WO2000033619A1 - Glow discharge starter - Google Patents

Glow discharge starter Download PDF

Info

Publication number
WO2000033619A1
WO2000033619A1 PCT/EP1999/008949 EP9908949W WO0033619A1 WO 2000033619 A1 WO2000033619 A1 WO 2000033619A1 EP 9908949 W EP9908949 W EP 9908949W WO 0033619 A1 WO0033619 A1 WO 0033619A1
Authority
WO
WIPO (PCT)
Prior art keywords
glow discharge
starter
discharge
conductor
discharge starter
Prior art date
Application number
PCT/EP1999/008949
Other languages
French (fr)
Inventor
Anthony Kroes
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to EP99964496A priority Critical patent/EP1086610A1/en
Priority to JP2000586139A priority patent/JP2002531929A/en
Publication of WO2000033619A1 publication Critical patent/WO2000033619A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/06Starting switches thermal only
    • H05B41/08Starting switches thermal only heated by glow discharge

Definitions

  • the invention relates to a glow discharge starter comprising
  • bimetallic element which is conductively connected to one of the electric conductors.
  • a glow discharge starter of this type is known from German patent specification 1254427.
  • the glow discharge starter bridges the discharge lamp and is arranged in series with electrodes of the discharge lamp. Under the influence of a voltage which is present across the discharge lamp and the glow discharge starter, a glow discharge is produced between the electric conductors of the glow discharge starter.
  • This glow discharge heats the bimetallic element connected to one of the electric conductors, which element is deformed under this thermal influence in such a way that it makes contact with the other electric conductor. By establishing this contact, the glow discharge extinguishes and a current flows through the electrodes of the discharge lamp via the electric conductors and the bimetallic element of the glow discharge starter.
  • This current brings the electrodes of the discharge lamp to a temperature at which electron emission occurs to a sufficient extent to hot-ignite the discharge lamp.
  • the bimetallic element of the glow discharge starter cools and is deformed in such a way that the contact between the two electric conductors of the glow discharge starter is interrupted. Due to the interruption of the contact, the current through the electrodes of the lamp is also interrupted, and an inductive element arranged in series with the lamp generates an ignition voltage pulse. If this ignition voltage pulse establishes a discharge between the electrodes of the discharge lamp, the voltage across the discharge lamp and hence the voltage between the electric conductors of the glow discharge starter decreases so strongly that substantially no further glow discharge occurs. However, if the ignition voltage pulse does not establish a discharge between the electrodes of the discharge lamp, the above-described process is repeated.
  • the body comprising an element chosen from the group of lanthanum and the lanthanides is constituted by a layer comprising lanthanum provided on the first electric conductor. Due to the presence of this layer, a glow discharge is established between the two conductors already at a relatively low voltage between these two conductors. For this reason, the known glow discharge starter is suitable for use in situations where the mains voltage has a relatively low amplitude.
  • a drawback of the known glow discharge starter is, however, that it has often proved to be necessary in practice to provide the glow discharge starter with a quantity of radioactive material.
  • a glow discharge is relatively rapidly established after applying a voltage between the two conductors, even if the glow discharge starter has been in a space for a longer time in which only a small quantity of light was present.
  • the radioactive material is dispensed with, there is an unacceptably long t de ⁇ ay , i.e. the time interval between applying the voltage between the two conductors and establishing the glow discharge.
  • the radioactive material solves the problem of a too long t de ⁇ ay in an inexpensive and effective manner, it is increasingly considered to be undesirable to make use of radioactive materials in products, notably in products used at such an enormous scale as is the case for glow discharge starters.
  • a glow discharge starter as described in the opening paragraph is characterized in that the discharge vessel comprises neon and argon in a ratio of 0.001 ⁇ (mol argon)/(mol neon) ⁇ 0.1.
  • a glow discharge starter according to the invention ignites a discharge lamp rapidly and in a reliable manner, even if no radioactive material is present in the discharge vessel of a glow discharge starter according to the invention. It has also been found that the contact voltage between the first and the second electric conductor of the glow discharge starter according to the invention is substantially always higher in practice than the operating voltage of a discharge lamp ignited by the starter. Contact voltage is herein understood to " mean the lowest value of the voltage between the first and the second conductor at which the bimetallic element is deformed in such a way that the two electric conductors make contact. Since the operating voltage of the discharge lamp is substantially always lower than the contact voltage of the glow discharge starter, the electric conductors do not make contact during stationary operation of the discharge lamp so that short-circuit of the discharge lamp is prevented.
  • the body comprising an element from the group of lanthanum and the lanthanides is preferably constituted by a layer comprising lanthanum and covering a part of the first conductor.
  • Such an implementation of the body may be formed in a simple manner by immersing the first conductor in liquid lanthanum. Since the bimetallic element is often not resistant to the temperature of liquid lanthanum, this bimetallic element is conductively connected to the second conductor.
  • the quantity of filling gas present in the discharge vessel decreases during operation. As a result, the amplitude of the ignition voltage increases at a given current through the conductors before the contact between the conductors is interrupted.
  • the ignition time or duration between switching on the voltage between the conductors of the glow discharge starter and the ignition of the discharge lamp increases.
  • the initial filling pressure must be chosen to be such that the amplitude of the ignition voltage at this initial filling pressure is high enough to ignite the discharge lamp, while also the ignition time does not become unacceptably long during use of the glow discharge starter. It has been found that these two conditions are met if the filling pressure * discharge vessel volume is chosen in the range between 7400 and 10,000 Pascal*cm 3 , preferably between 8250 and 9250 Pascal*cm 3 .
  • the part of the wall of the discharge vessel with which the first and the second conductor are in contact is preferably formed from a glass comprising at least 5% by weight of BaO. It has been found that a further decrease of td e i ay is thereby realized. If this glass is also free from lead, it is also realized that the glass is less harmful for the environment than the frequently used lead-containing glass compositions. Such a glass composition is described in, for example, EP-0870318-A1.
  • Fig. 1 shows diagrammatically a glow discharge starter according to the invention.
  • the reference A denotes a discharge vessel which is sealed in a gastight manner and has a wall of glass without lead and a content of approximately 1.65 cm 3 .
  • the pressure of the ionizable medium is 5065 Pascal at room temperature.
  • C and D denote electric conductors passing through a wall of the discharge vessel.
  • the wall is formed in situ by a body G consisting of glass without lead, comprising 8.7% by weight of BaO.
  • the electric conductors consist of a core formed from an NiFe alloy and a cladding of Cu.
  • E denotes a bimetallic element which is conductively connected to one of the electric conductors.
  • the bimetallic element consists of an active side formed from Ni (20%), Fe (74%) and Mn (6%) and a passive side formed from Ni (36%) and Fe (64%).
  • F is a layer formed from lanthanum provided on a part of the conductor D which forms a pole.
  • the glow discharge starter shown in Fig. 1 comprises no radioactive material. Table 1 states the average value t de ⁇ ay (av.) and the maximum value tdeiay(max) of the td e i a y of the glow discharge starter shown in Fig. 1 in seconds as a function of the number of switching times and the amplitude of the alternating voltage with which the discharge lamp, across which the glow discharge starter is arranged, is fed.
  • the glow discharge starter was preserved for several days in surroundings in which the light level was only 0.10 lux.
  • the Table shows that both the average value t de i ay (av.) and the maximum value t de i ay (max) remains relatively low during the first 10,000 lamp switchings.
  • a t de ⁇ ay (max) of more than one second was measured only if the amplitude of the power supply voltage was only 103 V.
  • the amplitude of the ignition voltage during the first 10,000 lamp switchings changed from 1134 V to 1340 V and the ignition time changed from 3.87 to 6.09 sec. These values were measured at a relatively low maximum amplitude of the power supply voltage of approximately 103 V.

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

In a glow discharge starter, a layer of lanthanum (F) is present on one (D) of the conductors (C, D) and the gas filling is a Penning mixture. The glow discharge starter did not contain radioactive material. It was found that the delay time between the application of a voltage between the conductors and establishing a glow discharge remained short during the whole life of the glow discharge starter, even when the starter was kept in a room with a low light level for a prolonged time.

Description

Glow discharge starter.
The invention relates to a glow discharge starter comprising
- a glass discharge vessel sealed in a gastight manner and provided with an ionizable medium,
- a first and a second electric conductor passing through a wall of the discharge vessel, one of the conductors being in contact with a body comprising an element chosen from the group of lanthanum and the lanthanides,
- a bimetallic element which is conductively connected to one of the electric conductors.
A glow discharge starter of this type is known from German patent specification 1254427. During use for igniting a discharge lamp, the glow discharge starter bridges the discharge lamp and is arranged in series with electrodes of the discharge lamp. Under the influence of a voltage which is present across the discharge lamp and the glow discharge starter, a glow discharge is produced between the electric conductors of the glow discharge starter. This glow discharge heats the bimetallic element connected to one of the electric conductors, which element is deformed under this thermal influence in such a way that it makes contact with the other electric conductor. By establishing this contact, the glow discharge extinguishes and a current flows through the electrodes of the discharge lamp via the electric conductors and the bimetallic element of the glow discharge starter. This current brings the electrodes of the discharge lamp to a temperature at which electron emission occurs to a sufficient extent to hot-ignite the discharge lamp. During heating of the electrodes of the discharge lamp, the bimetallic element of the glow discharge starter cools and is deformed in such a way that the contact between the two electric conductors of the glow discharge starter is interrupted. Due to the interruption of the contact, the current through the electrodes of the lamp is also interrupted, and an inductive element arranged in series with the lamp generates an ignition voltage pulse. If this ignition voltage pulse establishes a discharge between the electrodes of the discharge lamp, the voltage across the discharge lamp and hence the voltage between the electric conductors of the glow discharge starter decreases so strongly that substantially no further glow discharge occurs. However, if the ignition voltage pulse does not establish a discharge between the electrodes of the discharge lamp, the above-described process is repeated.
In the known glow discharge starter, the body comprising an element chosen from the group of lanthanum and the lanthanides is constituted by a layer comprising lanthanum provided on the first electric conductor. Due to the presence of this layer, a glow discharge is established between the two conductors already at a relatively low voltage between these two conductors. For this reason, the known glow discharge starter is suitable for use in situations where the mains voltage has a relatively low amplitude. A drawback of the known glow discharge starter is, however, that it has often proved to be necessary in practice to provide the glow discharge starter with a quantity of radioactive material. With the aid of this radioactive material, a glow discharge is relatively rapidly established after applying a voltage between the two conductors, even if the glow discharge starter has been in a space for a longer time in which only a small quantity of light was present. If the radioactive material is dispensed with, there is an unacceptably long tdeιay, i.e. the time interval between applying the voltage between the two conductors and establishing the glow discharge. Although the radioactive material solves the problem of a too long tdeιay in an inexpensive and effective manner, it is increasingly considered to be undesirable to make use of radioactive materials in products, notably in products used at such an enormous scale as is the case for glow discharge starters.
It is an object of the invention to provide a glow discharge starter which does not comprise any radioactive materials and has only a small tdeιav, even after a prolonged stay- in-a-room with a low light level.
According to the invention, a glow discharge starter as described in the opening paragraph is characterized in that the discharge vessel comprises neon and argon in a ratio of 0.001 < (mol argon)/(mol neon) < 0.1.
It has been found that a glow discharge starter according to the invention ignites a discharge lamp rapidly and in a reliable manner, even if no radioactive material is present in the discharge vessel of a glow discharge starter according to the invention. It has also been found that the contact voltage between the first and the second electric conductor of the glow discharge starter according to the invention is substantially always higher in practice than the operating voltage of a discharge lamp ignited by the starter. Contact voltage is herein understood to "mean the lowest value of the voltage between the first and the second conductor at which the bimetallic element is deformed in such a way that the two electric conductors make contact. Since the operating voltage of the discharge lamp is substantially always lower than the contact voltage of the glow discharge starter, the electric conductors do not make contact during stationary operation of the discharge lamp so that short-circuit of the discharge lamp is prevented.
Very good results were found with glow discharge starters according to the invention in which the molar ratio (mol argon )/(mol neon) was in the range between 0.005 and 0.02.
The body comprising an element from the group of lanthanum and the lanthanides is preferably constituted by a layer comprising lanthanum and covering a part of the first conductor. Such an implementation of the body may be formed in a simple manner by immersing the first conductor in liquid lanthanum. Since the bimetallic element is often not resistant to the temperature of liquid lanthanum, this bimetallic element is conductively connected to the second conductor. In a glow discharge starter according to the invention, the quantity of filling gas present in the discharge vessel decreases during operation. As a result, the amplitude of the ignition voltage increases at a given current through the conductors before the contact between the conductors is interrupted. Moreover, due to the decrease of the filling gas, the ignition time or duration between switching on the voltage between the conductors of the glow discharge starter and the ignition of the discharge lamp increases. In practice, this means that the initial filling pressure must be chosen to be such that the amplitude of the ignition voltage at this initial filling pressure is high enough to ignite the discharge lamp, while also the ignition time does not become unacceptably long during use of the glow discharge starter. It has been found that these two conditions are met if the filling pressure * discharge vessel volume is chosen in the range between 7400 and 10,000 Pascal*cm3, preferably between 8250 and 9250 Pascal*cm3.
The part of the wall of the discharge vessel with which the first and the second conductor are in contact is preferably formed from a glass comprising at least 5% by weight of BaO. It has been found that a further decrease of tdeiay is thereby realized. If this glass is also free from lead, it is also realized that the glass is less harmful for the environment than the frequently used lead-containing glass compositions. Such a glass composition is described in, for example, EP-0870318-A1.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter. In the drawing:
Fig. 1 shows diagrammatically a glow discharge starter according to the invention.
In Fig. 1, the reference A denotes a discharge vessel which is sealed in a gastight manner and has a wall of glass without lead and a content of approximately 1.65 cm3. The discharge vessel is filled with an ionizable medium of approximately the following composition: Ar = 1%, Ne = 99%. The pressure of the ionizable medium is 5065 Pascal at room temperature. C and D denote electric conductors passing through a wall of the discharge vessel. The wall is formed in situ by a body G consisting of glass without lead, comprising 8.7% by weight of BaO. The electric conductors consist of a core formed from an NiFe alloy and a cladding of Cu. E denotes a bimetallic element which is conductively connected to one of the electric conductors. The bimetallic element consists of an active side formed from Ni (20%), Fe (74%) and Mn (6%) and a passive side formed from Ni (36%) and Fe (64%). F is a layer formed from lanthanum provided on a part of the conductor D which forms a pole. The glow discharge starter shown in Fig. 1 comprises no radioactive material. Table 1 states the average value tdeιay(av.) and the maximum value tdeiay(max) of the tdeiay of the glow discharge starter shown in Fig. 1 in seconds as a function of the number of switching times and the amplitude of the alternating voltage with which the discharge lamp, across which the glow discharge starter is arranged, is fed. The glow discharge starter was preserved for several days in surroundings in which the light level was only 0.10 lux. The Table shows that both the average value tdeiay(av.) and the maximum value tdeiay(max) remains relatively low during the first 10,000 lamp switchings. A tdeιay(max) of more than one second was measured only if the amplitude of the power supply voltage was only 103 V. For the same glow discharge starter it was found that the amplitude of the ignition voltage during the first 10,000 lamp switchings changed from 1134 V to 1340 V and the ignition time changed from 3.87 to 6.09 sec. These values were measured at a relatively low maximum amplitude of the power supply voltage of approximately 103 V. On this basis, it can be ascertained that both the amplitude of the ignition voltage and the ignition time increase within acceptable limits. TABLE I itude AC voltage 103 Volt 118 Volt tdelay(av.) tdeiay(max) tdelay(av.) tdelay( ax)
?er of lamp switchinj gs
0 0.10 0.10 0.10 0.10
2000 0.11 0.14 0.10 0.10
4000 0.12 0.27 0.12 0.47
6000 0.15 0.61 0.12 0.28
10000 0.20 1.09 0.18 0.71

Claims

CLAIMS:
1. A glow discharge starter comprising
- a glass discharge vessel (A) sealed in a gastight manner and provided with an ionizable medium,
- a first (C) and a second electric conductor (D) passing through a wall of the discharge vessel, one of the conductors being in contact with a body (F) comprising an element chosen from the group of lanthanum and the lanthanides,
- a bimetallic element (E) which is conductively connected to one (C) of the electric conductors, characterized in that the discharge vessel comprises neon and argon in a ratio of 0.001 < (mol argon)/(mol neon) < 0.1.
2. A glow discharge starter as claimed in claim 1, wherein the molar ratio (mol argon )/(mol neon) is in the range between 0.005 and 0.02.
3. A glow discharge starter as claimed in claim 1 or 2, wherein the body comprising an element from the group of lanthanum and the lanthanides is constituted by a layer (F) comprising lanthanum and covering a part of the first conductor, and the bimetallic element is conductively connected to the second conductor.
4. A glow discharge starter as claimed in any one of the preceding claims, wherein the filling pressure * discharge vessel volume is chosen in the range between 7400 and 10,000 Pascal*cm3, preferably between 8250 and 9250 Pascal*cm3.
5. A glow discharge starter as claimed in any one of the preceding claims, wherein the first and the second conductor are in contact with a part (G) of the wall of the discharge vessel which is formed from a glass comprising at least 5% by weight of BaO.
6. A glow discharge starter as claimed in claim 5, wherein the glass, from which the part of the wall of the discharge vessel with which the first and the second conductor are in contact is formed, does not comprise lead.
PCT/EP1999/008949 1998-11-30 1999-11-17 Glow discharge starter WO2000033619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99964496A EP1086610A1 (en) 1998-11-30 1999-11-17 Glow discharge starter
JP2000586139A JP2002531929A (en) 1998-11-30 1999-11-17 Glow discharge starter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP98204043 1998-11-30
EP98204043.8 1998-11-30

Publications (1)

Publication Number Publication Date
WO2000033619A1 true WO2000033619A1 (en) 2000-06-08

Family

ID=8234409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008949 WO2000033619A1 (en) 1998-11-30 1999-11-17 Glow discharge starter

Country Status (5)

Country Link
US (1) US6404128B1 (en)
EP (1) EP1086610A1 (en)
JP (1) JP2002531929A (en)
CN (1) CN100521853C (en)
WO (1) WO2000033619A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089599A2 (en) * 1999-09-30 2001-04-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Glow discharge starter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1210727A1 (en) * 2000-08-08 2002-06-05 Koninklijke Philips Electronics N.V. High-pressure discharge lamp
JP2006127865A (en) * 2004-10-27 2006-05-18 Matsushita Electric Ind Co Ltd Glow starter and its manufacturing method
DE602006010980D1 (en) * 2005-02-28 2010-01-21 Koninkl Philips Electronics Nv LEUCHSCHALTSTARTER, LIGHTING DEVICE AND LIGHTING SYSTEM THEREOF AND USE THEREOF

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1254427B (en) * 1963-02-11 1967-11-16 Philips Nv Process for the production of a lanthanum coating on electrodes for glow lamps or glow generators
DE2737154A1 (en) * 1977-08-17 1979-03-01 Patra Patent Treuhand Igniter in starter for low pressure discharge lamps - where igniter bulb contains inert gases, hydrogen, and radioactive krypton
US4562379A (en) * 1982-06-10 1985-12-31 Tokyo Shibaura Denki Kabushiki Kaisha Glow switch starter having metal oxide deposit
WO1998009317A1 (en) * 1996-08-30 1998-03-05 Philips Electronics N.V. Glowswitch starter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1029146A (en) *
US2376669A (en) * 1944-02-28 1945-05-22 Gen Electric Glow switch for starting discharge devices
US5001391A (en) * 1986-07-30 1991-03-19 Gte Products Corporation Glow discharge starter
US5317232A (en) * 1992-07-17 1994-05-31 Nikolaos Barakitis AC/DC-operable glow discharge starter having two bimetals
US5512799A (en) * 1994-10-25 1996-04-30 John F. Waymouth Intellectual Property And Educational Trust Glowbottle starting device for gaseous discharge devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1254427B (en) * 1963-02-11 1967-11-16 Philips Nv Process for the production of a lanthanum coating on electrodes for glow lamps or glow generators
DE2737154A1 (en) * 1977-08-17 1979-03-01 Patra Patent Treuhand Igniter in starter for low pressure discharge lamps - where igniter bulb contains inert gases, hydrogen, and radioactive krypton
US4562379A (en) * 1982-06-10 1985-12-31 Tokyo Shibaura Denki Kabushiki Kaisha Glow switch starter having metal oxide deposit
WO1998009317A1 (en) * 1996-08-30 1998-03-05 Philips Electronics N.V. Glowswitch starter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089599A2 (en) * 1999-09-30 2001-04-04 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Glow discharge starter
EP1089599A3 (en) * 1999-09-30 2003-10-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Glow discharge starter

Also Published As

Publication number Publication date
CN1289526A (en) 2001-03-28
EP1086610A1 (en) 2001-03-28
US6404128B1 (en) 2002-06-11
CN100521853C (en) 2009-07-29
JP2002531929A (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US4322658A (en) High intensity discharge lamp containing electronic starting aid
WO2000077825A1 (en) Metal halide lamp
US6404128B1 (en) Glow discharge starter
EP0391470B1 (en) Switching device and high-pressure discharge lamp
CA1081307A (en) Electric device provided with a switch which is designed as a discharge tube
US4658184A (en) Method of triggering a high pressure sodium vapor lamp and sodium vapor lamp with improved triggering
EP0196725A1 (en) High-pressure discharge lamp
EP0054271B1 (en) Discharge lamp starting and operating circuit
EP0839437B1 (en) Circuit arrangement
JP4334019B2 (en) Glow switch starter
EP0554925B1 (en) High pressure discharge lamp
EP0061796B1 (en) Electric device comprising at least one low-pressure mercury vapour discharge tube
US4143303A (en) Spark ignition circuits
US5339006A (en) High pressure discharge lamp
JP2002505802A (en) Starter circuit
US5317232A (en) AC/DC-operable glow discharge starter having two bimetals
EP0517304A2 (en) High-pressure gas discharge lamp
US4112334A (en) Ignition system for extending the lifetime of gas filled electric lamps
US4314181A (en) Arc discharge lamp starting device
EP0634884A1 (en) Glow switch starter
US4105929A (en) Shunt triggered flashtube having safety feature
EP0075366A2 (en) High-pressure metal vapour discharge lamp
CA1207015A (en) Discharge lamp starting and operating circuit
RU1781849C (en) Starter for firing of gaseous-discharge lamps
RU2064709C1 (en) Metal-and-halogen lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802538.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999964496

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999964496

Country of ref document: EP