WO2000039152A1 - Subtiline stable et ses procedes de preparation - Google Patents
Subtiline stable et ses procedes de preparation Download PDFInfo
- Publication number
- WO2000039152A1 WO2000039152A1 PCT/US1999/030938 US9930938W WO0039152A1 WO 2000039152 A1 WO2000039152 A1 WO 2000039152A1 US 9930938 W US9930938 W US 9930938W WO 0039152 A1 WO0039152 A1 WO 0039152A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subtilin
- stable
- composition
- column
- effective
- Prior art date
Links
- 108010082567 subtilin Proteins 0.000 title claims abstract description 108
- RKLXDNHNLPUQRB-TVJUEJKUSA-N chembl564271 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]2C(C)SC[C@H](N[C@@H](CC(N)=O)C(=O)NC(=O)[C@@H](NC2=O)CSC1C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NC(=C)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H]1NC(=O)C(=C\C)/NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]2NC(=O)CNC(=O)[C@@H]3CCCN3C(=O)[C@@H](NC(=O)[C@H]3N[C@@H](CC(C)C)C(=O)NC(=O)C(=C)NC(=O)CC[C@H](NC(=O)[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC=4C5=CC=CC=C5NC=4)CSC3)C(O)=O)C(C)SC2)C(C)C)C(C)SC1)C1=CC=CC=C1 RKLXDNHNLPUQRB-TVJUEJKUSA-N 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 19
- 230000003993 interaction Effects 0.000 claims abstract description 13
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 8
- 238000010828 elution Methods 0.000 claims abstract description 7
- 150000001413 amino acids Chemical group 0.000 claims abstract description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 24
- 235000013305 food Nutrition 0.000 claims description 7
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 6
- 230000004071 biological effect Effects 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 239000001963 growth medium Substances 0.000 claims description 5
- 244000063299 Bacillus subtilis Species 0.000 claims description 4
- 238000004007 reversed phase HPLC Methods 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 3
- 208000035143 Bacterial infection Diseases 0.000 claims description 2
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 2
- 241000193830 Bacillus <bacterium> Species 0.000 claims 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 15
- 108090000765 processed proteins & peptides Proteins 0.000 description 13
- 229920001184 polypeptide Polymers 0.000 description 11
- 102000004196 processed proteins & peptides Human genes 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- -1 about 5-fold Chemical compound 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- NVNLLIYOARQCIX-MSHCCFNRSA-N Nisin Chemical compound N1C(=O)[C@@H](CC(C)C)NC(=O)C(=C)NC(=O)[C@@H]([C@H](C)CC)NC(=O)[C@@H](NC(=O)C(=C/C)/NC(=O)[C@H](N)[C@H](C)CC)CSC[C@@H]1C(=O)N[C@@H]1C(=O)N2CCC[C@@H]2C(=O)NCC(=O)N[C@@H](C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(NCC(=O)N[C@H](C)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCSC)C(=O)NCC(=O)N[C@H](CS[C@@H]2C)C(=O)N[C@H](CC(N)=O)C(=O)N[C@H](CCSC)C(=O)N[C@H](CCCCN)C(=O)N[C@@H]2C(N[C@H](C)C(=O)N[C@@H]3C(=O)N[C@@H](C(N[C@H](CC=4NC=NC=4)C(=O)N[C@H](CS[C@@H]3C)C(=O)N[C@H](CO)C(=O)N[C@H]([C@H](C)CC)C(=O)N[C@H](CC=3NC=NC=3)C(=O)N[C@H](C(C)C)C(=O)NC(=C)C(=O)N[C@H](CCCCN)C(O)=O)=O)CS[C@@H]2C)=O)=O)CS[C@@H]1C NVNLLIYOARQCIX-MSHCCFNRSA-N 0.000 description 7
- 108010053775 Nisin Proteins 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000004309 nisin Substances 0.000 description 7
- 235000010297 nisin Nutrition 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 108010062877 Bacteriocins Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 2
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000012541 Fractogel® Substances 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 244000057717 Streptococcus lactis Species 0.000 description 2
- 235000014897 Streptococcus lactis Nutrition 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000003196 chaotropic effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 239000005452 food preservative Substances 0.000 description 2
- 235000019249 food preservative Nutrition 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 238000002135 phase contrast microscopy Methods 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000193755 Bacillus cereus Species 0.000 description 1
- 240000001817 Cereus hexagonus Species 0.000 description 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- GLRAHDCHUZLKKC-UHFFFAOYSA-N acetonitrile;2,2,2-trifluoroacetic acid;hydrate Chemical compound O.CC#N.OC(=O)C(F)(F)F GLRAHDCHUZLKKC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical group C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FLTRNWIFKITPIO-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe] FLTRNWIFKITPIO-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 238000000464 low-speed centrifugation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000020991 processed meat Nutrition 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000002730 succinyl group Chemical group C(CCC(=O)*)(=O)* 0.000 description 1
- 239000012134 supernatant fraction Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- JLEXUIVKURIPFI-UHFFFAOYSA-N tris phosphate Chemical compound OP(O)(O)=O.OCC(N)(CO)CO JLEXUIVKURIPFI-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 235000014101 wine Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
- A23L3/3454—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
- A23L3/3463—Organic compounds; Microorganisms; Enzymes
- A23L3/34635—Antibiotics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to compositions and methods of making a stable lantibiotic, such as nisin or subtilin, preferably subtilin.
- Nisin is a 34-residue long peptide produced by Lactococcus lactis.
- Subtilin is a 32-residue long peptide produced by Bacillus subtilis.
- Subtilin sequences are disclosed in, e.g., U.S. Pat. Nos. 5,914,250, 5,885,811, 5,861,275, 5,576,420, 5,516,682, and 5,218,101.
- a stable subtilin in accordance with the present invention is a subtilin which possesses improved subtilin stability in comparison to a subtilin in the prior art, where the stable subtilin and the prior art subtilin have the same amino acid sequence, preferably a naturally occurring amino acid sequence as disclosed in, e.g., U.S. Pat Nos. 5,576,420 and 5,861,275.
- Improved stability refers to subtilin's resistance to losing activity when subjected to certain conditions.
- subtilin prepared according to Jensen and Hirschman, Arch. Biochem., 4:197-309, 1994 is light-sensitive and stores poorly.
- the subtilin of Jensen and Hirschman loses activity rapidly when stored at 4°C or 20° C.
- a subtilin prepared according to Jensen and Hirschman shows only a minimal amount of activity, e.g., less than 5%.
- a stable subtilin in accordance with the present invention when stored for 5 days at the same temperature retains substantially all its activity, e.g., greater than 50%, more preferably, 75% or higher, or 90% or higher.
- stable subtilin refers to this improved stability in accordance with the present invention.
- a stable subtilin can mean a subtilin which has been purified by hydrophobic interaction chromatography (HIC) and thus can also be referred to as a HIC- purified stable subtilin.
- HIC-purified stable subtilin refers to a composition that which has been subjected to fractionation, e.g., HlC-purified stable subtilin is, e.g., about 10-fold, preferably about 20-fold, more preferably about 50-fold more concentrated than prior to its application to an HIC column.
- a stable subtilin can comprise subtilins which have been post-translationally-modified, e.g., having a succinyl residue at its N-terminus.
- the improved stability of subtilin can be measured in variety of ways, including, by looking directly at its structure, e.g., by NMR, or by assaying one or more of its biological activities. For instance, subtilin inhibits spore outgrowth and inhibits the growth of proliferating bacterial cells, especially gram-negative bacteria. These assays can be performed as described in, e.g., Liu and Hansen, Appl. Environ. Microbiol., 59:648-651, 1993; Morris et al, J. Biol. Chem., 259, 13590-13594 (1984); Appl. Environ.
- a stable subtilin possesses more biological activity than a prior art subtilin, e.g., about 5-fold, about 10-fold, about 20-fold, about 50-fold, about 60-fold, or more, when measured after storage, e.g., after storage at 4°C or 20°C for 2, 3, 4, 5, or 7 days, 1 week or more, 2 weeks or more, 1 month or more, etc., i.e., it has an improved storage or shelf-life.
- Biological activity in inhibiting spore outgrowth can be carried out by adding heat-shocked B. cereus spores, or other target spores, to a final concentration of 75 ⁇ g/ml in 1% tryptone-100 mM Tris-phosphate buffer, pH 6.8, with a total volume of 2 ml and incubating the mixture in 15 ml. polypropylene tubes in a rotating drum shaker at 37 C at 15 rpm for 3 hours. A series of tubes, each containing a different concentration can be assayed. After incubation, the amount of inhibition can be assessed by phase contrast microscopy, which allows spores at different states of germination and outgrowth to be distinguished. For example, in the absence of inhibitor, spores were vegetative in about an hour. Spores were judged to be inhibited if more than 50% were still in early outgrowth stage after the three hour incubation period.
- vegetative cells can be obtained by incubating heat-shocked B. cereus T spores under the aforementioned conditions in the absence of inhibitor for about 2 hours at 37 °C, when the spores were in the vegetative state.
- Various amounts of the antimicrobial peptides were added to tubes containing the vegetative cell culture and incubated for one additional hour.
- the turbidity of the cell suspension was measured (in Klett units) before and after the final incubation by using a Klett-Summerson colorimeter with a green (500- to 570-nm-range) filter, and the integrity of the cells was determined by phase-contrast microscopy.
- the present invention relates to methods of isolating a composition comprising a stable subtilin, comprising one or more of the following steps: culturing a Bacillus subtilis under effective conditions to express subtilin; applying a composition, comprising a subtilin having a naturally-occurring amino acid sequence, to a hydrophobic interaction column under conditions effective for the subtilin to bind to said column; eluting said subtilin from the column with an effective elution reagent to form a composition comprising stable subtilin; performing reverse phase HPLC on said stable subtilin.
- a starting composition comprising a subtilin can be obtained from any suitable source.
- a starting composition is obtained by culturing a cell comprising a subtilin gene under conditions effective for expression of subtilin.
- expression it is meant that the cell carries out the cellular processes which result in the production of a subtilin polypeptide.
- Effective conditions for expression include any culture conditions which are suitable for achieving production of the subtilin polypeptide by the cell, including effective temperatures, pH, medias, cell densities, culture dishes, flasks, or other receptacles for growing cells, additives (e.g., cycloheximide, protease inhibitors, etc.).
- subtilin gene Any cell comprising a subtilin gene can be used in accordance with the present invention, including naturally-occurring and genetically-engineered cells.
- a preferred cell which expresses subtilin is Bacillus subtilis ATCC No. 6633, or derivatives thereof.
- the present invention also relates to the production of subtilin by organisms which have been genetically-engineered to express subtilin.
- B. subtilis strain 168, or substrain B. subtilis strain BR151 (ATCC No. 33677) is transformed with an expressible subtilin gene, e.g., as described in Liu and Hansen, J. Bacteriol., 173:7387-7390, 1991, to form strain LH45 which was deposited under the terms of the Budapest Treaty and assigned ATCC No.
- subtilin polypeptide i.e., transcription and translation of the subtilin gene.
- subtilin coding sequence is operably linked to an expression control .
- expression control sequence means a nucleic acid sequence which regulates expression of a polypeptide coded for by a nucleic acid to which it is operably linked. Expression can be regulated at the level of the mRNA or polypeptide.
- the expression control sequence includes mRNA-related elements and protein-related elements.
- Such elements include promoters, enhancers (viral or cellular), ribosome binding sequences, transcriptional terminators, etc.
- An expression control sequence is operably linked to a nucleotide coding sequence when the expression control sequence is positioned in such a manner to effect or achieve expression of the coding sequence. For example, when a promoter is operably linked 5' to a coding sequence, expression of the coding sequence is driven by the promoter.
- Expression control sequences can be heterologous or endogenous to the normal gene.
- Any suitable growth media can be used to culture the subtilin-expressing cells, e.g., media comprising, nitrogen sources, such as yeast extracts, soy bean tripticase, peptone, salts, metal ions, citric acid, buffers, carbohydrates, such as glucose, glycerol, lactose, sucrose, molasses, chalk, phosphates, ammonium sulfate, oil. See, examples for specific embodiments.
- nitrogen sources such as yeast extracts, soy bean tripticase, peptone, salts, metal ions, citric acid, buffers, carbohydrates, such as glucose, glycerol, lactose, sucrose, molasses, chalk, phosphates, ammonium sulfate, oil. See, examples for specific embodiments.
- a composition comprising a subtilin can be pre-treated prior to its application to a hydrophobic interaction column in any desired manner.
- the composition can be diluted, concentrated, precipitated, filtered, filtered through a porous membrane to separate insoluble debris, acidified, centrifuged, heat-treated, etc. It can be supplemented with additives, such as protease inhibitors, anti-oxidants, detergents, salts, chaotropic agents, chelating agents such as EDTA or EGTA, metal ions, cofactors, etc.
- the culture media containing subtilin prior to applying it the column, is acidified to pH 2.5 with 85% phosphoric acid (14.6 M) to form an acidified composition. Acidification can be performed with any suitable acid, e.g., acetic acid, carboxylic acids, glycine HC1, etc.
- the subtilin is secreted into the culture medium.
- the cells can be separated from the culture medium by low-speed centrifugation.
- the resulting supernatant comprising the subtilin can then be harvested for further manipulations. Centrifugation to remove cells can be performed prior to acidification or after it.
- the cells can be homogenized to form a homogeneously composition comprising subtilin.
- a stable subtilin is obtained by reversed phase chromatography, preferably hydrophobic interaction chromatography (HIC)
- Hydrophobic interaction chromatography uses a nonpolar stationary phase and a polar mobile phase to separate compounds according to their hydrophobicity, using a chromatographic support material having a hydrophobic surface.
- the binding of a polypeptide to a hydrophobic interaction column can be induced by the addition of high salt concentrations to the sample comprising the polypeptide.
- the polypeptides in the sample effectively "salt out" on to the hydrophobic surface of the chromatography support.
- Binding strength can be modulated by manipulating the salt concentration and choosing supports with different hydrophobicities.
- the binding interaction between the hydrophobic column surface and the polypeptide is reversible. Reducing the salt concentration, changing ionic strength, or adding agents which disrupt the hydrophobic binding can be used to elute the polypeptide from the hydrophobic support surface.
- chromatographic material Any suitable chromatographic material can be used.
- a variety of different chromatographic materials supports are commercially available which have hydrophobic ligands attached to a chromatographic support, e.g., having an alkyl chain ranging from about two to twenty- four or more carbons in length, linear or branched, and can contain or terminate in other hydrophobic groups such as a phenyl ring. Increasing chain length results in media with greater hydrophobic character.
- Commonly used ligands are phenyl-, butyl-, and octyl- residues.
- hydrophobic interaction chromatographic materials includes, e.g., POROS HP2 (surface covered with phenyl groups), POROS PE (surface coated with phenyl ether groups), POROS ET (surface coated with ether groups), Bio-Rad Macro-Prep HIC Supports, Bio-Rad Methyl
- HIC support Bio-Rad-t-butyl HIC support, Bio-rad Econo column butyl-650m, TosoHaas TSK-GEL® HIC Columns, TosoHaas TOKYOPEARL® HIC, Fractogel® EMD Propyl (S), Fractogel® EMD Phenyl I (S), IEC PH-814, PolyMETHYL ATM, PolyETHYL ATM, PolyPROPYL ATM, PolyBUTYL ATM, HiPrepTM 16/10 Phenyl, HiPrepTM 16/1- Butyl, HiPrepTM 16/10 Octyl , etc. See, also, U.S. Pat. No. 5,641,403.
- high salt is added to a composition comprising subtilin in order to increase its salt concentration and facitiate the subtilin 's binding to the HIC column.
- Any suitable salt can be used, including, e.g, NaCl, such as 0.75 M, 1 M, 1.2 M, 1.5 M, 1.75 M, 2 M, 4 M, etc., ammonium sulfate, such as 0.75 M, 1 M, 1.2 M, 1.5 M, 1.75 M, 2 M, 4 M, etc., sodium acetate, sodium phosphate, etc.
- the strength of the hydrophobic interactions is also influenced by the ionic strength, pH and polarity of the solvent.
- a high concentration (i.e., 4 molar) of ammonium sulphate in the solvent would promote hydrophobic interaction and, hence, binding, between the resin and the hydrophobic domains of the solute proteins.
- subtilin Once the subtilin is bound or adsorbed to the HIC column, and the other material in the composition which do not bind to the column are washed out, the subtilin can be removed from the column by interfering its interactions with the hydrophobic ligands present on the column support. The subtilin can thus be eluted from the column with an effective elution reagent.
- effective elution reagent it is meant any agent which can be used to remove the subtilin from the column, including, compounds, compositions, mixtures, etc.
- any effective reagent and/or procedure can be used to elute a subtilin from the resin, including, but not limited to, a buffer with lower ionic strength, chaotropic ions, polarity-lowering additives, such as ethylene glycol, detergents, methanol, acetonitrile, THF, and/or dichlormethane.
- the elution reagent is acetonitrile, e.g., 30% acetonitrile.
- the stable subtilin eluted from the HIC column can be further purified according to any suitable methods, including, chromatography, affinity chromatography, thin-layer chromatography, HPLC, SDS-PAGE electrophoresis.
- a stable subtilin can also be isolated according to prior art procedures in combination with hydrophobic interaction chromatography, e.g. by a modification of the previously published procedures, Jensen and Hirschman, Arch. Biochem., 4, 197-309 (1944). In this procedure, cells are cultured in a medium A (Bannerjee and Hansen, J Biol Chem., 263, 9508-9514, 1988) containing 10% sucrose and incubated with good aeration for 30-35 hours at 35 °C.
- the culture is then acidified to pH 2.8 with phosphoric acid and heated in an autoclave at 121 °C for 3 min to inactivate proteases, and cooled to room temperature.
- One-half volume of n-butanol is added, stirred at 4°C, for 2 hours, and centrifuged.
- 2.5 volume of acetone is added to the supernatant, allowed to stand at -20°C. for at least 2 hours, and then centrifuged.
- Most of the pellet is subtilin which is washed with 95% ethanol, briefly lyophilized, and dissolved in 0.1% trifluoroacetic acid. This is immediately purified by RP-HPLC as described previously for nisin (Liu, W. and J. N.
- a subtilin in accordance with the present invention has bactericidal and bacteriostatic activity, e.g., preventing spore outgrowth and inhibiting bacterial cell growth proliferation, especially gram-negative bacteria.
- subtilin is useful in treating microbial infections, as a food preservative, and in other applications where antibiotic activity is useful.
- subtilin can be used analogously to other antimicrobial drugs, especially antibiotics, as described in, e.g., Remington 's Pharmaceutical Sciences, Eighteenth Edition, 1990, Chapter 62.
- Any effective route of administration can be used, e.g., topical or oral.
- Subtilin can be used alone, or in combination with other agents, such as other bactericides, in combination with nisin or any effective antibiotic.
- a stable subtilin can also be used as a food preservative to keep food safe for consumption, by inhibiting or prevents nutrient deterioration and organoleptic changes produced by bacterial activity.
- the subtilin can be directly incorporated into the food, such as a wine, fish, cheese, dairy product, or processed meat, or it can be used in food packaging materials. See, e.g., U.S. Pat. Nos. 4,584,199, 4,597,972, 4,980, 163, and 5,573,800. Subtilin can also be used in mouthwash.
- a composition comprising a stable subtilin can contain buffers, carriers, etc.
- the present invention relates to methods of treating a bacterial infection in a host, comprising administering an effective amount of a stable subtilin to a host in need thereof, and methods of preserving food, comprising adding an effective amount of a stable subtilin to a food in need thereof.
- effective amount it is meant any amount of subtilin which is useful in achieving the claimed purpose, e.g., treating an infection or preserving food.
- the effective amounts can be determined routinely, and/or in analogy to nisin.
- Prior art subtilin e.g., having a naturally-occurring sequence, preferably not modified by genetic engineering, was so unstable that it was not useful.
- Subtilin was purified as follows: One liter of medium A containing 2% sucrose was inoculated with 5-10 ml of overnight culture grown in PAB for 24-28 hr at 37°C with vigorous shaking. The subtilin production was monitored by the pink-brown color, fruity odor, and pH (5.9-6.9) of the medium. All of the purification steps were performed at room temperature (RT). The culture was acidified to pH 2.5 with 85% phosphoric acid(14.6 M), centrifuged at 10,000 x g for 20 min to remove cells, and the subtilin in supernatant fraction purified to homogeneity in two steps.
- Medium A was prepared by combining 780 ml of solution I (20g of sucrose in 780 ml of distilled water), 200 ml of solution II (53.5 g of citric acid, 20.0 g of Na ⁇ O ⁇ 25.0 g of yeast extract, and 21.0 g of (NH 4 ) 2 HPO 4 in 1 1 of distilled water, with the pH adjusted to 6.9 with 14.8 N NH 4 OH), 10 ml of solution III (7.62 g KC1, 41.8 g
- subtilin lantibiotic can be used alone as an antimicrobial compound or in combination with other lantibiotics and antibiotics for treating or preventing microbial growth.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Nutrition Science (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002356955A CA2356955A1 (fr) | 1998-12-24 | 1999-12-23 | Subtiline stable et ses procedes de preparation |
AU23888/00A AU2388800A (en) | 1998-12-24 | 1999-12-23 | Stable subtilin and methods of manufacture |
EP99967636A EP1140975A4 (fr) | 1998-12-24 | 1999-12-23 | Subtiline stable et ses procedes de preparation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11384398P | 1998-12-24 | 1998-12-24 | |
US60/113,843 | 1998-12-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/636,586 Continuation US20050026270A1 (en) | 2001-06-20 | 2003-08-08 | Stable subtilin and methods of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000039152A1 true WO2000039152A1 (fr) | 2000-07-06 |
Family
ID=22351844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/030938 WO2000039152A1 (fr) | 1998-12-24 | 1999-12-23 | Subtiline stable et ses procedes de preparation |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1140975A4 (fr) |
AU (1) | AU2388800A (fr) |
CA (1) | CA2356955A1 (fr) |
WO (1) | WO2000039152A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6541607B1 (en) | 1997-07-18 | 2003-04-01 | University Of Maryland | Sublancin lantibiotic produced by Bacillus subtilis 168 |
US6759205B2 (en) | 2000-06-29 | 2004-07-06 | University Of Maryland | Construction of a strain of Bacillus subtilis 168 that displays the sublancin lantibiotic on the surface of the cell |
US6846804B2 (en) | 2000-06-29 | 2005-01-25 | University Of Maryland, College Park Office Of Technology Commercialization | Construction of a structural variant of sublancin to facilitate its isolation and use in bioremediation of environmental contamination by gram-positive spore formers such as bacillus anthrasis |
US6953683B2 (en) | 1997-07-18 | 2005-10-11 | University Of Maryland | Compositions and methods of inhibiting bacterial spore germination |
US7033766B2 (en) | 2000-06-29 | 2006-04-25 | University Of Maryland Office Of Technology Commercialization | Construction and screening of lantibody display libraries |
WO2020185562A1 (fr) * | 2019-03-08 | 2020-09-17 | Fraunhofer Usa, Inc. | Nouveau peptide lantibiotique antimicrobien et utilisations associées |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101776665B (zh) * | 2009-01-13 | 2013-09-11 | 上海医药工业研究院 | 一种乳酸链球菌素的hplc检测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5218101A (en) * | 1988-07-05 | 1993-06-08 | The University Of Maryland | Leader sequence inducing a post-translational modification of polypeptides in bacteria, and gene therefor |
US5516682A (en) * | 1988-07-05 | 1996-05-14 | University Of Maryland | Subtilin variant of enhanced stability and activity |
US5861275A (en) * | 1995-09-28 | 1999-01-19 | The University Of Maryland | Lantibiotic mutants and chimeras of enhanced stability and activity, leader sequences therefor, genes encoding the same, and methods of producing and using the same |
-
1999
- 1999-12-23 EP EP99967636A patent/EP1140975A4/fr not_active Withdrawn
- 1999-12-23 WO PCT/US1999/030938 patent/WO2000039152A1/fr not_active Application Discontinuation
- 1999-12-23 AU AU23888/00A patent/AU2388800A/en not_active Abandoned
- 1999-12-23 CA CA002356955A patent/CA2356955A1/fr not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5218101A (en) * | 1988-07-05 | 1993-06-08 | The University Of Maryland | Leader sequence inducing a post-translational modification of polypeptides in bacteria, and gene therefor |
US5516682A (en) * | 1988-07-05 | 1996-05-14 | University Of Maryland | Subtilin variant of enhanced stability and activity |
US5576420A (en) * | 1988-07-05 | 1996-11-19 | University Of Maryland | Subtilin variant of enhanced stability and activity |
US5861275A (en) * | 1995-09-28 | 1999-01-19 | The University Of Maryland | Lantibiotic mutants and chimeras of enhanced stability and activity, leader sequences therefor, genes encoding the same, and methods of producing and using the same |
Non-Patent Citations (1)
Title |
---|
See also references of EP1140975A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6541607B1 (en) | 1997-07-18 | 2003-04-01 | University Of Maryland | Sublancin lantibiotic produced by Bacillus subtilis 168 |
US6953683B2 (en) | 1997-07-18 | 2005-10-11 | University Of Maryland | Compositions and methods of inhibiting bacterial spore germination |
US7358076B2 (en) | 1997-07-18 | 2008-04-15 | The University Of Maryland | Sublancin lantibiotic produced by Bacillus subtilis 168 |
US6759205B2 (en) | 2000-06-29 | 2004-07-06 | University Of Maryland | Construction of a strain of Bacillus subtilis 168 that displays the sublancin lantibiotic on the surface of the cell |
US6846804B2 (en) | 2000-06-29 | 2005-01-25 | University Of Maryland, College Park Office Of Technology Commercialization | Construction of a structural variant of sublancin to facilitate its isolation and use in bioremediation of environmental contamination by gram-positive spore formers such as bacillus anthrasis |
US7033766B2 (en) | 2000-06-29 | 2006-04-25 | University Of Maryland Office Of Technology Commercialization | Construction and screening of lantibody display libraries |
WO2020185562A1 (fr) * | 2019-03-08 | 2020-09-17 | Fraunhofer Usa, Inc. | Nouveau peptide lantibiotique antimicrobien et utilisations associées |
Also Published As
Publication number | Publication date |
---|---|
CA2356955A1 (fr) | 2000-07-06 |
AU2388800A (en) | 2000-07-31 |
EP1140975A4 (fr) | 2003-01-08 |
EP1140975A1 (fr) | 2001-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gonzalez et al. | Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin | |
Bauer et al. | Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832 | |
Ivanova et al. | Characterization of a bacteriocin produced by Streptococcus thermophilus 81 | |
Barefoot et al. | Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B | |
Abo-Amer | Characterization of a bacteriocin-like inhibitory substance produced by Lactobacillus plantarum isolated from Egyptian home-made yogurt | |
JPH0222299A (ja) | 抗生物質 | |
JP3123078B2 (ja) | 環状リポペプチド物質の脱アシル化法 | |
US5756665A (en) | Peptide isolated from micrococcus varians and use thereof | |
US5635484A (en) | Propionibacteria peptide microcin | |
Mah et al. | Bacteriocin with a broad antimicrobial spectirum, produced by Bacillus sp. isolated from Kimchi | |
Aktypis et al. | Purification and characterization of thermophilin T, a novel bacteriocin produced by Streptococcus thermophilus ACA‐DC 0040 | |
CA2409940C (fr) | Bacteriocine anti-listeria | |
WO2000039152A1 (fr) | Subtiline stable et ses procedes de preparation | |
Benoit et al. | Characterization of brevicin 27, a bacteriocin synthetized by Lactobacillus brevis SB27 | |
JPH02167069A (ja) | スタフィロコッカス・エピデルミディスおよび医薬組成物 | |
US20050026270A1 (en) | Stable subtilin and methods of manufacture | |
KR100351622B1 (ko) | 신규 락토바실러스 속 (lactobacillus sp.)mt-1077 및 그로부터 생산되는 신규 박테리오신 | |
Yan et al. | Characterization of a partially purified bacteriocin, Fermentcin B, from Lactobacillus fermentum | |
CA2507566C (fr) | Lignee de bacteries carnobacterium divergens m35 et bacteriocine produite grace a celles-ci | |
KR20050057594A (ko) | 유산균으로부터 생산되는 항균성 물질 | |
WO2007000332A2 (fr) | Procede de biosynthese destine a la preparation de la gallidermine | |
EP0889902B1 (fr) | Peptides antibiotiques provenant du lait de vache | |
RU2794803C1 (ru) | Способ очистки мундтицина Р436 (КС) | |
Jana et al. | Optimization of media and culture conditions for improved production of bacteriocin by using conventional one-factor-at-a-time (OFAT) method | |
KR100209787B1 (ko) | 신규한 박테리오신을 생산하는 신규 락토코커스 속 미생물 및 그로부터 생산되는 박테리오신 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09868568 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref country code: CA Ref document number: 2356955 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999967636 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999967636 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
ENP | Entry into the national phase |
Ref document number: 2356955 Country of ref document: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999967636 Country of ref document: EP |