨界回転数に達すると座屈した。そこで 6本のスリ ッ トを隣り合う中心 角および長さが等しくなるよう穿設した丸鋸を用意し、 節直径数 n=3の モードにおいて、 前記スリ ッ 卜の位置に節直径があるスリ ッ トノーダル タイプ (nodal type)と、 各スリ ツ トの中間位置に節直径があるアンチノ一 ダル夕ィプ(anti-nodal type)とに分離させた。 このときスリ ッ トノーダル タイプの固有振動数 f n,は、 アンチノ一ダルタイプの固有振動数 f n2よ り低くなる。 As mentioned above, the circular saw without slits buckled when it reached the critical rotation speed of n = 3. Therefore, a circular saw was prepared in which six slits were drilled so that the adjacent central angles and lengths were equal, and in the mode with the number of nodal diameters n = 3, a slit with a nodal diameter at the position of the slit It was divided into a nodal type and an anti-nodal type with a nodal diameter in the middle of each slit. At this time, Sri Tsu Tonodaru type of natural frequency fn, is lower Ri good Anchino one Darutaipu of natural frequency fn 2.
モード毎の臨界回転数 N ncrと実際に座屈した際の座屈回転数 Nbとの 関係を表 1に示し、 固有振動数の分離と座屈との関係を表 2に示す。 表中 の丸鋸 No.に関して、 SOはスリ ッ トを設けてない丸鋸を示し、 6Sは 6本の スリッ トを穿設した丸鋸を示している。 また、 6Sの後に続く 2桁の数字 は該スリ ッ 卜の j¾さ(mm )を示している。更に表2において、①「〇」は当該 のモードで座屈が生じたことを示し、 ②「X」は当該のモ一ドで座屈が生 じなかったことを示し、 ③「―」は座屈回転数 Nbが当該モードの臨界回転 数まで達しなかったことを示す。 Table 1 shows the relationship between the critical rotation speed N ncr for each mode and the buckling rotation speed Nb when actually buckled, and Table 2 shows the relationship between the natural frequency separation and buckling. Regarding the circular saw No. in the table, SO indicates a circular saw without a slit, and 6S indicates a circular saw with six slits. Also, the two digits following 6S Indicates the j-length (mm) of the slit. Furthermore, in Table 2 , ① “〇” indicates that buckling occurred in the corresponding mode, ② “X” indicates that buckling did not occur in the corresponding mode, and ③ “-” indicates This indicates that the buckling speed Nb did not reach the critical speed for the mode.
【表 1 】  【table 1 】
Figure imgf000011_0002
Figure imgf000011_0002
【表 2 】  [Table 2]
固有振動数の分離と座屈の関係  Relationship between natural frequency separation and buckling.
Figure imgf000011_0001
この表から 7.5Hz, :i/f :il≥3.0%とすれば、 節直径数 n=3 の座屈は生じなくなることが判った。しかし後述する表 4を合わせ考える と、 更に数値修正して△ f :l〉6.2Hz, 八 / 1〉2.5%とすれば座屈を 確実に抑制し得るものである。 例えば、 フランジ径ニ 110で NO.6S30の 丸鋸において、回転数 Nと後進波周波数 fbおよび台金の変位量 Wの関係 を、図 3に示す。節直径数 n = 3の場合に、△ f :!〉 12.5Hz ,△ f 3/ f 31 > 6.2 % であり、 その臨界回転数は N:ilcr = 4802r.p.m.および N32cr=5131r.p.m.で あつたが、該回転数に達しても座屈は生じなかった。 しかし節直径数 n=4 の臨界回転数 N4cr=5428r.p.m.に達すると、 このモードで座屈を生じた。 但し、 節直径数 η=3の臨界回転数と使用回転数が厳密に合致する回転数 では丸鋸の台金上に節直径が固定し、 図 3の Αの部分に示すように、 所謂 定常波の振動が振幅は大きくないが発生し変位を生じた。 この現象は、 座屈を抑制するようにした丸鋸の台金に全て共通であった。
Figure imgf000011_0001
From this table, it was found that if 7.5Hz,: i / f : il ≥3.0%, buckling of the nodal diameter number n = 3 would not occur. However Taken together Table 4 to be described later, further to modify numerical △ f: l> 6.2 Hz, it is capable of reliably suppressing viii / 1> 2.5% Tosureba buckling. For example, FIG. 3 shows the relationship between the rotational speed N, the backward wave frequency fb, and the displacement W of the base metal in a circular saw having a flange diameter of 110 and a NO. 6S30. When the nodal diameter number n = 3, △ f:! > 12.5Hz, △ f 3 / f 31> 6.2% the critical rotational speed N:.. Il cr = 4802r.p m and N 32 cr = 5131r.pm, but buckling did not occur even when the rotation speed was reached. However, buckling occurred in this mode when the critical rotational speed N 4 cr = 5428r.pm was reached at the node diameter n = 4. However, at the rotational speed at which the critical rotational speed and the rotational speed at which the nodal diameter number η = 3 exactly matches the nodal diameter, the nodal diameter is fixed on the base of the circular saw, and a so-called standing wave Although the amplitude of the vibration was not large, displacement occurred. This phenomenon was common to all circular saw bases designed to suppress buckling.
なお、 図 3において n=31は n=3の第 1モード、 n=32は n=3の第 2モードを 示し、 以下他の nも同様である。  In FIG. 3, n = 31 indicates the first mode of n = 3, n = 32 indicates the second mode of n = 3, and the same applies to other n hereinafter.
2本のスリ ッ トを有する丸鋸について  Circular saw with two slits
先と同様の考えをもって、 節直径数 n=3の他に節直径数 n=2と n = 4の座 屈を抑制するべく、 台金に等間隔で等長さのスリ ッ トを 2本穿設した。材 質的に均一な完全円板を想定すると、理論的にスリ ッ トが 2本の場合は、 節直径数 n=0を除いて全てのモードが 2つに分離する。 その結果を、 モー ド毎の臨界回転数と座屈するに至る回転数との関係として表 3に示す。 表 1および表 3で空白になっている座屈回転数 Nbの欄は、 試験回転数 7900r.p.m.までワークを切削しても座屈を生じなかったことを示してい る。 【表 3 】 臨界回転数と座屈回転数の関係 Based on the same idea as above, two slits of equal length are placed on the base metal at equal intervals in order to suppress buckling of the node diameter numbers n = 2 and n = 4 in addition to the node diameter number n = 3. Drilled. Assuming a perfect disk that is materially uniform, theoretically, if there are two slits, all modes are separated into two except for the number of nodal diameters n = 0. The results are shown in Table 3 as the relationship between the critical speed for each mode and the speed at which buckling occurs. The column of buckling rotation speed Nb, which is blank in Tables 1 and 3, indicates that buckling did not occur even when the workpiece was cut up to the test rotation speed of 7900 rpm. [Table 3] Relationship between critical rotation speed and buckling rotation speed
Figure imgf000013_0001
Figure imgf000013_0001
【表 4】 [Table 4]
固有振動数の分離と座屈の関係  Relationship between natural frequency separation and buckling.
Figure imgf000013_0002
Figure imgf000013_0002
表 4から、 節直径数 n=4のモードは A f4 12.5Hz, A f4/f41≥ 3.4%とす れば、 座屈を抑制し得ることが判る。 しかし節直径数 n=2では、 この段 階で座屈を抑 :リできなかつた From Table 4, it can be seen that buckling can be suppressed in the mode with the number of nodal diameters n = 4 by setting A f 4 12.5 Hz and A f 4 / f 41 ≥ 3.4%. However, when the nodal diameter is n = 2, this step Suppress buckling on the floor:
4本のスリ ッ トを有する丸鋸について  Circular saw with 4 slits
節直径数 n=3および n=4での座屈を抑止しながら、 節直径数 n=2の 2つの モードの固有振動数を大きく分離するために、スリ ッ トを等間隔に 4本穿 設した。 このとき、 中心を挟んで対向するスリ ッ トの長さは同じ寸法と したが、 隣り合うスリ ッ ト同士の長さ寸法は変化させた。 モード毎の臨 界回転数と座屈するに至る回転数との関係を表 5に示し、固有振動数の分 離と座屈との関係を表 6に示す。  In order to greatly separate the natural frequencies of the two modes with the nodal diameter of n = 2 while suppressing buckling at the nodal diameters n = 3 and n = 4, four slits are drilled at equal intervals. Established. At this time, the lengths of the slits facing each other across the center were the same, but the lengths of the adjacent slits were changed. Table 5 shows the relationship between the critical rotation speed and the rotation speed at which buckling occurs for each mode, and Table 6 shows the relationship between the natural frequency separation and buckling.
【表 5 】  [Table 5]
Figure imgf000014_0001
Figure imgf000014_0001
【表 6 】 [Table 6]
固有振動数の分離と座屈の関係  Relationship between natural frequency separation and buckling.
Figure imgf000014_0002
Figure imgf000014_0002
図 4に、 丸鋸 NO.2S60-2S45の試験結果を示す。 この図 4から、 節直径数 n=3および n=2の臨界回転数域で僅かに振れるが、 座屈することはなく、 切削機械の回転上限まで安定して切削作業を達成できた。 以上の結果か ら、 節直径数 n=2のモードは、 23Hz , △ f 2/ f 21 15 %とすれば、 座屈を有効に抑制し得ることが判つた。 なお、 図 4において n=31は n=3の第 1モード、 n=32は n = 3の第 2モ一ドを 示し、 以下他の nも同様である。 Figure 4 shows the test results of circular saw NO.2S60-2S45. From Fig. 4, it was possible to perform the cutting operation stably up to the upper limit of the rotation speed of the cutting machine, although it slightly fluctuated in the critical rotation speed range of the node diameter numbers n = 3 and n = 2, but did not buckle. From the above results, it was found that buckling can be effectively suppressed in the mode with the number of nodal diameters n = 2 at 23 Hz and Δf 2 / f 21 15%. In FIG. 4, n = 31 indicates a first mode of n = 3, n = 32 indicates a second mode of n = 3, and the same applies to other n hereinafter.
不等長さのスリ ッ トの効果について About the effect of unequal length slits
図 5に示すように、 丸鋸に穿設した中心角が等しい 4本のスリ ツ 卜の内 で、 中心を挟んで対向する 2本のスリ ッ 卜の長さ寸法を同じに設定し、 隣 り合うス リ ッ トの長さ寸法を変化させた。 丸鋸台金のモデルは、 厚み以 外は前述した形状と同じで、 0305(丸鋸径) 1.0(台金厚)><60?(鋸刃数) であった。 フランジ径は 0110である。 材料特性は、 縦弾性係数  As shown in Fig. 5, of the four slits drilled on the circular saw with the same center angle, the lengths of the two slits facing each other with the center in between are set to the same length. The length dimension of the slit to be engaged was changed. The model of the circular saw base metal was the same as the shape described above except for the thickness, and was 0305 (circular saw diameter) 1.0 (base metal thickness)> <60? (Number of saw blades). The flange diameter is 0110. The material properties are the modulus of longitudinal elasticity
E=21000kgf/mm ポアソン比レ =0.8、 密度 p二 8 x lO^kgf 'sZ/mm4と し た。 4本のスリ ッ 卜の内、 等間隔で対向する 2本のスリ ッ トの長さを 55mm とし、残りの対向する 2本のスリ ツ トの長さ Lsについて変化させた。 ここ で丸鋸の歯袋の深さは 10mmであった。 E = 21000kgf / mm Poisson fin = 0.8, and to the density p two 8 x lO ^ kgf 'sZ / mm 4. Of the four slits, the length of two opposing slits at equal intervals was 55 mm, and the length Ls of the remaining two opposing slits was varied. Here, the depth of the circular saw tooth bag was 10 mm.
図 6に、 シェルモデルで有限要素解析を行なった結果を示す。固有振動 数 fnは台金の厚みに比例するので、 相対的な固有振動数差 n/frii は台金の厚みに無関係である。 そしてスリ ッ トの長さ Lsを 50mm以下ま たは 60mm以上とすれば、 本願における請求項 1を満足し、 またス リ ッ ト の長さ Lsを 50mmまたは 60mm以上とすれば、 本願における請求項 2を満 足するものである。  Figure 6 shows the results of finite element analysis performed using the shell model. Since the natural frequency fn is proportional to the base metal thickness, the relative natural frequency difference n / frii is independent of the base metal thickness. If the slit length Ls is 50 mm or less or 60 mm or more, claim 1 of the present application is satisfied, and if the slit length Ls is 50 mm or 60 mm or more, the claim of the present application is satisfied. This satisfies item 2.
4本のスリ ツ トの位置関係の影響について  Influence of the positional relationship between the four slits
図 7に示すように、 丸鋸に穿設した長さ Lsの等しい 4本のス リ ッ トの内 で、 中心を挟んで対向する 2本のスリ ッ トを円周方向に移動させて、 隣接 するスリ ッ トに対する中心角を変化させた。 丸鋸台金のモデルは、 図 5 に示した丸鋸のものと同じで、 0305(丸鋸径) 1.0(台金厚) 6(^(鋸刃 数)であった。すなわち 4本のスリ ヅ 卜の各長さ(Ls=55mm)を同じとし、 こ れらのスリヅ 卜の内で、対向する 2本のスリ ヅ トが隣接するスリ ッ トに対 して形成する中心角を 0 =12.5° 〜90° の範囲で変化させた。 ここで丸 鋸の歯袋の深さは 10mmであつた。 As shown in Fig. 7, of the four slits with the same length Ls drilled in the circular saw, two slits facing each other across the center are moved in the circumferential direction, The center angle for the adjacent slit was changed. The model of the circular saw base metal was the same as that of the circular saw shown in Fig. 5, and was 0305 (circular saw diameter) 1.0 (base metal thickness) 6 (^ (number of saw blades). The lengths of the slits (Ls = 55 mm) are the same, and among these slits, the central angle formed by two opposing slits with respect to the adjacent slit is 0 = The angle was changed in the range of 12.5 ° to 90 °. The depth of the saw tooth bag was 10 mm.
図 8に、 シェルモデルで行なった有限要素解析の結果を示す。 この図 8 において、相互に隣り合うスリ ッ ト同士の 90° からの偏位中心角 0s(Ss = 90° _ 0 )を 2.5° 以上で 75° 以下とすれば、 固有振動数差 Af 3/f 31 ≥3.0%, Af4/f41 3.4%となるので、 節直径数 n=3、 n = 4でのモードの 座屈が抑制できる。 但し、 偏位中心角 0 sを 15° 以上にした場合は、 丸鋸 の台金が剛性的にアンバランスとなる。 また偏位中心角 6>sを 2.5° 以上 で 12.5° 以下とすると、 固有振動数差 2/f 21 15%となるので、 節 直径数 n=2でのモ一ドの座屈も抑制し得ることになる。 すなわち相互に 隣り合うスリ ツ ト同士の中心角の差が 5° 以上 30° 以下で、節直径数 n=3、 n=4のモードの座屈が有効に抑制でき、 更には該中心角の差が 25° 以下 で節直径数 n=2のモードの座屈も同じく抑制できるものである。 Figure 8 shows the results of the finite element analysis performed on the shell model. In FIG. 8, if the deviation center angle 0s (Ss = 90 ° _0) of the slits adjacent to each other from 90 ° is set to 2.5 ° or more and 75 ° or less, the natural frequency difference Af 3 / Since f 31 ≥3.0% and Af 4 / f 41 3.4%, the buckling of the mode with nodal diameters n = 3 and n = 4 can be suppressed. However, when the deviation center angle 0 s is set to 15 ° or more, the base of the circular saw becomes rigidly unbalanced. Also, if the deviation center angle 6> s is not less than 2.5 ° and not more than 12.5 °, the natural frequency difference will be 2 / f 21 15%, so the buckling of the mode at the nodal diameter number n = 2 is also suppressed. You will get. That is, when the difference between the center angles of the slits adjacent to each other is 5 ° or more and 30 ° or less, the buckling of the mode with the number of nodal diameters n = 3 and n = 4 can be effectively suppressed. When the difference is less than 25 °, the buckling of the mode with n = 2 is also suppressed.
部分腰入れの影響について About the effect of partial waisting
丸鋸の台金にハンマリングゃプレス等で外部応力を印加する「部分腰 入れ」によって、該台金の機械的特性を改善し得ることが知られている。 そこで部分腰入れを丸鋸の台金に施すことによって、 特に節直径数 n=2 のモードにおける固有振動数 f nの分離量を調査した。また部分腰入れに よって、 スリ ッ トの長さ Lsを減少できるかを併せて検討した。 試験に供 した丸鋸の仕様は、 305(丸鋸径) X2.2(鋸厚) X1.6(台金厚) X25.4(軸孔 径) X60P (鋸刃数)、 フランジ径 0120のものであった。 スリ ッ トの長さ Lsを変化させ、 点対称となる位置に 2本、 或いは等中心角の位置に 4本形 成した。 図 13に示すように、 丸鋸を 8つの領域に仮想的に分割し、 この内 の 2つ或いは 4つの領域の内部中間にスリ ッ トが含まれるようにした。 ス リッ トを有する領域を避けて、 1つ置きの領域に前述したハンマリングゃ プレス等による腰入れを施した。固有振動数: nの分離量を、 部分腰入れ を施さなかった場合と比較して表 7に示す。 【表 7 】 It is known that the mechanical properties of a circular saw can be improved by "partial squatting" in which an external stress is applied to the circular saw by a hammering press or the like. Therefore, we investigated the separation of the natural frequency fn especially in the mode with the number of nodal diameters n = 2 by applying partial squatting to the base of the circular saw. It was also examined whether partial slitting could reduce the length Ls of the slit. The specifications of the circular saw used for the test were 305 (circular saw diameter) X2.2 (saw thickness) X1.6 (base metal thickness) X25.4 (shaft hole diameter) X60P (number of saw blades), flange diameter 0120 Was something. By changing the length Ls of the slit, two lines were formed at point-symmetric positions or four lines at equal central angles. As shown in Fig. 13, the circular saw was virtually divided into eight regions, and a slit was included in the middle of two or four of these regions. Avoiding the area having the slit, every other area was sunk by the above-mentioned hammering press or the like. Table 7 shows the amount of separation of the natural frequency: n in comparison with the case without partial stiffening. [Table 7]
固有振動数の分離量の比較  Comparison of natural frequency separation
Figure imgf000017_0001
この表 7から、 スリ ツ トを施した場合と同様に、 部分腰入れの領域数に 応じた節直徑数のモードの固有振動数 f nの分離量が多くなることが判 明する。すなわち、 図 13の如く 4つの領域に部分腰入れを施すことによつ て、 節直径数 n=2のモードの固有振動数: nが大きく分離する。 N0.2S55- 2S50の丸鋸を例にとると、 部分腰入れを施してない場合は固有振動数差 △ f2/f21 = 15.8 %であったが、 部分腰入れを施すことで固有振動数差△ f2/f21は 22.0%に大きく改善された。 このように部分腰入れを施す領域 数を適切に設定することによって、 それに応じた節直径数のモードの固 有振動数 f nを大きく分離し得るものである。 例えば節直径数 n=2ならば 4ケ所の領域に、 節直径数 n=3ならば 6ケ所の領域に、 また節直径数 n=4な らば 8ケ所の領域に分け、前記スリ ッ トの近傍を避けて部分腰入れを等間 隔に施すのが最も効果的である。
Figure imgf000017_0001
From Table 7, it can be seen that the amount of separation of the natural frequency fn of the mode with the nodal diameter according to the number of regions of partial penetration increases as in the case of slitting. In other words, as shown in FIG. 13, by performing partial indentation on the four regions, the natural frequency: n of the mode with the node diameter number n = 2 is largely separated. Taking the circular saw of N0.2S55-2S50 as an example, the natural frequency difference was Δf 2 / f 21 = 15.8% when partial staking was not performed. The number difference Δf 2 / f 21 was greatly improved to 22.0%. By appropriately setting the number of regions where partial indentation is performed in this way, the natural frequency fn of the mode with the number of nodal diameters can be largely separated. For example, if the number of nodes is n = 2, the area is divided into four areas, if the number of nodes is n = 3, it is divided into six areas, and if the number of nodes is n = 4, the area is divided into eight areas. It is most effective to do partial squatting at equal intervals while avoiding the vicinity of the area.
適用分野について About application fields
先に述べたスリ ッ トおよび部分腰入れの何れも施してない丸鋸に関し て、 その場合の臨界回転数を Ω (ί ( Γ . p . m. )とする。 この臨界回転数 は、 G . S . Schaj erの近似式から以下の如く求められる、 Regarding the circular saw without any of the slits and partial penetration described above, the critical rotation speed in that case is Ω (ί (Γ.p.m.). G.S.Schajer's approximate expression gives
Ω c 二 H / B 2 . S ( A / B ) Ω c two H / B 2 .S (A / B)
ここに Hは丸鋸台金の厚み(mm)、 Bは外直径(mm)、 Aはフランジ直径 (mm), Sは臨界速度関数(mm/min)である。  Where H is the thickness of the circular saw base (mm), B is the outer diameter (mm), A is the flange diameter (mm), and S is the critical velocity function (mm / min).
図 9に、前記スリ ッ トを施してない丸鋸におけるフランジ直径および台 金外径の比 A/Bと、 臨界速度関数 S(A/B)との関係を示す。 図 9から、 最低 臨界回転数のモードは、 ① A/B=0〜0.26の場合に節直径数 n=2、 ② A/B = 0.26~0.46の場合に節直径数 n=3、 ③ A/B = 0.46〜0.58の場合に節直径数 n=4であることが判る。従って、 一般的に云って A/Bは 0.5以下であるので、 該 A/Bが 0.26以上の場合は本願の請求項 1の仕様で、 また該 A/Bが 0.26以下 の場合は請求項 2の仕様で丸鋸を設計するのが適切と考えられる。  FIG. 9 shows the relationship between the critical speed function S (A / B) and the ratio A / B of the flange diameter and the base metal outer diameter of the circular saw without the slit. From Fig. 9, the mode of the lowest critical rotation speed is as follows: ① Nodal diameter number n = 2 when A / B = 0 ~ 0.26, ② Nodal diameter number n = 3 when A / B = 0.26 ~ 0.46, ③ A It can be seen that the node diameter number n = 4 when /B=0.46 to 0.58. Therefore, in general, A / B is 0.5 or less, so if the A / B is 0.26 or more, the specification of claim 1 of the present application is used.If the A / B is 0.26 or less, claim 2 is used. It is considered appropriate to design a circular saw according to the specifications.
なお前記 G. S. Schajerの近似式は、 Forest Prod. J. ,誌(1986年) 36- 2,37-43に「丸鋸の固有振動数および臨界速度に関する単純公式」として 記載されている。  The approximation formula of G. S. Schajer is described in Forest Prod. J., magazine (1986), 36-2, 37-43, as "simple formula for natural frequency and critical speed of circular saw".
前述した一連の手段を施すことで、 丸鋸によるワークの切削中に生ず る台金の蛇行(座屈)を抑制し得るものであるが、 これとても臨界回転数 での振れを完全に防止できるものではない。 そこで、 ワーク切削中にお ける台金の振れを更に抑制するため前記スリッ ト或いは別途設けたスリ ッ ト部に、例えばワイパチップを固着する(このワイパチップはスリ ッ ト の内側に固着されるチップであって、その厚みは鋸厚より僅かに小さく、 かつ台金厚より大きく設定されている。 そしてワーク切削中に、 該ヮー クが台金を直接挟み込むのを防止する作用を果すものである)。そしてヮ ィパチップの 1つ以上が、切削中にワーク(被削材)に接触するようにすれ ば、更に振動を抑制することが可能となる。 また先に述べたスリ ッ トは、 丸鋸台金の外周(歯袋)に一端が開口するよう穿設されたものであつたが、 このような外周スリ ッ 卜の外に、 台金の外周に開口しない内部スリ ッ ト を穿設するようにしてもよい。 この場合は、 固有振動数の分離には殆ど 影響しない。 またス リ ツ トの内部に粘弾性の樹脂を充填することで減衰 能を向上させ、 これによつて臨界回転数域での定常波の振動を抑制する ようにしてもよい。 By applying the series of measures described above, it is possible to suppress the meandering (buckling) of the base metal that occurs during the cutting of the work by the circular saw, but this completely prevents the runout at the critical rotation speed. Not something you can do. Therefore, in order to further suppress the run-out of the base metal during work cutting, for example, a wiper chip is fixed to the slit or a separately provided slit portion (this wiper chip is a chip fixed to the inside of the slit). Therefore, the thickness is set slightly smaller than the saw thickness and larger than the base metal thickness, and functions to prevent the workpiece from directly pinching the base metal during work cutting.) . Further, if one or more of the die tips are brought into contact with the workpiece (work material) during cutting, vibration can be further suppressed. In addition, the above-mentioned slit was drilled so as to have one end opened on the outer periphery (tooth pouch) of the circular saw base metal. Internal slit that does not open to the outer periphery May be bored. In this case, there is almost no effect on the separation of the natural frequency. Also, the slit may be filled with a viscoelastic resin to improve the damping performance, thereby suppressing the vibration of the standing wave in the critical rotation speed range.
以上の検討結果を総合的に纏めると以下の通りである。  The results of the above study are summarized below.
(1) フランジ直径が丸鋸の外径の約 26%以上の場合、 節直径数 n=2のモー ドの臨界回転数は、 節直径数 n=3および n=4の臨界回転数よりも高くなる c またその傾向は、 フランジ直径が大きくなるに伴って急激に増大する。 このような場合、 節直径数 n=3と n=4との座屈を抑制すれば、 丸鋸を高い 回転数で広範囲に亘つて使用できる。 この場合、 丸鋸の台金の節円数 m が 0で、 かつ同じ節直径数 nの 2つのモードにおいて、該丸鋸の固有振動数 を f ι Ηζ)と f n2(Hz) (ここに: f n2> f nj、 固有振動数差△ f n= f n2— f とすると、 その相対的な固有振動数差 n/f を節直径数 n=3で 3.0%以上および節直径数 n=4で 3.5%以上とするのが好ましい。 これは本 願の請求項 1に対応している。 (1) When the flange diameter is about 26% or more of the outer diameter of the circular saw, the critical rotation speed of the mode with the number of nodal diameters n = 2 is greater than the critical rotation speed of the nodal diameter numbers n = 3 and n = 4. The tendency to increase c increases sharply as the flange diameter increases. In such a case, the circular saw can be used over a wide range at a high rotation speed by suppressing the buckling of the nodal diameter numbers n = 3 and n = 4. In this case, the natural frequency of the circular saw is f ι Ηζ) and fn 2 (Hz) (where : Fn 2 > f nj, natural frequency difference △ fn = fn 2 — f, the relative natural frequency difference n / f is 3.0% or more at nodal diameter n = 3 and nodal diameter n = 4 In this case, it is preferably 3.5% or more, which corresponds to claim 1 of the present application.
(2) フランジ直径が丸鋸の外径の約 26%以下の場合、 特に節直径数 n=2 と 3のモ一ドでの座屈が問題となる。 このような場合は、 丸鋸の台金の節 円数 mが 0で同じ節直径数 nの 2つのモ一ドにおいて、該丸鋸の固有振動数 を f Hz)と f n2(Hz) (ここで f n2> f )、 固有振動数差 Δί" n= f n2- fn,とすると、 その相対的な固有振動差 Afn/f n,を節直径数 n=2で(2) When the flange diameter is about 26% or less of the outer diameter of the circular saw, buckling in the mode with n = 2 and 3 is particularly problematic. In this case, the natural frequency of the circular saw is f Hz) and fn 2 (Hz) ( Where fn 2 > f) and the natural frequency difference Δί "n = fn 2 -fn, the relative natural frequency difference Afn / fn,
15%以上および節直径数 n=3で 3.0%以上とすれば、 これらのモ一ドの座 屈を有効に抑制できて好適である。これは本願の請求項 2に対応している (If it is 15% or more and the node diameter number n = 3 is 3.0% or more, buckling of these modes can be effectively suppressed, which is preferable. This corresponds to claim 2 of the present application (
(3) 前述した(1)および (2)の内容を実現する手段として、 丸鋸の台金に略 等しい中心角の間隔で 4本のスリ ッ トを穿設することで、 節直径数 n=2お よび n=4または n=3のモードの固有振動数を分離させる。 更に、 丸鋸の中 心を挟んで対合する 2本のスリ ッ 卜の長さは略同じ寸法とし、相互に隣り 合うスリ ッ 卜の長さは異なることによって、 他のモードの固有振動数も 同時に分離させることができる。これは本願の請求項 3に対応している。(3) As a means to realize the contents of (1) and (2) described above, by drilling four slits at intervals of the center angle approximately equal to the base of the circular saw, the number of node diameters n = 2 and the natural frequencies of the modes n = 4 or n = 3. Furthermore, the length of the two slits facing each other across the center of the circular saw is approximately the same size, The different frequencies of the slits can also separate the natural frequencies of other modes at the same time. This corresponds to claim 3 of the present application.
(4) 前述した(1 )および (2)の内容を実現する手段として、 丸鋸の台金に 4 本のスリ ッ トを穿設する。 この場合に、 スリ ッ トの長さは全て略同じ寸 法に設定すると共に、相互に隣り合うスリ ッ トの中心角の差は 5 ° 〜30° の範囲内に存在させる。 これは本願の請求項 4に対応している。 (4) As a means to realize the contents of (1) and (2), four slits are drilled in the circular saw base. In this case, the lengths of the slits are all set to substantially the same dimensions, and the difference between the central angles of the slits adjacent to each other is in the range of 5 ° to 30 °. This corresponds to claim 4 of the present application.
(5) 丸鋸の台金に複数本のスリ ッ トを穿設した場合において、 隣り合う スリ ッ トにより挟まれる個所に、 例えばハンマリングゃプレスによる外 部応力の印加の如き部分的な腰入れを施す。 これによつて、 その部分腰 入れの個数に応じたモードの固有振動数を分離させることができる。 こ れは本願の請求項 5に対応している。  (5) When multiple slits are drilled in the base of a circular saw, partial lumps such as the application of an external stress by a hammering press or the like may be placed between the adjacent slits. Put the container. Thereby, the natural frequency of the mode corresponding to the number of the partial squats can be separated. This corresponds to claim 5 of the present application.
(6) 先に述べた手段によって台金の蛇行(座屈)を抑制させても、 厳密に は最低臨界回転数での振れを完全に抑制できない。そこで前記スリ ッ ト、 或いは別途設けたスリ ッ ト部にワイパチップを固着し、 これらワイパチ ップの 1つ以上が切削中にワーク(被削材)と接触するようにすることで 更に振動を抑制することが可能である。 またスリ ッ トは、 丸鋸台金の外 周に近い部分に穿設したものに限られず、 台金の内部に近い部分にスリ ッ トを穿設してもよい。 この場合は、 固有振動数の分離は殆ど影響しな い。 また、 該スリ ッ トの内部に粘弾性の樹脂を充填することで減衰能を 向上させて、 臨界回転数域での定常波の振動を抑制することもできる。 発明の効果  (6) Even if the meandering (buckling) of the base metal is suppressed by the means described above, it is not strictly possible to completely suppress the deflection at the minimum critical rotation speed. Therefore, a vibration is further suppressed by attaching a wiper tip to the slit or a separately provided slit portion so that at least one of the wiper tips comes into contact with a workpiece (work material) during cutting. It is possible to Further, the slit is not limited to the one drilled in a portion near the outer periphery of the circular saw base, and the slit may be drilled in a portion near the inside of the base. In this case, the natural frequency separation has little effect. Further, by filling the inside of the slit with a viscoelastic resin, the damping ability can be improved, and the vibration of the standing wave in the critical rotation speed region can be suppressed. The invention's effect
以上説明した如く本発明に係る丸鋸によれば、 最低臨界回転数以上の 回転域でも切削できる台金形状が提供でき、 台金を薄く しても高速回転 数域での使用が可能となる。 従って、 丸鋸の台金を薄く した分だけヮー ク切削時における材料のロスを抑制し得ると共に、 1歯当りの切削力を低 く し得るので送り速度を大きく設定でき、 ワーク加工能率を大幅に向上 させ得る等の右益な効果が奏される。 As described above, according to the circular saw according to the present invention, it is possible to provide a base metal shape that can be cut even in a rotation range equal to or higher than the minimum critical rotation speed, and can be used in a high speed rotation range even if the base metal is thinned. . Therefore, the loss of material during peak cutting can be suppressed by reducing the thickness of the circular saw base, and the cutting force per tooth is reduced. Since the feed rate can be set higher, work efficiency can be greatly improved.

Claims

請求の範囲 The scope of the claims
1 . ワークの切 y時に最低臨界回転数以上の領域で使用可能な丸鋸で あって、 該丸鋸における台金の節円数 mが 0で、 かつ同じ節直径数力 ½と なる 2つのモードにおいて、 1. A circular saw that can be used in the region of the minimum critical rotation speed or more when the workpiece is cut, and the number of circles m of the base metal in the circular saw is 0, and the number of diameters of the joint is the same. In mode,
前記丸鋸の固有振動数を f r^ Hz )と f n2(Hz ) (ここに: f n2 > f )、 固有 振動数差 n = f n2 _ f とした場合に、 その相対的な固有振動数差If the natural frequency of the circular saw is fr ^ Hz) and fn 2 (Hz) (where: fn 2 > f), and the natural frequency difference n = fn 2 _ f, the relative natural frequency is difference
△ f n/ f n,を節直径数 n=3で 3.0 %以上および節直径数 n=4で 3.5 %以上と した △ f n / f n, at least 3.0% for nodal diameter n = 3 and at least 3.5% for nodal diameter n = 4
ことを特徴とする丸鋸。 A circular saw characterized by the following:
2 . ワークの切削時に最低臨界回転数以上の領域で使用可能な丸鋸で あって、 該丸鋸における台金の節円数 mが 0で、 かつ同じ節直径数が nと なる 2つのモードにおいて、  2. Two modes in which the circular saw can be used in the region of the minimum critical rotation speed or more when cutting the workpiece, and the number of circles m of the base metal in the circular saw is 0 and the number of the same node diameter is n. At
前記丸鋸の固有振動数を f r^Hz )と f n2(Hz ) (ここに f n2〉 f nj、 固有 振動数差 n= f n2 _ f とした場合に、 その相対的な固有振動数差If the natural frequency of the circular saw is fr ^ Hz) and fn 2 (Hz) (where fn 2 > f nj and the natural frequency difference n = fn 2 _ f, the relative natural frequency difference
△ f n/ f を節直径数 n=2で 15 %以上および節直径数 n=3で 3.0 %以上と した △ f n / f was set to 15% or more at the node diameter n = 2 and to 3.0% or more at the node diameter n = 3.
ことを特徴とする丸鋸。 A circular saw characterized by the following:
3 . 丸鋸の台金に略等しい中心角の間隔で 4本のスリ ッ トを穿設し、 そ の回転中心を挟んで対向し合う 2本のスリ ッ トの長さは略同じ寸法とし、 相互に隣り合うスリ ッ トの長さは異ならせるようにした請求項 1または 2 記載の丸鋸。  3. Four slits are drilled at a center angle interval approximately equal to that of the circular saw base, and the lengths of the two slits that face each other with the center of rotation are approximately the same. 3. The circular saw according to claim 1, wherein slits adjacent to each other have different lengths.
4 . 丸鋸の台金に 4本のスリ ッ トを穿設し、 これらスリ ッ トの長さは全 て略同じ寸法に設定すると共に、 相互に隣り合うスリ ッ 卜の中心角の差 は 5〜30° の範囲内にある請求項 1または 2記載の丸鋸。  4. Drill four slits in the circular saw base, set the lengths of these slits to be almost the same, and set the difference between the center angles of the slits adjacent to each other. The circular saw according to claim 1 or 2, wherein the circular saw is in a range of 5 to 30 °.
5 . 複数本のスリ ッ トが穿設された丸鋸の台金であって、 隣り合うス 21 5. A circular saw base with a plurality of slits perforated. twenty one
リ ッ トにより挟まれる個所に In the place sandwiched by the lit
求項;!〜 4の何 れかに記載の丸鋸。  Circular saw according to any of! To 4.
PCT/JP2000/000576 1999-02-19 2000-02-02 Circular saw WO2000048801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP04223999A JP3218434B2 (en) 1999-02-19 1999-02-19 Circular saw
JP11/42239 1999-02-19

Publications (1)

Publication Number Publication Date
WO2000048801A1 true WO2000048801A1 (en) 2000-08-24

Family

ID=12630489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000576 WO2000048801A1 (en) 1999-02-19 2000-02-02 Circular saw

Country Status (2)

Country Link
JP (1) JP3218434B2 (en)
WO (1) WO2000048801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016094A1 (en) * 2000-08-18 2002-02-28 Kanefusa Kabushiki Kaisha Circular saw

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3204674A (en) * 1962-03-12 1965-09-07 Griffwood Inc Step sawmilling with by-product chip production
GB1151382A (en) * 1967-03-22 1969-05-07 James Charles Lee Improvements in or relating to Saw Blades
JPS5031491A (en) * 1973-07-21 1975-03-27
JPS5038187A (en) * 1973-08-09 1975-04-09
JPS5078000A (en) * 1973-11-15 1975-06-25
JPH0732302A (en) * 1993-07-22 1995-02-03 Imoto:Kk Tensioning-evaluation method for circular saw
JPH07241725A (en) * 1994-03-05 1995-09-19 Tani Tec:Kk Rotary saw
JPH10180703A (en) * 1996-12-24 1998-07-07 Kanefusa Corp Disk-shaped rotary tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3204674A (en) * 1962-03-12 1965-09-07 Griffwood Inc Step sawmilling with by-product chip production
GB1151382A (en) * 1967-03-22 1969-05-07 James Charles Lee Improvements in or relating to Saw Blades
JPS5031491A (en) * 1973-07-21 1975-03-27
JPS5038187A (en) * 1973-08-09 1975-04-09
JPS5078000A (en) * 1973-11-15 1975-06-25
JPH0732302A (en) * 1993-07-22 1995-02-03 Imoto:Kk Tensioning-evaluation method for circular saw
JPH07241725A (en) * 1994-03-05 1995-09-19 Tani Tec:Kk Rotary saw
JPH10180703A (en) * 1996-12-24 1998-07-07 Kanefusa Corp Disk-shaped rotary tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016094A1 (en) * 2000-08-18 2002-02-28 Kanefusa Kabushiki Kaisha Circular saw

Also Published As

Publication number Publication date
JP3218434B2 (en) 2001-10-15
JP2000238003A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
EP0376676B1 (en) Rotary substrate for a rotary blade
EP0720890B1 (en) Hand tool for the removal of material from brittle and/or non ductile materials
US4728231A (en) Drill bit structure
WO2001068334A1 (en) Drill bit
JP2002511344A (en) Method for drilling in fiber reinforced composites using a tool with a cutting head having a large diameter and a low height
US20070251734A1 (en) Rotary-percussion drill with a four-start helical shaft
TW200900184A (en) Disklike cutting tool and cutting device
Sun et al. High performance drilling of T800 CFRP composites by combining ultrasonic vibration and optimized drill structure
TW201134580A (en) Drilling tool
WO2000048801A1 (en) Circular saw
CN103328151B (en) Method of making a bit for a rotary drill
JPH0453701A (en) Metal base plate of circular saw
JP5716955B2 (en) Cutting device, vibration condition presentation device and method
WO2001060557A1 (en) Drill bit
JP3567262B2 (en) Circular saw
JPH042410A (en) Rotary base for saw blade and saw blade
US20110299947A1 (en) cutting tool with radial cutting edges
US20180266185A1 (en) Earth-boring tools with reduced vibrational response and related methods
JPH0319004B2 (en)
JP3029033B1 (en) Drill bit
JP4318254B2 (en) Rotary saw substrate and rotary saw using the same
JPH07148613A (en) Tip saw
JPS62140702A (en) Precise superposed vibration hole processing method
JPH11129203A (en) Base metal for circular saw with vibration damping function
JPH10180703A (en) Disk-shaped rotary tool

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase