WO2000036193A1 - Diamond structure and method of manufacture thereof - Google Patents

Diamond structure and method of manufacture thereof Download PDF

Info

Publication number
WO2000036193A1
WO2000036193A1 PCT/JP1999/007057 JP9907057W WO0036193A1 WO 2000036193 A1 WO2000036193 A1 WO 2000036193A1 JP 9907057 W JP9907057 W JP 9907057W WO 0036193 A1 WO0036193 A1 WO 0036193A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
diamond structure
layer
producing
treatment
Prior art date
Application number
PCT/JP1999/007057
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuharu Okada
Michifumi Tanga
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Priority to AU16868/00A priority Critical patent/AU1686800A/en
Publication of WO2000036193A1 publication Critical patent/WO2000036193A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for producing a diamond structure and a diamond structure produced by using the method. More specifically, when a diamond substrate with a metallized layer formed on the surface is cut using a laser, a protective film is provided to protect the metallized layer and to have conductivity generated on the cut surface.
  • the present invention relates to a method for manufacturing a diamond structure by removing an altered layer and a protective film, and a diamond structure such as a heat sink or a thermistor manufactured using the method. Background art
  • Heat transfer materials made of these diamonds have conventionally been manufactured as follows. That is,
  • metallized layers are formed on the upper and lower surfaces, and then cut to a predetermined size using a diamond saw, and finished to the final shape.
  • the cutting is performed so that the plasma does not penetrate to the upper and lower surfaces of the diamond when the diamond is cut and the plasma processing is performed, so that the metal film is not exposed to the plasma and damaged.
  • An extra process of rearranging the cut diamond heat sink is required, for example, by overlapping the cut diamond heat sink V with a soft resin such as Teflon resin to mask the surface other than the cut surface.
  • a soft resin such as Teflon resin
  • at least one of the cut surfaces is processed in contact with the table and is not exposed to plasma.
  • the work of rearranging the cut diamond heat sink must be performed at least twice.>) Poor production efficiency.
  • the present invention provides a method for efficiently producing a diamond structure having excellent insulating properties on the upper and lower surfaces. It is an object of the present invention to provide a method for producing a diamond structure that can be used, and a diamond structure produced by using the method. Disclosure of the invention
  • the manufacturing method according to claim 2 is characterized in that the protective film is formed in an argon gas containing hydrogen or oxygen by using RF sputtering with BN as a target.
  • the manufacturing method according to claim 4 is characterized in that the oxygen plasma treatment uses an electron cyclotron resonance method as a means for generating plasma.
  • the manufacturing method according to claim 9 is characterized in that the protective film remaining after the oxidation treatment is immersed in water;
  • the diamond structure according to claim 10, wherein the method for manufacturing a diamond structure is It is characterized in that it is manufactured by using.
  • the diamond structure is preferably a heat sink.
  • the diamond structure it is desirable that the diamond structure be f at the thermistor.
  • a metallized layer or a metallized layer and an adhesive layer are formed on a diamond substrate, and then a protective film is formed on the metallized layer and the adhesive layer.
  • the diamond substrate is cut vertically using a laser, and then oxidized in an oxygen atmosphere to remove the conductive alteration layer formed on the cut surface, and then the protective film is removed.
  • This protective layer it is possible to prevent abrasion when the diamond substrate is cut by a laser and damage to the metallized layer and the adhesive layer due to the subsequent oxidation treatment in an oxygen atmosphere.
  • This protective layer is made of water
  • the present invention will be described in detail mainly by taking the case where the diamond structure is a heat sink as an example.
  • diamond is cut and divided using a laser such as a YAG laser, a gas laser, an excimer laser, or the like, so that any of synthetic diamond, high-pressure synthetic diamond, and natural diamond may be used as the diamond material. Further, both single crystal diamond and polycrystalline diamond can be applied. However, in the present invention, from the viewpoints of productivity and yield, it is preferable to use diamond produced by a gas phase synthesis method such as a microwave plasma CVD method.
  • a gas phase synthesis method such as a microwave plasma CVD method.
  • a metallized layer is formed using a DC magnetron sputtering method, an RF magnetron sputtering method, or a vacuum evaporation method.
  • the metallized layer reacts chemically with the diamond to improve adhesion, has heat resistance, and must be capable of brazing (W, Ti, Mo, Ni, Cr) , Pt, Pd, Au, Ag, or Cu, or an alloy film or a composite film composed of two or more of these elements, preferably a Ti—Pt—Au alloy film. Is more preferred.
  • the metallization layer described above may itself be brazed to devices such as semiconductor laser chips, but some devices may break down when heated to high temperatures. Further, in order to enable brazing of the sensor IC and the like at a low temperature, it is preferable to provide an adhesive layer that can be brazed at a relatively low temperature on the metallized layer.
  • Such an adhesive layer includes, for example, an Au—Sn alloy layer formed using a magnetron sputtering method or a vacuum evaporation method. Or it may be a so-called solder layer. This solder layer can be formed by using either a wet plating method or a vacuum deposition method. The solder preferably has an alloy composition with a Pb / Sn in the range of 1/9 to 6Z4.
  • a protective film is formed thereon.
  • Protective coating YAG laser t The gas laser, heated as it is cut by a laser such as an excimer laser, and electronic oxygen plasma treatment and the use of cyclotron resonance and a microwave, such as ozone treatment using oxygen nascent It must be made of a material that has sufficient heat resistance and oxidation resistance to withstand oxidation treatment, and that can be easily peeled without deteriorating the metallized layer and the adhesive layer after laser cutting and oxidation treatment. No.
  • the material that satisfies these requirements l, carbon, carbides, oxides, and the like nitrides, among Z N_ ⁇ , T a 2 ⁇ 5, S i O 2, I TO ( indium - tin oxide ), BN, carbon Is preferred.
  • These protective films are formed on the above metallized layer or adhesive layer by an RF magnetron pass method in an argon atmosphere.
  • the protective film made of BN is particularly preferable because it can be removed in a relatively short time only by immersion in water.
  • This easily removable BN protective film can be formed by the RF magnetron sputtering method in an argon atmosphere containing hydrogen or oxygen.
  • the protective film need not be formed on both sides of the metallized layer or the diamond substrate on which the metallized layer and the adhesive layer are formed, but may be formed only on one side. That is, after a protective film is formed on one side, it is placed on a gantry so that the opposite side is in contact with the gantry, and cut into a predetermined size using a laser. Then cut individual
  • the I C diamond substrate is subjected to the following oxidation treatment, which will be described later, while remaining on the gantry.
  • a laser beam such as a YAG laser, a gas laser, or an excimer laser is used. Cut to dimensions. This leh
  • the diamond thermally transforms into a conductive material made of carbon when cut by the laser, and forms a conductive film on the cut surface.
  • the conductive film formed on the cut surface is treated with the following electron cyclotron resonance (ECR) method, oxygen plasma treatment using microwaves, or ozone treatment. Is removed by oxidation treatment.
  • ECR electron cyclotron resonance
  • a sample cut to a predetermined size by a laser as described above is placed in an oxygen atmosphere at a constant flow rate, and an oxygen plasma is generated by applying an ECR or microwave having an output of 100 to 800 W.
  • the conductive film is oxidized by this oxygen plasma, gasified and removed.
  • the upper limit of the output of the ECR or Mic mouth wave is set to 800 W or less in order to prevent the heating and melting of these layers. Oxidation treatment takes more than 15 minutes 3 ⁇ 4 i
  • a processing time of 20 to 80 minutes is preferable from the viewpoint of stable removal and saturation of the processing effect.
  • 1 0 1 3 ⁇ or more insulation resistance value at the cut surface after treatment is obtained.
  • ozone treatment a sample cut to a predetermined size by a laser is placed in an ozone generator that generates a certain amount of ozone in a constant flow of oxygen atmosphere, and the conductive film is oxidized by the nascent oxygen generated by ozone. And gasified and removed. At this time, by irradiating with ultraviolet rays, it is possible to remove the particles more efficiently. In either case, the sample must be heated to 200 ° C or higher. The higher the temperature, the faster it is possible to oxidize and remove the conductive film. When an adhesive layer is formed, the heating temperature of the sample must be lower than the melting point of the adhesive layer in order not to melt the low-melting adhesive layer. Even with this ozone treatment, an insulation resistance value of 10 3 ⁇ or more can be obtained on the cut surface after the treatment.
  • R IE reactive ion etching
  • a microwave having an output power of 100 to 800 W is applied to generate oxygen plasma.
  • the oxygen plasma oxidizes the conductive film, gasifies and removes it.
  • the upper limit of the microwave output is preferably 800 W or less, which is such that the metallized layer on the diamond surface, or the metallized layer and the adhesive layer are not melted by heating.
  • the oxidation time is preferably 20 to 80 minutes from the viewpoint of stable removal and saturation of the treatment effect.
  • the metallized layer of the diamond substrate or the protective film formed on the metallized layer and the adhesive layer is removed.
  • the protective film is BN because it can be removed in a short time only by immersion in water.
  • a 0.35 mm thick, 25 mm long and 25 mm wide diamond was fabricated using microwave CVD. The upper and lower surfaces of the diamond were polished to obtain a substrate having a thickness of 0.25 mm.
  • the diamond substrate thus obtained had a specific resistance of 10 13 ⁇ ⁇ cm and a thermal conductivity of 13 W / cm ⁇ K.
  • each layer was formed on the upper and lower surfaces in this order by Ti, Pt :, and Au by using a DC magnetenetron sputtering method.
  • the thickness of each layer was set to Ti: 100 nm, Pt: 100 nm, and Au: 500 ⁇ m.
  • the diamond substrate on which the metallized layer and the adhesive layer were formed was placed in an atmosphere having a flow rate of argon 2 OSCC i and hydrogen 0.08 SCCM, and RF sputtering was performed at an output of 250 W for 60 minutes using BN as a target.
  • a BN protective film having a thickness of 1.0 was formed.
  • the Mondo substrate was cut and divided into a square lattice of 0.65 mm pitch under the following conditions using an Nd-YAG laser.
  • the conductive film formed on the cut surface of the cut and divided sample by the laser was removed under the following conditions using an ozone treatment method of irradiating ultraviolet rays during treatment.
  • Ultraviolet light source Low pressure mercury lamp (wavelength: 184.9 nm)
  • the sample After removing the conductive film as described above, the sample was immersed in water for 10 minutes to remove the protective film. In this way, it has a thickness of 0.25mm, a height of 0.65mm, and a width of 0.65mm. resistance diamond heat sink was obtained a 1 0 '3 ⁇ ⁇ cm. Next, a case of creating a diamond sample will be described.
  • an AND diamond (thickness: 0.3 mm, length: 5 mm, width: 5 mm) consisting of carbon only was prepared and its upper and lower surfaces were polished. The specific resistance of this diamond was 10 ⁇ 4 ⁇ ⁇ cm.
  • a boron-doped diamond layer (volume resistivity: 6 ⁇ ⁇ cm) doped with boron was formed on one surface thereof by using a microwave CVD method, and this surface was polished to obtain a substrate.
  • a resist was applied to the polished boron-doped diamond layer of the diamond substrate by a conventional method.
  • each layer is formed in the order of T ii, P, and Au using a DC magnetron sputtering method to form a metallized layer.
  • the remaining resist layer was removed together with the metallized layer formed thereon to obtain a selective metallized layer having a metallized layer formed only on a predetermined pattern.
  • a resist was applied to the surface of the diamond substrate on which the selective metallization layer was formed, on which the metallization layer was formed, by a conventional method.
  • a predetermined pattern was exposed and developed to remove the resist only at the portion where the silicon dioxide film was to be provided, and then a silicon dioxide film was formed using an RF magnetron pass-through method.
  • the remaining resist layer was removed together with the silicon dioxide film formed thereon to obtain a thermistor substrate having a silicon dioxide film formed only on a predetermined pattern.
  • the diamond substrate on which the metallized layer and the adhesive layer were formed was placed in an atmosphere having a flow rate of argon 20 SCCM and oxygen 0.08 SCCM, and RF sputtering was performed at an output of 250 W for 60 minutes using BN overnight.
  • a BN protective film with a thickness of 1.0 / m was formed.
  • the diamond substrate provided with the metallized layer, the adhesive layer, and the protective film was cut and divided using an Nd-YAG laser under the following conditions.
  • the conductive film formed on the cut surface of the cut and divided sample by the laser was removed using a microwave oxygen plasma method under the following conditions.
  • a diamond thermistor was obtained in which a metallized layer and a silicon dioxide film were formed on a diamond substrate consisting of two layers, an AND diamond and a boron dove diamond. insulation resistance of the cut plane was 1 0 1 4 ⁇ ⁇ cm.
  • a metallized layer or a metallized layer and an adhesive layer are formed on a diamond substrate, and then a protective film made of BN is formed thereon, and then the diamond substrate is formed using a laser. Is cut in the vertical direction, and then subjected to an oxidation treatment such as an ECR plasma method, a microwave plasma method, and an ozone treatment accompanied by violet yC external irradiation in an oxygen atmosphere to remove a conductive alteration layer generated on the cut surface. Thereafter, the BN protective film is removed.
  • an oxidation treatment such as an ECR plasma method, a microwave plasma method, and an ozone treatment accompanied by violet yC external irradiation in an oxygen atmosphere to remove a conductive alteration layer generated on the cut surface.
  • BN protective layer By providing this BN protective layer, abrasion when cutting the diamond substrate by laser and subsequent damage of the metallized layer and the adhesive layer due to oxidation treatment in an oxygen atmosphere are prevented.
  • the BN protective layer can be easily removed simply by dipping in a solvent such as water.
  • ⁇ ij- is possible, and a diamond structure excellent in insulation can be efficiently manufactured by using the method for manufacturing a diamond structure of the present invention.
  • the diamond structure manufactured by using the manufacturing method of the present invention can be applied to heat sinks, thermistors, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Thermistors And Varistors (AREA)

Abstract

A method is provided for efficiently producing diamond structures having upper and lower sides exhibiting improved insulation. According to this method, a diamond substrate is covered with a metalized layer alone or together with an adhesive layer, covered further with a BN protective coating, and cut into pieces by a laser beam. They are then oxidized in an oxygen atmosphere, for example, using an ECR plasma technique to remove the conductive, modified layer formed on the cuts, and immersed in water to remove the BN protective coating.

Description

明 細 書 ダイヤモンド構成体の製造方法およびその製造方法を用いて製造してなるダイヤ モンド構成体 技術分野  Description Method of manufacturing diamond structure and diamond structure manufactured by using the method
本発明は、 ダイヤモンド構成体の製造方法、 およびその製造方法を用いて製造 したダイヤモンド構成体に関する。 より詳細には、 表面にメタライズ層を形成さ せたダイヤモンド基板をレーザを用いて切断する際に、 保護膜を設けてメタライ l C ズ層を保護し、 また切断面に生成した導電性を有する変質層および保護膜を除去 することからなるダイヤモンド構成体の製造方法、 およびその製造方法用いて製 造したヒートシンク、 サーミス夕などのダイヤモンド構成体に関する。 背景技術  The present invention relates to a method for producing a diamond structure and a diamond structure produced by using the method. More specifically, when a diamond substrate with a metallized layer formed on the surface is cut using a laser, a protective film is provided to protect the metallized layer and to have conductivity generated on the cut surface. The present invention relates to a method for manufacturing a diamond structure by removing an altered layer and a protective film, and a diamond structure such as a heat sink or a thermistor manufactured using the method. Background art
( i 近年、 半導体高周波素子、 半導体レーザダイオード、 発光ダイオードなど、 デ バイスを動作させた際に生じる熱を、 外部に効率的に逃がす熱伝導性に優れた素 材が求められ、 他の素材に比べて格段に高い熱伝導率を有するダイヤモンドを用 いることが試みられている。 これらの伝熱用素材として用いられるダイヤモンド としては、 天然または合成による単結晶ダイヤモンド、 あるいは合成による多結 v 晶ダイヤモンドが用いられている。  (i In recent years, materials with excellent thermal conductivity, such as semiconductor high-frequency devices, semiconductor laser diodes, and light-emitting diodes, that efficiently release the heat generated when operating devices to the outside, have been required. Attempts have been made to use diamonds that have a significantly higher thermal conductivity compared to natural or synthetic single-crystal diamonds or synthetic polycrystalline v-crystal diamonds. Is used.
これらのダイヤモンドを素材とする伝熱用素材は、 従来次に示すようにして製 造されていた。 すなわち、  Heat transfer materials made of these diamonds have conventionally been manufactured as follows. That is,
1 ) ダイヤモンドの上下面が平行になるように研削した後、 ダイヤモンドソー を用いて所定の大きさに切断し、 切断したダイヤモンドを隙間なく平らに並べて、lf その上下面にメタライズ層を形成させる。  1) After grinding the diamond so that the upper and lower surfaces are parallel, cut it to a predetermined size using a diamond saw. The cut diamonds are arranged flat without gaps, and lf a metallized layer is formed on the upper and lower surfaces.
2 ) 上記のようにダイヤモンドを所定の大きさに切断し、 最終形状に仕上げ加 ェした後、 その全面にメタライズ層を形成させ、 上下二面を残し、 他の側面をダ ィャモンド研磨してメタライズ層を除去する。 2) Cut the diamond into the specified size as described above and finish After metallization, a metallized layer is formed on the entire surface, leaving two upper and lower surfaces, and the other side is diamond-polished to remove the metallized layer.
3 ) ダイヤモンドの上下面が平行になるように研削した後、 その上下面にメタ ライズ層を形成させ、 次いでダイヤモンドソーを用いて所定の大きさに切断し、 If 最終形状に仕上げ加工する。  3) After grinding so that the upper and lower surfaces of the diamond are parallel, metallized layers are formed on the upper and lower surfaces, and then cut to a predetermined size using a diamond saw, and finished to the final shape.
これら 1 ) 〜3 ) の方法は、 次のような欠点を有している。 すなわち 1 ) および 2 ) の方法はダイヤモンドを個々のヒートシンクの大きさに切断分 割した後、 それらを並べ直してメタライズ層を形成させるか、 または個々の分割 体の全面にメタライズ層を形成させ、 次いで側面のみ研磨除去する、 といった煩 I' 雑な工程を必要とし、 極めて生産性に乏しい。 また 3 ) の方法は、 ダイヤモンド ソ一の切削速度が遅く切断に長時間を要すため、 やはり生産性に乏しい。  These methods 1) to 3) have the following disadvantages. In other words, the methods 1) and 2) cut the diamond into individual heat sink sizes and rearrange them to form a metallized layer, or form a metallized layer on the entire surface of each divided body. Then, only the side surface is polished and removed, requiring a complicated process such as polishing, resulting in extremely poor productivity. The method 3) is also poor in productivity because the cutting speed of diamond is slow and it takes a long time to cut.
このような欠点を克服するダイヤモンドヒートシンクの製造方法として、 特開 平 1 0— 2 2 6 5 8 9号公報に記載の方法が開示されている。 この製造方法は、 上下面に金属膜を形成させたダイヤモンド多結晶体を上下方向に切断した後、 切 | ff 断面をプラズマ処理して切断面に生成した導電性の層を除去し、 所定の絶縁性が 確保されたダイヤモンドヒートシンクが得られる、 としている。  As a method of manufacturing a diamond heat sink that overcomes such a drawback, a method described in Japanese Patent Application Laid-Open No. H10-226569 is disclosed. In this manufacturing method, after cutting a polycrystalline diamond having a metal film formed on the upper and lower surfaces in a vertical direction, the cut | ff section is subjected to plasma treatment to remove a conductive layer formed on the cut surface, and It is said that a diamond heat sink with secured insulation can be obtained.
しかし、 この方法を用いた場合、 ダイヤモンドを切断した後プラズマ処理する 際に、 ブラズマがダイヤモンド上下面にも回り込んで金属膜がプラズマに晒され て損傷を受けることのないようにするため、 切断したダイヤモンドヒー卜シンク V とテフロン樹脂などの柔らかい樹脂と重ね合わせて切断面以外の面をマスクする など、 切断したダイヤモンドヒー卜シンクを並び替える余分な工程を必要とする。 また、 特開平 1 0— 2 2 6 5 8 9号公報の図より明らかなように、 切断面の少な くとも 1面は台上に接して処理され、 プラズマに晒されることがないので、 この 切断したダイヤモンドヒートシンクを並び替える作業を少なくとも 2度実行しな > ) くてはならず、 生産効率に乏しい。  However, when this method is used, the cutting is performed so that the plasma does not penetrate to the upper and lower surfaces of the diamond when the diamond is cut and the plasma processing is performed, so that the metal film is not exposed to the plasma and damaged. An extra process of rearranging the cut diamond heat sink is required, for example, by overlapping the cut diamond heat sink V with a soft resin such as Teflon resin to mask the surface other than the cut surface. Also, as is clear from the figure of Japanese Patent Application Laid-Open No. H10-226569, at least one of the cut surfaces is processed in contact with the table and is not exposed to plasma. The work of rearranging the cut diamond heat sink must be performed at least twice.>) Poor production efficiency.
本発明は、 上下面の絶縁性に優れたダイヤモンド構成体を効率よく製造するこ とが可能なダイヤモンド構成体の製造方法、 およびその製造方法を用いて製造し てなるダイヤモンド構成体を提供することを目的とする。 発明の開示 The present invention provides a method for efficiently producing a diamond structure having excellent insulating properties on the upper and lower surfaces. It is an object of the present invention to provide a method for producing a diamond structure that can be used, and a diamond structure produced by using the method. Disclosure of the invention
請求項 1のダイヤモンド構成体の製造方法は、 ダイヤモンド基板上にメタライ ズ層、 またはメタライズ層および接着層を形成させ、 次いでその上層に保護皮膜 を形成させた後、 レーザを用いて前記ダイヤモンド基板を上下方向に切断し、 次 いで酸素雰囲気中で酸化処理して切断面に生成した導電性変質層を除去し、 その 後前記保護膜を除去することを特徴とする。  The method for producing a diamond structure according to claim 1, wherein a metallized layer or a metallized layer and an adhesive layer are formed on a diamond substrate, and then a protective film is formed thereon, and then the diamond substrate is formed by using a laser. It is characterized in that it is cut vertically and then oxidized in an oxygen atmosphere to remove the conductive alteration layer formed on the cut surface, and then the protective film is removed.
i P 請求項 2の製造方法は、 前記保護皮膜を、 水素または酸素を含むアルゴン中で B Nを夕ーゲットとして R Fスパッ夕を用いて成膜することを特徴とする。 請求項 3の製造方法は、 前記酸化処理が、 酸素雰囲気中でプラズマを発生させ る酸素プラズマ処理であることを特徴とする。  The manufacturing method according to claim 2 is characterized in that the protective film is formed in an argon gas containing hydrogen or oxygen by using RF sputtering with BN as a target. The manufacturing method according to claim 3, wherein the oxidation treatment is an oxygen plasma treatment for generating plasma in an oxygen atmosphere.
請求項 4の製造方法は、 前記酸素プラズマ処理が、 プラズマを発生する手段と If して電子サイクロトロン共鳴法を用いることを特徴とする。  The manufacturing method according to claim 4 is characterized in that the oxygen plasma treatment uses an electron cyclotron resonance method as a means for generating plasma.
請求項 5の製造方法は、 前記酸素プラズマ処理が、 プラズマを発生する手段と してマイク口波を用いることを特徴とする。  The manufacturing method according to claim 5, wherein the oxygen plasma treatment uses a microphone mouth wave as a means for generating plasma.
請求項 6の製造方法は、 前記酸化処理が、 酸素雰囲気中で発生期の酸素を発生 させるオゾン処理であることを特徴とする。  The production method according to claim 6, wherein the oxidation treatment is an ozone treatment for generating nascent oxygen in an oxygen atmosphere.
^ 請求項 7の製造方法は、 前記オゾン処理において、 前記導電性変質層に紫外線 を照射することを特徴とする。 ^ The manufacturing method according to claim 7, wherein in the ozone treatment, the conductive deteriorated layer is irradiated with ultraviolet rays.
請求項 8の製造方法は、 前記酸化処理が、 リアクティブイオンエッチング処理 であることを特徴とする。  9. The manufacturing method according to claim 8, wherein the oxidation treatment is a reactive ion etching treatment.
請求項 9の製造方法は、 前記の酸化処理後に残存する前記保護膜を水中に浸漬 ;f して除去することを特徴とする。  The manufacturing method according to claim 9 is characterized in that the protective film remaining after the oxidation treatment is immersed in water;
請求項 1 0のダイヤモンド構成体は、 前記のダイヤモンド構成体の製造方法を 用いて製造してなることを特徴とする。 The diamond structure according to claim 10, wherein the method for manufacturing a diamond structure is It is characterized in that it is manufactured by using.
請求項 1 1のダイヤモンド構成体は、 前記ダイヤモンド構成体がヒートシンク であることが望ましい。  In the diamond structure according to claim 11, the diamond structure is preferably a heat sink.
請求項 1 2のダイヤモンド構成体は、 前記ダイヤモンド構成体がサーミス夕で f あることが望ましい。  In the diamond structure according to claim 12, it is desirable that the diamond structure be f at the thermistor.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明のダイヤモンド構成体の製造方法は、 ダイヤモンド基板上にメタライズ 層、 またはメタライズ層および接着層を形成させ、 次いでその上層に保護皮膜を In the method for producing a diamond structure of the present invention, a metallized layer or a metallized layer and an adhesive layer are formed on a diamond substrate, and then a protective film is formed on the metallized layer and the adhesive layer.
10 形成させた後、 レーザを用いてダイヤモンド基板を上下方向に切断し、 次いで酸 素雰囲気中で酸化処理して切断面に生成した導電性変質層を除去し、 その後保護 膜を除去することからなる。 この保護層を設けることにより、 レーザでダイヤモ ンド基板を切断する際のアブレ一シヨンや、 その後の酸素雰囲気中における酸化 処理によるメタライズ層ゃ接着層の損傷が防止される。 またこの保護層は水など10 After the formation, the diamond substrate is cut vertically using a laser, and then oxidized in an oxygen atmosphere to remove the conductive alteration layer formed on the cut surface, and then the protective film is removed. Become. By providing this protective layer, it is possible to prevent abrasion when the diamond substrate is cut by a laser and damage to the metallized layer and the adhesive layer due to the subsequent oxidation treatment in an oxygen atmosphere. This protective layer is made of water
^ の溶媒に浸漬するだけで容易に除去することができる。 It can be easily removed simply by dipping in the solvent of ^.
以下、 本発明を主としてダイヤモンド構成体がヒートシンクである場合を例と して、 詳細に説明する。  Hereinafter, the present invention will be described in detail mainly by taking the case where the diamond structure is a heat sink as an example.
まず、 本発明に用いるダイヤモンド素材について説明する。 本発明において、 ダイヤモンドは Y A Gレーザ、 ガスレーザ、 エキシマレーザなどのレーザを用い C て切断分割するので、 ダイヤモンド素材としては合成ダイヤモンドまたは高圧合 成ダイヤモンド、 あるいは天然ダイヤモンドのいずれを用いても差し支えない。 また単結晶ダイヤモンドおよび多結晶ダイヤモンドのいずれも適用可能である。 しかし、 本発明においては生産性および歩留の観点から、 マイクロ波プラズマ C V D法などの気相合成法を用いて製造されたダイヤモンドを用いることが好まし い。  First, the diamond material used in the present invention will be described. In the present invention, diamond is cut and divided using a laser such as a YAG laser, a gas laser, an excimer laser, or the like, so that any of synthetic diamond, high-pressure synthetic diamond, and natural diamond may be used as the diamond material. Further, both single crystal diamond and polycrystalline diamond can be applied. However, in the present invention, from the viewpoints of productivity and yield, it is preferable to use diamond produced by a gas phase synthesis method such as a microwave plasma CVD method.
これらのダイヤモンドをヒートシンクに成形加工する場合、 まずダイヤモンド の上下面を研磨する。 次いで水素プラズマクリーニング、 または酸素プラズマク リーニングを施した後、 DCマグネトロンスパッ夕法、 RFマグネトロンスパッ 夕法、 または真空蒸着法を用いてメタライズ層を形成させる。 メタライズ層はダ ィャモンドと化学的に反応して接着力を向上させ、 耐熱性を有し、 かつろう付け ( が可能なものである必要があり、 W、 T i、 Mo、 N i、 C r、 P t、 P d、 A u、 Ag、 Cuからなる単体膜、 あるいはこれらの元素の 2種以上からなる合金 膜または複合膜であることが好ましく、 T i— P t— A u合金膜であることがよ り好ましい。 When forming these diamonds into heat sinks, Polish the upper and lower surfaces. Next, after performing hydrogen plasma cleaning or oxygen plasma cleaning, a metallized layer is formed using a DC magnetron sputtering method, an RF magnetron sputtering method, or a vacuum evaporation method. The metallized layer reacts chemically with the diamond to improve adhesion, has heat resistance, and must be capable of brazing (W, Ti, Mo, Ni, Cr) , Pt, Pd, Au, Ag, or Cu, or an alloy film or a composite film composed of two or more of these elements, preferably a Ti—Pt—Au alloy film. Is more preferred.
上記のメタライズ層はそれ自体で半導体レーザチップなどのデバイスにろう付 1 けしてもよいが、 高温に加熱した場合に破壊するようなデバイスもある。 またセ ンサゃ I Cなどを低温でろう付け可能とするために、 上記のメタライズ層のさら に上層に比較的低温でろう付け可能な接着層を設けることが好ましい。 このよう な接着層としては、 例えばマグネトロンスパッ夕法、 または真空蒸着法を用いて 形成される Au— S n合金層などがある。 またはいわゆるハンダ層であってもよ llj- い。 このハンダ層は湿式めつき法または真空蒸着法法のいずれを用いても形成さ せることができる。 ハンダは P b/S nが 1 /9〜6Z4の範囲の合金組成であ ることが好ましい。  The metallization layer described above may itself be brazed to devices such as semiconductor laser chips, but some devices may break down when heated to high temperatures. Further, in order to enable brazing of the sensor IC and the like at a low temperature, it is preferable to provide an adhesive layer that can be brazed at a relatively low temperature on the metallized layer. Such an adhesive layer includes, for example, an Au—Sn alloy layer formed using a magnetron sputtering method or a vacuum evaporation method. Or it may be a so-called solder layer. This solder layer can be formed by using either a wet plating method or a vacuum deposition method. The solder preferably has an alloy composition with a Pb / Sn in the range of 1/9 to 6Z4.
上記のように、 ダイヤモンド表面にメタライズ層、 またはメタライズ層および 接着層を形成させた後、 その上に保護皮膜を形成させる。 保護皮膜は YAGレーt ザ、 ガスレーザ、 エキシマレーザなどのレーザで切断される際の加熱、 および電 子サイクロトロン共鳴法やマイクロ波を用いる酸素プラズマ処理や、 発生期の酸 素を用いるオゾン処理などの酸化処理に耐える十分な耐熱性や耐酸化性を有し、 かつレーザ切断および酸化処理を施した後、 メタライズ層ゃ接着層を劣化させる ことなく容易に剥離可能な物質からなるものでなくてはならない。 これらの要求l を満足させる物質としては、 炭素、 炭化物、 酸化物、 窒化物などがあるが、 中で も Z n〇、 T a25、 S i O 2 , I TO (インジウム—錫酸化物) 、 BN、 炭素 が好ましい。 これらの保護皮膜はアルゴン雰囲気中における R Fマグネ卜ロンス パッ夕法により、 上記のメタライズ層または接着層の上に形成される。 これらの 中で、 B Nによる保護皮膜は水中に浸漬するだけで比較的短時間で除去すること が可能であり、 特に好ましい。 この除去が容易な B N保護皮膜は、 水素または酸 i 素を含むアルゴン雰囲気中における R Fマグネトロンスパッ夕法により形成させ ることができる。 保護皮膜はメタライズ層またはメタライズ層と接着層を形成さ せたダイヤモンド基板の両面に形成させる必要はなく、 片面のみに形成させれば よい。 すなわち、 片面に保護皮膜を形成させた後、 反対面を架台に接するように 架台上に置き、 レーザを用いて所定の寸法に切断する。 次いで切断された個々のAs described above, after forming a metallized layer or a metallized layer and an adhesive layer on the diamond surface, a protective film is formed thereon. Protective coating YAG laser t The gas laser, heated as it is cut by a laser such as an excimer laser, and electronic oxygen plasma treatment and the use of cyclotron resonance and a microwave, such as ozone treatment using oxygen nascent It must be made of a material that has sufficient heat resistance and oxidation resistance to withstand oxidation treatment, and that can be easily peeled without deteriorating the metallized layer and the adhesive layer after laser cutting and oxidation treatment. No. The material that satisfies these requirements l, carbon, carbides, oxides, and the like nitrides, among Z N_〇, T a 25, S i O 2, I TO ( indium - tin oxide ), BN, carbon Is preferred. These protective films are formed on the above metallized layer or adhesive layer by an RF magnetron pass method in an argon atmosphere. Among them, the protective film made of BN is particularly preferable because it can be removed in a relatively short time only by immersion in water. This easily removable BN protective film can be formed by the RF magnetron sputtering method in an argon atmosphere containing hydrogen or oxygen. The protective film need not be formed on both sides of the metallized layer or the diamond substrate on which the metallized layer and the adhesive layer are formed, but may be formed only on one side. That is, after a protective film is formed on one side, it is placed on a gantry so that the opposite side is in contact with the gantry, and cut into a predetermined size using a laser. Then cut individual
I C ダイヤモンド基板は、 架台上に置かれたまま、 後記する次の酸化処理が施される。 The I C diamond substrate is subjected to the following oxidation treatment, which will be described later, while remaining on the gantry.
したがって、 切断された個々のダイヤモンド基板を並び替える必要は全くない。 このように、 ダイヤモンド表面にメタライズ層、 またはメタライズ層および接 着層を形成させ、 次いでその上に保護皮膜を形成させた後、 Y A Gレーザ、 ガス レ一ザ、 エキシマレーザなどのレーザを用いて所定の寸法に切断する。 このレー Therefore, there is no need to rearrange the individual diamond substrates that have been cut. Thus, after forming a metallized layer, or a metallized layer and a bonding layer on the diamond surface, and then forming a protective film on the metallized layer and the bonding layer, a laser beam such as a YAG laser, a gas laser, or an excimer laser is used. Cut to dimensions. This leh
^ ザによる切断時にダイヤモンドが炭素からなる導電性の物質に熱的に変質し、 切 断面に導電性皮膜として生成する。 ^ The diamond thermally transforms into a conductive material made of carbon when cut by the laser, and forms a conductive film on the cut surface.
この切断面に生成した導電性皮膜を、 下記に示す電子サイクロトロン共鳴 (E 1 ec t ron- Cyc l o t ron- Resonance: E C R、 以下 E C Rという) 法またはマイクロ波 を用いる酸素プラズマ処理、 またはオゾン処理などの酸化処理を施して除去する。 The conductive film formed on the cut surface is treated with the following electron cyclotron resonance (ECR) method, oxygen plasma treatment using microwaves, or ozone treatment. Is removed by oxidation treatment.
C まず、 酸素プラズマ処理について説明する。  C First, the oxygen plasma treatment will be described.
上記のようにレーザで所定の寸法に切断された試料を一定流量の酸素雰囲気中 に置き、 1 0 0〜 8 0 0 Wの出力の E C Rまたはマイクロ波を印加して酸素ブラ ズマを発生させる。 この酸素プラズマにより導電性皮膜を酸化させ、 ガス化して 除去する。 ダイヤモンド表面にメタライズ層、 またはメタライズ層および接着層 A sample cut to a predetermined size by a laser as described above is placed in an oxygen atmosphere at a constant flow rate, and an oxygen plasma is generated by applying an ECR or microwave having an output of 100 to 800 W. The conductive film is oxidized by this oxygen plasma, gasified and removed. Metallized layer or metallized layer and adhesive layer on diamond surface
^ を形成させているので、 これらの層の加熱溶融を防止するため、 E C Rまたはマ イク口波の出力の上限は 8 0 0 W以下とする。 酸化処理には 1 5分以上の時間を ¾ i Since ^ is formed, the upper limit of the output of the ECR or Mic mouth wave is set to 800 W or less in order to prevent the heating and melting of these layers. Oxidation treatment takes more than 15 minutes ¾ i
必要とし、 安定した除去および処理効果の飽和の点から 2 0〜 8 0分の処理時間 が好ましい。 このように処理することにより、 処理後の切断面において 1 0 1 3 Ω 以上の絶縁抵抗値が得られる。 A processing time of 20 to 80 minutes is preferable from the viewpoint of stable removal and saturation of the processing effect. By such processing, 1 0 1 3 Ω or more insulation resistance value at the cut surface after treatment is obtained.
次に、 オゾン処理について説明する。  Next, the ozone treatment will be described.
I オゾン処理においては、 レーザで所定の寸法に切断された試料を一定流量の酸 素雰囲気中で一定量のォゾンを発生させるオゾン発生器中に置き、 オゾンによる 発生期酸素により導電性皮膜を酸化させ、 ガス化して除去する。 このとき、 紫外 線を照射することにより、 より効率的に除去することが可能となる。 いずれの場 合も試料を 2 0 0 °C以上に加熱する必要があり、 高温に加熱するほど短時間で導 | 0 電性皮膜を酸化除去することが可能であるが、 ダイヤモンド表面に低融点の接着 層を形成させさせた場合は、 低融点の接着層を溶融させないために試料の加熱温 度を接着層の融点以下とする必要がある。 このオゾン処理によっても、 処理後の 切断面において 1 0 ' 3 Ω以上の絶縁抵抗値が得られる。 I In ozone treatment, a sample cut to a predetermined size by a laser is placed in an ozone generator that generates a certain amount of ozone in a constant flow of oxygen atmosphere, and the conductive film is oxidized by the nascent oxygen generated by ozone. And gasified and removed. At this time, by irradiating with ultraviolet rays, it is possible to remove the particles more efficiently. In either case, the sample must be heated to 200 ° C or higher. The higher the temperature, the faster it is possible to oxidize and remove the conductive film. When an adhesive layer is formed, the heating temperature of the sample must be lower than the melting point of the adhesive layer in order not to melt the low-melting adhesive layer. Even with this ozone treatment, an insulation resistance value of 10 3 Ω or more can be obtained on the cut surface after the treatment.
次にリアクティングイオンエッチング (以下 R I Eという) 処理について説明 \ K する。 レーザで所定の寸法に切断された試料を一定流量の酸素雰囲気中に置き、  Next, the reactive ion etching (hereinafter referred to as R IE) process will be described. Place the sample cut to a predetermined size with a laser in an oxygen atmosphere at a constant flow rate,
1 0 0〜8 0 0 Wの出力のマイクロ波を印加して酸素プラズマを発生させる。 こ の酸素プラズマにより導電性皮膜を酸化させ、 ガス化して除去する。 マイクロ波 の出力の上限は、 ダイヤモンド表面のメタライズ層、 またはメタライズ層および 接着層が加熱により溶融しない程度である 8 0 0 W以下とすることが好ましい。 し' 酸化処理は、 安定した除去および処理効果の飽和の点から 2 0〜8 0分の処理時 間が好ましい。 このように R I Ε処理することにより、 処理後の切断面において 1 0 ' Ω以上の絶縁抵抗値が得られる。 A microwave having an output power of 100 to 800 W is applied to generate oxygen plasma. The oxygen plasma oxidizes the conductive film, gasifies and removes it. The upper limit of the microwave output is preferably 800 W or less, which is such that the metallized layer on the diamond surface, or the metallized layer and the adhesive layer are not melted by heating. The oxidation time is preferably 20 to 80 minutes from the viewpoint of stable removal and saturation of the treatment effect. By performing the RI treatment in this manner, an insulation resistance value of 10 ′ : ίΩ or more can be obtained on the cut surface after the treatment.
上記のようにして切断分割し導電性皮膜を酸化除去した後、 ダイヤモンド基板 のメタライズ層、 またはメタライズ層および接着層の上に形成させた保護皮膜を l 除去する。 保護皮膜が B Nの場合は、 水中に浸漬するだけで短時間で除去するこ とができるので好ましい。 実施例 After cutting and dividing as described above to remove the conductive film by oxidation, the metallized layer of the diamond substrate or the protective film formed on the metallized layer and the adhesive layer is removed. It is preferable that the protective film is BN because it can be removed in a short time only by immersion in water. Example
以下、 本発明について、 実施例によりさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
まず、 ダイヤモンドヒートシンクを作成する場合を説明する。  First, the case of making a diamond heat sink will be described.
(実施例 1 )  (Example 1)
ly [ダイヤモンドの作成]  ly [creating diamonds]
マイクロ波 CVD法を用いて、 厚さ 0. 35mm、 縦 25 mm, 横 25mmの ダイヤモンドを作成した。 このダイヤモンドの上下面を研磨し、 0. 25mm の 厚さの基板とした。 このようにして得られたダイヤモンド基板の比抵抗は 1013 Ω · c m, 熱伝導率は 13W/cm · Kであった。 A 0.35 mm thick, 25 mm long and 25 mm wide diamond was fabricated using microwave CVD. The upper and lower surfaces of the diamond were polished to obtain a substrate having a thickness of 0.25 mm. The diamond substrate thus obtained had a specific resistance of 10 13 Ω · cm and a thermal conductivity of 13 W / cm · K.
10 [メタライズ層の形成]  10 [Formation of metallized layer]
このようにしてダイヤモンド基板を水素プラズマでクリーニングした後、 この 上下面に DCマゲネトロンスパッ夕法を用いて T i、 P t:、 A uの順に各層を形 成させた。 各層の厚さは T i : 100 nm、 P t : 100 nm、 Au : 500 η mとした。  After the diamond substrate was cleaned with hydrogen plasma in this way, each layer was formed on the upper and lower surfaces in this order by Ti, Pt :, and Au by using a DC magnetenetron sputtering method. The thickness of each layer was set to Ti: 100 nm, Pt: 100 nm, and Au: 500 ηm.
[接着層の形成]  [Formation of adhesive layer]
上記のメタライズ層が形成されたダイヤモンド基板のさらに上層に接着層を形 成させた。 すなわち、 メタライズ層が形成されたダイヤモンド基板の片面に DC マグネトロン法を用いて Au— S n合金層 (AuZS n = 80重量%Z20重量 %) を 2. 8 xmの厚さで形成させた。 An adhesive layer was formed further above the diamond substrate on which the metallized layer was formed. That is, an Au—Sn alloy layer (AuZSn = 80 wt% Z20 wt%) was formed to a thickness of 2.8 xm on one side of the diamond substrate on which the metallized layer was formed by using a DC magnetron method.
0 [保護皮膜の形成]  0 [Formation of protective film]
上記のメタライズ層および接着層を形成させたダイヤモンド基板をアルゴン 2 O S CC iおよび水素 0. 08 S C CMの流量の雰囲気中に置き、 250Wの出 力で 60分間 BNを夕ーゲットとして RFスパッタリングし、 1. 0 の厚さ の BN保護皮膜を形成させた。  The diamond substrate on which the metallized layer and the adhesive layer were formed was placed in an atmosphere having a flow rate of argon 2 OSCC i and hydrogen 0.08 SCCM, and RF sputtering was performed at an output of 250 W for 60 minutes using BN as a target. A BN protective film having a thickness of 1.0 was formed.
^ [切断分割]  ^ [Cut and split]
次に、 このようにメタライズ層、 接着層、 および保護皮膜が設けられたダイヤ モンド基板を、 N d— Y AGレーザを用いて、 下記の条件にて 0. 6 5mmピッチ の正方格子状に切断分割した。 Next, the diamond having the metallized layer, the adhesive layer, and the protective film is provided. The Mondo substrate was cut and divided into a square lattice of 0.65 mm pitch under the following conditions using an Nd-YAG laser.
平均出力 : 1 0W  Average output: 10W
Qスィッチ周波数 : 5 kHz  Q switch frequency: 5 kHz
^ 加工速度 : 1 5mmZs e c  ^ Processing speed: 15mmZs e c
スキャン回数 : 20回  Number of scans: 20
[導電性皮膜の除去]  [Removal of conductive film]
次いで、 切断分割した試料の、 上記レーザによる切断面に生成した導電性皮膜 を処理時に紫外線を照射するオゾン処理法を用いて下記の条件で除去した。  Next, the conductive film formed on the cut surface of the cut and divided sample by the laser was removed under the following conditions using an ozone treatment method of irradiating ultraviolet rays during treatment.
iP 酸素流量 : 2 1 Zm i n  iP oxygen flow rate: 2 1 Zm i n
基板温度 : 2501:  Substrate temperature: 2501:
時間 : 40分  Time: 40 minutes
紫外線光源 : 低圧水銀ランプ (波長: 1 84. 9 nm) Ultraviolet light source: Low pressure mercury lamp (wavelength: 184.9 nm)
[保護皮膜の除去] [Removal of protective film]
上記のようにして導電性皮膜を除去した後、 試料を水中に 1 0分間浸潰し、 保 護皮膜を除去した。 このようにして 厚さ 0. 2 5mm、 縦 0. 6 5mm、 横 0. 6 5mmの寸法で、 上下面に T i -P t— A uメタライズ層および接着層を有し、 切断面の絶縁抵抗が 1 0 '3Ω · cmであるダイヤモンドヒートシンクが得られた。 次に、 ダイヤモンドサ一ミス夕を作成する場合を説明する。 After removing the conductive film as described above, the sample was immersed in water for 10 minutes to remove the protective film. In this way, it has a thickness of 0.25mm, a height of 0.65mm, and a width of 0.65mm. resistance diamond heat sink was obtained a 1 0 '3 Ω · cm. Next, a case of creating a diamond sample will be described.
>c (実施例 2) > c (Example 2)
[ダイヤモンドの作成]  [Create diamond]
マイクロ波 CVD法を用いて、 炭素のみからなるアンド一プダイヤモンド (厚 さ 0. 3mm、 縦 5mm、 横 5mm) を作成し、 上下面を研磨した。 このダイヤ モンドの比抵抗は 1 0 Ι 4Ω · cmであった。 次いでその片面にマイクロ波 CVD ^ 法を用いて硼素をドーピングしたボロンド一プダイヤモンド層 (体積抵抗率: 6 Ω · c m) を形成させ、 この面を研磨し基板とした。 [選択的メタライズ層の形成] Using a microwave CVD method, an AND diamond (thickness: 0.3 mm, length: 5 mm, width: 5 mm) consisting of carbon only was prepared and its upper and lower surfaces were polished. The specific resistance of this diamond was 10Ι4 Ω · cm. Next, a boron-doped diamond layer (volume resistivity: 6 Ω · cm) doped with boron was formed on one surface thereof by using a microwave CVD method, and this surface was polished to obtain a substrate. [Formation of selective metallization layer]
ダイヤモンド基板の研磨されたボロンドープダイヤモンド層に、 定法によりレ ジス卜を塗布した。 次いで所定のパターンを露光、 現像し、 メタライズ層を設け る部分のみのレジストを除去した後、 DCマグネトロンスパッ夕法を用いて、 T i i、 P し A uの順に各層を形成させメタライズ層とした。 次いで残存していた レジスト層をその上に生成したメタライズ層とともに除去し、 所定のパターン上 のみにメタライズ層が形成された選択的メ夕ライズ層とした。  A resist was applied to the polished boron-doped diamond layer of the diamond substrate by a conventional method. Next, after exposing and developing a predetermined pattern and removing the resist only at the portion where the metallized layer is to be provided, each layer is formed in the order of T ii, P, and Au using a DC magnetron sputtering method to form a metallized layer. . Next, the remaining resist layer was removed together with the metallized layer formed thereon to obtain a selective metallized layer having a metallized layer formed only on a predetermined pattern.
[選択的二酸化珪素膜の形成]  [Selective formation of silicon dioxide film]
上記の選択的メタライズ層を形成させたダイヤモンド基板のメタライズ層を形 ίΓ 成させた面に、 定法によりレジス卜を塗布した。 次いで所定のパターンを露光、 現像し、 二酸化珪素膜を設ける部分のみのレジストを除去した後、 RFマグネト ロンスパッ夕法を用いて二酸化珪素膜を形成させた。 次いで残存していたレジス ト層をその上に生成した二酸化珪素膜とともに除去し、 所定のパターン上のみに 二酸化珪素膜が形成されたサーミス夕用基板とした。  A resist was applied to the surface of the diamond substrate on which the selective metallization layer was formed, on which the metallization layer was formed, by a conventional method. Next, a predetermined pattern was exposed and developed to remove the resist only at the portion where the silicon dioxide film was to be provided, and then a silicon dioxide film was formed using an RF magnetron pass-through method. Next, the remaining resist layer was removed together with the silicon dioxide film formed thereon to obtain a thermistor substrate having a silicon dioxide film formed only on a predetermined pattern.
|^ [保護皮膜の形成]  | ^ [Formation of protective film]
上記のメタライズ層および接着層を形成させたダイヤモンド基板をアルゴン 2 0 SCCMおよび酸素 0. 08 S C CMの流量の雰囲気中に置き、 250Wの出 力で 60分間 BNを夕一ゲットとして RFスパッタリングし、 1. 0 /m の厚さ の BN保護皮膜を形成させた。  The diamond substrate on which the metallized layer and the adhesive layer were formed was placed in an atmosphere having a flow rate of argon 20 SCCM and oxygen 0.08 SCCM, and RF sputtering was performed at an output of 250 W for 60 minutes using BN overnight. A BN protective film with a thickness of 1.0 / m was formed.
>0 [切断分割] > 0 [cutting split]
次に、 このようにメタライズ層、 接着層、 および保護皮膜が設けられたダイヤ モンド基板を、 Nd— YAGレーザを用いて、 下記の条件にて切断分割した。  Next, the diamond substrate provided with the metallized layer, the adhesive layer, and the protective film was cut and divided using an Nd-YAG laser under the following conditions.
平均出力 : 10W  Average output: 10W
Qスィッチ周波数 : 5 kHz  Q switch frequency: 5 kHz
カロェ速度 : 1 5 mm/ s e c  Caroe speed: 15 mm / sec
スキャン回数 : 20回 [導電性皮膜の除去] Number of scans: 20 [Removal of conductive film]
次いで、 切断分割した試料の、 上記レーザによる切断面に生成した導電性皮膜 をマイクロ波酸素プラズマ法を用いて下記の条件で除去した。  Next, the conductive film formed on the cut surface of the cut and divided sample by the laser was removed using a microwave oxygen plasma method under the following conditions.
酸素流量 : 5 S C C M  Oxygen flow rate: 5 S C C M
出力 : 3 0 0 W  Output: 300 W
時間 : 4 5分  Time: 45 minutes
[保護皮膜の除去]  [Removal of protective film]
上記のようにして導電性皮膜を除去した後、 試料を水中に 1 0分間浸漬し、 保 護皮膜を除去した。 次いで真空中で 4 0 0 で 5分間加熱してァニールした。 こ ( D のようにしてアンド一プダイヤモンドとボロンドーブダイヤモンドの 2層からな るダイヤモンド基板上にメタライズ層と二酸化珪素膜を形成させたダイヤモンド サーミス夕が得られた。 このダイヤモンドサ一ミス夕の切断面の絶縁抵抗は 1 0 1 4 Ω · c mであった。 After removing the conductive film as described above, the sample was immersed in water for 10 minutes to remove the protective film. It was then annealed by heating in vacuum at 400 for 5 minutes. As shown in (D), a diamond thermistor was obtained in which a metallized layer and a silicon dioxide film were formed on a diamond substrate consisting of two layers, an AND diamond and a boron dove diamond. insulation resistance of the cut plane was 1 0 1 4 Ω · cm.
| 産業上の利用可能性 | Industrial applicability
本発明のダイヤモンド構成体の製造方法は、 ダイヤモンド基板上にメタライズ 層、 またはメタライズ層および接着層を形成させ、 次いでその上層に B Nからな る保護皮膜を形成させた後、 レーザを用いてダイヤモンド基板を上下方向に切断 し、 次いで酸素雰囲気中で E C Rプラズマ法、 マイクロ波プラズマ法、 および紫 yC 外線照射を伴うオゾン処理などの酸化処理を施して切断面に生成した導電性変質 層を除去し、 その後 B N保護膜を除去することからなる。 この B N保護層を設け ることにより、 レーザでダイヤモンド基板を切断する際のアブレーシヨンや、 そ の後の酸素雰囲気中における酸化処理によるメタライズ層ゃ接着層の損傷が防止 される。 またこの B N保護層は水などの溶媒に浸漬するだけで容易に除去するこ In the method for producing a diamond structure of the present invention, a metallized layer or a metallized layer and an adhesive layer are formed on a diamond substrate, and then a protective film made of BN is formed thereon, and then the diamond substrate is formed using a laser. Is cut in the vertical direction, and then subjected to an oxidation treatment such as an ECR plasma method, a microwave plasma method, and an ozone treatment accompanied by violet yC external irradiation in an oxygen atmosphere to remove a conductive alteration layer generated on the cut surface. Thereafter, the BN protective film is removed. By providing this BN protective layer, abrasion when cutting the diamond substrate by laser and subsequent damage of the metallized layer and the adhesive layer due to oxidation treatment in an oxygen atmosphere are prevented. The BN protective layer can be easily removed simply by dipping in a solvent such as water.
^ij- とが可能であり、 本発明のダイヤモンド構成体の製造方法を用いて、 絶縁性に優 れたダイャモンド構成体を効率よく製造することができる。 本発明の製造方法を用いて製造してなるダイヤモンド構成体は、 ヒートシンク、 サーミス夕などに適用することができる。 ^ ij- is possible, and a diamond structure excellent in insulation can be efficiently manufactured by using the method for manufacturing a diamond structure of the present invention. The diamond structure manufactured by using the manufacturing method of the present invention can be applied to heat sinks, thermistors, and the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . ダイヤモンド基板上にメタライズ層、 またはメタライズ層および接着層を 形成させ、 次いでその上層に保護皮膜を形成させた後、 レーザを用いて前記ダイ1. A metallized layer or a metallized layer and an adhesive layer are formed on a diamond substrate, and then a protective film is formed thereon.
^ ャモンド基板を上下方向に切断し、 次いで酸素雰囲気中で酸化処理して切断面に 生成した導電性変質層を除去し、 その後前記保護膜を除去することを特徴とする, ダイヤモンド構成体の製造方法。 ^ The diamond substrate is cut in the vertical direction, and then oxidized in an oxygen atmosphere to remove the conductive alteration layer formed on the cut surface, and thereafter, the protective film is removed. Method.
2 . 前記保護皮膜を、 水素または酸素を含むアルゴン中で B Nをターゲットと して R Fスパッ夕を用いて成膜することを特徴とする、 請求項 1に記載のダイヤ 2. The diamond according to claim 1, wherein the protective film is formed by using rf sputtering with BN as a target in argon containing hydrogen or oxygen.
I C モンド構成体の製造方法。 Method for producing I C monde constructs.
3 . 前記酸化処理が、 酸素雰囲気中でプラズマを発生させる酸素プラズマ処理 であることを特徴とする、 請求項 1に記載のダイヤモンド構成体の製造方法。 3. The method for producing a diamond structure according to claim 1, wherein the oxidation treatment is an oxygen plasma treatment for generating plasma in an oxygen atmosphere.
4 . 前記酸素プラズマ処理が、 プラズマを発生する手段として電子サイクロト ロン共鳴法を用いることを特徴とする、 請求項 3に記載のダイヤモンド構成体の4. The method according to claim 3, wherein the oxygen plasma treatment uses an electron cyclotron resonance method as a means for generating plasma.
Itj- 製造方法。 Itj- Manufacturing method.
5 . 前記酸素プラズマ処理が、 プラズマを発生する手段としてマイクロ波を用 いることを特徴とする、 請求項 3に記載のダイヤモンド構成体の製造方法。  5. The method for producing a diamond structure according to claim 3, wherein the oxygen plasma treatment uses a microwave as a means for generating plasma.
6 . 前記酸化処理が、 酸素雰囲気中で発生期の酸素を発生させるオゾン処理で あることを特徴とする、 請求項 1に記載のダイヤモンド構成体の製造方法。 6. The method for producing a diamond structure according to claim 1, wherein the oxidation treatment is an ozone treatment for generating nascent oxygen in an oxygen atmosphere.
(? 7 . 前記オゾン処理において、 前記導電性変質層に紫外線を照射することを特 徵とする、 請求項 6に記載のダイヤモンド構成体の製造方法。 (? 7. In the ozone treatment, and FEATURE: applying ultraviolet light to the conductive degraded layer, producing a diamond construction according to claim 6.
8 . 前記酸化処理が、 リアクティブイオンエッチング処理であることを特徴と する、 請求項 1に記載のダイヤモンド構成体の製造方法。  8. The method for producing a diamond structure according to claim 1, wherein the oxidation treatment is a reactive ion etching treatment.
9 . 前記の酸化処理後に残存する前記保護膜を水中に浸漬して除去することを ^ 特徴とする、 請求項 1または 2に記載のダイヤモンド構成体の製造方法。  9. The method for producing a diamond structure according to claim 1, wherein the protective film remaining after the oxidation treatment is immersed in water and removed.
1 0 . 前記 1〜 9のいずれかに記載のダイヤモンド構成体の製造方法を用いて 製造してなるダイヤモンド構成体。 10. The method for producing a diamond structure according to any one of 1 to 9 above, A diamond structure produced.
1 1 . 前記ダイヤモンド構成体がヒートシンクである請求項 1 0に記載のダイ ャモンド構成体。  11. The diamond structure according to claim 10, wherein the diamond structure is a heat sink.
1 2 . 前記ダイヤモンド構成体がサーミス夕である請求項 1 0に記載のダイヤ I モンド構成体。  12. The diamond structure according to claim 10, wherein the diamond structure is a thermistor.
PCT/JP1999/007057 1998-12-16 1999-12-16 Diamond structure and method of manufacture thereof WO2000036193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16868/00A AU1686800A (en) 1998-12-16 1999-12-16 Diamond structure and method of manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35778498 1998-12-16
JP10/357784 1998-12-16

Publications (1)

Publication Number Publication Date
WO2000036193A1 true WO2000036193A1 (en) 2000-06-22

Family

ID=18455908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007057 WO2000036193A1 (en) 1998-12-16 1999-12-16 Diamond structure and method of manufacture thereof

Country Status (2)

Country Link
AU (1) AU1686800A (en)
WO (1) WO2000036193A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144978A1 (en) * 2008-05-27 2009-12-03 コニカミノルタエムジー株式会社 Manufacturing method for radiographic image conversion panel, and radiographic image conversion panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297299A (en) * 1986-06-16 1987-12-24 Kobe Steel Ltd Diamond radiator
US5294381A (en) * 1991-10-21 1994-03-15 Sumitomo Electric Industries, Ltd. Method of manufacturing a diamond heat sink

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297299A (en) * 1986-06-16 1987-12-24 Kobe Steel Ltd Diamond radiator
US5294381A (en) * 1991-10-21 1994-03-15 Sumitomo Electric Industries, Ltd. Method of manufacturing a diamond heat sink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144978A1 (en) * 2008-05-27 2009-12-03 コニカミノルタエムジー株式会社 Manufacturing method for radiographic image conversion panel, and radiographic image conversion panel
JPWO2009144978A1 (en) * 2008-05-27 2011-10-06 コニカミノルタエムジー株式会社 Radiation image conversion panel manufacturing method and radiation image conversion panel

Also Published As

Publication number Publication date
AU1686800A (en) 2000-07-03

Similar Documents

Publication Publication Date Title
EP1424729B1 (en) Heatsink
JP3028660B2 (en) Manufacturing method of diamond heat sink
JP7142236B2 (en) Element chip manufacturing method
EP0715352B1 (en) Substrate, semiconductor device, element-mounted device
TWI470675B (en) Semiconductor device manufacturing method
JP2001223174A (en) Method of doping semiconductor material
KR100264431B1 (en) Window material and method for preparing thereof
JP4565062B2 (en) Thin film single crystal growth method
WO2000036193A1 (en) Diamond structure and method of manufacture thereof
EP0859409B1 (en) Method of manufacturing diamond heat sink
JP2005104810A (en) Dissimilar material complex and its manufacturing method
JP2007109858A (en) Wiring board and method of manufacturing same
JPH08227956A (en) Manufacture of substrate
US5869390A (en) Method for forming electrode on diamond for electronic devices
JPH05175359A (en) Manufacture of diamond multilayer wiring substrate
JPH1149595A (en) Removing method of conductive modified layer and diamond structural body from which conductive modified layer is removed
JP2008034843A (en) Method for nano structure on surface of substrate
JP2010161671A (en) Method for manufacturing piezoelectric device
JPS60192326A (en) Formation of diamond film
JP3112460B2 (en) Manufacturing method of aluminum nitride substrate
JPH02228050A (en) Circuit board, manufacture thereof and electronic circuit device using the board
JP2005013905A (en) Microchip for chemical reaction and method for producing the same
WO2000036648A1 (en) Method of manufacturing diamond heat sink
JP3265289B2 (en) Manufacturing method of aluminum nitride substrate
JP4014857B2 (en) Manufacturing method of ceramic substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 16868

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 588435

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase