WO2000031583A1 - Second order nonlinear optical material and method for producing second order nonlinear optical device - Google Patents

Second order nonlinear optical material and method for producing second order nonlinear optical device Download PDF

Info

Publication number
WO2000031583A1
WO2000031583A1 PCT/JP1999/006094 JP9906094W WO0031583A1 WO 2000031583 A1 WO2000031583 A1 WO 2000031583A1 JP 9906094 W JP9906094 W JP 9906094W WO 0031583 A1 WO0031583 A1 WO 0031583A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonlinear optical
order nonlinear
thin film
optical
organic dye
Prior art date
Application number
PCT/JP1999/006094
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kitaoka
Jinhai Si
Kazuyuki Hirao
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2000031583A1 publication Critical patent/WO2000031583A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3615Organic materials containing polymers
    • G02F1/3617Organic materials containing polymers having the non-linear optical group in a side chain

Definitions

  • the present invention relates to an optical modulator widely used in the field of communication equipment.
  • a second-order nonlinear optical material containing an organic dye is given a second-order nonlinear optical characteristic by polarizing an organic dye inside the material by electric polling.
  • the temperature is set high for efficient polarization, and the polymerization reaction and densification are performed by the sol-gel method (K. Izawa et al., Jpn. J. Appl. Phys. Vol. 32 (1993) 807) -811)
  • the polarization treatment is performed while increasing the fluidity of the material (Japanese Patent Application Laid-Open No. 10-239720) or irradiating with ultraviolet rays.
  • the orientation direction of the organic dye is unidirectional. Therefore, the phase matching condition important as an optical element for transmitting the second harmonic in a waveguide structure such as an optical modulator or an optical switch is not satisfied due to the difference in chromatic dispersion of the material.
  • the significant attenuation of the second harmonic is due to the relaxation of the polarization structure. That is, a polymer material is generally a material that is liable to change easily due to poor stability against thermal effects of laser light and environmental temperature changes. A dye exhibiting a non-linear effect develops second-order nonlinear optical characteristics by orientation polarization by poling, but the second-order nonlinear optical characteristics deteriorate due to relaxation of the polarization structure. Disclosure of the invention
  • the present invention has been devised to solve such a problem.
  • an oxide formed by a sol-gel method as a matrix, the stability of the polarization structure is improved, It is an object of the present invention to provide an element that exhibits stable second-order nonlinear optical characteristics over a long period of time.
  • the present invention is to cast an organic dye having a second-order nonlinear optical effect or a sol-gel liquid in which a polymer precursor having an organic dye in a side chain and a metal oxide precursor are dispersed on a substrate. It is characterized in that the formed thin film is simultaneously irradiated with light beams of two wavelengths coaxially to perform light polling. Optical polling can be performed on either the heat-treated thin film or the heat-treated thin film.
  • the manufactured second-order nonlinear optical material or second-order nonlinear optical element is composed of an organometallic raw material to which at least one organic functional group that does not hydrolyze or an organometallic raw material to which at least one organic functional group that does not hydrolyze is added
  • Matrix materials have been synthesized using a mixture with an organic metal raw material to which only the organic functional group to be hydrolyzed is coordinated.
  • Figure 1 is a schematic diagram of the equipment used for optical polling.
  • FIG. 2 is a diagram illustrating a process of manufacturing the second harmonic element.
  • Organic dyes exhibiting a second-order nonlinear optical effect are not particularly limited in material, and include para-nitroaline, styryl-pyridin-ma-line, 414'tricyanovinyldimethylamino-diazostilbene, 3 Methyl 4-nitropyridine 1 oxide, 4—4 ′ dimethylaminocyanobiphenyl, dimethylaminophenyl urea, 4-amino 4 ′ nitrodiphenyl sulfide, 4-1 [diethyl (2H Deguchi quichetyl)] Amino 4'nitroazobenzene or the like is used.
  • the polymer precursor having an organic dye in the side chain is not particularly limited, either.
  • the organic dye or the polymer precursor having the organic dye in the side chain is mixed with a metal oxide raw material and a solvent constituting the matrix to prepare a uniform sol-gel solution.
  • the metal oxides used as the matrix are made of precursors such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxy titan, tetrabutoxy zirconium, tetrapropoxy zirconium, and trisecondary butoxy aluminum. Examples include silica, titania, zirconia, and alumina.
  • the sol-gel solution is not particularly limited as a raw material in which an organic functional group that does not cause hydrolysis is added to the side chain of the metal oxide precursor, but is not particularly limited. Methyltriethoxysilane, 3-methacryloxypropyl Trimethoxysilane, phenylethoxysilane, diphenyldimethoxysilane, etc. are added. You.
  • Raw materials such as organic dyes, polymer precursors having organic dyes in the side chain, and metal oxide precursors are dispersed in solvents such as lower alcohols such as ethanol, isopropanol, and 2-methoxyphenol, and acetic acid.
  • solvents such as lower alcohols such as ethanol, isopropanol, and 2-methoxyphenol, and acetic acid.
  • a stabilizer such as diethanolamine, monoethanolamine, dimethylformamide, etc. can be used in addition to the alcoholic solvent.
  • Stabilizers not only stabilize the metal oxide precursor against hydrolysis, but also coordinate with the organic precursor and the polymer precursor having an organic dye in the side chain to improve dispersibility.
  • the stabilizer is usually added in a proportion of 0.01 to 20 mol%, preferably 1 to 18 mol%.
  • the amount of water or acid to be introduced into the sol is appropriately adjusted depending on the type of the precursor so that the hydrolysis of the metal oxide precursor proceeds to some extent before the film formation.
  • precursors with a high rate of hydrolysis reaction do not require the introduction of water or acid, because they are hydrolyzed by atmospheric moisture even if they are left indoors after film formation.
  • hydrolysis is promoted by adding an appropriate amount of water or acid.
  • the sol-gel liquid containing various raw materials is cast into a thin film on a heat-resistant substrate and gelled.
  • the heat-resistant substrate include quartz glass. Glass substrates such as non-alkali glass, glass substrates coated with transparent electrodes such as ITO, and silicon substrates. Spin coating, immersion, spraying, etc. are used.
  • the sol-gel solution is cast by the method.
  • the coating thickness of the sol cast on the substrate is not particularly limited, but is generally adjusted to 100 to 100 nm, preferably to 100 to 500 nm. You.
  • a gel film is formed from the sol cast on the substrate, it is placed in an oven and heat-treated at 80 to 300 ° C, preferably 130 to 220 ° C.
  • 80 to 300 ° C preferably 130 to 220 ° C.
  • light poling is performed at the same time. You can also.
  • the thin film sample S is housed in an oven 1 that can transmit a laser beam and can control the temperature, and lenses 2 and 3 are placed before and after the oven 1.
  • the polling laser beam has a pulse width on the order of nanoseconds to femtoseconds, and is emitted from the laser oscillator 11.
  • the laser beam passes through the lens 12 and is split by the beam splitter 13.
  • the light transmitted through the shutter 14, the second-order nonlinear optical crystal 15, the fundamental wave power filter 16, the mirror 17, the polarization rotator 18, and the light simply reflected by the mirror 19 are Are combined by a dichroic mirror 20, then irradiate a thin film sample S in an oven 1, and enter a light intensity detector 23 via a fundamental wave power filter 21 and a shirt filter 22.
  • the angles and distances of the respective optical systems are adjusted so that the fundamental wave having the same polarization direction and its second harmonic are simultaneously and coaxially incident.
  • the laser beam may be incident on the thin film sample S in any thickness direction or in any direction that guides the light in the plane of the thin film sample S.
  • one of the simultaneously incident laser beams is twice as long as the other, interference results in a polarization structure that satisfies the phase matching condition in the thin film sample S due to the two beams. .
  • an SHG element that generates a second harmonic by making a long-wavelength laser beam incident is produced.
  • Matrix made from inorganic compounds is strong and can maintain the polarized structure for a long time.
  • the organic functional group remains in the matrix after hydrolysis and heat treatment.
  • the resulting matrix has a three-dimensional structure due to the organic functional group, which suppresses the generation of fine bubbles as compared to a matrix composed of only an inorganic material, and makes the film structure itself dense.
  • pulsed lasers are used for optical poling, but dye energy sublimation can be a problem depending on the energy of the pulsed laser. In such a case, The effective film structure effectively suppresses the sublimation of the dye.
  • Example 1 Although the dye is liable to change with time slightly as compared with a matrix containing only an inorganic compound, a large second-order nonlinear optical effect is obtained because the dye is easily polarized.
  • Example 1 the present invention will be described more specifically with reference to examples.
  • a sol-gel solution containing each component at a ratio of 05: 1. 18: 6 was prepared as follows. First, tetraethoxysilane and dimethylformamide are added to half the amount of ethanol, and the mixture is stirred. Further, 41- [N-ethyl N (2-hydroxyethyl)] amino 4'-nitroazobenzene is added, and the mixture is stirred. A solution was prepared. Separately from the solution, the remaining ethanolamine, hydrochloric acid and water were mixed to prepare a solution. The solution B was added dropwise to the solution to prepare a sol-gel solution.
  • the sol-gel solution was stirred for 1 hour, it was applied to a non-alkali glass substrate at 2,000 rpm by spin coating. Immediately after the application, it was placed in an oven and dried at 150 ° C for 5 minutes. Coating and drying were repeated twice, and finally a gel film was prepared by drying for 20 minutes.
  • the obtained gel film was subjected to optical poling during a heat treatment at 230 ° C. for 10 minutes using a polling apparatus shown in FIG.
  • a 50 mJ, 50 Hz Nd: YAG laser with a pulse time of 3 to 3.5 nanoseconds was used for optical polling.
  • the laser intensity was set to 0.23 W as the light intensity of the fundamental wave before focusing.
  • the thin film that had been optically poled at 230 ° C was cooled to room temperature and irradiated with 1064 nm light of the fundamental wave used for optical poling to evaluate the success or failure of optical polling.
  • the second harmonic of 532 ⁇ m was detected.
  • the intensity of the second harmonic is such that the second-order nonlinear optical constant Xeff for quartz is about 1.5, and the pulse of 1064 nm The signal intensity did not degrade even after irradiation with the laser for more than 30,000 shots.
  • a sol-gel solution containing each component at a ratio of 6 was prepared as follows. First, tetraethoxysilane and dimethylformamide are added to half the amount of ethanol, and the mixture is stirred. Further, 4- [Nethyl N (2hydroxyshethyl)] amino 4'nitroazobenzene is added, and the mixture is stirred. was prepared solution a 2 were uniformly dispersed. Apart from the solution A 2, it was prepared a solution B 2 were mixed remaining Etanoruami down and hydrochloric acid, water. The solution B 2 dropwise mixed Zoruge Le solution was prepared in solution A 2.
  • the sol-gel solution was stirred for 1 hour, the solution was applied to an alkali-free glass substrate at 2,000 rpm by spin coating. Immediately after the application, it was placed in an oven and heat-treated at 210 ° C for 20 minutes to produce a dye-dispersed phenyl group-silicone composite thin film.
  • the obtained thin film was subjected to optical polling using a laser beam of 1064 nm and 532 ⁇ m in the same manner as in Example 1.
  • the laser intensity was set to 0.22 W as the light intensity of the fundamental wave before focusing.
  • Optical polling was performed separately from the heat treatment.
  • Example 2 While heating the obtained thin film at 230 ° C. for 10 minutes, it was subjected to optical polling using laser beams of 1064 nm and 532 nm in the same manner as in Example 1.
  • the laser intensity was set to 0.22 W, which is the light intensity of the fundamental wave before focusing.
  • a sol-gel solution containing each component at a ratio of 6 was prepared as follows. First, ⁇ seton half volume by adding N [3 (Application Benefits triethoxysilyl) propyl] 2, 4 Gini Torofueniruami emissions and Te tiger silane stirred to prepare a solution A 4. Apart from the solution A 4, it was prepared a solution B 4 was mixed remaining acetone and hydrochloric acid, water. Solution B 4 was added dropwise to Solution A 4 to prepare a sol-gel solution.
  • the sol-gel solution was stirred for 10 minutes, the solution was applied to a glass substrate without spinning at 2000 rpm by spin coating. Immediately after the application, it was placed in an oven and dried at 130 ° C for 5 minutes to produce a gel film. While heating the obtained thin film at 230 ° C. for 10 minutes, it was subjected to optical polling using laser beams of 1064 nm and 532 nm in the same manner as in Example 1. The laser intensity was set to 0.22 W, which is the light intensity of the fundamental wave before focusing.
  • a second harmonic element was manufactured using the thin film provided on the substrate.
  • a gel film b provided on a glass substrate a without any force in Example 2 was used.
  • the polyimide film d is further spin-coated on the surface on which the waveguide has been formed, and is formed at 150 °.
  • C was thermally cured, and both end surfaces of the waveguide were polished.
  • Two luminous fluxes 6 of 800 nm and 400111 ⁇ were incident from the end face of the waveguide, and were subjected to optical poling to produce a second harmonic element ⁇ .
  • a sol-gel solution containing a non-linear optical organic dye is cast on a support such as a substrate to produce a gel film in which the non-linear optical organic dye is dispersed.
  • a second-order nonlinear optical material can be obtained.
  • the thin film formed by the sol-gel method is a second-order nonlinear optical material with stable performance because the polarization state of the organic dye is fixed stably over a long period of time.
  • a nonlinear optical element such as a second harmonic element is manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

An organic dye having a second order nonlinear optical effect or a polymer precursor having a side chain of an organic dye and a zol-gel liquid in which a metallic oxide precursor is dispersed are cast on a substrate to form a thin film. The thin film is irradiated with lights of different wavelengths coaxial at one time to conduct optical poling of a thin film under heat treatment or after treatment. The polarization of the organic dye is stably maintained over a long period of time, thereby providing a second order linear optical device preferable to, for example, an optical modulator and an optical switch.

Description

明細書  Specification
二次非線形光学材料及び二次非線形光学素子の製造方法 技術分野 Method of manufacturing secondary nonlinear optical material and secondary nonlinear optical element
本発明は、 通信機器の分野で汎用されている光変調器. 光スイ ツ チを始めとして広範な分野で使用される二次非線形光学材料, 二次 非線形光学素子を製造する方法に関する。 冃景技術  The present invention relates to an optical modulator widely used in the field of communication equipment. A second-order nonlinear optical material and a method for manufacturing a second-order nonlinear optical element used in a wide range of fields including an optical switch. Landscape technology
有機色素を含む二次非線形光学材料は、 一般に電気ポーリ ングで 材料内部の有機色素を分極することにより二次非線形光学特性が付 与されている。 効率的な分極のためには温度を高く設定し、 ゾルー ゲル法であれば重合反応及び緻密化を行い (K. Izawa et al., Jpn. J. Appl. Phys. Vol.32 (1993) 807-811) 、 ポリマー材料であれば 材料の流動性を高めながら (特開平 1 0— 2 3 9 7 2 0号公報) 、 或いは紫外線を照射しながら分極処理している。  In general, a second-order nonlinear optical material containing an organic dye is given a second-order nonlinear optical characteristic by polarizing an organic dye inside the material by electric polling. The temperature is set high for efficient polarization, and the polymerization reaction and densification are performed by the sol-gel method (K. Izawa et al., Jpn. J. Appl. Phys. Vol. 32 (1993) 807) -811) In the case of a polymer material, the polarization treatment is performed while increasing the fluidity of the material (Japanese Patent Application Laid-Open No. 10-239720) or irradiating with ultraviolet rays.
電気ポーリ ングでは、 有機色素の配向方向が一方向になる。 その ため、 光変調器, 光スィ ッチ等の導波路構造において第二次高調波 を伝播させる光素子として重要な位相整合条件は、 材料の波長分散 の違いから満足されない。  In electrical polling, the orientation direction of the organic dye is unidirectional. Therefore, the phase matching condition important as an optical element for transmitting the second harmonic in a waveguide structure such as an optical modulator or an optical switch is not satisfied due to the difference in chromatic dispersion of the material.
二次非線形光学効果をもつ有機色素含有有機材料の位相整合条件が満足 される手段としては、 光ポーリングによる分極処理が報告されている (J. Si et al" Appl. Phys. Let., Vol72, 7 (1998) 762-764)。この方法では、 数ピコ秒 (p s ) から数ナノ秒 (n s ) のパルスレーザを用い、 基本波及 びその 2倍高調波を同軸上で偏光方向を一致させた状態で材料に照射して いる。 電気ポーリングの場合と同様に、 温度を上げながらポーリングする とき分極効率が高くなる。  As a means for satisfying the phase matching condition of an organic dye-containing organic material having a second-order nonlinear optical effect, polarization processing by optical poling has been reported (J. Si et al "Appl. Phys. Let., Vol. 72, Vol. 7 (1998) 762-764) In this method, a pulse laser of several picoseconds (ps) to several nanoseconds (ns) is used, and the fundamental wave and its second harmonic are polarized on the same axis. As in the case of electric poling, polarization efficiency increases when poling while increasing the temperature.
しかし、 ポリマー材料では、 分極構造の長期安定性に乏しく、 分極構造 の緩和によって二次非線形光学特性が劣化してしまう。 具体的には、 T. Goodson III et al., J. Appl. Phys., 80 (12), 6602-6609 (1996)に報告され ているように、 4一 [Nェチル N ( 2ヒ ドロキシェチル) ] ァミノ 4 ' 二 トロアゾベンゼンをポリメチルメタクリ レートに分散した材料では、 光ポ ーリングで分極されることにより発生する第 2高調波の強度が Y A Gレー ザの約 3 0 0 0 0ショッ トでほぼゼロになってしまう。 However, in polymer materials, the long-term stability of the polarization structure is poor, and the second-order nonlinear optical characteristics are degraded by the relaxation of the polarization structure. Specifically, T. As reported in Goodson III et al., J. Appl. Phys., 80 (12), 6602-6609 (1996), 4- [N-ethyl N (2-hydroxyxethyl)] amino 4'2-troazobenzene In a material in which is dispersed in polymethyl methacrylate, the intensity of the second harmonic generated by polarization by optical polling becomes almost zero at about 300,000 shots of the YAG laser.
第 2高調波の著しい減衰は、 分極構造の緩和に起因するものである。 す なわち、 ポリマー材料は、 一般的にレーザ光による熱的影響や環境の温度 変化に対する安定性が乏しいため、 緩和変化しやすい材料である。 非線形 効果を呈する色素は、 ポーリング処理による配向分極化で二次非線形光学 特性を発現するが、 分極構造の緩和によって二次非線形光学特性が劣化す る。 発明の開示  The significant attenuation of the second harmonic is due to the relaxation of the polarization structure. That is, a polymer material is generally a material that is liable to change easily due to poor stability against thermal effects of laser light and environmental temperature changes. A dye exhibiting a non-linear effect develops second-order nonlinear optical characteristics by orientation polarization by poling, but the second-order nonlinear optical characteristics deteriorate due to relaxation of the polarization structure. Disclosure of the invention
本発明は、 このような問題を解消すべく案出されたものであり、 ゾルーゲル法で成膜された酸化物をマ ト リ ックスとして使用するこ とにより、 分極構造の安定性を改善し、 長期間にわたって安定した 二次非線形光学特性を示す素子を提供することを目的とする。  The present invention has been devised to solve such a problem. By using an oxide formed by a sol-gel method as a matrix, the stability of the polarization structure is improved, It is an object of the present invention to provide an element that exhibits stable second-order nonlinear optical characteristics over a long period of time.
本発明は、 その目的を達成するため、 二次非線形光学効果をもつ 有機色素又は有機色素を側鎖にもつポリマー前躯体及び金属酸化物 前躯体を分散させたゾルーゲル液を基板上に流延し、 成膜した薄膜 に二つの波長の光束を同軸で同時に照射させて光ポーリ ングするこ とを特徴とする。 光ポ一リ ングは、 熱処理中の薄膜又は熱処理され た薄膜に何れに対しても実施できる。  In order to achieve the object, the present invention is to cast an organic dye having a second-order nonlinear optical effect or a sol-gel liquid in which a polymer precursor having an organic dye in a side chain and a metal oxide precursor are dispersed on a substrate. It is characterized in that the formed thin film is simultaneously irradiated with light beams of two wavelengths coaxially to perform light polling. Optical polling can be performed on either the heat-treated thin film or the heat-treated thin film.
製造された二次非線形光学材料又は二次非線形光学素子は、 加水 分解しない有機官能基が一つ以上付加された有機金属原料又は加水 分解しない有機官能基が一つ以上付加された有機金属原料と加水分 解する有機官能基のみを配位した有機金属原料との混合物でマ ト リ ックス材料が合成されている。 図面の簡単な説明 The manufactured second-order nonlinear optical material or second-order nonlinear optical element is composed of an organometallic raw material to which at least one organic functional group that does not hydrolyze or an organometallic raw material to which at least one organic functional group that does not hydrolyze is added Matrix materials have been synthesized using a mixture with an organic metal raw material to which only the organic functional group to be hydrolyzed is coordinated. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 光ポ一リングに使用される装置の概略図である。  Figure 1 is a schematic diagram of the equipment used for optical polling.
図 2は、 第 2高調波素子の作製工程を示すフ α—図である。 発明を実施するための最良の形態  FIG. 2 is a diagram illustrating a process of manufacturing the second harmonic element. BEST MODE FOR CARRYING OUT THE INVENTION
二次非線形光学効果を示す有機色素としては、 特に材質に制約を 受けるものではなく、 パラ二トロア二リン. スチリルピリジゥムァ 二リ ン, 4一 4 ' ト リ シアノ ビ二ルジメチルァミ ノジァゾスチルベ ン, 3メチル 4ニ ト ロピリ ジン 1 ォキシ ド, 4— 4 ' ジメチルアミ ノ シァノ ビフ エニール, ジメチルァミ ノフ エニルゥ レア, 4一アミ ノ 4 ' ニ ト ロジフ エ二ルサルフ ァイ ド, 4一 [ Νェチル Ν ( 2 ヒ ド 口キシェチル) ] ァミノ 4 ' ニ トロァゾベンゼン等が使用される。 有機色素を側鎖にもつポリマー前躯体も、 特に制約されるもので はなく、 Ν [ 3 (ト リエ トキシシリル) プロピル] 2 , 4ジニ ト ロ フ エニルァミ ン, 3 ( 4フオルミルフエノキシ) プロピル ト リ エ ト キシシラン, 二次非線形光学色素が側鎖に付加されたメタクリル酸, 二次非線形光学色素が側鎖に付加されたポリアミ ド酸等が挙げられ る  Organic dyes exhibiting a second-order nonlinear optical effect are not particularly limited in material, and include para-nitroaline, styryl-pyridin-ma-line, 414'tricyanovinyldimethylamino-diazostilbene, 3 Methyl 4-nitropyridine 1 oxide, 4—4 ′ dimethylaminocyanobiphenyl, dimethylaminophenyl urea, 4-amino 4 ′ nitrodiphenyl sulfide, 4-1 [diethyl (2H Deguchi quichetyl)] Amino 4'nitroazobenzene or the like is used. The polymer precursor having an organic dye in the side chain is not particularly limited, either. [3 (triethoxysilyl) propyl] 2,4 dinitrophenylamine, 3 (4formylphenoxy) Examples include propyl triethoxysilane, methacrylic acid having a second-order nonlinear optical dye added to a side chain, and polyamic acid having a second-order nonlinear optical dye added to a side chain.
有機色素又は有機色素を側鎖にもつポリマー前躯体は、 マ ト リ ツ クスを構成する金属酸化物原料と溶媒に混合され、 均一なゾルーゲ ル液に調製される。 マ ト リ ックスとなる金属酸化物には、 テ トラメ トキシシラン, テ トラエ トキシシラン, テ ト ライ ソプロポキシチタ ン, テ ト ラブトキシジルコニウム, テ トラプロポキシジルコニウム, ト リセカンダリブトキシアルミニウム等を前躯体とするシリカ, チ タニア, ジルコニァ, アルミナ等がある。 ゾルーゲル液には、 金属 酸化物前躯体の側鎖に加水分解を起こさない有機官能基を付加した 原料として、 特に限定されるものではないが、 メチルト リエトキシ シラン, 3メ タ ク リルォキシプロビル ト リ メ トキシシラン, フ エ二 ルト リエトキシシラン, ジフエ二ルジメ トキシシラン等が添加され る。 The organic dye or the polymer precursor having the organic dye in the side chain is mixed with a metal oxide raw material and a solvent constituting the matrix to prepare a uniform sol-gel solution. The metal oxides used as the matrix are made of precursors such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxy titan, tetrabutoxy zirconium, tetrapropoxy zirconium, and trisecondary butoxy aluminum. Examples include silica, titania, zirconia, and alumina. The sol-gel solution is not particularly limited as a raw material in which an organic functional group that does not cause hydrolysis is added to the side chain of the metal oxide precursor, but is not particularly limited. Methyltriethoxysilane, 3-methacryloxypropyl Trimethoxysilane, phenylethoxysilane, diphenyldimethoxysilane, etc. are added. You.
有機色素, 有機色素を側鎖にもつポリマ一前躯体, 金属酸化物前 躯体等の原料は、 エタノール, イソプロパノール, 2メ トキシェ夕 ノール等の低級アルコールゃァセトン, 酢酸等の溶媒に分散させる。 金属酸化物前躯体が加水分解に対して不安定な場合、 アルコール 系の溶媒の外にジエタ ノールァミ ン, モノエタノールァミ ン, ジメ チルフオルムアミ ド等の安定化剤を使用できる。 安定化剤は、 金属 酸化物前躯体を加水分解に対して安定化させるだけでなく、 有機色 素及び有機色素を側鎖にもつポリマ一前躯体にも配位して分散性を 改善する。 安定化剤は、 通常 0 . 0 1 〜 2 0モル%, 好ましくは 1 〜 1 8モル%の割合で添加される。  Raw materials such as organic dyes, polymer precursors having organic dyes in the side chain, and metal oxide precursors are dispersed in solvents such as lower alcohols such as ethanol, isopropanol, and 2-methoxyphenol, and acetic acid. When the metal oxide precursor is unstable to hydrolysis, a stabilizer such as diethanolamine, monoethanolamine, dimethylformamide, etc. can be used in addition to the alcoholic solvent. Stabilizers not only stabilize the metal oxide precursor against hydrolysis, but also coordinate with the organic precursor and the polymer precursor having an organic dye in the side chain to improve dispersibility. The stabilizer is usually added in a proportion of 0.01 to 20 mol%, preferably 1 to 18 mol%.
ゾルーゲル液には、 成膜の前段階で金属酸化物前躯体の加水分解 をある程度進行させるため、 前躯体の種類によってはゾルに導入す る水や酸の量を適宜調整する。 具体的には、 加水分解の反応速度が 速い前躯体では成膜後に室内に放置するだけでも大気中の水分で加 水分解するため特に水や酸の導入を要しないが、 反応速度の遅い前 躯体にあっては適量の水又は酸の添加によつて加水分解を促進させ る。  In the sol-gel solution, the amount of water or acid to be introduced into the sol is appropriately adjusted depending on the type of the precursor so that the hydrolysis of the metal oxide precursor proceeds to some extent before the film formation. Specifically, precursors with a high rate of hydrolysis reaction do not require the introduction of water or acid, because they are hydrolyzed by atmospheric moisture even if they are left indoors after film formation. For the building, hydrolysis is promoted by adding an appropriate amount of water or acid.
各種原料が配合されたゾルーゲル液は、 耐熱性基板の上で薄膜状 に流延され、 ゲル化される。 耐熱性基板と しては、 石英ガラス. 無 アルカ リガラス等のガラス基板, I T O等の透明電極をコーティ ン グしたガラス基板, シリ コン基板等が使用され、 スピンコーテ ィ ン グ, 浸漬, スプレー等の方法によってゾルーゲル液を流延させる。 基板に流延したゾルの塗布厚みは特に制約されるものではないが、 一般的には 1 0 0〜 1 0 0 0 0 n m , 好ましくは 1 0 0〜 5 0 0 η mの範囲に調整される。  The sol-gel liquid containing various raw materials is cast into a thin film on a heat-resistant substrate and gelled. Examples of the heat-resistant substrate include quartz glass. Glass substrates such as non-alkali glass, glass substrates coated with transparent electrodes such as ITO, and silicon substrates. Spin coating, immersion, spraying, etc. are used. The sol-gel solution is cast by the method. The coating thickness of the sol cast on the substrate is not particularly limited, but is generally adjusted to 100 to 100 nm, preferably to 100 to 500 nm. You.
基板上に流延したゾルからゲル膜が形成された後、 オーブンに入 れて 8 0〜 3 0 0 °C, 好ましくは 1 3 0〜 2 2 0 °Cで熱処理する。 熱処理によつて基板に薄膜が定着するとき、 同時に光ポーリングす ることもできる。 After a gel film is formed from the sol cast on the substrate, it is placed in an oven and heat-treated at 80 to 300 ° C, preferably 130 to 220 ° C. When the thin film is fixed on the substrate by heat treatment, light poling is performed at the same time. You can also.
具体的には、 図 1 に示すようにレーザビームが透過でき温度調節 可能なオーブン 1 に薄膜試料 Sを収容し、 オーブン 1 の前後にレン ズ 2, 3を配置する。  Specifically, as shown in Fig. 1, the thin film sample S is housed in an oven 1 that can transmit a laser beam and can control the temperature, and lenses 2 and 3 are placed before and after the oven 1.
ポーリ ング用のレーザビームは、 パルス幅がナノ秒オーダ〜フエ ム ト秒オーダであり、 レーザ発振器 1 1から出射される。 レーザビ —ムは、 レンズ 1 2を透過してビームスプリ ッ夕 1 3で分割される。 そして、 シャ ツタ 1 4 , 二次非線形光学結晶 1 5 , 基本波力ッ トフ ィルタ 1 6 , ミ ラー 1 7 , 偏光回転装置 1 8を透過した光と、 単純 にミラー 1 9で反射した光とをダイクロミ ックミラー 2 0で合流さ せた後、 オーブン 1内の薄膜試料 Sに照射され、 基本波力ッ ト フィ ルタ 2 1 , シャツタ 2 2を経て光強度検出器 2 3に入射される。 各光学系の角度及び距離は、 偏光方向が揃った基本波及びその第 2高調波が同時に同軸で入射されるように調整される。 レーザビー ムは、 薄膜試料 Sに対して厚さ方向に、 或いは薄膜試料 Sの面内を 導波させる何れの方式で入射させても良い。 同時入射する レーザビ ームのうち、 一方の波長が他方の波長の 2倍である場合には干渉の 結果、 二つのビームによって薄膜試料 S中に位相整合条件を満足す る分極構造が誘起される。 これにより、 長い波長のレーザビームを 入射させることにより、 その第 2高調波が発生する S H G素子が作 製される。  The polling laser beam has a pulse width on the order of nanoseconds to femtoseconds, and is emitted from the laser oscillator 11. The laser beam passes through the lens 12 and is split by the beam splitter 13. Then, the light transmitted through the shutter 14, the second-order nonlinear optical crystal 15, the fundamental wave power filter 16, the mirror 17, the polarization rotator 18, and the light simply reflected by the mirror 19 are Are combined by a dichroic mirror 20, then irradiate a thin film sample S in an oven 1, and enter a light intensity detector 23 via a fundamental wave power filter 21 and a shirt filter 22. The angles and distances of the respective optical systems are adjusted so that the fundamental wave having the same polarization direction and its second harmonic are simultaneously and coaxially incident. The laser beam may be incident on the thin film sample S in any thickness direction or in any direction that guides the light in the plane of the thin film sample S. When one of the simultaneously incident laser beams is twice as long as the other, interference results in a polarization structure that satisfies the phase matching condition in the thin film sample S due to the two beams. . As a result, an SHG element that generates a second harmonic by making a long-wavelength laser beam incident is produced.
無機化合物から作られたマ ト リ ックスは、 強固で長期にわたって 分極構造を保持できる。 他方、 側鎖に有機官能基を付加した原料を 使用すると、 加水分解及び熱処理後のマ ト リ ックス中に有機官能基 が残留する。 得られるマ ト リ ッ クスは、 有機官能基に起因した立体 的な構造により、 無機材料のみのマ ト リ ックスに比較して微細気泡 の生成が抑制され、 膜構造自体が緻密になる。 光ポーリングには一 般にパルスレーザが使用されるが、 パルス レーザのエネルギによつ て色素の昇華が問題となることがある。 このような場合には、 緻密 な膜構造が色素の昇華を効果的に抑制する。 また、 無機化合物のみ のマ ト リ ッ クスに比較して僅かに経時変化しやすいものの、 色素が 分極されやすいことから大きな二次非線形光学効果が得られる。 以下、 実施例によって本発明をより具体的に説明する。 実施例 1 : Matrix made from inorganic compounds is strong and can maintain the polarized structure for a long time. On the other hand, when a raw material having an organic functional group added to the side chain is used, the organic functional group remains in the matrix after hydrolysis and heat treatment. The resulting matrix has a three-dimensional structure due to the organic functional group, which suppresses the generation of fine bubbles as compared to a matrix composed of only an inorganic material, and makes the film structure itself dense. In general, pulsed lasers are used for optical poling, but dye energy sublimation can be a problem depending on the energy of the pulsed laser. In such a case, The effective film structure effectively suppresses the sublimation of the dye. In addition, although the dye is liable to change with time slightly as compared with a matrix containing only an inorganic compound, a large second-order nonlinear optical effect is obtained because the dye is easily polarized. Hereinafter, the present invention will be described more specifically with reference to examples. Example 1:
モル比でエタ ノール : テ ト ラエ トキシシラン : ジメチルホルムァ ミ ド : 4 _ [Nェチル N ( 2ヒ ドロキシシェチル) ] ァミ ノ 4 ' 二 トロアゾベンゼン : 塩酸 : 水 = 4 : 1 : 2 : 0. 05 : 1. 1 8 : 6の割合で各成分を含むゾルーゲル液を次のように調製した。 先ず、 半分の量のエタノールにテ トラエ トキシシラン及びジメチルホルム モアミ ドを加えて攪拌し、 更に 4一 [Nェチル N (2ヒ ドロキシェ チル) ] ァミ ノ 4' ニ トロァゾベンゼンを加えて攪拌し、 均一に分 散させた溶液 を用意した。 溶液 とは別に、 残りのエタノール ァミ ンと塩酸, 水を混合して溶液 を用意した。 溶液 に溶液 B ,を滴下混合しゾル—ゲル液を調製した。  Ethanol: tetraethoxysilane: dimethylformamide: 4 _ [N-ethyl N (2 hydroxyshethyl)] amino 4 'nitroazobenzene: hydrochloric acid: water = 4: 1: 2: 0 in molar ratio. A sol-gel solution containing each component at a ratio of 05: 1. 18: 6 was prepared as follows. First, tetraethoxysilane and dimethylformamide are added to half the amount of ethanol, and the mixture is stirred. Further, 41- [N-ethyl N (2-hydroxyethyl)] amino 4'-nitroazobenzene is added, and the mixture is stirred. A solution was prepared. Separately from the solution, the remaining ethanolamine, hydrochloric acid and water were mixed to prepare a solution. The solution B was added dropwise to the solution to prepare a sol-gel solution.
ゾル一ゲル液を 1時間攪拌した後、 スピンコーティ ングにより 2 000 r p mで無アルカリガラス基板に塗布した。 塗布後、 直ちに オーブンに入れ、 1 50 °Cで 5分間乾燥させた。 塗布及び乾燥を 2 回繰り返し、 最終的に 20分間の乾燥によってゲル膜を作製した。 得られたゲル膜を、 図 1に示すポーリ ング装置によつて 230°C X 1 0分間の熱処理中に光ポーリングした。 光ポーリ ングには、 1 パルス当りの時間が 3〜 3. 5ナノ秒で 50mJ , 50 H zの N d : YAGレーザを使用した。 レーザの強度は、 集光前の基本波の光強 度で 0. 23Wに設定した。 230 °Cで光ポーリ ングした薄膜を室 温まで冷却し、 光ポーリ ングの成否を評価するため光ポーリングに 用いた基本波の 1 064 nmの光を照射した。 その結果、 532 η mの第 2高調波が検出された。 第 2高調波の強度は、 水晶に対する 二次非線形光学定数 Xeffが約 1. 5であり、 1 064 nmのパルス レーザを 30000ショ ッ ト以上照射した後でも信号強度の劣化は なかった。 実施例 2 : After the sol-gel solution was stirred for 1 hour, it was applied to a non-alkali glass substrate at 2,000 rpm by spin coating. Immediately after the application, it was placed in an oven and dried at 150 ° C for 5 minutes. Coating and drying were repeated twice, and finally a gel film was prepared by drying for 20 minutes. The obtained gel film was subjected to optical poling during a heat treatment at 230 ° C. for 10 minutes using a polling apparatus shown in FIG. A 50 mJ, 50 Hz Nd: YAG laser with a pulse time of 3 to 3.5 nanoseconds was used for optical polling. The laser intensity was set to 0.23 W as the light intensity of the fundamental wave before focusing. The thin film that had been optically poled at 230 ° C was cooled to room temperature and irradiated with 1064 nm light of the fundamental wave used for optical poling to evaluate the success or failure of optical polling. As a result, the second harmonic of 532 ηm was detected. The intensity of the second harmonic is such that the second-order nonlinear optical constant Xeff for quartz is about 1.5, and the pulse of 1064 nm The signal intensity did not degrade even after irradiation with the laser for more than 30,000 shots. Example 2:
モル比でエタ ノール : テ ト ラエ トキシシラン : ジフエ二ルジメ ト キシシラン : ジメチルホルムアミ ド : 4— [ Nェチル N ( 2ヒ ドロ キシェチル) ] ァミ ノ 4 ' ニトロァゾベンゼン :塩酸:水 = 4 : 0. 95 : 0. 05 : 2 : 0. 05 : 1. 1 8 : 6の割合で各成分を含 むゾルーゲル液を次のように調製した。 まず、 半分量のエタノール にテ トラエトキシシラン及びジメチルホルムモアミ ドを加えて攪拌 し、 更に 4— [Nェチル N (2ヒ ドロキシェチル) ] ァミ ノ 4' 二 トロアゾベンゼンを加えて攪拌し、均一に分散させた溶液 A 2を用意 した。 溶液 A2とは別に、 残りのエタノールァミ ンと塩酸, 水を混合 して溶液 B2を用意した。 溶液 A 2に溶液 B 2を滴下混合しゾルーゲ ル液を調製した。 Ethanol: tetraethoxysilane: diphenyldimethoxysilane: dimethylformamide: 4— [N-ethyl N (2-hydroxicetyl)] amino 4'nitroazobenzene: hydrochloric acid: water = 4 in molar ratio : 0.95: 0.05: 2: 0.05: 1.18: 6 A sol-gel solution containing each component at a ratio of 6 was prepared as follows. First, tetraethoxysilane and dimethylformamide are added to half the amount of ethanol, and the mixture is stirred. Further, 4- [Nethyl N (2hydroxyshethyl)] amino 4'nitroazobenzene is added, and the mixture is stirred. was prepared solution a 2 were uniformly dispersed. Apart from the solution A 2, it was prepared a solution B 2 were mixed remaining Etanoruami down and hydrochloric acid, water. The solution B 2 dropwise mixed Zoruge Le solution was prepared in solution A 2.
ゾルーゲル液を 1時間攪拌した後、 スピンコーティ ングによ り 2 000 r p mで無アルカ リガラス基板に塗布した。 塗布後、 直ちに オーブンに入れ、 2 1 0°C X 20分の熱処理で色素分散フェニル基 シリ力複合薄膜を作製した。  After the sol-gel solution was stirred for 1 hour, the solution was applied to an alkali-free glass substrate at 2,000 rpm by spin coating. Immediately after the application, it was placed in an oven and heat-treated at 210 ° C for 20 minutes to produce a dye-dispersed phenyl group-silicone composite thin film.
得られた薄膜を実施例 1 と同様にして 1 064 nm及び 532 η mのレーザビームを用いて光ポーリングした。 レーザの強度は、 集 光前の基本波の光強度で 0. 22 Wに設定した。 また、 光ポーリ ン グは、 熱処理と別の工程とした。  The obtained thin film was subjected to optical polling using a laser beam of 1064 nm and 532 ηm in the same manner as in Example 1. The laser intensity was set to 0.22 W as the light intensity of the fundamental wave before focusing. Optical polling was performed separately from the heat treatment.
光ポーリ ングの成否を評価するため、 光ポーリ ングに用いた基本 波の 1 064 n mの光を照射した。 その結果、 532 nmの第 2高 調波が検出された。 第 2高調波の強度は、 水晶に対する二次非線形 光学定数 effが約 3であった。 1 064 n mのパルスレーザを照射 しつづけたところ、 30000ショ ッ トまでは約 20%程度に信号 強度が低下したが、 それ以降は更に 30000ショ ッ ト以上照射し た後でも信号強度の劣化はほとんどなかった。 実施例 3 : In order to evaluate the success or failure of the optical polling, the light of 1064 nm of the fundamental wave used for the optical polling was irradiated. As a result, a second harmonic of 532 nm was detected. Regarding the intensity of the second harmonic, the second-order nonlinear optical constant e ff for quartz was about 3. When the pulse laser of 1064 nm was continuously irradiated, the signal intensity decreased to about 20% up to 30,000 shots, but after that, it was irradiated for more than 30,000 shots. After the test, there was almost no deterioration of the signal strength. Example 3:
モル比で 2メ トキシエタノール : チタンテ トライ ソプロポキシ ド : パラ二 トロア二リン = 1 5 : 1 : 0. 05の割合で各成分を攪 拌し、 均一に分散させたゾル—ゲル浴を調製した。 ゾルーゲル浴を 1時間攪拌した後、 スピンコーティ ングにより 2000 r p mで無 アルカリガラス基板に塗布した。 塗布後、 直ちにオーブンに入れて 1 50 °C X 20分の熱処理を施し、 色素分散チタニア薄膜を作製し た。  The components were stirred at a molar ratio of 2 methoxyethanol: titanium trisopropoxide: paranitroaline = 15: 1: 0.05 to prepare a sol-gel bath in which the components were uniformly dispersed. After stirring the sol-gel bath for 1 hour, the solution was applied to an alkali-free glass substrate at 2000 rpm by spin coating. Immediately after the application, it was placed in an oven and subjected to a heat treatment at 150 ° C for 20 minutes to produce a dye-dispersed titania thin film.
得られた薄膜を 230°Cに 1 0分加熱する間に、 実施例 1 と同様 にして 1 064 nm及び 532 nmのレーザビームを用いて光ポー リ ングした。 レーザの強度は、 集光前の基本波の光強度で 0. 22 Wに設定した。  While heating the obtained thin film at 230 ° C. for 10 minutes, it was subjected to optical polling using laser beams of 1064 nm and 532 nm in the same manner as in Example 1. The laser intensity was set to 0.22 W, which is the light intensity of the fundamental wave before focusing.
230°Cで光ポーリ ングされた薄膜を室温まで冷却し、 光ポーリ ングの成否を評価するため、 光ポーリングに用いた基本波の 1 06 4 nmの光を照射した。 その結果、 532 n mの第 2高調波が検出 された。 第 2高調波の強度は、 水晶に対する二次非線形光学定数 Xe ffが約 0. 8であり、 1 064 n mのパルスレーザを 30000ショ ッ ト以上照射した後でも信号強度の劣化はなかった。 実施例 4 :  The thin film that had been optically polled at 230 ° C was cooled to room temperature and irradiated with the fundamental wave of 1064 nm used for optical poling to evaluate the success or failure of the optical polling. As a result, a 532 nm second harmonic was detected. Regarding the intensity of the second harmonic, the second-order nonlinear optical constant Xeff for quartz was about 0.8, and there was no deterioration in signal intensity even after irradiating a pulse laser of 1064 nm for 30,000 shots or more. Example 4:
モル比でァセトン : N [3 (ト リエトキシシリル) プロピル] 2, 4ジニトロフエニルァミ ン : テ トラエトキシシラン : 塩酸 : 水 = 2 0 : 0. 5 : 0. 5 : 0. 1 : 6の割合で各成分を含むゾルーゲル 液を次のように調製した。 先ず、 半分量のァセ トンに N [3 (ト リ エトキシシリル) プロピル] 2, 4ジニ トロフエニルァミ ン及びテ トラエトキシシランを加えて攪拌し、 溶液 A4を用意した。 溶液 A4 とは別に、 残りのアセ トンと塩酸, 水を混合し溶液 B4を用意した。 溶液 A4に溶液 B4を滴下混合し、 ゾル—ゲル液を調製した。 Acetone: N [3 (triethoxysilyl) propyl] 2,4 dinitrophenylamine: Tetraethoxysilane: Hydrochloric acid: Water = 20: 0.5: 0.5: 0.1: Mole ratio A sol-gel solution containing each component at a ratio of 6 was prepared as follows. First, § seton half volume by adding N [3 (Application Benefits triethoxysilyl) propyl] 2, 4 Gini Torofueniruami emissions and Te tiger silane stirred to prepare a solution A 4. Apart from the solution A 4, it was prepared a solution B 4 was mixed remaining acetone and hydrochloric acid, water. Solution B 4 was added dropwise to Solution A 4 to prepare a sol-gel solution.
ゾルーゲル液を 1 0分間攪拌した後、 スピンコーティ ングによつ て 2000 r p mで無アル力リガラス基板に塗布した。 塗布後、 直 ちにオーブンに入れ 1 30°Cで 5分間乾燥させ、 ゲル膜を作製した。 得られた薄膜を 230°Cに 1 0分加熱する間に、 実施例 1 と同様 にして 1 064 nm及び 532 nmのレーザビームを用いて光ポー リ ングした。 レーザの強度は、 集光前の基本波の光強度で 0. 22 Wに設定した。  After the sol-gel solution was stirred for 10 minutes, the solution was applied to a glass substrate without spinning at 2000 rpm by spin coating. Immediately after the application, it was placed in an oven and dried at 130 ° C for 5 minutes to produce a gel film. While heating the obtained thin film at 230 ° C. for 10 minutes, it was subjected to optical polling using laser beams of 1064 nm and 532 nm in the same manner as in Example 1. The laser intensity was set to 0.22 W, which is the light intensity of the fundamental wave before focusing.
230°Cで光ポーリ ングされた薄膜を室温まで冷却し、 光ポ一リ ングの成否を評価するため、 光ポ一リ ングに用いた基本波の 1 06 4 nmの光を照射した。 その結果、 532 n mの第 2高調波が検出 された。 第 2高調波の強度は、 水晶に対する二次非線形光学定数 Xe ffが約 1であり、 1 064 n mのパルスレーザを 30000ショ ッ ト 以上照射した後でも信号強度の劣化はなかった。 実施例 5 :  The thin film that had been optically polled at 230 ° C was cooled to room temperature, and irradiated with 1044 nm of the fundamental wave used for optical polling to evaluate the success or failure of optical polling. As a result, a 532 nm second harmonic was detected. Regarding the intensity of the second harmonic, the second-order nonlinear optical constant Xeff for quartz was about 1, and the signal intensity did not deteriorate even after irradiation with a pulse laser of 1064 nm for 30,000 shots or more. Example 5:
基板上に設けられた薄膜を用い、 第 2高調波素子を製造した。 薄 膜としては、 図 2に示すように実施例 2で無アル力 リガラス基板 a の上に設けたゲル膜 bを使用した。 ポリイ ミ ド膜 cを用いた反応性 ィオンエッチングで導波路部を残して薄膜 bを除去した後、 導波路 が形成された面にポリィ ミ ド膜 dを更にスピンコーティ ングし、 1 5 0°Cで熱硬化させ、 導波路の両端面を研磨した。 導波路端面から 800 nm及び 400111^の2光束6を入射し、 光ポーリングして 第 2高調波素子 ίを作製した。 第 2高調波素子 f に基本波 gである 800 nmのレーザ光を入射させると、 400 nmの第 2高調波 h が検出された。 このことから、 必要とする第 2高調波素子が得られ たことが確認される。 産業上の利用可能性 以上に説明したように、 本発明においては、 基板等の支持体上に 非線形光学有機色素を含むゾルーゲル液を流延させ、 非線形光学有 機色素が分散したゲル膜を作製している。 ゾル—ゲル法で成膜され た薄膜を熱処理及び光ポーリ ングすることにより、 二次非線形光学 材料が得られる。 ゾルーゲル法で形成された薄膜は、 有機色素の分 極状態を長期にわたつて安定的に固定するため、 性能が安定した二 次非線形光学材料となる。 しかも、 光ポーリングによって位相整合 条件を満足する分極状態にできるため、 第 2高調波素子等の非線形 光学素子が作製される。 A second harmonic element was manufactured using the thin film provided on the substrate. As the thin film, as shown in FIG. 2, a gel film b provided on a glass substrate a without any force in Example 2 was used. After removing the thin film b while leaving the waveguide portion by reactive ion etching using the polyimide film c, the polyimide film d is further spin-coated on the surface on which the waveguide has been formed, and is formed at 150 °. C was thermally cured, and both end surfaces of the waveguide were polished. Two luminous fluxes 6 of 800 nm and 400111 ^ were incident from the end face of the waveguide, and were subjected to optical poling to produce a second harmonic element ί. When a laser beam of 800 nm, which is the fundamental wave g, was incident on the second harmonic element f, a second harmonic h of 400 nm was detected. This confirms that the required second harmonic element was obtained. Industrial applicability As described above, in the present invention, a sol-gel solution containing a non-linear optical organic dye is cast on a support such as a substrate to produce a gel film in which the non-linear optical organic dye is dispersed. By subjecting the thin film formed by the sol-gel method to heat treatment and optical polling, a second-order nonlinear optical material can be obtained. The thin film formed by the sol-gel method is a second-order nonlinear optical material with stable performance because the polarization state of the organic dye is fixed stably over a long period of time. In addition, since a polarization state that satisfies the phase matching condition can be obtained by optical poling, a nonlinear optical element such as a second harmonic element is manufactured.

Claims

請求の範囲 The scope of the claims
1 .二次非線形光学効果をもつ有機色素又は有機色素を側鎖にもつ ポリマー前躯体及び金属酸化物前躯体を分散させたゾルーゲル液を 基板上に流延し、 成膜した薄膜に二つの波長の光束を同軸で同時に 照射させて光ポーリ ングすることを特徴とする二次非線形光学材料 の製造方法。  1. An organic dye having a second-order nonlinear optical effect or a sol-gel liquid in which a polymer precursor and a metal oxide precursor having an organic dye are dispersed in a side chain are cast on a substrate, and two wavelengths are formed on the formed thin film. A method for producing a second-order nonlinear optical material, comprising simultaneously irradiating a plurality of light beams coaxially and performing light polling.
2 . 熱処理中の薄膜又は熱処理された薄膜を光ポーリ ングする請求 項 1記載の二次非線形光学材料の製造方法。  2. The method for producing a second-order nonlinear optical material according to claim 1, wherein the thin film being heat-treated or the heat-treated thin film is subjected to optical polling.
3 .加水分解しない有機官能基が一つ以上付加された有機金属原料 又は加水分解しない有機官能基が一つ以上付加された有機金属原料 と加水分解する有機官能基のみを配位した有機金属原料との混合物 でマ ト リ ックス材料が合成された、 請求項 1記載の二次非線形光学 材料又は二次非線形光学素子の製造方法。  3. Organometallic raw material to which one or more non-hydrolyzable organic functional groups are added, or organometallic raw material to which one or more non-hydrolyzable organic functional groups are added and only organic functional groups to be hydrolyzed are coordinated 2. The method for producing a second-order nonlinear optical material or a second-order nonlinear optical element according to claim 1, wherein the matrix material is synthesized with a mixture of the following.
PCT/JP1999/006094 1998-11-20 1999-11-02 Second order nonlinear optical material and method for producing second order nonlinear optical device WO2000031583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/331632 1998-11-20
JP10331632A JP2000155346A (en) 1998-11-20 1998-11-20 Second order nonlinear optical material and manufacture of second order nonlinear optical element

Publications (1)

Publication Number Publication Date
WO2000031583A1 true WO2000031583A1 (en) 2000-06-02

Family

ID=18245837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006094 WO2000031583A1 (en) 1998-11-20 1999-11-02 Second order nonlinear optical material and method for producing second order nonlinear optical device

Country Status (2)

Country Link
JP (1) JP2000155346A (en)
WO (1) WO2000031583A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999639B2 (en) 2001-09-06 2006-02-14 Gilad Photonics Ltd. Tunable optical filters
CN109932827A (en) * 2019-03-29 2019-06-25 惠州学院 The full fiber waveguide device of polarization information and strength information is utilized based on collaboration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005088409A1 (en) * 2004-03-12 2008-01-31 独立行政法人科学技術振興機構 Optical waveguide holographic memory
CN106527013A (en) * 2016-08-30 2017-03-22 惠州学院 High-performance polymer all-optical switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656204A (en) * 1993-02-12 1997-08-12 Fuji Xerox Co., Ltd. Optical element and process for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656204A (en) * 1993-02-12 1997-08-12 Fuji Xerox Co., Ltd. Optical element and process for producing the same

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
C. FIORINI ET AL., NONLINEAR OPTICS, vol. 9, no. 1-4, 1995, pages 339 - 347, XP002925229 *
C. FIORINI, F. CHARRA AND J.M. NUNZI, OPTICS LETTERS, vol. 20, no. 24, 1995, XP002925225 *
G. XU ET AL., APPLIED PHYSICS B, vol. 68, no. 4, June 1999 (1999-06-01), pages 693 - 696, XP002925235 *
G. XU ET AL., OPTICS COMMUNICATIONS, vol. 153, no. 1,2,3, 15 July 1998 (1998-07-15), pages 95 - 98, XP002925231 *
J. SI ET AL., OPTICS COMMUNICATIONS, vol. 142, no. 1,2,3, 1 October 1997 (1997-10-01), pages 71 - 74, XP002925230 *
J.A. GURNEY ET AL., PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 3469, July 1998 (1998-07-01), pages 145 - 152, XP002925227 *
K. IZAWA ET AL., JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 32, no. 2, February 1993 (1993-02-01), pages 807 - 811, SEE PART 1, XP002925228 *
K. KITAOKA ET AL., APPLIED PHYSICS LETTERS, vol. 75, no. 2, 12 July 1999 (1999-07-12), pages 157 - 159, XP002925234 *
K. KITAOKA ET AL., JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 38, no. 9A/B, 15 September 1999 (1999-09-15), pages L1029 - L1031, SEE PART 2, XP002925232 *
K. KITAOKA ET AL., JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 107, no. 6, 1 June 1999 (1999-06-01), pages 522 - 526, XP002925233 *
R.H. STOLEN AND H.W.K. TOM, OPTICS LETTERS, vol. 12, no. 8, August 1987 (1987-08-01), pages 585 - 587, XP002925236 *
S. BRASSELET AND J. ZYSS, PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 3469, July 1998 (1998-07-01), pages 154 - 163, XP002925226 *
V. DOMINIC ET AL., OPTICS LETTERS, vol. 20, no. 5, 1 March 1995 (1995-03-01), pages 444 - 446, XP002925237 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999639B2 (en) 2001-09-06 2006-02-14 Gilad Photonics Ltd. Tunable optical filters
CN109932827A (en) * 2019-03-29 2019-06-25 惠州学院 The full fiber waveguide device of polarization information and strength information is utilized based on collaboration
CN109932827B (en) * 2019-03-29 2021-12-31 惠州学院 All-optical waveguide device based on cooperative utilization of polarization information and intensity information

Also Published As

Publication number Publication date
JP2000155346A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
JPH02199433A (en) Frequency doubling polymer wave guide
US5064265A (en) Optical parametric amplifier
US20100208757A1 (en) Method of ferroelectronic domain inversion and its applications
US5783319A (en) Waveguide tunable lasers and processes for the production thereof
Yamada et al. Processing and optical properties of patternable inorganic–organic hybrid films
US5247601A (en) Arrangement for producing large second-order optical nonlinearities in a waveguide structure including amorphous SiO2
US20040131324A1 (en) Process for producing three-dimensional polyimide optical waveguide
JPH09304800A (en) Light wavelength conversion element and manufacture of polarization inversion
WO2000031583A1 (en) Second order nonlinear optical material and method for producing second order nonlinear optical device
US6834151B1 (en) Optical waveguide and fabrication method
Kim et al. Photoassisted corona poled YLD-124/DR1-co-PMMA electrooptic device using photoisomerization
Floch et al. Optical thin films from the sol-gel process
Kitaoka et al. Optical poling of phenyl-silica hybrid thin films doped with azo-dye chromophore
JP3545270B2 (en) Method for manufacturing second-order nonlinear optical material
KR102408995B1 (en) Polymer waveguide accommodating dispersed graphene and method for manufacturing the same, and laser based on the polymer waveguide
Burzynski et al. Photonics and nonlinear optics with sol-gel processed inorganic glass: organic polymer composites
Hayakawa et al. Newly designed organic/inorganic film for optical second-harmonic generation
KR0166907B1 (en) Second-harmonic wave generating device
Gang et al. Fabrication of polymeric optical waveguides by B-Staged Bisbenzocyclobutene (BCB)
JPH0643511A (en) Optical waveguide having polarization inversion structure and its production as well as device for imparting polarization inversion structure to optical waveguide
JPH0266524A (en) Wavelength conversion element
Que et al. Fabrication of composite sol-gel optical channel waveguides by laser writing lithography
JPH0757290A (en) Optical wavelength conversion element
Kajzar et al. Engineering and application of functionalized polymers in nonlinear optics
WO1995015021A1 (en) Waveguide tunable lasers and processes for the production thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
CFP Corrected version of a pamphlet front page

Free format text: REVISED ABSTRACT RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION