WO2000035296A1 - Improved release of medicament active agents from a chewing gum coating - Google Patents

Improved release of medicament active agents from a chewing gum coating Download PDF

Info

Publication number
WO2000035296A1
WO2000035296A1 PCT/US1999/029742 US9929742W WO0035296A1 WO 2000035296 A1 WO2000035296 A1 WO 2000035296A1 US 9929742 W US9929742 W US 9929742W WO 0035296 A1 WO0035296 A1 WO 0035296A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
active agent
gum
chewing gum
chewing
Prior art date
Application number
PCT/US1999/029742
Other languages
French (fr)
Inventor
Sonya S. Johnson
David W. Record
Michael J. Greenberg
Michael A. Reed
Victor V. Gudas
Philip G. Schnell
Donald A. Seielstad
Henry T. Typrin
Michael P. Russell
David L. Witkewitz
Joo H. Song
Donald J. Townsend
Robert J. Yatka
Ronald L. Ream
Christine L. Corriveau
William J. Wokas
Original Assignee
Wm. Wrigley Jr. Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1996/018977 external-priority patent/WO1998023165A1/en
Priority claimed from US09/308,972 external-priority patent/US6165516A/en
Priority to CA002355779A priority Critical patent/CA2355779C/en
Priority to AU21843/00A priority patent/AU765999B2/en
Priority to EP99966257A priority patent/EP1139774A4/en
Priority to BR9916303-9A priority patent/BR9916303A/en
Application filed by Wm. Wrigley Jr. Company filed Critical Wm. Wrigley Jr. Company
Priority to US09/510,878 priority patent/US6355265B1/en
Publication of WO2000035296A1 publication Critical patent/WO2000035296A1/en
Priority to US09/618,808 priority patent/US6322806B1/en
Priority to US09/621,643 priority patent/US6627234B1/en
Priority to US09/748,699 priority patent/US6541048B2/en
Priority to US09/759,838 priority patent/US6290985B2/en
Priority to US09/759,561 priority patent/US6558692B2/en
Priority to US09/924,914 priority patent/US6465003B2/en
Priority to US09/956,445 priority patent/US6592850B2/en
Priority to US09/955,870 priority patent/US6426090B1/en
Priority to US09/992,122 priority patent/US6773716B2/en
Priority to US09/990,628 priority patent/US20020159956A1/en
Priority to US10/024,631 priority patent/US7163705B2/en
Priority to US11/269,980 priority patent/US7935362B2/en
Priority to US12/651,873 priority patent/US20100104620A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/02Apparatus specially adapted for manufacture or treatment of chewing gum
    • A23G4/025Apparatus specially adapted for manufacture or treatment of chewing gum for coating or surface-finishing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/064Chewing gum characterised by the composition containing organic or inorganic compounds containing inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/068Chewing gum characterised by the composition containing organic or inorganic compounds containing plants or parts thereof, e.g. fruits, seeds, extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/10Chewing gum characterised by the composition containing organic or inorganic compounds characterised by the carbohydrates used, e.g. polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/12Chewing gum characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
    • A23G4/126Chewing gum characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing vitamins, antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/18Chewing gum characterised by shape, structure or physical form, e.g. aerated products
    • A23G4/20Composite products, e.g. centre-filled, multi-layer, laminated
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/86Addition of bitterness inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • A61K9/0058Chewing gums
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • A61K9/209Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer

Definitions

  • the present invention relates to methods for producing chewing gum. More particularly, the invention relates to producing chewing gum containing an effective amount of an active medicament.
  • the active medicament is added to the chewing gum coating to control its rate of release from chewing gum and control the release of medicament for maximum effectiveness.
  • efforts have been devoted to controlling release characteristics of various ingredients in chewing gum. Most notably, attempts have been made to delay the release of sweeteners and flavors in va ⁇ ous chewing gum formulations to thereby lengthen the satisfactory chewing time of the gum. Delaying the release of sweeteners and flavors can also avoid an undesirable overpowering burst of sweetness or flavor during the initial chewing period.
  • some ingredients have been treated so as to increase their rate of release in chewing gum.
  • the active medicament that is added to the gum coating is generally released very readily.
  • An active medicament may be added to the gum coating which is a water soluble matrix such that, during the chewing period, the medicament may be released quickly, resulting in a fast release. This would allow a chewing gum coating to be a carrier for an active medicament with these fast release characteristics.
  • active medicaments can be used to treat diseases and as such are typically referred to as drugs or medicaments.
  • the drugs or medicaments can be used for preventive purposes. Still, it is known to provide medicaments to an individual for a variety of non-medical purposes including enhancing performance or maintaining health.
  • medicaments run the gamut from stimulants such as caffeine to drugs such as analgesics, tranquilizers, cardiovascular products, as well as vitamins, minerals, and supplements. Some such medicaments are taken on an "as-needed" basis while other medicaments must be taken at regular intervals by the individual.
  • parenteral administration is the administration of the drug intravenously directly into the blood stream.
  • Enteral refers to the administration of the drug into the gastrointestinal tract.
  • the goal of the drug administration is to move the drug from the site of administration towards the systemic circulation.
  • Oral administration of drugs is by far the most common method of moving drugs towards systemic circulation.
  • drug absorption usually occurs due to the transport of cells across the membranes of the epithelial cells within the gastrointestinal tract.
  • Absorption after oral administration is confounded by numerous factors. These factors include differences down the alimentary cannel in: the luminal pH; surface area per luminal volume; perfusion of tissue, bile, and mucus flow; and the epithelial membranes. See Merck Manual at page 2599.
  • a further issue affecting the absorption or orally administered drugs is the form of the drug. Most orally administered drugs are in the form of tablets or capsules. This is primarily for convenience, economy, stability, and patient acceptance.
  • these capsules or tablets must be disintegrated or dissolved before absorption can occur.
  • factors capable of varying or retarding disintegration of solid dosage forms there are a variety of factors that affect the dissolution rate and therefore determine the availability of the drug for absorption. See Merck Manual at page 2600.
  • the drug may be metabolized before it can be measured in the general circulation.
  • This cause of a decrease in drug input is called the first pass effect.
  • a large number of drugs show low bioavailabilities owning to an extensive first pass metabolism.
  • the two other most frequent causes of low bioavailability are insufficient time in the Gl tract and the presence of competing reactions. See Merck Manual at page 2602.
  • Bioavailability considerations are most often encountered for orally administered drugs. Differences in bioavailability can have profound clinical significance.
  • parenteral administration does provide a method for eliminating a number of the variables that are present with oral administration, parenteral administration is not a preferable route.
  • parenteral administration requires the use of medical personnel and is just not warranted nor practical for the administration of most agents and drugs, e.g., analgesics. Even when required, parenteral administration is objectionable due to patient concerns including comfort, infection, etc., as well as the equipment and costs involved.
  • coated chewing gum products including a medicament or active agent.
  • the medicament or active agent is present within the coating of a chewing gum composition. It has been found that by adding the active agent to a gum coating, the medicament or active agent is quickly released from the chewing gum into saliva. Possibly, saliva coats the oral tissues under the tongue (sublingual) and the sides of the mouth where the drug may partition from the saliva into the oral mucosa. Continuing to chew the chewing gum may create a pressure within the buccal cavity and may force the medicament or active agent or medicament directly into the systemic system of the individual through the oral mucosa contained in the buccal cavity. This may greatly enhance the transmucosal absorption of the drug into the systemic system as well as the bioavailability of the drug within the system.
  • the present invention provides a method of drug delivery comprising the steps of: providing a chewing gum with a coating that includes a medicament in the chewing gum coating; chewing the chewing gum to cause the medicament to be released from the chewing gum coating into the buccal cavity of the chewer.
  • the active medicament may be any agent that is traditionally used as a medicament and lends itself to being administered through the oral cavity.
  • active agents may be vitamins, cancer chemotherapeutics; antimycotics; oral contraceptives, nicotine or nicotine replacement agents, minerals, analgesics, antacids, muscle relaxants, antihistamines, decongestants, antibacterial agents, anesthetics, antitussives, diuretics, anti-inflammatories, antibiotics, AIDS medication, neurological drugs, antivirals, psychotherapeutic agents, anti-diabetic agents and cardiovascular agents, nutraceuticals and nutritional supplements. Accordingly, an advantage of an embodiment of the present invention is to provide new methods for delivering medicaments or active agents to an individual.
  • an advantage of an embodiment of the present invention is to provide a method of delivering medicaments to an individual that provides for increase absorption and bioavailability as compared to medicaments that are designed to be absorbed in the Gl tract.
  • an advantage of an embodiment of the present invention is to provide a method of administering a medicament or agent to an individual at a lower level than is typically administered orally while still achieving the same effect.
  • an advantage of an embodiment of the present invention is to provide a method for administering drugs or agents to an individual that heretofore were administered parenterally. Additionally, an advantage of an embodiment of the present invention is to provide a method of administering drugs that is more palatable than current methods.
  • an advantage of an embodiment of the present invention is to provide an improved method for drug delivery.
  • the present invention also provides a method of producing chewing gum with active medicaments to control their release. Such active medicaments are added to a gum coating to deliver the active medicaments systemically.
  • the present invention also relates to the chewing gum products so produced.
  • Active medicaments may be added to sucrose-type gum formulations and sucrose-type coatings.
  • the formulation may be a low or high moisture formulation containing low or high amounts of moisture containing syrup.
  • Active medicaments may also be used in low or non-sugar gum formulations and coatings that use sorbitol, mannitol, other polyols or carbohydrates.
  • Non-sugar formulations may include low or high moisture sugar-free chewing gums. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • the present invention provides improved methods for delivering medicaments and other active agents to an individual, as well as improved formulations including such medicaments and agents.
  • a medicament or active agent is contained in the coating of a chewing gum formulation, in contrast to some prior such formulations where the medicament or active agent is contained directly in the chewing gum composition.
  • the active agent is released into the saliva more quickly.
  • the medicament or active in the saliva may be then forced due to the pressure created by the chewing gum through the oral mucosa in the buccal cavity.
  • the oral mucosa favors drug absorption.
  • the active agent and/or medicament remains in the buccal cavity and may be forced or partitioned through the oral mucosa.
  • An increase in the transmucosal absorption of the drug may be achieved as well as an increase in the bioavailability of the drug as compared to typical oral administration.
  • the drug or active agent may be absorbed much quicker than if it was swallowed as in a typical oral administration. Indeed, the absorption approaches that of a parental administration and bioavailability may be also much greater than oral administration.
  • the administration of the medicament or agent using chewing gum through the buccal activity may provide an increase in therapeutic effect even as compared to parenteral administration.
  • caffeine is commonly used as a stimulant to alleviate the effects of sleep deprivation. It is almost completely metabolized in the liver and therefore classified as a low clearance, flow independent drug. This means its rate of inactivation is unaffected by delivery to the liver and can only be modified by a change in the hepatic enzyme activity.
  • caffeine in a stick of gum (100 mg) of caffeine in a stick of gum.
  • the 60-80 mg level of caffeine is about the level of caffeine found in a conventional cup of coffee.
  • the target level of caffeine in stick gum is about 40 mg per stick, with a range of about 25-60 mg, so that a five stick package of gum would contain about 200 mg of caffeine, or the equivalent of caffeine in two strong cups of coffee.
  • caffeine bitterness overwhelms the flavor initially and lasts throughout the chewing period.
  • piece weight is generally about 1.5 grams per piece. However, one coated piece of gum is about equal to V ⁇ piece of stick gum. Two pellets are equivalent to a stick of gum, and together weigh about
  • the above-noted target level of 40 mg per stick is equivalent to 20 mg per coated piece, or a range of about 12 to 30 mg caffeine per piece. This is about 0.8% to about 2% caffeine in a piece of coated gum, or a target level of 1.3%.
  • Caffeine is a slightly water soluble substance and, therefore, has a moderately slow release from stick chewing gum. Caffeine is 2.1 % soluble in water at room temperature, 15% soluble in water at 80°C and 40% soluble in boiling water. This gives caffeine a moderately slow release as shown below: Chewing Time % Caffeine Release
  • highly water soluble ingredients such as sugars in stick gum are about 80-90% released after only five minutes of chewing.
  • caffeine only about 50% is released, while the other 50% remains in the gum after five minutes of chewing. After 20 minutes almost 90% of caffeine is released.
  • caffeine Even if caffeine is dissolved in hot water and mixed in the stick gum, when the gum is cooled or kept at room temperature, caffeine may return to its normal crystalline state and release at a rate similar to that shown above.
  • the active agent When an active such as caffeine is added to a gum coating, the active agent will have an increased water solubility, and release quickly into the mouth from the gum coating. Depending on the active agent, which may generally be non-water soluble, adding the active agent to a gum coating will increase the release of the active agent from chewing gum. Most water soluble active agents can be easily added to a gum coating to give a more uniform release from chewing gum. Depending on the active agent, the level released from the gum into the mouth can be adjusted for maximum effectiveness. Other agents or medicaments may be included in the present invention.
  • active agent the present invention refers to a compound that has a desired therapeutic or physiological effect once ingested and/or metabolized.
  • the therapeutic effect may be one which decreases the growth of a xenobiotic or other gut flora or fauna, alters the activity of an enzyme, provides the physical relief from a malady (e.g., diminishes pain, acid reflux or other discomfort), has an effect on the brain chemistry of molecules that determine mood and behavior.
  • a malady e.g., diminishes pain, acid reflux or other discomfort
  • the active agent may be any agent that is traditionally used as a medicament and lends itself to being administered through the oral cavity.
  • Such active agents may be vitamins, cancer chemotherapeutics, antimycotics, oral contraceptives, nicotine or nicotine replacement agents, minerals, analgesics, antacids, muscle relaxants, antihistamines, decongestants, anesthetics, antitussives, diuretics, anti-inflammatories, antibiotics, antivirals, psychotherapeutic agents, anti-diabetic agents, cardiovascular agents, bioengineered pharmaceuticals, nutraceuticals and nutritional supplements.
  • Vitamins and co-enzymes that may be delivered using this invention include but are not limited to water or fat soluble vitamins such as thiamin, riboflavin, nicotinic acid, pyridoxine, pantothenic acid, biotin, flavin, choline, inositol and paraminobenzoic acid, camitine, vitamin C, vitamin D and its analogs, vitamin A and the carotenoids, retinoic acid, vitamin E and vitamin K.
  • water or fat soluble vitamins such as thiamin, riboflavin, nicotinic acid, pyridoxine, pantothenic acid, biotin, flavin, choline, inositol and paraminobenzoic acid, camitine, vitamin C, vitamin D and its analogs, vitamin A and the carotenoids, retinoic acid, vitamin E and vitamin K.
  • cancer chemotherapeutics agents include but are not limited to cisplatin (CDDP), procarbazine, mechlorethamine, cyclophosphamide, ,camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin: daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin and methotrexate or any analog or derivative variant thereof.
  • CDDP cisplatin
  • procarbazine mechlorethamine
  • cyclophosphamide cyclophosphamide
  • camptothecin ifosfamide
  • melphalan chlorambucil
  • bisulfan nitrosurea
  • dactinomycin daunorubi
  • Antimicrobial agents that may be used include but are not limited to naficillin, oxacillin, vancomycin, clindamycin, erythromycin, trimethoprim-sulphamethoxazole, rifampin, ciprofloxacin, broad spectrum penicillin, amoxicillin, gentamicin, ceftriazoxone, cefotaxime, chloramphenicol, clavunate, sulbactam, probenecid, doxycycline, spectinomycin, cefixime, penicillin G, minocycline, P-lactamase inhibitors; meziocillin, piperacillin, aztreonam, norfloxacin, trimethoprim, ceftazidime, dapsone.
  • Antifungal agents that may be delivered include but are not limited to ketoconazole, fluconazole, nystatin, itraconazole, clomitrazole, and amphotericin B.
  • Antiviral agents that may be used include but are not limited to acyclovir, trifluridine, idoxorudine, foscamet, ganciclovir, zidovudine, dideoxycytosine, dideoxyinosine, stavudine, famciclovir, didanosine, zalcitabine, rifimantadine, and cytokines.
  • Antacids include cimetidine, ranitidine, nizatidine, famotidine, omeprazole, bismuth antacids, metronidazole antacids, tetracylcine antacids, clarthromycin antacids, hydroxides of aluminum, magnesium, sodium bicarbonates, calcium bicarbonate and other carbonates, silicates, and phosphates.
  • Antihistamines are represented by but are not limited to cimetidine, ranitidine, diphenydramine, prylamine, promethazine, chlorpheniramine, chlorcyclizine, terfenadine, carbinoxamine maleate, clemastine fumarate, diphenhydramine hydrochloride, dimenhydrinate, prilamine maleate, tripelennamine hydrochloride, tripelennamine citrate, chlorpheniramine maleate, brompheniramine maleate, hydroxyzine pamoate, hydroxyzine hydrochloride, cyclizine lactate, cyclizine hydrochloride, meclizine hydrochloride, acrivastine, cetirizine hydrochloride, astemizole, levocabastine hydrochloride, and loratadine.
  • Decongestants and antitussives include agents such as dextromethorphan hydrobromide, levopropoxyphene napsylate, noscapine, carbetapentane, caramiphen, chlophedianol, pseudoephedrine hydrochloride, pseudoephedrine sulfate, phenylephidrine, diphenhydramine, glaucine, pholcodine, and benzonatate.
  • Anesthetics include etomidate, ketamine, propofol, and benodiazapines (e.g., chlordiazepoxide, diazepame, clorezepate, halazepam, flurazepam, quazepam, estazolam, triazolam, alprozolm, midazolam, temazepam, oxazepam, lorazepam), benzocaine, dyclonine, bupivacaine, etidocaine, lidocaine, mepivacaine, promoxine, prilocaine, procaine, proparcaine, ropivacaine, tetracaine.
  • benodiazapines e.g., chlordiazepoxide, diazepame, clorezepate, halazepam, flurazepam, quazepam, estazolam, triazolam, alprozolm, mida
  • Other useful agents may include amobartital, aprobarbital, butabarbital, butalbital mephobarbital, methohexital, pentobarbital, phenobarbital, secobarbital, thiopental, paral, chloralhydrate, ethchlorvynol, clutethimide, methprylon, ethinamate, and meprobarnate.
  • Analgesics include opioids and other medicaments such as morphine, mepidine, dentanyl, sufentranil, alfentanil, aspirin, acetaminophen, ibuprofen, indomethacine, naproxen, atrin, isocome, midrin, axotal, firinal, phrenilin, ergot, and ergot derivatives (wigraine, cafergot, ergostat, ergomar, dihydroergotamine), imitrex, and ketoprofen.
  • opioids include opioids and other medicaments such as morphine, mepidine, dentanyl, sufentranil, alfentanil, aspirin, acetaminophen, ibuprofen, indomethacine, naproxen, atrin, isocome, midrin, axotal, firinal, phrenilin, ergot, and ergot derivatives (wigraine,
  • Diuretics include but are not limited to acetazolamide, dichlorphenamide, methazolamide, furosemide, bumetanide, ethacrynic acid torseimde, azosemide, muzolimine, piretanide, tripamide, bendroflumethiazide, benzthiazide, chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, polythiazide, trichlormethiazide, indapamide, metolazone, quinethazone, amiloride, triamterene, sprion olactone, canrenone, and potassium canrenoate.
  • Anti-inflammatories include but are not limited to salicylic acid derivatives (e.g. aspirin), indole and indene acetic acids (indomethacin, sulindac and etodalac) heteroaryl acetic acids (tolmetin diclofenac and ketorolac) aryl propionic acid derivatives (ibuprofen, naproxen, ketoprofen, fenopren, oxaprozine), anthranilic acids (mefenamic acid, meclofenamic acid) enolic acids (piroxicam, tenoxicam, phenylbutazone and oxyphenthatrazone).
  • salicylic acid derivatives e.g. aspirin
  • indole and indene acetic acids indomethacin, sulindac and etodalac
  • heteroaryl acetic acids tolmetin diclofenac and ketorolac
  • Psychotherapeutic agents include thorazine, serentil, mellaril, millazinetindal, permitil, prolixin, trilafon, stelazine, suprazine, taractan, navan, clozaril, haldol, halperon, loxitane, moban, orap, risperdal, alprazolam, chordiaepoxide, clonezepam, clorezepate, diazepam, halazepam, lorazepam, oxazepam, prazepam, buspirone, elvavil, anafranil, adapin, sinequan, tofranil, surmontil, asendin, norpramin, pertofrane, ludiomil, pamelor, vivactil, prozac, luvox, paxil, zoloft, effexor, wellbutrin, serzone, desyrel
  • Cardiovascular agents include but are not limited to nitroglycerin, isosorbide dinitrate, sodium nitroprisside, captopril, enalaprill, enalaprilat, quinapril, lisinopril, ramipril, losartan, amrinone, linnone, vesnerinone, hydralazine, nicorandil, prozasin, doxazosin, bunazosin, tamulosin, yohimbine, propanolol, metoprolol, nadolol, atenolol, timolol, esmolol, pindolol, acebutolol, labetalol, phentolamine, carvedilol, bucindolol, verapamil, nifedipine, amlodipine and dobutamine, or a sexual dysfunction agent like sildenafil citrate (
  • the resultant chewing gum can be used to treat inter alia: coughs, colds, motion sickness; allergies; fevers; pain; inflammation; sore throats; cold sores; migraines; sinus problems; diarrhea; diabetes, gastritis; depression; anxiety, hypertension; angina and other maladies and symptoms. Also these gums may be useful in ameliorating cravings in substance abuse withdrawal or for appetite suppression.
  • Specific active agents or medicaments include by way of example and limitation: caffeine, aspirin, acetaminophen; ibuprofen; ketoprofen; cimetidine, ranitidine, famotidine, dramamine, omeprazole, dyclonine hydrochloride, chlorpheniramine maleate, pseudoephedrine hydrochloride, dextromethorphan hydrobromide, benzocaine, sodium naproxen, and nicotine.
  • compositions that may be formulated into a suitable chewing gum formulation are described in, for examples, U.S. Patent No. 5,858,423; U.S. Patent No. 5,858,413; U.S. Patent No. 5,858,412 and U.S. Patent No. 5,858,383. Additionally, Goodman and Gilman's "The Pharmaceutical
  • Nutraceuticals and nutritional supplements may also be added to chewing gums as well as the gum coatings as active agents.
  • herbs and botanicals that include, but are not limited to capsicum, chamomile, cat's claw, echinacea, garlic, ginger, ginko, various ginseng, green tea, golden seal, kava kava, nettle, passion flower, saw palmetto, St. John's wort, and valerian.
  • mineral supplements such as calcium, copper, iodine, iron, magnesium, manganese, molybdenum, phosphorous, selenium and zinc.
  • nutraceuticals that also can be added to chewing gum as active agents are benzoin, fructo-oligosaccharides, glucosamine, grapeseed extract, guarana, inulin, phosphotidylserine, phytosterols, phytochemicals, isoflavones, lecithin, lycopene, oligofructose, polyphenol and psyllium as well as weight loss agents such as chromium picolinate and phenylpropanolamine.
  • the agents or medicaments are contained in the chewing gum coating at levels of approximately 12 micrograms to 250 milligrams per gram of gum product (core plus coating weight).
  • the specific levels will depend on the active ingredient. For example, if chromium picolinate is the active ingredient in an embodiment, it would be present at a level of 50 micrograms per serving (1.5 grams per pellet of gum); aspirin would be preset at a level of 325 milligrams per 1.5/gram serving (pellet).
  • the level of medicament or agent in the chewing gum formulation and in the coating is selected so as to create, when the gum is chewed, a sufficiently high concentration of the medicament or agent in the saliva.
  • the level of the stimulant in the chewing gum and coating should be such that it creates a saliva content of stimulant of approximately 15 to 440 ppm when the chewing gum is chewed for 2 minutes. At this level, a sufficient amount of stimulant will be delivered to the chewer to create desired therapeutic effects. If a medicament is used such as a medicinal agent (e.g., analgesics), sufficient medicinal agent should be present in the chewing gum and coating to create a saliva content of approximately 1700 to approximately 4400 ppm after the chewing gum product has been chewed for 2 minutes.
  • a stimulant such as nicotine or caffeine
  • the level of the stimulant in the chewing gum and coating should be such that it creates a saliva content of stimulant of approximately 15 to 440 ppm when the chewing gum is chewed for 2 minutes. At this level, a sufficient amount of stimulant will be delivered to the chewer to create desired therapeutic effects.
  • a medicament such as a medicinal agent (e.g., analgesics)
  • the agent should be present in a sufficient amount to create a saliva content of approximately 85 to 1100 ppm when the chewing gum product is chewed for 2 minutes.
  • a metabolizer for example, chromium picolinate and hydroxi-chitic acid
  • the agents should be present in an amount to create a saliva content of approximately 0.5 to about 900 ppm when chewed for at least two minutes.
  • the agent is a vitamin or mineral (e.g., phosphatidy serine, vitamin C, and zinc)
  • the agent should be present in the amount to create a saliva content of the vitamin or mineral of approximately 10 to about 250 ppm when chewed for 2 minutes.
  • the dosing regiment will change.
  • the medicament is an analgesic
  • the chewing gum product would be taken on an "as-needed" basis.
  • the agent is a stimulant such as caffeine to be used to enhance performance than the chewing gum product would be chewed, in a preferred embodiment ten minutes or less before the performance.
  • the medicament or agent can be contained in coatings on a variety of different chewing gum compositions.
  • the chewing gum may be based on a variety of different chewing gums that are known.
  • the chewing gums can be low or high moisture, sugar or sugarless, wax containing or wax free, low calorie (via high base or low calorie bulking agents), and/or may contain dental agents.
  • Active agents may be added to the gum coating along with sweeteners, more specifically high-intensity sweeteners such as thaumatin, dihydrochalcones, acesulfame K, aspartame, N-substituted APM derivatives such as neotame, sucralose, alitame, saccharin and cyclamates.
  • sweeteners more specifically high-intensity sweeteners such as thaumatin, dihydrochalcones, acesulfame K, aspartame, N-substituted APM derivatives such as neotame, sucralose, alitame, saccharin and cyclamates.
  • sweeteners more specifically high-intensity sweeteners such as thaumatin, dihydrochalcones, acesulfame K, aspartame, N-substituted APM derivatives such as neotame, sucralose, alitam
  • bitterness inhibitors or taste maskers can also be combined with active agents and sweeteners to give a reduced unpleasant taste.
  • Medicament actives may also be combined in a coated chewing gum product.
  • a single active may be added to a gum coating for fast release and also added to the gum center with or without encapsulation for slow release.
  • the active has an affinity for the gum base, it may naturally give a slow release without encapsulation. If the active is fast release, it would have to be encapsulated or entrapped for the desired time release.
  • a combination of medicament actives may be used in the gum coating and in the gum center for various reasons.
  • medicaments may be reactive to one another and should be kept form coming in contact with each other.
  • combinations of medicaments may be used for various symptoms where multiple medicaments may be effective.
  • a decongestant such as pseudoephedrine may be added to a gum coating and an antihistamine such as chloropheniramine may be added to a gum center to treat cold/allergy symptoms.
  • an oral anesthetic like dyclonine hydrochloride may be used in the gum coating and an antibacterial agent like cetyl pyridinium chloride may be added to a gum center.
  • any other materials like dextromethorphan hydrobromide for cough relief or an analgesic like ketoprofen may be added to either a gum coating and a gum center for cold symptoms.
  • Other combinations of medicament active agents for other types of ailments are also within the scope of this invention.
  • active medicaments may have a low quality off- taste or bitterness, if added to a chewing gum coating. In most cases, this off taste may be masked with high intensity sweeteners, but in other instances, a bitterness inhibitor may be needed to reduce a bitter taste of a medicament.
  • bitterness inhibitors There are a wide variety of bitterness inhibitors that can be used in food products as well as with active agents. Some of the preferred bitterness inhibitors are the sodium salts which are discussed in the article Suppression of Bitterness by Sodium: Variations Among Bitter Taste Stimuli, by R.A.S. Breslin and G.K. Beceuchenp from Monell Chemical Senses Center,
  • Sodium salts discussed are sodium acetate and sodium gluconate.
  • Other sodium salts that may also be effective are sodium glycinate, sodium ascorbate and sodium glycerolphosphate.
  • sodium gluconate and sodium glycinate since they have a low salty taste and are most effective to reduce bitterness of most active medicaments.
  • the sodium salts are very water soluble and are readily released from chewing gum coating to function as bitterness inhibitors.
  • the sodium salts which release readily from chewing gum center may be modified by encapsulation to give an even faster release from chewing gum.
  • the sodium salts would be encapsulated or entrapped to give a delayed release from gum.
  • the bitterness inhibitor should release with the active medicament for maximum effectiveness. Release of the medicament from gum coating may also be effected by particle size of the medicament. Small particles release more quickly whereas large particles more slowly. Fast release can also be accomplished by dissolving medicament in a liquid and used in a gum coating.
  • Medicaments may be dissolved in solvents, flavors, or other transdermal vehicles used as absorption enhancing agents and added to gum or to a gum coating. These absorption enhancing agents may also be added to the gum or gum coating separately from the active ingredient. Their presence may help volatilize medicaments or allow increased transmucosal absorption of the active agent through the nasal mucosa or the lungs. These solvents, flavors, or transdermal vehicles may transport medicaments faster through the oral mucosa.
  • Faster absorption may be affected by increasing flavor levels as well as the addition of other flavor components, such as menthol and menthol derivatives, limonene, carvone, isomenthol, eucalyptol, menthone, pynene, camphor and camphor derivatives, as well as monoterpene natural products, monoterpene derivatives, and sesquaterpenes, including caryophyllene and copaene.
  • other flavor components such as menthol and menthol derivatives, limonene, carvone, isomenthol, eucalyptol, menthone, pynene, camphor and camphor derivatives, as well as monoterpene natural products, monoterpene derivatives, and sesquaterpenes, including caryophyllene and copaene.
  • ethanol polyethylene glycol
  • 2-pyrrolidones myristic acid
  • Brij-35 surfactant
  • p-phenyl phenol nitrobenzene
  • stearyl alcohol cetyl alcohol
  • croton oil liquid paraffin
  • dimethyl sulfoxide (DMSO) non-ionic surfactants
  • liposomes lecithin fractions
  • long chain amphipathic molecules molecules with polar or non-ionized groups on one end and non- polar groups at the other end.
  • a chewing gum composition typically comprises a water-soluble bulk portion, a water-insoluble chewable grams base portion and typically water-insoluble flavoring agents.
  • the water-soluble portion dissipates with a portion of the flavoring agent over a period of time during chewing.
  • the gum base portion is retained in the mouth throughout the chew.
  • the insoluble gum base generally comprises elastomers, resins, fats and oils, softeners and inorganic fillers.
  • the gum base may or may not include wax.
  • the insoluble gum base can constitute approximately 5% to about 95% by weight of the chewing gum, more commonly the gum base comprises 10% to about 50% of the gum, and in some preferred embodiments approximately 25% to about 35% by weight, of the chewing gum.
  • the chewing gum base of the present invention contains about 20% to about 60% by weight synthetic elastomer, about 0% to about 30% by weight natural elastomer, about 5% to about 55% by weight elastomer plasticizer, about 4% to about 35% by weight filler, about 5% to about 35% by weight softener, and optional minor amounts (about 1 % or less by weight) of miscellaneous ingredients such as colorants, antioxidants, etc.
  • Synthetic elastomers may include, but are not limited to, polyisobutylene with GPC weight average molecular weight of about 10,000 to about 95,000, isobutylene-isoprene copolymer (butyl elastomer), styrene-butadiene, copolymers having styrene-butadiene ratios of about 1 :3 to about 3: 1 , polyvinyl acetate having GPC weight average molecular weight of about 2,000 to about 90,000, polyisoprene, polyethylene, vinyl acetate - vinyl laurate copolymer having vinyl laurate content of about 5% to about 50% by weight of the copolymer, and combinations thereof.
  • Preferred ranges for polyisobutylene are 50,000 to 80,000 GPC weight average molecular weight and for styrene-butadiene are 1 : 1 to 1 :3 bound styrene-butadiene, for polyvinyl acetate are 10,000 to 65,000 GBC weight average molecular weight with the higher molecular weight polyvinyl acetates typically used in bubble gum base, and for vinyl acetate-vinyl laurate, vinyl laurate content of 10-45%.
  • Natural elastomers may include natural rubber such as smoked or liquid latex and guayule as well as natural gums such as jelutong, lechi caspi, perillo, sorva, massaranduba balata, massaranduba chocolate, nispero, rosindinha, chicle, gutta hang kang, and combinations thereof.
  • the preferred synthetic elastomer and natural elastomer concentrations vary depending on whether the chewing gum in which the base is used is adhesive or conventional, bubble gum or regular gum, as discussed below.
  • Preferred natural elastomers include jelutong, chicle, sorva and massaranduba balata.
  • Elastomer plasticizers may include, but are not limited to, natural rosin esters such as glycerol esters or partially hydrogenated rosin, glycerol esters of polymerized rosin, glycerol esters of partially dimerized rosin, glycerol esters of rosin, pentaerythritol esters of partially hydrogenated rosin, methyl and partially hydrogenated methyl esters of rosin, pentaerythritol esters of rosin; synthetics such as terpene resins derived from alpha-pinene, beta-pinene, and/or d-limonene; and any suitable combinations of the foregoing.
  • natural rosin esters such as glycerol esters or partially hydrogenated rosin, glycerol esters of polymerized rosin, glycerol esters of partially dimerized rosin, glycerol esters of rosin, pentaerythri
  • the preferred elastomer plasticizers will also vary depending on the specific application, and on the type of elastomer which is used.
  • Fillers/texturizers may include magnesium and calcium carbonate, ground limestone, silicate types such as magnesium and aluminum silicate, clay, alumina, talc, titanium oxide, mono-, di- and tri-calcium phosphate, cellulose polymers, such as wood, and combinations thereof.
  • Softeners/emulsifiers may include tallow, hydrogenated tallow, hydrogenated and partially hydrogenated vegetable oils, cocoa butter, glycerol monostearate, glycerol triacetate, lecithin, mono-,.di- and triglycerides, acetylated monoglycerides, fatty acids (e.g. stearic, palmitic, oleic and linoleic acids), and combinations thereof
  • Colorants and whiteners may include FD&C-type dyes and lakes, fruit and vegetable extracts, titanium dioxide, and combinations thereof.
  • the base may or may not include wax.
  • An example of a wax-free gum base is disclosed in U.S. Patent No. 5,286,500, the disclosure of which is incorporated herein by reference.
  • a typical chewing gum composition includes a water soluble bulk portion and one or more flavoring agents.
  • the water soluble portion can include bulk sweeteners, high intensity sweeteners, flavoring agents, softeners, emulsifiers, colors, acidulants, fillers, antioxidants, and other components that provide desired attributes.
  • Softeners are added to the chewing gum in order to optimize the chewability and mouth feel of the gum.
  • the softeners which are also known as plasticizers and plasticizing agents, generally constitute between approximately 0.5% to about 15% by weight of the chewing gum.
  • the softeners may include glycerin, lecithin, and combinations thereof.
  • Aqueous sweetener solutions such as those containing sorbitol, hydrogenated starch hydrolysates, corn syrup and combinations thereof, may also be used as softeners and binding agents in chewing gum.
  • Bulk sweeteners include both sugar and sugarless components. Bulk sweeteners typically constitute about 5% to about 95% by weight of the chewing gum, more typically, about 20% to about 80% by weight, and more commonly, about 30% to about 60% by weight of the gum. Sugar sweeteners generally include saccharide-containing components commonly known in the chewing gum art, including but not limited to, sucrose, dextrose, maltose, dextrin, dried invert sugar, fructose, levulose, glactose, corn syrup solids, and the like, alone or in combination. Sugarless sweeteners include, but are not limited to, sugar alcohols such as sorbitol, mannitol, xylitol, hydrogenated starch hydrolysates, maltitol, and the like, alone or in combination.
  • High intensity artificial sweeteners can also be used, alone or in combination, with the above.
  • Preferred sweeteners include, but are not limited to, sucralose, aspartame, N-substituted APM derivatives such as neotame, salts of acesulfame, altitame, saccharin and its salts, cyclamic acid and its salts, glycyrrhizinate, dihydrochalcones, thaumatin, monellin, and the like, alone or in combination.
  • Such techniques as wet granulation, wax granulation, spray drying, spray chilling, fluid bed coating, coacervation, and fiber extension may be used to achieve the desired release characteristics.
  • Combinations of sugar and/or sugarless sweeteners may be used in chewing gum. Additionally, the softener may also provide additional sweetness such as with aqueous sugar or alditol solutions. If a low calorie gum is desired, a low caloric bulking agent can be used.
  • low caloric bulking agents examples include: polydextrose; Raftilose, Raftilin; fructooligosaccharides (NutraFlora); palatinose oligosaccharide; guar gum hydrolysate (Sun Fiber); or indigestible dextrin (Fibersol).
  • polydextrose Raftilose, Raftilin
  • fructooligosaccharides NutraFlora
  • palatinose oligosaccharide guar gum hydrolysate (Sun Fiber); or indigestible dextrin (Fibersol).
  • Other low calorie bulking agents can be used.
  • flavoring agents can also be used, if desired.
  • the flavor can be used in amounts of about 0. 1 to about 15 weight percent of the gum, and preferably, about 0.2% to about 5% by weight.
  • Flavoring agents may include essential oils, synthetic flavors or mixtures thereof including, but not limited to, oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like.
  • Artificial flavoring agents and components may also be used. Natural and artificial flavoring agents may be combined in any sensorially acceptable fashion.
  • chewing gum is manufactured by sequentially adding the various chewing gum ingredients to a commercially available mixer known in the art. After the ingredients have been thoroughly mixed, the gum mass is discharged from the mixer and shaped into the desired form such as rolling sheets and cutting into sticks, extruding into chunks or casting into pellets, which are then coated or panned.
  • the ingredients are mixed by first melting the gum base and adding it to the running mixer.
  • the base may also be melted in the mixer itself.
  • Color or emulsifiers may also be added at this time.
  • a softener such as glycerin may also be added at this time, along with syrup and a portion of the bulking agent. Further parts of the bulking agent are added to the mixer.
  • Flavoring agents are typically added with the final portion of the bulking agent.
  • medicaments or actives are used in the coating/ panning of a pellet chewing gum.
  • Pellet or ball gum is prepared as conventional chewing gum but formed into pellets that are pillow shaped, or into balls.
  • the pellets/balls can be then sugar coated or panned by conventional panning techniques to make a unique coated pellet gum.
  • the active agent may be soluble in flavor or can be blended with other powders often used in some types of conventional panning procedures.
  • Active agents are isolated from other gum ingredients which modifies its release rate from chewing gum. Levels of actives may be about 10 ppm to 30% by weight of chewing gum coating.
  • the weight of the coating may be about 20% to about 50% of the weight of the finished product, but may be as much as 75% of the total gum product.
  • the active level will be based on the dosage for one or two pellets.
  • panning modifiers including, but not limited to, gum arabic, maltodextrins, corn syrup, gelatin, cellulose type materials like carboxymethyl cellulose or hydroxymethyl cellulose, starch and modified starches, vegetables gums like alginates, locust bean gum, guar gum, and gum tragacanth, insoluble carbonates like calcium carbonate or magnesium carbonate and talc.
  • Antitack agents may also be added as panning modifiers, which allow the use of a variety of carbohydrates and sugar alcohols to be used in the development of new panned or coated gum products. Flavors may also be added with the sugar or sugarless coating and with the active to yield unique product characteristics.
  • pan coating could also isolate the active agent from the chewing gum ingredients.
  • This technique is referred to as a film coating and is more common for pharmaceuticals than in chewing gum, but procedures are similar.
  • a film like shellac, zein, or cellulose type material is applied onto a pellet-type product forming a thin film on the surface of the product.
  • the film is applied by mixing the polymer, plasticizer and a solvent (pigments are optional) and spraying the mixture onto the pellet surface. This is done in conventional type panning equipment, or in more advanced side-vended coating pans. Since most active agents may be alcohol soluble, they may be readily added with this type of film. When a solvent like an alcohol is used, extra precautions are needed to prevent fires and explosions, and specialized equipment must be used.
  • Some film polymers can use water as the solvent in film coating. Recent advances in polymer research and in film coating technology eliminates the problem associated with the use of solvents in coating. These advances make it possible to apply aqueous films to a pellet or chewing gum product.
  • Some active agents can be added to this aqueous film or even the alcohol solvent film, in which an active agent is highly soluble. This film may also contain a flavor along with a polymer and plasticizer.
  • the active agent can also be dissolved in the aqueous or non-aqueous solvent and coated on the surface with the aqueous film. In some instances a combination of film and sugar or polyol coating may be useful, especially if the active is added with the film coating material. Also the film coating may be applied early, middle, or late in the coating process. This will give a unique release of active agent from a film-coated product.
  • a hard shell sugar or polyol coating may then be applied over the film coated product.
  • a soft shell sugar or polyol coating may also be used over the film coated product.
  • the level of film coating applied to a pellet gum may be generally from about 0.5% to about 3% of the gum product.
  • the level of overcoating of the hard or soft shell may be about 20% to about 75%.
  • the coating may contain ingredients such as flavoring agents, as well as artificial sweeteners and dispersing agents, coloring agents, film formers and binding agents.
  • Flavoring agents contemplated by the present invention include those commonly known in the art such as essential oils, synthetic flavors or mixtures thereof, including but not limited to oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like.
  • the flavoring agents may be used in an amount such that the coating will contain from about 0.2% to about 3% flavoring agent, and preferably from about 0.7% to about 2.0% flavoring agent. Active agents may be preblended with the flavor used in coating.
  • Artificial sweeteners contemplated for use in the coating include but are not limited to synthetic substances, saccharin, thaumatin, alitame, saccharin salts, aspartame, N-substituted APM derivatives such as neotame, sucralose and acesulfame-K.
  • the artificial sweetener may be added to the coating syrup in an amount such that the coating will contain from about 0.01 % to about 0.5%, and preferably from about 0.1 % to about 0.3% artificial sweetener.
  • Dispersing agents are often added to syrup coatings for the purpose of whitening and tack reduction.
  • Dispersing agents contemplated by the present invention to be employed in the coating syrup include titanium dioxide, talc, or any other antistick compound. Titanium dioxide is a presently preferred dispersing agent of the present invention.
  • the dispersing agent may be added to the coating syrup in amounts such that the coating will contain from about
  • Coloring agents are preferably added directly to the syrup in the dye or lake form.
  • Coloring agents contemplated by the present invention include food quality dyes.
  • Film formers preferably added to the syrup include methyl cellulose, gelatins, hydroxypropyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and the like and combinations thereof.
  • Binding agents may be added either as an initial coating on the chewing gum center or may be added directly into the syrup.
  • Binding agents contemplated by the present invention include gum arabic, gum talha (another type of acacia), alginate, cellulosics, vegetable gums and the like.
  • the coating is initially present as a liquid syrup which contains from about 30% to about 80% or 85% of the coating ingredients previously described herein, and from about 15% or 20% to about 70% of a solvent such as water.
  • a solvent such as water.
  • the coating process is carried out in a rotating pan. Sugar or sugarless gum center tablets to be coated are placed into the rotating pan to form a moving mass.
  • the material or syrup which will eventually form the coating is applied or distributed over the gum center tablets. Flavoring agents may be added before, during and after applying the syrup to the gum centers. Once the coating has dried to form a hard surface, additional syrup additions can be made to produce a plurality of coatings or multiple layers of hard coating.
  • syrup is added to the gum center tablets at a temperature range of from about 100°F to about 240°F. Usually, the syrup temperature is from about 130°F to about 200°F throughout the process in order to prevent the polyol or sugar in the syrup from crystallizing.
  • the syrup may be mixed with, sprayed upon, poured over, or added to the gum center tablets in any way known to those skilled in the art.
  • a plurality of layers is obtained by applying single coats, allowing the layers to dry, and then repeating the process.
  • the amount of solids added by each coating step depends chiefly on the concentration of the coating syrup. Any number of coats may be applied to the gum center tablet. Generally, no more than about 75-100 coats are applied to the gum center tablets.
  • the present invention contemplates applying an amount of syrup sufficient to yield a coated comestible containing about 10% to about 75% coating. Where higher dosage of an active agent is needed, the final product may be higher than 75% coating.
  • a plurality of premeasured aliquots of coating syrup may be applied to the gum center tablets. It is contemplated, however, that the volume of aliquots of syrup applied to the gum center tablets may vary throughout the coating procedure.
  • the present invention contemplates drying the wet syrup in an inert medium.
  • a preferred drying medium comprises air. Forced drying air contacts the wet syrup coating in a temperature range of from about 70° to about 1 15°F. Generally, the drying air is in the temperature range of from about 80° to about 100°F.
  • the invention also contemplates that the drying air possess a relative humidity of less than about 15 percent. Preferably, the relative humidity of the drying air is less than about 8 percent.
  • the drying air may be passed over and admixed with the syrup coated gum centers in any way commonly known in the art. Generally, the drying air is blown over and around or through the bed of the syrup coated gum centers at a flow rate, for large scale operations, of about 2800 cubic feet per minute. If lower quantities of material are being processed, or if smaller equipment is used, lower flow rates would be used.
  • flavors have been added to a sugar coating of pellet gum to enhance the overall flavor of gum. These flavors include spearmint flavor, peppermint flavor, wintergreen flavor, and fruit flavors. These flavors are generally preblended with the coating syrup just prior to applying it to the core or added together to the core in one or more coating applications in a revolving pan containing the cores. Generally, the coating syrup is very hot, about 130° to 200°F, and the flavor may volatilize if preblended with the coating syrup too early.
  • the concentrated coating syrup is applied to the gum cores as a hot liquid, the sugar or polyol allowed to crystallize, and the coating then dried with warm, dry air. This is repeated in about 30 to 100 applications to obtain a hard shell coated product having an increased weight gain of about 40% to 75%.
  • a flavor is applied with one, two, three or even four or more of these coating applications. Each time flavor is added, several non-flavored coatings are applied to cover the flavor before the next flavor coat is applied. This reduces volatilization of the flavor during the coating process.
  • fruit flavors that may contain esters, are more easily volatilized and may be flammable and/or explosive and therefore, generally these type of fruit flavors may be pretreated in order to be able to add them to a gum coating.
  • an active agent is preblended with a gum arabic solution to become a paste and then applied to the cores.
  • the preblend may be mixed with a small amount of coating syrup before being applied. Forced air drying is then continued as the gum arabic binds the active agent to the cores. Then additional coatings are applied to cover the active agent and imbed the treated active agent in the coatings.
  • the gum formulas can be prepared as sugar or sugarless type formulations. These formulas are made in a pellet or pillow shape pellet or a round ball or any other shape of product for coating/panning. However, gum formulas for pellet centers are generally adjusted to a higher level of gum base than stick gum to give a more consumer acceptable size of gum bolus.
  • the gum base in the pellet core should also be increased by 25%.
  • the base levels should also be increased by 33%.
  • gum centers are usually formulated with about 25% to about 40% gum base with a corresponding decrease in the other ingredients except flavor.
  • Even higher levels of base may be used when an active is added to a pellet coating.
  • flavors increase with the level of gum base as the base tends to bind flavors into the gum and more flavor is needed to give a good flavorful product.
  • flavors can also be added to the coating to give increased flavor impact and more flavor perception.
  • the formulas listed in Table 1 comprise various sugar-type formulas in which active medicament can be added to gum coating after it is dissolved in water or mixed with various aqueous solvents.
  • Dyclonine hydrochloride is an active medicament used as an oral anesthetic for sore throat.
  • gum formulas may be made in a pellet or pillow shape pellet or a round ball or any other shape of product for coating/panning. As noted earlier, gum formulas are generally adjusted to a higher level of gum base to give a more consumer acceptable size of gum bolus.
  • Gum center formulas may or may not contain dyclonine hydrochloride.
  • Gum center formulations with or without active dyclonine hydrochloride can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum centers.
  • Dyclonine hydrochloride may be added to a gum center only, or to a gum coating with none in the center, or to both center and coating. Coated gum pieces are about 1.5 grams, so to obtain 3 mg of dyclonine hydrochloride total piece must contain 0.2%.
  • Dyclonine hydrochloride can then be used in the coating formula on the various pellet gum formulations.
  • Table 2 shows some sugar and dextrose type formulas:
  • CHLORIDE a All of the active agent is in the coating, which comprises 33% of the product.
  • the above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. Some of the dextrose may be added as a dry charge which may also contain the active agent.
  • Dyclonine hydrochloride may be dissolved in water, not mixed with hot syrup, but added between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats.
  • Dyclonine hydrochloride may be dissolved in flavor and added to the coating. After the final coats are applied and dried, wax is applied to give a smooth polish.
  • Dyclonine hydrochloride may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without dyclonine hydrochloride for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 3.
  • Lycasin and other polyols such as maltitol, xylitol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels.
  • the texture may be adjusted by varying glycerin or sorbitol liquid.
  • Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
  • Dyclonine hydrochloride may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • xylitol sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • the above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution.
  • Dyclonine hydrochloride may be dissolved in water and added between coating applications or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. After pellets have been coated and dried, talc and wax are added to give a polish.
  • gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating.
  • these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky.
  • the following formulations may be used.
  • Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. Dyclonine hydrochloride may be applied in a similar manner as in the previous xylitol coating or may be preblended with the dry charge material. After all coating is applied and dried, talc and wax are added to give a polish.
  • coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 5 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder.
  • the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying.
  • less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface.
  • the dry charge would only be used in the early stages of the coating process.
  • ingredients may be added to the dry charge to help absorb moisture.
  • These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials.
  • powdered sweeteners or flavors could be added with the dry charge, along with the active medicament.
  • Some polyols such as sorbitol, maltitol, lactitol, erythritol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
  • Chlorpheniramine maleate is an active medicament used as an antihistamine. Gum center formulas may or may not contain chlorpheniramine maleate. TABLE 6 (WEIGHT PERCENT)
  • Gum center formulations with or without active chlorpheniramine maleate can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars are polyols may be used in the gum centers. Chlorpheniramine maleate may be added to a gum center only, or to a gum coating with none in the center, or to both center and coating. Coated gum pieces are about 1.5 grams, so to obtain 4 mg of chlorpheniramine maleate total piece must contain 0.27%. Chlorpheniramine maleate can be used in the coating formula on the various pellet gum formulations. The following Table 7 shows some sugar and dextrose type formulas:
  • the above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. Some of the dextrose may be added as a dry charge, which may also contain the active. Chlorpheniramine maleate may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Chlorpheniramine maleate may be dissolved in flavor and added to the coating. After the final coats are applied and dried, wax is applied to give a smooth polish.
  • Chlorpheniramine maleate may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without chlorpheniramine maleate for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 8.
  • EX. 52 EX. 53 EX. 54 EX. 55 EX. 56 EX. 57 EX. 58
  • the high intensity sweetener used is aspartame.
  • high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
  • Lycasin and other polyols such as maltitol, xylitol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels.
  • the texture may be adjusted by varying glycerin or sorbitol liquid.
  • Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
  • Chlorpheniramine maleate may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • xylitol sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • EX. 59 EX. 60
  • EX. 61 EX. 62
  • EX. 63 EX. 64
  • the above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. Chlorpheniramine maleate may be dissolved in water or flavor and added between coating applications or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. After pellets have been coated and dried, talc and wax are added to give a polish.
  • gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating.
  • these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky.
  • the following formulations may be used.
  • EX. 65 EX. 66 EX. 67 EX. 68 EX. 69 EX. 70
  • Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Chlorpheniramine maleate may be applied in a similar manner as in the previous xylitol coating, or may be preblended with the dry charge material.
  • coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 10 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder.
  • the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying.
  • less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface.
  • the dry charge would only be used in the early stages of the coating process.
  • ingredients may be added to the dry charge to help absorb moisture.
  • These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials.
  • powdered sweeteners or flavors could be added with the dry charge.
  • Some polyols such as sorbitol, maltitol, lactitol, erythritol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
  • Formulations with or without active pseudoephedrine hydrochloride can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars are polyols may be used in the gum center. Pseudoephedrine hydrochloride may be added to a gum center only, or to a gum coating with none in the center, or to both center and coating. Coated gum pieces are about 1.5 grams per piece, so to obtain 30 mg of pseudoephedrine hydrochloride in two gum pieces, total piece must contain
  • Pseudoephedrine hydrochloride can be used in the coating formula on the various pellet gum formulations.
  • Table 12 shows some sugar and dextrose type formulas: TABLE 12 (DRY WEIGHT PERCENT)
  • the above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup.
  • Pseudoephedrine hydrochloride may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Pseudoephedrine hydrochloride may be dissolved in flavor and added to the coating. After the final coats are applied and dried, wax is applied to give a smooth polish.
  • some of the sugar or dextrose may be added as a dry charge, which may also contain the active agent.
  • Powder and/or crystalline sugar may be used. a) All of the active agent is in the coating, which comprises 33% of the product.
  • gum arabic powder is blended in the sugar syrup.
  • gum arabic powder is dry charged after a gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution.
  • Pseudoephedrine hydrochloride may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without pseudoephedrine hydrochloride similar to other formulations for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 14.
  • Lycasin brand hydrogenated starch hydrolyzate used instead of sorbitol liquid
  • This material may be dissolved in water, glycerin, sorbitol liquid, or HSH.
  • All of the active agent is in the coating, which comprises 33% of the product.
  • the high intensity sweetener used is aspartame.
  • high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
  • Lycasin and other polyols such as maltitol, erythritol, xylitol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations.
  • the texture may be adjusted by varying glycerin or sorbitol liquid.
  • Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
  • Pseudoephedrine hydrochloride may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. The following table gives formulas for a xylitol coating:
  • EX. 100 EX . 101 EX . 102 EX. 103 EX. 104 EX. 105
  • the above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution.
  • Pseudoephedrine hydrochloride may be dissolved in water or flavor and added between coating applications or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. After pellets have been coated and dried, talc and wax are added to give a polish.
  • gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating.
  • these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made.
  • the following formulations may be used. TABLE 16 (DRY WEIGHT PERCENT)
  • EX. 106 EX. 107 EX . 108 EX. 109 EX. 110 EX. 11 1
  • Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Pseudoephedrine hydrochloride may be applied in a similar manner as in the previous xylitol coating examples, or may be preblended with the dry charge material.
  • coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 16 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder.
  • the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying.
  • less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface.
  • the dry charge would only be used in the early stages of the coating process.
  • ingredients may be added to the dry charge to help absorb moisture.
  • These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials.
  • powdered sweeteners or flavors could be added with the dry charge.
  • Some polyols such as sorbitol, maltitol, lactitol, erythritol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used.
  • Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
  • Liquid flavors generally are not added throughout the coating but at specific points throughout the process. When flavor is added, less air is used for drying until the flavor coating is covered by the next coatings and dried.
  • Flavors may be various spearmint, peppermint, wintergreen, cinnamon, and fruit flavors to yield a wide variety of flavored chewing gum products.
  • Some typical sugar type gum center formulations are shown in Table 17 in which cetyl pyridimium chloride (CPC) can be added as the active medicament. This medicament can be used as an oral antimicrobial to reduce oral malodor and reduce oral bacteria. These formulas give a 1.5 gram piece containing 5 mg of CPC or 0.33%. Gum center formulas may or may not contain CPC, which has been encapsulated for controlled release.
  • CPC cetyl pyridimium chloride
  • EX. 112 EX. 113 EX. 1 14 EX. 115 EX. 1 16 EX. 117
  • Formulations with or without CPC can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum center. Cetyl pyridimium chloride may be added to a gum center only, into a gum coating with more in the center or to both center and coating.
  • CPC can be used in the coating formula on the various pellet gum formulations.
  • Table 18 shows some sugar and dextrose type formulas:
  • the above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup.
  • CPC may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. CPC may also be premixed with the flavor. After the final coats are applied and dried, wax is applied to give a smooth polish.
  • the above process gives a hard shell coating. Often a dry charge of powdered sugar or dextrose monohydrate may be used. This gives a somewhat softer coating. A dry charge may be used to build up a coating, but then finished with a straight syrup to obtain a hard shell. CPC may be added dry to the coating with the dry charge material. Table 19 gives these types of formulas.
  • Powder and/or crystalline sugar may be used, a) All of the active agent is in the coating, which comprises 33% of the product.
  • gum arabic is blended in the sugar syrup.
  • gum arabic powder is dry charged after gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution.
  • Cetyl pyridimium chloride may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without cetyl pyridimium chloride similar to other formulations for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum center formulas are in Table 20.
  • EX. 134 EX. 135 EX. 136 EX ;. 137 EX. 138 EX. 139 EX. 140
  • the high intensity sweetener used is aspartame.
  • high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
  • Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels.
  • the texture may be adjusted by varying glycerin or sorbitol liquid.
  • Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
  • Cetyl pyridimium chloride may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • xylitol sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • the following table gives formulas for a xylitol coating: TABLE 21
  • CPC may be dissolved in water or flavor and added between coating applications, or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. CPC may also be blended with the flavor used for coating. After pellets have been coated and dried, talc and wax are added to give a polish.
  • gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating.
  • these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made.
  • the following formulations may be used.
  • Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Cetyl pyridimium chloride may be applied in a similar manner as in the previous xylitol coating examples, or preblended with the dry charge materials.
  • coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 22 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder.
  • the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying.
  • less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface.
  • the dry charge would only be used in the early stages of the coating process.
  • ingredients may be added to the dry charge to help absorb moisture.
  • These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials.
  • powdered sweeteners or flavors could be added with the dry charge.
  • Some polyols such as sorbitol, maltitol, erythritol, lactitol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used.
  • Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
  • Liquid flavors generally are not added throughout the coating but at specific points throughout the process. When flavor is added, less air is used for drying until the flavor coating is covered by the next coatings and dried.
  • Flavors may be various spearmint, peppermint, wintergreen, cinnamon, and fruit flavors to yield a wide variety of flavored chewing gum products.
  • Some typical sugar type gum center formulations are shown in Table 23, in which ketoprofen can be added as the active medicament.
  • Ketoprofen is an analgesic to reduce inflammation and pain. These formulas give a 1.5 gram piece containing 12.5 mg of ketoprofen or 0.83% of the total gum product. Gum center formulas may or may not contain encapsulated or controlled release ketoprofen.
  • ketoprofen can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum center. Ketoprofen may be added to a gum center only, into a gum coating with none in the center, or to both center and coating.
  • Ketoprofen can be used in the coating formula on the various pellet gum formulations.
  • Table 24 shows some sugar and dextrose type formulas:
  • the above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup.
  • Ketoprofen may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Ketoprofen may also be premixed with the flavor. After the final coats are applied and dried, wax is applied to give a smooth polish. The above process gives a hard shell coating. Often a dry charge of powdered sugar or dextrose monohydrate may be used. This gives a somewhat softer coating. A dry charge, which also may contain the active, may be used to build up a coating, but then finished with a straight syrup to obtain a hard shell. Table 25 gives these types of formulas. TABLE 25
  • gum arabic is blended in the sugar syrup.
  • gum arabic powder is dry charged after gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution.
  • Ketoprofen may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without ketoprofen for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 26. TABLE 26
  • EX. 175 EX. 176 EX. 177 EX . 178 EX. 179 EX. 180 EX. 181
  • the high intensity sweetener used is aspartame.
  • high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
  • Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels.
  • the texture may be adjusted by varying glycerin or sorbitol liquid.
  • Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
  • Ketoprofen may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. The following table gives formulas for a xylitol coating: TABLE 27
  • EX. 182 EX. 183 EX. 184 EX . 185 EX. 186 EX. 187
  • Ketoprofen may be dissolved in water or flavor and added between coating applications, or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process.
  • gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating.
  • these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made.
  • the following formulations may be used.
  • Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Ketoprofen may be applied in a similar manner as in the previous xylitol coating examples, or preblended with the dry charge material and added to the coating.
  • coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 28 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder.
  • the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying.
  • less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface.
  • the dry charge would only be used in the early stages of the coating process.
  • ingredients may be added to the dry charge to help absorb moisture.
  • These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials.
  • powdered sweeteners or flavors could be added with the dry charge.
  • Some polyols such as sorbitol, maltitol, erythritol, lactitol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
  • dextromethorphan hydrobromide can be added as the active medicament. This material is an antitussive for cough relief. These formulas give a 1.5 gram piece containing 15 mg of dextromethorphan hydrobromide or 1.0% of gum product. Gum centers may or may not contain dextromethorphan hydrobromide.
  • a) All of the active agent is in the coating, which comprises 33% of the product.
  • Formulations with or without dextromethorphan hydrobromide can also be made for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum center. Dextromethorphan hydrobromide may be added to the gum center only, into a gum coating with none in the center, or both center and coating.
  • Dextromethorphan hydrobromide can then be used in the coating formula on the various pellet gum formulations.
  • Table 30 shows some sugar and dextrose type formulas:
  • EX. 200 EX . 201 EX. 202 EX . 203 EX. 204 EX. 205
  • HBr a All of the active agent is in the coating, which comprises 33% of the product.
  • the above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup.
  • Dextromethorphan hydrobromide may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Dextromethorphan HBr may also be premixed with the flavor. After the final coats are applied and dried, wax is applied to give a smooth polish.
  • EX. 210 EX. 211 EX. 212 EX. 213 EX. 214 EX. 215
  • Powder and/or crystalline sugar may be used, a) All of the active agent is in the coating, which comprises 33% of the product.
  • gum arabic is blended in the sugar syrup.
  • gum arabic powder is dry charged after a gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution.
  • Dextromethorphan hydrobromide may also be used in coating of sugarless gum centers.
  • the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without dextromethorphan hydrobromide for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum center formulas are in Table 32.
  • Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels.
  • the texture may be adjusted by varying glycerin or sorbitol liquid.
  • Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
  • Dextromethorphan hydrobromide may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
  • the above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. After pellets have been coated and dried, talc and wax are added to give a polish. Dextromethorphan hydrobromide may be dissolved in water or flavor and added between coating applications, or mixed with hot syrup and used in the early stages of coating or used throughout the coating process.
  • gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating.
  • these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made.
  • the active may be premixed with the dry charge material. The following formulations may be used.
  • Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener is blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Dextromethorphan may be applied in a similar manner as the previous xylitol examples, or added with the dry charge material.
  • coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 34 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder.
  • the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying.
  • less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface.
  • the dry charge would only be used in the early stages of the coating process.
  • ingredients may be added to the dry charge to help absorb moisture.
  • These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials.
  • powdered sweeteners or flavors could be added with the dry charge.
  • Some polyols such as sorbitol, maltitol, erythritol, lactitol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
  • Liquid flavors generally are not added throughout the coating but at specific points throughout the process. When flavor is added, less air is used for drying until the flavor coating is covered by the next coatings and dried. Flavors may be various spearmint, peppermint, wintergreen, cinnamon, and fruit flavors to yield a wide variety of flavored chewing gum products.
  • Initial center piece weight was 0.956 grams. Gum was coated to a finished piece weight of 1.46 grams to give a 34.5% coating. Coating syrup 1 was used to coat the first 60% of the coating to a piece weight of 1.26 grams. Coating syrup 2 was used to coat to the final piece weight. Individual piece analysis of 5 pieces yielded a level of 26.1 mg of caffeine per piece. For a 2 piece dosage, caffeine level is 52.2 mg.
  • This gum product was used in a caffeine absorption study to compare release and absorption uptake of caffeine from gum and beverages.
  • the test results showed that gum is a faster delivery vehicle for caffeine when compared to the same level in beverages as measured by blood plasma caffeine.
  • Caffeine was taken up faster in the test subject's plasma after delivery via gum than after delivery of same caffeine dose via coffee, cola and tea.
  • Plasma caffeine concentration is significantly greater for gum vs. beverages within the first 10 to 30 minutes after caffeine delivery. This correlates to faster uptake.
  • Plasma absorption rate constant larger for gum vs. one or more beverages (2).
  • Plasma absorption half life (abs. half-life) smaller for gum vs. one or more beverages (2).
  • Time of peak caffeine plasma concentration T-max) smaller for gum than one or more of the beverages (2).
  • a clinical trial study was performed where six subjects participated in the test, blood was drawn and plasma separated. Blood sampling occurred prior to, and at preset time intervals following a caffeine level of 50-55 mg released through the test delivery vehicle. Five different studies were completed: gum (with saliva swallowed, G2), gum (with saliva expectorated, G3), coffee (ingested COF), cola (ingested COK) and tea (ingested T). Blood samples of 5 ml were collected and the plasma portion separated, stored, and extracted and analyzed. A method was developed for the extraction and analysis of caffeine in fluids, which reports results as the concentration of caffeine in the plasma.
  • A-rate constant and abs. half-life determinations were also made through linear regression. No significant differences were noted in the means, though a trend was noted: the A-rate for the gum study (G2) was greater than that for coffee and cola for subjects 1 -4 and the abs. half-life for the G2 study was less than that for coffee and cola for subjects 1 -4.
  • the G2 abs. half-life averaged 13 ⁇ 4 minutes for subjects 1 -4, 28 ⁇ 2 minutes for subjects 5 and 6, indicating faster absorption for subjects 1-4. This is due to the different rates of sublingual absorption between the subjects.
  • the amount of caffeine absorbed sublingually was 21 ⁇ 7 mg for subjects 1-4, and 10 ⁇ 1 mg for subjects 5 and 6, accounting for the increased A-rate and decreased abs. half-life in subjects 1-4.
  • Initial center piece weight was 0.995 grams. Gum was coated to a finished piece weight of 1.52 grams to give a 34.5% coating. Coating syrup 3 was used to coat the first 60% of the coating to a piece weight of 1.30 grams. Coating syrup 4 was used to coat to the final piece weight. Individual piece analysis of 5 pieces yielded a level of 20.0 ⁇ 0.8 mg of caffeine per piece. For a two piece dosage, caffeine level is 40.0 mg. This gum product was used in a caffeine absorption study to compare release and absorption uptake of caffeine from gum verses pills. The test results showed that gum is a faster delivery vehicle for caffeine when compared to a similar level in a pill as measured by blood plasma caffeine. Caffeine was taken up faster in the test subject's plasma after deliver, via gum than after delivery of same caffeine dose via a pill.
  • Pharmacokinetic parameters were done using a pharmacokinetic software package.
  • the gums tested were pellet Example 235, containing all the caffeine in the coating and delivering approximately 50 mg caffeine after chewing two pellets (designated as G2, G4, or 50 mg pellet), and Example 236, containing caffeine in the coating and center, and delivering approximately 40 mg caffeine after chewing two pellets (designated G5 or 40 mg pellet). Both pellets were compared to Pro-PlusTM pill, containing approximately 50 mg caffeine in one pill (designated as Pill 1 , Pill 2, or 50 mg pill).
  • Pro-PlusTM 50 mg tablet is manufactured by the product license holder: PP Products, 40 Broadwater Road, Welayn Garden City, Harts, AL7 Bay, UK.
  • the Abs. Rate Const (absorption rate constant, rate at which caffeine absorbs into the bloodstream) was significantly greater for 50 mg pellet gum (Example 235) than for the 50 mg pill, indicating that caffeine is absorbed at a greater rate after gum delivery than after delivery of the same dosage via a pill.
  • the test also demonstrated faster uptake of plasma caffeine via
  • gums formulated with all the caffeine in the pellet coating delivered caffeine more quickly to the plasma than gums formulated with the caffeine split between the coating and the center based upon the following:
  • Caffeine was chosen as a model for drug delivery tests because it is a food approved, pharmacologically active agent that is readily detected in plasma at a wide range of dosage levels. It is widely consumed via a number of delivery vehicles, including liquids (coffee, cola, and pills). Drugs are administered through different delivery vehicles, two oral delivery vehicles being liquid syrups and pills. Testing caffeinated beverages and pills vs. caffeinated gums should give an indication of how similar drugs administered as liquids or coated pills vs. coated gum could behave.
  • compositions and methods of the present invention are capable of being incorporated in the form of a variety of embodiments, only a few of which have been illustrated and described above.
  • the invention may be embodied in other forms without departing from its spirit or essential characteristics.
  • the described embodiments are to be considered in all respects only as illustrative and not restrictive, and the scope of the invention, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Physiology (AREA)
  • Microbiology (AREA)
  • Medicinal Preparation (AREA)

Abstract

A method for producing a chewing gum with an improved release of active agent, as well as the chewing gum so produced, is obtained by adding an active agent to a chewing gum coating. The active agent is added to the coating in a coating solution or premixed with a flavor or solvent. The coating solution may contain sweetener or other transdermal enhancing agents to obtain increased transmucosal absorption. An active agent may also be used in the gum core.

Description

IMPROVED RELEASE OF MEDICAMENT ACTIVE AGENTS FROM A CHEWING GUM COATING
Reference to Earlier Filed Applications
The present application claims the benefit under 35 U.S.C. § 119(e) of the filing date of U.S. Provisional Patent Application No. 60/112,389, filed
December 15, 1998. The application is also a continuation-in-part of U.S. Patent Application Serial No. 09/389,211 , filed September 2, 1999, a continuation-in-part of U.S. Patent Application Serial No. 09/286,818, filed April 6, 1999 and a continuation-in-part of U.S. Patent Application Serial No. 09/308,972, filed May 27, 1999, which is a nationalization of
PCT/US96/18977, filed November 27, 1996. Each of the foregoing applications are hereby incorporated by reference.
BACKGROUND OF THE INVENTION
The present invention relates to methods for producing chewing gum. More particularly, the invention relates to producing chewing gum containing an effective amount of an active medicament. Preferably, the active medicament is added to the chewing gum coating to control its rate of release from chewing gum and control the release of medicament for maximum effectiveness. In recent years, efforts have been devoted to controlling release characteristics of various ingredients in chewing gum. Most notably, attempts have been made to delay the release of sweeteners and flavors in vaπous chewing gum formulations to thereby lengthen the satisfactory chewing time of the gum. Delaying the release of sweeteners and flavors can also avoid an undesirable overpowering burst of sweetness or flavor during the initial chewing period. On the other hand, some ingredients have been treated so as to increase their rate of release in chewing gum.
Besides sweeteners, other ingredients may require a controlled release from chewing gum. In certain embodiments, it is contemplated that the active medicament that is added to the gum coating is generally released very readily. An active medicament may be added to the gum coating which is a water soluble matrix such that, during the chewing period, the medicament may be released quickly, resulting in a fast release. This would allow a chewing gum coating to be a carrier for an active medicament with these fast release characteristics. It is of course known to provide active medicaments to individuals for various purposes. These medicaments can be used to treat diseases and as such are typically referred to as drugs or medicaments. Likewise, the drugs or medicaments can be used for preventive purposes. Still, it is known to provide medicaments to an individual for a variety of non-medical purposes including enhancing performance or maintaining health.
There are a great variety of such medicaments. These medicaments run the gamut from stimulants such as caffeine to drugs such as analgesics, tranquilizers, cardiovascular products, as well as vitamins, minerals, and supplements. Some such medicaments are taken on an "as-needed" basis while other medicaments must be taken at regular intervals by the individual.
Typically, drugs or medicaments are administered parenterally or enterally. Of course, parenteral administration is the administration of the drug intravenously directly into the blood stream. Enteral refers to the administration of the drug into the gastrointestinal tract. In either case, the goal of the drug administration is to move the drug from the site of administration towards the systemic circulation.
Oral administration of drugs is by far the most common method of moving drugs towards systemic circulation. When administered orally, drug absorption usually occurs due to the transport of cells across the membranes of the epithelial cells within the gastrointestinal tract. Absorption after oral administration is confounded by numerous factors. These factors include differences down the alimentary cannel in: the luminal pH; surface area per luminal volume; perfusion of tissue, bile, and mucus flow; and the epithelial membranes. See Merck Manual at page 2599. A further issue affecting the absorption or orally administered drugs is the form of the drug. Most orally administered drugs are in the form of tablets or capsules. This is primarily for convenience, economy, stability, and patient acceptance. Accordingly, these capsules or tablets must be disintegrated or dissolved before absorption can occur. There are a variety of factors capable of varying or retarding disintegration of solid dosage forms. Further, there are a variety of factors that affect the dissolution rate and therefore determine the availability of the drug for absorption. See Merck Manual at page 2600.
When a drug rapidly dissolves from a drug product and readily passes across membranes, absorption from most site administration tends to be complete. This is not always the case for drugs given orally. Before reaching the vena cava, the drug must move down the alimentary canal and pass through the gut wall and liver, which are common sites of drug metabolism.
Thus, the drug may be metabolized before it can be measured in the general circulation. This cause of a decrease in drug input is called the first pass effect. A large number of drugs show low bioavailabilities owning to an extensive first pass metabolism. The two other most frequent causes of low bioavailability are insufficient time in the Gl tract and the presence of competing reactions. See Merck Manual at page 2602.
Bioavailability considerations are most often encountered for orally administered drugs. Differences in bioavailability can have profound clinical significance. Although parenteral administration does provide a method for eliminating a number of the variables that are present with oral administration, parenteral administration is not a preferable route. Typically parenteral administration requires the use of medical personnel and is just not warranted nor practical for the administration of most agents and drugs, e.g., analgesics. Even when required, parenteral administration is objectionable due to patient concerns including comfort, infection, etc., as well as the equipment and costs involved.
There is therefore a need for an improved method of delivering drugs and other active agents to an individual. SUMMARY OF THE INVENTION
The present invention provides improved methods for delivering a medicament or active agent to an individual. To this end, coated chewing gum products are provided including a medicament or active agent. The medicament or active agent is present within the coating of a chewing gum composition. It has been found that by adding the active agent to a gum coating, the medicament or active agent is quickly released from the chewing gum into saliva. Possibly, saliva coats the oral tissues under the tongue (sublingual) and the sides of the mouth where the drug may partition from the saliva into the oral mucosa. Continuing to chew the chewing gum may create a pressure within the buccal cavity and may force the medicament or active agent or medicament directly into the systemic system of the individual through the oral mucosa contained in the buccal cavity. This may greatly enhance the transmucosal absorption of the drug into the systemic system as well as the bioavailability of the drug within the system.
Improved chewing gum products including medicaments and active agents in a gum coating are also provided by the present invention.
To this end, the present invention provides a method of drug delivery comprising the steps of: providing a chewing gum with a coating that includes a medicament in the chewing gum coating; chewing the chewing gum to cause the medicament to be released from the chewing gum coating into the buccal cavity of the chewer.
The active medicament may be any agent that is traditionally used as a medicament and lends itself to being administered through the oral cavity. Such active agents may be vitamins, cancer chemotherapeutics; antimycotics; oral contraceptives, nicotine or nicotine replacement agents, minerals, analgesics, antacids, muscle relaxants, antihistamines, decongestants, antibacterial agents, anesthetics, antitussives, diuretics, anti-inflammatories, antibiotics, AIDS medication, neurological drugs, antivirals, psychotherapeutic agents, anti-diabetic agents and cardiovascular agents, nutraceuticals and nutritional supplements. Accordingly, an advantage of an embodiment of the present invention is to provide new methods for delivering medicaments or active agents to an individual.
Still further, an advantage of an embodiment of the present invention is to provide a method of delivering medicaments to an individual that provides for increase absorption and bioavailability as compared to medicaments that are designed to be absorbed in the Gl tract.
Further, an advantage of an embodiment of the present invention is to provide a method of administering a medicament or agent to an individual at a lower level than is typically administered orally while still achieving the same effect.
Furthermore, an advantage of an embodiment of the present invention is to provide a method for administering drugs or agents to an individual that heretofore were administered parenterally. Additionally, an advantage of an embodiment of the present invention is to provide a method of administering drugs that is more palatable than current methods.
Moreover, an advantage of an embodiment of the present invention is to provide an improved method for drug delivery. The present invention also provides a method of producing chewing gum with active medicaments to control their release. Such active medicaments are added to a gum coating to deliver the active medicaments systemically. The present invention also relates to the chewing gum products so produced. Active medicaments may be added to sucrose-type gum formulations and sucrose-type coatings. The formulation may be a low or high moisture formulation containing low or high amounts of moisture containing syrup. Active medicaments may also be used in low or non-sugar gum formulations and coatings that use sorbitol, mannitol, other polyols or carbohydrates. Non-sugar formulations may include low or high moisture sugar-free chewing gums. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention provides improved methods for delivering medicaments and other active agents to an individual, as well as improved formulations including such medicaments and agents. Pursuant to the present invention, a medicament or active agent is contained in the coating of a chewing gum formulation, in contrast to some prior such formulations where the medicament or active agent is contained directly in the chewing gum composition.
Accordingly, as the chewing gum is chewed, the active agent is released into the saliva more quickly. During continual chewing, the medicament or active in the saliva may be then forced due to the pressure created by the chewing gum through the oral mucosa in the buccal cavity. The oral mucosa favors drug absorption. In contrast to a typically oral ingested drug, wherein the solution is in contact too briefly for absorption to be appreciable through the oral mucosa, it is believed that during the chewing, the active agent and/or medicament remains in the buccal cavity and may be forced or partitioned through the oral mucosa. An increase in the transmucosal absorption of the drug may be achieved as well as an increase in the bioavailability of the drug as compared to typical oral administration. The drug or active agent may be absorbed much quicker than if it was swallowed as in a typical oral administration. Indeed, the absorption approaches that of a parental administration and bioavailability may be also much greater than oral administration.
It is also possible that less medicament or active agent can be placed in the chewing gum coating than is typically orally administered to an individual to achieve an effect and the same bioequivalence can be achieved. In some instances, for certain drugs and agents, the administration of the medicament or agent using chewing gum through the buccal activity may provide an increase in therapeutic effect even as compared to parenteral administration.
For example, caffeine is commonly used as a stimulant to alleviate the effects of sleep deprivation. It is almost completely metabolized in the liver and therefore classified as a low clearance, flow independent drug. This means its rate of inactivation is unaffected by delivery to the liver and can only be modified by a change in the hepatic enzyme activity.
Data set forth in detail in U.S. Patent Application Serial No. 09/386,818 herein incorporated by reference, suggests that the absorption rate constant
(Ka) is significantly increased when caffeine is administrated through chewing gum versus a pill. This means that the caffeine is moving into the systemic circulation at a significantly faster rate. A similar change in the onset of dynamic response has also been noted, e.g., alertness and performance. When caffeine is added to stick chewing gum at a level of about 0.2% to about 5%, caffeine imparts an intense bitterness to the chewing gum that lasts throughout the chewing period. The higher the level used, the stronger the bitterness. At about 0.2%, which is about 5 mg per 2.7 gram stick, the bitterness is below the threshold limit and is not readily discernible. Taste limits in stick chewing gum are generally about 0.4% (10 mg) to about 4%
(100 mg) of caffeine in a stick of gum. The 60-80 mg level of caffeine is about the level of caffeine found in a conventional cup of coffee. The target level of caffeine in stick gum is about 40 mg per stick, with a range of about 25-60 mg, so that a five stick package of gum would contain about 200 mg of caffeine, or the equivalent of caffeine in two strong cups of coffee. However, at this level caffeine bitterness overwhelms the flavor initially and lasts throughout the chewing period.
For coated pellet gum, piece weight is generally about 1.5 grams per piece. However, one coated piece of gum is about equal to V≥ piece of stick gum. Two pellets are equivalent to a stick of gum, and together weigh about
3 grams. The above-noted target level of 40 mg per stick is equivalent to 20 mg per coated piece, or a range of about 12 to 30 mg caffeine per piece. This is about 0.8% to about 2% caffeine in a piece of coated gum, or a target level of 1.3%. Caffeine is a slightly water soluble substance and, therefore, has a moderately slow release from stick chewing gum. Caffeine is 2.1 % soluble in water at room temperature, 15% soluble in water at 80°C and 40% soluble in boiling water. This gives caffeine a moderately slow release as shown below: Chewing Time % Caffeine Release
0 min
5 min 56
10 min 73
20 min 88
40 min 97
Generally, highly water soluble ingredients such as sugars in stick gum are about 80-90% released after only five minutes of chewing. For caffeine, only about 50% is released, while the other 50% remains in the gum after five minutes of chewing. After 20 minutes almost 90% of caffeine is released.
Even if caffeine is dissolved in hot water and mixed in the stick gum, when the gum is cooled or kept at room temperature, caffeine may return to its normal crystalline state and release at a rate similar to that shown above.
When an active such as caffeine is added to a gum coating, the active agent will have an increased water solubility, and release quickly into the mouth from the gum coating. Depending on the active agent, which may generally be non-water soluble, adding the active agent to a gum coating will increase the release of the active agent from chewing gum. Most water soluble active agents can be easily added to a gum coating to give a more uniform release from chewing gum. Depending on the active agent, the level released from the gum into the mouth can be adjusted for maximum effectiveness. Other agents or medicaments may be included in the present invention. By the terms "active agent" the present invention refers to a compound that has a desired therapeutic or physiological effect once ingested and/or metabolized. The therapeutic effect may be one which decreases the growth of a xenobiotic or other gut flora or fauna, alters the activity of an enzyme, provides the physical relief from a malady (e.g., diminishes pain, acid reflux or other discomfort), has an effect on the brain chemistry of molecules that determine mood and behavior. Of course these are just examples of what is intended by therapeutic effect. Those of skill in the art will readily recognize that a particular agent has or is associated with a given therapeutic effect. The active agent may be any agent that is traditionally used as a medicament and lends itself to being administered through the oral cavity. Such active agents may be vitamins, cancer chemotherapeutics, antimycotics, oral contraceptives, nicotine or nicotine replacement agents, minerals, analgesics, antacids, muscle relaxants, antihistamines, decongestants, anesthetics, antitussives, diuretics, anti-inflammatories, antibiotics, antivirals, psychotherapeutic agents, anti-diabetic agents, cardiovascular agents, bioengineered pharmaceuticals, nutraceuticals and nutritional supplements. Vitamins and co-enzymes that may be delivered using this invention include but are not limited to water or fat soluble vitamins such as thiamin, riboflavin, nicotinic acid, pyridoxine, pantothenic acid, biotin, flavin, choline, inositol and paraminobenzoic acid, camitine, vitamin C, vitamin D and its analogs, vitamin A and the carotenoids, retinoic acid, vitamin E and vitamin K.
Examples of cancer chemotherapeutics agents include but are not limited to cisplatin (CDDP), procarbazine, mechlorethamine, cyclophosphamide, ,camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin: daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, taxol, transplatinum, 5-fluorouracil, vincristin, vinblastin and methotrexate or any analog or derivative variant thereof. Antimicrobial agents that may be used include but are not limited to naficillin, oxacillin, vancomycin, clindamycin, erythromycin, trimethoprim-sulphamethoxazole, rifampin, ciprofloxacin, broad spectrum penicillin, amoxicillin, gentamicin, ceftriazoxone, cefotaxime, chloramphenicol, clavunate, sulbactam, probenecid, doxycycline, spectinomycin, cefixime, penicillin G, minocycline, P-lactamase inhibitors; meziocillin, piperacillin, aztreonam, norfloxacin, trimethoprim, ceftazidime, dapsone. Antifungal agents that may be delivered include but are not limited to ketoconazole, fluconazole, nystatin, itraconazole, clomitrazole, and amphotericin B. Antiviral agents that may be used include but are not limited to acyclovir, trifluridine, idoxorudine, foscamet, ganciclovir, zidovudine, dideoxycytosine, dideoxyinosine, stavudine, famciclovir, didanosine, zalcitabine, rifimantadine, and cytokines.
Antacids include cimetidine, ranitidine, nizatidine, famotidine, omeprazole, bismuth antacids, metronidazole antacids, tetracylcine antacids, clarthromycin antacids, hydroxides of aluminum, magnesium, sodium bicarbonates, calcium bicarbonate and other carbonates, silicates, and phosphates.
Antihistamines are represented by but are not limited to cimetidine, ranitidine, diphenydramine, prylamine, promethazine, chlorpheniramine, chlorcyclizine, terfenadine, carbinoxamine maleate, clemastine fumarate, diphenhydramine hydrochloride, dimenhydrinate, prilamine maleate, tripelennamine hydrochloride, tripelennamine citrate, chlorpheniramine maleate, brompheniramine maleate, hydroxyzine pamoate, hydroxyzine hydrochloride, cyclizine lactate, cyclizine hydrochloride, meclizine hydrochloride, acrivastine, cetirizine hydrochloride, astemizole, levocabastine hydrochloride, and loratadine.
Decongestants and antitussives include agents such as dextromethorphan hydrobromide, levopropoxyphene napsylate, noscapine, carbetapentane, caramiphen, chlophedianol, pseudoephedrine hydrochloride, pseudoephedrine sulfate, phenylephidrine, diphenhydramine, glaucine, pholcodine, and benzonatate.
Anesthetics include etomidate, ketamine, propofol, and benodiazapines (e.g., chlordiazepoxide, diazepame, clorezepate, halazepam, flurazepam, quazepam, estazolam, triazolam, alprozolm, midazolam, temazepam, oxazepam, lorazepam), benzocaine, dyclonine, bupivacaine, etidocaine, lidocaine, mepivacaine, promoxine, prilocaine, procaine, proparcaine, ropivacaine, tetracaine. Other useful agents may include amobartital, aprobarbital, butabarbital, butalbital mephobarbital, methohexital, pentobarbital, phenobarbital, secobarbital, thiopental, paral, chloralhydrate, ethchlorvynol, clutethimide, methprylon, ethinamate, and meprobarnate.
Analgesics include opioids and other medicaments such as morphine, mepidine, dentanyl, sufentranil, alfentanil, aspirin, acetaminophen, ibuprofen, indomethacine, naproxen, atrin, isocome, midrin, axotal, firinal, phrenilin, ergot, and ergot derivatives (wigraine, cafergot, ergostat, ergomar, dihydroergotamine), imitrex, and ketoprofen.
Diuretics include but are not limited to acetazolamide, dichlorphenamide, methazolamide, furosemide, bumetanide, ethacrynic acid torseimde, azosemide, muzolimine, piretanide, tripamide, bendroflumethiazide, benzthiazide, chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, polythiazide, trichlormethiazide, indapamide, metolazone, quinethazone, amiloride, triamterene, sprion olactone, canrenone, and potassium canrenoate. Anti-inflammatories include but are not limited to salicylic acid derivatives (e.g. aspirin), indole and indene acetic acids (indomethacin, sulindac and etodalac) heteroaryl acetic acids (tolmetin diclofenac and ketorolac) aryl propionic acid derivatives (ibuprofen, naproxen, ketoprofen, fenopren, oxaprozine), anthranilic acids (mefenamic acid, meclofenamic acid) enolic acids (piroxicam, tenoxicam, phenylbutazone and oxyphenthatrazone).
Psychotherapeutic agents include thorazine, serentil, mellaril, millazinetindal, permitil, prolixin, trilafon, stelazine, suprazine, taractan, navan, clozaril, haldol, halperon, loxitane, moban, orap, risperdal, alprazolam, chordiaepoxide, clonezepam, clorezepate, diazepam, halazepam, lorazepam, oxazepam, prazepam, buspirone, elvavil, anafranil, adapin, sinequan, tofranil, surmontil, asendin, norpramin, pertofrane, ludiomil, pamelor, vivactil, prozac, luvox, paxil, zoloft, effexor, wellbutrin, serzone, desyrel, nardil, parnate, eldepryl.
Cardiovascular agents include but are not limited to nitroglycerin, isosorbide dinitrate, sodium nitroprisside, captopril, enalaprill, enalaprilat, quinapril, lisinopril, ramipril, losartan, amrinone, linnone, vesnerinone, hydralazine, nicorandil, prozasin, doxazosin, bunazosin, tamulosin, yohimbine, propanolol, metoprolol, nadolol, atenolol, timolol, esmolol, pindolol, acebutolol, labetalol, phentolamine, carvedilol, bucindolol, verapamil, nifedipine, amlodipine and dobutamine, or a sexual dysfunction agent like sildenafil citrate (Viagra). It is envisioned that depending on the active agent or medicament, the resultant chewing gum can be used to treat inter alia: coughs, colds, motion sickness; allergies; fevers; pain; inflammation; sore throats; cold sores; migraines; sinus problems; diarrhea; diabetes, gastritis; depression; anxiety, hypertension; angina and other maladies and symptoms. Also these gums may be useful in ameliorating cravings in substance abuse withdrawal or for appetite suppression. Specific active agents or medicaments include by way of example and limitation: caffeine, aspirin, acetaminophen; ibuprofen; ketoprofen; cimetidine, ranitidine, famotidine, dramamine, omeprazole, dyclonine hydrochloride, chlorpheniramine maleate, pseudoephedrine hydrochloride, dextromethorphan hydrobromide, benzocaine, sodium naproxen, and nicotine.
Compositions that may be formulated into a suitable chewing gum formulation are described in, for examples, U.S. Patent No. 5,858,423; U.S. Patent No. 5,858,413; U.S. Patent No. 5,858,412 and U.S. Patent No. 5,858,383. Additionally, Goodman and Gilman's "The Pharmaceutical
Basis of Therapeutics" (Eds. Hardman et al., Publ. McGraw Hill, NY) provides comprehensive guidance of useful drugs and their mechanisms of action. Medicated chewing gums have been particularly effective in the delivery of agents such as nicotine as described in, for example, U.S. Patent No. 5,866,179; and U.S. Patent No. 5,889,028. U.S. Patent No. 5,846,557 describes general chewing gum compositions containing cough suppressing agents. These patents are incorporated herein by reference as providing a teaching of the incorporation of medicinal agents into oral chewable formulations. It should be understood that the present chewing gum formulation(s) and coatings are not limited to the agents listed herein above, indeed any medicinal or other active agent that lends itself to ingestion may be formulated into the chewing gum coatings and used in the present invention.
Nutraceuticals and nutritional supplements may also be added to chewing gums as well as the gum coatings as active agents. Among these are herbs and botanicals that include, but are not limited to capsicum, chamomile, cat's claw, echinacea, garlic, ginger, ginko, various ginseng, green tea, golden seal, kava kava, nettle, passion flower, saw palmetto, St. John's wort, and valerian. Also included are mineral supplements such as calcium, copper, iodine, iron, magnesium, manganese, molybdenum, phosphorous, selenium and zinc. Other nutraceuticals that also can be added to chewing gum as active agents are benzoin, fructo-oligosaccharides, glucosamine, grapeseed extract, guarana, inulin, phosphotidylserine, phytosterols, phytochemicals, isoflavones, lecithin, lycopene, oligofructose, polyphenol and psyllium as well as weight loss agents such as chromium picolinate and phenylpropanolamine.
Preferably, the agents or medicaments are contained in the chewing gum coating at levels of approximately 12 micrograms to 250 milligrams per gram of gum product (core plus coating weight). The specific levels will depend on the active ingredient. For example, if chromium picolinate is the active ingredient in an embodiment, it would be present at a level of 50 micrograms per serving (1.5 grams per pellet of gum); aspirin would be preset at a level of 325 milligrams per 1.5/gram serving (pellet).
While the present invention is particularly directed to the use of active agents in chewing gum coatings, it is also recognized that there may be a benefit in having a part of the active agent in the chewing gum formulation.
The level of medicament or agent in the chewing gum formulation and in the coating is selected so as to create, when the gum is chewed, a sufficiently high concentration of the medicament or agent in the saliva.
For example, when the agent is a stimulant such as nicotine or caffeine, the level of the stimulant in the chewing gum and coating should be such that it creates a saliva content of stimulant of approximately 15 to 440 ppm when the chewing gum is chewed for 2 minutes. At this level, a sufficient amount of stimulant will be delivered to the chewer to create desired therapeutic effects. If a medicament is used such as a medicinal agent (e.g., analgesics), sufficient medicinal agent should be present in the chewing gum and coating to create a saliva content of approximately 1700 to approximately 4400 ppm after the chewing gum product has been chewed for 2 minutes.
For botanical agents (e.g., chamomile, kava, kola, nut, ginseng, and Echinacea), the agent should be present in a sufficient amount to create a saliva content of approximately 85 to 1100 ppm when the chewing gum product is chewed for 2 minutes. For a metabolizer, for example, chromium picolinate and hydroxi-chitic acid, the agents should be present in an amount to create a saliva content of approximately 0.5 to about 900 ppm when chewed for at least two minutes. If the agent is a vitamin or mineral (e.g., phosphatidy serine, vitamin C, and zinc), the agent should be present in the amount to create a saliva content of the vitamin or mineral of approximately 10 to about 250 ppm when chewed for 2 minutes.
Pursuant to the present invention, depending on the agent or medicament, the dosing regiment will change. For example, if the medicament is an analgesic, the chewing gum product would be taken on an "as-needed" basis. Of course, similar to the oral administration of an analgesic, there would be restrictions on the number of pieces of chewing gum product chewed, for example, not more often than one pellet every four hours and not more often than four to five times a day. If the agent is a stimulant such as caffeine to be used to enhance performance than the chewing gum product would be chewed, in a preferred embodiment ten minutes or less before the performance.
The medicament or agent can be contained in coatings on a variety of different chewing gum compositions. Referring now to the chewing gum, pursuant to the present invention the chewing gum may be based on a variety of different chewing gums that are known. For example, the chewing gums can be low or high moisture, sugar or sugarless, wax containing or wax free, low calorie (via high base or low calorie bulking agents), and/or may contain dental agents. Active agents may be added to the gum coating along with sweeteners, more specifically high-intensity sweeteners such as thaumatin, dihydrochalcones, acesulfame K, aspartame, N-substituted APM derivatives such as neotame, sucralose, alitame, saccharin and cyclamates. These can also have the effect of reducing unpleasant tastes such as bitterness.
Additional bitterness inhibitors or taste maskers can also be combined with active agents and sweeteners to give a reduced unpleasant taste.
Medicament actives may also be combined in a coated chewing gum product. A single active may be added to a gum coating for fast release and also added to the gum center with or without encapsulation for slow release.
If the active has an affinity for the gum base, it may naturally give a slow release without encapsulation. If the active is fast release, it would have to be encapsulated or entrapped for the desired time release.
A combination of medicament actives may be used in the gum coating and in the gum center for various reasons. In some cases, medicaments may be reactive to one another and should be kept form coming in contact with each other. In other cases, combinations of medicaments may be used for various symptoms where multiple medicaments may be effective. For example, a decongestant such as pseudoephedrine may be added to a gum coating and an antihistamine such as chloropheniramine may be added to a gum center to treat cold/allergy symptoms. For sore throat, an oral anesthetic like dyclonine hydrochloride may be used in the gum coating and an antibacterial agent like cetyl pyridinium chloride may be added to a gum center. Additionally, any other materials like dextromethorphan hydrobromide for cough relief or an analgesic like ketoprofen may be added to either a gum coating and a gum center for cold symptoms. Other combinations of medicament active agents for other types of ailments are also within the scope of this invention.
In many instances, active medicaments may have a low quality off- taste or bitterness, if added to a chewing gum coating. In most cases, this off taste may be masked with high intensity sweeteners, but in other instances, a bitterness inhibitor may be needed to reduce a bitter taste of a medicament. There are a wide variety of bitterness inhibitors that can be used in food products as well as with active agents. Some of the preferred bitterness inhibitors are the sodium salts which are discussed in the article Suppression of Bitterness by Sodium: Variations Among Bitter Taste Stimuli, by R.A.S. Breslin and G.K. Beceuchenp from Monell Chemical Senses Center,
Philadelphia, Pennsylvania. Sodium salts discussed are sodium acetate and sodium gluconate. Other sodium salts that may also be effective are sodium glycinate, sodium ascorbate and sodium glycerolphosphate. Among these, the most preferred is sodium gluconate and sodium glycinate since they have a low salty taste and are most effective to reduce bitterness of most active medicaments.
Most of the sodium salts are very water soluble and are readily released from chewing gum coating to function as bitterness inhibitors. In most instances, the sodium salts which release readily from chewing gum center may be modified by encapsulation to give an even faster release from chewing gum. However, in some instances the sodium salts would be encapsulated or entrapped to give a delayed release from gum. Generally, the bitterness inhibitor should release with the active medicament for maximum effectiveness. Release of the medicament from gum coating may also be effected by particle size of the medicament. Small particles release more quickly whereas large particles more slowly. Fast release can also be accomplished by dissolving medicament in a liquid and used in a gum coating. Medicaments may be dissolved in solvents, flavors, or other transdermal vehicles used as absorption enhancing agents and added to gum or to a gum coating. These absorption enhancing agents may also be added to the gum or gum coating separately from the active ingredient. Their presence may help volatilize medicaments or allow increased transmucosal absorption of the active agent through the nasal mucosa or the lungs. These solvents, flavors, or transdermal vehicles may transport medicaments faster through the oral mucosa. Faster absorption may be affected by increasing flavor levels as well as the addition of other flavor components, such as menthol and menthol derivatives, limonene, carvone, isomenthol, eucalyptol, menthone, pynene, camphor and camphor derivatives, as well as monoterpene natural products, monoterpene derivatives, and sesquaterpenes, including caryophyllene and copaene. Other vehicles that may be used to increase transdermal absorption are: ethanol, polyethylene glycol, 2-pyrrolidones, myristic acid, Brij-35 (surfactant), p-phenyl phenol, nitrobenzene, stearyl alcohol, cetyl alcohol, croton oil, liquid paraffin, dimethyl sulfoxide (DMSO), non-ionic surfactants, liposomes, lecithin fractions, and long chain amphipathic molecules (molecules with polar or non-ionized groups on one end and non- polar groups at the other end).
Tableting of chewing gum is disclosed in U.K. Patent Publication No. 1 ,489,832; U.S. Patent No. 4,753,805; EP Patent Publication No. 0 221 850; and Italy Patent Publication No. 1 ,273,487. These patents disclose active agents added to chewing gum which is then tableted. As an embodiment of this invention, active agents may be encapsulated or entrapped and added to a chewing gum formulation which is then tableted and used as a core for a coated chewing gum pellet that is coated with a sugar, polyol or film that includes an active agent. The chewing gum core may contain one active agent or multiple active medicaments and the coating may contain one or a plurality of active medicaments. This form will yield unique chewing gum products.
In general, a chewing gum composition typically comprises a water-soluble bulk portion, a water-insoluble chewable grams base portion and typically water-insoluble flavoring agents. The water-soluble portion dissipates with a portion of the flavoring agent over a period of time during chewing. The gum base portion is retained in the mouth throughout the chew. The insoluble gum base generally comprises elastomers, resins, fats and oils, softeners and inorganic fillers. The gum base may or may not include wax. The insoluble gum base can constitute approximately 5% to about 95% by weight of the chewing gum, more commonly the gum base comprises 10% to about 50% of the gum, and in some preferred embodiments approximately 25% to about 35% by weight, of the chewing gum.
In a particular embodiment, the chewing gum base of the present invention contains about 20% to about 60% by weight synthetic elastomer, about 0% to about 30% by weight natural elastomer, about 5% to about 55% by weight elastomer plasticizer, about 4% to about 35% by weight filler, about 5% to about 35% by weight softener, and optional minor amounts (about 1 % or less by weight) of miscellaneous ingredients such as colorants, antioxidants, etc.
Synthetic elastomers may include, but are not limited to, polyisobutylene with GPC weight average molecular weight of about 10,000 to about 95,000, isobutylene-isoprene copolymer (butyl elastomer), styrene-butadiene, copolymers having styrene-butadiene ratios of about 1 :3 to about 3: 1 , polyvinyl acetate having GPC weight average molecular weight of about 2,000 to about 90,000, polyisoprene, polyethylene, vinyl acetate - vinyl laurate copolymer having vinyl laurate content of about 5% to about 50% by weight of the copolymer, and combinations thereof.
Preferred ranges for polyisobutylene are 50,000 to 80,000 GPC weight average molecular weight and for styrene-butadiene are 1 : 1 to 1 :3 bound styrene-butadiene, for polyvinyl acetate are 10,000 to 65,000 GBC weight average molecular weight with the higher molecular weight polyvinyl acetates typically used in bubble gum base, and for vinyl acetate-vinyl laurate, vinyl laurate content of 10-45%. Natural elastomers may include natural rubber such as smoked or liquid latex and guayule as well as natural gums such as jelutong, lechi caspi, perillo, sorva, massaranduba balata, massaranduba chocolate, nispero, rosindinha, chicle, gutta hang kang, and combinations thereof. The preferred synthetic elastomer and natural elastomer concentrations vary depending on whether the chewing gum in which the base is used is adhesive or conventional, bubble gum or regular gum, as discussed below. Preferred natural elastomers include jelutong, chicle, sorva and massaranduba balata. Elastomer plasticizers may include, but are not limited to, natural rosin esters such as glycerol esters or partially hydrogenated rosin, glycerol esters of polymerized rosin, glycerol esters of partially dimerized rosin, glycerol esters of rosin, pentaerythritol esters of partially hydrogenated rosin, methyl and partially hydrogenated methyl esters of rosin, pentaerythritol esters of rosin; synthetics such as terpene resins derived from alpha-pinene, beta-pinene, and/or d-limonene; and any suitable combinations of the foregoing. The preferred elastomer plasticizers will also vary depending on the specific application, and on the type of elastomer which is used. Fillers/texturizers may include magnesium and calcium carbonate, ground limestone, silicate types such as magnesium and aluminum silicate, clay, alumina, talc, titanium oxide, mono-, di- and tri-calcium phosphate, cellulose polymers, such as wood, and combinations thereof.
Softeners/emulsifiers may include tallow, hydrogenated tallow, hydrogenated and partially hydrogenated vegetable oils, cocoa butter, glycerol monostearate, glycerol triacetate, lecithin, mono-,.di- and triglycerides, acetylated monoglycerides, fatty acids (e.g. stearic, palmitic, oleic and linoleic acids), and combinations thereof
Colorants and whiteners may include FD&C-type dyes and lakes, fruit and vegetable extracts, titanium dioxide, and combinations thereof.
The base may or may not include wax. An example of a wax-free gum base is disclosed in U.S. Patent No. 5,286,500, the disclosure of which is incorporated herein by reference.
In addition to a water insoluble gum base portion, a typical chewing gum composition includes a water soluble bulk portion and one or more flavoring agents. The water soluble portion can include bulk sweeteners, high intensity sweeteners, flavoring agents, softeners, emulsifiers, colors, acidulants, fillers, antioxidants, and other components that provide desired attributes. Softeners are added to the chewing gum in order to optimize the chewability and mouth feel of the gum. The softeners, which are also known as plasticizers and plasticizing agents, generally constitute between approximately 0.5% to about 15% by weight of the chewing gum. The softeners may include glycerin, lecithin, and combinations thereof. Aqueous sweetener solutions such as those containing sorbitol, hydrogenated starch hydrolysates, corn syrup and combinations thereof, may also be used as softeners and binding agents in chewing gum.
Bulk sweeteners include both sugar and sugarless components. Bulk sweeteners typically constitute about 5% to about 95% by weight of the chewing gum, more typically, about 20% to about 80% by weight, and more commonly, about 30% to about 60% by weight of the gum. Sugar sweeteners generally include saccharide-containing components commonly known in the chewing gum art, including but not limited to, sucrose, dextrose, maltose, dextrin, dried invert sugar, fructose, levulose, glactose, corn syrup solids, and the like, alone or in combination. Sugarless sweeteners include, but are not limited to, sugar alcohols such as sorbitol, mannitol, xylitol, hydrogenated starch hydrolysates, maltitol, and the like, alone or in combination.
High intensity artificial sweeteners can also be used, alone or in combination, with the above. Preferred sweeteners include, but are not limited to, sucralose, aspartame, N-substituted APM derivatives such as neotame, salts of acesulfame, altitame, saccharin and its salts, cyclamic acid and its salts, glycyrrhizinate, dihydrochalcones, thaumatin, monellin, and the like, alone or in combination. In order to provide longer lasting sweetness and flavor perception, it may be desirable to encapsulate or otherwise control the release of at least a portion of the artificial sweetener. Such techniques as wet granulation, wax granulation, spray drying, spray chilling, fluid bed coating, coacervation, and fiber extension may be used to achieve the desired release characteristics.
Combinations of sugar and/or sugarless sweeteners may be used in chewing gum. Additionally, the softener may also provide additional sweetness such as with aqueous sugar or alditol solutions. If a low calorie gum is desired, a low caloric bulking agent can be used.
Examples of low caloric bulking agents include: polydextrose; Raftilose, Raftilin; fructooligosaccharides (NutraFlora); palatinose oligosaccharide; guar gum hydrolysate (Sun Fiber); or indigestible dextrin (Fibersol). However, other low calorie bulking agents can be used.
A variety of flavoring agents can also be used, if desired. The flavor can be used in amounts of about 0. 1 to about 15 weight percent of the gum, and preferably, about 0.2% to about 5% by weight. Flavoring agents may include essential oils, synthetic flavors or mixtures thereof including, but not limited to, oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like. Artificial flavoring agents and components may also be used. Natural and artificial flavoring agents may be combined in any sensorially acceptable fashion.
In general, chewing gum is manufactured by sequentially adding the various chewing gum ingredients to a commercially available mixer known in the art. After the ingredients have been thoroughly mixed, the gum mass is discharged from the mixer and shaped into the desired form such as rolling sheets and cutting into sticks, extruding into chunks or casting into pellets, which are then coated or panned.
Generally, the ingredients are mixed by first melting the gum base and adding it to the running mixer. The base may also be melted in the mixer itself. Color or emulsifiers may also be added at this time. A softener such as glycerin may also be added at this time, along with syrup and a portion of the bulking agent. Further parts of the bulking agent are added to the mixer.
Flavoring agents are typically added with the final portion of the bulking agent.
Other optional ingredients are added to the batch in a typical fashion, well known to those of ordinary skill in the art.
The entire mixing procedure typically takes from five to fifteen minutes, but longer mixing times may sometimes be required. Those skilled in the art will recognize that many variations of the above described procedure may be followed. In this invention, medicaments or actives are used in the coating/ panning of a pellet chewing gum. Pellet or ball gum is prepared as conventional chewing gum but formed into pellets that are pillow shaped, or into balls. The pellets/balls can be then sugar coated or panned by conventional panning techniques to make a unique coated pellet gum. The active agent may be soluble in flavor or can be blended with other powders often used in some types of conventional panning procedures. Active agents are isolated from other gum ingredients which modifies its release rate from chewing gum. Levels of actives may be about 10 ppm to 30% by weight of chewing gum coating. The weight of the coating may be about 20% to about 50% of the weight of the finished product, but may be as much as 75% of the total gum product. The active level will be based on the dosage for one or two pellets.
Conventional panning procedures generally coat with sucrose, but recent advances in panning have allowed use of other carbohydrate materials to be used in place of sucrose. Some of these components include, but are not limited to, dextrose, maltose, palatinose, xylitol, lactitol, hydrogenated isomaltulose, erythritol, maltitol, and other new alditols or combinations thereof. These materials may be blended with panning modifiers including, but not limited to, gum arabic, maltodextrins, corn syrup, gelatin, cellulose type materials like carboxymethyl cellulose or hydroxymethyl cellulose, starch and modified starches, vegetables gums like alginates, locust bean gum, guar gum, and gum tragacanth, insoluble carbonates like calcium carbonate or magnesium carbonate and talc. Antitack agents may also be added as panning modifiers, which allow the use of a variety of carbohydrates and sugar alcohols to be used in the development of new panned or coated gum products. Flavors may also be added with the sugar or sugarless coating and with the active to yield unique product characteristics.
Another type of pan coating could also isolate the active agent from the chewing gum ingredients. This technique is referred to as a film coating and is more common for pharmaceuticals than in chewing gum, but procedures are similar. A film like shellac, zein, or cellulose type material is applied onto a pellet-type product forming a thin film on the surface of the product. The film is applied by mixing the polymer, plasticizer and a solvent (pigments are optional) and spraying the mixture onto the pellet surface. This is done in conventional type panning equipment, or in more advanced side-vended coating pans. Since most active agents may be alcohol soluble, they may be readily added with this type of film. When a solvent like an alcohol is used, extra precautions are needed to prevent fires and explosions, and specialized equipment must be used.
Some film polymers can use water as the solvent in film coating. Recent advances in polymer research and in film coating technology eliminates the problem associated with the use of solvents in coating. These advances make it possible to apply aqueous films to a pellet or chewing gum product. Some active agents can be added to this aqueous film or even the alcohol solvent film, in which an active agent is highly soluble. This film may also contain a flavor along with a polymer and plasticizer. The active agent can also be dissolved in the aqueous or non-aqueous solvent and coated on the surface with the aqueous film. In some instances a combination of film and sugar or polyol coating may be useful, especially if the active is added with the film coating material. Also the film coating may be applied early, middle, or late in the coating process. This will give a unique release of active agent from a film-coated product.
After a coating film with an active medicament is applied to a chewing gum product, a hard shell sugar or polyol coating may then be applied over the film coated product. In some instances a soft shell sugar or polyol coating may also be used over the film coated product. The level of film coating applied to a pellet gum may be generally from about 0.5% to about 3% of the gum product. The level of overcoating of the hard or soft shell may be about 20% to about 75%. When the active agent is added with the film coating and not with the sugar/polyol coating, better control of the amount of active agent in the product may be obtained. In addition, the sugar/polyol overcoating may give an improved stability to the active agent in the product.
As noted above, the coating may contain ingredients such as flavoring agents, as well as artificial sweeteners and dispersing agents, coloring agents, film formers and binding agents. Flavoring agents contemplated by the present invention include those commonly known in the art such as essential oils, synthetic flavors or mixtures thereof, including but not limited to oils derived from plants and fruits such as citrus oils, fruit essences, peppermint oil, spearmint oil, other mint oils, clove oil, oil of wintergreen, anise and the like. The flavoring agents may be used in an amount such that the coating will contain from about 0.2% to about 3% flavoring agent, and preferably from about 0.7% to about 2.0% flavoring agent. Active agents may be preblended with the flavor used in coating.
Artificial sweeteners contemplated for use in the coating include but are not limited to synthetic substances, saccharin, thaumatin, alitame, saccharin salts, aspartame, N-substituted APM derivatives such as neotame, sucralose and acesulfame-K. The artificial sweetener may be added to the coating syrup in an amount such that the coating will contain from about 0.01 % to about 0.5%, and preferably from about 0.1 % to about 0.3% artificial sweetener. Dispersing agents are often added to syrup coatings for the purpose of whitening and tack reduction. Dispersing agents contemplated by the present invention to be employed in the coating syrup include titanium dioxide, talc, or any other antistick compound. Titanium dioxide is a presently preferred dispersing agent of the present invention. The dispersing agent may be added to the coating syrup in amounts such that the coating will contain from about
0. 1 % to about 1.0%, and preferably from about 0.3% to about 0.6% of the agent.
Coloring agents are preferably added directly to the syrup in the dye or lake form. Coloring agents contemplated by the present invention include food quality dyes. Film formers preferably added to the syrup include methyl cellulose, gelatins, hydroxypropyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and the like and combinations thereof. Binding agents may be added either as an initial coating on the chewing gum center or may be added directly into the syrup. Binding agents contemplated by the present invention include gum arabic, gum talha (another type of acacia), alginate, cellulosics, vegetable gums and the like. The coating is initially present as a liquid syrup which contains from about 30% to about 80% or 85% of the coating ingredients previously described herein, and from about 15% or 20% to about 70% of a solvent such as water. In general, the coating process is carried out in a rotating pan. Sugar or sugarless gum center tablets to be coated are placed into the rotating pan to form a moving mass.
The material or syrup which will eventually form the coating is applied or distributed over the gum center tablets. Flavoring agents may be added before, during and after applying the syrup to the gum centers. Once the coating has dried to form a hard surface, additional syrup additions can be made to produce a plurality of coatings or multiple layers of hard coating.
In a hard coating panning procedure, syrup is added to the gum center tablets at a temperature range of from about 100°F to about 240°F. Mostly, the syrup temperature is from about 130°F to about 200°F throughout the process in order to prevent the polyol or sugar in the syrup from crystallizing.
The syrup may be mixed with, sprayed upon, poured over, or added to the gum center tablets in any way known to those skilled in the art.
In general, a plurality of layers is obtained by applying single coats, allowing the layers to dry, and then repeating the process. The amount of solids added by each coating step depends chiefly on the concentration of the coating syrup. Any number of coats may be applied to the gum center tablet. Generally, no more than about 75-100 coats are applied to the gum center tablets. The present invention contemplates applying an amount of syrup sufficient to yield a coated comestible containing about 10% to about 75% coating. Where higher dosage of an active agent is needed, the final product may be higher than 75% coating.
Those skilled in the art will recognize that in order to obtain a plurality of coated layers, a plurality of premeasured aliquots of coating syrup may be applied to the gum center tablets. It is contemplated, however, that the volume of aliquots of syrup applied to the gum center tablets may vary throughout the coating procedure. Once a coating of syrup is applied to the gum center tablets, the present invention contemplates drying the wet syrup in an inert medium. A preferred drying medium comprises air. Forced drying air contacts the wet syrup coating in a temperature range of from about 70° to about 1 15°F. Generally, the drying air is in the temperature range of from about 80° to about 100°F. The invention also contemplates that the drying air possess a relative humidity of less than about 15 percent. Preferably, the relative humidity of the drying air is less than about 8 percent.
The drying air may be passed over and admixed with the syrup coated gum centers in any way commonly known in the art. Generally, the drying air is blown over and around or through the bed of the syrup coated gum centers at a flow rate, for large scale operations, of about 2800 cubic feet per minute. If lower quantities of material are being processed, or if smaller equipment is used, lower flow rates would be used. For many years, flavors have been added to a sugar coating of pellet gum to enhance the overall flavor of gum. These flavors include spearmint flavor, peppermint flavor, wintergreen flavor, and fruit flavors. These flavors are generally preblended with the coating syrup just prior to applying it to the core or added together to the core in one or more coating applications in a revolving pan containing the cores. Generally, the coating syrup is very hot, about 130° to 200°F, and the flavor may volatilize if preblended with the coating syrup too early.
The concentrated coating syrup is applied to the gum cores as a hot liquid, the sugar or polyol allowed to crystallize, and the coating then dried with warm, dry air. This is repeated in about 30 to 100 applications to obtain a hard shell coated product having an increased weight gain of about 40% to 75%. A flavor is applied with one, two, three or even four or more of these coating applications. Each time flavor is added, several non-flavored coatings are applied to cover the flavor before the next flavor coat is applied. This reduces volatilization of the flavor during the coating process.
For mint flavors such spearmint, peppermint and wintergreen, some of the flavor components are volatilized, but sufficient flavor remains to give a product having a strong, high impact flavor. Fruit flavors, that may contain esters, are more easily volatilized and may be flammable and/or explosive and therefore, generally these type of fruit flavors may be pretreated in order to be able to add them to a gum coating. In an embodiment of this invention, an active agent is preblended with a gum arabic solution to become a paste and then applied to the cores. To reduce stickiness, the preblend may be mixed with a small amount of coating syrup before being applied. Forced air drying is then continued as the gum arabic binds the active agent to the cores. Then additional coatings are applied to cover the active agent and imbed the treated active agent in the coatings.
Gum Formulation Examples
The following examples of the invention and comparative examples are provided by way of explanation and illustration. As noted earlier, the gum formulas can be prepared as sugar or sugarless type formulations. These formulas are made in a pellet or pillow shape pellet or a round ball or any other shape of product for coating/panning. However, gum formulas for pellet centers are generally adjusted to a higher level of gum base than stick gum to give a more consumer acceptable size of gum bolus.
Keeping this in mind, if a coating of about 25% of the total product is added to a pellet core as sugar or polyols, the gum base in the pellet core should also be increased by 25%. Likewise, if a 33% coating is applied, the base levels should also be increased by 33%. As a result, gum centers are usually formulated with about 25% to about 40% gum base with a corresponding decrease in the other ingredients except flavor. Even higher levels of base may be used when an active is added to a pellet coating. Generally flavors increase with the level of gum base as the base tends to bind flavors into the gum and more flavor is needed to give a good flavorful product. However flavors can also be added to the coating to give increased flavor impact and more flavor perception. A wide range of changes and modifications to the embodiments of the invention described above will be apparent to persons skilled in the art. While the invention is described with respect to hard-coated chewing gum, it will be appreciated that the process is applicable to coating other food products, such as candies, in which a coating with dyclonine hydrochloride would have utility.
Examples
The following examples of the invention and comparative examples are provided by way of explanation and illustration.
The formulas listed in Table 1 comprise various sugar-type formulas in which active medicament can be added to gum coating after it is dissolved in water or mixed with various aqueous solvents. Dyclonine hydrochloride is an active medicament used as an oral anesthetic for sore throat.
Various gum formulas may be made in a pellet or pillow shape pellet or a round ball or any other shape of product for coating/panning. As noted earlier, gum formulas are generally adjusted to a higher level of gum base to give a more consumer acceptable size of gum bolus.
Some typical sugar type gum center formulations are shown in Table 1. Gum center formulas may or may not contain dyclonine hydrochloride.
TABLE 1 fWEIGHT PERCENT)
EX. 1 EX. 2 EX. 3 EX. 4 EX. 5 EX. 6
SUGAR 52.0 48.7 47.55 44.0 40.7 38.55
GUM BASE 26.0 30.0 35.00 26.0 30.0 35.00
CORN SYRUP 20.0 19.0 15.00 18.0 17.0 14.00
GLYCERIN 1.0 1.0 1.00 1.0 1.0 1.00
PEPPERMINT 1.0 1.0 1.00 1.0 1.0 1.00
FLAVOR
DEXTROSE - - - 10.0 10.0 10.00
MONOHYDRATE
DYCLONINE - 0.3 0.45 - 0.3 0.45
HYDROCHLORIDE
Gum center formulations with or without active dyclonine hydrochloride can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum centers. Dyclonine hydrochloride may be added to a gum center only, or to a gum coating with none in the center, or to both center and coating. Coated gum pieces are about 1.5 grams, so to obtain 3 mg of dyclonine hydrochloride total piece must contain 0.2%.
Dyclonine hydrochloride can then be used in the coating formula on the various pellet gum formulations. The following Table 2 shows some sugar and dextrose type formulas:
TABLE 2
.DRY WEIGHT PERCENT)
EX. 7 EX. 8 EX. 9 EX. 10 EX. 11 EX. 12
SUGAR 97.0 95.2 93.5 96.8 94.9 93.0
GUM ARABIC 2.0 3.0 4.0 2.0 3.0 4.0
TITANIUM 0.5 1.0 1.0 - - .
DIOXIDE
CALCIUM - - - 0.5 1.0 2.0
CARBONATE
FLAVOR 0.3 0.5 0.8 0.5 0.8 0.3
WAX 0.1 0.1 0.1 0.1 0.1 0.1
DYCLONINE 0.1 0.2 0.6a) 0.1 0.2 0.6a)
HYDRO¬
CHLORIDE
TABLE 2 (Cont'd) (DRY WEIGHT PERCENT)
EX. 13 EX. 14 EX. 15 EX. 16
DEXTROSE 97.5 95.2 97.0 93.9
MONOHYDRATE
GUM ARABIC 1.5 3.0 1.5 3.0
TITANIUM 0.5 1.0 - -
DIOXIDE
CALCIUM - - 1.0 2.0
CARBONATE
FLAVOR 0.3 0.5 0.2 0.4
WAX 0.1 0.1 0.1 0.1
DYCLONINE 0.1 0.2 0.2 0.6a)
HYDRO¬
CHLORIDE a) All of the active agent is in the coating, which comprises 33% of the product. The above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. Some of the dextrose may be added as a dry charge which may also contain the active agent. Dyclonine hydrochloride may be dissolved in water, not mixed with hot syrup, but added between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Dyclonine hydrochloride may be dissolved in flavor and added to the coating. After the final coats are applied and dried, wax is applied to give a smooth polish.
Dyclonine hydrochloride may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without dyclonine hydrochloride for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 3.
TABLE 3
(WEIGHT PERCENT)
EX. 17 EX. 18 EX. 19 EX. 20 EX. 21 EX. 22 EX. 23
GUM BASE 35.0 35.0 30.0 30.0 30.0 40.0 50.0
CALCIUM CARBONATE - - 5.0 10.0 15.0 - -
SORBITOL 43.3 45.0 45.9 40.3 44.5 41.4 26.1
MANNITOL 10.0 10.0 5.0 10.0 - 8.0 10.0
GLYCERIN - 8.0 2.0 - 8.0 2.0 2.0
SORBITOL LIQUID 10.0 - 10.0 8.0 - 6.0a) 10.0a)
FLAVOR 1.5 1.5 1.5 1.5 2.0 2.0 1.3
HIGH INTENSITY 0.2 0.2 0.2 0.2 0.2 0.3 0.2 SWEETENER
ACTIVE DYCLONINE - 0.3 0.4 - 0.3 0.3 0.4 HYDRO-CHLORIDEb) a) Lycasin brand hydrogenated starch hydrolyzate used instead of sorbitol liquid b) This material may be dissolved in water, glycerin, sorbitol liquid, or HSH. In the above center formulations, the high intensity sweetener used is aspartame. However other high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
Lycasin and other polyols such as maltitol, xylitol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels. The texture may be adjusted by varying glycerin or sorbitol liquid. Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
Dyclonine hydrochloride may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. The following table gives formulas for a xylitol coating:
TABLE 4 (DRY WEIGHT PERCENT)
EX. 24 EX. 25 EX. 26 EX. 27 EX. 28 EX. 29
XYLITOL 94.7 92.2 90.1 90.0 89.7 88.2
GUM ARABIC 4.0 6.0 7.0 8.5 8.5 10.0
FLAVOR 0.5 0.5 0.7 0.7 0.9 0.5
TITANIUM 0.5 0.9 - 0.5 0.5** 0.5**
DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
COLOR* - - 1.4 - - -
DYCLONINE 0.1 0.2 0.6a) 0.1 0.2 0.6a)
HYDRO¬
CHLORIDE * Lake color dispersed in xylitol solution
** Calcium carbonate used in place of titanium dioxide a) All of the active agent is in the gum coating, which comprises 33% of the gum product.
The above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. Dyclonine hydrochloride may be dissolved in water and added between coating applications or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. After pellets have been coated and dried, talc and wax are added to give a polish. For coating formulas based on sorbitol, maltitol, lactitol, and hydrogenated isomaltulose, gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating. Generally these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky. The following formulations may be used.
TABLE 5 (DRY WEIGHT PERCENT)
EX. 30 EX. 31 EX. 32 EX. 33 EX. 34 EX. 35
MALTITOL 96.7 94.7 91.5 86.7 75.9 68.9
MALTITOL - - - 10.0 20.0 25.0
POWDER
GUM ARABIC 2.0 4.0 6.0 2.0 3.0 4.0
FLAVOR 0.5 0.4 0.7 0.5 0.3 0.7
TITANIUM DIOXIDE 0.5 0.5 1.0 0.5 0.4 0.6
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
DYCLONINE 0.1 0.2 0.6a) 0.1 0.2 0.6a)
HYDROCHLORIDE
a) All of the active agent is in the coating, which comprises 33% of the product.
Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. Dyclonine hydrochloride may be applied in a similar manner as in the previous xylitol coating or may be preblended with the dry charge material. After all coating is applied and dried, talc and wax are added to give a polish.
In a similar manner, coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 5 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder. Like maltitol, the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying. In the later stages of the coating process, less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface. Also, the dry charge would only be used in the early stages of the coating process.
In addition to dry charging with the specific polyol, other ingredients may be added to the dry charge to help absorb moisture. These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials. Also, powdered sweeteners or flavors could be added with the dry charge, along with the active medicament.
Some polyols such as sorbitol, maltitol, lactitol, erythritol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
Some typical sugar type gum center formulations are shown in Table 6 with chlorpheniramine maleate. Chlorpheniramine maleate is an active medicament used as an antihistamine. Gum center formulas may or may not contain chlorpheniramine maleate. TABLE 6 (WEIGHT PERCENT)
EX. 36 EX. 37 EX. 38 EX. 39 EX. 40 EX. 41
SUGAR 52.0 48.73 47.59 44.0 40.73 38.59
GUM BASE 26.0 30.0 35.00 26.0 30.0 35.00
CORN SYRUP 20.0 19.0 15.00 18.0 17.0 14.00
GLYCERIN 1.0 1.0 1.00 1.0 1.0 1.00
PEPPERMINT 1.0 1.0 1.00 1.0 1.0 1.00
FLAVOR
DEXTROSE - - - 10.0 10.0 10.00
MONOHYDRATE
ACTIVE -a> 0.27 0.41 -a> 0.27 0.41
CHLORPHENIRAMINE
MALEATE
a) All of the active agent is in the coating, which comprises 33% of the product.
Gum center formulations with or without active chlorpheniramine maleate can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars are polyols may be used in the gum centers. Chlorpheniramine maleate may be added to a gum center only, or to a gum coating with none in the center, or to both center and coating. Coated gum pieces are about 1.5 grams, so to obtain 4 mg of chlorpheniramine maleate total piece must contain 0.27%. Chlorpheniramine maleate can be used in the coating formula on the various pellet gum formulations. The following Table 7 shows some sugar and dextrose type formulas:
TABLE 7 (DRY WEIGHT PERCENT)
EX. 42 EX. 43 EX. 44 EX. 45 EX. 46 EX. 47
SUGAR 96.83 95.13 93.29 96.63 94.83 92.79
GUM ARABIC 2.0 3.0 4.0 2.0 3.0 4.0
TITANIUM 0.5 1.0 1.0 - - .
DIOXIDE
CALCIUM - - - 0.5 1.0 2.0
CARBONATE
FLAVOR 0.3 0.5 0.8 0.5 0.8 0.3
WAX 0.1 0.1 0.1 0.1 0.1 0.1
CHLORPHEN0.27 0.27 0.81 a) 0.27 0.27 0.81 a)
IRAMINE
MALEATE
TABLE 7 (Cont'd) (DRY WEIGHT PERCENT)
EX. 48 EX. 49 EX. 50 EX. 51
DEXTROSE 97.33 95.13 96.93 93.69
MONOHYDRATE
GUM ARABIC 1.5 3.0 1.5 3.0
TITANIUM 0.5 1.0 . -
DIOXIDE
CALCIUM - - 1.0 2.0
CARBONATE
FLAVOR 0.3 0.5 0.2 0.4
WAX 0.1 0.1 0.1 0.1
CHLORPHEN0.27 0.27 0.27 0.81 a)
IRAMINE
MALEATE a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. Some of the dextrose may be added as a dry charge, which may also contain the active. Chlorpheniramine maleate may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Chlorpheniramine maleate may be dissolved in flavor and added to the coating. After the final coats are applied and dried, wax is applied to give a smooth polish.
Chlorpheniramine maleate may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without chlorpheniramine maleate for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 8.
TABLE 8 (WEIGHT PERCENT)
EX. 52 EX. 53 EX. 54 EX. 55 EX. 56 EX. 57 EX. 58
GUM BASE 35.0 35.0 30.0 30.0 30.0 40.0 50.0
CALCIUM - - 5.0 10.0 15.0 - - CARBONATE
SORBITOL 43.3 45.03 45.89 40.3 44.53 41.29 25.96
MANNITOL 10.0 10.0 5.0 10.0 - 8.0 10.0
GLYCERIN - 8.0 2.0 - 8.0 2.0 2.0
SORBITOL 10.0 - 10.0 8.0 - 6.0a) 10.0a) LIQUID
FLAVOR 1.5 1.5 1.5 1.5 2.0 2.0 1.3
HIGH INTENSITY 0.2 0.2 0.2 0.2 0.2 0.3 0.2 SWEETENER
ACTIVE .c> 0.27 0.41 .c> 0.27 0.41 0.54 CHLORPHENIRAMINE MALEATEb) a) Lycasin brand hydrogenated starch hydrolyzate used instead of sorbitol liquid b) This material may be dissolved in water, glycerin, sorbitol liquid, or HSH. c) All of the active agent is in the coating, which comprises 33% of the product.
In the above center formulations, the high intensity sweetener used is aspartame. However other high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
Lycasin and other polyols such as maltitol, xylitol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels. The texture may be adjusted by varying glycerin or sorbitol liquid. Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
Chlorpheniramine maleate may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. The following table gives formulas for a xylitol coating:
TABLE 9 (DRY WEIGHT PERCENT)
EX. 59 EX. 60 EX. 61 EX. 62 EX. 63 EX. 64
XYLITOL 94.53 92.13 89.89 89.83 89.63 87.99
GUM ARABIC 4.0 6.0 7.0 8.5 8.5 10.0
FLAVOR 0.5 0.5 0.7 0.7 0.9 0.5
TITANIUM 0.5 0.9 - 0.5 0.5** 0.5**
DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
COLOR* - - 1.4 - - -
CHLORPHEN0.27 0.27 0.81a> 0.27 0.27 0.81 a)
IRAMINE
MALEATE
* Lake color dispersed in xylitol solution
** Calcium carbonate used in place of titanium dioxide a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. Chlorpheniramine maleate may be dissolved in water or flavor and added between coating applications or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. After pellets have been coated and dried, talc and wax are added to give a polish. For coating formulas based on sorbitol, maltitol, lactitol, erythritol, and hydrogenated isomaltulose, gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating. Generally these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky. The following formulations may be used.
TABLE 10 (DRY WEIGHT PERCENT)
EX. 65 EX. 66 EX. 67 EX. 68 EX. 69 EX. 70
MALTITOL 96.53 94.63 91.29 86.53 75.83 68.69
MALTITOL - - - 10.0 20.0 25.0 POWDER
GUM ARABIC 2.0 4.0 6.0 2.0 3.0 4.0
FLAVOR 0.5 0.4 0.7 0.5 0.3 0.7
TITANIUM DIOXIDE 0.5 0.5 1.0 0.5 0.4 0.6
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
CHLORPHEN0.27 0.27 0.81 a) 0.27 0.27 0.81 a> IRAMINE MALEATE
a) All of the active agent is in the coating, which comprises 33% of the product.
Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Chlorpheniramine maleate may be applied in a similar manner as in the previous xylitol coating, or may be preblended with the dry charge material.
In a similar manner, coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 10 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder. Like maltitol, the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying. In the later stages of the coating process, less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface. Also, the dry charge would only be used in the early stages of the coating process.
In addition to dry charging with the specific polyol, other ingredients may be added to the dry charge to help absorb moisture. These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials. Also, powdered sweeteners or flavors could be added with the dry charge.
Some polyols such as sorbitol, maltitol, lactitol, erythritol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
Some typical sugar type gum center formulations are shown in Table 11 containing pseudoephedrine hydrochloride, which is a nasal decongestant as an active medicament.
TABLE 11
1 fWEIGHT PERCENT)
EX. 71 EX. 72 EX. 73 EX. 74 EX. 75 EX. 76
SUGAR 52.0 48.0 46.5 44.0 40.0 37.5
GUM BASE 26.0 30.0 35.0 26.0 30.0 35.0
CORN SYRUP 20.0 19.0 15.00 18.0 17.0 14.00
GLYCERIN 1.0 1.0 1.00 1.0 1.0 1.00
PEPPERMINT 1.0 1.0 1.00 1.0 1.0 1.00 FLAVOR
DEXTROSE - - - 10.0 10.0 10.00 MONOHYDRATE
ACTIVE -a' 1.0 1.5 -a> 1.0 1.5
PSEUDOEPHEDRINE
HYDROCHLORIDE
a) All of the active agent is in the coating, which comprises 33% of the product.
Formulations with or without active pseudoephedrine hydrochloride can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars are polyols may be used in the gum center. Pseudoephedrine hydrochloride may be added to a gum center only, or to a gum coating with none in the center, or to both center and coating. Coated gum pieces are about 1.5 grams per piece, so to obtain 30 mg of pseudoephedrine hydrochloride in two gum pieces, total piece must contain
1.0%.
Pseudoephedrine hydrochloride can be used in the coating formula on the various pellet gum formulations. The following Table 12 shows some sugar and dextrose type formulas: TABLE 12 (DRY WEIGHT PERCENT)
EX. 77 EX. 78 EX. 79 EX. 80 EX. 81 EX. 82
SUGAR 95.1 94.4 91.1 94.9 94.1 90.6
GUM ARABIC 2.0 3.0 4.0 2.0 3.0 4.0
TITANIUM DIOXIDE 0.5 1.0 1.0 - - -
CALCIUM - - - 0.5 1.0 2.0 CARBONATE
FLAVOR 0.3 0.5 0.8 0.5 0.8 0.3
WAX 0.1 0.1 0.1 0.1 0.1 0.1
PSEUDO2.0 1.0 3.0a) 2.0 1.0 3.0a) EPHEDRINE HYDROCHLORIDE
TABLE 12 (Cont'd) (DRY WEIGHT PERCENT)
EX. 83 EX. 84 EX. 85 EX. 86
DEXTROSE 95.6 94.4 96.2 91.5 MONOHYDRATE
GUM ARABIC 1.5 3.0 1.5 3.0
TITANIUM DIOXIDE 0.5 1.0 - -
CALCIUM - - 1.0 2.0 CARBONATE
FLAVOR 0.3 0.5 0.2 0.4
WAX 0.1 0.1 0.1 0.1
PSEUDO2.0 1.0 1.0 3.0a) EPHEDRINE HYDROCHLORIDE
a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. Pseudoephedrine hydrochloride may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Pseudoephedrine hydrochloride may be dissolved in flavor and added to the coating. After the final coats are applied and dried, wax is applied to give a smooth polish.
As shown in Table 13, some of the sugar or dextrose may be added as a dry charge, which may also contain the active agent.
TABLE 13 (DRY WEIGHT PERCENT)
EX. 87 EX. 88 EX. 89 EX. 90 EX. 91 EX. 92
SUGAR 76.5 78.4 86.5
DEXTROSE - - 76.5 83.3 84.1 MONOHYDRATE
POWDER 20.0 15.0 SUGAR*
POWDER - - 20.0 10.0 DEXTROSE*
GUM ARABIC 2.0 3.0 2.0 3.0 8.0 8.0 POWDER
GUM ARABIC - - 4.0 4.0 SOLUTION
FLAVOR 0.4 0.5 0.4 0.6 0.4 0.8
WAX 0.1 0.1 0.1 0.1 0.1 0.1
PSEUDO1.0 3.0a) 1.0 3.0a) 1.0 3.0a) EPHEDRINE HYDROCHLORIDE
* Powder and/or crystalline sugar may be used. a) All of the active agent is in the coating, which comprises 33% of the product.
In Examples 87-90 gum arabic powder is blended in the sugar syrup. In Examples 91 and 92, gum arabic powder is dry charged after a gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution.
Pseudoephedrine hydrochloride may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without pseudoephedrine hydrochloride similar to other formulations for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 14.
TABLE 14 (WEIGHT PERCENT)
EX. 93 EX. 94 EX. 95 EX. 96 EX. 97 EX. 98 EX. 99
GUM BASE 35.0 35.0 30.0 30.0 30.0 40.0 50.0
CALCIUM - - 5.0 10.0 15.0 - - CARBONATE
SORBITOL 43.3 44.3 44.8 40.3 43.8 40.2 24.5
MANNITOL 10.0 10.0 5.0 10.0 - 8.0 10.0
GLYCERIN - 8.0 2.0 - 8.0 2.0 2.0
SORBITOL 10.0 - 10.0 8.0 - 6.0a) 10.0a) LIQUID
FLAVOR 1.5 1.5 1.5 1.5 2.0 2.0 1.3
HIGH INTENSITY 0.2 0.2 0.2 0.2 0.2 0.3 0.2 SWEETENER
ACTIVE .c> 1.0 1.5 .c> 1.0 1.5 2.0 PSEUDOEPHEDRINE HYDRO- CHLORIDEb)
a) Lycasin brand hydrogenated starch hydrolyzate used instead of sorbitol liquid b) This material may be dissolved in water, glycerin, sorbitol liquid, or HSH. c) All of the active agent is in the coating, which comprises 33% of the product.
In the above center formulations, the high intensity sweetener used is aspartame. However other high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
Lycasin and other polyols such as maltitol, erythritol, xylitol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations. The texture may be adjusted by varying glycerin or sorbitol liquid. Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener. Pseudoephedrine hydrochloride may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. The following table gives formulas for a xylitol coating:
TABLE 15 (DRY WEIGHT PERCENT)
EX. 100 EX . 101 EX . 102 EX. 103 EX. 104 EX. 105
XYLITOL 92.8 91.4 87.7 88.1 88.9 85.8
GUM ARABIC 4.0 6.0 7.0 8.5 8.5 10.0
FLAVOR 0.5 0.5 0.7 0.7 0.9 0.5
TITANIUM DIOXIDE 0.5 0.9 - 0.5 0.5** 0.5**
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
COLOR* - - 1.4 - - -
PSEUDO2.0 1.0 3.0a) 2.0 1.0 3.0a) EPHEDRINE HYDROCHLORIDE
* Lake color dispersed in xylitol solution ** Calcium carbonate used in place of titanium dioxide a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. Pseudoephedrine hydrochloride may be dissolved in water or flavor and added between coating applications or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. After pellets have been coated and dried, talc and wax are added to give a polish.
For coating formulas based on sorbitol, maltitol, lactitol, erythritol, and hydrogenated isomaltulose, gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating. Generally these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky. The following formulations may be used. TABLE 16 (DRY WEIGHT PERCENT)
EX. 106 EX. 107 EX . 108 EX. 109 EX. 110 EX. 11 1
MALTITOL 94.8 93.9 89.1 84.8 75.1 66.5
MALTITOL - - - 10.0 20.0 25.0 POWDER
GUM ARABIC 2.0 4.0 6.0 2.0 3.0 4.0
FLAVOR 0.5 0.4 0.7 0.5 0.3 0.7
TITANIUM DIOXIDE 0.5 0.5 1.0 0.5 0.4 0.6
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
PSEUDO2.0 1.0 3.0a) 2.0 1.0 3.0a) EPHEDRINE HYDROCHLORIDE
a) All of the active agent is in the coating, which comprises 33% of the product.
Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Pseudoephedrine hydrochloride may be applied in a similar manner as in the previous xylitol coating examples, or may be preblended with the dry charge material.
In a similar manner, coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 16 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder. Like maltitol, the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying. In the later stages of the coating process, less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface. Also, the dry charge would only be used in the early stages of the coating process.
In addition to dry charging with the specific polyol, other ingredients may be added to the dry charge to help absorb moisture. These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials. Also, powdered sweeteners or flavors could be added with the dry charge. Some polyols such as sorbitol, maltitol, lactitol, erythritol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings. Liquid flavors generally are not added throughout the coating but at specific points throughout the process. When flavor is added, less air is used for drying until the flavor coating is covered by the next coatings and dried. Flavors may be various spearmint, peppermint, wintergreen, cinnamon, and fruit flavors to yield a wide variety of flavored chewing gum products. Some typical sugar type gum center formulations are shown in Table 17 in which cetyl pyridimium chloride (CPC) can be added as the active medicament. This medicament can be used as an oral antimicrobial to reduce oral malodor and reduce oral bacteria. These formulas give a 1.5 gram piece containing 5 mg of CPC or 0.33%. Gum center formulas may or may not contain CPC, which has been encapsulated for controlled release.
TABLE 17
(WEIGHT PERCENT)
EX. 112 EX. 113 EX. 1 14 EX. 115 EX. 1 16 EX. 117
SUGAR 52.0 48.67 47.5 44.0 40.67 38.5
GUM BASE 26.0 30.0 35.0 26.0 30.0 35.0
CORN SYRUP 20.0 19.0 15.0 18.0 17.0 14.0
GLYCERIN 1.0 1.0 1.0 1.0 1.0 1.0
PEPPERMINT 1.0 1.0 1.0 1.0 1.0 1.0
FLAVOR
DEXTROSE - - - 10.0 10.0 10.0
MONOHYDRATE
ACTIVE CPC _a) 0.33 0.5 _a) 0.33 0.5
a) All of the active agent is in the coating, which comprises 33% of the product
Formulations with or without CPC can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum center. Cetyl pyridimium chloride may be added to a gum center only, into a gum coating with more in the center or to both center and coating.
CPC can be used in the coating formula on the various pellet gum formulations. The following Table 18 shows some sugar and dextrose type formulas:
TABLE 18
(DRY WEIGHT PERCENT)
EX. 118 EX. 119 EX. 120 EX. 121 EX. 122 EX. 123
SUGAR 96.6 95.07 93.1 96.4 94.77 92.6
GUM ARABIC 2.0 3.0 4.0 2.0 3.0 4.0
TITANIUM 0.5 1.0 1.0 DIOXIDE
CALCIUM 0.5 1.0 2.0 CARBONATE
FLAVOR 0.3 0.5 0.8 0.5 0.8 0.3
WAX 0.1 0.1 0.1 0.1 0.1 0.1
CPC 0.5 0.33 1.0a) 0.5 0.33 1.0a)
TABLE 18 (Cont'd) (DRY WEIGHT PERCENT)
EX. 124 EX. 125 EX. 126 EX. 127
DEXTROSE 97.1 95.07 96.87 93.5 MONOHYDRATE
GUM ARABIC 1.5 3.0 1.5 3.0
TITANIUM 0.5 1.0 - - DIOXIDE
CALCIUM - - 1.0 2.0 CARBONATE
FLAVOR 0.3 0.5 0.2 0.4
WAX 0.1 0.1 0.1 0.1
CPC 0.5 0.33 0.33 1.0a) a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. CPC may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. CPC may also be premixed with the flavor. After the final coats are applied and dried, wax is applied to give a smooth polish. The above process gives a hard shell coating. Often a dry charge of powdered sugar or dextrose monohydrate may be used. This gives a somewhat softer coating. A dry charge may be used to build up a coating, but then finished with a straight syrup to obtain a hard shell. CPC may be added dry to the coating with the dry charge material. Table 19 gives these types of formulas.
TABLE 19
(DRY WEIGHT PERCENT)
EX. 128 EX. 129 EX. 130 EX. 131 EX. 132 EX. 133
SUGAR 77.17 80.4 87.17
DEXTROSE 77.17 85.3 86.1 MONOHYDRATE
POWDER 20.0 15.0 SUGAR*
POWDER - - 20.0 10.0 - - DEXTROSE*
GUM ARABIC 2.0 3.0 2.0 3.0 8.0 8.0 POWDER
GUM ARABIC - - - - 4.0 4.0 SOLUTION
FLAVOR 0.4 0.5 0.4 0.6 0.4 0.8
WAX 0.1 0.1 0.1 0.1 0.1 0.1
CPC 0.33 1.0a) 0.33 1.0a> 0.33 1.0a)
Powder and/or crystalline sugar may be used, a) All of the active agent is in the coating, which comprises 33% of the product.
In Examples 128-131 , gum arabic is blended in the sugar syrup. In Examples 132 and 133, gum arabic powder is dry charged after gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution.
Cetyl pyridimium chloride may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without cetyl pyridimium chloride similar to other formulations for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum center formulas are in Table 20.
TABLE 20 (WEIGHT PERCENT)
EX. 134 EX. 135 EX. 136 EX ;. 137 EX. 138 EX. 139 EX. 140
GUM BASE 35.0 35.0 30.0 30.0 30.0 40.0 50.0
CALCIUM - - 5.0 10.0 15.0 - - CARBONATE
SORBITOL 43.3 44.97 45.8 40.3 44.47 41.2 25.84
MANNITOL 10.0 10.0 5.0 10.0 - 8.0 10.0
GLYCERIN - 8.0 2.0 - 8.0 2.0 2.0
SORBITOL 10.0 - 10.0 8.0 - 6.0a) 10.0a) LIQUID
FLAVOR 1.5 1.5 1.5 1.5 2.0 2.0 1.3
HIGH 0.2 0.2 0.2 0.2 0.2 0.3 0.2
INTENSITY
SWEETENER
CPCb) -c> 0.33 0.5 -c» 0.33 0.5 0.66 a) Lycasin brand hydrogenated starch hydrolyzate used instead of sorbitol liquid. b) This material may be dissolved in water, glycerin, sorbitol liquid, or HSH. c) All of the active agent is in the coating, which comprises 33% of the product.
In the above center formulations, the high intensity sweetener used is aspartame. However other high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels. The texture may be adjusted by varying glycerin or sorbitol liquid. Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
Cetyl pyridimium chloride may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. The following table gives formulas for a xylitol coating: TABLE 21
(DRY WEIGHT PERCENT)
EX. 141 EX. 142 EX. 143 EX . 144 EX. 145 EX. 146
XYLITOL 94.3 92.07 89.7 89.6 89.57 87.8
GUM ARABIC 4.0 6.0 7.0 8.5 8.5 10.0
FLAVOR 0.5 0.5 0.7 0.7 0.9 0.5
TITANIUM 0.5 0.9 - 0.5 0.5** 0.5** DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
COLOR* - - 1.4 - - -
CPC 0.5 0.33 1.0a) 0.5 0.33 1.0a> * Lake color dispersed in xylitol solution ** Calcium carbonate used in place of titanium dioxide a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. CPC may be dissolved in water or flavor and added between coating applications, or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process. CPC may also be blended with the flavor used for coating. After pellets have been coated and dried, talc and wax are added to give a polish.
For coating formulas based on sorbitol, maltitol, lactitol, erythritol, and hydrogenated isomaltulose, gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating. Generally these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky. The following formulations may be used. TABLE 22
(DRY WEIGHT PERCENT)
EX. 147 EX. 148 EX. 149 EX . 150 EX. 151 EX. 152
MALTITOL 96.3 94.57 91.1 86.3 75.77 68.5
MALTITOL - - - 10.0 20.0 25.0 POWDER
ARABINO2.0 4.0 6.0 2.0 3.0 4.0 GALACTAN
FLAVOR 0.5 0.4 0.7 0.5 0.3 0.7
TITANIUM 0.5 0.5 1.0 0.5 0.4 0.6 DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
CETYL 0.5 0.33 1.0a) 0.5 0.33 1.0a>
PYRIDIMIUM
CHLORIDE
a) All of the active agent is in the coating, which comprises 33% of the product.
Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Cetyl pyridimium chloride may be applied in a similar manner as in the previous xylitol coating examples, or preblended with the dry charge materials.
In a similar manner, coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 22 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder. Like maltitol, the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying. In the later stages of the coating process, less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface. Also, the dry charge would only be used in the early stages of the coating process.
In addition to dry charging with the specific polyol, other ingredients may be added to the dry charge to help absorb moisture. These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials. Also, powdered sweeteners or flavors could be added with the dry charge. Some polyols such as sorbitol, maltitol, erythritol, lactitol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings. Liquid flavors generally are not added throughout the coating but at specific points throughout the process. When flavor is added, less air is used for drying until the flavor coating is covered by the next coatings and dried. Flavors may be various spearmint, peppermint, wintergreen, cinnamon, and fruit flavors to yield a wide variety of flavored chewing gum products. Some typical sugar type gum center formulations are shown in Table 23, in which ketoprofen can be added as the active medicament.
Ketoprofen is an analgesic to reduce inflammation and pain. These formulas give a 1.5 gram piece containing 12.5 mg of ketoprofen or 0.83% of the total gum product. Gum center formulas may or may not contain encapsulated or controlled release ketoprofen.
TABLE 23
(WEIGHT PERCENT)
EX. 153 EX. 154 EX. 155 EX. 156 EX. 157 EX. 158
SUGAR 52.0 48.17 46.75 44.0 40.17 37.75
GUM BASE 26.0 30.0 35.0 26.0 30.0 35.0
CORN SYRUP 20.0 19.0 15.0 18.0 17.0 14.0
GLYCERIN 1.0 1.0 1.0 1.0 1.0 1.0
PEPPERMINT 1.0 1.0 1.0 1.0 1.0 1.0
FLAVOR
DEXTROSE - - - 10.0 10.0 10.0
MONOHYDRATE
KETOPROFEN _ a> 0.83 1.25 . a> 0.83 1.25
a) All of the active agent is in the coating, which comprises 33% of the product
Formulations with or without ketoprofen can also be made similar to other formulations for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum center. Ketoprofen may be added to a gum center only, into a gum coating with none in the center, or to both center and coating.
Ketoprofen can be used in the coating formula on the various pellet gum formulations. The following Table 24 shows some sugar and dextrose type formulas:
TABLE 24 (DRY WEIGHT PERCENT)
EX. 159 EX. 160 EX. 161 EX . 162 EX. 163 EX. 164
SUGAR 96.1 94.57 91.6 95.9 94.27 91.1
GUM ARABIC 2.0 3.0 4.0 2.0 3.0 4.0
TITANIUM 0.5 1.0 1.0 - - .
DIOXIDE
CALCIUM - - - 0.5 1.0 2.0
CARBONATE
FLAVOR 0.3 0.5 0.8 0.5 0.8 0.3
WAX 0.1 0.1 0.1 0.1 0.1 0.1
KETOPROFEN 1.0 0.83 2.5a) 1.0 0.83 2.5a TABLE 24 (Cont'd) (DRY WEIGHT PERCENT)
EX. 165 EX. 166 EX. 167 EX. 168
DEXTROSE 96.6 94.57 96.37 92.0 MONOHYDRATE
GUM ARABIC 1.5 3.0 1.5 3.0
TITANIUM 0.5 1.0 - - DIOXIDE
CALCIUM - - 1.0 2.0 CARBONATE
FLAVOR 0.3 0.5 0.2 0.4
WAX 0.1 0.1 0.1 0.1
KETOPROFEN 1.0 0.83 0.83 2.5a) a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. Ketoprofen may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Ketoprofen may also be premixed with the flavor. After the final coats are applied and dried, wax is applied to give a smooth polish. The above process gives a hard shell coating. Often a dry charge of powdered sugar or dextrose monohydrate may be used. This gives a somewhat softer coating. A dry charge, which also may contain the active, may be used to build up a coating, but then finished with a straight syrup to obtain a hard shell. Table 25 gives these types of formulas. TABLE 25
(DRY WEIGHT PERCENT)
EX. 169 EX. 170 EX. 171 E> :. 172 EX. 173 EX. 174
SUGAR 76.67 78.9 - - 86.67 -
DEXTROSE - - 76.67 83.8 . 84.6
MONOHYDRATE
POWDER 20.0 15.0 - - - .
SUGAR*
POWDER - - 20.0 10.0 - .
DEXTROSE*
GUM ARABIC 2.0 3.0 2.0 3.0 8.0 8.0
POWDER
GUM ARABIC - - - - 4.0 40
SOLUTION
FLAVOR 0.4 0.5 0.4 0.6 0.4 0.8
WAX 0.1 0.1 0.1 0.1 0.1 0.1
KETOPROFEN 0.83 2.5a) 0.83 2.5a) 0.83 2.5a) * Powder and/or crystalline sugar may be used. a) All of the active agent is in the coating, which comprises 33% of the product.
In Examples 169-172, gum arabic is blended in the sugar syrup. In Examples 173 and 174, gum arabic powder is dry charged after gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution.
Ketoprofen may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without ketoprofen for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum formulas are in Table 26. TABLE 26
(WEIGHT PERCENT)
EX. 175 EX. 176 EX. 177 EX . 178 EX. 179 EX. 180 EX. 181
GUM BASE 35.0 35.0 30.0 30.0 30.0 40.0 50.0
CALCIUM - - 5.0 10.0 15.0 - - CARBONATE
SORBITOL 43.3 44.47 45.05 40.3 43.97 40.45 24.83
MANNITOL 10.0 10.0 5.0 10.0 - 8.0 10.0
GLYCERIN - 8.0 2.0 - 8.0 2.0 2.0
SORBITOL 10.0 - 10.0 8.0 - 6.0a> 10.0a) LIQUID
FLAVOR 1.5 1.5 1.5 1.5 2.0 2.0 1.3
HIGH 0.2 0.2 0.2 0.2 0.2 0.3 0.2
INTENSITY
SWEETENER
KETOPROFEN6' .c> 0.83 1.25 .c> 0.83 1.25 1.67 a) Lycasin brand hydrogenated starch hydrolyzate used instead of sorbitol liquid. b) Ketoprofen may be dissolved in water, glycerin, sorbitol liquid, HSH, or flavor. c) All of the active agent is in the coating, which comprises 33% of the product.
In the above center formulations, the high intensity sweetener used is aspartame. However other high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness. Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels. The texture may be adjusted by varying glycerin or sorbitol liquid. Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener. Ketoprofen may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol. The following table gives formulas for a xylitol coating: TABLE 27
(DRY WEIGHT PERCENT)
EX. 182 EX. 183 EX. 184 EX . 185 EX. 186 EX. 187
XYLITOL 93.8 91.57 88.2 89.1 89.07 86.3
GUM ARABIC 4.0 6.0 7.0 8.5 8.5 10.0
FLAVOR 0.5 0.5 0.7 0.7 0.9 0.5
TITANIUM 0.5 0.9 - 0.5 0.5** 0.5** DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
COLOR* - - 1.4 - - -
KETOPROFEN 1.0 0.83 2.5a) 1.0 0.83 2.5a) * Lake color dispersed in xylitol solution. ** Calcium carbonate used in place of titanium dioxide, a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. After pellets have been coated and dried, talc and wax are added to give a polish. Ketoprofen may be dissolved in water or flavor and added between coating applications, or mixed with the hot syrup and used in the early stages of coating or used throughout the coating process.
For coating formulas based on sorbitol, maltitol, lactitol, erythritol, and hydrogenated isomaltulose, gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating. Generally these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky. The following formulations may be used. TABLE 28
(DRY WEIGHT PERCENT)
EX. 188 EX. 189 EX. 190 EX . 191 EX. 192 EX 193
MALTITOL 95.8 94.07 89.6 85.8 75.27 67.0
MALTITOL - - - 10.0 20.0 25.0
POWDER
GUM ARABIC 2.0 4.0 6.0 2.0 3.0 4.0
FLAVOR 0.5 0.4 0.7 0.5 0.3 0.7
TITANIUM 0.5 0.5 1.0 0.5 0.4 0.6
DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0J 0.1
KETOPROFEN 1.0 0.83 2.5a) 1.0 0.83 2.5a)
a) All of the active agent is in the coating, which comprises 33% of the product.
Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener are blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Ketoprofen may be applied in a similar manner as in the previous xylitol coating examples, or preblended with the dry charge material and added to the coating.
In a similar manner, coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 28 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder. Like maltitol, the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying. In the later stages of the coating process, less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface. Also, the dry charge would only be used in the early stages of the coating process.
In addition to dry charging with the specific polyol, other ingredients may be added to the dry charge to help absorb moisture. These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials. Also, powdered sweeteners or flavors could be added with the dry charge.
Some polyols such as sorbitol, maltitol, erythritol, lactitol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
Some typical sugar type gum center formulations are shown in Table 29 in which dextromethorphan hydrobromide can be added as the active medicament. This material is an antitussive for cough relief. These formulas give a 1.5 gram piece containing 15 mg of dextromethorphan hydrobromide or 1.0% of gum product. Gum centers may or may not contain dextromethorphan hydrobromide.
TABLE 29 (WEIGHT PERCENT)
EX . 194 EX . 195 EX . 196 EX :. 197 EX . 198 EX :. 199
SUGAR 52.0 48.0 46.5 44.0 40.0 37.5
GUM BASE 26.0 30.0 35.0 26.0 30.0 35.0
CORN SYRUP 20.0 19.0 15.0 18.0 17.0 14.0
GLYCERIN 1.0 1.0 1.0 1.0 1.0 1.0
PEPPERMINT 1.0 1.0 1.0 1.0 1.0 1.0 FLAVOR
DEXTROSE - - - 10.0 10.0 10.0 MONOHYDRATE
DEXTROa) 1.0 1.5 -a) 1.0 1.5 METHORPHAN HBr
a) All of the active agent is in the coating, which comprises 33% of the product. Formulations with or without dextromethorphan hydrobromide can also be made for low, medium, and high moisture formulas. Higher levels of base may be used with a corresponding decrease in other ingredients. Also, other sugars and polyols may be used in the gum center. Dextromethorphan hydrobromide may be added to the gum center only, into a gum coating with none in the center, or both center and coating.
Dextromethorphan hydrobromide can then be used in the coating formula on the various pellet gum formulations. The following Table 30 shows some sugar and dextrose type formulas:
TABLE 30 (DRY WEIGHT PERCENT)
EX. 200 EX . 201 EX. 202 EX . 203 EX. 204 EX. 205
SUGAR 95.1 94.4 91.1 94.9 94.1 90.6
GUM ARABIC 2.0 3.0 4.0 2.0 3.0 4.0
TITANIUM 0.5 1.0 1.0 - - - DIOXIDE
CALCIUM - - - 0.5 1.0 2.0 CARBONATE
FLAVOR 0.3 0.5 0.8 0.5 0.8 0.3
WAX 0.1 0.1 0.1 0.1 0.1 0.1
DEXTRO2.0 1.0 3.0a) 2.0 1.0 3.0a) METHORPHAN
HBr
TABLE 30 (Cont'd) (DRY WEIGHT PERCENT)
EX. 206 EX. 207 EX. 208 EX. 209
DEXTROSE 95.6 94.4 96.2 91.5
MONOHYDRATE
GUM ARABIC 1.5 3.0 1.5 3.0
TITANIUM 0.5 1.0
DIOXIDE
CALCIUM - - 1.0 2.0
CARBONATE
FLAVOR 0.3 0.5 0.2 0.4
WAX 0.1 0.1 0.1 0.1
DEXTRO2.0 1.0 1.0 3.0a)
METHORPHAN
HBr a) All of the active agent is in the coating, which comprises 33% of the product. The above formulations are made by making a syrup by dissolving the sugar and gum arabic in solution at about 75% solids at boiling, and suspending titanium dioxide or calcium carbonate in this syrup. Dextromethorphan hydrobromide may be dissolved in water, not mixed with hot syrup, but applied between coatings, or it may be added to the hot syrup and used in the early stages of coating or used throughout the coating process. Flavor is not mixed with the hot syrup, but added at low levels with one or more coats. Dextromethorphan HBr may also be premixed with the flavor. After the final coats are applied and dried, wax is applied to give a smooth polish.
The above process gives a hard shell coating. Often a dry charge of powdered sugar or dextrose monohydrate may be used. This gives a somewhat softer coating. A dry charge may be used to build up a coating, but then finished with a straight syrup to obtain a hard shell. Dextromethorphan hydrobromide may also be added to the dry charge material. Table 31 gives these types of formulas.
TABLE 31 (DRY WEIGHT PERCENT)
EX. 210 EX. 211 EX. 212 EX. 213 EX. 214 EX. 215
SUGAR 76.5 78.4 86.5
DEXTROSE 76.5 83.3 84.1 MONOHYDRATE
POWDER 20.0 15.0 SUGAR*
POWDER - - 20.0 10.0 - - DEXTROSE*
GUM ARABIC 2.0 3.0 2.0 3.0 8.0 8.0 POWDER
GUM ARABIC - - - - 4.0 4.0 SOLUTION
FLAVOR 0.4 0.5 0.4 0.6 0.4 0.8
WAX 0.1 0.1 0.1 0.1 0.1 0.1
DEXTRO1.0 3.0a) 1.0 3.0a> 1.0 3.0a) METHORPHAN HBr
Powder and/or crystalline sugar may be used, a) All of the active agent is in the coating, which comprises 33% of the product. In Examples 210-213 gum arabic is blended in the sugar syrup. In Examples 214 and 215, gum arabic powder is dry charged after a gum arabic solution is applied in the first stages of coating, then this is followed by a hard shell coating of sugar solution or dextrose solution. Dextromethorphan hydrobromide may also be used in coating of sugarless gum centers. Like sugar gum centers, the base formulation can be increased in proportion to the amount of coating applied to the center. Formulations with and without dextromethorphan hydrobromide for low and high moisture gum can be used to make gum centers. Generally, the base level may be increased to 30-46% with the other ingredients proportionally reduced. Some typical gum center formulas are in Table 32.
TABLE 32 (WEIGHT PERCENT)
EX. 216 EX. 217 EX. 218 EX. 219 EX. 220 EX. 221 EX. 222
GUM BASE 35.0 35.0 30.0 30.0 30.0 40.0 50.0
CALCIUM - - 5.0 10.0 15.0 - - CARBONATE
SORBITOL 43.3 44.3 43.3 40.3 43.8 38.7 24.5
MANNITOL 10.0 10.0 5.0 10.0 - 8.0 10.0
GLYCERIN - 8.0 2.0 - 8.0 2.0 2.0
SORBITOL 10.0 - 10.0 8.0 - 6.0a) 10.0a) LIQUID
FLAVOR 1.5 1.5 1.5 1.5 2.0 2.0 1.3
HIGH 0.2 0.2 0.2 0.2 0.2 0.3 0.2
INTENSITY
SWEETENER
DEXTRO c) 1.0 3.0 c) 1.0 3.0 2.0 METHOR- PHAN HBrb) a) Lycasin brand hydrogenated starch hydrolyzate used instead of sorbitol liquid b) Dextromethorphan HBr may be dissolved in water, glycerin, sorbitol liquid, HSH, or flavor c) All of the active agent is in the coating, which comprises 33% of the product In the above center formulations, the high intensity sweetener used is aspartame. However other high intensity such as alitame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, neotame, sucralose, thaumatin, monellin, dihydrochalcone, stevioside, glycyrrhizin and combinations thereof may be used in any of the examples with the level adjusted for sweetness.
Lycasin and other polyols such as maltitol, xylitol, erythritol, lactitol and hydrogenated isomaltulose may also be used in the gum center formulations at various levels. The texture may be adjusted by varying glycerin or sorbitol liquid. Sweetness of the center formulation can also be adjusted by varying the level of high intensity sweetener.
Dextromethorphan hydrobromide may be used in sugarless coatings with xylitol, sorbitol, maltitol, lactitol, hydrogenated isomaltulose and erythritol.
The following table gives formulas for a xylitol coating:
TABLE 33 (DRY WEIGHT PERCENT)
EX. 223 EX . 224 EX. 225 EX . 226 EX. 227 EX. 228
XYLITOL 92.8 91.4 87.7 88.1 88.9 85.8
GUM ARABIC 4.0 6.0 7.0 8.5 8.5 10.0
FLAVOR 0.5 0.5 0.7 0.7 0.9 0.5
TITANIUM 0.5 0.9 - 0.5 0.5** 0.5** DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
COLOR* - - 1.4 - - -
DEXTRO2.0 1.0 3.0a) 2.0 1.0 3.0a) METHORPHAN
HBr
Lake color dispersed in xylitol solution
Calcium carbonate used in place of titanium dioxide a) All of the active agent is in the coating, which comprises 33% of the product.
The above formulas are used to coat pellets by applying a xylitol/gum arabic solution in multiple coats and air drying. Color or whitener is also mixed in the solution. After pellets have been coated and dried, talc and wax are added to give a polish. Dextromethorphan hydrobromide may be dissolved in water or flavor and added between coating applications, or mixed with hot syrup and used in the early stages of coating or used throughout the coating process.
For coating formulas based on sorbitol, maltitol, lactitol, erythritol, and hydrogenated isomaltulose, gum arabic can be used as a binder and film former, and a crystallization modifier to help facilitate coating. Generally these polyols are more difficult to coat using only a straight syrup, but with proper technique a good smooth hard shell can be made. However, it may be preferable to add a dry charge to quicken the drying process before the pellets get too sticky. The active may be premixed with the dry charge material. The following formulations may be used.
TABLE 34 (DRY WEIGHT PERCENT)
EX. 229 EX . 230 EX. 231 EX . 232 EX. 233 EX. 234
MALTITOL 94.8 93.9 87.1 91.8 85.1 76.5
MALTITOL - - - 5.0 10.0 15.0 POWDER
GUM ARABIC 2.0 4.0 6.0 2.0 3.0 4.0
FLAVOR 0.5 0.4 0.7 0.5 0.3 0.7
TITANIUM 0.5 0.5 1.0 0.5 0.4 0.6 DIOXIDE
TALC 0.1 0.1 0.1 0.1 0.1 0.1
WAX 0.1 0.1 0.1 0.1 0.1 0.1
DEXTRO2.0 1.0 3.0a) 2.0 1.0 3.0a) METHORPHAN
HBr a) All of the active agent is in the coating, which comprises 33% of the product.
Maltitol powder is used to dry charge in the early stages of coating. Maltitol, gum arabic, and whitener is blended into a syrup and applied to pellets. After all coating is applied and dried, talc and wax are added to give a polish. Dextromethorphan may be applied in a similar manner as the previous xylitol examples, or added with the dry charge material.
In a similar manner, coatings with sorbitol, lactitol, and hydrogenated isomaltulose may be made in the coating formulas in Table 34 by replacing maltitol with any one of the other polyols and maltitol powder with the polyol powder. Like maltitol, the other polyols may become sticky during the coating and drying process, so the dry powder charge may be needed to give the proper drying. In the later stages of the coating process, less gum arabic could be used and a more pure polyol syrup could be used to give a smooth surface. Also, the dry charge would only be used in the early stages of the coating process.
In addition to dry charging with the specific polyol, other ingredients may be added to the dry charge to help absorb moisture. These materials could be inert such as talc, calcium carbonate, magnesium carbonate, starches, gums like arabinogalactan, gum talha, gum arabic or other moisture absorbing materials. Also, powdered sweeteners or flavors could be added with the dry charge.
Some polyols such as sorbitol, maltitol, erythritol, lactitol, or hydrogenated isomaltulose are not sufficiently sweet compared to sugar or xylitol, so high intensity sweeteners may be added to the coating, such as aspartame, acesulfame K, salts of acesulfame, cyclamate and its salts, saccharin and its salts, alitame, sucralose, thaumatin, monellin, dihydrochalcone, glycyrrhizin, neotame, and combinations thereof. If a hot syrup is applied, heat may degrade the sweetener so only stable sweeteners should be used. Generally high intensity sweeteners are added with the polyol/gum arabic solution to obtain an even distribution in the coatings.
Liquid flavors generally are not added throughout the coating but at specific points throughout the process. When flavor is added, less air is used for drying until the flavor coating is covered by the next coatings and dried. Flavors may be various spearmint, peppermint, wintergreen, cinnamon, and fruit flavors to yield a wide variety of flavored chewing gum products.
The following gum center formulation was made as a gum pellet center and coated with the gum coating formulation and procedure: Example 235
Gum Center %
Gum Base 47.0
Sorbitol 39.52
Liquid Sorbitol 7.5
Flavors 2.36
Encapsulated Flavors 2.0
Glycerin 0.75
Encapsulated Sweeteners 0.87 100.0
Gum Coating Coating Syrup 1. % Coating Syrup 2. %
Xylitol 63.03 74.35
Water 11.14 13.15
40% Gum Tahla solution 20.87 7.96
Titanium Dioxide whitener 0.37 0.44
Peppermint Flavor* 0.81 0.0
Caffeine
Figure imgf000069_0001
'Flavor added in 2 additions after 10th and 15th coat within coating syrup 1.
Initial center piece weight was 0.956 grams. Gum was coated to a finished piece weight of 1.46 grams to give a 34.5% coating. Coating syrup 1 was used to coat the first 60% of the coating to a piece weight of 1.26 grams. Coating syrup 2 was used to coat to the final piece weight. Individual piece analysis of 5 pieces yielded a level of 26.1 mg of caffeine per piece. For a 2 piece dosage, caffeine level is 52.2 mg.
This gum product was used in a caffeine absorption study to compare release and absorption uptake of caffeine from gum and beverages. The test results showed that gum is a faster delivery vehicle for caffeine when compared to the same level in beverages as measured by blood plasma caffeine. Caffeine was taken up faster in the test subject's plasma after delivery via gum than after delivery of same caffeine dose via coffee, cola and tea.
Comparisons of caffeine delivery between chewing gum and the three beverages are demonstrated by statistically significant differences in one or more of the following parameters: 1. Plasma caffeine concentration is significantly greater for gum vs. beverages within the first 10 to 30 minutes after caffeine delivery. This correlates to faster uptake.
2. Plasma absorption rate constant (A-rate) larger for gum vs. one or more beverages (2). Plasma absorption half life (abs. half-life) smaller for gum vs. one or more beverages (2). Time of peak caffeine plasma concentration (T-max) smaller for gum than one or more of the beverages (2).
A clinical trial study was performed where six subjects participated in the test, blood was drawn and plasma separated. Blood sampling occurred prior to, and at preset time intervals following a caffeine level of 50-55 mg released through the test delivery vehicle. Five different studies were completed: gum (with saliva swallowed, G2), gum (with saliva expectorated, G3), coffee (ingested COF), cola (ingested COK) and tea (ingested T). Blood samples of 5 ml were collected and the plasma portion separated, stored, and extracted and analyzed. A method was developed for the extraction and analysis of caffeine in fluids, which reports results as the concentration of caffeine in the plasma.
Data from the six subjects participating in the study were compiled, analyzed, and graphed, with mean plasma caffeine concentrations at specific time intervals determined. Analysis of variance (ANOVA) were performed on the means to determine statistical significance.
Pharmacokinetic parameters were determined through Wagner's 1967 Method of Residuals using a pharmacokinetic software package. Absorption rate constants and absorption half-life were also determined through the analysis of the absorption phase of the plots by linear regression since the absorption phase followed zero order kinetics. The conclusions were as follows:
1. There was a faster uptake of caffeine in plasma during the early time intervals post dose 10 minutes to 25 minutes (T10-T25) via gum delivery vs. the same level of caffeine delivered via coffee and cola. For example, the average level of plasma caffeine (at T = 10 minutes) present after gum chew is 0.545 μg/ml compared to 0J86 μg/ml for coffee and 0.236 μg/ml for cola. In other words, with the same level of caffeine being delivered from the three different vehicles, at T10 there is 3 times more caffeine present in plasma after chewing gum than from ingesting coffee and 2 times more caffeine from gum than from cola. The results of the tea study proved to be too variable due to instrument problems and repeat freeze/thawing of the samples. They were not included in the calculations.
2. Classical pharmacokinetic parameters, T-max, A-rate constant, abs. half-life, do not tell the story of faster uptake in the time interval of interest (T10-T25) in this study. This is due in part to the calculation using the Method of Residuals. This method was derived using classical pharmacokinetic curves which do not have much fluctuation in the data in that the drug concentration (usually measured every hour) increases to a sharp T- max, then decreases, without any fluctuation. In comparison, the data did contain minor fluctuations, due most likely to a combination of factors: measurement of plasma concentrations every five minutes rather than every quarter hour to one hours, caffeine binding with plasma protein, combination of both sublingual and gut absorption being detected. The plasma caffeine concentration followed the same trends as in classical pharmacokinetic curves, except that the concentration increased to a broad T-max, then decreased, and some of the points in the curve fluctuated up and down.
A-rate constant and abs. half-life determinations were also made through linear regression. No significant differences were noted in the means, though a trend was noted: the A-rate for the gum study (G2) was greater than that for coffee and cola for subjects 1 -4 and the abs. half-life for the G2 study was less than that for coffee and cola for subjects 1 -4. For example, the G2 abs. half-life averaged 13 ± 4 minutes for subjects 1 -4, 28 ± 2 minutes for subjects 5 and 6, indicating faster absorption for subjects 1-4. This is due to the different rates of sublingual absorption between the subjects. The amount of caffeine absorbed sublingually was 21 ± 7 mg for subjects 1-4, and 10 ± 1 mg for subjects 5 and 6, accounting for the increased A-rate and decreased abs. half-life in subjects 1-4. An ANOVA separating subjects 1 -4 from 5 and 6 indicated that for subjects 1 -4 cola abs. half-life is statistically greater than G2 abs. half-life (p = OJ O), and the G2 A-rate is statistically greater than both the cola and coffee A-rate (p = 0.05).
3. It was shown that significant levels of caffeine are absorbed sublingually directly into the bloodstream via delivery from gum This was demonstrated through the testing of caffeinated gum where the saliva was expectorated. Even though the saliva was expectorated, 20-50% of the caffeine was absorbed through the oral cavity. This accounts for the early uptake into the bloodstream.
Example 236
Gum Center %
Gum Base 33.0
Calcium Carbonate 13.0
Sorbitol 44.23
Glycerin 4.0
Flavors 2.32
Encapsulated Caffeine* 1.5
Free Caffeine 0.45
Lecithin 0.6
Encapsulated Sweeteners 0.9 100.0
Gum Coating (dry) Coating Syrup 3 % Coating Syrup 4 %
Xylitol 64.14 76.23
Water 11.14 13.15
40% Gum Tahla solution 20.87 7.96
Titanium Dioxide whitener 0.4 0.4
Peppermint Flavor** 1.4 0.0
Sweeteners 0.27 0.27
Carnauba Wax/Talc polishing 0.0 0.27*** agents
Caffeine 1.78 1.72
100.0 100.0
* Spray dried maltodextrin/caffeine at 50% active caffeine.
Flavor added in 3 additions after 3 separate syrup addition within coating syrup 1. Polished after completion of coating.
Initial center piece weight was 0.995 grams. Gum was coated to a finished piece weight of 1.52 grams to give a 34.5% coating. Coating syrup 3 was used to coat the first 60% of the coating to a piece weight of 1.30 grams. Coating syrup 4 was used to coat to the final piece weight. Individual piece analysis of 5 pieces yielded a level of 20.0 ± 0.8 mg of caffeine per piece. For a two piece dosage, caffeine level is 40.0 mg. This gum product was used in a caffeine absorption study to compare release and absorption uptake of caffeine from gum verses pills. The test results showed that gum is a faster delivery vehicle for caffeine when compared to a similar level in a pill as measured by blood plasma caffeine. Caffeine was taken up faster in the test subject's plasma after deliver, via gum than after delivery of same caffeine dose via a pill.
Data from the six subjects participating in each study were compiled, analyzed, and graphed, with mean plasma caffeine concentrations at specific time intervals determined. Analysis of variance (ANOVA) and Student t-Tests were performed on the means to determine statistical significance.
Pharmacokinetic parameters were done using a pharmacokinetic software package. The gums tested were pellet Example 235, containing all the caffeine in the coating and delivering approximately 50 mg caffeine after chewing two pellets (designated as G2, G4, or 50 mg pellet), and Example 236, containing caffeine in the coating and center, and delivering approximately 40 mg caffeine after chewing two pellets (designated G5 or 40 mg pellet). Both pellets were compared to Pro-Plus™ pill, containing approximately 50 mg caffeine in one pill (designated as Pill 1 , Pill 2, or 50 mg pill). Pro-Plus™ 50 mg tablet is manufactured by the product license holder: PP Products, 40 Broadwater Road, Welayn Garden City, Harts, AL7 Bay, UK.
Caffeine analysis were analyzed at 48.3 mg ± 1.4 mg caffeine per pill (avg. of n=5).
It was concluded that caffeine uptake in the bloodstream was faster for gum than a pill, based on the following: 1. Faster uptake of plasma caffeine via gum delivery was found during the early time intervals post dose 5 minutes to 50 minutes (T5-T50) when compared to the same level of caffeine delivered via a pill (50 mg). For example, with the same level of caffeine being delivered from the two different vehicles, on average, at T5 there is 30 times more caffeine detected in plasma after chewing gum (0.205μg/ml) than after ingesting a pill (0.006 μg/ml). At T10 there is 16 times more caffeine detected in plasma after chewing gum (0.546 μg/ml) than after ingesting a pill (0.034 μg/ml). Average plasma caffeine levels significantly greater than the pill at a=0.01 for T5, and a=0.005 for T10.
2. Classical pharmacokinetic parameters, T-Max (time for peak plasma caffeine concentration) and Abs. Vz Life (absorbance Vz life, time for caffeine concentration to be Vz of peak) were significantly different for caffeine delivered via 50 mg pellet gum (Example 235) than via a 50 mg pill. Faster uptake of plasma caffeine was demonstrated via delivery from gum compared to a pill due to the average plasma Abs. Vz Life and average plasma T-Max being significantly smaller for gum than the pill. For the 50 mg pellet gum, the average Abs. Vz Life = 12.84 min and the average T-Max-36.5 min. compared to the 50 mg pill with an average Abs. Vz Life = 24.47 min (pill significantly greater than gum, a=0.0075, and an average T-Max = 73.67 min (pill significantly greater than gum, a=0.0075), and an average T-Max = 73.67 min (pill significantly greater than gum, a=0.005). In other words, after ingesting a pill, it takes a longer amount of time to reach Vz of the peak plasma caffeine concentration and the peak plasma caffeine concentration than after chewing gum delivering the same level of caffeine.
3. The Abs. Rate Const, (absorption rate constant, rate at which caffeine absorbs into the bloodstream) was significantly greater for 50 mg pellet gum (Example 235) than for the 50 mg pill, indicating that caffeine is absorbed at a greater rate after gum delivery than after delivery of the same dosage via a pill. For the 50 mg pellet gum, the average Abs. Rate Const. = 0.060 compared to the 50 mg pill with an average Abs. Rate Const. = 0.031 (gum significantly greater than pill, a=0.005). 4. The test also demonstrated faster uptake of plasma caffeine via
Example 236, 40 mg pellet gum, delivery during the early time intervals post dose 10 minutes to 30 minutes (T10-T30) when compared to 50 mg of caffeine delivered via a pill. Significance levels ranged from a=0.05 to a=0.20. For example, the average level of plasma caffeine (at T=10 minutes) present after 40 mg pellet gum is chewed is 0.228 μg/ml compared to 0.034 μg/ml for pill (difference was slightly significant, a=0.2). In other words, with caffeine being delivered from the two different vehicles at T10 there is 6.7 times more caffeine detected in plasma after chewing Example 236 gum caffeine than after ingesting a pill, even though the pill delivered approximately 50 mg caffeine, and Example 236 delivered approximately 40 mg. At T5, on average there was 13 times more caffeine detected in plasma after chewing Example 236 gum than after ingesting a pill.
5. Classical pharmacokinetic parameters, T-Max and Abs. Vz Life were significantly different for caffeine delivered via Example 236 40 mg pellet gum than via a 50 mg pill. Faster uptake of plasma caffeine was demonstrated via delivery from Example 236 gum compared to a pill due to the average plasma Abs. Vz Life and average plasma T-Max being significantly smaller for gum than the pill. For the 50 mg Example 235 gum, the average Abs. Vz Life = 18.33 min and the average T-Max = 45 min compared to the 50 mg pill with an average Abs. Vz Life = 24.47 min (pill significantly greater than gum, a=0.05), and an average T-Max = 73.67 min (pill significantly greater than gum, a=0J5). Even though the Example 236 delivered 40 mg caffeine compared to delivery of 50 mg via a pill, it still took a longer amount of time to reach Vz of the peak plasma caffeine concentration the peak plasma caffeine concentration for the pill than for the gum.
6. It was concluded that gums formulated with all the caffeine in the pellet coating delivered caffeine more quickly to the plasma than gums formulated with the caffeine split between the coating and the center based upon the following:
Classical pharmacokinetic parameters T-Max and Abs. Vz Life were greater than pill for both 50 mg pellet and Example 235, though the level of significant difference was much greater for the 50 mg pellet (Example 235)
(a=0.0075 and a=0.005 respectively) than Example 236 (a=0.05, a=0J5).
The Abs. Rate Const, was significantly lower for the pill than for either the
50 mg pellet or the Example 236. Again, the level of significant difference was greater for the 50 mg pellet (Example 235), a=0.005 compared to 0.20 for Example 236. 7. Combining the conclusions from the two completed caffeine studies, it appears that rate of caffeine uptake in plasma via the various delivery vehicles tested follow this pattern:
Pellet with caffeine all in coating > Pellet with caffeine split between coating and center = Beverages coffee/cola > Pill
Caffeine was chosen as a model for drug delivery tests because it is a food approved, pharmacologically active agent that is readily detected in plasma at a wide range of dosage levels. It is widely consumed via a number of delivery vehicles, including liquids (coffee, cola, and pills). Drugs are administered through different delivery vehicles, two oral delivery vehicles being liquid syrups and pills. Testing caffeinated beverages and pills vs. caffeinated gums should give an indication of how similar drugs administered as liquids or coated pills vs. coated gum could behave.
It should be appreciated that the compositions and methods of the present invention are capable of being incorporated in the form of a variety of embodiments, only a few of which have been illustrated and described above. The invention may be embodied in other forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive, and the scope of the invention, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

1. A coated chewing gum product containing an active agent selected from the group consisting of vitamins, cancer chemotherapeutics, antimycotics, oral contraceptives, nicotine or nicotine replacement agents, minerals, analgesics, antacids, muscle relaxants, antihistamines, decongestants, anesthetics, antitussives, diuretics, anti-inflammatories, antibiotics, antivirals, psychotherapeutic agents, anti-diabetic agents, cardiovascular agents, bioengineered pharmaceuticals, nutraceuticals and nutritional supplements, wherein the active agent is a part of a coating on a chewing gum pellet.
2. A method of producing coated chewing gum products containing at least one active agent in the coating so as to modify the release of the active agent in the mouth comprising the steps of: a) providing chewing gum product cores: b) providing a coating solution; c) coating the chewing gum product cores with the coating solution to provide coated chewing gum products, the coating including an active agent at a level of from about 12 micrograms to about 250 milligrams per gram of coated chewing gum product.
3. The method of claim 2 wherein the active agent is mixed in the coating solution prior to coating the cores.
4. The method of claim 3 wherein the active agent is also mixed with a solvent before adding to the coating solution and the resulting mixture is added to the chewing gum coating.
5. The method of claim 4 wherein the solvent is water, alcohol or flavor.
6. The method in claim 2 wherein a high-potency sweetener selected from the group consisting of aspartame, alitame, salts of acesulfame, cyclamate and its salts, saccharine and its salts, neotame, thaumatin, monellin, dihydrochalcones, sucralose and combinations thereof is mixed in the coating solution.
7. The method of claim 2 wherein said active agent is selected from the group consisting of vitamins, analgesics, antacids, antihistamines, antitussives, antibacterial agents, decongestants and anesthetics.
8. The method of claim 7 wherein said analgesics are selected from the group consisting of aspirin, acetaminophen, ketoprofen, naproxen, and ibuprofen.
9. The method of claim 7 wherein said antacids are selected from the group consisting of cimetidine, ranitidine, omeprazole and famotidine.
10. The method of claim 7 wherein said antihistamines are selected from the group consisting of cimetidine, ranitidine, famotidine and chlorpheniramine maleate.
11. The method of claim 7 wherein said decongestants and antitussives are selected from the group consisting of dextromethorphan hydrobromide and pseudoephedrine hydrochloride.
12. The method of claim 2 wherein the active agent is nutraceutical.
13. The method of claim 2 wherein said active agent is nicotine or a nicotine substitute.
14. The method of claim 2 wherein the coating operation includes the application of multiple coats of coating solution and application of powder material between coats of coating solution.
15. The method of claim 14 wherein the active agent is included in the powder material.
16. The method of claim 14 wherein active agent is included in both the coating solution and the powder material.
17. The method of claim 2 wherein an active agent is also included in the chewing gum cores.
18. The method of claim 17 wherein the active agents in the gum cores and coating are the same.
19. The method of claim 17 wherein the active agent in the cores is different than the active agent in the coating.
20. The method of claim 17 wherein at least one of the active agents in the coating and in the cores is treated with a modifying agent to control its release prior to being used in the coating or in the cores.
21. The method of claim 2 wherein at least two different coating solutions are used to make the coating.
22. The method of claim 21 wherein the active agent is mixed with the first of the at least two different coating solutions and applied to form a film, and a second coating solution without an active agent is applied over the film coated cores.
23. A method of producing coated chewing gum products containing at least one active agent in the coating so as to modify the release of the active agent in the mouth comprising the steps of: d) providing chewing gum product cores: e) providing a coating solution; f) coating the chewing gum product cores with the coating solution to provide coated chewing gum products, the coating including an active agent at a level of from about 0.2% to about 5% in the gum products.
24. The method of claim 23 wherein the active agent is present in the coating at a level of from about 0.01 % to about 2.5% of the coating.
25. A method of producing coated chewing gum products containing at least one active agent in the coating treated so as to modify the absorption of the active agent in the mouth comprising the steps of: a) providing chewing gum product cores: b) providing a coating solution; c) coating the chewing gum product cores with the coating solution to provide coated chewing gum products, the coating including an active agent at a level of from about 12 micrograms to about 250 milligrams per gram of coated chewing gum product and an absorption enhancing agent.
26. The method of claim 25 wherein the absorption enhancing agent is selected from the group consisting of solvents, flavors and transdermal vehicles.
27. The method of claim 26 wherein the transdermal vehicle is selected from the group consisting of ethanol, polyethylene glycol, 2- pyrrolidones, myristic acid, p-phenyl phenol, nitrobenzene, stearyl alcohol, cetyl alcohol, croton oil, liquid paraffin, dimethyl sulfoxide, non-ionic surfactants, liposomes, lecithin fractions, and long chain amphipathic molecules .
28. A method for delivering an active agent to an individual comprising the steps of: a) providing a chewing gum product having a coating that includes an active agent in the chewing gum coating; b) chewing the chewing gum to cause the active agent to be released from the chewing gum coating into the oral cavity of the individual; and c) continuing to chew the chewing gum product thereby causing the active agent to enter the systemic system of the individual through an oral mucosa of the individual.
29. The method of Claim 28 wherein the chewing gum product is chewed for at least 2 minutes.
30. The method of Claim 28 wherein the active agent is chosen from the group consisting of: analgesics, muscle relaxants; antibiotics; antivirals, antihistamines; decongestants; anti-inflammatories; antacids; psychotherapeutic agents; insulin; vitamins; minerals; and cardiovascular agents.
31. The method of Claim 28 including the steps of chewing the chewing gum product including the active agent at least twice a day.
32. A method for reducing the amount of an active agent necessary to achieve an effect in an individual as compared a typical active agent that is swallowed comprising the steps of: a) providing a chewing gum producing having a coating including an active agent in the coating that is typically swallowed by an individual to achieve a specific effect, the chewing gum product including less than the typical amount of active agent that is swallowed by the individual to achieve the effect; b) chewing the chewing gum product and thereby causing the active agent to be released into the salvia of the individual; and c) continuing to chew the chewing gum product, forcing the active agent through an oral mucosa contained in a oral cavity of the individual.
33. The method of Claim 32 wherein the active agent is a medicament.
34. The method of Claim 33 wherein the medicament is chosen from the group consisting of: analgesics; muscle relaxants; antibiotics; antivirals; antihistamines; decongestants; anti-inflammatories; antacids; psychotherapeutic agents; and cardiovascular agents.
35. The method of Claim 32 wherein the chewing gum product is chewed for at least 2 minutes.
36. The method of Claim 32 including the steps of chewing the chewing gum product including the active agent at least twice a day.
37. A method of delivering an active agent comprising the steps of: a) providing a chewing gum product having a coating including an active agent in the coating; and b) chewing the chewing gum product for at least 2 minutes in a oral cavity of an individual chewing the chewing gum product.
38. The method of Claim 37 wherein the active agent is chosen from the group consisting of: analgesics; muscle relaxants; antibiotics; antivirals; antihistamines; decongestants; anti-inflammatories; antacids; psychotherapeutic agents; and cardiovascular agents.
39. The method of Claim 37 including the steps of chewing the chewing gum product including the active agent at least twice a day.
PCT/US1999/029742 1996-11-27 1999-12-14 Improved release of medicament active agents from a chewing gum coating WO2000035296A1 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
CA002355779A CA2355779C (en) 1998-12-15 1999-12-14 Improved release of medicament active agents from a chewing gum coating
AU21843/00A AU765999B2 (en) 1998-12-15 1999-12-14 Improved release of medicament active agents from a chewing gum coating
EP99966257A EP1139774A4 (en) 1998-12-15 1999-12-14 Improved release of medicament active agents from a chewing gum coating
BR9916303-9A BR9916303A (en) 1998-12-15 1999-12-14 Improved release of active drug agents from a chewing gum coating
US09/510,878 US6355265B1 (en) 1999-04-06 2000-02-23 Over-coated chewing gum formulations
US09/618,808 US6322806B1 (en) 1999-04-06 2000-07-18 Over-coated chewing gum formulations including tableted center
US09/621,643 US6627234B1 (en) 1998-12-15 2000-07-21 Method of producing active agent coated chewing gum products
US09/748,699 US6541048B2 (en) 1999-09-02 2000-12-22 Coated chewing gum products containing an acid blocker and process of preparing
US09/759,561 US6558692B2 (en) 1999-04-06 2001-01-11 Over-coated chewing gum formulations
US09/759,838 US6290985B2 (en) 1999-04-06 2001-01-11 Over-coated chewing gum formulations including tableted center
US09/924,914 US6465003B2 (en) 1999-04-06 2001-08-08 Over-coated chewing gum formulations
US09/955,870 US6426090B1 (en) 1999-04-06 2001-09-19 Over-coated product including tableted center and medicament
US09/956,445 US6592850B2 (en) 1998-12-15 2001-09-19 Sildenafil citrate chewing gum formulations and methods of using the same
US09/992,122 US6773716B2 (en) 1999-04-06 2001-11-13 Over-coated chewing gum formulations
US09/990,628 US20020159956A1 (en) 1999-04-06 2001-11-13 Over-coated chewing gum formulations
US10/024,631 US7163705B2 (en) 1998-12-15 2001-12-17 Coated chewing gum product and method of making
US11/269,980 US7935362B2 (en) 1999-04-06 2005-11-09 Over-coated product including consumable center and medicament
US12/651,873 US20100104620A1 (en) 1999-04-06 2010-01-04 Over-coated product including tableted center and medicament

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US09/308,972 US6165516A (en) 1996-11-27 1996-11-27 Method of controlling release of caffeine in chewing gum
PCT/US1996/018977 WO1998023165A1 (en) 1996-11-27 1996-11-27 Method of controlling release of caffeine in chewing gum and gum produced thereby
US60/112,389 1998-12-15
US09/286,818 1999-04-06
US38921199A 1999-09-02 1999-09-02
US09/389,211 1999-09-02

Related Parent Applications (5)

Application Number Title Priority Date Filing Date
PCT/US1996/018977 Continuation-In-Part WO1998023165A1 (en) 1996-11-27 1996-11-27 Method of controlling release of caffeine in chewing gum and gum produced thereby
US09/308,972 Continuation-In-Part US6165516A (en) 1996-11-27 1996-11-27 Method of controlling release of caffeine in chewing gum
US28681899A Continuation-In-Part 1996-11-27 1999-04-06
US38921199A Continuation-In-Part 1996-11-27 1999-09-02
PCT/US1999/029792 Continuation-In-Part WO2000035298A1 (en) 1996-11-27 1999-12-14 Chewing gum containing medicament active agents

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US28681899A Continuation-In-Part 1996-11-27 1999-04-06
US09/510,878 Continuation-In-Part US6355265B1 (en) 1999-04-06 2000-02-23 Over-coated chewing gum formulations
US09/621,643 Continuation US6627234B1 (en) 1998-12-15 2000-07-21 Method of producing active agent coated chewing gum products
US09/654,464 Continuation US6569472B1 (en) 1999-09-02 2000-09-01 Coated chewing gum products containing antacid and method of making

Publications (1)

Publication Number Publication Date
WO2000035296A1 true WO2000035296A1 (en) 2000-06-22

Family

ID=27378137

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1999/029742 WO2000035296A1 (en) 1996-11-27 1999-12-14 Improved release of medicament active agents from a chewing gum coating
PCT/US1999/029792 WO2000035298A1 (en) 1996-11-27 1999-12-14 Chewing gum containing medicament active agents

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US1999/029792 WO2000035298A1 (en) 1996-11-27 1999-12-14 Chewing gum containing medicament active agents

Country Status (1)

Country Link
WO (2) WO2000035296A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136487A1 (en) * 2000-03-20 2001-09-26 Nutrinova Nutrition Specialties & Food Ingredients GmbH Nicotine salts with improved taste, process for their preparation and use thereof as smoking cessation agents
WO2002013781A1 (en) * 2000-08-14 2002-02-21 Fertin Pharma A/S Method for preparation of chewing gum with customer acceptable taste
WO2002017731A1 (en) * 2000-09-01 2002-03-07 Wm. Wrigley Jr. Company Coated chewing gum products containing antacids
WO2002051259A1 (en) * 2000-12-22 2002-07-04 Wm. Wrigley Jr. Company Coated chewing gum products containing various antacids
WO2002051260A1 (en) * 2000-12-22 2002-07-04 Wm. Wrigley Jr. Company Coated chewing gum products containing an antigas agent
WO2002056699A1 (en) * 2000-12-22 2002-07-25 Wm. Wrigley Jr. Company Coated chewing gum products containing an acid blocker
WO2002076227A1 (en) * 2001-03-23 2002-10-03 Gumlink A/S Coated degradable chewing gum with improved shelf life and process for preparing same
US6471945B2 (en) 2000-03-10 2002-10-29 Warner-Lambert Company Stain removing chewing gum and confectionery compositions, and methods of making and using the same
EP1260216A1 (en) * 2001-05-15 2002-11-27 Peirce Management, LLC Multi-layered pharmaceutical composition for both intraoral and oral administration
WO2002102357A1 (en) 2001-06-20 2002-12-27 Pharmacia Ab A coated nicotine-containing chewing gum, manufacture and use thereof
EP1347746A1 (en) * 2000-07-18 2003-10-01 Wm. Wrigley Jr. Company Over-coated chewing gum formulations including tableted center
WO2003082240A1 (en) * 2002-03-30 2003-10-09 Beisel Guenther Preparation containing fatty acid, used for reducing appetite, satiating, and/or reducing weight
US6663849B1 (en) 2000-09-01 2003-12-16 Wm. Wrigley Jr. Company Antacid chewing gum products coated with high viscosity materials
US6696044B2 (en) 2000-03-10 2004-02-24 Cadbury Adams Usa Llc Stain removing chewing gum and confectionery compositions, and methods of making and using the same
EP1408933A2 (en) * 2000-11-16 2004-04-21 Wm. Wrigley Jr. Company Sildenafil citrate chewing gum formulations and methods of using the same
WO2004062639A1 (en) * 2003-01-08 2004-07-29 Cognis Ip Management Gmbh Chewing gum composition with vegetal additives
US6863901B2 (en) 2001-11-30 2005-03-08 Collegium Pharmaceutical, Inc. Pharmaceutical composition for compressed annular tablet with molded triturate tablet for both intraoral and oral administration
US7078052B2 (en) 1999-04-06 2006-07-18 Wm. Wrigley Jr. Company Pharmaceutical chewing gum formulations
US7087255B2 (en) 2000-12-27 2006-08-08 Wm. Wrigley Jr. Company Chewing gums that provide breath freshening characteristics
EP1922937A3 (en) * 2001-03-23 2008-06-04 Gumlink A/S Coated degradable chewing gum with improved shelf life and process for preparing same
US7585520B2 (en) 2001-12-05 2009-09-08 Collegium Pharmaceutical, Inc. Compositions containing both sedative and non-sedative antihistamines and sleep aids
US7727565B2 (en) 2004-08-25 2010-06-01 Cadbury Adams Usa Llc Liquid-filled chewing gum composition
US7767698B2 (en) 2002-06-03 2010-08-03 Mcneil Ab Formulation and use thereof
US7833555B2 (en) 2002-09-24 2010-11-16 Gumlink A/S Chewing gum comprising at least two different biodegradable polymers
US8591967B2 (en) 2002-09-24 2013-11-26 Gumlink A/S Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer
US8734763B2 (en) 2004-07-06 2014-05-27 Gumlink A/S Compressed chewing gum tablet
US9011946B2 (en) 2011-04-29 2015-04-21 Intercontinental Great Brands Llc Encapsulated acid, method for the preparation thereof, and chewing gum comprising same
US9198448B2 (en) 2005-02-07 2015-12-01 Intercontinental Great Brands Llc Stable tooth whitening gum with reactive ingredients
US9271904B2 (en) 2003-11-21 2016-03-01 Intercontinental Great Brands Llc Controlled release oral delivery systems
KR102060738B1 (en) * 2012-12-13 2019-12-30 한미약품 주식회사 Bitter taste masked pharmaceutical formulation comprising esomeprazole free base or alkali salt thereof and preparation method thereof
EP4256969A3 (en) * 2017-08-18 2024-03-06 Perfetti Van Melle Benelux B.V. Chewing gum compositions and methods of making thereof

Families Citing this family (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE486587T1 (en) 2002-01-15 2010-11-15 Ucb Farchim Sa FORMULATIONS FOR THE ORAL ADMINISTRATION OF ACTIVE INGREDIENTS
WO2004054560A1 (en) 2002-12-13 2004-07-01 Warner-Lambert Company Llc Alpha-2-delta ligand to treat lower urinary tract symptoms
US7268147B2 (en) 2003-05-15 2007-09-11 Pfizer Inc Compounds useful for the treatment of diseases
ATE539077T1 (en) 2003-09-03 2012-01-15 Pfizer BENZIMIDAZOLONE COMPOUNDS HAVING AGONISTIC ACTION ON THE 5-HT4 RECEPTOR
RS20060198A (en) 2003-10-03 2008-09-29 Pfizer Limited, Imidazopyridine substituted tropane derivatives with ccr5 receptor antagonist activ ity for the treatment of hiv and inflammation
US7649002B2 (en) 2004-02-04 2010-01-19 Pfizer Inc (3,5-dimethylpiperidin-1yl)(4-phenylpyrrolidin-3-yl)methanone derivatives as MCR4 agonists
US7629358B2 (en) 2004-03-17 2009-12-08 Pfizer Inc Compounds useful for the treatment of diseases
US7538141B2 (en) 2004-03-23 2009-05-26 Alan Daniel Brown Compounds for the treatment of diseases
AP2315A (en) 2004-03-23 2011-11-04 Pfizer Formamide derivatives useful as adrenoceptor.
US7456164B2 (en) 2004-05-07 2008-11-25 Pfizer, Inc 3- or 4-monosubtituted phenol and thiophenol derivatives useful as H3 ligands
EP1595881A1 (en) 2004-05-12 2005-11-16 Pfizer Limited Tetrahydronaphthyridine derivates useful as histamine H3 receptor ligands
US7737163B2 (en) 2004-06-15 2010-06-15 Pfizer Inc. Benzimidazolone carboxylic acid derivatives
GEP20094638B (en) 2004-06-15 2009-03-10 Pfizer Benzimidazolone carboxylic acid derivatives
MX2007001759A (en) 2004-08-12 2007-04-20 Pfizer Triazolopyridinylsulfanyl derivatives as p38 map kinase inhibitors.
GB0417938D0 (en) 2004-08-12 2004-09-15 Univ Bristol Elastomeric material exhibiting reduced adhesion and chewing gum composition containing it
US20080014302A1 (en) * 2004-08-25 2008-01-17 Cadbury Adams Usa Llc Multi-region chewing gum composition including isomalt gum region
US20100136164A1 (en) * 2004-08-25 2010-06-03 Cadbury Adams Usa Llc Package assembly for multi-modality taste chewing gum compositions
PL1786785T3 (en) 2004-08-26 2010-08-31 Pfizer Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
ES2318556T3 (en) 2004-11-02 2009-05-01 Pfizer, Inc. DERIVATIVES OF SULFONIL BENCIMIDAZOL.
JP5432455B2 (en) 2005-02-25 2014-03-05 ザ ステート オブ イスラエル、ミニストリー オブ アグリカルチャー アンド ルーラル ディベロップメント、アグリカルチュラル リサーチ オーガナイゼイション、(エー.アール.オー.)、ボルカニ センター Fruit cell culture extract for inflammation treatment
CA2601508C (en) 2005-03-17 2012-01-03 Pfizer, Inc. Cyclopropanecarboxamide derivatives
ATE412648T1 (en) 2005-03-21 2008-11-15 Pfizer Ltd SUBSTITUTED TRIAZOLE DERIVATIVES AS OXYTOCIN ANTAGONISTS
KR20080006004A (en) 2005-05-04 2008-01-15 화이자 리미티드 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
US8323683B2 (en) * 2005-05-18 2012-12-04 Mcneil-Ppc, Inc. Flavoring of drug-containing chewing gums
US7645786B2 (en) 2005-06-15 2010-01-12 Pfizer Inc. Substituted arylpyrazoles
ATE456557T1 (en) 2005-06-15 2010-02-15 Pfizer Ltd SUBSTITUTED ARYLPYRAZOLES FOR USE AGAINST PARASITES
CA2615218A1 (en) 2005-07-18 2007-01-25 Protalix Ltd. Mucosal or enteral administration of biologically active macromolecules
NL2000323C2 (en) 2005-12-20 2007-11-20 Pfizer Ltd Pyrimidine derivatives.
US20070141684A1 (en) 2005-12-21 2007-06-21 Pfizer Inc Preparation of gamma-amino acids having affinity for the alpha-2-delta protein
WO2007096763A2 (en) 2006-02-23 2007-08-30 Pfizer Limited Melanocortin type 4 receptor agonist piperidinoylpyrrolidines
RU2437652C2 (en) 2006-04-05 2011-12-27 КЭДБЕРИ АДАМС ЮЭсЭй ЛЛС Impact of calcium phosphate complex on dental caries
JP5529529B2 (en) 2006-04-05 2014-06-25 インターコンチネンタル グレート ブランズ エルエルシー Calcium phosphate complexes and salts for use in oral transport systems
EP2021338A1 (en) 2006-05-09 2009-02-11 Pfizer Products Inc. Cycloalkylamino acid derivatives and pharmaceutical compositions thereof
US8278355B2 (en) 2006-09-12 2012-10-02 Therexcell Pharma Inc. Isovaline for treatment of pain
EP2081939B1 (en) 2006-09-21 2011-06-15 RaQualia Pharma Inc Benzimidazole derivatives as selective acid pump inhibitors
WO2008045579A1 (en) * 2006-10-11 2008-04-17 Wm. Wrigley Jr. Company Oral delivery vehicles containing a traditional chinese medicine of extract thereof
CA2666539A1 (en) 2006-10-23 2008-05-02 Pfizer Inc. Substituted phenylmethyl bicyclocarboxyamide compounds
JP2010518845A (en) * 2007-02-26 2010-06-03 リヴォリマー リミテッド Medicinal chewing gum
BRPI0808122A2 (en) * 2007-02-26 2014-06-17 Revolymer Ltd Medical Chewing Gum
US8323695B2 (en) 2007-08-13 2012-12-04 Mcneil-Ppc, Inc. Method for stabilizing phenylephrine
EP3090739A1 (en) 2008-01-04 2016-11-09 Schabar Research Associates LLC Compositions composed of naproxen sodium and nizatidine
CN102171206B (en) 2008-08-06 2014-06-25 辉瑞股份有限公司 Diazepine and diazocane compounds as MC4 agonists
EP2328890B1 (en) 2008-08-06 2012-01-25 Pfizer Inc. 6 substituted 2-heterocyclylamino pyrazine compounds as chk-1 inhibitors
EP2163253B1 (en) 2008-09-15 2013-07-17 ULLRICH, Oliver Extracts from the plant Hornstedtia scyphifera and immunosuppressive effects thereof
US8252790B2 (en) 2008-11-21 2012-08-28 Raqualia Pharma Inc. Pyrazole-3-carboxamide derivative having 5-HT2B receptor antagonist activity
EA020460B1 (en) 2009-01-12 2014-11-28 Пфайзер Лимитед Sulfonamide derivatives
US8828937B2 (en) 2009-03-12 2014-09-09 Haase Investments Ug Bone morphogenetic protein 2 (BMP2) variants with reduced BMP antagonist sensitivity
EP2233502A1 (en) 2009-03-27 2010-09-29 Deutsches Rheuma-Forschungszentrum Berlin Sialylated antigen-specific antibodies for treatment or prophylaxis of unwanted inflammatory immune reactions and methods of producing them
EP2236516A1 (en) 2009-03-31 2010-10-06 Charité-Universitätsmedizin Berlin (Charité) Polypeptides and use thereof for treatment of traumatic or degenerative neuronal injury
SG175738A1 (en) 2009-05-29 2011-12-29 Pfizer Ltd Novel glucocorticoid receptor agonists
EP2266563A1 (en) 2009-06-11 2010-12-29 Charité-Universitätsmedizin Berlin (Charité) Use of opioid receptor antagonists for acute treatment of paraphilic arousal states
WO2011004276A1 (en) 2009-07-06 2011-01-13 Pfizer Limited Hepatitis c virus inhibitors
WO2011077313A1 (en) 2009-12-22 2011-06-30 Pfizer Inc. Piperidinecarboxamides as mpges - 1 inhibitors
CA2794443A1 (en) 2010-04-02 2011-10-06 Phivco-1 Llc Combination therapy comprising a ccr5 antagonist, a hiv-1 protease inhibitor and a pharmacokinetic enhancer
JP2013525476A (en) 2010-05-04 2013-06-20 ファイザー・インク Heterocyclic derivatives as ALK inhibitors
WO2011152721A1 (en) 2010-05-31 2011-12-08 Umc St. Radboud Derivatives of pantothenic acid and their use for the treatment of malaria
WO2011154871A1 (en) 2010-06-10 2011-12-15 Pfizer Limited Hepatitis c virus inhibitors
JP5872552B2 (en) 2010-07-09 2016-03-01 ファイザー・リミテッドPfizer Limited Chemical compound
EP2590957B1 (en) 2010-07-09 2014-11-12 Pfizer Limited N-sulfonylbenzamides as inhibitors of voltage-gated sodium channels
WO2012004743A1 (en) 2010-07-09 2012-01-12 Pfizer Limited Benzenesulfonamides useful as sodium channel inhibitors
WO2012007877A2 (en) 2010-07-12 2012-01-19 Pfizer Limited Chemical compounds
WO2012007869A2 (en) 2010-07-12 2012-01-19 Pfizer Limited Chemical compounds
JP2013532185A (en) 2010-07-12 2013-08-15 ファイザー・リミテッド Compound
WO2012007861A1 (en) 2010-07-12 2012-01-19 Pfizer Limited N-sulfonylbenzamide derivatives useful as voltage gated sodium channel inhibitors
ES2532357T3 (en) 2010-07-12 2015-03-26 Pfizer Limited Sulfonamide derivatives as Nav1.7 inhibitors for pain treatment
WO2012042421A1 (en) 2010-09-29 2012-04-05 Pfizer Inc. Method of treating abnormal cell growth
RU2564445C2 (en) 2010-11-15 2015-10-10 ВииВ Хелткер ЮКей Лимитед Inhibitors of hiv replication
EP2457900A1 (en) 2010-11-25 2012-05-30 Almirall, S.A. New pyrazole derivatives having CRTh2 antagonistic behaviour
EP2463289A1 (en) 2010-11-26 2012-06-13 Almirall, S.A. Imidazo[1,2-b]pyridazine derivatives as JAK inhibitors
WO2012095781A1 (en) 2011-01-13 2012-07-19 Pfizer Limited Indazole derivatives as sodium channel inhibitors
EP2489663A1 (en) 2011-02-16 2012-08-22 Almirall, S.A. Compounds as syk kinase inhibitors
WO2012120398A1 (en) 2011-03-04 2012-09-13 Pfizer Limited Aryl substituted carboxamide derivatives as trpm8 modulators
AU2012238369A1 (en) 2011-04-05 2013-10-03 Pfizer Limited Pyrrolo (2, 3 -d) pyrimidine derivatives as inhibitors of tropomyosin- related kinases
PL3284459T3 (en) 2011-04-29 2021-06-28 Moberg Pharma Ab Pharmaceutical compositions comprising a local anaesthetic such as bupivacaine for local administration to the mouth or throat
EP2518071A1 (en) 2011-04-29 2012-10-31 Almirall, S.A. Imidazopyridine derivatives as PI3K inhibitors
EP2518070A1 (en) 2011-04-29 2012-10-31 Almirall, S.A. Pyrrolotriazinone derivatives as PI3K inhibitors
MX350024B (en) 2011-05-18 2017-08-23 Raqualia Pharma Inc Polymorph form of 4-{[4-({[4-(2,2,2-trifluoroethoxy)-1,2-benzisox azol-3-yl]oxy}methyl)piperidin-1-yl]methyl}-tetrahydro-2h-pyran- 4-carboxylic acid.
EP2526945A1 (en) 2011-05-25 2012-11-28 Almirall, S.A. New CRTH2 Antagonists
EP2527344A1 (en) 2011-05-25 2012-11-28 Almirall, S.A. Pyridin-2(1H)-one derivatives useful as medicaments for the treatment of myeloproliferative disorders, transplant rejection, immune-mediated and inflammatory diseases
EP2548876A1 (en) 2011-07-18 2013-01-23 Almirall, S.A. New CRTh2 antagonists
EP2548863A1 (en) 2011-07-18 2013-01-23 Almirall, S.A. New CRTh2 antagonists.
US8575336B2 (en) 2011-07-27 2013-11-05 Pfizer Limited Indazoles
EP2554544A1 (en) 2011-08-01 2013-02-06 Almirall, S.A. Pyridin-2(1h)-one derivatives as jak inhibitors
AU2012291744A1 (en) 2011-08-02 2014-02-20 Pfizer Inc. Crizotinib for use in the treatment of cancer
WO2013054185A1 (en) 2011-10-13 2013-04-18 Pfizer, Inc. Pyrimidine and pyridine derivatives useful in therapy
JP5363636B2 (en) 2011-10-21 2013-12-11 ファイザー・リミテッド New salts and medical uses
MX337469B (en) 2011-10-26 2016-03-02 Pfizer Ltd (4-phenylimidazol-2-yl) ethylamine derivatives useful as sodium channel modulators.
ES2748656T3 (en) 2011-10-28 2020-03-17 Inhibitaxin Ltd Pyridazine derivatives useful in therapy
CA2857603C (en) 2011-12-15 2016-08-02 Pfizer Limited Sulfonamide derivatives
WO2013093688A1 (en) 2011-12-19 2013-06-27 Pfizer Limited Sulfonamide derivatives and use thereof as vgsc inhibitors
WO2013102826A1 (en) 2012-01-04 2013-07-11 Pfizer Limited N-aminosulfonyl benzamides
WO2013114250A1 (en) 2012-02-03 2013-08-08 Pfizer Inc. Benziimidazole and imidazopyridine derivatives as sodium channel modulators
WO2013132376A1 (en) 2012-03-06 2013-09-12 Pfizer Inc. Macrocyclic derivatives for the treatment of proliferative diseases
JP6463680B2 (en) 2012-09-18 2019-02-06 ジアルコ ファーマ リミテッドZiarco Pharma Ltd 2- (2-Aminocyclohexyl) aminopyrimidine-5-carboxamides as spleen tyrosine kinase I (SYK) inhibitors
CA2884848C (en) 2012-09-28 2017-08-22 Pfizer Inc. Benzamide and heterobenzamide compounds
EP2903989A1 (en) 2012-10-04 2015-08-12 Pfizer Limited Pyrrolo[2,3-d]pyrimidine tropomyosin-related kinase inhibitors
WO2014053968A1 (en) 2012-10-04 2014-04-10 Pfizer Limited Pyrrolo[3,2-c]pyridine tropomyosin-related kinase inhibitors
US20150250785A1 (en) 2012-10-04 2015-09-10 Pfizer Limited Tropomyosin-Related Kinase Inhibitors
WO2014060431A1 (en) 2012-10-16 2014-04-24 Almirall, S.A. Pyrrolotriazinone derivatives as pi3k inhibitors
RU2617842C2 (en) 2012-11-08 2017-04-28 Пфайзер Инк. Heteroaromatic compounds and their application as dopamine d1 ligants
PE20150966A1 (en) 2012-11-08 2015-06-21 Pfizer HETEROAROMATIC COMPOUNDS AND THEIR USE AS D1 LIGANDS OF DOPAMINE
ES2637539T3 (en) 2012-11-21 2017-10-13 Raqualia Pharma Inc Polymorphs of 4 - {[4 - ({[4- (2,2,2-trifluoroethoxy) -1,2-benzoisoxazol-3-yl] oxy} methyl) piperidin-1-yl] methyl} -tetrahydro-2H -piran-4-carboxylic acid as agonists of the 5-hydroxytryptamine-4 (5-HT4) receptor for the treatment of gastrointestinal diseases
KR101745225B1 (en) 2012-12-03 2017-06-08 화이자 인코포레이티드 Novel selective androgen receptor modulators
UA112028C2 (en) 2012-12-14 2016-07-11 Пфайзер Лімітед IMIDAZOPYRIDASINE DERIVATIVES AS HAMBA-RECEPTOR MODULATORS
UA111305C2 (en) 2012-12-21 2016-04-11 Пфайзер Інк. Condensed with lactams of aryl and heteroaryl
AR094797A1 (en) 2013-02-15 2015-08-26 Almirall Sa PIRROLOTRIAZINE DERIVATIVES AS PI3K INHIBITORS
SI2958916T1 (en) 2013-02-21 2018-11-30 Pfizer Inc. Solid forms of a selective cdk4/6 inhibitor
EP2792360A1 (en) 2013-04-18 2014-10-22 IP Gesellschaft für Management mbH (1aR,12bS)-8-cyclohexyl-11-fluoro-N-((1-methylcyclopropyl)sulfonyl)-1a-((3-methyl-3,8-diazabicyclo[3.2.1]oct-8-yl)carbonyl)-1,1a,2,2b-tetrahydrocyclopropa[d]indolo[2,1-a][2]benzazepine-5-carboxamide for use in treating HCV
TW201512171A (en) 2013-04-19 2015-04-01 Pfizer Ltd Chemical compounds
TW201443025A (en) 2013-04-19 2014-11-16 Pfizer Ltd Chemical compounds
WO2014181213A1 (en) 2013-05-10 2014-11-13 Pfizer Inc. Crystalline form of (sa)-(-)-3-(3-bromo-4-((2,4-difluorobenzyl)oxy)-6-methyl-2-oxopyridin-1 (2h)-yl)-n,4-dimethylbenzamide
EP2997084A4 (en) 2013-05-17 2016-10-12 Acupac Packaging Inc Anhydrous hydrogel composition
BR122023004130B1 (en) 2013-06-27 2023-12-12 Pfizer Inc HETEROAROMATIC COMPOUNDS, PHARMACEUTICAL COMPOSITION AND USE OF SAID COMPOUNDS IN THE TREATMENT OF DISORDERS MEDIATED BY OR ASSOCIATED WITH DOPAMINE D1
CN104513253A (en) 2013-10-01 2015-04-15 南京波尔泰药业科技有限公司 Macrocyclic compounds for the treatment of proliferative diseases
WO2015092610A1 (en) 2013-12-20 2015-06-25 Pfizer Limited N-acylpiperidine ether tropomyosin-related kinase inhibitors
WO2015092614A1 (en) 2013-12-20 2015-06-25 Pfizer Inc. Activating notch alterations in breast cancer
WO2015159175A1 (en) 2014-04-15 2015-10-22 Pfizer Inc. Tropomyosin-related kinase inhibitors containing both a 1h-pyrazole and a pyrimidine moiety
AP2016009464A0 (en) 2014-04-25 2016-09-30 Pfizer Heteroaromatic compounds and their use as dopamine d1 ligands
US9868744B2 (en) 2014-04-25 2018-01-16 Pfizer Inc. Heteroaromatic compounds and their use as dopamine D1 ligands
SG11201608468TA (en) 2014-04-25 2016-11-29 Pfizer Heteroaromatic compounds and their use as dopamine d1 ligands
WO2015166366A1 (en) 2014-04-28 2015-11-05 Pfizer Inc. Heterocyclic compounds and their use as dopamine d1 ligands
EP3137454A1 (en) 2014-04-28 2017-03-08 Pfizer Inc. Heteroaromatic compounds and their use as dopamine d1 ligands
WO2015170218A1 (en) 2014-05-07 2015-11-12 Pfizer Inc. Tropomyosin-related kinase inhibitors
WO2015173683A1 (en) 2014-05-14 2015-11-19 Pfizer Inc. Pyrazolopyridines and pyrazolopyrimidines
RU2698194C2 (en) 2014-05-15 2019-08-23 Пфайзер Инк. Crystalline form of 6-[(4r)-4-methyl-1,1-dioxido-1,2,6-thiadiazinan-2-yl]isoquinoline-1-carbonitrile
MX366985B (en) 2014-05-20 2019-08-01 Raqualia Pharma Inc Benzisoxazole derivative salt.
US20170275275A1 (en) 2014-05-30 2017-09-28 Pfizer Inc. Benzenesulfonamides useful as sodium channel inhibitors
KR20160147007A (en) 2014-05-30 2016-12-21 화이자 인코포레이티드 Carbonitrile derivatives as selective androgen receptor modulators
EP3154979B1 (en) 2014-06-12 2018-03-07 Pfizer Limited Imidazopyridazine derivatives as modulators of the gabaa receptor activity.
WO2015193768A1 (en) 2014-06-17 2015-12-23 Pfizer Inc. Aryl fused lactams as ezh2 modulators
ES2721031T3 (en) 2014-06-17 2019-07-26 Pfizer Dihydroisoquinolinone substituted compounds
WO2016009296A1 (en) 2014-07-16 2016-01-21 Pfizer Inc. N-acylpiperidine ether tropomyosin-related kinase inhibitors
WO2016009303A1 (en) 2014-07-17 2016-01-21 Pfizer Inc. Pharmaceutical combinations comprising gabapentin or pregabalin with nav1.7 inhibitors
WO2016009297A1 (en) 2014-07-18 2016-01-21 Pfizer Inc. Pyridine derivatives as muscarinic m1 receptor positive allosteric modulators
WO2016020784A1 (en) 2014-08-05 2016-02-11 Pfizer Inc. N-acylpyrrolidine ether tropomyosin-related kinase inhibitors
WO2016034971A1 (en) 2014-09-04 2016-03-10 Pfizer Limited Sulfonamides derivatives as urat1 inhibitors
US10017529B2 (en) 2014-09-16 2018-07-10 BioPharma Works LLC Metformin derivatives
GB201417163D0 (en) 2014-09-29 2014-11-12 Provost Fellows & Scholars College Of The Holy Undivided Trinity Of Queen Elizabeth Near Dublin Substituted pyrimidine derivatives useful in the treatment of autoimmune diseases
GB201417165D0 (en) 2014-09-29 2014-11-12 Provost Fellows & Scholars College Of The Holy Undivided Trinity Of Queen Elizabeth Near Dublin Treatments for Autoimmune Disease
WO2016067143A1 (en) 2014-10-28 2016-05-06 Pfizer Inc. N-(2-alkyleneimino-3-phenylpropyl)acetamide compounds and their use against pain and pruritus via inhibition of trpa1 channels
US20180282279A1 (en) 2014-11-06 2018-10-04 Radboud Universitair Medisch Centrum Pantothenamide Analogues
JP6621477B2 (en) 2014-12-18 2019-12-18 ファイザー・インク Pyrimidine and triazine derivatives and their use as AXL inhibitors
UY36530A (en) 2015-01-22 2016-08-31 Phytoplant Res S L METHODS TO PURIFY CANNABINOIDS, COMPOSITIONS AND KITS OF THESE
CR20170384A (en) 2015-02-24 2017-11-16 Pfizer DERIVATIVES OF USEFUL REPLACED NUCLEOSIDS AS ANTINEOPLASIC AGENTS
CA2979527A1 (en) 2015-03-13 2016-09-22 Endocyte, Inc. Conjugates of pyrrolobenzodiazepine (pbd) prodrugs for treating disease
MA41938A (en) 2015-04-21 2018-02-28 Almirall Sa AMINO-SUBSTITUTED HETEROCYCLIC DERIVATIVES USED AS SODIUM CHANNEL INHIBITORS
EA035823B1 (en) 2015-07-31 2020-08-17 Пфайзер Инк. 1,1,1-trifluoro-3-hydroxypropan-2-yl carbamate derivatives and 1,1,1-trifluoro-4-hydroxybutan-2-yl carbamate derivatives as magl inhibitors
WO2017060488A1 (en) 2015-10-09 2017-04-13 Almirall, S.A. New trpa1 antagonists
WO2017064068A1 (en) 2015-10-14 2017-04-20 Almirall, S.A. New trpa1 antagonists
EP3386983A1 (en) 2015-12-10 2018-10-17 Pfizer Limited 4-(biphen-3-yl)-1h-pyrazolo[3,4-c]pyridazine derivatives of formula (i) as gaba receptor modulators for use in the treatment of epilepsy and pain
RU2728204C2 (en) * 2015-12-11 2020-07-28 Вм. Ригли Джр. Компани Composition with color indication
EP3399968B8 (en) 2016-01-07 2021-12-01 Xuanzhu Biopharmaceutical Co., Ltd. Selective inhibitors of clinically important mutants of the egfr tyrosine kinase
WO2017119732A1 (en) 2016-01-08 2017-07-13 Samsung Electronics Co., Ltd. Electronic device and operating method thereof
KR102206321B1 (en) 2016-01-15 2021-01-21 화이자 인코포레이티드 6,7,8,9-tetrahydro-5H-pyrido[2,3-d]azepine dopamine D3 ligand
CN108884445A (en) 2016-03-09 2018-11-23 北京智康博药肿瘤医学研究有限公司 Tumour cell suspension culture and correlation technique
CA2969295A1 (en) 2016-06-06 2017-12-06 Pfizer Inc. Substituted carbonucleoside derivatives, and use thereof as a prmt5 inhibitor
SI3497103T1 (en) 2016-08-15 2021-07-30 Pfizer Inc. Pyridopyrimdinone cdk2/4/6 inhibitors
US10316021B2 (en) 2016-11-28 2019-06-11 Pfizer Inc. Heteroarylphenoxy benzamide kappa opioid ligands
US11472776B2 (en) 2016-12-20 2022-10-18 Oligomerix, Inc. Quinazolinones that inhibit the formation of tau oligomers and their method of use
CA3050625C (en) 2017-01-20 2021-07-20 Pfizer Inc. 1,1,1-trifluoro-3-hydroxypropan-2-yl carbamate derivatives as magl inhibitors
MX2019008690A (en) 2017-01-23 2019-09-18 Pfizer Heterocyclic spiro compounds as magl inhibitors.
BR112019015069A2 (en) 2017-01-24 2020-03-03 Pfizer Inc. CALIQUEAMICINE DERIVATIVES AND ANTIBODY-DRUG CONJUGATES OF THE SAME
SE541358C2 (en) 2017-05-30 2019-08-13 Enorama Pharma Ab Nicotine-containing chewing gum compositions
PE20200696A1 (en) 2017-06-22 2020-06-16 Curadev Pharma Ltd HUMAN STING SMALL MOLECULES MODULATORS
TWI808092B (en) 2017-08-30 2023-07-11 中國大陸商北京軒義醫藥科技有限公司 Cyclic di-nucleotides as stimulator of interferon genes modulators
CA3074304A1 (en) 2017-09-11 2019-03-14 Krouzon Pharmaceuticals, Inc. Octahydrocyclopenta[c]pyrrole allosteric inhibitors of shp2
JP7201400B2 (en) 2017-11-14 2023-01-10 ファイザー・インク EZH2 inhibitor combination therapy
EP3746419A1 (en) 2018-01-29 2020-12-09 Phytoplant Research S.L. Methods of purifying cannabinoids using liquid:liquid chromatography
TW201942115A (en) 2018-02-01 2019-11-01 美商輝瑞股份有限公司 Substituted quinazoline and pyridopyrimidine derivatives useful as anticancer agents
TW201942116A (en) 2018-02-09 2019-11-01 美商輝瑞股份有限公司 Tetrahydroquinazoline derivatives useful as anticancer agents
CA3092003A1 (en) 2018-02-27 2019-09-06 Pfizer Inc. Combination of a cyclin dependent kinase inhibitor and a bet-bromodomain inhibitor
MX2020011294A (en) 2018-04-26 2020-11-18 Pfizer 2-amino-pyridine or 2-amino-pyrimidine derivatives as cyclin dependent kinase inhibitors.
WO2019243823A1 (en) 2018-06-21 2019-12-26 Curadev Pharma Limited Azaheterocyclic small molecule modulators of human sting
JP2021531287A (en) 2018-07-19 2021-11-18 ファイザー・インク Heterocyclic spiro compound as a MAGL inhibitor
US11142525B2 (en) 2018-11-15 2021-10-12 Pfizer Inc. Azalactam compounds as HPK1 inhibitors
EP3674288A1 (en) 2018-12-31 2020-07-01 MMV Medicines for Malaria Venture Pantothenamide analogues
MX2021008866A (en) 2019-01-23 2021-08-19 Pfizer Polymorph form of a monophosphate hydrate salt of a known tetrahydroisoquinoline derivative.
JP7094456B2 (en) 2019-01-31 2022-07-01 ファイザー・インク CDK2 inhibitor
US20220125777A1 (en) 2019-02-01 2022-04-28 Pfizer Inc. Combination of a cdk inhibitor and a pim inhibitor
US11339159B2 (en) 2019-07-17 2022-05-24 Pfizer Inc. Toll-like receptor agonists
CN114269720A (en) 2019-07-25 2022-04-01 库拉德夫制药私人有限公司 acetyl-CoA synthetase short chains2(ACSS2) Small molecule inhibitors of
AU2021219370A1 (en) 2020-02-12 2022-08-25 Curadev Pharma Pvt. Ltd. Small molecule STING antagonists
US20230117684A1 (en) 2020-03-05 2023-04-20 Pfizer Inc. Combination of an anaplastic lymphoma kinase inhibitor and a cyclin dependent kinase inhibitor
JP2021167301A (en) 2020-04-08 2021-10-21 ファイザー・インク Co-treatment with cdk4/6 and cdk2 inhibitors to suppress tumor adaptation to cdk2 inhibitors
JP7303948B2 (en) 2020-05-01 2023-07-05 ファイザー・インク Azalactam compounds as HPK1 inhibitors
WO2021224818A1 (en) 2020-05-08 2021-11-11 Pfizer Inc. Isoindolone compounds as hpk1 inhibitors
TW202214641A (en) 2020-06-30 2022-04-16 美商艾瑞生藥股份有限公司 Her2 mutation inhibitors
WO2022013691A1 (en) 2020-07-15 2022-01-20 Pfizer Inc. Polymorph of (1s,2s,3s,5r)-3-((6-(difluoromethyl)-5-flu­oro-1,2,3,4-tetrahydroisoquinolin-8-yl)oxy)-5-(4-methyl-7h-pyrrolo[2,3-d]­pyrimidin-7-yl)cyclopentane-1,2-diol
WO2022015784A1 (en) 2020-07-15 2022-01-20 Schabar Research Associates Llc Unit oral dose compositions composed of ibuprofen and famotidine for the treatment of acute pain and the reduction of the severity and/or risk of heartburn
CA3124579A1 (en) 2020-07-15 2022-01-15 Schabar Research Associates Llc Unit oral dose compositions composed of naproxen sodium and famotidine for the treatment of acute pain and the reduction of the severity of heartburn and/or the risk of heartburn
US20230242539A1 (en) 2020-07-15 2023-08-03 Pfizer Inc. Polymorphs of (1S,2S,3S,5R)-3-((6-(Difluoromethyl)-5-Fluoro-1,2,3,4-Tetrahydroisoquinolin-8-YL)OXY)-5-(4-Methyl-7H-Pyrrolo[2,3-D]Pyrimidin-7-YL)Cyclopentane-1,2-DIOL Mono-Hydrochloride
WO2022018596A1 (en) 2020-07-20 2022-01-27 Pfizer Inc. Combination therapy
WO2022018667A1 (en) 2020-07-24 2022-01-27 Pfizer Inc. Combination therapies using cdk2 and cdc25a inhibitors
GB202011811D0 (en) 2020-07-29 2020-09-09 Provost Fellows Found Scholars And The Other Members Of Board Of The College Of The Holy And Undivid Compounds
GB202011812D0 (en) 2020-07-29 2020-09-09 Provost Fellows Found Scholars And The Other Members Of Board Of The College Of The Holy And Undivid Compounds
US20240000783A1 (en) 2020-08-13 2024-01-04 Pfizer Inc. Combination therapy
BR112023004713A2 (en) 2020-09-15 2023-04-18 Pfizer SOLID FORMS OF A CDK4 INHIBITOR
US20240076301A1 (en) 2020-12-22 2024-03-07 Pfizer Inc. Solid Forms of an eIF4E Inhibitor
EP4267563A1 (en) 2020-12-24 2023-11-01 Pfizer Inc. Solid forms of a cdk2 inhibitor
US11964978B2 (en) 2021-03-18 2024-04-23 Pfizer Inc. Modulators of STING (stimulator of interferon genes)
BR112023018906A2 (en) 2021-03-24 2023-10-10 Astellas Pharma Inc COMBINATION OF TALAZOPARIB AND AN ANTIANDROGEN FOR THE TREATMENT OF METASTATIC CASTRATION-SENSITIVE PROSTATE CANCER WITH MUTATION IN THE DDR GENE
AU2022250712A1 (en) 2021-03-31 2023-10-05 Sevenless Therapeutics Limited Sos1 inhibitors and ras inhibitors for use in the treatment of pain
GB202104609D0 (en) 2021-03-31 2021-05-12 Sevenless Therapeutics Ltd New Treatments for Pain
KR20240025504A (en) 2021-04-07 2024-02-27 라이프아크 ULK1/2 inhibitors and uses thereof
WO2022229846A1 (en) 2021-04-29 2022-11-03 Pfizer Inc. Treatment of cancer using a transforming growth factor beta receptor type 1 inhibitor
CR20230604A (en) 2021-06-26 2024-02-19 Array Biopharma Inc Her2 mutation inhibitors
WO2023002362A1 (en) 2021-07-22 2023-01-26 Pfizer Inc. Treatment of hematological malignancy
IL310679A (en) 2021-08-11 2024-04-01 Curadev Pharma Pvt Ltd Small molecule urea derivatives as sting antagonists
IL310705A (en) 2021-08-11 2024-04-01 Curadev Pharma Pvt Ltd Small molecule sting antagonists
WO2023084459A1 (en) 2021-11-15 2023-05-19 Pfizer Inc. Methods of treating sars-cov-2
AU2022399786A1 (en) 2021-12-01 2024-07-04 Fundación Del Sector Público Estatal Centro Nacional De Investigaciones Oncológicas Carlos III (F.S.P. CNIO) Compounds
WO2023100134A1 (en) 2021-12-02 2023-06-08 Pfizer Inc. Methods and dosing regimens comprising a cdk2 inhibitor and a cdk4 inhibitor for treating cancer
US20240109915A1 (en) 2022-07-29 2024-04-04 Pfizer Inc. Novel acc inhibitors
WO2024033513A1 (en) 2022-08-11 2024-02-15 Diaccurate Compounds for treating cancer
WO2024074827A1 (en) 2022-10-05 2024-04-11 Sevenless Therapeutics Limited New treatments for pain
WO2024105363A1 (en) 2022-11-15 2024-05-23 Curadev Pharma Ltd Pyridone and pyrimidinone inhibitors of hematopoietic progenitor kinase 1

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753805A (en) * 1984-01-31 1988-06-28 Warner-Lambert Company Tabletted chewing gum composition and method of preparation
US4997659A (en) * 1989-03-28 1991-03-05 The Wm. Wrigley Jr. Company Alitame stability in chewing gum by encapsulation
US5013716A (en) * 1988-10-28 1991-05-07 Warner-Lambert Company Unpleasant taste masking compositions and methods for preparing same
US5433960A (en) * 1992-04-21 1995-07-18 Wm. Wrigley Jr. Company Chewing gum including agent containing edible film
WO1998023165A1 (en) * 1996-11-27 1998-06-04 Wm. Wrigley Jr. Company Method of controlling release of caffeine in chewing gum and gum produced thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452821A (en) * 1981-12-18 1984-06-05 Gerhard Gergely Confectionery product, particularly chewing gum, and process for its manufacture
US4639368A (en) * 1984-08-23 1987-01-27 Farmacon Research Corporation Chewing gum containing a medicament and taste maskers
US4978537A (en) * 1989-04-19 1990-12-18 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5846557A (en) * 1996-03-20 1998-12-08 Cumberland Packing Corporation Chewing gum containing cough suppressing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753805A (en) * 1984-01-31 1988-06-28 Warner-Lambert Company Tabletted chewing gum composition and method of preparation
US5013716A (en) * 1988-10-28 1991-05-07 Warner-Lambert Company Unpleasant taste masking compositions and methods for preparing same
US4997659A (en) * 1989-03-28 1991-03-05 The Wm. Wrigley Jr. Company Alitame stability in chewing gum by encapsulation
US5433960A (en) * 1992-04-21 1995-07-18 Wm. Wrigley Jr. Company Chewing gum including agent containing edible film
WO1998023165A1 (en) * 1996-11-27 1998-06-04 Wm. Wrigley Jr. Company Method of controlling release of caffeine in chewing gum and gum produced thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1139774A4 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078052B2 (en) 1999-04-06 2006-07-18 Wm. Wrigley Jr. Company Pharmaceutical chewing gum formulations
US6471945B2 (en) 2000-03-10 2002-10-29 Warner-Lambert Company Stain removing chewing gum and confectionery compositions, and methods of making and using the same
US6696044B2 (en) 2000-03-10 2004-02-24 Cadbury Adams Usa Llc Stain removing chewing gum and confectionery compositions, and methods of making and using the same
EP1136487A1 (en) * 2000-03-20 2001-09-26 Nutrinova Nutrition Specialties & Food Ingredients GmbH Nicotine salts with improved taste, process for their preparation and use thereof as smoking cessation agents
EP1347746A1 (en) * 2000-07-18 2003-10-01 Wm. Wrigley Jr. Company Over-coated chewing gum formulations including tableted center
EP1347746A4 (en) * 2000-07-18 2009-12-16 Wrigley W M Jun Co Over-coated chewing gum formulations including tableted center
WO2002013781A1 (en) * 2000-08-14 2002-02-21 Fertin Pharma A/S Method for preparation of chewing gum with customer acceptable taste
WO2002017731A1 (en) * 2000-09-01 2002-03-07 Wm. Wrigley Jr. Company Coated chewing gum products containing antacids
US6663849B1 (en) 2000-09-01 2003-12-16 Wm. Wrigley Jr. Company Antacid chewing gum products coated with high viscosity materials
EP1408933A4 (en) * 2000-11-16 2005-08-31 Wrigley W M Jun Co Sildenafil citrate chewing gum formulations and methods of using the same
EP1408933A2 (en) * 2000-11-16 2004-04-21 Wm. Wrigley Jr. Company Sildenafil citrate chewing gum formulations and methods of using the same
WO2002051259A1 (en) * 2000-12-22 2002-07-04 Wm. Wrigley Jr. Company Coated chewing gum products containing various antacids
WO2002056699A1 (en) * 2000-12-22 2002-07-25 Wm. Wrigley Jr. Company Coated chewing gum products containing an acid blocker
WO2002051260A1 (en) * 2000-12-22 2002-07-04 Wm. Wrigley Jr. Company Coated chewing gum products containing an antigas agent
US7087255B2 (en) 2000-12-27 2006-08-08 Wm. Wrigley Jr. Company Chewing gums that provide breath freshening characteristics
WO2002076227A1 (en) * 2001-03-23 2002-10-03 Gumlink A/S Coated degradable chewing gum with improved shelf life and process for preparing same
US7507427B2 (en) 2001-03-23 2009-03-24 Gumlink A/S Coated degradable chewing gum with improved shelf life and process for preparing same
EP1922937A3 (en) * 2001-03-23 2008-06-04 Gumlink A/S Coated degradable chewing gum with improved shelf life and process for preparing same
EP1260216A1 (en) * 2001-05-15 2002-11-27 Peirce Management, LLC Multi-layered pharmaceutical composition for both intraoral and oral administration
JP2005500296A (en) * 2001-06-20 2005-01-06 ファイザー・ヘルス・アクチボラグ Coated nicotine-containing chewing gum, its manufacture and use
WO2002102357A1 (en) 2001-06-20 2002-12-27 Pharmacia Ab A coated nicotine-containing chewing gum, manufacture and use thereof
JP2010070564A (en) * 2001-06-20 2010-04-02 Mcneil Ab Nicotine-containing coated chewing gum, and production and use of the same
US6863901B2 (en) 2001-11-30 2005-03-08 Collegium Pharmaceutical, Inc. Pharmaceutical composition for compressed annular tablet with molded triturate tablet for both intraoral and oral administration
US7387792B2 (en) 2001-11-30 2008-06-17 Collegium Pharmaceutical, Inc. Pharmaceutical composition for compressed annular tablet with molded triturate tablet for both intraoral and oral administration
US7585520B2 (en) 2001-12-05 2009-09-08 Collegium Pharmaceutical, Inc. Compositions containing both sedative and non-sedative antihistamines and sleep aids
WO2003082240A1 (en) * 2002-03-30 2003-10-09 Beisel Guenther Preparation containing fatty acid, used for reducing appetite, satiating, and/or reducing weight
US8642627B2 (en) 2002-06-03 2014-02-04 Mcneil Ab Formulation and use thereof
US7767698B2 (en) 2002-06-03 2010-08-03 Mcneil Ab Formulation and use thereof
US8591967B2 (en) 2002-09-24 2013-11-26 Gumlink A/S Biodegradable chewing gum comprising at least one high molecular weight biodegradable polymer
US7833555B2 (en) 2002-09-24 2010-11-16 Gumlink A/S Chewing gum comprising at least two different biodegradable polymers
US8293295B2 (en) 2002-09-24 2012-10-23 Gumlink A/S Chewing gum comprising at least two different biodegradable polymers
WO2004062639A1 (en) * 2003-01-08 2004-07-29 Cognis Ip Management Gmbh Chewing gum composition with vegetal additives
JP2006514061A (en) * 2003-01-08 2006-04-27 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Chewing gum composition with plant additive
US9271904B2 (en) 2003-11-21 2016-03-01 Intercontinental Great Brands Llc Controlled release oral delivery systems
US9445612B2 (en) 2004-07-06 2016-09-20 Gumlink A/S Compressed chewing gum tablet
US8734763B2 (en) 2004-07-06 2014-05-27 Gumlink A/S Compressed chewing gum tablet
US7727565B2 (en) 2004-08-25 2010-06-01 Cadbury Adams Usa Llc Liquid-filled chewing gum composition
US9198448B2 (en) 2005-02-07 2015-12-01 Intercontinental Great Brands Llc Stable tooth whitening gum with reactive ingredients
US9011946B2 (en) 2011-04-29 2015-04-21 Intercontinental Great Brands Llc Encapsulated acid, method for the preparation thereof, and chewing gum comprising same
US9737082B2 (en) 2011-04-29 2017-08-22 Intercontinental Great Brands Llc Chewing gum composition comprising encapsulated acid
KR102060738B1 (en) * 2012-12-13 2019-12-30 한미약품 주식회사 Bitter taste masked pharmaceutical formulation comprising esomeprazole free base or alkali salt thereof and preparation method thereof
EP4256969A3 (en) * 2017-08-18 2024-03-06 Perfetti Van Melle Benelux B.V. Chewing gum compositions and methods of making thereof

Also Published As

Publication number Publication date
WO2000035298A1 (en) 2000-06-22

Similar Documents

Publication Publication Date Title
US6627234B1 (en) Method of producing active agent coated chewing gum products
US6949264B1 (en) Nutraceuticals or nutritional supplements and method of making
US7163705B2 (en) Coated chewing gum product and method of making
WO2000035296A1 (en) Improved release of medicament active agents from a chewing gum coating
US6350480B1 (en) Chewing gum product including a hydrophilic gum base and method of producing
US6586023B1 (en) Process for controlling release of active agents from a chewing gum coating and product thereof
US6773716B2 (en) Over-coated chewing gum formulations
US6613346B2 (en) Chewable product including active ingredient
EP1817014B1 (en) Method of providing fast relief to a user of a nicotine chewing gum
WO2008045579A1 (en) Oral delivery vehicles containing a traditional chinese medicine of extract thereof
EP1311240A1 (en) Method for preparation of chewing gum with customer acceptable taste
AU1937700A (en) Controlling release of active agents from a chewing gum coating
US20080181933A1 (en) Chewing Gum Compositions of Varenicline
CA2394290C (en) Release of lipophilic active agents from chewing gum
US20030180414A1 (en) Method of controlling release of bitterness inhibitors in chewing gum and gum produced thereby
US20100104518A1 (en) Chewing gum, confection, and other oral delivery vehicles containing a traditional chinese medicine or extract thereof
AU765999B2 (en) Improved release of medicament active agents from a chewing gum coating
AU2004200574B2 (en) Controlling Release of Active Agents from a Chewing Gum Coating
JUNO et al. PHARMACEUTICAL SCIENCES
JP2011057701A (en) Method to give rapid alleviation for nicotine chewing gum user

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 1999 308972

Country of ref document: US

Date of ref document: 19990527

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 99814499.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref document number: 2355779

Country of ref document: CA

Ref document number: 2355779

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 21843/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999966257

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999966257

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09990628

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 21843/00

Country of ref document: AU