WO2000042293A1 - Self-active generating system by resistance heating - Google Patents

Self-active generating system by resistance heating Download PDF

Info

Publication number
WO2000042293A1
WO2000042293A1 PCT/JP2000/000091 JP0000091W WO0042293A1 WO 2000042293 A1 WO2000042293 A1 WO 2000042293A1 JP 0000091 W JP0000091 W JP 0000091W WO 0042293 A1 WO0042293 A1 WO 0042293A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance heating
steam
power
water
self
Prior art date
Application number
PCT/JP2000/000091
Other languages
French (fr)
Japanese (ja)
Inventor
Sheiichi Akiba
Original Assignee
Sheiichi Akiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sheiichi Akiba filed Critical Sheiichi Akiba
Priority to AU18932/00A priority Critical patent/AU1893200A/en
Publication of WO2000042293A1 publication Critical patent/WO2000042293A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/186Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using electric heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • Thermal power generation produces C0 2 that causes global warming and N0x and S0X that are the causes of acid rain.
  • Nuclear power generation has issues for radioactive waste treatment and other issues.
  • development of a large-scale power generation system (alternative energy, etc.) is desired, and as a comprehensive power generation system, a new concept is used to amplify electricity (indirect resistance heating system, direct resistance heating system, etc.).
  • the purpose of this project was to develop and utilize active power generation that accompanies the generation of electricity, and to use cyclical power generation (self-active power generation system) by utilizing the generated power.
  • Amplification of energy in a structural configuration, etc. necessarily indicates a cyclic configuration, but it is not possible due to the law of energy conservation, the first law of thermodynamics, the second law of thermodynamics, statistical mechanics, etc. It has been possible.
  • Branching from transformers, etc. providing a control system, and utilizing the residual heat of the indirect resistance heating furnace, etc., instantaneously, the power supply of the sealed indirect resistance heating element, etc. installed in the indirect resistance heating furnace, etc., and operating equipment Switch power supply Utilization of surplus power generated from generators, etc. by cycling and operating as a self-active power generation system, as well as providing make-up water tanks etc. in the system as appropriate, steam exhausted from back pressure turbines, etc. Utilizing this technology, it was configured as a comprehensive power generation system and was used as a means to solve problems.
  • the principle of direct resistance heating is utilized and the natural convection type steam generator, forced convection type steam generator, direct resistance heating type pressurized water reactor, steam generator, etc.
  • the steam is sent to a high-speed turbine, and the required generator is rotated to actively generate electric power.
  • a condenser, feed water heater, feed water circulation pump, etc. are installed to supply water. Constructs a circulatory system, once generated electric power branches off from a transformer, etc., establishes a control system, and instantaneously utilizes the residual heat of a direct resistance heating furnace, etc.
  • the power is switched by switching the power supply of multiple resistance cores such as direct resistance heating elements installed in the direct resistance heating furnace, etc., and the power supply of operating facilities, etc., and power is generated by cycling and configuring as a self-active power generation system.
  • the system was constructed as a comprehensive power generation system by utilizing surplus power generated by the power plant and by providing a make-up water tank, etc., as appropriate in the system and utilizing steam discharged from the back-pressure turbine.
  • the scope of disclosure is to utilize the principle of indirect resistance heating and appropriately configure a natural convection type steam generator, forced convection type steam generator, indirect resistance heating type pressurized water reactor, steam generator, etc. to generate high-pressure steam Then, the steam is sent to a high-speed turbine, a required generator is rotated, and power is actively generated.
  • the generated power is branched from a transformer, etc., a control system is provided, and a sealed indirect resistance is provided.
  • self-active cogeneration power generation system By supplying power to the heating elements and operating equipment, etc., self-active cyclical utilization, and by creating a water supply circulation system and installing a makeup water tank, etc., utilizing surplus power and utilizing waste heat steam, etc. It can be called a self-active cogeneration power generation system.
  • the resistance heating method utilizing the principle of direct resistance heating, the natural convection type steam generator, forced convection type steam generator, direct resistance heating type pressurized water reactor, steam generator, etc. And generate high-pressure steam, send the steam to a high-speed turbine, rotate the required generator, etc., generate power actively, and divide the power once generated from transformers, etc. And self-active cyclical utilization by supplying power to multiple resistance heating elements such as direct resistance heating furnaces, etc. and operating equipment, etc., and creation of a water supply circulation system and makeup water tanks, etc. It can be said that it is a self-active cogeneration power generation system that utilizes surplus power and waste heat steam.
  • Control device such as AC power supply, 2. Drain valve, 3. Support scart, 4. Protective sealed indirect resistance heating element, etc. 5. Water supply nozzle, 6. Furnace water level, 7. Spray nozzle, 8. Bolt tightening , 9. Main steam piping, etc. (appropriately used for regenerative heating, etc.), 10. Electric heaters, such as dryers, 11. Corrugated moisture separators, 12. Main steam stop valves (Steam is used for regulating valves, turbines, etc.) , 13.0 ring seal, 14. wire mesh type moisture separator, 15. stop valve such as water level adjustment nozzle, 16. water level meter such as fireproof glass, 17. water supply ring such as water supply sparger, 18. Lining of stainless steel etc., 19.
  • Furnace wall terminal electrode (It is good to connect a plurality of heaters around and connect to heating element etc. appropriately, and to supply power rationally such as single-phase AC, three-phase AC, etc.), 20. 21. Bleed port such as drain, and bypass control system, 22. Main steam regulating valve (stop valve etc.), 23. Turbine power generation equipment, etc. 24. Moisture separation heater, 25. Steam bleed valve, 26. Transformer, 27. Power transmission utilization, 28. Condenser, 29. Water supply system circulation pump, 30. Protection Sealed indirect resistance heating heating element, etc. 31. Indirect resistance heating feed water heater, 32. Stainless steel 33. Feed water heater control system, 34. Various waste heat, reheat, etc. may be incorporated into the system, etc.
  • Feed water circulation pump 36. Indirect resistance heating method 39. Feed water heating tank, 37. Lining stainless steel etc., 38. Protective sealed indirect resistance heating element, etc. 39. Feed water heating tank Septum plate, 40. Control system for feed water heating tank, etc., 41. Circulation pump for feed water system, 42. Water supply adjustment valve, etc., 43. Cooling water circulating pump, 44. Stainless steel, etc. Lining, 45. Cooling water tank, 46. Condenser, 47. Capillary tube, etc. 48. Evaporator (heat exchanger), 49. Compressor, 50. Make-up water valve, 51. Make-up water tank, etc. make-up water, 52. Stainless steel, etc., 53. Supply Water regulating valve, 54. AC power supply control device (External power control device or self-active type, once generated power is branched by a transformer, etc. Good), 55. Switches such as switching power supply equipment.
  • AC power supply control device External power control device or self-active type, once generated power
  • FIG. 1 is a schematic diagram of a forced convection boiling water reactor type indirect resistance heating steam generator.
  • the power supply equipment, etc. be configured appropriately with indirect resistance heating elements, furnace wall terminal electrodes, etc., and use single-phase and three-phase AC currents rationally.
  • a plurality of recirculating flow systems such as jet pumps shall be provided and utilized as necessary.
  • Main steam flow pipe nozzle, etc. may be used as regenerative heating steam), 2. Bolt tightening, 3. Wave type moisture separator, 4. Wire mesh type moisture separator, 5 Steam / water separator, 6. Recirculation driven flow nozzle, 7. Jet pump, 8. Lining of stainless steel etc., 9. Protective sealed indirect resistance heating element, etc. 10. Recirculation stop valve, 11. Recirculation pump , 12. Recirculation flow regulating valve, 13. Forced convection driven flow, 14. Support scart, 15. Recirculation flow feed nozzle, etc., 16. Core support guide, 17. Cylindrical core gap (indirect resistance) It is configured so as to surround the heating element, etc.), 18. Core head, 19. Core head Upper piping, 20. Water supply ring such as water supply sparger, 21.
  • a plurality of U-shaped protective and sealed indirect resistance heating elements and terminal electrodes etc. and terminal electrodes etc. may be rationally provided at the bottom, etc., and may be used.
  • the rational use of electric current is self-evident.
  • the pressurizer, steam generator, turbine power generation equipment, etc. may be configured and used as appropriate.
  • Main control device such as AC power supply, 2. Terminal electrode of furnace wall, etc. 3.
  • Control device may be provided with a control system and used cyclically together with switching power supply equipment, etc.), 20.
  • Main steam outlet nozzle, etc. 1. Upper shell, 3. Secondary manhole, 4. Water level control nozzle, 5. Trunnion, 6. Water supply ring, 7. Water level control nozzle, 8. Inner body, 9 Heat transfer tube, 10. Lower body, 11. Secondary side handhole, 12. Bottom blowdown nozzle, 13. Lining of stainless steel etc., 14. Primary coolant inlet nozzle, 15. Channel, 16. Primary coolant outlet nozzle (Primary manhole), 17. Inconel lining, 18. Body plate drain nozzle, 19. Tube sheet, 20. Water level gauge nozzle, 21. Pipe support, 22. Water level gauge nozzle, 23. Water inlet nozzle, 24. Top blowdown nozzle, 25. Water gauge nozzle, 26. Seno, ° lator, 27. Dryer.
  • FIG. 2 is a schematic diagram of a regenerative feedwater heater and a regenerative feedwater heating tank.
  • Regenerative feed water heater 2. Feed water circulation system water supply inlet, 3. Water supply circulation system water supply outlet, 4. Heating high pressure steam inlet, 5. Heating pipeline pipeline meandering pipe 6) High-pressure steam exhaust port (may be used again as a water supply circulation system), 7. Lining of stainless steel, etc., 8. Support legs (support base).
  • Regeneration water heating tank 2. Regeneration steam and heating pipe, 3. Meandering pipeline, 4. Heat sink, 5. Feed water heating tank separator, 6. Lined with stainless steel, 7. Water supply system water inlet, 8. Water supply system pipe, 9. Water supply system pump, 10. Steam generator, etc. Water supply.
  • Control device such as AC power supply, 2. Drain valve, 3. Support scart, 4. Resistance core such as direct resistance heating heating element (providing multiple heating elements such as alloys such as nickel or iron chrome), 5. Water supply nozzle , 6. Furnace water level, 7. Spray nozzle, 8. Bolt tightening, 9. Main steam piping, etc. (appropriately used for regenerative heating, etc.), 10. Electric heater for dryer, 11. Corrugated moisture separator, 12. Main steam stop valve (steam is used for regulating valve, turbine, etc.), 13.0 ring seal, 14. Wire mesh moisture separator, 15. Stop valve for water level adjustment nozzle, 16. Water level for fireproof glass, etc. 17. Water supply ring such as water supply sparger, lining 18 stainless steel etc., 19. Furnace wall terminal electrode 20.
  • Moisture separator such as corrugated plate, 21. Bleed port such as drain , And bypass control system, 22. Main steam control valve (stop valve, etc.), 23. Turbine power generation equipment, etc., 24. Moisture separation heater, 25. Steam extraction port valve, 26. Transformer, 27. Power transmission utilization , 28. Condenser, 29. Circulation pump for water supply system, 30. Resistance core such as direct resistance heating heating element, 31. Stand-up type feed water heater (use and install plural), 32. Lining stainless steel etc., 33. 1 Control system for feed water heater, 34. Circulation pump for feed water system, 35. Horizontal feed water heater, 36. Resistance core such as direct resistance heating heating element, 37. Lining stainless steel etc., 38. 2nd feed water heater, etc.
  • Control system 39. Water supply system circulation pump, 40. Water supply pipe, 41. Water supply adjustment valve, etc. 42. Cooling water circulation pump, 43. Lining stainless steel, etc., 44. Cooling water tank, 45. Condenser, 46. 47. Evaporator (heat exchanger), 48. Pressure Compressor, 49. Make-up water valve, 50. Make-up water tank and other supply water, 51. Stainless steel lining, 52. Collection water adjustment valve, 53.
  • AC power supply control device external power control device, In other words, it is advisable to divide the power once generated by using a transformer or the like as a self-active type, provide a control system, and configure the power supply cycle rationally.
  • 54. Switches such as switching power supply equipment.
  • FIG. 2 is a schematic diagram of a forced convection boiling water reactor type direct resistance heating steam generator. (Cross-sectional view)
  • the power supply equipment consists of a single-phase and three-phase AC It is advisable to use the flow etc. reasonably.
  • a plurality of recirculation flow systems such as jet pumps will be provided and utilized as needed.
  • Main steam flow pipe nozzle, etc. may be used as regenerative heating steam), 2. Bolt tightening, 3. Corrugated moisture separator, 4. Wire mesh moisture separator, 5. Steam-water separator, 6. recirculation drive nozzle, 7. jet pump, 8. lining of stainless steel, etc. 9. cylindrical core plate (multiple resistance heating elements such as direct resistance heating elements Composing), 10. Recirculation stop valve, 11. Recirculation pump, 12. Recirculation flow regulating valve, 13. Forced convection driven flow, 14. Supporting squat, 15. Drain valve, 16. Recirculation flow Water supply nozzle, etc., 17. Core support guide, 18. Direct resistance heating heating elements, etc. (provided multiple), 19. Core head, 20. Core top piping, 21. Water supply sparger, etc. 22.
  • Water nozzle 23. Water level gauge for fireproof glass, 24. Water level control drain valve, 25. Spray nozzle, 26.0 ring Seal, 27. Main steam regulating valve, etc. (steam is sent to and used for turbine etc.), 28. Electric heater such as dryer, 29.
  • Main control device such as AC power supply, 30.
  • Control device such as AC power supply (External power control device) Or, as a self-active type, it is advisable to branch off the generated power by means of a transformer or the like, provide a control system, supply power, and configure it in a cyclical manner.), 31. Power supply equipment such as switching switches.
  • the furnace wall insulation and the use of resistance core supporting steel rods, etc. can be used in the direct resistance heating method (natural convection method, forced convection method, pressure-type resistance furnace, etc.) in heating furnaces and feedwater heaters as appropriate.
  • the configuration may be used rationally.
  • Main control device such as AC power supply, 2. Furnace wall terminal electrode (it is recommended to use carbon electrode, graphite electrode, etc.), 3. Furnace wall (outer wall), 4. Alumina, magnesia, etc. 5. Insulation as appropriate, 5. Heat-resistant stainless steel lining (inner wall) as appropriate, 6. Lower core support guide, 7. Upper support guide for resistance core, 8. Resistance core such as direct resistance heating element (Nichrome or iron) 9) Resistance core supporting steel rod (Stainless steel, etc. should be used as appropriate.) 10. Resistance resistance heating element such as direct resistance heating element (Durable supporting steel rod etc. It may be used by winding.)
  • Main control device such as AC power supply, 2. Furnace wall terminal electrode, etc., 3. Bolt tightening, 4.0 ring (seal ring), 5. Air extraction port (bolt tightening), 6. Direct resistance heating heating element, etc. Resistance core (provided plurally), 7. Fixed guide, 8. Pressurizer (only one set may be used as appropriate), 9. Immersion type electric heater, etc. 10. Steam generator, 11. Primary cooling Material pumps, 12. Turbine power generation facilities, etc. 13. Moisture separation heaters, 14. Condensers, 15. Water supply pumps, etc. 16. Feed water heaters (multiple may be used), 17. Transformers, 18 ⁇ Power transmission, 19. As an external system or self-active type, a control device such as a power supply that divides the generated power once from a transformer etc. 20. First switching power supply equipment, etc., 21. Second switching power supply equipment, etc.
  • the configuration of the indirect resistance heating type self-active power generation system includes a natural convection type boiling water reactor type indirect resistance heating furnace, a forced convection type boiling water reactor type indirect resistance heating furnace, There are three ways to make appropriate use of the pressurized water reactor type indirect resistance heating furnace.
  • the configuration of a self-active power generation system using a natural convection type boiling water reactor type indirect resistance heating system and the like includes an AC power supply control device (1), a drain valve (2), a support skirt (3 ), Protective sealed indirect resistance heating element, etc. (4), water supply nozzle (5), furnace water level (6), spray nozzle (7), bolting (8), main steam piping, etc. (for regenerative heating, etc.) (9), electric heater such as dryer (10), corrugated sheet moisture separator (11), main steam stop valve (steam is used for regulating valve, turbine, etc.) (12), zero seal 13), wire mesh moisture separator (14), stop valve for water level adjustment nozzle, etc. (15), water level gauge for fireproof glass, etc.
  • the water that enters from the water supply system passes through the water supply ring, such as the water supply sparger, and is evenly dispersed and becomes corroded with the surrounding water and corrodes. It stays in a natural convection type indirect resistance heating furnace, which is appropriately lined with heat-resistant stainless steel etc. for prevention, and is heated and boiled by a plurality of protective and sealed indirect resistance heating elements to generate high-pressure steam.
  • a natural convection type indirect resistance heating furnace which is appropriately lined with heat-resistant stainless steel etc. for prevention, and is heated and boiled by a plurality of protective and sealed indirect resistance heating elements to generate high-pressure steam.
  • a wire mesh type moisture separator composed of wire mesh stacked and attached
  • a corrugated sheet moisture separator composed of laminated corrugated plates
  • an electric heater such as a dryer. Is removed and dried steam is sent to turbine power generation facilities.
  • the main steam generated by the above natural convection type boiling water reactor type indirect resistance heating type steam generator is used for corrugated plate type moisture separator, bypass control system, piping with main steam regulating valve, etc. (Stainless steel pipe etc.) Through the control system (high-speed turbine power generation equipment, etc.), etc. to the condenser.
  • the steam cooled by the condenser becomes water, which is heated by a feed water heater, a feed water heating tank, etc., pressurized by a feed water circulation pump, etc., and fed to a steam generation device, etc., to constitute a feed water circulation system cycle.
  • the configuration of the forced convection boiling water reactor type indirect resistance heating steam generator is a main steam flow pipe nozzle, etc. (may be used as regenerative heating steam).
  • the water and steam are separated by centrifugal force during the ascent while moving freely.
  • the separated water is mixed with water supply and returned to the core.
  • residual moisture is removed from the separated steam by an upper wire mesh type moisture separator, corrugated plate type moisture separator, etc., and an electric heater such as a dryer (heating wire etc. by a protective sealed indirect resistance heating element etc.) If necessary, fix it with a spacer, etc., and use it together with the control system.)
  • the steam is dried by a steam dryer such as, and guided to the turbine.
  • the indirect resistance heating core, etc. surrounds the core with a cylindrical stainless steel structure and separates the downward flow of feedwater from the upward flow, which cools the core, etc., but the core is supported by the core.
  • a plurality of protective and sealed indirect resistance heating elements, etc. are provided between the guide and the upper support guide, etc., and are appropriately connected to the furnace wall terminal electrodes, etc., and are mainly used for single-phase AC or three-phase AC, etc. Power is supplied by a control device, etc. It is advisable to branch off the power once generated from a transformer or the like, provide a control system, switch the power supply instantaneously by utilizing the residual heat of the indirect resistance heating furnace, etc.
  • the recirculation system consists of a recirculation pump, a jet pump, pipes, valves, etc.
  • the jet pump has no moving parts and a high-speed drive flow from the nozzle outlet, which is boosted by a recirculation pump or the like. Water is blown out, and the surrounding water is supplied, and the water separated by the steam separator is sucked. Cooling water is supplied to the lower part of the reactor core to enable forced convection.
  • a plurality of jet pumps etc. by the above-mentioned recirculation system will be used as appropriate. (20 units may be installed in nuclear power generation, etc.)
  • stainless steel etc. shall be appropriately lined, and various nozzles, stop valves, adjustment valves, drainage ports and valves, water level gauges made of fire-resistant glass, etc., various fixed guides, etc. shall be provided in a reasonable manner. Make use of the configuration.
  • the above equipment, etc. are used in conjunction with the bypass control system and the turbine power generation equipment such as governing control, etc., as well as the feedwater circulation system (feedwater heater, feedwater heating tank, feedwater circulation pump, condensing water, etc.). , Etc.) and make use of them in a cycle.
  • the feedwater circulation system feedwater heater, feedwater heating tank, feedwater circulation pump, condensing water, etc.). , Etc.
  • the configuration of a self-active high-speed turbine power generation system utilizing a pressurized water reactor type indirect resistance heating method, etc. consists of a main control device such as an AC power supply (1), a furnace wall terminal electrode (2), Bolt tightening (3), 0 ring (seal ring) (4), air extraction port (bolt tightening) (5), protective and sealed indirect resistance heating element, etc. (6), fixing guide (7), pressurizer (If necessary, only one set may be used.) (8), immersion type electric heater, etc. (9), steam generator (10), primary coolant pump (11), turbine power generation equipment, etc. (12), wet Separation heater (13) ', condenser (14), feed water pump, etc.
  • a main control device such as an AC power supply (1), a furnace wall terminal electrode (2), Bolt tightening (3), 0 ring (seal ring) (4), air extraction port (bolt tightening) (5), protective and sealed indirect resistance heating element, etc. (6), fixing guide (7),
  • (21) It consists of, etc., but it is configured as a natural convection method etc. as appropriate as a closed type, and equipment such as steam generators such as primary coolant circulation system equipment, primary coolant pump, pressurizer etc. is arranged. Constitute.
  • the upper part and the lid of the pressurized water reactor type indirect resistance heating furnace are detachably mounted with a flange, etc., and bolted, and stainless steel etc. are lining the inner wall etc. as appropriate to enable multiple convections. It is recommended to attach a sealed indirect resistance heating element, etc., attach a stainless steel tube 0 ring at the top, install an air extraction unit, cut the female thread, and use it tightly with a bolt-shaped lid.
  • Primary coolant inlet nozzle, outlet nozzle, drain port, etc. are provided as appropriate, steam generator, primary coolant pump, pressurization
  • the primary coolant circulation system will be constructed by installing equipment.
  • a typical steam generator is shown in Fig. 4, but it is a vertical U-tube type and uses Inconel heat transfer tubes.
  • the primary coolant enters through the lower inlet nozzle of the steam generator and flows out of the outlet nozzle through the heat transfer pipe.However, the water supply to the steam generator secondary side passes through the water supply ring from a position just above the upper end of the heat transfer pipe. After lowering the annular part around the heat transfer tube while mixing with the descending water separated by the steam separator, change the direction and move up the heat transfer tube, and the steam is removed from the upper steam separator.
  • the primary coolant pump is a motor-driven centrifugal pump with a leak-controlled shaft seal, fitted with a flywheel at the top to slow down the flow during power outages.
  • the shaft sealing device has a three-stage seal, and seal water is supplied from the filling pump of the chemical volume control equipment, resulting in a highly reliable structure.
  • the pressurizer shown in Fig. 5 is a facility to keep the primary coolant pressure constant during operation.An immersion type electric heater is provided at the bottom, and a spray, safety valve and relief valve are provided at the top. However, during operation, the lower half forms a liquid phase and the upper half forms a gas phase, and surges caused by load fluctuations are controlled by controlling the evaporation and condensation of water by operating the electric heater and spray. It is designed to absorb.
  • Power is supplied to the multiple protected and sealed indirect resistance heating elements installed in indirect resistance heating furnaces such as the natural convection method, forced convection method, and pressurized type by the main control device such as an AC power supply.
  • the active use of power is more reasonable than the rational use of external power and control systems, or self-active (including when configured as cross-compound power generation).
  • Provide a branch and control system from a transformer, etc. to supply power to operating equipment such as maintenance equipment, and use residual heat from an indirect resistance heating furnace, etc. to switch instantaneously and supply power to hermetically sealed indirect resistance heating elements (control system It is self-evident that rational use of wiring, single-phase, three-phase alternating current, etc.
  • the above is an example of the description of the claim [1] .
  • the self-active power generation system using the direct resistance heating method is constructed following the indirect resistance heating method, etc. Norms.
  • the configuration of the self-active power generation system using the natural convection type boiling water reactor type direct resistance heating method, etc. includes a control device such as an AC power supply (1), a drain valve (2), a support scar ( 3), resistance cores such as direct resistance heating elements (multiple alloy heating elements such as nickel or iron chrome are provided) (4), water supply nozzle (5), furnace water level (6), spray nozzle (7), Bolt tightening (8), main steam piping, etc.
  • a control device such as an AC power supply (1), a drain valve (2), a support scar ( 3), resistance cores such as direct resistance heating elements (multiple alloy heating elements such as nickel or iron chrome are provided) (4), water supply nozzle (5), furnace water level (6), spray nozzle (7), Bolt tightening (8), main steam piping, etc.
  • electric heater such as dryer (10), corrugated moisture separator (11), main steam stop valve (regulating valve, (12), O-ring seal (13), wire mesh moisture separator (14), stop valve for water level adjustment nozzle (15), water level gauge for fire resistant glass, etc.
  • Water supply ring such as water supply sparger (17), stainless steel lining (18), furnace wall terminal (A plurality of heaters should be provided in the surrounding area and power should be supplied rationally with a control system such as a resistance core such as an alloy heating element and a connection, single-phase AC, three-phase AC, etc.) (19), Corrugated sheet type moisture separator (20) Bleed port such as drain, bypass control system (21), main steam regulating valve (stop valve, etc.) (22), turbine power generation equipment (23), moisture separator heater (24), steam bleed port valve ( 25), transformers (26), power transmission utilization (27), condensers (28), water supply system circulation pumps (29), resistance cores such as direct resistance heating elements (30), standing water supply heaters (multiple (31), stainless steel lining, etc.
  • a control system such as a resistance core such as an alloy heating element and a connection, single-phase AC, three-phase AC, etc.
  • Corrugated sheet type moisture separator (20) Bleed port such as drain, bypass control system (
  • first feed water heater control system 33
  • feed water circulation pump 34
  • horizontal feed water heater 35
  • direct resistance heating and heating Body resistance core 36
  • stainless steel etc. lining
  • second feed water heater control system 38
  • feed water circulation pump 319
  • Water supply pipe 40
  • water supply control valve etc.
  • cooling water circulation pump 42
  • lining stainless steel etc.
  • cooling water tank 44
  • condenser 45
  • thin tube etc.
  • compressor 48
  • make-up water valve make-up water
  • make-up water such as make-up water tank (50), lining stainless steel etc.
  • the water supply system (standing type feed water heater, horizontal Water from a stationary water heater, etc.) passes through a water supply ring such as a water supply sparger, is uniformly dispersed, and is integrated with the surrounding water. To prevent corrosion, it is lined with heat-resistant stainless steel or the like as appropriate.
  • a heating furnace It stays in a heating furnace and is heated and boiled by direct resistance heating using multiple resistance heating elements such as a resistance heating medium as a medium to generate high-pressure steam.
  • the upper part is a wire mesh moisture separator, a corrugated sheet
  • An electric heater such as a moisture separator and dryer is installed to remove residual moisture, and is sent as dry steam to turbine power generation equipment.
  • the direct type is characterized by higher heating efficiency than the indirect type, but the main steam generated by the steam generator etc. is piped with a corrugated plate type moisture separator, bypass control system, main steam adjustment valve, etc. (Stainless steel pipes, etc.) and to a condenser, etc., via a speed control device (high-speed turbine power generation equipment, etc.).
  • the steam cooled by the condenser becomes water, which is heated by a vertical feed water heater, horizontal feed water heater, etc., pressurized by a feed water circulation pump, etc., and fed to a steam generator, etc., forming a feed water circulation cycle.
  • Cooling water for condensers and the like may be used rationally, such as for seawater, rivers, and lakes. Link, etc., and may be used rationally as appropriate.
  • the configuration of the forced convection boiling water reactor type direct resistance heating steam generator is a main steam flow pipe nozzle, etc. (It may be used as regenerative heating steam.)
  • the water is evenly dispersed by the water supply ring such as a water supply sparger, and combined with the surrounding water, descends directly outside the core of the resistance heating furnace, is injected into the lower part of the core by a jet pump, etc., and turns upward After passing through the heating boil while receiving heat from the core, it goes to the steam-water separator at the upper part of the core (core head), and as shown in Fig. 2 d), the spiral stationary guide vanes at the inlet Rotational motion is given by, etc., and while separating, water and steam are separated by centrifugal force while climbing while moving freely. The separated water is mixed with water supply and returned to the core.
  • the water supply ring such as a water supply sparger
  • residual moisture is removed from the separated steam by an upper wire mesh type moisture separator, a wave type moisture separator, etc., and an electric heater such as a dryer (a heating wire such as a protective sealed indirect resistance heating element etc.) Is appropriately fixed with a spacer, etc., and used together with the control system.)
  • the steam is dried by a steam dryer such as, and guided to a turbine, etc.
  • the core of the direct resistance heating furnace, etc. surrounds the core with a cylindrical stainless steel structure, as described for the forced convection type indirect resistance heating type, etc., and separates the downward flow of feedwater and the upward flow that cools the core.
  • the core is connected in a single-phase manner by connecting a plurality of resistance cores such as direct resistance heating elements and furnace wall terminal electrodes between the core support guide and the upper support guide as appropriate.
  • AC, or three-phase AC, etc. are supplied by the main control device, etc., in addition to active utilization, etc., as well as self-active type, once generated power is branched from a transformer etc. and a control system is provided. It is advisable to switch power supply instantaneously by utilizing the residual heat of the direct resistance heating furnace, etc.
  • the recirculation system consists of a recirculation pump, a ginnit pump, pipes, valves, etc. It is recommended that multiple recirculation systems be used if necessary.
  • the inside of the furnace wall is appropriately lined with stainless steel, etc., and various nozzles, stop valves, adjustment valves, drain ports and valves, water level gauges made of fire-resistant glass, etc., various fixed guides, etc. use.
  • the above equipment, etc. are connected to the water supply circulation system (stand-alone feed water heater, horizontal feed water heater, Pumps, condensers, etc.) and use them in a cyclical manner.
  • the water supply circulation system stand-alone feed water heater, horizontal feed water heater, Pumps, condensers, etc.
  • the configuration of a self-active high-speed turbine power generation system utilizing a pressurized water reactor type direct resistance heating system, etc. consists of a main control device such as an AC power supply (1), furnace wall terminal electrodes ( 2), bolt tightening (3), 0 ring (seal ring) (4), air extraction port (bolt tightening) (5), direct resistance heating heating element, etc. (provided with multiple resistance cores) (6), fixed guide (7), pressurizer (only one set may be used as appropriate) (8), immersion type electric heater, etc. (9), steam generator (10), primary coolant pump (11), turbine generator Equipment (12), Moisture Separator / Heater (13), Condenser (14), Feed Water Pump, etc.
  • a main control device such as an AC power supply (1), furnace wall terminal electrodes ( 2), bolt tightening (3), 0 ring (seal ring) (4), air extraction port (bolt tightening) (5), direct resistance heating heating element, etc. (provided with multiple resistance cores)
  • Feed Water Heater (It is good to use more than one.)
  • Transformer (17), Power Transmission (18)
  • An external system or a self-active type such as a power supply control device that branches off the power once generated from a transformer or the like (a control system is provided, and it can be used cyclically together with switching power supply equipment).
  • (19), first switching power supply equipment, etc. (20), second switching power supply equipment, etc. (21), etc., but natural convection method etc. are configured as a closed type as appropriate, and primary cooling Equipment such as a steam generator such as a material circulation system, a primary coolant pump, and a pressurizer will be arranged.
  • the upper part and lid of the pressurized water reactor type direct resistance heating furnace are detachable by mounting flanges and bolts, and tightening bolts.
  • the inner wall etc. are appropriately lined with stainless steel etc. to enable multiple convection Connect the resistance core such as a direct resistance heating element to the furnace wall terminal electrode, etc. as appropriate, attach it, attach a stainless steel tube 0 ring at the top, provide an air extraction port, cut the female thread, and seal with a bolt type lid It should be used.
  • the primary coolant inlet nozzle, outlet nozzle, drain outlet, etc. will be provided as appropriate, and a steam generator, primary coolant pump, pressurizer, etc. will be installed to configure the primary coolant circulation system.
  • the general steam generator is shown in Fig.
  • the primary coolant enters from the lower inlet nozzle of the steam generator and flows out of the outlet nozzle through the heat transfer pipe.
  • Water supply to the steam generator secondary side is through the water supply ring from a position just above the upper end of the heat transfer pipe. After lowering the annular part around the heat transfer tube while mixing with the descending water separated by the steam separator, the direction is changed and the heat transfer tube is raised.
  • a stainless steel pipe provided with a bypass control system, etc., through a dryer, etc., and through a turbine power generation facility, such as a speed control, etc., through a condenser, feed water circulation pump, feed water heater, etc.
  • Construct secondary water supply circulation system Generally, steam extracted from the turbine is used as the heat source for the feed water heater, and the steam generator, pressurizer, turbine power generation equipment, etc. are used as a set as appropriate. It does not mean that the rational use and application of facilities such as nuclear power generation and auxiliary facilities are not denied.
  • the above-mentioned natural convection method, forced convection method, pressurized type, etc. are supplied by a main control device such as an AC power supply to the resistance cores such as the direct resistance heating heating elements installed in the direct resistance heating furnace.
  • a main control device such as an AC power supply
  • the resistance cores such as the direct resistance heating heating elements installed in the direct resistance heating furnace.
  • active utilization is not permitted, but the external power and control systems are rationally utilized, or self-active (including when configured as a cross-compound power generation system).
  • Is equipped with a branch and control system from a transformer, etc. to supply power to operating equipment, such as maintenance equipment, and to use the residual heat of a direct resistance heating furnace, etc., to switch instantaneously and supply power to the resistance core, such as a direct resistance heating element.
  • a heat source such as a steam generator may be used rationally.
  • a heat source such as a steam generator may be used rationally.
  • the direct resistance heating method uses a resistance core such as a direct resistance heating element as a medium, and leaks current. Therefore, as shown in Fig. 9, the furnace wall (outer wall) and heat-resistant stainless steel are used. Alumina, magnesia, etc. should be used to insulate between the lining and the inner wall.
  • the resistance core such as a direct resistance heating element may be appropriately wound around a supporting steel rod or the like so as to be used. In natural resistance convection method, forced convection method, pressurized type resistance furnace, and feed water heater, etc., it is appropriately and rationally applied, and it also serves as an explanation in action, etc.
  • Some of the power generation capacity facilities for nuclear power generation have a capacity of l, 000 MW class (1,000,000 Kw) or more.
  • the power consumption of electric heaters such as electric furnaces and the properties of water, high-pressure steam, etc. Utilizes and operates the system, but the boiling point of water is 100 ° C, the critical temperature is 374 ° C, and the critical pressure is 226 kc nf.
  • the heating element is selected appropriately according to the application, atmosphere, etc., and generally, in a furnace below 1,000 ° C, nichrome or Heating elements such as iron chromium (alloy heating elements) are used, and when the temperature is higher, use is made of, for example, silicon carbide or kanthal. In furnaces at 1,400 ° C or higher, molybdenum-gaiting heating elements are used.
  • the furnace wall is made of refractory brick and heat insulating material, but sometimes it is lined with heat-resistant steel and used.
  • the materials used for the indirect resistance heating furnace (furnace wall) to be implemented should be made of low alloy steel, etc., and be made thicker so that the wall thickness is durable, and used by lining with heat-resistant stainless steel.
  • the power supply of the resistance furnace is almost 200 V three-phase and 100 V single-phase.
  • the sealed heating element is made by insulating alloy heating elements and the like in a metal tube by insulating them with mica (mica). Insulating them with a space heater or powder of coal, alumina, magnesia, etc. and putting them in a metal tube. There is a single wire, power lot wire, aluminum power heater, etc., which have been put into practical use.
  • Direct resistance heating is internal heating, in which the object to be heated reaches the highest temperature.
  • those with relatively high resistivity, such as water are heated at a high voltage, and are practically used as electric boilers.
  • a heating element such as dichromium or iron chromium as the resistance core. It is advisable to insulate the inner wall with aluminum, magnesia, etc., and line it with heat-resistant stainless steel.
  • the immersion-type electric heater of the pressurizer used in the pressurized water reactor type nuclear power generation has a capacity of 1,000 kw for 550 Mw class and 1,800 kw for 1,100 MW class.
  • Hokkaido Electric Power Tomari Nuclear Power Station is a pressurized type, but the steam generator circulates hot water at about 300 ° C and can generate 579,000 kW, but the electric heater etc. The conditions described above are satisfied, and steam is generated by heating at 300 ° C. Active power generation with amplifying action is sufficiently possible.

Abstract

A self-active generating system in which a natural convection steam generator is provided to generate high-pressure steam by making the use of the principle of indirect resistance heating (indirect resistance heating furnace), the steam is fed to a high-speed turbine (23) to rotate a desired power generator and to generate power actively, thus constructing a water supply/circulation system, the generated power is branched by a transformer (26) and the like, a control system is provided to feed power by selecting either the power supply for a closed indirect resistance heating body (4) and the like provided to an indirect resistance heating furnace or the power supply for an operation installment. Therefore the self-active generating system operates cyclically to exploit surplus power generated by a power generator and waste steam by providing a water supply tank (51) and the like to the system. A forced convection pressurized reactor self-active generating system is structured, and following such a constitution a self-active generating system using the principle of direct resistance heating (direct resistance heating furnace and the like) is structured.

Description

明 細 書 抵抗加熱方式等による自己能動型発電システム  Description Self-active power generation system using resistance heating method, etc.
技術分野 Technical field
火力発電は、 温暖化をまねく C 02や、 酸性雨の原因とされる、 N 0 x、 S 0 X を発生し、 原子力発電は、 放射性廃棄物処理等対策が課題とされ、 ク リーンエネ ルギ一で、 大規模な発電システムの開発 (代替エネルギー等) が望まれ、 総合的 発電システムとして、 新たな発想により、 電力 (間接抵抗加熱方式、 及び、 直接 抵抗加熱方式等) を活用した増幅作用の伴った能動的な発電、 且つ、 いったん発 生した電力の活用によるサイクル的な発電 (自己能動型発電システム) の開発と 活用を目的としたが、 永久機関を取り扱つたものであり、 総体的構成等に於ける エネルギーの増幅は、 サイクル的構成等を余儀なく示すものであるが、 エネルギー 保存の法則、 及び、 熱力学の第 1法則、 熱力学の第 2法則、 統計力学等により不 可能とされて来た。 Thermal power generation produces C0 2 that causes global warming and N0x and S0X that are the causes of acid rain.Nuclear power generation has issues for radioactive waste treatment and other issues. On the other hand, development of a large-scale power generation system (alternative energy, etc.) is desired, and as a comprehensive power generation system, a new concept is used to amplify electricity (indirect resistance heating system, direct resistance heating system, etc.). The purpose of this project was to develop and utilize active power generation that accompanies the generation of electricity, and to use cyclical power generation (self-active power generation system) by utilizing the generated power. Amplification of energy in a structural configuration, etc., necessarily indicates a cyclic configuration, but it is not possible due to the law of energy conservation, the first law of thermodynamics, the second law of thermodynamics, statistical mechanics, etc. It has been possible.
背景技術 Background art
既存の電気炉等電熱器の消費電力等と、 水の臨界温度、 臨界圧力等と、 既存の 発電機等発電出力容量設備等の構成に於ける差位に着目し、 間接抵抗加熱の原理 を活用し、 適宜、 自然対流方式蒸気発生装置、 強制対流方式蒸気発生装置、 間接 抵抗加熱方式加圧水炉及び蒸気発生器等を構成し、 高圧蒸気を発生させて、 その 蒸気を、 高速タービンに送り、 所要の発電機等を回転させて、 能動的に電力を発 生させ、 復水器、 給水加熱器、 給水加熱タンク、 給水循環ポンプ等を設け、 給水 循環系を構成し、 いったん発生した電力は、 変圧器等より分岐し、 制御系を設け、 間接抵抗加熱炉等の余熱の活用により、 瞬時に、 間接抵抗加熱炉等に設置された 密閉型間接抵抗発熱体等の電源、 及び、 稼働設備等の電源を切り換え給電し、 自 己能動型発電システムとしてサイクル的に構成稼働する事により、 発電機等より 発生した余剰電力の活用、 及び、 システムに適宜、 補給水タンク等を設け、 背圧 タービン等より排気された蒸気等を活用する事で、 総合的発電システムとして構 成、 問題点を解決する手段とした。  Focusing on the power consumption of existing electric heaters such as electric furnaces, the critical temperature and critical pressure of water, and the differences in the configuration of existing power generation facilities such as generators, the principle of indirect resistance heating is discussed. Utilize and configure natural convection type steam generator, forced convection type steam generator, indirect resistance heating type pressurized water reactor, steam generator, etc. as appropriate, generate high-pressure steam, send the steam to high-speed turbine, The required generators etc. are rotated to actively generate electric power, and condensers, feed water heaters, feed water heating tanks, feed water circulation pumps, etc. are provided to constitute a feed water circulation system. , Branching from transformers, etc., providing a control system, and utilizing the residual heat of the indirect resistance heating furnace, etc., instantaneously, the power supply of the sealed indirect resistance heating element, etc. installed in the indirect resistance heating furnace, etc., and operating equipment Switch power supply Utilization of surplus power generated from generators, etc. by cycling and operating as a self-active power generation system, as well as providing make-up water tanks etc. in the system as appropriate, steam exhausted from back pressure turbines, etc. Utilizing this technology, it was configured as a comprehensive power generation system and was used as a means to solve problems.
以下、 上記構成等に倣い、 直接抵抗加熱の原理を活用し、 適宜、 自然対流方式 蒸気発生装置、 強制対流方式蒸気発生装置、 直接抵抗加熱方式加圧水炉及び蒸気 発生器等を構成し、 高圧蒸気を発生させて、 その蒸気を、 高速タ一ビンに送り、 所要の発電機等を回転させて、 能動的に電力を発生させ、 復水器、 給水加熱器、 給水循環ポンプ等を設け、 給水循環系を構成し、 いったん発生した電力は、 変圧 器等より分岐し、 制御系を設け、 直接抵抗加熱炉等の余熱の活用により、 瞬時に、 直接抵抗加熱炉等に設置された複数の直接抵抗発熱体等抵抗心の電源、 及び、 稼 働設備等の電源を切り換え給電し、 自己能動型発電システムとしてサイクル的に 構成稼働する事により、 発電機等より発生した余剰電力の活用、 及び、 システム に適宜、 補給水タンク等を設け、 背圧タービン等より排気された蒸気等を活用す る事で、 総合的発電システムとして構成した。 Following the above configuration, the principle of direct resistance heating is utilized and the natural convection type steam generator, forced convection type steam generator, direct resistance heating type pressurized water reactor, steam generator, etc. The steam is sent to a high-speed turbine, and the required generator is rotated to actively generate electric power.A condenser, feed water heater, feed water circulation pump, etc. are installed to supply water. Constructs a circulatory system, once generated electric power branches off from a transformer, etc., establishes a control system, and instantaneously utilizes the residual heat of a direct resistance heating furnace, etc. The power is switched by switching the power supply of multiple resistance cores such as direct resistance heating elements installed in the direct resistance heating furnace, etc., and the power supply of operating facilities, etc., and power is generated by cycling and configuring as a self-active power generation system. The system was constructed as a comprehensive power generation system by utilizing surplus power generated by the power plant and by providing a make-up water tank, etc., as appropriate in the system and utilizing steam discharged from the back-pressure turbine.
開示の範囲 Scope of disclosure
開示の範囲としては、 間接抵抗加熱の原理を活用し、 適宜、 自然対流方式蒸気 発生装置、 強制対流方式蒸気発生装置、 間接抵抗加熱方式加圧水炉及び蒸気発生 器等を構成し、 高圧蒸気を発生させて、 その蒸気を高速タービンに送り、 所要の 発電機等を回転させて、 能動的に電力を発生させ、 いったん発生した電力を変圧 器等より分岐させ、 制御系を設け、 密閉型間接抵抗発熱体等及び稼働設備等へ給 電する事による、 自己能動型のサイクル的活用、 及び、 給水循環系の創製と補給 水タンク等を設け、 余剰電力の活用及び廃熱蒸気等の活用による、 自己能動型コ ジエネ レーショ ン発電システムと言う事が出来る。  The scope of disclosure is to utilize the principle of indirect resistance heating and appropriately configure a natural convection type steam generator, forced convection type steam generator, indirect resistance heating type pressurized water reactor, steam generator, etc. to generate high-pressure steam Then, the steam is sent to a high-speed turbine, a required generator is rotated, and power is actively generated.The generated power is branched from a transformer, etc., a control system is provided, and a sealed indirect resistance is provided. By supplying power to the heating elements and operating equipment, etc., self-active cyclical utilization, and by creating a water supply circulation system and installing a makeup water tank, etc., utilizing surplus power and utilizing waste heat steam, etc. It can be called a self-active cogeneration power generation system.
更に、 抵抗加熱方式としての同一カテゴリ一として、 直接抵抗加熱の原理を活 用し、 適宜、 自然対流方式蒸気発生装置、 強制対流方式蒸気発生装置、 直接抵抗 加熱方式加圧水炉及び蒸気発生器等を構成し、 高圧蒸気を発生させて、 その蒸気 を高速タービンに送り、 所要の発電機等を回転させて、 能動的に電力を発生させ、 いったん発生した電力を変圧器等より分岐させ、 制御系を設け、 直接抵抗加熱炉 等の複数設けた直接抵抗発熱体等抵抗心及び稼働設備等へ給電する事による、 自 己能動型のサイクル的活用、 及び、 給水循環系の創製と補給水タンク等を設け、 余剰電力の活用及び廃熱蒸気等の活用による、 自己能動型コジェネレーシ ョ ン発 電システムと言う事が出来る。  Furthermore, as the same category as the resistance heating method, utilizing the principle of direct resistance heating, the natural convection type steam generator, forced convection type steam generator, direct resistance heating type pressurized water reactor, steam generator, etc. And generate high-pressure steam, send the steam to a high-speed turbine, rotate the required generator, etc., generate power actively, and divide the power once generated from transformers, etc. And self-active cyclical utilization by supplying power to multiple resistance heating elements such as direct resistance heating furnaces, etc. and operating equipment, etc., and creation of a water supply circulation system and makeup water tanks, etc. It can be said that it is a self-active cogeneration power generation system that utilizes surplus power and waste heat steam.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 の説明 Figure 1 description
自然対流方式沸騰水炉型間接抵抗加熱方式等による自己能動型発電システムの 説明略図。  Brief description of a self-active power generation system using a natural convection boiling water reactor type indirect resistance heating system and the like.
符号の説明 Explanation of reference numerals
1 . 交流電源等制御装置、 2 . 排水弁、 3 . 支持スカー ト、 4 . 防護密閉した 間接抵抗発熱体等、 5 . 給水ノズル、 6 . 炉内水位、 7 . スプレイノズル、 8 . ボルト締め、 9 . 主蒸気配管等 (再生式加熱等に適宜活用) 、 10. ドライヤー等 電熱器、 11. 波板式湿分分離器、 12. 主蒸気止め弁 (調整弁、 タービン等に蒸気 を送り活用) 、 13. 0リ ングシール、 14. ワイヤメ ッシュ式湿分分離器、 15. 水 位調整ノズル等止め弁、 16. 耐火ガラス等水位計、 17. 給水スバージャ等給水環、 18. ステンレス鋼等内張り、 19. 炉壁端子電極 (周囲に複数設け適宜発熱体等と 結線、 単相交流、 三相交流など合理的に給電するとよい) 、 20. 波板式等湿分分 離器、 21. ドレーン等抽気口、 並びに、 バイパス制御系、 22. 主蒸気調整弁 (止 め弁等) 、 23. タービン発電設備等、 24. 湿分分離加熱器、 25. 蒸気抽気ロバル ブ、 26. 変圧器、 27. 送電活用、 28. 復水器、 29. 給水系循環ポンプ、 30. 防護 密閉した間接抵抗加熱発熱体等、 31. 間接抵抗加熱方式給水加熱器、 32. ステン レス鋼等を内張り、 33. 給水加熱器等制御系、 34. 各種廃熱、 再熱等を体系等に 組入、 適宜構成活用してもよい、 35. 給水系循環ポンプ、 36. 間接抵抗加熱方式 給水加熱タンク、 37. ステンレス鋼等を内張り、 38. .防護密閉した間接抵抗発熱 体等、 39. 給水加熱タンク内隔板、 40. 給水加熱タンク等制御系、 41. 給水系循 環ポンプ、 42. 給水調整バルブ等、 43. 冷却水循環ポンプ、 44. ステンレス鋼等 内張り、 45. 冷却水タンク、 46. 凝縮器、 47. 細管等、 48. 蒸発器 (熱交換器) 、 49. 圧縮器、 50. 補給水バルブ、 51. 補給水タ ンク等補給水、 52. ステンレス鋼 等を内張り、 53. 補給水調整弁、 54. 交流電源等制御装置 (外部系電力制御装置、 若しくは、 自己能動型として、 いったん発生した電力を変圧器等により分岐、 制 御系を設け合理的に給電サイクル的に構成するとよい) 、 55. 切り換え給電設備 等スィ ッチ。 1. Control device such as AC power supply, 2. Drain valve, 3. Support scart, 4. Protective sealed indirect resistance heating element, etc. 5. Water supply nozzle, 6. Furnace water level, 7. Spray nozzle, 8. Bolt tightening , 9. Main steam piping, etc. (appropriately used for regenerative heating, etc.), 10. Electric heaters, such as dryers, 11. Corrugated moisture separators, 12. Main steam stop valves (Steam is used for regulating valves, turbines, etc.) , 13.0 ring seal, 14. wire mesh type moisture separator, 15. stop valve such as water level adjustment nozzle, 16. water level meter such as fireproof glass, 17. water supply ring such as water supply sparger, 18. Lining of stainless steel etc., 19. Furnace wall terminal electrode (It is good to connect a plurality of heaters around and connect to heating element etc. appropriately, and to supply power rationally such as single-phase AC, three-phase AC, etc.), 20. 21. Bleed port such as drain, and bypass control system, 22. Main steam regulating valve (stop valve etc.), 23. Turbine power generation equipment, etc. 24. Moisture separation heater, 25. Steam bleed valve, 26. Transformer, 27. Power transmission utilization, 28. Condenser, 29. Water supply system circulation pump, 30. Protection Sealed indirect resistance heating heating element, etc. 31. Indirect resistance heating feed water heater, 32. Stainless steel 33. Feed water heater control system, 34. Various waste heat, reheat, etc. may be incorporated into the system, etc. and used as appropriate, 35. Feed water circulation pump, 36. Indirect resistance heating method 39. Feed water heating tank, 37. Lining stainless steel etc., 38. Protective sealed indirect resistance heating element, etc. 39. Feed water heating tank Septum plate, 40. Control system for feed water heating tank, etc., 41. Circulation pump for feed water system, 42. Water supply adjustment valve, etc., 43. Cooling water circulating pump, 44. Stainless steel, etc. Lining, 45. Cooling water tank, 46. Condenser, 47. Capillary tube, etc. 48. Evaporator (heat exchanger), 49. Compressor, 50. Make-up water valve, 51. Make-up water tank, etc. make-up water, 52. Stainless steel, etc., 53. Supply Water regulating valve, 54. AC power supply control device (External power control device or self-active type, once generated power is branched by a transformer, etc. Good), 55. Switches such as switching power supply equipment.
図 2の説明  Figure 2 description
強制対流方式沸騰水炉型間接抵抗加熱蒸気発生装置の説明略図。  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a forced convection boiling water reactor type indirect resistance heating steam generator.
給電設備等は、 間接抵抗発熱体、 炉壁端子電極等を適宜構成し、 単相、 三相交 流電流等を合理的に活用するとよい。  It is recommended that the power supply equipment, etc. be configured appropriately with indirect resistance heating elements, furnace wall terminal electrodes, etc., and use single-phase and three-phase AC currents rationally.
ジエ ツ トポンプ等再循環流系は必要に応じ複数設け活用する。  A plurality of recirculating flow systems such as jet pumps shall be provided and utilized as necessary.
a ) 強制対流方式蒸気発生装置の断面略図。  a) Schematic cross section of forced convection type steam generator.
符号の説明 Explanation of reference numerals
1 . 主蒸気流配管ノズル等 (再生式加熱用蒸気として活用してもよい。 ) 、 2 . ボルト締め、 3 . 波扳式湿分分離器、 4 . ワイヤメ ッ シュ式湿分分離器、 5 . 気 水分離器、 6 . 再循環駆動流ノズル、 7 . ジェッ トポンプ、 8 . ステンレス鋼等 内張り、 9 . 防護密閉した間接抵抗発熱体等、 10. 再循環流止め弁、 11. 再循環 ポンプ、 12. 再循環流調整弁、 13. 強制対流による駆動流、 14. 支持スカー ト、 15. 再循環流給水ノズル等、 16. 炉心支持ガイ ド、 17. 円筒型炉心隔扳 (間接抵 抗加熱発熱体等を包囲する様に構成する。 ) 、 18. 炉心へッ ド、 19. 炉心へッ ド 上部配管、 20. 給水スパジャー等給水環、 21. 給水ノズル、 22. 耐火ガラス等水 位計、 23. 水位制御排水弁、 24. スプレイノズル、 25. 0リ ング等シール、 26. 主蒸気調整弁等 (タービン等へ蒸気を送り活用。 ) 、 27. ドライヤー等電熱器、 28. 交流電源等主制御装置、 29. 切り換えスィ ッチ等給電設備、 30. 交流電源等 制御装置 (外部系電力制御装置、 若しくは、 自己能動型として、 いったん発生し た電力を変圧器等により分岐、 制御系を設け給電、 サイクル的に構成するとよい。 ) 。 1. Main steam flow pipe nozzle, etc. (may be used as regenerative heating steam), 2. Bolt tightening, 3. Wave type moisture separator, 4. Wire mesh type moisture separator, 5 Steam / water separator, 6. Recirculation driven flow nozzle, 7. Jet pump, 8. Lining of stainless steel etc., 9. Protective sealed indirect resistance heating element, etc. 10. Recirculation stop valve, 11. Recirculation pump , 12. Recirculation flow regulating valve, 13. Forced convection driven flow, 14. Support scart, 15. Recirculation flow feed nozzle, etc., 16. Core support guide, 17. Cylindrical core gap (indirect resistance) It is configured so as to surround the heating element, etc.), 18. Core head, 19. Core head Upper piping, 20. Water supply ring such as water supply sparger, 21. Water supply nozzle, 22. Water level such as fireproof glass 23. Water level control drain valve, 24. Spray nozzle, 25.0 ring seal, 26. Main steam regulating valve, etc. The feeding of steam utilization.), 27. dryer electric heater, 28. Main control device such as AC power supply, 29. Power supply equipment such as switching switch, 30. Control device such as AC power supply (External power control device or self-active type. It is advisable to provide a branching and control system for power supply and to configure a cycle.)
b ) 炉心へッ ド説明図 (図 2 a) の 18) 。  b) Core head explanatory diagram (Fig. 2a) 18).
符号の説明 Explanation of reference numerals
1. 炉心べッ ド、 2. 過熱冷却水通路穴。  1. Core bed, 2. Superheated cooling water passage hole.
c ) 炉心へッ ド上部配管断面図 (図 2 a) の 19) 。  c) Cross section of the upper piping of the core head (Fig. 2a) 19).
符号の説明 Explanation of reference numerals
1. 炉心へッ ド、 2. ステンレス製鋼管 (過熱冷却水通路穴、 上部に適宜 配列) 、 3. 過熱冷却水通路。  1. Core head, 2. Stainless steel pipe (superheated cooling water passage hole, appropriately arranged at the top), 3. Superheated cooling water passage.
d) 気水分離器の説明図。  d) Illustration of steam separator.
符号の説明 Explanation of reference numerals
1. 炉心ヘッ ド上部配管、 2. 気水分離器、 3. ラセン状の静止案内羽根、 4. 分離された蒸気、 5. 分離された過熱水、 6. 固定ガイ ド。  1. Core head upper piping, 2. Steam separator, 3. Spiral stationary guide vanes, 4. Separated steam, 5. Separated superheated water, 6. Fixed guide.
e ) 波板式湿分分離器の説明図。  e) Illustration of corrugated sheet moisture separator.
符号の説明 Explanation of reference numerals
1. 波板式湿分分離器、 2. 湿分の含んだ蒸気、 3. 湿分が除却された蒸 気  1. Corrugated moisture separator, 2. Moisture containing steam, 3. Moisture removed steam
f ) 給水ノズル等給水スバージャの説明図。  f) Explanatory drawing of a water supply nozzle such as a water supply nozzle.
符号の説明 Explanation of reference numerals
1. 給水入口、 2. 給水ノズル、 3. 給水環、 4. 給水口 (穴) 、 5. 分 散された給水。  1. water inlet, 2. water nozzle, 3. water ring, 4. water inlet (hole), 5. distributed water.
図 3の説明  Figure 3 description
加圧水炉型間接抵抗加熱方式等活用による自己能動型高速タ一ビン発電シス テムの説明略図。  Schematic illustration of a self-active high-speed turbine power generation system utilizing a pressurized water reactor type indirect resistance heating system.
図 1の 30、 及び、 38に示した様に底部等に U字型の防護密閉した間接抵抗発熱 体等及び端子電極等を合理的に複数設け活用してもよく、 単相、 三相交流電流 等の合理的活用は自明の事である。  As shown at 30 and 38 in Fig. 1, a plurality of U-shaped protective and sealed indirect resistance heating elements and terminal electrodes etc. and terminal electrodes etc. may be rationally provided at the bottom, etc., and may be used. The rational use of electric current is self-evident.
加圧器、 蒸気発生器、 タービン発電設備等は、 適宜、 一組だけ構成活用しても よい。  The pressurizer, steam generator, turbine power generation equipment, etc. may be configured and used as appropriate.
符号の説明 Explanation of reference numerals
1. 交流電源等主制御装置、 2. 炉壁端子電極等、 3. ボルト締め、 4. 0 リ ング (シールリ ング) 、 5. 空気抽出口 (ボルト締め) 、 6. 防護密閉した 間接抵抗発熱体等、 7. 固定ガイ ド、 8. 加圧器 (適宜、 一組だけ活用しても よい) 、 9. 液侵式電熱器等、 10. 蒸気発生器、 11. 一次冷却材ポンプ、 12· ター ビン発電設備等、 13. 湿分分離加熱器、 14. 復水器、 15. 給水ポンプ等、 16. 給 水加熱器 (複数活用するとよい) 、 Π. 変圧器、 18. 送電、 19. 外部系、 若しく は、 自己能動型として、 いったん発生した電力を変圧器等より分岐した電源等 制御装置 (制御系を設け、 切り換え給電設備等とともに、 サイクル的に活用し てもよい) 、 20. 第一切り換え給電設備等、 21. 第二切り換え給電設等。 1. Main control device such as AC power supply, 2. Terminal electrode of furnace wall, etc. 3. Bolt tightening, 4.0 ring (seal ring), 5. Air extraction port (bolt tightening), 6. Protective sealed indirect resistance heat generation Body, 7. fixed guide, 8. pressurizer Good), 9. immersion type electric heater, etc., 10. steam generator, 11. primary coolant pump, 12 turbine power generation equipment, etc. 13. moisture separation heater, 14. condenser, 15. water supply Pumps, etc. 16. Feed water heaters (preferably multiple), Π. Transformers, 18. Power transmission, 19. External system, or self-active type, once generated power is branched from transformers, etc. Power supply, etc. Control device (may be provided with a control system and used cyclically together with switching power supply equipment, etc.), 20. First switching power supply equipment, etc., 21. Second switching power supply equipment, etc.
図 4の説明  Figure 4 description
蒸気発生器構造図 (電気学会発行、 電気工学ハンドブッ クより抜粋) 。 符号の説明  Steam generator structure diagram (Extracted from IEEJ Handbook of Electrical Engineering). Explanation of reference numerals
1. 主蒸気出口ノズル等、 2. 上部胴、 3. 二次側マンホール、 4. 水位制 御計ノズル、 5. トラニオン、 6. 給水環、 7. 水位制御計ノズル、 8. 内部 胴、 9. 伝熱管、 10. 下部胴、 11. 二次側ハンドホール、 12. 底部ブローダウン ノズル、 13. ステンレス鋼等内張り、 14. 一次冷却材入口ノズル、 15. チャネル、 16. 一次冷却材出口ノズル (一次側マンホール) 、 17. イ ンコネル内張り、 18. 胴板ドレーンノズル、 19. 管板、 20. 水位計ノズル、 21. 管支持、 22. 水位計ノ ズル、 23. 給水入口ノズル、 24. 上部ブローダウンノズル、 25. 水位計ノズル、 26. セノ、°レータ、 27. ドライヤー。  1. Main steam outlet nozzle, etc. 2. Upper shell, 3. Secondary manhole, 4. Water level control nozzle, 5. Trunnion, 6. Water supply ring, 7. Water level control nozzle, 8. Inner body, 9 Heat transfer tube, 10. Lower body, 11. Secondary side handhole, 12. Bottom blowdown nozzle, 13. Lining of stainless steel etc., 14. Primary coolant inlet nozzle, 15. Channel, 16. Primary coolant outlet nozzle (Primary manhole), 17. Inconel lining, 18. Body plate drain nozzle, 19. Tube sheet, 20. Water level gauge nozzle, 21. Pipe support, 22. Water level gauge nozzle, 23. Water inlet nozzle, 24. Top blowdown nozzle, 25. Water gauge nozzle, 26. Seno, ° lator, 27. Dryer.
図 5の説明  Figure 5 description
加圧器構造図 (電気学会発行、 電気工学ハン ドブックより抜粋) 。  Pressurizer structure diagram (Extracted from IEEJ Handbook of Electrical Engineering).
a ) 加圧器立面図。  a) Elevator elevation view.
符号の説明 Explanation of reference numerals
1 . 水位測定ノズル、 2. 安全弁ノズル、 3. スプレイノズル、 4. サンプ ルノズル、 5. 逃し弁ノズル、 6. 安全弁ノズル、 7. 温度測定ノズル。  1. Water level measurement nozzle, 2. Safety valve nozzle, 3. Spray nozzle, 4. Sample nozzle, 5. Relief valve nozzle, 6. Safety valve nozzle, 7. Temperature measurement nozzle.
b ) 加圧器正面図。  b) Front view of the pressurizer.
符号の説明 Explanation of reference numerals
1. マンホール、 2. スプレイノズル、 3. 加圧器本体、 4. 支持スカー ト、 5. 液侵式電熱器ノ ズル、 6. サージノズル、 7. 水位測定、 温度測定、 また は、 サンブルノズル、 8. 安全弁、 または、 逃し弁ノズル。  1. Manhole, 2. Spray nozzle, 3. Main body of pressurizer, 4. Support scart, 5. Immersion heater nozzle, 6. Surge nozzle, 7. Water level measurement, temperature measurement, or sample nozzle, 8. Safety valve or relief valve nozzle.
図 6の説明  Figure 6 description
再生式給水加熱器、 及び、 再生式給水加熱タ ンクの説明略図。  FIG. 2 is a schematic diagram of a regenerative feedwater heater and a regenerative feedwater heating tank.
a ) 再生式給水加熱器の説明図 (その 1 ) 。  a) Illustration of the regenerative feed water heater (part 1).
符号の説明 Explanation of reference numerals
1 . 再生式給水加熱器、 2. 再生式蒸気加熱パイプ、 3. 蛇行パイプライ ン、 4. 給水循環系ポンプ、 5. ステンレス鋼等内張り、 6. 給水循環系給水出口。 b) 再生式給水加熱器の説明図 (その 2) 。 1. Regeneration type feed water heater, 2. Regeneration type steam heating pipe, 3. Meandering pipeline, 4. Feed water circulation system pump, 5. Lining of stainless steel etc., 6. Feed water circulation system water supply outlet. b) Illustration of regenerative feedwater heater (part 2).
符号の説明 Explanation of reference numerals
1. 再生式給水加熱器、 2. 給水循環系給水入口、 3. 給水循環系給水出口、 4. 加熱用高圧蒸気入口、 5. 加熱用パイプライ ン蛇行配管 (放熱扳等を重ね 合せ、 取付け活用してもよい) 、 6. 高圧蒸気廃気口 (給水循環系として再度 活用してもよい) 、 7. ステンレス鋼等を内張り、 8. 支持脚 (支持台) 。  1. Regenerative feed water heater, 2. Feed water circulation system water supply inlet, 3. Water supply circulation system water supply outlet, 4. Heating high pressure steam inlet, 5. Heating pipeline pipeline meandering pipe 6) High-pressure steam exhaust port (may be used again as a water supply circulation system), 7. Lining of stainless steel, etc., 8. Support legs (support base).
c ) 再生式給水加熱タ ンクの説明図。  c) Illustration of the regenerative feedwater heating tank.
符号の説明 Explanation of reference numerals
1 . 再生式給水加熱タンク、 2. 再生式蒸気及び加熱用パイプ、 3. 蛇行パ ィプライ ン、 4. 放熱板、 5. 給水加熱タ ンク内隔板、 6. ステンレス鋼等を 内張り、 7. 給水循環系給水口、 8. 給水循環系パイプ、 9. 給水循環系ボン プ、 10. 蒸気発生装置等 給水。  1. Regeneration water heating tank, 2. Regeneration steam and heating pipe, 3. Meandering pipeline, 4. Heat sink, 5. Feed water heating tank separator, 6. Lined with stainless steel, 7. Water supply system water inlet, 8. Water supply system pipe, 9. Water supply system pump, 10. Steam generator, etc. Water supply.
図 7の説明  Figure 7 description
自然対流方式沸騰水炉型直接抵抗加熱方式等による自己能動型発電システム の説明略図。  Brief description of a self-active power generation system using a natural convection type boiling water reactor type direct resistance heating method and the like.
符号の説明 Explanation of reference numerals
1 . 交流電源等制御装置、 2. 排水弁、 3. 支持スカー ト、 4. 直接抵抗加 熱発熱体等抵抗心 (ニク ロムまたは鉄クロム等の合金発熱体等複数設ける) 、 5. 給水ノズル、 6. 炉内水位、 7. スプレイノズル、 8. ボルト締め、 9. 主蒸気配管等 (再生式加熱等に適宜活用) 、 10. ドライヤー等電熱器、 11. 波板 式湿分分離器、 12. 主蒸気止め弁 (調整弁、 タービン等に蒸気を送り活用) 、 13. 0リ ングシール、 14. ワイヤメ ッシュ式湿分分離器、 15. 水位調整ノズル等止め 弁、 16. 耐火ガラス等水位計、 17. 給水スバージャ等給水環、 18· ステンレス鋼 等内張り、 19. 炉壁端子電極 (周囲に複数設け適宜合金発熱体等抵抗心と結線、 単相交流、 三相交流など制御系と伴に合理的に給電するとよい) 、 20. 波板式等 湿分分離器、 21. ドレ一ン等抽気口、 並びに、 バイパス制御系、 22. 主蒸気調整 弁 (止め弁等) 、 23. タービン発電設備等、 24. 湿分分離加熱器、 25. 蒸気抽気 口バルブ、 26. 変圧器、 27. 送電活用、 28. 復水器、 29. 給水系循環ポンプ、 30. 直接抵抗加熱発熱体等抵抗心、 31. 立置形給水加熱器 (複数設け活用する) 、 32. ステンレス鋼等を内張り、 33. 第 1給水加熱器等制御系、 34. 給水系循環ポンプ、 35. 横置形給水加熱器、 36. 直接抵抗加熱発熱体等抵抗心、 37. ステンレス鋼等 を内張り、 38. 第 2給水加熱器等制御系、 39. 給水系循環ポンプ、 40. 給水管、 41. 給水調整バルブ等、 42. 冷却水循環ポンプ、 43. ステンレス鋼等を内張り、 44. 冷却水タ ンク、 45. 凝縮器、 46. 細管等、 47. 蒸発器 (熱交換器) 、 48. 圧 縮器、 49. 補給水バルブ、 50. 補給水タ ンク等捕給水、 51. ステンレス鋼等を内 張り、 52. 捕給水調整弁、 53. 交流電源等制御装置 (外部系電力制御装置、 若し く は、 自己能動型として、 いったん発生した電力を変圧器等により分岐、 制御 系を設け、 合理的に給電サイクル的に構成するとよい) 、 54. 切り換え給電設備 等スィ ツチ。 1. Control device such as AC power supply, 2. Drain valve, 3. Support scart, 4. Resistance core such as direct resistance heating heating element (providing multiple heating elements such as alloys such as nickel or iron chrome), 5. Water supply nozzle , 6. Furnace water level, 7. Spray nozzle, 8. Bolt tightening, 9. Main steam piping, etc. (appropriately used for regenerative heating, etc.), 10. Electric heater for dryer, 11. Corrugated moisture separator, 12. Main steam stop valve (steam is used for regulating valve, turbine, etc.), 13.0 ring seal, 14. Wire mesh moisture separator, 15. Stop valve for water level adjustment nozzle, 16. Water level for fireproof glass, etc. 17. Water supply ring such as water supply sparger, lining 18 stainless steel etc., 19. Furnace wall terminal electrode 20. Moisture separator such as corrugated plate, 21. Bleed port such as drain , And bypass control system, 22. Main steam control valve (stop valve, etc.), 23. Turbine power generation equipment, etc., 24. Moisture separation heater, 25. Steam extraction port valve, 26. Transformer, 27. Power transmission utilization , 28. Condenser, 29. Circulation pump for water supply system, 30. Resistance core such as direct resistance heating heating element, 31. Stand-up type feed water heater (use and install plural), 32. Lining stainless steel etc., 33. 1 Control system for feed water heater, 34. Circulation pump for feed water system, 35. Horizontal feed water heater, 36. Resistance core such as direct resistance heating heating element, 37. Lining stainless steel etc., 38. 2nd feed water heater, etc. Control system, 39. Water supply system circulation pump, 40. Water supply pipe, 41. Water supply adjustment valve, etc. 42. Cooling water circulation pump, 43. Lining stainless steel, etc., 44. Cooling water tank, 45. Condenser, 46. 47. Evaporator (heat exchanger), 48. Pressure Compressor, 49. Make-up water valve, 50. Make-up water tank and other supply water, 51. Stainless steel lining, 52. Collection water adjustment valve, 53. AC power supply control device (external power control device, In other words, it is advisable to divide the power once generated by using a transformer or the like as a self-active type, provide a control system, and configure the power supply cycle rationally.) 54. Switches such as switching power supply equipment.
図 8の説明  Figure 8 description
強制対流方式沸騰水炉型直接抵抗加熱蒸気発生装置の説明略図。 (断面図) 給電設備等は、 複数設けた直接抵抗発熱体等抵抗心 (ニクロムまたは鉄'クロ ム合金発熱体等) 及び、 炉壁端子電極等を適宜結線構成し、 単相、 三相交流電 流等を合理的に活用するとよい。  FIG. 2 is a schematic diagram of a forced convection boiling water reactor type direct resistance heating steam generator. (Cross-sectional view) The power supply equipment consists of a single-phase and three-phase AC It is advisable to use the flow etc. reasonably.
ジェ ッ トポンプ等再循環流系は必要に応じ複数設け活用する。  A plurality of recirculation flow systems such as jet pumps will be provided and utilized as needed.
符号の説明 Explanation of reference numerals
1 . 主蒸気流配管ノズル等 (再生式加熱用蒸気として活用してもよい。 ) 、 2 . ボルト締め、 3 . 波板式湿分分離器、 4 . ワイヤメ ッ シュ式湿分分離器、 5 . 気水分離器、 6 . 再循環駆動流ノズル、 7 . ジェッ トポンプ、 8 . ステン レス鋼等内張り、 9 . 円筒型炉心隔板 (複数設けた直接抵抗加熱発熱体等抵抗 心を包囲する様に構成する) 、 10. 再循環流止め弁、 11. 再循環ポンプ、 12. 再 循環流調整弁、 13. 強制対流による駆動流、 14. 支持スカー ト、 15. 排水弁、 16. 再循環流給水ノズル等、 17. 炉心支持ガイ ド、 18. 直接抵抗加熱発熱体等抵抗心 (複数設ける) 、 19. 炉心へッ ド、 20. 炉心へッ ド上部配管、 21. 給水スパジャー 等給水環、 22. 給水ノズル、 23. 耐火ガラス等水位計、 24. 水位制御排水弁、 25. スプレイ ノズル、 26. 0 リ ング等シール、 27. 主蒸気調整弁等 (タービン等へ蒸 気を送り活用) 、 28. ドライヤー等電熱器、 29. 交流電源等主制御装置、 30. 交 流電源等制御装置 (外部系電力制御装置、 若しくは、 自己能動型として、 いつ たん発生した電力を変圧器等により分岐、 制御系を設け給電、 サイクル的に構 成するとよい。 ) 、 31. 切り換えスィ ッチ等給電設備。  1. Main steam flow pipe nozzle, etc. (may be used as regenerative heating steam), 2. Bolt tightening, 3. Corrugated moisture separator, 4. Wire mesh moisture separator, 5. Steam-water separator, 6. recirculation drive nozzle, 7. jet pump, 8. lining of stainless steel, etc. 9. cylindrical core plate (multiple resistance heating elements such as direct resistance heating elements Composing), 10. Recirculation stop valve, 11. Recirculation pump, 12. Recirculation flow regulating valve, 13. Forced convection driven flow, 14. Supporting squat, 15. Drain valve, 16. Recirculation flow Water supply nozzle, etc., 17. Core support guide, 18. Direct resistance heating heating elements, etc. (provided multiple), 19. Core head, 20. Core top piping, 21. Water supply sparger, etc. 22. Water nozzle, 23. Water level gauge for fireproof glass, 24. Water level control drain valve, 25. Spray nozzle, 26.0 ring Seal, 27. Main steam regulating valve, etc. (steam is sent to and used for turbine etc.), 28. Electric heater such as dryer, 29. Main control device such as AC power supply, 30. Control device such as AC power supply (External power control device) Or, as a self-active type, it is advisable to branch off the generated power by means of a transformer or the like, provide a control system, supply power, and configure it in a cyclical manner.), 31. Power supply equipment such as switching switches.
図 9の説明  Figure 9 description
炉壁絶縁及び直接抵抗加熱発熱体等抵抗心構成例等説明図。  Explanatory drawing etc. of an example of a resistance core configuration such as furnace wall insulation and direct resistance heating and heating elements.
炉壁絶縁、 及び、 抵抗心支持鋼棒等の活用は、 直接抵抗加熱方式 (自然対流 方式、 強制対流方式、 加圧型等抵抗炉) 加熱炉、 及び、 給水加熱器等に於いて、 適宜、 合理的に構成活用してもよい。  The furnace wall insulation and the use of resistance core supporting steel rods, etc. can be used in the direct resistance heating method (natural convection method, forced convection method, pressure-type resistance furnace, etc.) in heating furnaces and feedwater heaters as appropriate. The configuration may be used rationally.
符号の説明 Explanation of reference numerals
1 . 交流電源等主制御装置、 2 . 炉壁端子電極 (炭素電極、 黒鉛電極等を活 用するとよい。 ) 、 3 . 炉壁 (外壁) 、 4 . アルミナ、 マグネシア等を用いて 適宜絶縁する、 5 . 耐熱性ステンレス鋼等を適宜内張り (内壁) 、 6 . 抵抗心 下部支持ガイ ド、 7 . 抵抗心上部支持ガイ ド、 8 . 直接抵抗加熱発熱体等抵抗 心 (ニクロムまたは鉄クロム等合金発熱体などを適宜活用) 、 9 . 抵抗心支持 鋼棒 (ステンレス等を適宜活用するとよい。 ) 、 10. 直接抵抗加熱発熱体等抵抗 心 (丈夫な様に適宜支持鋼棒等に巻き付け活用してもよい。 ) 1. Main control device such as AC power supply, 2. Furnace wall terminal electrode (it is recommended to use carbon electrode, graphite electrode, etc.), 3. Furnace wall (outer wall), 4. Alumina, magnesia, etc. 5. Insulation as appropriate, 5. Heat-resistant stainless steel lining (inner wall) as appropriate, 6. Lower core support guide, 7. Upper support guide for resistance core, 8. Resistance core such as direct resistance heating element (Nichrome or iron) 9) Resistance core supporting steel rod (Stainless steel, etc. should be used as appropriate.) 10. Resistance resistance heating element such as direct resistance heating element (Durable supporting steel rod etc. It may be used by winding.)
図 10の説明 '  Description of Figure 10 ''
加圧水炉型直接抵抗加熱方式等活用による自己能動型高速タ一ビン発電シス テムの説明略図。  Schematic illustration of a self-active high-speed turbine power generation system utilizing a pressurized water reactor type direct resistance heating method.
複数設けた直接抵抗発熱体等抵抗心及び端子電極等は、 適宜、 結線構成する 事により、 制御系と伴に、 単相、 三相交流電流等の合理的活用は自明の事であ る。  The rational use of single-phase, three-phase AC current, etc., together with the control system, is self-evident by appropriately connecting the resistance cores such as the direct resistance heating elements and the terminal electrodes, etc. provided.
符号の説明 Explanation of reference numerals
1 . 交流電源等主制御装置、 2 . 炉壁端子電極等、 3 . ボルト締め、 4 . 0 リ ング (シールリ ング) 、 5 . 空気抽出口 (ボルト締め) 、 6 . 直接抵抗加熱 発熱体等抵抗心 (複数設ける) 、 7 . 固定ガイ ド、 8 . 加圧器 (適宜、 一組だ け活用してもよい) 、 9 . 液侵式電熱器等、 10. 蒸気発生器、 11. 一次冷却材ポ ンプ、 12. タービン発電設備等、 13. 湿分分離加熱器、 14. 復水器、 15. 給水ポ ンプ等、 16. 給水加熱器 (複数活用するとよい) 、 17. 変圧器、 18· 送電、 19. 外部系、 若しく は、 自己能動型として、 いったん発生した電力を変圧器等より 分岐した電源等制御装置 (制御系を設け、 切り換え給電設備等とともに、 サイ クル的に活用してもよい) 、 20. 第一切り換え給電設備等、 21. 第二切り換え給 電設備等。  1. Main control device such as AC power supply, 2. Furnace wall terminal electrode, etc., 3. Bolt tightening, 4.0 ring (seal ring), 5. Air extraction port (bolt tightening), 6. Direct resistance heating heating element, etc. Resistance core (provided plurally), 7. Fixed guide, 8. Pressurizer (only one set may be used as appropriate), 9. Immersion type electric heater, etc. 10. Steam generator, 11. Primary cooling Material pumps, 12. Turbine power generation facilities, etc. 13. Moisture separation heaters, 14. Condensers, 15. Water supply pumps, etc. 16. Feed water heaters (multiple may be used), 17. Transformers, 18 · Power transmission, 19. As an external system or self-active type, a control device such as a power supply that divides the generated power once from a transformer etc. 20. First switching power supply equipment, etc., 21. Second switching power supply equipment, etc.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
特許請求の範囲 〔 1〕 の規範による、 間接抵抗加熱方式自己能動型発電シス テムの構成としては、 自然対流方式沸騰水炉型間接抵抗加熱炉、 強制対流方式 沸騰水炉型間接抵抗加熱炉、 加圧水炉型間接抵抗加熱炉等を適宜構成活用する 三つの方法がある。  According to the standard of the claim [1], the configuration of the indirect resistance heating type self-active power generation system includes a natural convection type boiling water reactor type indirect resistance heating furnace, a forced convection type boiling water reactor type indirect resistance heating furnace, There are three ways to make appropriate use of the pressurized water reactor type indirect resistance heating furnace.
自然対流方式沸騰水炉型間接抵抗加熱方式等による自己能動型発電シスデム の構成としては、 図 1に示した様に、 交流電源等制御装置 (1 ) 、 排水弁 (2 ) 、 支持スカート (3 ) 、 防護密閉した間接抵抗発熱体等 (4 ) 、 給水ノズル (5 ) 、 炉内水位 (6 ) 、 スプレイノズル (7 ) 、 ボルト締め (8 ) 、 主蒸気配管等 (再 生式加熱等に適宜活用) (9 ) 、 ドライヤー等電熱器 (10) 、 波板式湿分分離器 ( 11) 、 主蒸気止め弁 (調整弁、 タービン等に蒸気を送り活用) (12) 、 0 リ ン ダシール (13) 、 ワイヤメ ッシュ式湿分分離器 (14) 、 水位調整ノズル等止め弁 ( 15) 、 耐火ガラス等水位計 (16) 、 給水スパジ一等給水環 (17) 、 ステンレス 鋼等内張り (18) 、 炉壁端子電極 (周囲に複数設け適宜発熱体等と結線、 単相交 流、 三相交流等を合理的に給電するとよい。 ) (19) 、 波板式等湿分分離器 (20) 、 ドレ一ン等抽気口、 並びに、 バイパス制御系 (21) 、 主蒸気調整弁 (止め弁等)As shown in Fig. 1, the configuration of a self-active power generation system using a natural convection type boiling water reactor type indirect resistance heating system and the like includes an AC power supply control device (1), a drain valve (2), a support skirt (3 ), Protective sealed indirect resistance heating element, etc. (4), water supply nozzle (5), furnace water level (6), spray nozzle (7), bolting (8), main steam piping, etc. (for regenerative heating, etc.) (9), electric heater such as dryer (10), corrugated sheet moisture separator (11), main steam stop valve (steam is used for regulating valve, turbine, etc.) (12), zero seal 13), wire mesh moisture separator (14), stop valve for water level adjustment nozzle, etc. (15), water level gauge for fireproof glass, etc. (16), water supply sprig primary water ring (17), stainless steel lining, etc. (18), furnace wall terminal electrode (19), corrugated sheet type moisture separator (20), drain and other bleed ports, bypass control system (21), main steam regulating valve ( Stop valve, etc.)
( 22) 、 タービン発電設備等 (23) 、 湿分分離加熱器 (24) 、 蒸気抽気ロバルブ(22), turbine power generation equipment, etc. (23), moisture separator / heater (24), steam bleed valve
(25) 、 変圧器 (26) 、 送電活用 (27) 、 復水器 (28) 、 給水系循環ポンプ (29) 、 防護密閉した間接抵抗発熱体等 (30) 、 間接抵抗加熱方式給水加熱器 (31) 、 ス テンレス鋼等を内張り (32) 、 給水加熱器等制御系 (33) 、 各種廃熱、 再熱等を 体系等に組入、 適宜構成活用してもよい (34) 、 給水系循環ポンプ (35) 、 間接 抵抗加熱方式給水加熱タ ンク (36) 、 ステンレス鋼等を内張り (37) 、 防護密閉 した間接抵抗加熱発熱体等 (38) 、 給水加熱タンク内隔扳 (39) 、 給水加熱タン ク等制御系 (40) 、 給水系循環ポンプ (41) 、 給水調整バルブ等 (42) 、 冷却水 循環ポンプ (43) 、 ステンレス鋼等を内張り (44) 、 冷却水タンク (45) 、 凝縮 器 (46) 、 細管等 (47) 、 蒸発器 (熱交換器) (48) 、 圧縮器 (49) 、 補給水バ ルブ (50) 、 捕給水タンク等補給水 (51) 、 ステンレス鋼等を内張り (52) 、 捕 給水調整弁 (53) 、 交流電源等制御装置 (外部系電力制御装置、 若しくは、 自己 能動型として、 いったん発生した電力を変圧器等により分岐、 制御系を設け合 理的に給電サイクル的に構成するとよい) (54) 、 切り換え給電設備等スィ ッチ(25), transformer (26), power transmission utilization (27), condenser (28), water supply system circulation pump (29), protective sealed indirect resistance heating element, etc. (30), indirect resistance heating type feedwater heater (31), stainless steel lining, etc. (32), feed water heater control system, etc. (33), various waste heat, reheating, etc. may be incorporated into the system, etc., and may be used as appropriate (34), water supply System circulation pump (35), indirect resistance heating type feedwater heating tank (36), stainless steel lining (37), protective and sealed indirect resistance heating element, etc. (38), feedwater heating tank inner space (39) , Water supply heating tank control system (40), water supply circulation pump (41), water supply adjustment valve, etc. (42), cooling water circulation pump (43), stainless steel lining (44), cooling water tank (45) ), Condenser (46), capillary (47), evaporator (heat exchanger) (48), compressor (49), makeup water valve (50) Supply water tanks and other makeup water (51), stainless steel, etc. lining (52), collection water regulating valve (53), AC power supply control device (external power control device or self-active type It is advisable to divide the power by a transformer or the like and provide a control system so that the power supply can be configured in a reasonable power supply cycle.) (54)
( 55) 等から成るが、 給水系 (給水加熱タンク、 給水加熱器等) から入ってきた 水は、 給水スパジャー等給水環を通り、 均一に分散され、 周辺の水と一緒にな り、 腐食防止のため耐熱性ステンレス鋼等を適宜内張り した、 自然対流方式間 接抵抗加熱炉内に留り、 複数の防護密閉された間接抵抗発熱体等により加熱沸 騰され、 高圧蒸気を発生させ、 上部には、 ワイヤメ ッ シュ式湿分分離器 (金網 を重ね合せ張りつめ構成したもの) 、 波板式湿分分離器 (波形の板を重ね合わ せ構成したもの) 、 ドライヤー等電熱器を設け、 残留湿分が除去され、 乾燥蒸 気となってタービン発電設備等に送られる。 (55) etc., but the water that enters from the water supply system (water supply heating tank, water supply heater, etc.) passes through the water supply ring, such as the water supply sparger, and is evenly dispersed and becomes corroded with the surrounding water and corrodes. It stays in a natural convection type indirect resistance heating furnace, which is appropriately lined with heat-resistant stainless steel etc. for prevention, and is heated and boiled by a plurality of protective and sealed indirect resistance heating elements to generate high-pressure steam. Are equipped with a wire mesh type moisture separator (composed of wire mesh stacked and attached), a corrugated sheet moisture separator (composed of laminated corrugated plates), and an electric heater such as a dryer. Is removed and dried steam is sent to turbine power generation facilities.
以上の自然対流方式沸騰水炉型間接抵抗加熱方式蒸気発生装置等により発生 した主蒸気は、 波板式湿分分離器、 バイパス制御系、 主蒸気調整弁等を設けた 配管等 (ステンレス鋼管等) を通り、 調速制御装置 (高速タービン発電設備等) 等を経て復水器等に導かれる。 復水器で冷却された蒸気は水となり、 給水加熱 器、 給水加熱タンク等により加熱され、 給水循環ポンプ等により昇圧、 蒸気発 生装置等に給水され、 給水循環系サイクルを構成する。 復水器等の冷却水等は、 海水、 河川、 湖の水等合理的に活用してもよ く、 立地条件等をより選定できる 様に、 冷凍サイ クルの原理を活用し、 凝縮器、 細管等、 蒸発器、 圧縮器等を、 複数備えた冷却水タンクを設け、 冷却水循環ポンプ等の活用により、 冷却水循 環系を構成した。 冷媒としては、 アルコール等を活用するのが、 一般的である。 強制対流方式沸騰水炉型間接抵抗加熱蒸気発生装置の構成としては、 図 2の a ) に示した様に、 主蒸気流配管ノズル等 (再生式加熱用蒸気として活用して もよい) ( 1 ) 、 ボルト締め ( 2 ) 、 波板式湿分分離器 ( 3 ) 、 ワイヤメ ッシ ュ式湿分分離器 ( 4 ) 、 気水分離器 (5 ) 、 再循環駆動流ノズル ( 6 ) 、 ジ ェ ッ トポンプ (7 ) 、 ステンレス鋼等内張り (8 ) 、 防護密閉した間接抵抗発熱 体等 (9 ) 、 再循環流止め弁 (10) 、 再循環ポンプ (11) 、 再循環流調整弁 (12) 、 強制対流による駆動流 (13) 、 支持スカー ト (14) 、 再循環流給水ノズル等 (15) 、 炉心支持ガイ ド (16) 、 円筒型炉心隔板 (間接抵抗発熱体等を包囲する様に構成 する) (17) 、 炉心へッ ド (18) 、 炉心へッ ド上部配管 (19) 、 給水スパジャー 等給水環 (20) 、 給水ノズル (21) 、 耐火ガラス等水位計 (22) 、 水位制御排水 弁 (23) 、 スプレイノズル (24) 、 0リング等シール (25) 、 主蒸気調整弁等 (ター ビン等へ蒸気を送り活用) (26) 、 ドライヤー等電熱器 (27) 、 交流電源等主制 御装置 (28) 、 切り換えスィッチ等給電設備 (29) 、 交流電源等制御装置 (外部 系電力制御装置、 若しくは、 自己能動型として、 いったん発生した電力を変圧 器等により分岐、 制御系を設け給電、 サイクル的に構成するとよい。 ) (30) 、 等から成るが、 給水系から入ってきた水は、 給水スパジャー等給水環によって 均一に分散され、 周辺の水と一緒になり、 間接抵抗加熱炉炉心外側を下降し、 ジ ッ トポンプ等によって、 炉心下部に注入され、 上向きに向きを変え、 炉心 から熱を受けながら、 加熱沸騰通過し、 炉心上部 (炉心へッ ド) で、 気水分離 器に行き、 図 2の d ) に示した様に、 入口にあるラセン状の静止案内羽根等に よって回転運動を与えられ、 自由うず運動をしながら、 上昇していく間に遠心 力効果によって水と蒸気に分離される。 分離された水は給水等と混合し炉心に もどされる。 一方分離された蒸気は、 上部ワイヤメ ッシュ式湿分分離器、 波板 式湿分分離器等によって残留湿分が除去され、 ドライヤー等電熱器 (防護密閉 した間接抵抗発熱体等による電熱線等を、 適宜、 スぺ一サ一等で固定し、 制御 系とともに活用する。 ) などの蒸気乾燥器により、 乾燥蒸気となって、 タ一ビ ン等に導かれる。 The main steam generated by the above natural convection type boiling water reactor type indirect resistance heating type steam generator is used for corrugated plate type moisture separator, bypass control system, piping with main steam regulating valve, etc. (Stainless steel pipe etc.) Through the control system (high-speed turbine power generation equipment, etc.), etc. to the condenser. The steam cooled by the condenser becomes water, which is heated by a feed water heater, a feed water heating tank, etc., pressurized by a feed water circulation pump, etc., and fed to a steam generation device, etc., to constitute a feed water circulation system cycle. The cooling water of the condenser etc. may be used rationally, such as seawater, rivers, lakes, etc., and the principle of the refrigeration cycle shall be used to select the location conditions etc. Evaporator, compressor, etc. Multiple cooling water tanks were provided and a cooling water circulation system was constructed by utilizing a cooling water circulation pump. It is common to use alcohol or the like as a refrigerant. The configuration of the forced convection boiling water reactor type indirect resistance heating steam generator, as shown in Fig. 2 a), is a main steam flow pipe nozzle, etc. (may be used as regenerative heating steam). ), Bolt fastening (2), corrugated plate moisture separator (3), wire mesh moisture separator (4), steam-water separator (5), recirculation drive flow nozzle (6), ja Pump (7), stainless steel lining (8), protective and sealed indirect resistance heating element (9), recirculation stop valve (10), recirculation pump (11), recirculation flow regulating valve (12) , Driving flow by forced convection (13), Support scart (14), Recirculation flow water supply nozzle, etc. (15), Core support guide (16), Cylindrical core separator (Includes indirect resistance heating elements, etc. (17), core head (18), core head upper piping (19), water supply sparger, etc. 20), water supply nozzle (21), water level gauge such as fireproof glass (22), water level control drain valve (23), spray nozzle (24), seal such as O-ring (25), main steam regulating valve etc. (26), electric heater such as dryer (27), main control device such as AC power supply (28), power supply equipment such as switching switch (29), control device such as AC power supply (external power control device, or As a self-active type, it is good to divide the power once generated by a transformer or the like, provide a control system, supply power, and configure it in a cyclical manner.) (30) It consists of, etc., but water coming from the water supply system is It is evenly dispersed by the water supply ring such as a sparger, and combined with the surrounding water, descends outside the core of the indirect resistance heating furnace, and is injected into the lower part of the core by means of a jet pump, etc. While receiving After passing through the heating boil, it goes to the steam separator at the upper part of the core (core head), and as shown in d) in Fig. 2, the rotary motion is given by the spiral stationary guide vanes at the inlet. The water and steam are separated by centrifugal force during the ascent while moving freely. The separated water is mixed with water supply and returned to the core. On the other hand, residual moisture is removed from the separated steam by an upper wire mesh type moisture separator, corrugated plate type moisture separator, etc., and an electric heater such as a dryer (heating wire etc. by a protective sealed indirect resistance heating element etc.) If necessary, fix it with a spacer, etc., and use it together with the control system.) The steam is dried by a steam dryer such as, and guided to the turbine.
間接抵抗加熱炉炉心等は、 円筒状のステンレス鋼製構造物で炉心を囲み、 給 水の下降流と炉心を冷却する上昇流等を分離する様に形づく るが、 炉心は、 炉 心支持ガイ ドと上部支持ガイ ド等との間に、 複数の防護密閉した間接抵抗発熱 体等を設け、 適宜、 炉壁端子電極等と結線、 単相交流、 若しく は、 三相交流等 を主制御装置等により給電、 即ち、 能動的活用等は勿論の事、 自己能動型とし て、 いったん発生した電力を変圧器等より分岐、 制御系を設け、 間接抵抗加熱 炉の余熱等の活用により、 瞬時に切り換え給電、 サイクル的に構成活用すると よい。 The indirect resistance heating core, etc., surrounds the core with a cylindrical stainless steel structure and separates the downward flow of feedwater from the upward flow, which cools the core, etc., but the core is supported by the core. A plurality of protective and sealed indirect resistance heating elements, etc. are provided between the guide and the upper support guide, etc., and are appropriately connected to the furnace wall terminal electrodes, etc., and are mainly used for single-phase AC or three-phase AC, etc. Power is supplied by a control device, etc. It is advisable to branch off the power once generated from a transformer or the like, provide a control system, switch the power supply instantaneously by utilizing the residual heat of the indirect resistance heating furnace, etc.
再循環系は、 再循環ポンプ、 ジ ッ トポンプ、 配管、 弁等から成り立つてい るが、 ジュッ トポンプは、 可動部分をもたず、 再循環ポンプ等で昇圧した駆動 流を、 ノズル出口から高速流として吹き出し、 周辺の給水、 並びに、 気水分離 器で分離された水を吸引し、 炉心下部等に冷却水を供給し、 強制的に対流を可 能とする。 以上の再循環系によるジェッ トポンプ等は適宜複数活用する。 (原 子力発電等では、 20台設置されている場合がある。 )  The recirculation system consists of a recirculation pump, a jet pump, pipes, valves, etc.The jet pump has no moving parts and a high-speed drive flow from the nozzle outlet, which is boosted by a recirculation pump or the like. Water is blown out, and the surrounding water is supplied, and the water separated by the steam separator is sucked. Cooling water is supplied to the lower part of the reactor core to enable forced convection. A plurality of jet pumps etc. by the above-mentioned recirculation system will be used as appropriate. (20 units may be installed in nuclear power generation, etc.)
炉壁内部の構成等においては、 ステンレス鋼等を適宜内張り し、 各種ノズル、 止め弁、 調整弁、 排水口及び弁、 耐火ガラス等による水位計、 各種固定ガイ ド 等を設け、 適宜合理的に構成活用する。  For the inside of the furnace wall, etc., stainless steel etc. shall be appropriately lined, and various nozzles, stop valves, adjustment valves, drainage ports and valves, water level gauges made of fire-resistant glass, etc., various fixed guides, etc. shall be provided in a reasonable manner. Make use of the configuration.
以上の装置等は、 自然対流方式等で説明した様に、 バイパス制御系、 及び、 調速制御等タービン発電設備等とともに給水循環系 (給水加熱器、 給水加熱タ ンク、 給水循環ポンプ、 復水器等) により、 サイクル的に構成活用する。  As described in the natural convection method, etc., the above equipment, etc. are used in conjunction with the bypass control system and the turbine power generation equipment such as governing control, etc., as well as the feedwater circulation system (feedwater heater, feedwater heating tank, feedwater circulation pump, condensing water, etc.). , Etc.) and make use of them in a cycle.
加圧水炉型間接抵抗加熱方式等活用による自己能動型高速タービン発電シス テムの構成としては、 図 3に示した様に、 交流電源等主制御装置 ( 1 ) 、 炉壁 端子電極等 ( 2 ) 、 ボルト締め ( 3 ) 、 0 リ ング (シールリ ング) ( 4 ) 、 空 気抽出口 (ボルト締め) (5 ) 、 防護密閉した間接抵抗発熱体等 ( 6 ) 、 固定 ガイ ド (7 ) 、 加圧器 (適宜、 一組だけ活用してもよい) (8 ) 、 液浸式電熱 器等 (9 ) 、 蒸気発生器 (10) 、 一次冷却材ポンプ (11) 、 タービン発電設備等 ( 12) 、 湿分分離加熱器 (13) '、 復水器 (14) 、 給水ポンプ等 (15) 、 給水加熱 器 (複数活用するとよい。 ) (16) 、 変圧器 (17) 、 送電 (18) 、 外部系、 若し く は、 自己能動型として、 いったん発生した電力を変圧器等より分岐した電源 等制御装置 (制御系を設け、 切り換え給電設備とともに、 サイクル的に活用し てもよい。 ) (19) 、 第一切り換え給電設備等 (20) 、 第二切り換え給電設備等 As shown in Fig. 3, the configuration of a self-active high-speed turbine power generation system utilizing a pressurized water reactor type indirect resistance heating method, etc., consists of a main control device such as an AC power supply (1), a furnace wall terminal electrode (2), Bolt tightening (3), 0 ring (seal ring) (4), air extraction port (bolt tightening) (5), protective and sealed indirect resistance heating element, etc. (6), fixing guide (7), pressurizer (If necessary, only one set may be used.) (8), immersion type electric heater, etc. (9), steam generator (10), primary coolant pump (11), turbine power generation equipment, etc. (12), wet Separation heater (13) ', condenser (14), feed water pump, etc. (15), feed water heater (please use multiple). (16), transformer (17), power transmission (18), external system Or a self-active type, such as a power supply control device (control system) that divides the generated power once from a transformer or the like. The system is provided, with the switching power supply facility, may be utilized to cyclically.) (19), the first switching power supply facilities (20), the second switching power supply facilities
( 21) 、 等から成るが、 自然対流方式等を適宜密閉形として構成したものとなり、 一次冷却材循環系設備等の蒸気発生器、 一次冷却材ポンプ、 加圧器等の設備'を 配置して構成する。 加圧水炉型間接抵抗加熱炉の上部、 蓋は、 取りはずし可能 なように、 フラ ンジ等を取り付け、 ボルト締めし、 内壁面等はステンレス鋼等 を適宜内張り し、 複数の対流を可能とした、 防護密閉した間接抵抗加熱発熱体 等を取り付け、 上部にステンレス鋼管製 0リ ングを取り付けて空気抽出ロを設 けてメネジを切り、 ボルト形の蓋で密閉活用するとよい。 一次冷却材入ロノズ ル、 出口ノズル、 排水口等を適宜設け、 蒸気発生器、 一次冷却材ポンプ、 加圧 器等を設置し、 一次冷却材循環系を構成する。 一般的な蒸気発生器は、 図 4に 示したが、 縦置 U字管式で、 イ ンコネル製伝熱管を使用している。 一次冷却材 は、 蒸気発生器下部入口ノズルから入り、 伝熱管を経て出口ノズルから流出す るが、 蒸気発生器二次側への給水は、 伝熱管上端のすぐ上の位置から給水環を 通じて行ない、 気水分離器で分離された下降水と混合しながら伝熱管周囲の円 環状の部分を下降した後、 方向を変えて、 伝熱管部を上昇し、 蒸気は上部の気 水分離器、 および、 ドライヤー等を通り、 バイパス制御系等を設けたステンレ ス鋼管等を通るとともに、 調速制御等のタービン発電設備等を経て、 復水器、 給水循環ポンプ、 給水加熱器等により、 二次側給水循環系を構成する。 給水加 熱器の熱源等は、 タービンから抽気された蒸気を活用するのが一般的であり、 システムの構成としては、 蒸気発生器、 加圧器、 タービン発電設餾等は、 適宜、 一組で活用してもよい。 : (21) It consists of, etc., but it is configured as a natural convection method etc. as appropriate as a closed type, and equipment such as steam generators such as primary coolant circulation system equipment, primary coolant pump, pressurizer etc. is arranged. Constitute. The upper part and the lid of the pressurized water reactor type indirect resistance heating furnace are detachably mounted with a flange, etc., and bolted, and stainless steel etc. are lining the inner wall etc. as appropriate to enable multiple convections. It is recommended to attach a sealed indirect resistance heating element, etc., attach a stainless steel tube 0 ring at the top, install an air extraction unit, cut the female thread, and use it tightly with a bolt-shaped lid. Primary coolant inlet nozzle, outlet nozzle, drain port, etc. are provided as appropriate, steam generator, primary coolant pump, pressurization The primary coolant circulation system will be constructed by installing equipment. A typical steam generator is shown in Fig. 4, but it is a vertical U-tube type and uses Inconel heat transfer tubes. The primary coolant enters through the lower inlet nozzle of the steam generator and flows out of the outlet nozzle through the heat transfer pipe.However, the water supply to the steam generator secondary side passes through the water supply ring from a position just above the upper end of the heat transfer pipe. After lowering the annular part around the heat transfer tube while mixing with the descending water separated by the steam separator, change the direction and move up the heat transfer tube, and the steam is removed from the upper steam separator. , And through a stainless steel pipe provided with a bypass control system, etc., through a dryer, etc., and through turbine power generation equipment such as speed control, etc., through a condenser, feed water circulation pump, feed water heater, etc. Construct the secondary water supply circulation system. Generally, steam extracted from the turbine is used as the heat source for the feed water heater, and the system configuration consists of a steam generator, a pressurizer, a turbine power generation unit, etc. May be used. :
原子力発電では、 一次冷却材ポンプは、 漏れ制御式軸封装置をもつ電動機駆 動遠心式ポンプで、 上部にフライホイールを取り付け、 停電時の流量の低下を ゆるやかにしている。 軸封装置は三段のシールをもち、 化学体積制御設備の充 てんポンプからシール水が供給され、 信頼性の高い構造となっている。  In nuclear power, the primary coolant pump is a motor-driven centrifugal pump with a leak-controlled shaft seal, fitted with a flywheel at the top to slow down the flow during power outages. The shaft sealing device has a three-stage seal, and seal water is supplied from the filling pump of the chemical volume control equipment, resulting in a highly reliable structure.
図 5に示した、 加圧器は、 運転中、 一次冷却材圧力を一定に保っための設備 で、 底部には、 液浸式電熱器を、 上部には、 スプレイ、 安全弁および逃し弁等 を設けているが、 運転中は、 下半分が液相、 上半が気相を形成していて、 負荷 変動に伴うサージを、 電熱器、 及び、 スプレイの操作によって、 水の蒸発凝縮 を制御して吸収するようになっている。  The pressurizer shown in Fig. 5 is a facility to keep the primary coolant pressure constant during operation.An immersion type electric heater is provided at the bottom, and a spray, safety valve and relief valve are provided at the top. However, during operation, the lower half forms a liquid phase and the upper half forms a gas phase, and surges caused by load fluctuations are controlled by controlling the evaporation and condensation of water by operating the electric heater and spray. It is designed to absorb.
主蒸気、 及び、 再熱蒸気温度制御等には、 スプレイ方式 (過熱低減法) があ り、 過熱蒸気中に、 水または、 飽和蒸気を噴霧する直接冷却方式であるが、 応 答が速く、 広く採用されていて、 適宜、 原子力発電等の設備、 付属設備等の合 理的活用と応用を否めるものではない。  For the main steam and reheat steam temperature control, etc., there is a spray method (superheat reduction method), which is a direct cooling method in which water or saturated steam is sprayed into the superheated steam. It is widely adopted and does not deny the rational use and application of facilities such as nuclear power generation and auxiliary equipment as appropriate.
以上の自然対流方式、 強制対流方式、 加圧型等の間接抵抗加熱炉に設置され た複数の防護密閉した間接抵抗発熱体等の給電は、 交流電源等主制御装置によ り行なうが、 システムとして、 能動的活用は許より、 外部系電力及び制御系の 合理的活用、 若しくは、 自己能動型 (クロスコンパゥン ド形発電として構成し た場合等をも含め) として、 いったん発生した電力は、 変圧器等より分岐、 制 御系を設け、 保全設備等稼働設備への給電、 及び、 間接抵抗加熱炉等の余熱の 活用により、 瞬時に切り換え、 密閉型間接抵抗発熱体等へ給電 (制御系を設け、 適宜結線、 単相、 三相交流等の合理的活用は自明の事である。 ) する事により、 サイクル的に構成活用するとよい。 尚、 図 6の a ) 、 b ) 、 c ) に示した再生 式の給水加熱器、 給水加熱タンク等の適宜合理的活用を否めるものではなく、 (給水加熱器等の熱源は、 タービン抽気等を活用し、 作業後は、 復水器へと導 き、 給水系に回収されるのが、 一般的であり、 複数設けた場合等は、 給水加熱 タンク等の設置を合理的に省いてよい。 また、 蒸気発生装置等の熱源等を合理 的に用いてもよい。 ) 背圧タービン、 抽気タービン、 抽気背圧タービン等の活 用に鑑み、 補給水タンク等を設けて、 適宜、 廃熱蒸気等の利用による、 コジェ ネレーンヨ ンシステムとしての合理的活用等を否めない。 Power is supplied to the multiple protected and sealed indirect resistance heating elements installed in indirect resistance heating furnaces such as the natural convection method, forced convection method, and pressurized type by the main control device such as an AC power supply. However, the active use of power is more reasonable than the rational use of external power and control systems, or self-active (including when configured as cross-compound power generation). Provide a branch and control system from a transformer, etc. to supply power to operating equipment such as maintenance equipment, and use residual heat from an indirect resistance heating furnace, etc. to switch instantaneously and supply power to hermetically sealed indirect resistance heating elements (control system It is self-evident that rational use of wiring, single-phase, three-phase alternating current, etc. is self-evident.) The playback shown in a), b) and c) in FIG. This does not mean that the rational use of feed water heaters, feed water heating tanks, etc. should be denied as appropriate. (The heat source of the feed water heaters, etc., uses turbine extraction, etc., and after work, leads to the condenser, It is common to collect water in the water supply system, and when multiple water tanks are installed, the installation of a water supply heating tank, etc., can be rationally omitted, and the use of a heat source such as a steam generator can be rationally used. Considering the use of back pressure turbine, extraction turbine, extraction back pressure turbine, etc., make up water tank etc. and use waste heat steam etc. as appropriate to make reasonable use as a cogeneration system. I can't deny.
以上が特許請求の範囲 〔 1〕 の説明等実施例であるが、 間接抵抗加熱方式等 に倣い、 直接抵抗加熱方式等による自己能動型発電システムを構成し、 特許請 求の範囲 〔 2〕 の規範とした。  The above is an example of the description of the claim [1] .The self-active power generation system using the direct resistance heating method is constructed following the indirect resistance heating method, etc. Norms.
自然対流方式沸騰水炉型直接抵抗加熱方式等による自己能動型発電システム の構成としては、 図 7に示 た様に、 交流電源等制御装置 ( 1 ) 、 排水弁 (2 ) 、 支持スカー ト ( 3 ) 、 直接抵抗加熱発熱体等抵抗心 (ニク ロムまたは鉄ク ロム 等の合金発熱体等複数設ける) (4 ) 、 給水ノズル ( 5 ) 、 炉内水位 ( 6 ) 、 スプレイノズル ( 7 ) 、 ボルト締め (8 ) 、 主蒸気配管等 (再生式加熱等に適 宜活用) (9 ) 、 ドライヤー等電熱器 (10) 、 波板式湿分分離器 (11) 、 主蒸気 止め弁 (調整弁、 タービン等に蒸気を送り活用) (12) 、 0リングシール (13) 、 ワイヤメ ッシュ式湿分分離器 (14) 、 水位調整ノズル等止め弁 (15) 、 耐火ガラ ス等水位計 (16) 、 給水スバージャ等給水環 (17) 、 ステンレス鋼等内張り (18) 、 炉壁端子電極 (周囲に複数設け適宜合金発熱体等抵抗心と結線、 単相交流、 三 相交流など制御系と伴に合理的に給電するとよい) (19) 、 波板式等湿分分離器 ( 20) 、 ドレーン等抽気口、 びに、 バイパス制御系 (21) 、 主蒸気調整弁 (止 め弁等) (22) 、 タービン発電設備等 (23) 、 湿分分離加熱器 (24) 、 蒸気抽気 口バルブ (25) 、 変圧器 (26) 、 送電活用 (27) 、 復水器 (28) 、 給水系循環ポ ンプ (29) 、 直接抵抗加熱発熱体等抵抗心 (30) 、 立置形給水加熱器 (複数設け 活用する) (31) 、 ステンレス鋼等を内張り (32) 、 第 1給水加熱器等制御系 (33) 、 給水系循環ポンプ (34) 、 横置形給水加熱器 (35) 、 直接抵抗加熱発熱体等抵抗 心 (36) 、 ステンレス鋼等を内張り (37) 、 第 2給水加熱器等制御系 (38) 、 給 水系循環ポンプ (39) 、 給水管 (40) 、 給水調整バルブ等 (41) 、 冷却水循環ポ ンプ (42) 、 ステンレス鋼等を内張り (43) 、 冷却水タンク (44) 、 凝縮器 (45) 、 細管等 (46) 、 蒸発器 (熱交換器) (47) 、 圧縮器 (48) 、 補給水バルブ (49) 、 補給水タンク等補給水 (50) 、 ステンレス鋼等を内張り (51) 、 補給水調整弁 (52) 、 交流電源等制御装置 (外部系電力制御装置、 若しくは、 自己能動型として、 い つたん発生した電力を変圧器等により分岐、 制御系を設け合理的に給電サイク ル的に構成するとよい) (53) 、 切り換え給電設備等スィ ッチ (54) 等から成る が、 自然対流方式間接抵抗加熱沸騰水炉型と同様に、 給水系 (立置形給水加熱器、 横置形給水加熱器等) から入ってきた水は、 給水スパジャー等給水環を通り、 均一に分散され、 周辺の水と一緒になり、 腐食防止のため耐熱性ステンレス鋼 等を適宜内張り した、 直接抵抗加熱炉内に留り、 複数の直接抵抗加熱発熱体等 抵抗心を媒体とした、 直接抵抗加熱により加熱沸騰され、 高圧蒸気を発生させ、 上部には、 ワイヤメ ッシュ式湿分分離器、 波板式湿分分離器、 ドライヤー等電 熱器を設け、 残留湿分が除去され、 乾燥蒸気となってタービン発電設備等に送 られる。 As shown in Fig. 7, the configuration of the self-active power generation system using the natural convection type boiling water reactor type direct resistance heating method, etc., includes a control device such as an AC power supply (1), a drain valve (2), a support scar ( 3), resistance cores such as direct resistance heating elements (multiple alloy heating elements such as nickel or iron chrome are provided) (4), water supply nozzle (5), furnace water level (6), spray nozzle (7), Bolt tightening (8), main steam piping, etc. (appropriate use for regenerative heating, etc.) (9), electric heater such as dryer (10), corrugated moisture separator (11), main steam stop valve (regulating valve, (12), O-ring seal (13), wire mesh moisture separator (14), stop valve for water level adjustment nozzle (15), water level gauge for fire resistant glass, etc. (16), Water supply ring such as water supply sparger (17), stainless steel lining (18), furnace wall terminal (A plurality of heaters should be provided in the surrounding area and power should be supplied rationally with a control system such as a resistance core such as an alloy heating element and a connection, single-phase AC, three-phase AC, etc.) (19), Corrugated sheet type moisture separator (20) Bleed port such as drain, bypass control system (21), main steam regulating valve (stop valve, etc.) (22), turbine power generation equipment (23), moisture separator heater (24), steam bleed port valve ( 25), transformers (26), power transmission utilization (27), condensers (28), water supply system circulation pumps (29), resistance cores such as direct resistance heating elements (30), standing water supply heaters (multiple (31), stainless steel lining, etc. (32), first feed water heater control system (33), feed water circulation pump (34), horizontal feed water heater (35), direct resistance heating and heating Body resistance core (36), stainless steel, etc. lining (37), second feed water heater control system (38), feed water circulation pump (39) Water supply pipe (40), water supply control valve, etc. (41), cooling water circulation pump (42), lining stainless steel, etc. (43), cooling water tank (44), condenser (45), thin tube, etc. (46), Evaporator (heat exchanger) (47), compressor (48), make-up water valve (49), make-up water such as make-up water tank (50), lining stainless steel etc. (51), make-up water adjustment valve (52) , AC power supply control device (External power control device or self-active type, always divides generated power by transformer, etc. (53) and switches such as switching power supply equipment (54), etc., but as with the natural convection type indirect resistance heating boiling water reactor type, the water supply system (standing type feed water heater, horizontal Water from a stationary water heater, etc.) passes through a water supply ring such as a water supply sparger, is uniformly dispersed, and is integrated with the surrounding water. To prevent corrosion, it is lined with heat-resistant stainless steel or the like as appropriate. It stays in a heating furnace and is heated and boiled by direct resistance heating using multiple resistance heating elements such as a resistance heating medium as a medium to generate high-pressure steam.The upper part is a wire mesh moisture separator, a corrugated sheet An electric heater such as a moisture separator and dryer is installed to remove residual moisture, and is sent as dry steam to turbine power generation equipment.
間接式に比べ直接式は、 加熱効率が高い事を特長とするが、 蒸気発生装置等 により発生した主蒸気は、 波板式湿分分離器、 バイパス制御系、 主蒸気調整弁 等を設けた配管等 (ステンレス鋼管等) を通り、 調速制御装置 (高速タービン 発電設備等) 等を経て復水器等に導かれる。 復水器で冷却された蒸気は水とな り、 立置形給水加熱器、 横置形給水加熱器等により加熱され、 給水循環ポンプ 等により昇圧、 蒸気発生装置等に給水され、 給水循環サイクルを構成する。 復 水器等の冷却水等は、 海水、 河川、 湖の水等合理的に活用してもよく、 立地条 件等をより選定できる様に、 冷凍サイ クルの原理を活用し、 冷却水タ ンク等を 設け、 適宜、 合理的に構成活用してもよい。  The direct type is characterized by higher heating efficiency than the indirect type, but the main steam generated by the steam generator etc. is piped with a corrugated plate type moisture separator, bypass control system, main steam adjustment valve, etc. (Stainless steel pipes, etc.) and to a condenser, etc., via a speed control device (high-speed turbine power generation equipment, etc.). The steam cooled by the condenser becomes water, which is heated by a vertical feed water heater, horizontal feed water heater, etc., pressurized by a feed water circulation pump, etc., and fed to a steam generator, etc., forming a feed water circulation cycle. I do. Cooling water for condensers and the like may be used rationally, such as for seawater, rivers, and lakes. Link, etc., and may be used rationally as appropriate.
強制対流方式沸騰水炉型直接抵抗加熱蒸気発生装置の構成としては、 図 8に 示した様に、 主蒸気流配管ノズル等 (再生式加熱用蒸気として活用してもよい。 ) The configuration of the forced convection boiling water reactor type direct resistance heating steam generator, as shown in Fig. 8, is a main steam flow pipe nozzle, etc. (It may be used as regenerative heating steam.)
( 1 ) 、 ボルト締め ( 2 ) 、 波板式湿分分離器 (3 ) 、 ワイヤメ ッ シュ式湿分 分離器 (4 ) 、 気水分離器 (5 ) 、 再循環駆動流ノズル ( 6 ) 、 ジェ ッ トボン プ ( 7 ) 、 ステンレス鋼等内張り (8 ) 、 円筒型炉心隔板 (複数設けた直接抵 抗加熱発熱体等抵抗心を包囲する様に構成する) (9 ) 、 再循環流止め弁 (10) 、 再循環ポンプ (11) 、 再循環流調整弁 (12) 、 強制対流による駆動流 (13) 、 支 持スカー ト (14) 、 排水弁 (15) 、 再循環流給水ノズル等 (16) 、 炉心支持ガイ ド (17) 、 直接抵抗加熱発熱体等抵抗心 (複数設ける) (18) 、 炉心へッ ド (19) 、 炉心へッ ド上部配管 (20) 、 給水スパジャー等給水環 (21) 、 給水ノズル (22) 、 耐火ガラス等水位計 (23) 、 水位制御排水弁 (24) 、 スプレイノズル (25) 、 0 リング等シール (26) 、主蒸気調整弁等 (タービン等へ蒸気を送り活用。 ) (27) 、 ドライヤー等電熱器 (28) 、 交流電源等主制御装置 (29) 、 交流電源等制御装置(1), bolt fastening (2), corrugated sheet moisture separator (3), wire mesh moisture separator (4), steam-water separator (5), recirculation drive flow nozzle (6), jet Bottom pump (7), stainless steel lining (8), cylindrical core separator (configured to surround a resistance core such as a plurality of direct resistance heating elements) (9), recirculation stop valve (10), recirculation pump (11), recirculation flow regulating valve (12), drive flow by forced convection (13), support scart (14), drain valve (15), recirculation flow water nozzle, etc. 16), core support guide (17), resistance cores such as direct resistance heating elements (multiple provided) (18), core head (19), core head upper piping (20), water supply sparger, etc. (21), water supply nozzle (22), water level gauge for fire-resistant glass (23), water level control drain valve (24), spray nozzle (25), 0 ring Seal (26), a main steam control valve or the like (use feeding steam to the turbine, and the like.) (27), dryer electric heater (28), an AC power source such as a main control unit (29), an AC power source such as a control device
(外部系電力制御装置、 若しく は、 自己能動型として、 いったん発生した電力 を変圧器等により分岐、 制御系を設け給電、 サイクル的に構成するとよい。 )(As an external power control device, or as a self-active type, once generated power is branched by a transformer or the like, a control system is provided, and power is supplied, so that it may be configured in a cycle.)
( 30) 、 切り換えスィッチ等給電設備 (31) 等から成るが、 給水系から入ってき た水は、 給水スパジャー等給水環によって均一に分散され、 周辺の水と一緒に なり、 直接抵抗加熱炉炉心外側を下降し、 ジエツ トポンプ等によって、 炉心下 部に注入され、 上向きに向きを変え、 炉心から熱を受けながら、 加熱沸騰通過 し、 炉心上部 (炉心へッ ド) で、 気水分離器に行き、 図 2の d ) に示した様に、 入口にあるラセン状の静止案内羽根等によつて回転運動を与えられ、 自由うず 運動をしながら、 上昇していく間に遠心力効杲によって水と蒸気に分離される。 分離された水は給水等と混合し炉心にもどされる。 一方分離された蒸気は、 上 部ワイヤメ ッシュ式湿分分離器、 波扳式湿分分離器等によって残留湿分が除去 され、 ドライヤー等電熱器 (防護密閉した間接抵抗発熱体等による電熱線等を、 適宜、 スぺーサ一等で固定し、 制御系とともに活用する。 ) などの蒸気乾燥器 により、 乾燥蒸気となって、 タービン等に導かれる。 (30), power supply facilities such as switching switches (31), etc. The water is evenly dispersed by the water supply ring such as a water supply sparger, and combined with the surrounding water, descends directly outside the core of the resistance heating furnace, is injected into the lower part of the core by a jet pump, etc., and turns upward After passing through the heating boil while receiving heat from the core, it goes to the steam-water separator at the upper part of the core (core head), and as shown in Fig. 2 d), the spiral stationary guide vanes at the inlet Rotational motion is given by, etc., and while separating, water and steam are separated by centrifugal force while climbing while moving freely. The separated water is mixed with water supply and returned to the core. On the other hand, residual moisture is removed from the separated steam by an upper wire mesh type moisture separator, a wave type moisture separator, etc., and an electric heater such as a dryer (a heating wire such as a protective sealed indirect resistance heating element etc.) Is appropriately fixed with a spacer, etc., and used together with the control system.) The steam is dried by a steam dryer such as, and guided to a turbine, etc.
直接抵抗加熱炉炉心等は、 強制対流方式間接抵抗加熱型等で説明した様に、 円筒状のステンレス鋼製構造物で炉心を囲み、 給水の下降流と炉心を冷却する 上昇流等を分離する様に形づく るが、 炉心は、 炉心支持ガイ ドと上部支持ガイ ド等との間に、 複数設けた直接抵抗加熱発熱体等抵抗心と炉壁端子電極等を、 適宜結線し、 単相交流、 若しく は、 三相交流等を主制御装置等により給電、 即 ち、 能動的活用等は勿論の事、 自己能動型として、 いったん発生した電力を変 圧器等より分岐、 制御系を設け、 直接抵抗加熱炉の余熱等の活用により、 瞬時 に切り換え給電、 サイクル的に構成活用するとよい。  The core of the direct resistance heating furnace, etc., surrounds the core with a cylindrical stainless steel structure, as described for the forced convection type indirect resistance heating type, etc., and separates the downward flow of feedwater and the upward flow that cools the core. The core is connected in a single-phase manner by connecting a plurality of resistance cores such as direct resistance heating elements and furnace wall terminal electrodes between the core support guide and the upper support guide as appropriate. AC, or three-phase AC, etc. are supplied by the main control device, etc., in addition to active utilization, etc., as well as self-active type, once generated power is branched from a transformer etc. and a control system is provided. It is advisable to switch power supply instantaneously by utilizing the residual heat of the direct resistance heating furnace, etc.
再循環系は、 再循環ポンプ、 ジニッ トポンプ、 配管、 弁等から成り立つてい るが、 必要に応じ複数設け活用するとよい。  The recirculation system consists of a recirculation pump, a ginnit pump, pipes, valves, etc. It is recommended that multiple recirculation systems be used if necessary.
炉壁内部の構成等において 、 ステンレス鋼等を適宜内張り し、 各種ノズル、 止め弁、 調整弁、 排水口及び弁、 耐火ガラス等による水位計、 各種固定ガイ ド 等を設け、 適宜合理的に構成活用する。  The inside of the furnace wall is appropriately lined with stainless steel, etc., and various nozzles, stop valves, adjustment valves, drain ports and valves, water level gauges made of fire-resistant glass, etc., various fixed guides, etc. use.
以上の装置等は、 自然対流方式等で説明した様に、 バイパス制御系、 及び、 調速制御等タービン発電設備等とともに給水循環系 (立置形給水加熱器、 横置 形給水加熱器、 給水循環ポンプ、 復水器等) により、 サイクル的に構成活用す る。  As described in the natural convection method, etc., the above equipment, etc. are connected to the water supply circulation system (stand-alone feed water heater, horizontal feed water heater, Pumps, condensers, etc.) and use them in a cyclical manner.
加圧水炉型直接抵抗加熱方式等活用による自己能動型高速タ一ビン発電シス テムの構成としては、 図 10に示した様に、 交流電源等主制御装置 ( 1 ) 、 炉壁端 子電極等 ( 2 ) 、 ボルト締め ( 3 ) 、 0リ ング (シールリ ング) ( 4 ) 、 空気 抽出口 (ボルト締め) (5 ) 、 直接抵抗加熱発熱体等抵抗心 (複数設ける) (6 ) 、 固定ガイ ド (7 ) 、 加圧器 (適宜、 一組だけ活用してもよい) (8 ) 、 液浸式 電熱器等 (9 ) 、 蒸気発生器 (10) 、 一次冷却材ポンプ (11) 、 タービン発電設 備等 (12) 、 湿分分離加熱器 (13) 、 復水器 (14) 、 給水ポンプ等 (15) 、 給水 加熱器 (複数活用するとよい。 ) (16) 、 変圧器 (17) 、 送電 (18) 、 外部系、 若しく は、 自己能動型として、 いったん発生した電力を変圧器等より分岐した 電源等制御装置 (制御系を設け、 切り換え給電設備とともに、 サイクル的に活 用してもよい。 ) (19) 、 第一切り換え給電設備等 (20) 、 第二切り換え給電設 備等 (21) 、 等から成るが、 自然対流方式等を適宜密閉形として構成したものと なり、 一次冷却材循環系設備等の蒸気発生器、 一次冷却材ポンプ、 加圧器等の 設備を配置して構成する。 加圧水炉型直接抵抗加熱炉の上部、 蓋は、 取りはず し可能なように、 フランジ等を取り付け、 ボルト締めし、 内壁面等はステンレ ス鋼等を適宜内張り し、 複数の対流を可能とした、 直接抵抗加熱発熱体等抵抗 心を適宜炉壁端子電極等と結線し、 取り付け、 上部にステンレス鋼管製 0リ ン グを取り付けて空気抽出口を設けてメネジを切り、 ボルト形の蓋で密閉活用す るとよい。 一次冷却材入口ノズル、 出口ノズル、 排水口等を適宜設け、 蒸気発 生器、 一次冷却材ポンプ、 加圧器等を設置し、 一次冷却材循環系を構成する。 一般的な蒸気発生器は、 図 4に示したが、 縦置 U字管式で、 ィ ンコネル製伝熱 管を使用している。 一次冷却材は、 蒸気発生器下部入口ノズルから入り、 伝熱 管を経て出口ノズルから流出するが、 蒸気発生器二次側への給水は、 伝熱管上 端のすぐ上の位置から給水環を通じて行ない、 気水分離器で分離された下降水 と混合しながら伝熱管周囲の円環状の部分を下降した後、 方向を変えて、 伝熱 管部を上昇し、 蒸気は上部の気水分離器、 および、 ドライヤー等を通り、 バイ パス制御系等を設けたステンレス鋼管等を通るとともに、 調速制御等のタービ ン発電設備等を経て、 復水器、 給水循環ポンプ、 給水加熱器等により、 二次側 給水循環系を構成する。 給水加熱器の熱源等は、 タービンから抽気された蒸気 を活用するのが一般的であり、 システムの構成としては、 蒸気発生器、 加圧器、 タービン発電設備等は、 適宜、 一組で活用してもよく、 原子力発電等の設備、 付属設備等の合理的活用と応用を否めるものではない。 As shown in Fig. 10, the configuration of a self-active high-speed turbine power generation system utilizing a pressurized water reactor type direct resistance heating system, etc., consists of a main control device such as an AC power supply (1), furnace wall terminal electrodes ( 2), bolt tightening (3), 0 ring (seal ring) (4), air extraction port (bolt tightening) (5), direct resistance heating heating element, etc. (provided with multiple resistance cores) (6), fixed guide (7), pressurizer (only one set may be used as appropriate) (8), immersion type electric heater, etc. (9), steam generator (10), primary coolant pump (11), turbine generator Equipment (12), Moisture Separator / Heater (13), Condenser (14), Feed Water Pump, etc. (15), Feed Water Heater (It is good to use more than one.) (16), Transformer (17), Power Transmission (18) An external system or a self-active type, such as a power supply control device that branches off the power once generated from a transformer or the like (a control system is provided, and it can be used cyclically together with switching power supply equipment). (19), first switching power supply equipment, etc. (20), second switching power supply equipment, etc. (21), etc., but natural convection method etc. are configured as a closed type as appropriate, and primary cooling Equipment such as a steam generator such as a material circulation system, a primary coolant pump, and a pressurizer will be arranged. The upper part and lid of the pressurized water reactor type direct resistance heating furnace are detachable by mounting flanges and bolts, and tightening bolts.The inner wall etc. are appropriately lined with stainless steel etc. to enable multiple convection Connect the resistance core such as a direct resistance heating element to the furnace wall terminal electrode, etc. as appropriate, attach it, attach a stainless steel tube 0 ring at the top, provide an air extraction port, cut the female thread, and seal with a bolt type lid It should be used. The primary coolant inlet nozzle, outlet nozzle, drain outlet, etc. will be provided as appropriate, and a steam generator, primary coolant pump, pressurizer, etc. will be installed to configure the primary coolant circulation system. The general steam generator is shown in Fig. 4, but it is a vertical U-tube type and uses Inconel heat transfer tubes. The primary coolant enters from the lower inlet nozzle of the steam generator and flows out of the outlet nozzle through the heat transfer pipe.Water supply to the steam generator secondary side is through the water supply ring from a position just above the upper end of the heat transfer pipe. After lowering the annular part around the heat transfer tube while mixing with the descending water separated by the steam separator, the direction is changed and the heat transfer tube is raised. , And through a stainless steel pipe provided with a bypass control system, etc., through a dryer, etc., and through a turbine power generation facility, such as a speed control, etc., through a condenser, feed water circulation pump, feed water heater, etc. Construct secondary water supply circulation system. Generally, steam extracted from the turbine is used as the heat source for the feed water heater, and the steam generator, pressurizer, turbine power generation equipment, etc. are used as a set as appropriate. It does not mean that the rational use and application of facilities such as nuclear power generation and auxiliary facilities are not denied.
以上の自然対流方式、 強制対流方式、 加圧型等の直接抵抗加熱炉内に設置さ れた複数の直接抵抗加熱発熱体等抵抗心の給電は、 交流電源等主制御装置によ り行なうが、 システムとして、 能動的活用は許より、 外部系電力及び制御系の 合理的活用、 若しくは、 自己能動型 (ク ロスコ ンパウ ン ド形発電として構成し た場合等をも含め) として、 いったん発生した電力は、 変圧器等より分岐、 制 御系を設け、 保全設備等稼働設備への給電、 及び、 直接抵抗加熱炉等の余熱の 活用により、 瞬時に切り換え、 直接抵抗加熱発熱体等抵抗心へ給電 (制御系を 設け、 適宜結線、 単相、 及び、 △結線、 Y結線などの三相交流等を並列に結線 するなどの合理的活用は自明の事である。 ) する事によりサイクル的に構成活 用するとよい。 尚、 図 6の a ) 、 b ) 、 c ) に示した再生式の給水加熱器、 給 水加熱タンク等の適宜合理的活用を否めるものではなく、 (給水加熱器等の熱 源は、 タービン抽気等を活用し、 作業後は、 復水器へと導き、 給水系に回収さ れるのが、 一般的であり、 複数設けた場合等は、 給水加熱タンク等の設置を合 理的に省いてよい。 また、 蒸気発生装置等の熱源等を合理的に用いてもよい。 ) 背圧タービン、 抽気タービン、 抽気背圧タービン等の活用に鑑み、 補給水タン ク等を設けて、 適宜、 廃熱蒸気等の利用による、 コジェネレーショ ンシステム としての合理的活用等を否めない。 The above-mentioned natural convection method, forced convection method, pressurized type, etc. are supplied by a main control device such as an AC power supply to the resistance cores such as the direct resistance heating heating elements installed in the direct resistance heating furnace. As a system, active utilization is not permitted, but the external power and control systems are rationally utilized, or self-active (including when configured as a cross-compound power generation system). Is equipped with a branch and control system from a transformer, etc., to supply power to operating equipment, such as maintenance equipment, and to use the residual heat of a direct resistance heating furnace, etc., to switch instantaneously and supply power to the resistance core, such as a direct resistance heating element. (Provide a control system and connect three-phase alternating currents in parallel, such as connection, single-phase, and △ connection, Y connection, etc. It is self-evident to use it reasonably. It is advisable to use the configuration cyclically by doing It should be noted that the use of regenerative feedwater heaters and feedwater heating tanks shown in a), b) and c) in Fig. 6 is not deemed appropriate and reasonable. It is common practice to utilize turbine bleed air, etc., to guide the system to a condenser after work, and to collect it in the water supply system.If multiple units are installed, it is reasonable to install a water supply heating tank, etc. In addition, a heat source such as a steam generator may be used rationally.) In consideration of the use of the back pressure turbine, the bleeding turbine, the bleeding back pressure turbine, etc. The use of waste heat steam, etc. cannot be denied for rational use as a cogeneration system.
更に、 直接抵抗加熱方式は、 直接抵抗加熱発熱体等抵抗心を媒体として用い たものであり、 電流が漏れるため、 図 9に示した様に、 炉壁 (外壁) と耐熱性 ステンレス鋼等を適宜内張り した内壁との間に、 アルミナ、 マグネシア等を用 いて絶縁するとよい。 また、 直接抵抗加熱発熱体等抵抗心は丈夫な様に適宜支 持鋼棒等に巻き付け活用してもよい。 自然対流方式、 強制対流方式、 加圧型等 の抵抗炉、 及び、 給水加熱器等に於いて、 適宜、 合理的に適用されるものであ 作用等に於ける説明とも成るものであるが、 既存の原子力発電等発電出力容 量設備としては、 l, 000M w級 (100万 K w ) 以上のものもあり、 電気炉等電熱器 の消費電力等と、 水、 及び、 高圧蒸気等の性質を活用し、 システムを稼働する が、 水の沸点は 100°C、 臨界温度は 374°Cで、 臨界圧力は 226 k c nfであり、 原子力発電の加圧水炉型の発電で活用されている蒸気発生器の一次冷却材等に 於いては、 約 300°Cで、 約 157気圧の熱水が導かれ合理的に活用されている。 水 1 k gを 1 °C上昇させる熱量は l k c a lである。 l k w h = 860 k c a l の関係があり、 30 t、 300°Cに上昇させる熱量は、 9, 000, 000 k c a 1、 電力量は 約 10, 500 k w hである、 仮にシステムを稼働する電力量が、 20, 000 k w h以上必 要としても、 発電機等発電出力容量設備等は、 50万 k w〜100万 k w級以上のも のがあり、 充分能動的発電が可能であり、 発電出力容量設備等の規模を大き く するほど能率的である。 (稼働消費電力等と発電機等発電出力容量設備等どの 間には落差があり、 消費電力等は発電出力容量設備等の 5 %〜10%で構成したと しても充分能率的活用が可能である。 )  Furthermore, the direct resistance heating method uses a resistance core such as a direct resistance heating element as a medium, and leaks current. Therefore, as shown in Fig. 9, the furnace wall (outer wall) and heat-resistant stainless steel are used. Alumina, magnesia, etc. should be used to insulate between the lining and the inner wall. The resistance core such as a direct resistance heating element may be appropriately wound around a supporting steel rod or the like so as to be used. In natural resistance convection method, forced convection method, pressurized type resistance furnace, and feed water heater, etc., it is appropriately and rationally applied, and it also serves as an explanation in action, etc. Some of the power generation capacity facilities for nuclear power generation, such as nuclear power plants, have a capacity of l, 000 MW class (1,000,000 Kw) or more. The power consumption of electric heaters such as electric furnaces and the properties of water, high-pressure steam, etc. Utilizes and operates the system, but the boiling point of water is 100 ° C, the critical temperature is 374 ° C, and the critical pressure is 226 kc nf.The steam generator used for pressurized water reactor type power generation in nuclear power generation In the primary coolant, etc., about 157 atm of hot water at about 300 ° C is led and used rationally. The amount of heat that raises 1 kg of water by 1 ° C is lkcal. There is a relationship of lkwh = 860 kcal, the amount of heat to raise to 30 t, 300 ° C is 9, 000, 000 kca 1, and the amount of electric power is about 10, 500 kwh. , 000 kWh or more is required, but there are power generation output facilities such as generators of 500,000 kw to 1,000,000 kW class or more, capable of sufficiently active power generation, and the scale of power generation output capacity facilities The larger the value, the more efficient. (There is a gap between operating power consumption etc. and power generation output capacity equipment such as generators. Even if the power consumption is 5% to 10% of the power generation output capacity equipment etc., it can be used efficiently enough Is.)
関連ある電熱応用等を記述すると、 抵抗炉の電気容量の選定にあたつては、 炉の形式、 加熱物の処理量、 加熱温度などの要素を含めて検討されるが、 実験 式に経験値を加味して決定されるのが普通であり、 発熱体は、 用途、 雰囲気な どに応じて、 適宜、 選定され、 一般に、 1, 000°C以下の炉では、 ニクロムまたは 鉄クロム発熱体 (合金発熱体) 等を使用し、 更に高温の場合は、 炭化ゲイ素、 カンタルなどを用いる、 また、 1,400°C以上の炉では、 ゲイ化モリブデン発熱体 が使用されている。 炉壁は耐火れんが、 及び、 断熱材によって形成されるが、 耐熱鋼等で内張り し活用する場合もある。 When describing the relevant electric heating applications, etc., the selection of the electric capacity of the resistance furnace will be examined in consideration of factors such as the furnace type, the amount of heat treatment, and the heating temperature. In general, the heating element is selected appropriately according to the application, atmosphere, etc., and generally, in a furnace below 1,000 ° C, nichrome or Heating elements such as iron chromium (alloy heating elements) are used, and when the temperature is higher, use is made of, for example, silicon carbide or kanthal. In furnaces at 1,400 ° C or higher, molybdenum-gaiting heating elements are used. The furnace wall is made of refractory brick and heat insulating material, but sometimes it is lined with heat-resistant steel and used.
実施される間接抵抗加熱炉等 (炉壁) の使用材料は、 低合金鋼等で肉厚は丈 夫なように厚めに構成し、 耐熱性ステンレス鋼等で内張り し活用するとよい。 抵抗炉の電源は、 ほとんど、 三相 200 V、 単相 100Vである。  The materials used for the indirect resistance heating furnace (furnace wall) to be implemented should be made of low alloy steel, etc., and be made thicker so that the wall thickness is durable, and used by lining with heat-resistant stainless steel. The power supply of the resistance furnace is almost 200 V three-phase and 100 V single-phase.
密閉形発熱体には、 合金発熱体などをマイ力 (雲母) で絶縁して金属管内に おさめた、 スペースヒーターや、 石炭、 アルミナ、 マグネシアなどの粉末で絶 縁して金属管におさめたシ一ズ線、 力ロッ ト線、 アルミ力ヒータ一などがあり、 実用化されている。  The sealed heating element is made by insulating alloy heating elements and the like in a metal tube by insulating them with mica (mica). Insulating them with a space heater or powder of coal, alumina, magnesia, etc. and putting them in a metal tube. There is a single wire, power lot wire, aluminum power heater, etc., which have been put into practical use.
直接抵抗加熱は、 内部加熱であり、 被熱物が最高温度になるが、 水のように 比較的抵抗率の高いものは、 高電圧で加熱し、 電気ボイラとして実用化されて いる。 間接式に比べて、 加熱効率が高い事を特長とし、 抵抗心として、 二クロ ムまたは鉄クロム等の合金発熱体等を活用し構成したが、 電流が漏れるため、 直接抵抗加熱炉、 炉壁等の内壁面に、 アルミ ナ、 マグネシア等で絶縁し、 更に 耐熱性ステンレス鋼等で内張り し活用するとよい。  Direct resistance heating is internal heating, in which the object to be heated reaches the highest temperature. However, those with relatively high resistivity, such as water, are heated at a high voltage, and are practically used as electric boilers. Compared with the indirect type, it features higher heating efficiency, and it is configured using a heating element such as dichromium or iron chromium as the resistance core. It is advisable to insulate the inner wall with aluminum, magnesia, etc., and line it with heat-resistant stainless steel.
電気学会発行 (電気工学ハン ドブックより抜粋) 電気加熱応用装置性能一覧 表によると、 〔用途〕 特殊鋼の再溶解、 〔構造概要〕 40tエレク トロスラグ再溶 解炉、 〔電気方式〕 単相 125V、 〔設備電力〕 5,632x 2 (kw) 、 〔温度調節方 法〕 可飽和リアク トル (電流制御) 、 自動電極調整 (電圧制御) 、 〔発熱体〕 スラグ抵抗、 〔加熱作業部の きさ〕 51 x 240 x 420(c m)、 〔作業部温度〕 1, 700~1,800°C、 〔作業能力〕 (原単位電力量) 1,500 k whZ t、 ( 1回の加熱 時間など) 16時間、 及び、 〔用途〕 特殊鋼の再溶解、 〔構造概要〕 2.7tエレク トロスラグ再溶解炉、 〔電気方式〕 単相 85V、 〔設備電力〕 1,300 (kw) 、 〔温 度調節方式〕 可飽和リアク トル (電流制御) 、 自動電極調整 (電圧制御) 、 〔発 熱体〕 スラグ抵抗、 〔加熱作業部の大きさ〕 550 x 180 ( c m) 〔作業部温度〕 1,700〜1, 800° ( 、 〔作業能力〕 (原単位電力量) 1, 750k w h Z t、 ( 1回め'加 熱時間など) 6.4時間と示され、 産業用電気加熱応用 (例) 性能一覧表 (電気学 会編、 新版電気工学ハン ドブックより抜粋) によると、 鋼棒の加熱を用途とし たもので、 構造概要が 60 ビレツ トヒータ、 電気方式が三相 3, 300/6, 000 V、 設 備電力 400 (kw) 、 加熱作業部の大きさ 110 X 180 ( c m) 、 作業部温度 1,250 °Cと示されている。 加圧水炉形原子力発電で活用される加圧器の液浸式電熱器 は、 550Mw級で 1, 000 k w、 1, 100M w級で 1, 800 k wのものが活用されている。 北海道電力㈱泊原子力発電所は加圧型のものであるが、 蒸気発生器では、 約 300°Cの熱水を循環させ、 579, 000 k wの発電を可能としているが、 電熱器等で以 上の条件等を満し、 300°Cの加熱で蒸気を発生させ、 増幅作用の伴った能動的な 発電は充分可能であり、 その他、 電熱応用等による各種加熱溶解特性等を参考 にし、 水の臨界温度、 臨界圧力等と、 既存の発電機等発電出力容量設備等を列 記すると、 いったん発生した電力を活用し、 制御系を設け、 自己能動型発電シ ステムとして、 サイクル的に構成活用する事は充分に可能である。 即ち、 間接 抵抗加熱方式、 及び、 直接抵抗加熱方式に於いても、 永久機関としての作用を 及ぼすと伴に、 発電機等により発生した余剰電力等の高度有効利用が可能とな る。 Published by the Institute of Electrical Engineers of Japan (excerpted from the Electrical Engineering Handbook) According to the electric heating application equipment performance table, [Applications] Remelting of special steel, [Structural outline] 40t electroslag remelting furnace, [Electrical method] Single-phase 125V [Equipment power] 5,632x2 (kw), [Temperature adjustment method] Saturable reactor (current control), automatic electrode adjustment (voltage control), [heating element] Slag resistance, [size of heating work section] 51 x 240 x 420 (cm), [Working part temperature] 1,700 ~ 1,800 ° C, [Working capacity] (Intensity of power consumption) 1,500 k whZ t, (One heating time etc.) 16 hours, and , [Applications] Remelting of special steel, [Structural outline] 2.7t electroslag remelting furnace, [Electrical method] Single-phase 85V, [Equipment power] 1,300 (kw), [Temperature control method] Saturable reactor Torr (current control), automatic electrode adjustment (voltage control), [heating element] slag resistance, [heating operation [Working part size] 550 x 180 (cm) [Working part temperature] 1,700-1,800 ° (, [Working capacity] (Electric power consumption) 1,750k wh Zt, (First time heating time) Etc.) It is indicated as 6.4 hours, and according to the Industrial Electric Heating Application (Example) Performance Table (extracted from the Institute of Electrical Engineers of Japan, excerpted from the new edition of Electric Engineering Handbook), it is used for heating steel rods. 60-bit heater, three-phase 3,300 / 6,000 V electric system, installed power 400 (kw), size of heating work area 110 X 180 (cm), work area temperature 1,250 ° C. The immersion-type electric heater of the pressurizer used in the pressurized water reactor type nuclear power generation has a capacity of 1,000 kw for 550 Mw class and 1,800 kw for 1,100 MW class. Hokkaido Electric Power Tomari Nuclear Power Station is a pressurized type, but the steam generator circulates hot water at about 300 ° C and can generate 579,000 kW, but the electric heater etc. The conditions described above are satisfied, and steam is generated by heating at 300 ° C. Active power generation with amplifying action is sufficiently possible. When the critical temperature, critical pressure, etc., and existing power generation facilities such as generators, etc. are listed, once generated power is used, a control system is provided, and a self-active power generation system is configured and used in a cycle. Things are possible enough. That is, in the indirect resistance heating method and the direct resistance heating method, the function as a permanent engine is provided, and the highly efficient use of surplus electric power generated by a generator or the like becomes possible.
産業上の利用可能性 Industrial applicability
コジエネレーショ ン発電システムとしての活用も可能で、 ク リ一ンエネルギー であり、 環境保全に役立つとともに、 能動的増幅作用の伴った大規模な発電が 可能となつた。  It can also be used as a cogeneration power generation system, is clean energy, is useful for environmental conservation, and is capable of large-scale power generation with active amplification.
サイクル的に構成する事により、 従来の消費と言う概念は、 耐用年数等によ る償却と言い換える事が出来る様になった。  By constructing in a cycle, the conventional concept of consumption can be translated into amortization based on its useful life.
以上が特許請求の範囲に於ける説明であるが、 可能な限りの小規模の発電設 備等の構成と活用を否めるものではなく、 間接抵抗加熱の原理、 及び、 直接抵 抗加熱の原理を活用した、 明らかな能動的発電、 及び、 自己能動型として構成 し、 サイクル的に活用した場合等は、 本発明に抵触する事は勿論であり、 それ ぞれの特許請求の範囲に於いて、 自動制御装置、 シーケンス技術、 機器、 計装 設備等の活用は自明の事であり、 発明の要旨に反しない範囲に於いて、 適宜、 設計改変、 構成と活用、 実施可能な事は勿論である。  The above is the description in the claims, but it does not deny the construction and utilization of the smallest possible power generation equipment, etc., the principle of indirect resistance heating and the principle of direct resistance heating In the case where the system is constructed as an active power generation and self-active type utilizing the system, and the system is utilized in a cyclic manner, the invention is, of course, in conflict with the present invention. The use of automatic control devices, sequence technology, equipment, instrumentation equipment, etc. is self-evident, and it is of course possible to make design modifications, configurations, utilization, and implementation within the scope that does not depart from the gist of the invention. is there.

Claims

WO 00/42293 2 Q PCT/JPOO/00091 請 求 の 範 囲 WO 00/42293 2 Q PCT / JPOO / 00091 Scope of request
1、 間接抵抗加熱 (間接抵抗加熱炉) の原理を活用し、 自然対流方式蒸気発生 装匱、 強制対流方式蒸気発生装置、 加圧水炉型等の蒸気発生器等を適宜構成し、 高圧蒸気を発生させて、 その蒸気を高速タービンに送り、 所要の発電機等を回 転させて、 能動的に電力を発生させ、 給水循環系等を構成するとともに、 いつ たん発生した電力は、 変圧器等より分岐、 制御系を設け、 間接抵抗加熱炉等に 設置された密閉型間接抵抗発熱体等の電源、 及び、 稼働設備等の電源を切り換 え給電し、 自己能動型発電システムとして稼働、 サイクル的に構成する事によ り、 発電機等の余剰電力、 及び、 システムに補給水タンク等を適宜設け、 廃熱 蒸気等を活用する方法。 1. Utilize the principle of indirect resistance heating (indirect resistance heating furnace) to appropriately configure a natural convection type steam generator, a forced convection type steam generator, a steam generator such as a pressurized water reactor type, etc. to generate high-pressure steam Then, the steam is sent to a high-speed turbine to rotate a required generator, etc., to actively generate electric power, constitute a water supply circulation system, etc., and the generated electric power is transmitted from a transformer, etc. Branch and control systems are provided, and power is switched by switching the power supply of closed-type indirect resistance heating elements and other equipment installed in the indirect resistance heating furnace, etc., and the power supply of operating equipment, etc., and operates as a self-active power generation system. By using surplus power from a generator, etc., and using a make-up water tank or the like in the system as appropriate, waste heat steam, etc. can be used.
2、 請求の範囲 〔 1〕 の規範等に基づき、 直接抵抗加熱 (直接抵抗加熱炉) の 原理を活用し、 自然対流方式蒸気発生装置、 強制対流方式蒸気発生装置、 加圧 水炉型等の蒸気発生器等を適宜構成し、 高圧蒸気を発生させて、 その蒸気を高 速タービンに送り、 所要の発電機等を回転させて、 能動的に電力を発生させ、 給水循環系を構成するとともに、 いったん発生した電力は、 変圧器等により分 岐、 制御系を設け、 直接抵抗加熱炉等に設置された複数の直接抵抗発熱体等抵 抗心の電源、 及び、 稼働設備等の電源を切り換え給電し、 自己能動型発電シス テムとして稼働、 サイクル的に構成する事により、 発電機等の余剰電力、 及び、 システムに補給水タンク等を適宜設け、 廃熱蒸気等を活用する方法。  2. Based on the standard of claim [1], etc., utilizing the principle of direct resistance heating (direct resistance heating furnace), the natural convection type steam generator, forced convection type steam generator, pressurized water furnace type, etc. Appropriately configure the steam generator, etc., generate high-pressure steam, send the steam to the high-speed turbine, rotate the required generator, etc., generate power actively, and configure the water supply circulation system. Once the power is generated, it is branched by a transformer or the like, a control system is provided, and the power supply of the resistive core such as a plurality of direct resistance heating elements installed in the direct resistance heating furnace, etc., and the power supply of the operating equipment etc. are switched. A method that uses power supply, operates as a self-active power generation system, and configures it in a cyclical manner, using surplus power from a generator, etc., and providing a make-up water tank, etc., as appropriate in the system, and utilizing waste heat steam.
PCT/JP2000/000091 1999-01-12 2000-01-11 Self-active generating system by resistance heating WO2000042293A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU18932/00A AU1893200A (en) 1999-01-12 2000-01-11 Self-active generating system by resistance heating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/43634 1999-01-12
JP4363499 1999-01-12

Publications (1)

Publication Number Publication Date
WO2000042293A1 true WO2000042293A1 (en) 2000-07-20

Family

ID=12669308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000091 WO2000042293A1 (en) 1999-01-12 2000-01-11 Self-active generating system by resistance heating

Country Status (2)

Country Link
AU (1) AU1893200A (en)
WO (1) WO2000042293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535319A (en) * 2012-08-13 2015-12-10 ソ、ヨンホSEO, Young Ho Electric generator using electric furnace
WO2021118550A1 (en) * 2019-12-11 2021-06-17 Bl Technologies, Inc. Carbon measurements in aqueous samples using oxidation at elevated temperatures and pressures created by resistive heating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134766A (en) * 1979-04-10 1980-10-20 Kohei Takano Fuelless turbine engine
JPH05130751A (en) * 1991-11-05 1993-05-25 Ishikawajima Harima Heavy Ind Co Ltd Cogeneration apparatus
JPH09209714A (en) * 1996-01-31 1997-08-12 Mitsubishi Heavy Ind Ltd Composite power generating device with reactor coolant heating steam generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134766A (en) * 1979-04-10 1980-10-20 Kohei Takano Fuelless turbine engine
JPH05130751A (en) * 1991-11-05 1993-05-25 Ishikawajima Harima Heavy Ind Co Ltd Cogeneration apparatus
JPH09209714A (en) * 1996-01-31 1997-08-12 Mitsubishi Heavy Ind Ltd Composite power generating device with reactor coolant heating steam generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535319A (en) * 2012-08-13 2015-12-10 ソ、ヨンホSEO, Young Ho Electric generator using electric furnace
US9759084B2 (en) 2012-08-13 2017-09-12 Young Ho Seo Power generating device using electric furnace
WO2021118550A1 (en) * 2019-12-11 2021-06-17 Bl Technologies, Inc. Carbon measurements in aqueous samples using oxidation at elevated temperatures and pressures created by resistive heating

Also Published As

Publication number Publication date
AU1893200A (en) 2000-08-01

Similar Documents

Publication Publication Date Title
EP1799971B1 (en) Electric power plant with thermal storage medium
CN102165269A (en) Solar collector
US20080219651A1 (en) Thermal Storage Medium
WO2016127527A1 (en) Heat exchange system and nuclear reactor system
KR101028634B1 (en) Auxiliary generation system by surplus steam of power station
CN1240961C (en) Water vaporization method and device as well as medium frequency induced water vaporization method and device
WO2000042293A1 (en) Self-active generating system by resistance heating
Hallgrímsdóttir et al. The geothermal power plant at Hellisheiði, Iceland
RU2463460C1 (en) Condensation steam power plant
RU92934U1 (en) UNIT OF FUEL GAS PREPARATION UNIT
CN203146047U (en) Screw expander type smoke waste heat power generation device
CN206596322U (en) A kind of extra-high voltage carborundum converter valve cooling system
Haunstetter et al. Slag as an inventory material for heat storage in a concentrated solar tower power plant: Experimental studies on design and performance of the thermal energy storage
CN108088295B (en) Method of operating a heat exchange system having a bypass conduit and such a heat exchange system
Ürlings et al. Design of a direct thermal oil based thermocline thermal energy storage for a concentrating solar power plant
WO2002077448A1 (en) Self-active power generation system by induction heating system and others
Willwerth et al. Commissioning and tests of a mini CSP plant
CN106382620A (en) Low-pressure water supply system for steam extraction and backheating of power station unit
RU119555U1 (en) ELECTRIC GAS HEATER
WO2000048298A1 (en) Self-active power generating system composed mainly of dielectric heating type such as by magnetron
US20200363138A1 (en) Thermal battery and electricity generation system
CN219756337U (en) Automatic blowdown heat recovery unit of boiler
CN106764995A (en) A kind of heat pipe type waste heat reclaiming device
CN2684092Y (en) Generating set utilizing waste heat of boiler flue gas
CN219775696U (en) Instant heating type electric steam generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 593840

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase