WO2000034622A1 - Dispositif de detection d'un outil de fonds - Google Patents

Dispositif de detection d'un outil de fonds Download PDF

Info

Publication number
WO2000034622A1
WO2000034622A1 PCT/GB1999/004148 GB9904148W WO0034622A1 WO 2000034622 A1 WO2000034622 A1 WO 2000034622A1 GB 9904148 W GB9904148 W GB 9904148W WO 0034622 A1 WO0034622 A1 WO 0034622A1
Authority
WO
WIPO (PCT)
Prior art keywords
downhole tool
tool
detection apparatus
indicator
sensing means
Prior art date
Application number
PCT/GB1999/004148
Other languages
English (en)
Inventor
Dave Mcdonald
Original Assignee
Intervention Well Systems Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intervention Well Systems Limited filed Critical Intervention Well Systems Limited
Priority to AU16697/00A priority Critical patent/AU1669700A/en
Publication of WO2000034622A1 publication Critical patent/WO2000034622A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/068Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells
    • E21B33/072Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells for cable-operated tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/068Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells
    • E21B33/076Well heads; Setting-up thereof having provision for introducing objects or fluids into, or removing objects from, wells specially adapted for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • E21B47/092Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes by detecting magnetic anomalies

Definitions

  • This invention relates to a downhole tool detection means.
  • it relates to a means for determining when a tool in a well is near the surface valve.
  • the tool is lowered through the valve and down into the well.
  • the progress of the tool is monitored via a depth indicator. Due to the high value of production from an individual well, it is important to perform all workovers quickly. As a well may typically be 30,000 feet deep it is clear that it is desirable to lower and retrieve tools at high velocities.
  • a common approach to depth indication during wireline operations involves the use of a calibrated tangential wheel or sheave at the surface. This allows measurement of the length of wire in the well and therefore the depth of the tool.
  • this technique is not sufficiently accurate.
  • the circumference of the wheel may vary due to mud or ice build-up; the wheel may slip relative to the wire; the wire will stretch by an unpredictable amount from the weight of the tool and from the unpredictable stresses when the tool collides with or snags on the edge of the well; furthermore, the dimensions of the wheel and the wire both vary with temperature.
  • Even proportionately small errors lead to substantial uncertainty in the location of the tool. As a result of this uncertainty, great care must be taken not to overrun the tool or else costly accidents occur.
  • downhole tool retrieval detection apparatus comprising means on a surface assembly for detecting the presence of a tool assembly within the surface assembly.
  • the downhole tool retrieval detection means comprises a sensing means which is positioned on the well riser, near the surface valve.
  • the sensing means may be mounted on the outside of the well riser.
  • the sensing means comprises a sensor bracelet which is adapted to removably encircle and grip the well riser.
  • the downhole tool may be labelled by a tool indicator means characterized in some way which can be detected by the sensing means.
  • the indicator means may be adapted to be removably attached to a tool.
  • the indicator means may be adapted to be removably incorporated into a toolstring.
  • the tool indicator means may be incorporated into a tool.
  • the tool indicator means may have distinguishing electromagnetic characteristics and the sensing means be adapted to recognise these characteristics.
  • the tool indicator means may contain a magnet .
  • the tool indicator means may contain a plurality of magnets.
  • the sensing means may be adapted to detect the resulting magnetic field when the tool indicator means passes the sensing means.
  • the sensing means may instead detect the changing magnetic field when the tool indicator means passes the sensor.
  • Figure 1 shows a cross-section through the indicator means and the components to which it is attached
  • Figure 2 shows a well riser and surface valve fitted with a sensor bracelet
  • Figure 3 shows a cross-section through the riser and sensor bracelet along the line A-A of Fig 2;
  • Figure 4 shows a cross-section through the part of the system case where components are stored
  • Figure 5 shows the top of the system case where various indicators are present
  • Figure 6a shows a perspective view of a complete assembly incorporating downhole tool detection apparatus
  • Figure 6b is a perspective view to an enlarged scale of part of the apparatus of Figure 6a.
  • This example embodiment is based on a wireline operation but would apply exactly the same for slickline, electricline and coiled tubing operations.
  • All components of the downhole tool detection means are initially packed in a portable system case which contains both the controls for operation of the device and all other components which are required.
  • an indicator sub 1 On arrival at the site an indicator sub 1 , as shown in Figure 1 , is removed from the system case and removably installed between the rope socket 2 and wireline tool 3 during wireline rig up.
  • the indicator sub has an appropriate adapter 4, enabling it to be removably attached to a wireline tool via a quick latch 5.
  • an adapter 6 and latch 7 As is common practice in the wireline industry, the indicator sub and standard wireline tools incorporate a fishing neck profile 8.
  • the indicator sub contains one or more permanent magnets 9 and is constructed from a material which is either non- magnetic or, if a magnetic material is used, is isolated from the permanent magnet (s).
  • Figure 2 shows a well riser 10 where the wellhead 11 joins the wellhead crossover 12 and wellhead adapter 13.
  • a wireline surface valve 14 is shown in this example.
  • a sensor bracelet 20 is also removed from the case and installed around the neck of the wellhead adapter. Cable 15 is pulled from a reel in the sensor case, safely routed to the wellhead and then attached to the sensor bracelet .
  • FIG. 3 shows a cross section through the wellhead adapter and sensor bracelet 20 along plane A-A.
  • Electromagnetic sensor 21 is adapted to respond to the magnetic field due to the magnet (s) 9 of indicator sub 1 when they pass the sensor. It is incorporated into one or more sensor carrier (s) 22 which is manufactured from stainless steel and has slots through which strap 23 is passed.
  • the sensor bracelet may well incorporate several sensor carriers and sensors, equally spaced around the circumference of the wellhead adapter.
  • the base of the sensor carrier (s), where they sit on the neck of the wellhead adapter, are shaped in such a way as to sit firmly on various diameters of wellhead adapter.
  • Strap 23 is manufactured from flexible strip material such as stainless steel or kevlar. It incorporates a clasp and tightening mechanism which allows the sensor bracelet to be removably secured in position.
  • Figure 4 shows the system case 30 and figure 5 details an indicator panel 31 which is incorporated into the top of the case.
  • the case is constructed of a robust, impact resistant but light-weight material suitable for transportation to offshore working locations and is adapted for rough handling.
  • the case contains customised shaped galleries for storing the indicator sub 32 and the sensor bracelet 33. All loose components are stored within such galleries where they can be firmly secured and strapped in place to avoid the possibility of movement during transport. All equipment which is permanently installed within the case is secured with soft but resilient rubber mounts in such a way as to avoid impact damage. Any necessary hand tools are supplied and stored within the system case and are constructed from chrome vanadium steel.
  • the cable to attach the case to the sensor bracelet is stored on a reel 34.
  • This cable reel has winding handles and rotates on a spindle which incorporates an electrical slip ring so that the cable can be pulled off the reel and electrical continuity will be maintained.
  • the case incorporates an EXD rated battery 35 and a battery charger 36. All electrical and electronic components are EXD rated due to the potentially explosive atmosphere around the wellhead.
  • this device may readily be adapted to automatically stop or slow down the tool lifting gear.
  • This invention it is possible to accurately and reliably determine when a tool is close to the surface valve, without having to rely on the insufficiently accurate depth indicators currently available.
  • This invention will therefore reduce accidents in which retrieved tools are overrun and hit the surface valve, the serious consequences of which were described above. This will not only prevent expensive accidents but may allow tools to be raised faster, reducing the time taken for interventions and so saving money.
  • sensing means may be attached to the outside of the well riser and therefore added or removed quickly and conveniently.
  • the sensing means might also be incorporated in the wellhead adapter itself or another component of the riser.
  • the only significant difference on this embodiment is the addition of a remote visual indicator box 41 which is located in the operators cabin 42.
  • the visual indicator box 41 carried two LED lights. A green light indicates system operational and a red light indicates the alarm activated. The lights are mounted so as to be in the operators line of vision to his other controls and thus avoids the need to glance away to look at the main indicator.
  • the system positively indicates the location of slickline, electricline and coiled tubing tools as they enter and exit the well. It allows operators to retrieve tools into the surface equipment in a controlled manned without having to compensate for depth counter slippage or line/pipe stretch.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention concerne un appareil conçu pour détecter et indiquer la position d'outils de fonds lorsqu'ils pénètrent dans un puits et lorsqu'ils en sortent. Un capteur magnétique (21) monté sur une bague (20) et fixé au col d'une vanne de surface (14) permet d'actionner une alarme dès que des aimants (9) sont détectés sur un raccord indicateur (1) lorsque ce dernier passe à proximité du capteur (21). De cette façon, l'opérateur sait avec précision que le chapelet d'outils a été repéré.
PCT/GB1999/004148 1998-12-09 1999-12-09 Dispositif de detection d'un outil de fonds WO2000034622A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16697/00A AU1669700A (en) 1998-12-09 1999-12-09 Downhole tool detection means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9827059.8 1998-12-09
GBGB9827059.8A GB9827059D0 (en) 1998-12-09 1998-12-09 Downhole tool detection means

Publications (1)

Publication Number Publication Date
WO2000034622A1 true WO2000034622A1 (fr) 2000-06-15

Family

ID=10843895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1999/004148 WO2000034622A1 (fr) 1998-12-09 1999-12-09 Dispositif de detection d'un outil de fonds

Country Status (3)

Country Link
AU (1) AU1669700A (fr)
GB (1) GB9827059D0 (fr)
WO (1) WO2000034622A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439109B2 (en) 2008-05-23 2013-05-14 Schlumberger Technology Corporation System and method for depth measurement and correction during subsea intervention operations
WO2014188203A1 (fr) * 2013-05-22 2014-11-27 Well-Centric Oilfield Services Ltd Appareil et procédé de commande de la position d'un outil dans un passage
EP2935761A4 (fr) * 2013-02-27 2016-12-21 Halliburton Energy Services Inc Appareil et procédés pour surveiller la récupération d'un outil de puits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206810A (en) * 1978-06-20 1980-06-10 Halliburton Company Method and apparatus for indicating the downhole arrival of a well tool
US5014781A (en) * 1989-08-09 1991-05-14 Smith Michael L Tubing collar position sensing apparatus, and associated methods, for use with a snubbing unit
EP0500165A1 (fr) * 1991-02-18 1992-08-26 Pumptech N.V. Système de libération de lanceurs ("darts") pour tête de cémentation ou outil de fond sous-marin pour puits pétroliers
US5666050A (en) * 1995-11-20 1997-09-09 Pes, Inc. Downhole magnetic position sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206810A (en) * 1978-06-20 1980-06-10 Halliburton Company Method and apparatus for indicating the downhole arrival of a well tool
US5014781A (en) * 1989-08-09 1991-05-14 Smith Michael L Tubing collar position sensing apparatus, and associated methods, for use with a snubbing unit
EP0500165A1 (fr) * 1991-02-18 1992-08-26 Pumptech N.V. Système de libération de lanceurs ("darts") pour tête de cémentation ou outil de fond sous-marin pour puits pétroliers
US5666050A (en) * 1995-11-20 1997-09-09 Pes, Inc. Downhole magnetic position sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439109B2 (en) 2008-05-23 2013-05-14 Schlumberger Technology Corporation System and method for depth measurement and correction during subsea intervention operations
EP2935761A4 (fr) * 2013-02-27 2016-12-21 Halliburton Energy Services Inc Appareil et procédés pour surveiller la récupération d'un outil de puits
WO2014188203A1 (fr) * 2013-05-22 2014-11-27 Well-Centric Oilfield Services Ltd Appareil et procédé de commande de la position d'un outil dans un passage

Also Published As

Publication number Publication date
AU1669700A (en) 2000-06-26
GB9827059D0 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US7958715B2 (en) Chain with identification apparatus
US7159654B2 (en) Apparatus identification systems and methods
CA2576298C (fr) Systeme de communication de site de forage
US9784041B2 (en) Drilling rig riser identification apparatus
AU2011223648B2 (en) Tattle-tale apparatus
EP0412535B1 (fr) Dispositif et procédé de la détection de la position d'une manchon de tuyau pour l'usage avec une unité de demarrage
US20050230109A1 (en) Apparatus identification systems and methods
US5014781A (en) Tubing collar position sensing apparatus, and associated methods, for use with a snubbing unit
US8280636B2 (en) Method and system for controlling a well service rig based on load data
EP2715042B1 (fr) Appareil de câble métallique
US4708204A (en) System for determining the free point of pipe stuck in a borehole
US8284074B2 (en) Method of determination of a stuck point in drill pipes by measuring the magnetic permeability of pipes
US5984009A (en) Logging tool retrieval system
US4748563A (en) Have invented certain new and useful improvements in method and apparatus for controlling the lift travel of a mast or derrick
WO2019033183A1 (fr) Système de lancement d'unité autonome pour diagraphie de puits de pétrole et de gaz, procédé de montage et de démontage de ladite unité autonome dans le système, et système de sauvetage
US10323508B2 (en) Apparatus and methods for monitoring the retrieval of a well tool
WO2001020129A2 (fr) Appareil et procedes lies au operations de fond
CA2622717C (fr) Methode et dispositif de communication de signaux a un instrument de puits de forage
WO2000034622A1 (fr) Dispositif de detection d'un outil de fonds
US3978588A (en) Magnetic wire line marking, erasing and detecting method and apparatus
GB2306657A (en) Wellhead tool detector
CN109477380B (zh) 用于检测电缆起下工具的系统、装置和方法
GB2158245A (en) System for determining the free point of pipe stuck in a borehole
US11448019B2 (en) Interlock for a drill rig and method for operating a drill rig
EP0196829A2 (fr) Outil de puits

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: AU

Ref document number: 2000 16697

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase