WO2000028373A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2000028373A1
WO2000028373A1 PCT/JP1999/006190 JP9906190W WO0028373A1 WO 2000028373 A1 WO2000028373 A1 WO 2000028373A1 JP 9906190 W JP9906190 W JP 9906190W WO 0028373 A1 WO0028373 A1 WO 0028373A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inter
electrode pattern
terminal
liquid crystal
Prior art date
Application number
PCT/JP1999/006190
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Nakahara
Masaru Ito
Takeshi Nakamura
Keiichi Suehiro
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP2000581498A priority Critical patent/JP3508723B2/en
Publication of WO2000028373A1 publication Critical patent/WO2000028373A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to an electrode structure on each substrate of a liquid crystal panel constituting a liquid crystal display device.
  • FIG. 11 is an exploded perspective view of a conventional liquid crystal panel.
  • FIG. 12 is an enlarged plan view showing electrode patterns and terminals formed on the first substrate 10X of the liquid crystal panel shown in FIG.
  • FIG. 12 is an enlarged plan view showing an electrode pattern and terminals formed on the second substrate 20Y of the liquid crystal panel shown in FIG.
  • FIG. 14 is an enlarged plan view showing an electrode pattern and a terminal when the first substrate 10X shown in FIG. 12 and the second substrate shown in FIG. 13 are bonded to each other. It is.
  • FIG. 11 shows a substrate 10 X on which a first electrode pattern 40 X is formed and a substrate 20 Y on which a second electrode pattern 50 Y is formed. It shows a passive matrix type liquid crystal display device that drives a liquid crystal sandwiched between electrode patterns.
  • a passive matrix type liquid crystal display device is disassembled in FIG. 11, and as shown in a schematic diagram ⁇ , a sealing material is provided between a pair of substrates bonded by a sealing material 30 with a predetermined gap therebetween.
  • the liquid crystal sealing area 35 is defined by 30, and liquid crystal is sealed in the liquid crystal sealing area 35.
  • the second electrode pattern 50 Y and the external input terminal 82 X are connected to the first inter-substrate conduction—terminal 60 X and the second inter-substrate conduction terminal. It is electrically connected by arranging a conducting material between the Y and Y. Therefore, a signal for driving the liquid crystal can be applied from the external input terminal 82X formed on the first substrate to the second electrode pattern 50Y formed on the second substrate 20Y. .
  • external input terminals 8 IX and 8 2 both formed on a first substrate, are connected to first electrode patterns 40 formed on different substrates. A signal for driving the liquid crystal can be input to X and the second electrode pattern 50Y.
  • the external input terminals 81 X and 82 X are formed in a first terminal formation region near the substrate side 101 X of the first substrate.
  • the conduction between the first inter-substrate conduction terminal 60 X and the second inter-substrate conduction terminal 70 Y is determined by the first terminal formation region and the vicinity of the substrate side 201 X of the second substrate. This is performed in the second terminal formation region 21Y.
  • the board sides 101 X and 201 Y are sides extending in the same direction, the external input terminals 81 X and 82 X are connected to a flexible board (not shown), a rubber connector, or the like.
  • One end of the first terminal formation region 11 X is not overlapped with the substrate 20 Y, that is, the second substrate 20 Y It is formed on a protruding portion 15 X protruding from the substrate side 201 Y.
  • the external input terminals 8 1 X and 8 2 X formed there are close to the substrate side 101 X, through a flexible substrate (not shown), a rubber connector, or directly driven by a liquid crystal. Connected to an external circuit such as a driver.
  • the other end of the first terminal formation region 1 IX is The second terminal forming region 21Y of the substrate 20Y is formed so as to extend to a region that planarly overlaps the second terminal forming region 21Y.
  • FIGS. 12 and 13 respectively show a part of each terminal forming area formed on the first substrate 10X and the second substrate 20Y used for the conventional liquid crystal panel 1. It is a top view which expands and shows.
  • the first terminal forming region 11 X formed along the substrate side 101 X of the first substrate 10 X includes the substrate side 101 A plurality of first external input terminals 81 X arranged in the central region of X are formed.
  • the first inter-substrate conduction terminal 60X extends to a position overlapping the second terminal formation region 21Y.
  • the first electrode pattern 40X, the first external input terminal 8IX, the second external input terminal 82X, and the first inter-substrate conduction terminal 60X are all IT ⁇ films (Indium film). (Tin oxide / transparent conductive film).
  • the first inter-substrate of the first substrate 10X is connected.
  • a plurality of second inter-substrate conduction terminals 70Y are formed along the substrate side 201Y. From these second inter-substrate conduction terminals 70Y, the area corresponding to both sides of the formation area of the first electrode pattern 40X is wrapped around and intersects with the first electrode pattern 40X in the liquid crystal sealing area 35.
  • a plurality of rows of second electrode patterns 50Y for driving a liquid crystal are formed so as to extend.
  • the second electrode pattern 50Y and the second inter-substrate conduction terminal 70 # are also formed of an ITO film or the like. As described above, on the second substrate 20Y, the second electrode pattern is formed so as to go around the area corresponding to both sides of the first electrode pattern 40X formed on the first substrate 10X while avoiding the area where the first electrode pattern 40X is formed. It is necessary to extend 50Y from the second inter-substrate conduction terminal 70Y. Therefore, the second inter-substrate conduction terminal 70Y is located in a region near the end of the first electrode pattern 40X formation region formed on the first substrate 10X (the center region side of the substrate side 201Y).
  • the second inter-substrate conduction terminal 70Y is for conducting conductive connection with the first inter-substrate conduction terminal 60X with a conductive material sandwiched between the substrates. Therefore, a short circuit is likely to occur between adjacent terminals. Therefore, in order to surely prevent such a short circuit between terminals, it is necessary to secure a sufficiently wide interval between adjacent terminals. For this reason, the second inter-substrate conductor formed in a region (both ends of substrate side 201Y) distant from the end of the region where first electrode pattern 40X is formed.
  • the common terminal 70 Y In the common terminal 70 Y, a large difference is made in the length dimension of the straight part 70 1 Y between the adjacent terminals, and from there, diagonally toward the sides 103 X of both sides of the substrate 100 mm.
  • the wiring By forming the wiring by bending, a wide interval between the oblique portions 70 2 ⁇ of the second inter-substrate conduction terminals 70 ⁇ is ensured. Therefore, as can be seen from FIG. 13, the line ⁇ connecting the boundary between the linear portion 70 1 ⁇ and the oblique portion 70 2 ⁇ at the second terminal 70 ⁇ for inter-substrate conduction is the substrate side 200 1
  • the angle formed by ⁇ is quite large.
  • the second electrode extending therefrom extends. Even if the pattern 50 ⁇ is oblique, the conduction between the substrates by the conductive material is not performed in the oblique portion 502 2, so that the interval between adjacent patterns can be considerably reduced. Therefore, in the second electrode pattern 50 °, the angle formed by the line connecting the boundary between the linear portion 501 ′ and the slanted portion 502 ′ with the substrate side 201Y is considerably small. ing.
  • the gap material and the conductive material are compounded in the sealing material 30, and the sealing material 3 0 is also formed by coating or printing in a region where the first inter-substrate conduction terminal 60 X and the second inter-substrate conduction terminal 70 # overlap. Therefore, when the first substrate 10 ⁇ and the second substrate 20 ⁇ are pasted together via the seal material 30 ⁇ , the first substrate 10 ⁇ ⁇ ⁇ is bonded by the conductive material contained in the seal material 30 0.
  • the conduction terminal 60 X and the second inter-substrate conduction terminal 70 7 conduct. Further, when the first substrate 10 ⁇ and the second substrate 20 ⁇ are bonded together, the pixels 5 are arranged in a matrix by the intersection of the first electrode pattern 40 ⁇ and the second electrode pattern 50 ⁇ . It is formed in a shape.
  • Image data can be applied to the first electrode pattern 40 X formed on the first substrate 10 X via the first external input terminal 81 X, and the second electrode pattern
  • the second electrode pattern 50 Y formed on the substrate 20 Y includes a first external input terminal 82 X, a first inter-substrate conduction terminal 60 X, a conductive material, and a second substrate.
  • a scanning signal can be applied through the inter-connection terminal 70Y.
  • the outermost pattern of the first electrode pattern 40X formed on the first substrate 10X has a corner portion bent near the display area, and (The width of the area indicated by arrow B) between the second terminal formation area 21 1 Y and the base end of the outermost terminal (the width of the area indicated by arrow B).
  • the number of conductive terminals 70 Y cannot be increased much. If the number of second electrode patterns 50 Y and the number of second inter-substrate conduction terminals 70 Y are increased, as shown in FIG. 14, the second electrode patterns 5 There is a problem in that Y overlaps the first electrode pattern 40X, and the probability that a short circuit occurs between the substrates increases.
  • the oblique portion 70 0 2 of the second inter-substrate conduction terminals 70 Y is used. If the area for adding the second electrode pattern 50Y is secured by reducing the interval of Y, the probability that a short circuit will occur between adjacent terminals increases. Furthermore, the area width indicated by the arrow B is reduced by reducing the line width and the interval of the second electrode pattern 50Y and the second inter-substrate conduction terminal 70Y, thereby forming the second electrode pattern 50Y. If an additional area is secured, the electric resistance (wiring resistance) increases and the display quality deteriorates.
  • an object of the present invention is to form one of a pair of substrates holding a liquid crystal on a substrate.
  • An object of the present invention is to provide a configuration that can increase the number of electrode patterns for driving a liquid crystal without deteriorating reliability and display quality by effectively using a wiring region of the region. Disclosure of the invention
  • the present invention provides a first inter-substrate conduction terminal disposed adjacent to a side of a substrate, and the first inter-substrate conduction terminal, A first substrate having a first electrode pattern disposed so that the first inter-substrate conduction terminal extends toward a side facing an adjacent side; and a first substrate disposed adjacent to the side of the substrate.
  • a second substrate having two external input terminals, and a second electrode pattern electrically connected to the second external input terminal, wherein the first substrate and the second substrate are provided.
  • the substrate is paired so that the first electrode pattern and the second electrode pattern extend in a direction crossing each other.
  • the first inter-substrate conduction terminal and the second inter-substrate conduction terminal are arranged by a conductive material sandwiched between the first substrate and the second substrate. It is characterized by being electrically connected.
  • the first inter-substrate conduction terminal formed on the first substrate and the second inter-substrate conduction terminal formed on the second substrate are connected by a conductive material.
  • So-called inter-substrate conduction is performed to electrically connect the first electrode pattern on the first substrate to the first external input terminal on the second substrate.
  • the first electrode pattern formed so as to extend toward the opposite side of the side on which the first inter-substrate conduction terminal is formed is attached to the second substrate. It is connected to the formed first external input terminal.
  • the first electrode pattern is used for inter-substrate conduction
  • the number of second electrode patterns can be increased without concern for reliability of inter-substrate conduction. . This is because even if the number of patterns in the part where the pattern must be extended obliquely (for example, A in Fig. 4) increases, this pattern is not a pattern used for inter-substrate conduction. This is because it can be narrow. Therefore, even if the number of the second electrode patterns is increased, it is not necessary to reduce the interval between the inter-substrate conduction terminals, and it is not necessary to reduce the line width of the first pattern.
  • the number of electrode patterns for driving a liquid crystal can be increased without lowering the reliability and display quality. Also, even if the number of second electrode patterns is not increased so much, it is possible to narrow the portion where the pattern must be extended diagonally, so that a liquid crystal panel whose external dimensions are the same as the conventional size can be obtained.
  • the display area can be expanded.
  • the first inter-substrate conduction terminal and the second inter-substrate conduction terminal are linearly arranged toward a side facing an adjacent side.
  • a sufficient distance between the terminals can be ensured by not forming the first conductive terminal and the second conductive terminal between the substrates in a region where the conductive between the substrates is performed. This improves the reliability of conduction between the substrates.
  • the first electrode pattern includes, for example, the first external input terminal, the second inter-substrate conduction terminal, the conduction material, and the first inter-substrate conduction. Used as a data electrode pattern to which image data is supplied via a terminal, and the second electrode pattern is used as a scan electrode pattern to which a scan signal is applied via the second external input terminal. Become.
  • a second liquid crystal display device is a liquid crystal display device comprising: A conduction terminal, electrically connected to the first inter-substrate conduction terminal, and arranged such that the first inter-substrate conduction terminal extends toward a side facing an adjacent side; A first substrate having a first electrode pattern, an external input terminal disposed adjacent to a side of the substrate, a second inter-substrate conduction terminal, and a second electrode pattern. A second substrate, which is disposed so as to face the first electrode pattern and the second electrode pattern so as to extend in a direction intersecting each other, and is mounted on the second substrate, and an input terminal is provided.
  • a drive IC electrically connected to the external input terminal, and an output terminal electrically connected to the second inter-substrate conduction terminal and the second electrode pattern.
  • the inter-substrate conduction terminal and the second inter-substrate conduction terminal are disposed in front of the first substrate. Characterized in that it is electrically connected by a conducting material sandwiched between the second substrate.
  • a first inter-substrate conduction terminal formed on the first substrate and a second inter-substrate conduction terminal formed on the second substrate are connected by a conductive material.
  • a so-called inter-substrate continuity is established. Therefore, the first electrode pattern on the first substrate is connected to the output terminal of the driver IC mounted on the second substrate via the first and second terminals for conduction between the substrates. .
  • the first electrode pattern formed so as to extend toward the side opposite to the side on which the first inter-substrate conduction terminal is formed is used.
  • a second electrode pattern arranged so as to extend in a direction intersecting with the first electrode pattern is connected to an output terminal of the driving IC without conducting between the substrates.
  • the number of second electrode patterns can be increased without concern for the reliability of inter-substrate conduction. This is because even if the number of patterns in a portion where the pattern must be extended obliquely (for example, A in FIG. 4) increases, this pattern is not a pattern used for inter-substrate conduction, so that a pattern between adjacent patterns is used. This is because the width can be reduced. Therefore, even if the number of the second electrode pads is increased, it is not necessary to reduce the distance between the inter-substrate conduction terminals, and it is not necessary to reduce the line width of the first pattern. Therefore, according to the present invention, reliability -
  • the second liquid crystal display device of the present invention various configurations used for the above-described first liquid crystal display device can be adopted.
  • the first conduction terminal and the second inter-substrate conduction terminal are formed linearly toward the side opposite to the side on which they are formed.
  • Image data is supplied to the first electrode pattern, and a scanning signal is supplied to the second electrode pattern.
  • FIG. 1 is a perspective view showing the appearance of a liquid crystal panel used in a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view schematically showing a state in which the liquid crystal panel shown in FIG. 1 is disassembled.
  • FIG. 3 is an enlarged plan view showing an electrode pattern and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
  • FIG. 4 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
  • FIG. 5 is an enlarged plan view showing electrode patterns and terminals when the first substrate shown in FIG. 3 and the second substrate shown in FIG. 4 are bonded together.
  • FIG. 6 is a perspective view showing an appearance of a liquid crystal panel used in a liquid crystal display device according to Embodiment 2 of the present invention.
  • FIG. 7 is a perspective view schematically showing a state in which the liquid crystal panel shown in FIG. 6 is disassembled.
  • FIG. 8 is an enlarged plan view showing an electrode pattern and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
  • FIG. 9 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
  • FIG. 10 is an enlarged plan view showing an electrode pattern and terminals when the first substrate shown in FIG. 8 and the second substrate shown in FIG. 9 are bonded together.
  • FIG. 11 is an exploded perspective view of a conventional liquid crystal panel.
  • FIG. 12 is an enlarged plan view showing an electrode pattern and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
  • FIG. 13 is an enlarged plan view showing electrode patterns and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
  • FIG. 14 is an enlarged plan view showing an electrode pattern and terminals when the first substrate shown in FIG. 12 and the second substrate shown in FIG. 13 are bonded together.
  • FIG. 1 is a perspective view showing the appearance of a liquid crystal panel used in the liquid crystal display device of the present embodiment
  • FIG. 2 is a perspective view schematically showing an exploded state of the liquid crystal panel
  • FIG. 3 is an enlarged plan view showing electrode patterns and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
  • FIG. 4 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
  • FIGS. 1 and 2 only schematically show the electrode patterns and terminals and the like. This will be described later with reference to FIG.
  • a liquid crystal panel 1 used in a passive matrix type liquid crystal display device mounted on an electronic device such as a mobile phone is made of glass or plastic through a predetermined gap.
  • the first substrate 10 and the second substrate 20 are bonded to each other with the sealant 30 interposed therebetween. Liquid crystal is sealed in a liquid crystal sealed area 35 partitioned by the sealing material 30.
  • the first substrate 10 has a plurality of rows of first electrode patterns 40 extending in the vertical direction in the liquid crystal enclosing area 35, and the second substrate 20 has a liquid crystal encapsulating area 35.
  • the second electrode pattern 50 extending in the horizontal direction is formed in a plurality of rows.
  • a polarizing plate 5 is attached to the outer surface of the second substrate 20 with an adhesive or the like, and the polarizing plate 6 is also attached to the outer surface of the first substrate 10 with an adhesive or the like. ing.
  • a reflection plate (not shown) is attached to the outside of the polarization plates 5 and 6, or instead of the polarization plates 5 and 6.
  • the first and second external input terminals 81 and 82 are formed in the second terminal formation region near the substrate side 201 of the second substrate.
  • the conduction between the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 is determined by the first terminal formation region 11 near the substrate side 101 of the first substrate and the second This is performed in the terminal formation area 21.
  • the first and second external input terminals 81, 82 are connected to a flexible substrate (not shown).
  • One end of the second terminal formation region 21 does not overlap with the substrate 10, that is, the first substrate, for connection to an external circuit such as a driver for driving a liquid crystal, or via a rubber connector or directly. It is formed at the portion protruding from the substrate side 101 of 10. Therefore, a substrate larger than the first substrate 10 is used as the second substrate 20.
  • the other end of the second terminal formation region 21 is connected to the first substrate 1
  • the first terminal formation region 11 of 0 is formed so as to extend to a region overlapping with the first surface. In this embodiment, as shown in FIG. 2 and FIG. 3, the first terminal formation region 11 is formed along the central portion of the substrate side 101 of the first substrate 10, Terminal formation c
  • a plurality of first inter-substrate conduction terminals 60 are arranged at predetermined intervals along the substrate side 101.
  • a plurality of rows of first electrode patterns 40 for driving liquid crystal are arranged on both sides from the first inter-substrate conduction terminal 60 toward the opposing substrate side 102. After spreading and extending obliquely, it extends in a direction perpendicular to the substrate sides 101 and 102 in the liquid crystal sealing region 35.
  • the first electrode pattern 40 and the first inter-substrate conduction terminal 60 are formed of an ITO film formed in a predetermined pattern.
  • the second terminal formation region 21 is also formed along the substrate side 201, and the second terminal formation region 21 is formed over a relatively wide range excluding both ends of the substrate side 201.
  • the second terminal forming region 21 has a plurality of first external input terminals 81 arranged at predetermined intervals along the substrate side 201 in a central region thereof, and these first external input terminals 81.
  • a plurality of second external input terminals 82 are formed at two locations on both sides of the region where the terminals 81 are formed and are arranged at a predetermined interval along the substrate side 201.
  • the first external input terminal 81 and the second external input terminal 82 are both opposed to the substrate side 202 in the second terminal formation region 21 (see FIG. 2). ).
  • the first external input terminal 81 provides a first inter-substrate conduction when the first substrate 10 and the second substrate 20 are bonded to each other.
  • a plurality of second inter-substrate conduction terminals 70 overlapping the terminals 60 extend linearly toward the substrate side 202.
  • the second external input terminal 82 allows the first electrode pattern 40 to be formed when the first substrate 10 and the second substrate 20 are bonded to each other.
  • a plurality of rows of liquid crystal driving second electrode patterns 50 are formed so as to go around the area corresponding to both sides of the formation area. These second electrode patterns 50 extend so as to intersect with the first electrode patterns 40 in the liquid crystal sealing region 35.
  • the wiring of the second electrode pattern 50 formed on the second substrate 20 is When the first substrate 10 and the second substrate 20 are bonded to each other, each region corresponding to a plane on both sides of the region where the first electrode pattern 40 is formed on the first substrate 10 After extending obliquely toward the side 203 on each of the two sides, along the liquid crystal filled area 35 (or the side 203 of the substrate 20), facing the opposite substrate side 202 And then extend in parallel with the substrate sides 201 and 202 in the liquid crystal filled area 35.
  • the second electrode pattern 50, the first external input terminal 81, the second external input terminal 82, and the second inter-substrate conduction terminal 70 are all formed in a predetermined pattern. It is formed by the formed IT 0 film.
  • the first substrate 10 and the second substrate 20 are sealed.
  • a gap material and a conductive material are compounded in the seal material 30, and the seal material 30 is connected to the first board-to-board conductive terminal 60 and the second board. It is also formed in a region where the conduction terminals 70 overlap.
  • the conductive material contained in the seal material 304 is, for example, a metal particle or a particle obtained by plating the surface of an elastically deformable plastic bead, and plating is performed on the surface of the elastically deformable plastic bead. In the case of the applied particles, the particle size is about 6.6 / m.
  • the particle size of the gap material included in the sealing material 304 is about 5.6 ⁇ m. Therefore, when the sealing material 30 is melted and cured while applying a pressing force to narrow the gap in a state where the first substrate 10 and the second substrate 20 are overlapped, the conductive material becomes The first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 are conducted in a state of being crushed between the first substrate 10 and the second substrate 20.
  • FIG. 5 is an enlarged plan view showing electrode patterns and terminals when the first substrate shown in FIG. 3 and the second substrate shown in FIG. 4 are bonded together.
  • the flexible substrate 9 is attached to the edge of the second terminal formation region 21 of the second substrate 20 on the substrate side 201 side. 0 is mounted using an anisotropic conductive material or the like, and then the first external input terminal 81 and the second external input terminal of the second substrate 20 are passed through an external circuit such as the flexible substrate 90.
  • a scanning signal can be applied to the second electrode pattern 50 formed on the second substrate 20 via the second external input terminal 82.
  • the first electrode pattern 40 formed on the first substrate 10 includes a first external input terminal 81, a second inter-substrate conduction terminal 70, a conductive material, Image data can be input as a signal via one substrate-to-substrate conduction terminal 60. Therefore, the first electrode pattern is formed at each pixel 5 by these image data and scanning signals.
  • the first electrode pattern 40 in the vertical direction a signal is directly input from the external input terminal without going through the vertical conduction between the substrates, and the first electrode pattern 40 is avoided.
  • signals are input to the second electrode patterns 50 in the horizontal direction that are routed to both sides through the obliquely extending inter-substrate conduction terminals.
  • the second external electrode pattern 50 extended to both sides so as to avoid the first electrode pattern 40 has the second external input without passing through the vertical conduction between the substrates.
  • a signal is input to the first electrode pattern 40 in the vertical direction from the external input terminal 81 via conduction between the substrates.
  • the inter-substrate conduction terminals it is not necessary to form the inter-substrate conduction terminals obliquely, so that the first inter-substrate conduction terminals 60 and the second inter-substrate conduction terminals 70 can be formed straight.
  • the pattern must be extended diagonally (the second electrode pattern
  • the pattern must be formed obliquely between the corner where the innermost pattern of 50 is bent near the display area and the corner of the outermost pattern of the second electrode pattern 50. Since there is no need to conduct between the substrates in an area where the area cannot be obtained (the area width indicated by the arrow A), stable connection is ensured and connection reliability is improved. In addition, the distance (pitch interval) between the patterns can be reduced in a portion where the pattern must be obliquely extended, and the second electrode pattern 50 having a reduced pitch is formed. For this reason In the second electrode pattern 50, the linear portion 501 may be bent obliquely with a small difference in length between adjacent patterns, and the oblique portion of the second electrode pattern 50 may be formed. The interval between 502 can be reduced.
  • the angle ⁇ formed by the line F connecting the boundary between the linear portion 501 and the oblique portion 502 in the second electrode pattern 50 with the substrate side 201 is small. For this reason, a large number of patterns can be formed even in such a region having a large layout constraint. Therefore, even when the number of patterns formed in such a region with a large restriction on the layout is increased, the distance between the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 is reduced. There is no need to reduce the line width of the pattern. Therefore, according to the present embodiment, it is possible to increase the number of electrode patterns for driving the liquid crystal without deteriorating reliability or display quality. In addition, liquids that require vertical conduction between substrates
  • the portion where the pattern must be extended obliquely on the second substrate 20 can be made narrower than before, so that the external dimensions can be reduced and the external dimensions are equal In the liquid crystal panel 1 having a size, an extended and wider display area can be secured. Furthermore, if the portion of the second substrate 20 where the pattern must be extended obliquely can be made smaller than before, the outer dimensions of the liquid crystal panel 1 having the same display area as the conventional one can be reduced. Can be smaller.
  • the driving IC may be mounted on the substrate by COG (Chipon 1 ass) or COP (Chipon P lastic Panel). In this case, the driving IC is externally mounted. Inputs signals and outputs image data signals and scanning signals from the driving IC to each electrode pattern.
  • COG Chipon 1 ass
  • COP Chipon P lastic Panel
  • FIG. 6 is a perspective view showing the appearance of a liquid crystal panel used in the liquid crystal display device of the present embodiment.
  • FIG. 7 is a perspective view schematically showing a disassembled state of the liquid crystal panel.
  • FIG. 8 is an enlarged plan view showing electrode patterns and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
  • FIG. 9 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
  • FIGS. 6 and 7 only schematically show the electrode patterns and terminals, etc.
  • FIG. 8 and FIG. It will be described later with reference to FIG.
  • a first substrate 10 and a second substrate 20 made of glass, plastic, or the like are interposed via a predetermined gap. And are bonded to face each other. Liquid crystal is sealed in a liquid crystal sealing area 35 partitioned by the sealing material 30.
  • a plurality of rows of first electrode patterns 40 extending in the vertical direction in the liquid crystal sealing region 35 are formed, and on the second substrate 20, the first electrode pattern 40 is formed in the liquid crystal sealing region 35.
  • the second electrode pattern 50 extending in the horizontal direction is formed in a plurality of rows.
  • a polarizing plate 5 is stuck on the outer surface of the second substrate 20, and a polarizing plate 6 is stuck on the outer surface of the first substrate 10.
  • a reflection plate (not shown) is attached to the outside of the polarization plates 5 and 6, or instead of the polarization plates 5 and 6.
  • the first substrate formed on each of the first substrate 10 and the second substrate 20 is used for both external signal input and conduction between the substrates.
  • the terminal forming region 11 and the second terminal forming region 21 are used. Therefore, as the second substrate 20, a substrate larger than the first substrate 10 is used, and when the first substrate 10 and the second substrate 20 are bonded and superimposed, the first substrate
  • the flexible board 90 or a rubber connector (not shown) such as a conductive rubber is used by using a protruding portion where the second board 20 extends from the board side 101 of the board 10. Connection is made.
  • the first terminal formation region 11 is formed by the first substrate
  • the first terminal formation region 11 is formed along the center portion of the substrate side 101 of the substrate 10.
  • a plurality of first inter-substrate conduction terminals 60 are predetermined along the substrate side 101. Are arranged at intervals of.
  • the second terminal formation region 21 is also formed along the substrate side 201, and this second terminal formation region 21 is formed over a relatively wide range excluding both ends of the board side 201, and the second terminal formation region includes a plurality of external input terminals arranged at a predetermined interval along the board side 201. 80 are formed.
  • the external input terminal 80 extends linearly toward the opposing substrate side 202 (see FIG. 7) in the second terminal formation region 21.
  • a driving IC 8 that supplies image data to the first electrode pattern 40 and supplies a second electrode pattern 50 is mounted on the overhang portion 25.
  • the input terminal of the driving IC 8 is connected to the external input terminal 80 (the connection between the external input terminal 80 and the driving IC is omitted.). Is input to the driving IC 8 from the driving terminal 80.
  • the output terminal of the driving IC is connected to the first electrode pattern 40 via the second electrode pattern 50 and the first and second inter-substrate conduction terminals 60 and 70. ing.
  • a semiconductor (IC) mounting area 7 is formed on the second substrate 20 in an area adjacent to the external input terminal 80 on the liquid crystal enclosing area 35 side.
  • the driving IC 8 is mounted in the mounting area 7. From the output terminals of the driving IC 8 (terminals located in the central area of the second terminal forming area 21) located in the central area in the longitudinal direction of the IC mounting area 7, the first substrate 10 When the second substrate 20 and the second substrate 20 are bonded to each other, the wiring is linearly routed toward the substrate side 202 until a portion corresponding to the first inter-substrate conduction terminal 60 overlaps, and a plurality of second An inter-substrate conduction terminal 70 is formed.
  • the first substrate 10 and the second substrate 20 are combined in this embodiment.
  • a gap material and a conductive material are compounded in the sealing material 30, and the sealing material 30 is used as the first inter-substrate conduction terminal 60 and the second substrate. It is also formed in an area where the inter-terminal terminals 70 overlap.
  • the conductive material becomes The first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 are conducted in a state of being pressed or crushed between the first substrate 10 and the second substrate 20. .
  • FIG. 10 is an enlarged plan view showing an electrode pattern and terminals when the first substrate shown in FIG. 8 and the second substrate shown in FIG. 9 are bonded together.
  • the first electrode pattern 40 and the second electrode pattern Pixels 5 are formed in a matrix at the intersection with 50.
  • a scanning signal can be applied to the second electrode pattern 50 from the driving IC 8, and the first substrate
  • the first electrode pattern 40 formed on the substrate 10 is electrically connected to the second IC between the driving IC 8 and the second substrate.
  • Image data can be input as a signal through the terminal 70, the conductive material, and the first inter-substrate conductive terminal 60. Therefore, the alignment state of the liquid crystal positioned between the first electrode pattern 40 and the second electrode pattern 50 in each pixel 5 can be controlled by the image data and the scanning signal. A predetermined image can be displayed.
  • the first electrode pattern 40 in the vertical direction a signal is directly input from the external input terminal, and the signal is pulled to both sides so as to avoid the first electrode pattern 40.
  • a signal input via an obliquely extending inter-substrate conduction terminal is performed, but in the present embodiment, the first electrode pattern 40 is avoided.
  • the second horizontal electrode pattern 50 that is routed to both sides the signal is directly input from the driving IC 8, and when the signal is input by the inter-substrate conduction, the second inter-substrate conduction is performed.
  • the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 can be formed straight.
  • the pattern since the signal is input to the first electrode pattern 40 in the vertical direction by inter-substrate conduction via the second substrate 2, the pattern must be obliquely extended (the The pattern is inclined diagonally between the corner where the innermost pattern of the second electrode pattern 50 is bent near the display area and the corner of the outermost pattern of the second electrode pattern 50. It is not necessary to carry out inter-substrate conduction in the area where the formation is inevitable (the area width indicated by arrow A). Can be formed. For this reason, in the second electrode pattern 50, the linear portion 501 may be bent obliquely from the adjacent pattern with a small difference in the length dimension, and the second electrode pattern 50 The interval between the oblique portions 502 can be narrowed.
  • the angle /? Formed by the line F connecting the boundary between the linear portion 501 and the oblique portion 502 in the second electrode pattern 50 with the substrate side 201 is small. For this reason, a large number of patterns can be formed even in such a region having a large layout constraint. Therefore, the number of patterns to be formed in such a region with a large layout constraint It is not necessary to reduce the distance between the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 even when the number of components increases. Further, it is not necessary to reduce the line width of the pattern. Therefore, according to the present embodiment, it is possible to increase the number of electrode patterns for driving the liquid crystal without deteriorating reliability or display quality.
  • the portion of the second substrate 20 where the pattern must be obliquely extended can be narrower than before, so that the liquid crystal panel 1 having the same external dimensions can be used. To expand the display area. Furthermore, if the portion of the second substrate 20 which has to extend the pattern obliquely can be made smaller than before, the outer dimensions of the liquid crystal panel 1 having the same display area as the conventional one can be reduced. .
  • both the first electrode pattern 40 and the second electrode pattern 50 are connected to an external input terminal 81 and an external drive IC provided outside the liquid crystal panel.
  • both the first electrode pattern 40 and the second electrode pattern 50 are configured so that an image data or a scanning signal is supplied and applied via the second electrode pattern 82.
  • the configuration is such that the image data and the scanning signal are applied from the driving IC 8 mounted on the second substrate, but the first electrode pattern receives the signal using the inter-substrate conduction. If it is a configuration, the first embodiment and the second embodiment may be combined.
  • the first electrode pattern 40 is applied with image data from a driving IC mounted on a glass substrate or a plastic substrate using inter-substrate conduction, while the other second electrode pattern 50 is applied to the other second electrode pattern 50.
  • the configuration may be such that a scanning signal is applied from an external driving IC external to the liquid crystal panel.
  • the flexible board 90 is connected to the external input terminals 80, 81, and 82, other circuit boards are connected via a rubber connector or the like. You may.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A liquid crystal panel (1), wherein signals are directly input from a second external input terminal (82) to a second electrode pattern (50) which is routed to both sides on a second substrate (20) so as to avoid a first electrode pattern (40) formed on a first substrate (10), and signals are input by substrate-to-substrate conduction to the first electrode pattern (40) which can form straight substrate-to-substrate conduction terminals (60, 70) when signals are input by that conduction. Therefore, a substrate-to-substrate conduction is not necessary in portions where patterns must be extended slantly and a second electrode pattern (50) that can narrow a pattern-to-pattern distance need only be formed in those portions.

Description

明 細 書 液晶表示装置 技術分野  Description Liquid crystal display device Technical field
本発明は、 液晶表示装置に関するものである。 更に詳しくは、 液晶表示装置を 構成する液晶パネルの各基板における電極構造に関するものである。 背景技術  The present invention relates to a liquid crystal display device. More specifically, the present invention relates to an electrode structure on each substrate of a liquid crystal panel constituting a liquid crystal display device. Background art
第 1 1図は、 従来の液晶パネルの分解斜視図である。 第 1 2図は、 第 1 1図に 示す液晶パネルの第 1の基板 1 0 Xに形成した電極パターンおよび端子を拡大し て示す平面図である。 第 1 2図は、 第 1 1図に示す液晶パネルの第 2の基板 2 0 Yに形成した電極パターンおよび端子を拡大して示す平面図である。 第 1 4図は 、 第 1 2図に示す第 1の基板 1 0 Xと、 第 1 3図に示す第 2の基板とを貼り合わ せたときの電極パターンおよび端子を拡大して示す平面図である。  FIG. 11 is an exploded perspective view of a conventional liquid crystal panel. FIG. 12 is an enlarged plan view showing electrode patterns and terminals formed on the first substrate 10X of the liquid crystal panel shown in FIG. FIG. 12 is an enlarged plan view showing an electrode pattern and terminals formed on the second substrate 20Y of the liquid crystal panel shown in FIG. FIG. 14 is an enlarged plan view showing an electrode pattern and a terminal when the first substrate 10X shown in FIG. 12 and the second substrate shown in FIG. 13 are bonded to each other. It is.
第 1 1図は、 第 1の電極パターン 4 0 Xが形成された基板 1 0 Xと第 2の電極 パターン 5 0 Yが形成された基板 2 0 Yとを貼り合わせ、 第 1及び第 2の電極パ ターンに挟まれた液晶を駆動するパッシブマトリクスタイプの液晶表示装置を示 している。 このようなパッシブマトリクスタイプの液晶表示装置は、 第 1 1図に 分解して模式旳に示すように、 所定の間隙を介してシール材 3 0によって貼り合 わされた一対の基板間にシール材 3 0によって液晶封入領域 3 5が区画され、 こ の液晶封入領域 3 5内に液晶が封入されている。  FIG. 11 shows a substrate 10 X on which a first electrode pattern 40 X is formed and a substrate 20 Y on which a second electrode pattern 50 Y is formed. It shows a passive matrix type liquid crystal display device that drives a liquid crystal sandwiched between electrode patterns. Such a passive matrix type liquid crystal display device is disassembled in FIG. 11, and as shown in a schematic diagram 旳, a sealing material is provided between a pair of substrates bonded by a sealing material 30 with a predetermined gap therebetween. The liquid crystal sealing area 35 is defined by 30, and liquid crystal is sealed in the liquid crystal sealing area 35.
このような構成の液晶パネル 1では、 第 2の電極パターン 5 0 Yと外部入力用 端子 8 2 Xが、 第 1の基板間導通用—端子 6 0 X、 及び第 2の基板間導通用端子 7 0 Yとの間に導通材を配置することによって電気的に接続されている。 そのため 、 第 1の基板上に形成した外部入力用端子 8 2 Xから、 第 2の基板 2 0 Y上に形 成した第 2の電極パターン 5 0 Yに液晶を駆動するための信号を印加できる。 こ のような液晶パネル 1においては、 共に第 1の基板上に形成されている外部入力 用端子 8 I X , 8 2 から、 それそれ異なる基板上に形成された第 1の電極パ夕 —ン 4 0 X及び第 2の電極パターン 5 0 Yに液晶を駆動するための信号を入力す ることができる。 In the liquid crystal panel 1 having such a configuration, the second electrode pattern 50 Y and the external input terminal 82 X are connected to the first inter-substrate conduction—terminal 60 X and the second inter-substrate conduction terminal. It is electrically connected by arranging a conducting material between the Y and Y. Therefore, a signal for driving the liquid crystal can be applied from the external input terminal 82X formed on the first substrate to the second electrode pattern 50Y formed on the second substrate 20Y. . This In such a liquid crystal panel 1, external input terminals 8 IX and 8 2, both formed on a first substrate, are connected to first electrode patterns 40 formed on different substrates. A signal for driving the liquid crystal can be input to X and the second electrode pattern 50Y.
第 1 1図に示す液晶パネルにおいては、外部入力用端子 8 1 X , 8 2 Xは第 1の 基板の基板辺 1 0 1 X近傍の第 1の端子形成領域に形成される。 そして第 1の基 板間導通用端子 6 0 Xと第 2の基板間導通用端子 7 0 Yとの導通は、 第 1の端子 形成領域及び第 2の基板の基板辺 2 0 1 X近傍の第 2の端子形成領域 2 1 Yにお いてなされる。 ここで、 基板辺 1 0 1 X、 及び 2 0 1 Yは、 同一方向に延びる 辺であるため、 外部入力用端子 8 1 X , 8 2 Xをフレキシブル基板 (図示せず。 ) やラバーコネクタなどを介して、 或いは直接液晶駆動用ドライバ等の外部回路 と接続するために、 第 1の端子形成領域 1 1 Xの一端は基板 2 0 Yと重ならない 部分、 即ち第 2の基板 2 0 Yの基板辺 2 0 1 Yから張り出した張出部分 1 5 Xに 形成される。 そして、 そこに形成される外部入力用端子 8 1 X , 8 2 Xは基板辺 1 0 1 Xに近い部分でフレキシブル基板 (図示せず。 ) やラバ一コネクタなどを 介して、 或いは直接液晶駆動用ドライバ等の外部回路と接続される。 その一方で 、 第 1の基板間導通用端子 6 0 Xと第 2の基板間導通用端子 7 0 Yとを導通させ るために、 第 1の端子形成領域 1 I Xの他端は、 第 2の基板 2 0 Yの第 2の端子 形成領域 2 1 Yと平面的に重なる領域まで延在形成される。  In the liquid crystal panel shown in FIG. 11, the external input terminals 81 X and 82 X are formed in a first terminal formation region near the substrate side 101 X of the first substrate. The conduction between the first inter-substrate conduction terminal 60 X and the second inter-substrate conduction terminal 70 Y is determined by the first terminal formation region and the vicinity of the substrate side 201 X of the second substrate. This is performed in the second terminal formation region 21Y. Here, since the board sides 101 X and 201 Y are sides extending in the same direction, the external input terminals 81 X and 82 X are connected to a flexible board (not shown), a rubber connector, or the like. One end of the first terminal formation region 11 X is not overlapped with the substrate 20 Y, that is, the second substrate 20 Y It is formed on a protruding portion 15 X protruding from the substrate side 201 Y. The external input terminals 8 1 X and 8 2 X formed there are close to the substrate side 101 X, through a flexible substrate (not shown), a rubber connector, or directly driven by a liquid crystal. Connected to an external circuit such as a driver. On the other hand, in order to make the first inter-substrate conduction terminal 60 X and the second inter-substrate conduction terminal 70 Y conduct, the other end of the first terminal formation region 1 IX is The second terminal forming region 21Y of the substrate 20Y is formed so as to extend to a region that planarly overlaps the second terminal forming region 21Y.
第 1 2図および第 1 3図はそれそれ、 従来の液晶パネル 1に用いた第 1の基板 1 0 Xおよび第 2の基板 2 0 Yにそれぞれ形成されている各端子形成領域の一部 を拡大して示す平面図である。  FIGS. 12 and 13 respectively show a part of each terminal forming area formed on the first substrate 10X and the second substrate 20Y used for the conventional liquid crystal panel 1. It is a top view which expands and shows.
第 1 1図および第 1 2図において、 第 1の基板 1 0 Xの基板辺 1 0 1 Xに沿つ て形成されている第 1の端子形成領域 1 1 Xには、 基板辺 1 0 1 Xの中央領域で 並ぶ複数の第 1の外部入力用端子 8 1 Xが形成されている。 また、 第 1の外部入 力用端子 8 1 Xが形成されている領域の両側 (両端) に相当する領域で基板辺 1 0 1 Xに沿って並ぶ複数の第 2の外部入力用端子 8 2 Xが形成されている。 そし て、 第 1の外部入力用端子 8 1 Xからは、 液晶駆動用の第 1の電極パターン 40 Xが複数列形成され、 第 2の外部入力用端子 82 Xからは、 第 2の基板 20 Yの 第 2の端子形成領域 2 1 Yと重なる位置まで第 1の基板間導通用端子 60Xが延 びている。 第 1の電極パターン 40X、 第 1の外部入力用端子 8 I X、 第 2の外 部入力用端子 82 X、 および第 1の基板間導通用端子 60Xは、 いずれも I T〇 膜 ( I nd i um T i n Ox i d e/透明導電膜) などによって形成されて いる。 In FIGS. 11 and 12, the first terminal forming region 11 X formed along the substrate side 101 X of the first substrate 10 X includes the substrate side 101 A plurality of first external input terminals 81 X arranged in the central region of X are formed. In addition, a plurality of second external input terminals 8 2 arranged along the substrate side 101 X in regions corresponding to both sides (both ends) of the region where the first external input terminals 81 X are formed. X is formed. Soshi From the first external input terminal 81X, a plurality of rows of first electrode patterns 40X for driving liquid crystal are formed, and from the second external input terminal 82X, the second substrate 20Y is formed. The first inter-substrate conduction terminal 60X extends to a position overlapping the second terminal formation region 21Y. The first electrode pattern 40X, the first external input terminal 8IX, the second external input terminal 82X, and the first inter-substrate conduction terminal 60X are all IT〇 films (Indium film). (Tin oxide / transparent conductive film).
一方、 第 2の基板 20 Yでは、 第 1 1図および第 1 3図からわかるように、 第 2の端子形成領域 2 1 Yのうち、 第 1の基板 1 0 Xの第 1の基板間導通用端子 6 0Xに対応する位置には基板辺 20 1 Yに沿って複数の第 2の基板間導通用端子 70 Yが形成されている。 これらの第 2の基板間導通用端子 70Yからは、 第 1 の電極パターン 40 Xの形成領域の両側に相当する領域を回り込んで液晶封入領 域 35内で第 1の電極パターン 40 Xと交差するように延びた液晶駆動用の第 2 の電極パターン 50 Yが複数列形成されている。 第 2の電極パターン 50 Y、 お よび第 2の基板間導通用端子 70Υも、 I TO膜などによって形成されている。 このように、 第 2の基板 20 Yでは、 第 1の基板 10Xに形成されている第 1の電 極パターン 40Xの形成領域を避けてその両側に相当する領域を回り込むように第 2 の電極パターン 50Yを第 2の基板間導通用端子 70Yから延ばす必要がある。 その ため、 第 2の基板間導通用端子 70Yは、 第 1の基板 10Xに形成されている第 1の 電極パターン 40 Xの形成領域の端部分に近い領域 (基板辺 201 Yの中央領域側 ) では直線的に形成されるが、 そこから両側に離れるほど、 斜めに延びる部分 (斜め部 分 702 Y) が占める割合が犬になっている。 但し、 第 2の基板間導通用端子 70Y は、 通常の配線部分と違って、 基板間に挟まれた導電材で第 1の基板間導通用端子 6 0Xとの導電接続を行うためのもの あるので、 隣接する端子間で短絡が起こりやす い。 従って、 このような端子間の短絡を確実に防止するには、 隣接する端子間に十分 広い間隔を確保する必要がある。 このため、 第 1の電極パターン 40Xの形成領域の 端部分から離れた領域 (基板辺 20 1 Yの両端側) に形成されている第 2の基板間導 4 On the other hand, in the second substrate 20Y, as can be seen from FIGS. 11 and 13, of the second terminal formation region 21Y, the first inter-substrate of the first substrate 10X is connected. At a position corresponding to the common terminal 60X, a plurality of second inter-substrate conduction terminals 70Y are formed along the substrate side 201Y. From these second inter-substrate conduction terminals 70Y, the area corresponding to both sides of the formation area of the first electrode pattern 40X is wrapped around and intersects with the first electrode pattern 40X in the liquid crystal sealing area 35. A plurality of rows of second electrode patterns 50Y for driving a liquid crystal are formed so as to extend. The second electrode pattern 50Y and the second inter-substrate conduction terminal 70 # are also formed of an ITO film or the like. As described above, on the second substrate 20Y, the second electrode pattern is formed so as to go around the area corresponding to both sides of the first electrode pattern 40X formed on the first substrate 10X while avoiding the area where the first electrode pattern 40X is formed. It is necessary to extend 50Y from the second inter-substrate conduction terminal 70Y. Therefore, the second inter-substrate conduction terminal 70Y is located in a region near the end of the first electrode pattern 40X formation region formed on the first substrate 10X (the center region side of the substrate side 201Y). Is formed in a straight line, but the farther away from it, the more dogs occupy the diagonally extending part (diagonal part 702 Y). However, unlike the normal wiring part, the second inter-substrate conduction terminal 70Y is for conducting conductive connection with the first inter-substrate conduction terminal 60X with a conductive material sandwiched between the substrates. Therefore, a short circuit is likely to occur between adjacent terminals. Therefore, in order to surely prevent such a short circuit between terminals, it is necessary to secure a sufficiently wide interval between adjacent terminals. For this reason, the second inter-substrate conductor formed in a region (both ends of substrate side 201Y) distant from the end of the region where first electrode pattern 40X is formed. Four
通用端子 7 0 Yでは、 隣接する端子の間において直線部分 7 0 1 Yの長さ寸法に大き な差をつけ、 そこから基板 1 0 Χの両側辺 1 0 3 Xの方向に向って斜めに曲げて配線 形成されることにより、 第 2の基板間導通用端子 7 0 Υの斜め部分 7 0 2 Υ同士の間 隔を広く確保している。 従って、 第 1 3図からわかるように、 第 2の基板間導通用端 子 7 0 Υにおいて直線部分 7 0 1 Υと斜め部分 7 0 2 Υとの境界を結ぶ線 Εが基板辺 2 0 1 Υとなす角度ひは、 かなり大きなものになっている。 In the common terminal 70 Y, a large difference is made in the length dimension of the straight part 70 1 Y between the adjacent terminals, and from there, diagonally toward the sides 103 X of both sides of the substrate 100 mm. By forming the wiring by bending, a wide interval between the oblique portions 70 2 Υ of the second inter-substrate conduction terminals 70 Υ is ensured. Therefore, as can be seen from FIG. 13, the line を connecting the boundary between the linear portion 70 1 Υ and the oblique portion 70 2 Υ at the second terminal 70 間 for inter-substrate conduction is the substrate side 200 1 The angle formed by Υ is quite large.
これに対して、 第 1の電極パターン 4 0 Xの形成領域に近い領域の方に、 第 2 の基板間導通用端子 7 0 Υが真っ直ぐに延びている部分では、 そこから延びる第 2の電極パターン 5 0 Υが斜めになつていても、 この斜め部分 5 0 2 Υでは導電 材による基板間導通を行わないので、 隣接するパターンの間隔をかなり狭めるこ とができる。 従って、 第 2の電極パターン 5 0 Υにおいて直線部分 5 0 1 Υと斜 め部分 5 0 2 Υとの境界を結んだ線が基板辺 2 0 1 Yとなす角度は、 かなり小さ なものになっている。  On the other hand, in a portion where the second inter-substrate conduction terminal 70 Υ extends straight toward a region near the region where the first electrode pattern 40 X is formed, the second electrode extending therefrom extends. Even if the pattern 50Υ is oblique, the conduction between the substrates by the conductive material is not performed in the oblique portion 502 2, so that the interval between adjacent patterns can be considerably reduced. Therefore, in the second electrode pattern 50 °, the angle formed by the line connecting the boundary between the linear portion 501 ′ and the slanted portion 502 ′ with the substrate side 201Y is considerably small. ing.
このように構成した第 1の基板 1 0 Xと第 2の基板 2 0 Υとを用いて液晶パネ ル 1を構成するにあたっては、 第 1 1図および第 1 4図に示すように、 第 1の基 板 1 0 Χと第 2の基板 2 0 Υとをシール材 3 0を介して貼り合わせる際に、 シー ル材 3 0にはギャップ材および導通材を配合しておくとともに、 シール材 3 0を 第 1の基板間導通用端子 6 0 Xおよび第 2の基板間導通用端子 7 0 Υが重なる領 域にも塗布または印刷によって形成する。 従って、 第 1の基板 1 0 Χと第 2の基 板 2 0 Υとをシール材 3 0 Υを介して貼り合わると、 シール材 3 0に含まれてい る導通材により第 1の基板間導通用端子 6 0 Xと第 2の基板間導通用端子 7 0 Υ とが導通する。 また、 第 1の基板 1 0 Χと第 2の基板 2 0 Υとを貼り合わせると、 第 1の電極パターン 4 0 Χと第 2の電極パターン 5 0 Υとの交差部分によって画 素 5がマトリクス状に形成される。—このため、 第 1の基板 1 0 Xの第 1の端子形 成領域 1 1 Xの基板辺 1 0 1 Xに近い位置にフレキシブル基板を異方性導電材な どを用いて実装した後、 このフレキシブル基板を介して第 1の基板 1 0 Xの第 1 の外部入力用端子 8 1 Xおよび第 2の外部入力用端子 8 2 Χに信号入力すると、 第 1の基板 1 0 Xに形成されている第 1の電極パターン 4 0 Xには第 1の外部入 力用端子 8 1 Xを介して画像デ一夕を印加することができ、 第 2の基板 2 0 Yに 形成されている第 2の電極パターン 5 0 Yには、 第 1の外部入力用端子 8 2 X、 第 1の基板間導通用端子 6 0 X、 導通材および第 2の基板間導通用端子 7 0 Yを 介して走査信号を印加することができる。 しかしながら、 上記従来技術においては、 斜めに延びるような第 2の基板間導 通用端子 7 0 Yを用いて導通を行っている。 そのため、 基板間導通の信頼性を確 保るのに十分な基板間導通端子の端子幅、 或いは隣り合う端子間の幅を確保しよ うとすると、 隣接する端子の間において直線部分 7 0 1 Yの長さ寸法に大きな差 をつけることによって斜め部分 7 0 2 Yにかなり十分な間隔を確保せざるを得な い。 つまり、 表示領域外のこの領域を無駄に使っているという問題点がある。 こ のため、 従来の電極構造では、 第 1の基板 1 0 Xに形成されている第 1の電極パ ターン 4 0 Xの最も外側に位置するパターンが表示領域付近で折れ曲がった角部 分と、 第 2の端子形成領域 2 1 Yで最も外側に位置する端子の基端部分との間矢 印 Bで示す領域幅) に形成する第 2の電極パターン 5 0 Yの数や第 2の基板間導 通用端子 7 0 Yの数をあまり増やせないという課題がある。 仮に、 第 2の電極パ ターン 5 0 Yの数や第 2の基板間導通用端子 7 0 Yを増やすと、 第 1 4図に示す ように、 領域 2 5 0において第 2の電極パターン 5◦ Yが第 1の電極パターン 4 0 Xに重なってしまい、 基板間で短絡が発生する確率が高くなるという問題点が ある。 また、 第 2の電極パターン 5 0 Yの数や第 2の基板間導通用端子 7 0 Yの 数を増やすことを目的に、 第 2の基板間導通用端子 7 0 Yの斜め部分 7 0 2 Yの 間隔を狭めて第 2の電極パターン 5 0 Yを追加する領域を確保すると、 隣接する 端子間で短絡が発生する確率が高くなる。 さらに、 第 2の電極パターン 5 0 Yや 第 2の基板間導通用端子 7 0 Yの線幅および間隔を狭めるなどして矢印 Bで示す 領域幅を狭めて第 2の電極パターン 5 0 Yを追加する領域を確保すると電気的抵 抗 (配線抵抗) が増大し、 表示品位が低下する。 In configuring the liquid crystal panel 1 using the first substrate 10X and the second substrate 20 # thus configured, as shown in FIGS. 11 and 14, When bonding the substrate 10 Χ of the second substrate 20 Χ and the second substrate 20 し て via the sealing material 30, the gap material and the conductive material are compounded in the sealing material 30, and the sealing material 3 0 is also formed by coating or printing in a region where the first inter-substrate conduction terminal 60 X and the second inter-substrate conduction terminal 70 # overlap. Therefore, when the first substrate 10Χ and the second substrate 20Υ are pasted together via the seal material 30Υ, the first substrate 10 に よ り is bonded by the conductive material contained in the seal material 30 0. The conduction terminal 60 X and the second inter-substrate conduction terminal 70 7 conduct. Further, when the first substrate 10Χ and the second substrate 20Υ are bonded together, the pixels 5 are arranged in a matrix by the intersection of the first electrode pattern 40Χ and the second electrode pattern 50Υ. It is formed in a shape. -For this reason, after mounting the flexible substrate at a position near the substrate side 101X of the first terminal formation area 11X of the first substrate 10X using an anisotropic conductive material or the like, When signals are input to the first external input terminal 8 1 X and the second external input terminal 8 2 の of the first substrate 10 X through this flexible substrate, Image data can be applied to the first electrode pattern 40 X formed on the first substrate 10 X via the first external input terminal 81 X, and the second electrode pattern The second electrode pattern 50 Y formed on the substrate 20 Y includes a first external input terminal 82 X, a first inter-substrate conduction terminal 60 X, a conductive material, and a second substrate. A scanning signal can be applied through the inter-connection terminal 70Y. However, in the above-described conventional technique, conduction is performed using the second inter-substrate conduction terminal 70Y that extends obliquely. Therefore, if the terminal width of the inter-substrate conduction terminal or the width between adjacent terminals is to be ensured to ensure the reliability of the inter-substrate conduction, a straight line portion between adjacent terminals is obtained. By making a large difference in the length dimension of the gap, it is necessary to secure a fairly sufficient interval in the oblique portion 70 2 Y. That is, there is a problem that this area outside the display area is wasted. For this reason, in the conventional electrode structure, the outermost pattern of the first electrode pattern 40X formed on the first substrate 10X has a corner portion bent near the display area, and (The width of the area indicated by arrow B) between the second terminal formation area 21 1 Y and the base end of the outermost terminal (the width of the area indicated by arrow B). There is a problem that the number of conductive terminals 70 Y cannot be increased much. If the number of second electrode patterns 50 Y and the number of second inter-substrate conduction terminals 70 Y are increased, as shown in FIG. 14, the second electrode patterns 5 There is a problem in that Y overlaps the first electrode pattern 40X, and the probability that a short circuit occurs between the substrates increases. In order to increase the number of the second electrode patterns 50 Y and the number of the second inter-substrate conduction terminals 70 Y, the oblique portion 70 0 2 of the second inter-substrate conduction terminals 70 Y is used. If the area for adding the second electrode pattern 50Y is secured by reducing the interval of Y, the probability that a short circuit will occur between adjacent terminals increases. Furthermore, the area width indicated by the arrow B is reduced by reducing the line width and the interval of the second electrode pattern 50Y and the second inter-substrate conduction terminal 70Y, thereby forming the second electrode pattern 50Y. If an additional area is secured, the electric resistance (wiring resistance) increases and the display quality deteriorates.
そこで、 本発明の目的は、 液晶を保持する一対の基板のうちの一方の基板に形 -Therefore, an object of the present invention is to form one of a pair of substrates holding a liquid crystal on a substrate. -
6 成した外部入力用端子から信号入力を行い、 基板間に挟まれた導通材を用いて基 板間の導通を行うことにより他方の基板への信号入力を行うタイプの液晶パネル において、 非表示領域の配線領域を有効に使うことにより、 信頼性や表示品位を 低下させることなく、 液晶駆動用の電極パターン数の増大を図ることのできる構 成を提供することにある。 発明の開示 6 In the liquid crystal panel of the type that inputs signals from the external input terminals that are formed and conducts signals between the substrates by using a conductive material sandwiched between the substrates to input signals to the other substrate, An object of the present invention is to provide a configuration that can increase the number of electrode patterns for driving a liquid crystal without deteriorating reliability and display quality by effectively using a wiring region of the region. Disclosure of the invention
上記課題を解決するために、 本発明は、 基板の辺に隣接して配置された第 1の 基板間導通用端子と、 前記第 1の基板間導通用端子と電気的に接続されており、 前記第 1の基板間導通用端子が隣接する辺と対向する辺に向かって延びるように 配置された第 1の電極パターンを有する第 1の基板、 及び基板の辺に隣接して配 置された第 1の外部入力用端子と、 前記第 1の外部入力用端子と電気的に接続さ れた第 2の基板間導通用端子と、 前記第 1の外部入力用端子の両側に配置された 第 2の外部入力用端子と、 前記第 2の外部入力用端子と電気的に接続された第 2 の電極パターンとを有する第 2の基板、 を具備し、 前記第 1の基板と前記第 2の 基板は、 前記第 1の電極パターンと前記第 2の電極パターンが互いに交差する方 向に延びるように対向して配置されてなり、 前記第 1の基板間導通用端子及び前 記第 2の基板間導通用端子は、 前記第 1の基板と前記第 2の基板との間に挟まれ た導通材によって電気的に接続されていることを特徴とする。  In order to solve the above-mentioned problem, the present invention provides a first inter-substrate conduction terminal disposed adjacent to a side of a substrate, and the first inter-substrate conduction terminal, A first substrate having a first electrode pattern disposed so that the first inter-substrate conduction terminal extends toward a side facing an adjacent side; and a first substrate disposed adjacent to the side of the substrate. A first external input terminal; a second inter-substrate conduction terminal electrically connected to the first external input terminal; and a second external input terminal disposed on both sides of the first external input terminal. A second substrate having two external input terminals, and a second electrode pattern electrically connected to the second external input terminal, wherein the first substrate and the second substrate are provided. The substrate is paired so that the first electrode pattern and the second electrode pattern extend in a direction crossing each other. The first inter-substrate conduction terminal and the second inter-substrate conduction terminal are arranged by a conductive material sandwiched between the first substrate and the second substrate. It is characterized by being electrically connected.
本発明の第 1の液晶表示装置においては、 第 1の基板に形成された第 1の基板 間導通用端子と、 第 2の基板に形成された第 2の基板間導通用端子とを導通材に より接続することによって、 第 1の基板上にある第 1の電極パターンと、 第 2の 基板上にある第 1の外部入力用端子とを電気的に接続するいわゆる基板間導通を 行っている。 本発明ではこの基板間導通を行うにあたり、 第 1の基板間導通用端 子が形成された辺の対向辺に向かって延びるように形成された第 1の電極パター ンを、 第 2の基板に形成された第 1の外部入力用端子に接続している。 また、 前 記第 1の電極パターンと交差する方向に延びるように形成された第 2の電極パ夕 ーンを、 基板間導通せずに第 1の外部入力用端子の両側に配置された第 2の外部 入力用端子に接続している。 この構成によれば、 第 1の電極パターンを基板間導 通に利用しているので、 基板間導通の信頼性を気にすることなく第 2の電極パ夕 —ンの数を増やすことができる。 なぜならば、 パターンを斜めに延ばさざるを得 ない部分 (例えば第 4図の A ) のパターン数が増えたとしてもこのパターンは基 板間導通に用いるパターンではないので、 隣り合うパターン間の幅を狭く しても かまわないからである。 従って、 第 2の電極パターンの数を増やしたとしても 、 基板間導通用端子の間隔を狭める必要がなく、 かつ、 第 1のパターンの線幅を 狭める必要がない。 よって、 本発明によれば、 信頼性や表示品位を低下させるこ となく、 液晶駆動用の電極パターン数の増大を図ることができる。 また、 第 2の 電極パターンの数をそれほど増やさない場合にあっても、 パターンを斜めに延ば さざるを得ない部分を狭めることができるので、 外形寸法が従来と等しい大きさ の液晶パネルにおいて表示領域を拡張できる。 In the first liquid crystal display device of the present invention, the first inter-substrate conduction terminal formed on the first substrate and the second inter-substrate conduction terminal formed on the second substrate are connected by a conductive material. , So-called inter-substrate conduction is performed to electrically connect the first electrode pattern on the first substrate to the first external input terminal on the second substrate. . In the present invention, in performing the inter-substrate conduction, the first electrode pattern formed so as to extend toward the opposite side of the side on which the first inter-substrate conduction terminal is formed is attached to the second substrate. It is connected to the formed first external input terminal. Also, a second electrode pattern formed to extend in a direction intersecting with the first electrode pattern. Are connected to the second external input terminals arranged on both sides of the first external input terminals without conducting between the substrates. According to this configuration, since the first electrode pattern is used for inter-substrate conduction, the number of second electrode patterns can be increased without concern for reliability of inter-substrate conduction. . This is because even if the number of patterns in the part where the pattern must be extended obliquely (for example, A in Fig. 4) increases, this pattern is not a pattern used for inter-substrate conduction. This is because it can be narrow. Therefore, even if the number of the second electrode patterns is increased, it is not necessary to reduce the interval between the inter-substrate conduction terminals, and it is not necessary to reduce the line width of the first pattern. Therefore, according to the present invention, the number of electrode patterns for driving a liquid crystal can be increased without lowering the reliability and display quality. Also, even if the number of second electrode patterns is not increased so much, it is possible to narrow the portion where the pattern must be extended diagonally, so that a liquid crystal panel whose external dimensions are the same as the conventional size can be obtained. The display area can be expanded.
また、 本発明においては、 前記第 1の基板間導通用端子、 及び前記第 2の基板 間導通用端子はそれらが隣接する辺と対向する辺に向かって直線的に配置されて いると好ましい。 つまり、 第 1の導通用端子、 及び第 2の基板間導通用端子が基 板間導通をおこなう領域において、 斜めに形成されていない構成とすることによ り、 端子間の距離を十分に確保することが可能となり、 基板間導通の信頼性が高 まる。  Further, in the present invention, it is preferable that the first inter-substrate conduction terminal and the second inter-substrate conduction terminal are linearly arranged toward a side facing an adjacent side. In other words, a sufficient distance between the terminals can be ensured by not forming the first conductive terminal and the second conductive terminal between the substrates in a region where the conductive between the substrates is performed. This improves the reliability of conduction between the substrates.
また、 本発明においては、 前記第 1の電極パターンには画像データが供給され 前記第 2の電極パターンには走査信号が供給されると好ましい。 このような構成 の液晶装置では、 前記第 1の電極パターンは、 たとえば、 前記第 1の外部入力用 端子、 前記第 2の基板間導通用端子、 前記導通材および前記第 1の基板間導通用 端子を介して画像データが供給されるデータ電極パターンとして用いられ、 前記 第 2の電極パターンは、 前記第 2の外部入力用端子を介して走査信号が印加され る走査電極パターンとして用いられることとなる。  In the present invention, it is preferable that image data is supplied to the first electrode pattern, and a scanning signal is supplied to the second electrode pattern. In the liquid crystal device having such a configuration, the first electrode pattern includes, for example, the first external input terminal, the second inter-substrate conduction terminal, the conduction material, and the first inter-substrate conduction. Used as a data electrode pattern to which image data is supplied via a terminal, and the second electrode pattern is used as a scan electrode pattern to which a scan signal is applied via the second external input terminal. Become.
本発明の第 2の液晶表示装置は、 基板の辺に隣接して配置された第 1の基板間 導通用端子と、 前記第 1の基板間導通用端子と電気的に接続されており、 前記第 1の基板間導通用端子が隣接する辺と対向する辺に向かって延びるように配置さ れた第 1の電極パターンを有する第 1の基板と、 基板の辺に隣接して配置された 外部入力用端子と、 第 2の基板間導通用端子と、 第 2の電極パターンと、 を有す る第 2の基板とを、 前記第 1の電極パターンと前記第 2の電極パターンが互いに 交差する方向に延びるように対向して配置してなり、 前記第 2の基板に実装され てなり、 入力端子が前記外部入力用端子と電気的に接続され、 出力端子が前記第 2の基板間導通用端子及び前記第 2の電極パターンに電気的に接続された駆動用 I Cを有し、 前記第 1の基板間導通用端子及び前記第 2の基板間導通用端子は、 前記第 1の基板と前記第 2の基板との間に挟まれた導通材によって電気的に接続 されていることを特徴とする。 A second liquid crystal display device according to the present invention is a liquid crystal display device comprising: A conduction terminal, electrically connected to the first inter-substrate conduction terminal, and arranged such that the first inter-substrate conduction terminal extends toward a side facing an adjacent side; A first substrate having a first electrode pattern, an external input terminal disposed adjacent to a side of the substrate, a second inter-substrate conduction terminal, and a second electrode pattern. A second substrate, which is disposed so as to face the first electrode pattern and the second electrode pattern so as to extend in a direction intersecting each other, and is mounted on the second substrate, and an input terminal is provided. A drive IC electrically connected to the external input terminal, and an output terminal electrically connected to the second inter-substrate conduction terminal and the second electrode pattern. The inter-substrate conduction terminal and the second inter-substrate conduction terminal are disposed in front of the first substrate. Characterized in that it is electrically connected by a conducting material sandwiched between the second substrate.
本発明の第 2の液晶表示装置においては、 第 1の基板に形成された第 1の基板 間導通用端子と、 第 2の基板に形成された第 2の基板間導通用端子とを導通材に より接続するいわゆる基板間導通を行っている。 そのため、 第 1の基板上にあ る第 1の電極パターンは、 第 1及び第 2の基板間導通用端子を介して第 2の基板 上に実装された駆動用 I Cの出力端子に接続される。 本発明ではこの基板間導通 を行うにあたり、 第 1の基板間導通用端子が形成された辺の対向辺に向かって延 びるように形成された第 1の電極パターンを利用している。 また、 前記第 1の電 極パターンと交差する方向に延びるように配置された第 2の電極パターンを、 基 板間導通せずに駆動用 I Cの出力端子に接続している。 この構成によれば、 第 1 の電極パターンを基板間導通に利用しているので、 基板間導通の信頼性を気にす ることなく第 2の電極パターンの数を増やすことができる。 なぜならば、 パター ンを斜めに延ばさざるを得ない部分 (例えば第 4図の A ) のパターン数が増えた としてもこのパターンは基板間導 ®に用いるパターンではないので、 隣り合うパ ターン間の幅を狭く してもかまわないからである。 従って、 第 2の電極パ夕一 ンの数を増やしたとしても、 基板間導通用端子の間隔を狭める必要がなく、 かつ 、 第 1のパターンの線幅を狭める必要がない。 よって、 本発明によれば、 信頼性 -In the second liquid crystal display device of the present invention, a first inter-substrate conduction terminal formed on the first substrate and a second inter-substrate conduction terminal formed on the second substrate are connected by a conductive material. A so-called inter-substrate continuity is established. Therefore, the first electrode pattern on the first substrate is connected to the output terminal of the driver IC mounted on the second substrate via the first and second terminals for conduction between the substrates. . In performing the inter-substrate conduction in the present invention, the first electrode pattern formed so as to extend toward the side opposite to the side on which the first inter-substrate conduction terminal is formed is used. Further, a second electrode pattern arranged so as to extend in a direction intersecting with the first electrode pattern is connected to an output terminal of the driving IC without conducting between the substrates. According to this configuration, since the first electrode pattern is used for inter-substrate conduction, the number of second electrode patterns can be increased without concern for the reliability of inter-substrate conduction. This is because even if the number of patterns in a portion where the pattern must be extended obliquely (for example, A in FIG. 4) increases, this pattern is not a pattern used for inter-substrate conduction, so that a pattern between adjacent patterns is used. This is because the width can be reduced. Therefore, even if the number of the second electrode pads is increased, it is not necessary to reduce the distance between the inter-substrate conduction terminals, and it is not necessary to reduce the line width of the first pattern. Therefore, according to the present invention, reliability -
9 9
や表示品位を低下させることなく、 液晶駆動用の電極パターン数の増大を図るこ とができる。 It is possible to increase the number of electrode patterns for driving the liquid crystal without deteriorating the display quality.
また、 本発明の第 2の液晶表示装置においては、 上記した第 1の液晶表示装置 に用いる、 各種構成を採用可能であり、 例えば、  Further, in the second liquid crystal display device of the present invention, various configurations used for the above-described first liquid crystal display device can be adopted.
( 1 ) 第 1の導通用端子、 及び第 2の基板間導通用端子はそれらが形成された 辺と対向する辺に向かって直線的に形成されている。  (1) The first conduction terminal and the second inter-substrate conduction terminal are formed linearly toward the side opposite to the side on which they are formed.
( 2 ) 第 1の電極パターンには画像データが供給され第 2の電極パターンには 走査信号が供給される。  (2) Image data is supplied to the first electrode pattern, and a scanning signal is supplied to the second electrode pattern.
等の各種構成が採用可能である。  Various configurations such as can be adopted.
上記 ( 1 ) 及び (2 ) による作用効果は、 前述した本発明による第 1の液晶表 示装置と同等であるのでここではその説明は省略する。 図面の簡単な説明 第 1図は、 本発明の実施の形態 1に係る液晶表示装置に用いた液晶パネルの外 観を示す斜視図である。  The functions and effects of the above (1) and (2) are equivalent to those of the above-described first liquid crystal display device according to the present invention, and a description thereof will not be repeated. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the appearance of a liquid crystal panel used in a liquid crystal display device according to Embodiment 1 of the present invention.
第 2図は、 第 1図に示す液晶パネルを分解した様子を模式的に示す斜視図であ る。  FIG. 2 is a perspective view schematically showing a state in which the liquid crystal panel shown in FIG. 1 is disassembled.
第 3図は、 第 2図に示す液晶パネルの第 1の基板に形成した電極パターンおよ び端子を拡大して示す平面図である。  FIG. 3 is an enlarged plan view showing an electrode pattern and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
第 4図は、 第 2図に示す液晶パネルの第 2の基板に形成した電極パターンおよ び端子を拡大して示す平面図である。  FIG. 4 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
第 5図は、 第 3図に示す第 1の基板と、 第 4図に示す第 2の基板とを貼り合わ せたときの電極パターンおよび端子を拡大して示す平面図である。  FIG. 5 is an enlarged plan view showing electrode patterns and terminals when the first substrate shown in FIG. 3 and the second substrate shown in FIG. 4 are bonded together.
第 6図は、 本発明の実施の形態 2に係る液晶表示装置に用いた液晶パネルの外 観を示す斜視図である。  FIG. 6 is a perspective view showing an appearance of a liquid crystal panel used in a liquid crystal display device according to Embodiment 2 of the present invention.
第 7図は、 第 6図に示す液晶パネルを分解した様子を模式的に示す斜視図であ る。 1 0 FIG. 7 is a perspective view schematically showing a state in which the liquid crystal panel shown in FIG. 6 is disassembled. Ten
第 8図は、 第 7図に示す液晶パネルの第 1の基板に形成した電極パターンおよ び端子を拡大して示す平面図である。 FIG. 8 is an enlarged plan view showing an electrode pattern and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
第 9図は、 第 Ί図に示す液晶パネルの第 2の基板に形成した電極パターンおよ び端子を拡大して示す平面図である。  FIG. 9 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
第 1 0図は、 第 8図に示す第 1の基板と、 第 9図に示す第 2の基板とを貼り合 わせたときの電極パターンおよび端子を拡大して示す平面図である。  FIG. 10 is an enlarged plan view showing an electrode pattern and terminals when the first substrate shown in FIG. 8 and the second substrate shown in FIG. 9 are bonded together.
第 1 1図は、 従来の液晶パネルの分解斜視図である。  FIG. 11 is an exploded perspective view of a conventional liquid crystal panel.
第 1 2図は、 第 1 1図に示す液晶パネルの第 1の基板に形成した電極パターン および端子を拡大して示す平面図である。  FIG. 12 is an enlarged plan view showing an electrode pattern and terminals formed on a first substrate of the liquid crystal panel shown in FIG.
第 1 3図は、 第 1 1図に示す液晶パネルの第 2の基板に形成した電極パターン および端子を拡大して示す平面図である。  FIG. 13 is an enlarged plan view showing electrode patterns and terminals formed on a second substrate of the liquid crystal panel shown in FIG.
第 1 4図は、 第 1 2図に示す第 1の基板と、 第 1 3図に示す第 2の基板とを貼 り合わせたときの電極パターンおよび端子を拡大して示す平面図である。 発明を実施するための最良の形態  FIG. 14 is an enlarged plan view showing an electrode pattern and terminals when the first substrate shown in FIG. 12 and the second substrate shown in FIG. 13 are bonded together. BEST MODE FOR CARRYING OUT THE INVENTION
添付図面を参照して、 本発明の実施の形態を説明する。  Embodiments of the present invention will be described with reference to the accompanying drawings.
[実施の形態 1 ] [Embodiment 1]
(全体構成)  (overall structure)
第 1図は、 本形態の液晶表示装置に用いた液晶パネルの外観を示す斜視図であ り、 第 2図は、 この液晶パネルを分解した様子を模式的に示す斜視図である。 第 3図は、 第 2図に示す液晶パネルの第 1の基板に形成した電極パターンおよび端 子を拡大して示す平面図である。 第 4図は、 第 2図に示す液晶パネルの第 2の基 板に形成した電極パターンおよび端子を拡大して示す平面図である。 なお、 第 1 図および第 2図には、 電極パターンおよび端子などを模式的に示してあるだけな ので、 それらの詳細については、 電極パターンおよび端子の一部を拡大して示す 第 3図および第 4図を参照して後述する。 第 1図および第 2図において、 携帯電話などの電子機器に搭載されているパッ シブマトリクスタイプの液晶表示装置に用いられている液晶パネル 1は、 所定の 間隙を介してガラス又はプラスチック等からなる第 1の基板 1 0と第 2の基板 2 0がシール材 3 0を介して対向して貼り合わされている。 シール材 3 0によって 区画された液晶封入領域 3 5内に液晶が封入されている。 第 1の基板 1 0には液 晶封入領域 3 5内で縦方向に延びる第 1の電極パターン 4 0が複数列形成されて おり、 第 2の基板 2 0には、 液晶封入領域 3 5内で横方向に延びる第 2の電極パ ターン 5 0が複数列形成されている。 FIG. 1 is a perspective view showing the appearance of a liquid crystal panel used in the liquid crystal display device of the present embodiment, and FIG. 2 is a perspective view schematically showing an exploded state of the liquid crystal panel. FIG. 3 is an enlarged plan view showing electrode patterns and terminals formed on a first substrate of the liquid crystal panel shown in FIG. FIG. 4 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG. Note that FIGS. 1 and 2 only schematically show the electrode patterns and terminals and the like. This will be described later with reference to FIG. In FIGS. 1 and 2, a liquid crystal panel 1 used in a passive matrix type liquid crystal display device mounted on an electronic device such as a mobile phone is made of glass or plastic through a predetermined gap. The first substrate 10 and the second substrate 20 are bonded to each other with the sealant 30 interposed therebetween. Liquid crystal is sealed in a liquid crystal sealed area 35 partitioned by the sealing material 30. The first substrate 10 has a plurality of rows of first electrode patterns 40 extending in the vertical direction in the liquid crystal enclosing area 35, and the second substrate 20 has a liquid crystal encapsulating area 35. The second electrode pattern 50 extending in the horizontal direction is formed in a plurality of rows.
ここに示す液晶パネル 1では、 第 2の基板 2 0の外側表面に偏光板 5が粘着剤 などによって貼られ、 第 1の基板 1 0の外側表面にも偏光板 6が粘着剤などで貼 られている。 液晶パネル 1を反射型として構成する際には、 偏光板 5、 6の外側 に、 あるいは偏光板 5、 6の代わりに反射板 (図示せず。 ) が貼られる。  In the liquid crystal panel 1 shown here, a polarizing plate 5 is attached to the outer surface of the second substrate 20 with an adhesive or the like, and the polarizing plate 6 is also attached to the outer surface of the first substrate 10 with an adhesive or the like. ing. When the liquid crystal panel 1 is configured as a reflection type, a reflection plate (not shown) is attached to the outside of the polarization plates 5 and 6, or instead of the polarization plates 5 and 6.
このように構成した液晶パネル 1においては、 第 1及び第 2の外部入力用端子 8 1 , 8 2は第 2の基板の基板辺 2 0 1近傍の第 2の端子形成領域に形成される 。 そして第 1の基板間導通端子 6 0と第 2の基板間導通端子 7 0との導通は、 第 1の基板の基板辺 1 0 1近傍の第 1の端子形成領域 1 1及び、 第 2の端子形成領 域 2 1においてなされる。 ここで、 第 1の基板辺 1 0 1 , 1 0 2は同一方向に延 びる辺であるため、 第 1及び第 2の外部入力用端子 8 1 , 8 2をフレキシブル基 板 (図示せず。 ) やラバーコネクタなどを介して、 或いは直接液晶駆動用ドライ バ等の外部回路と接続するために、 第 2の端子形成領域 2 1の一端は基板 1 0と 重ならない部分、 即ち第 1の基板 1 0の基板辺 1 0 1から張り出した部分に形成 される。 そのため、 第 2の基板 2 0としては、 第 1の基板 1 0よりも大きな基板 が用いられる。 その一方で、 第 1の基板間導通用端子 6 0と第 2の基板間導通用 端子 7 0とを導通させるために、 第 2の端子形成領域 2 1の他端は、 第 1の基板 1 0の第 1の端子形成領域 1 1 と平面的に重なる領域まで延在形成される。 本形態では、 第 2図および第 3図に示すように、 第 1の端子形成領域 1 1は第 1の基板 1 0の基板辺 1 0 1の中央部分に沿って形成され、 この第 1の端子形成 c In the liquid crystal panel 1 configured as described above, the first and second external input terminals 81 and 82 are formed in the second terminal formation region near the substrate side 201 of the second substrate. The conduction between the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 is determined by the first terminal formation region 11 near the substrate side 101 of the first substrate and the second This is performed in the terminal formation area 21. Here, since the first substrate sides 101, 102 extend in the same direction, the first and second external input terminals 81, 82 are connected to a flexible substrate (not shown). One end of the second terminal formation region 21 does not overlap with the substrate 10, that is, the first substrate, for connection to an external circuit such as a driver for driving a liquid crystal, or via a rubber connector or directly. It is formed at the portion protruding from the substrate side 101 of 10. Therefore, a substrate larger than the first substrate 10 is used as the second substrate 20. On the other hand, in order to make the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 conduct, the other end of the second terminal formation region 21 is connected to the first substrate 1 The first terminal formation region 11 of 0 is formed so as to extend to a region overlapping with the first surface. In this embodiment, as shown in FIG. 2 and FIG. 3, the first terminal formation region 11 is formed along the central portion of the substrate side 101 of the first substrate 10, Terminal formation c
1 2  1 2
領域 1 1では、 基板辺 1 0 1に沿って複数の第 1の基板間導通用端子 6 0が所定 の間隔をもって並んでいる。 また、 第 1の基板 1 0では、 第 1の基板間導通用端 子 6 0から対向する基板辺 1 0 2に向かって複数列の液晶駆動用の第 1の電極パ ターン 4 0が両側に広がって斜めに延びた後、 液晶封入領域 3 5内で基板辺 1 0 1、 1 0 2に直交する方向に延びている。 ここで、 第 1の電極パターン 4 0およ び第 1の基板間導通用端子 6 0は、 所定パターンに形成された I T O膜によって 形成されている。 In the region 11, a plurality of first inter-substrate conduction terminals 60 are arranged at predetermined intervals along the substrate side 101. In the first substrate 10, a plurality of rows of first electrode patterns 40 for driving liquid crystal are arranged on both sides from the first inter-substrate conduction terminal 60 toward the opposing substrate side 102. After spreading and extending obliquely, it extends in a direction perpendicular to the substrate sides 101 and 102 in the liquid crystal sealing region 35. Here, the first electrode pattern 40 and the first inter-substrate conduction terminal 60 are formed of an ITO film formed in a predetermined pattern.
第 2図および第 4図に示すように、 第 2の基板 2 0において、 第 2の端子形成 領域 2 1も基板辺 2 0 1に沿って形成されているが、 この第 2の端子形成領域 2 1は、 基板辺 2 0 1の両端を除く比較的広い範囲にわたって形成されている。 第 2の端子形成領域 2 1には、 その中央領域で基板辺 2 0 1に沿って所定の間隔を もって並ぶ複数の第 1の外部入力用端子 8 1、 およびこれらの第 1の外部入力用 端子 8 1が形成されている領域の両側 2箇所で基板辺 2 0 1に沿って所定の間隔 をもって並ぶ複数の第 2の外部入力用端子 8 2が形成されている。 ここで、 第 1 の外部入力用端子 8 1および第 2の外部入力用端子 8 2は、 第 2の端子形成領域 2 1において、 いずれも、 対向する基板辺 2 0 2 (第 2図参照。 ) に向かって延 びている。  As shown in FIGS. 2 and 4, in the second substrate 20, the second terminal formation region 21 is also formed along the substrate side 201, and the second terminal formation region 21 is formed over a relatively wide range excluding both ends of the substrate side 201. The second terminal forming region 21 has a plurality of first external input terminals 81 arranged at predetermined intervals along the substrate side 201 in a central region thereof, and these first external input terminals 81. A plurality of second external input terminals 82 are formed at two locations on both sides of the region where the terminals 81 are formed and are arranged at a predetermined interval along the substrate side 201. Here, the first external input terminal 81 and the second external input terminal 82 are both opposed to the substrate side 202 in the second terminal formation region 21 (see FIG. 2). ).
また、 第 2の基板 2 0において、 第 1の外部入力用端子 8 1からは、 第 1の基 板 1 0と第 2の基板 2 0とを貼り合わせたときに第 1の基板間導通用端子 6 0と 重なる複数の第 2の基板間導通用端子 7 0が基板辺 2 0 2に向かって直線的に延 びている。  Further, in the second substrate 20, the first external input terminal 81 provides a first inter-substrate conduction when the first substrate 10 and the second substrate 20 are bonded to each other. A plurality of second inter-substrate conduction terminals 70 overlapping the terminals 60 extend linearly toward the substrate side 202.
さらに、 第 2の基板 2 0において、 第 2の外部入力用端子 8 2からは、 第 1の 基板 1 0と第 2の基板 2 0とを貼り合わせたときに第 1の電極パターン 4 0の形 成領域の両側に相当する領域を回り.込むように複数列の液晶駆動用の第 2の電極 パターン 5 0が形成される。 そして、 これらの第 2の電極パターン 5 0は、 液晶 封入領域 3 5内において第 1の電極パターン 4 0と交差するように延びている。 すなわち、 第 2の基板 2 0上に形成される第 2の電極パターン 5 0の配線は、 第 1の基板 1 0と第 2の基板 2 0を貼り合わせたときに第 1の基板 1 0上の第 1の 電極パターン 4 0が形成されている領域の両側に平面的に相当する各領域におい て、 両側の各々で側辺 2 0 3に向けて斜めに延びた後、 液晶封入領域 3 5 (又は 基板 2 0の側辺 2 0 3 ) に沿って、 対向する基板辺 2 0 2に向けて直線的に延び 、 しかる後に液晶封入領域 3 5内で基板辺 2 0 1、 2 0 2と平行に延びている。 ここで、 第 2の電極パターン 5 0、 第 1の外部入力用端子 8 1、 第 2の外部入力 用端子 8 2、 および第 2の基板間導通用端子 7 0はいずれも、 所定パターンに形 成された I T 0膜によって形成されている。 Further, in the second substrate 20, the second external input terminal 82 allows the first electrode pattern 40 to be formed when the first substrate 10 and the second substrate 20 are bonded to each other. A plurality of rows of liquid crystal driving second electrode patterns 50 are formed so as to go around the area corresponding to both sides of the formation area. These second electrode patterns 50 extend so as to intersect with the first electrode patterns 40 in the liquid crystal sealing region 35. That is, the wiring of the second electrode pattern 50 formed on the second substrate 20 is When the first substrate 10 and the second substrate 20 are bonded to each other, each region corresponding to a plane on both sides of the region where the first electrode pattern 40 is formed on the first substrate 10 After extending obliquely toward the side 203 on each of the two sides, along the liquid crystal filled area 35 (or the side 203 of the substrate 20), facing the opposite substrate side 202 And then extend in parallel with the substrate sides 201 and 202 in the liquid crystal filled area 35. Here, the second electrode pattern 50, the first external input terminal 81, the second external input terminal 82, and the second inter-substrate conduction terminal 70 are all formed in a predetermined pattern. It is formed by the formed IT 0 film.
このように構成した第 1の基板 1 0および第 2の基板 2 0を用いて液晶パネル 1を構成するにあたって、 本形態で、 第 1の基板 1 0と第 2の基板 2 0とをシー ル材 3 0を介して貼り合わせる際に、 シール材 3 0にはギヤップ材および導通材 を配合しておくとともに、 シール材 3 0を第 1の基板間導通用端子 6 0および第 2の基板間導通用端子 7 0が重なる領域にも形成されている。 ここで、 シ一ル材 3 0 4に含まれる導電材は、 たとえば、 金属粒子や弾性変形可能なプラスチック ビーズの表面にめっきを施した粒子であり、 弾性変形可能なプラスチックビーズ の表面にめっきを施した粒子の場合、 その粒径は約 6 . 6 / mである。 これに対 して、 シール材 3 0 4に含まれるギャップ材の粒径は約 5 . 6〃mである。 それ 故、 第 1の基板 1 0と第 2の基板 2 0とを重ねた状態でその間隙を狭めるような 押圧力を加えながらシール材 3 0を溶融、 硬化させると、 導電材は、 第 1の基板 1 0と第 2の基板 2 0との間で押し潰された状態で第 1の基板間導通用端子 6 0 と第 2の基板間導通用端子 7 0とを導通させる。  In configuring the liquid crystal panel 1 using the first substrate 10 and the second substrate 20 configured as described above, in the present embodiment, the first substrate 10 and the second substrate 20 are sealed. When bonding via the material 30, a gap material and a conductive material are compounded in the seal material 30, and the seal material 30 is connected to the first board-to-board conductive terminal 60 and the second board. It is also formed in a region where the conduction terminals 70 overlap. Here, the conductive material contained in the seal material 304 is, for example, a metal particle or a particle obtained by plating the surface of an elastically deformable plastic bead, and plating is performed on the surface of the elastically deformable plastic bead. In the case of the applied particles, the particle size is about 6.6 / m. On the other hand, the particle size of the gap material included in the sealing material 304 is about 5.6 μm. Therefore, when the sealing material 30 is melted and cured while applying a pressing force to narrow the gap in a state where the first substrate 10 and the second substrate 20 are overlapped, the conductive material becomes The first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 are conducted in a state of being crushed between the first substrate 10 and the second substrate 20.
第 5図は、 第 3図に示す第 1の基板と、 第 4図に示す第 2の基板とを貼り合わ せたときの電極パターンおよび端子を拡大して示す平面図である。  FIG. 5 is an enlarged plan view showing electrode patterns and terminals when the first substrate shown in FIG. 3 and the second substrate shown in FIG. 4 are bonded together.
第 5図に示すように、 第 1の基板 1 0と第 2の基板 2 0とをシール材 3 0を介 して貼り合わせると、 第 1の電極パターン 4 0と第 2の電極パターン 5 0との交 差部分によって画素 5がマトリクス状に形成される。 このため、 第 2の基板 2 0 の第 2の端子形成領域 2 1の基板辺 2 0 1側の端部に対してフレキシブル基板 9 0を異方性導電材などを用いて実装した後、 このフレキシブル基板 9 0等の外部 回路を介して第 2の基板 2 0の第 1の外部入力用端子 8 1および第 2の外部入力 用端子 8 2に信号入力すると、 第 2の基板 2 0に形成されている第 2の電極パ夕 ーン 5 0には第 2の外部入力用端子 8 2を介して走査信号を印加することができ 、 かつ、 第 1の基板 1 0に形成されている第 1の電極パターン 4 0には、 第 1の 外部入力用端子 8 1、 第 2の基板間導通用端子 7 0、 導通材および第 1の基板間 導通用端子 6 0を介して画像データを信号入力することができる。 よって、 これ らの画像デ一夕および走査信号によって、 各画素 5において第 1の電極パターンAs shown in FIG. 5, when the first substrate 10 and the second substrate 20 are pasted together via the sealing material 30, the first electrode pattern 40 and the second electrode pattern 50 Pixels 5 are formed in a matrix by the intersection with. For this reason, the flexible substrate 9 is attached to the edge of the second terminal formation region 21 of the second substrate 20 on the substrate side 201 side. 0 is mounted using an anisotropic conductive material or the like, and then the first external input terminal 81 and the second external input terminal of the second substrate 20 are passed through an external circuit such as the flexible substrate 90. When a signal is input to the terminal 82, a scanning signal can be applied to the second electrode pattern 50 formed on the second substrate 20 via the second external input terminal 82. The first electrode pattern 40 formed on the first substrate 10 includes a first external input terminal 81, a second inter-substrate conduction terminal 70, a conductive material, Image data can be input as a signal via one substrate-to-substrate conduction terminal 60. Therefore, the first electrode pattern is formed at each pixel 5 by these image data and scanning signals.
4 0と第 2の電極パターン 5 0との間に位置する液晶の配向状態を制御すること ができるので、 所定の画像を表示することができる。 Since the alignment state of the liquid crystal positioned between 40 and the second electrode pattern 50 can be controlled, a predetermined image can be displayed.
従来においては、 縦方向の第 1の電極パターン 4 0については、 基板間の上下 導通を介さずに、 外部入力用端子から直接、 信号入力を行い、 この第 1の電極パ ターン 4 0を避けるように両側に引き回された横方向の第 2の電極パターン 5 0 については、 斜めに延びる基板間導通用端子を介して信号入力していた。 それに 対して本形態では、 第 1の電極パターン 4 0を避けるように両側に引き回された 横方向の第 2の電極パターン 5 0には基板間の上下導通を介さずに第 2の外部入 力用端子 8 2から直接信号を入力する。 一方、 縦方向の第 1の電極パターン 4 0 には外部入力用端子 8 1から、 基板間導通を介して信号を入力する。 そのため、 基板間導通端子を、 斜めに形成する必要がなくなり、 したがって第 1の基板間導 通用端子 6 0および第 2の基板間導通用端子 7 0を真っ直ぐに形成することがで きる。 つまり、 パターンを斜めに延ばさざるを得ない部分 (第 2の電極パターン Conventionally, for the first electrode pattern 40 in the vertical direction, a signal is directly input from the external input terminal without going through the vertical conduction between the substrates, and the first electrode pattern 40 is avoided. As described above, signals are input to the second electrode patterns 50 in the horizontal direction that are routed to both sides through the obliquely extending inter-substrate conduction terminals. On the other hand, in the present embodiment, the second external electrode pattern 50 extended to both sides so as to avoid the first electrode pattern 40 has the second external input without passing through the vertical conduction between the substrates. Input signal directly from input terminal 82. On the other hand, a signal is input to the first electrode pattern 40 in the vertical direction from the external input terminal 81 via conduction between the substrates. Therefore, it is not necessary to form the inter-substrate conduction terminals obliquely, so that the first inter-substrate conduction terminals 60 and the second inter-substrate conduction terminals 70 can be formed straight. In other words, the pattern must be extended diagonally (the second electrode pattern
5 0の最も内側に位置するパターンが表示領域付近で屈曲する角部分と、 第 2の 電極パターン 5 0の最も外側に位置するパターンの角部分との間でパターンを斜 めに形成せざるを得ない領域 (矢印. Aで示す領域幅) ) で基板間導通を行う必要 がないので、 安定した接続が確保され接続信頼性が向上する。 また、 パターンを 斜めに延ばさざるを得ない部分には、 パターン間の距離 (ピッチ間隔) を狭める ことができ、 狭ピッチ化した第 2の電極パターン 5 0を形成している。 このため 、 第 2の電極パターン 5 0では、 隣接するパターンの間において直線部分 5 0 1 の長さ寸法に小さな差をつけてそこから斜めに曲げればよく、 第 2の電極パター ン 50の斜め部分 5 0 2同士の間隔を狭くすることができる。 従って、 第 4図か らわかるように、 第 2の電極パターン 5 0において直線部分 5 0 1と斜め部分 5 0 2との境界を結んだ線 Fが基板辺 2 0 1 となす角度^が小さい分、 このような レイァゥト上の制約の大きな領域であっても多数のパターンを形成できる。 それ 故、 このようなレイァゥト上の制約の大きな領域に形成するパターンの数を増大 する場合でも、 第 1の基板間導通用端子 6 0および第 2の基板間導通用端子 7 0 の間隔を狭める必要がなく、 かつ、 パターンの線幅を狭める必要もない。 よって 、 本形態によれば、 信頼性や表示品位を低下させることなく、 液晶駆動用の電極 パターン数の増大を図ることができる。 また更に、 基板間の上下導通が必要な液 曰 The pattern must be formed obliquely between the corner where the innermost pattern of 50 is bent near the display area and the corner of the outermost pattern of the second electrode pattern 50. Since there is no need to conduct between the substrates in an area where the area cannot be obtained (the area width indicated by the arrow A), stable connection is ensured and connection reliability is improved. In addition, the distance (pitch interval) between the patterns can be reduced in a portion where the pattern must be obliquely extended, and the second electrode pattern 50 having a reduced pitch is formed. For this reason In the second electrode pattern 50, the linear portion 501 may be bent obliquely with a small difference in length between adjacent patterns, and the oblique portion of the second electrode pattern 50 may be formed. The interval between 502 can be reduced. Therefore, as can be seen from FIG. 4, the angle す formed by the line F connecting the boundary between the linear portion 501 and the oblique portion 502 in the second electrode pattern 50 with the substrate side 201 is small. For this reason, a large number of patterns can be formed even in such a region having a large layout constraint. Therefore, even when the number of patterns formed in such a region with a large restriction on the layout is increased, the distance between the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 is reduced. There is no need to reduce the line width of the pattern. Therefore, according to the present embodiment, it is possible to increase the number of electrode patterns for driving the liquid crystal without deteriorating reliability or display quality. In addition, liquids that require vertical conduction between substrates
曰曰パネルにおいて、 パターンの数が等しければ第 2の基板 20においてパターン を斜めに延ばさざるを得ない部分を従来より狭めることができるので、 外形寸法 の小型化が可能であり、 外形寸法が等しい大きさの液晶パネル 1においては、 拡 張されたより広い表示領域を確保することができる。 さらに、 第 2の基板 2 0に おいてパターンを斜めに延ばさざるを得ない部分を従来より狭めることができる のであれば、 従来と表示領域が等しい大きさの液晶パネル 1において、 その外形 寸法を小さくできる。 According to the panel, if the number of patterns is equal, the portion where the pattern must be extended obliquely on the second substrate 20 can be made narrower than before, so that the external dimensions can be reduced and the external dimensions are equal In the liquid crystal panel 1 having a size, an extended and wider display area can be secured. Furthermore, if the portion of the second substrate 20 where the pattern must be extended obliquely can be made smaller than before, the outer dimensions of the liquid crystal panel 1 having the same display area as the conventional one can be reduced. Can be smaller.
[実施の形態 2] [Embodiment 2]
液晶パネル 1では、 基板上に駆動用 I Cを C OG実装 (C h i p o n 1 a s s) 又は COP実装 ( Ch i p o n P l a s t i c P a n e l ) する 場合があり、 この場合には、 駆動用 I Cに対して外部から信号入力を行い、 駆動 用 I Cから画像データ信号や走査信号を各電極パターンに出力する。 このような タイプの液晶パネルに本発明を適用した場合を第 6図、 第 7図、 第 8図、 第 9図 および第 1 0図を参照して説明する。  In the LCD panel 1, the driving IC may be mounted on the substrate by COG (Chipon 1 ass) or COP (Chipon P lastic Panel). In this case, the driving IC is externally mounted. Inputs signals and outputs image data signals and scanning signals from the driving IC to each electrode pattern. The case where the present invention is applied to such a type of liquid crystal panel will be described with reference to FIGS. 6, 7, 8, 9, and 10. FIG.
第 6図は、 本形態の液晶表示装置に用いた液晶パネルの外観を示す斜視図であ り、 第 7図は、 この液晶パネルを分解した様子を模式的に示す斜視図である。 第 8図は、 第 7図に示す液晶パネルの第 1の基板に形成した電極パターンおよび端 子を拡大して示す平面図である。 第 9図は、 第 7図に示す液晶パネルの第 2の基 板に形成した電極パターンおよび端子を拡大して示す平面図である。 なお、 第 6 図および第 7図には、 電極パターンおよび端子などを模式的に示してあるだけな ので、 それらの詳細については、 電極パターンおよび端子の一部を拡大して示す 第 8図および第 9図を参照して後述する。 FIG. 6 is a perspective view showing the appearance of a liquid crystal panel used in the liquid crystal display device of the present embodiment. FIG. 7 is a perspective view schematically showing a disassembled state of the liquid crystal panel. FIG. 8 is an enlarged plan view showing electrode patterns and terminals formed on a first substrate of the liquid crystal panel shown in FIG. FIG. 9 is an enlarged plan view showing an electrode pattern and terminals formed on a second substrate of the liquid crystal panel shown in FIG. FIGS. 6 and 7 only schematically show the electrode patterns and terminals, etc. For details, FIG. 8 and FIG. It will be described later with reference to FIG.
第 6図および第 7図において、 本形態の液晶パネル 1は、 所定の間隙を介してガ ラス又はプラスチック等からなる第 1の基板 1 0と第 2の基板 2 0がシール材 3 0を介して対向して貼り合わされている。 シール材 3 0によって区画された液晶 封入領域 3 5内に液晶が封入されている。 第 1の基板 1 0には液晶封入領域 3 5 内で縦方向に延びる第 1の電極パターン 4 0が複数列形成されており、 第 2の基 板 2 0には、 液晶封入領域 3 5内で横方向に延びる第 2の電極パターン 5 0が複 数列形成されている。 ここに示す液晶パネル 1は、 第 2の基板 2 0の外側表面 に偏光板 5が貼られ、 第 1の基板 1 0の外側表面にも偏光板 6が貼られている。 液晶パネル 1を反射型として構成する際には、 偏光板 5、 6の外側に、 あるいは 偏光板 5、 6の代わりに反射板 (図示せず。 ) が貼られる。 6 and 7, in the liquid crystal panel 1 of the present embodiment, a first substrate 10 and a second substrate 20 made of glass, plastic, or the like are interposed via a predetermined gap. And are bonded to face each other. Liquid crystal is sealed in a liquid crystal sealing area 35 partitioned by the sealing material 30. On the first substrate 10, a plurality of rows of first electrode patterns 40 extending in the vertical direction in the liquid crystal sealing region 35 are formed, and on the second substrate 20, the first electrode pattern 40 is formed in the liquid crystal sealing region 35. The second electrode pattern 50 extending in the horizontal direction is formed in a plurality of rows. In the liquid crystal panel 1 shown here, a polarizing plate 5 is stuck on the outer surface of the second substrate 20, and a polarizing plate 6 is stuck on the outer surface of the first substrate 10. When the liquid crystal panel 1 is configured as a reflection type, a reflection plate (not shown) is attached to the outside of the polarization plates 5 and 6, or instead of the polarization plates 5 and 6.
このように構成した液晶パネル 1において、 外部からの信号入力および基板間 の導通のいずれを行うにも、 第 1の基板 1 0および第 2の基板 2 0のそれぞれに 形成されている第 1の端子形成領域 1 1および第 2の端子形成領域 2 1が用いら れる。 従って、 第 2の基板 2 0としては、 第 1の基板 1 0よりも大きな基板が用 いられ、 第 1の基板 1 0と第 2の基板 2 0とを貼り合わせて重ねたときに第 1の 基板 1 0の基板辺 1 0 1から第 2の基板 2 0が張り出す張出部分を利用して、 フ レキシブル基板 9 0又は導電ゴムと.いったラバ一コネクタ (図示せず。 ) の接続 などが行われる。  In the liquid crystal panel 1 configured as described above, the first substrate formed on each of the first substrate 10 and the second substrate 20 is used for both external signal input and conduction between the substrates. The terminal forming region 11 and the second terminal forming region 21 are used. Therefore, as the second substrate 20, a substrate larger than the first substrate 10 is used, and when the first substrate 10 and the second substrate 20 are bonded and superimposed, the first substrate The flexible board 90 or a rubber connector (not shown) such as a conductive rubber is used by using a protruding portion where the second board 20 extends from the board side 101 of the board 10. Connection is made.
このような接続構造を構成するにあたって、 本形態では、 第 7図および第 8図 に示すように、 第 1の基板 1 ◦において、 第 1の端子形成領域 1 1は第 1の基板 1 0の基板辺 1 0 1の中央部分に沿って形成され、 この第 1の端子形成領域 1 1 では、 基板辺 1 0 1に沿って複数の第 1の基板間導通用端子 6 0が所定の間隔を もって並んでいる。 また、 第 1の基板 1 0では、 第 1の基板間導通用端子 6 0か ら対向する基板辺 1 0 2に向かって複数列の液晶駆動用の第 1の電極パターン 4 0が両側に広がって斜めに延びた後、 液晶封入領域 3 5内で基板辺 1 0 1、 1 0 2に直交する方向に延在形成されている。 In constructing such a connection structure, in the present embodiment, as shown in FIGS. 7 and 8, in the first substrate 1 ◦, the first terminal formation region 11 is formed by the first substrate The first terminal formation region 11 is formed along the center portion of the substrate side 101 of the substrate 10. In the first terminal formation region 11, a plurality of first inter-substrate conduction terminals 60 are predetermined along the substrate side 101. Are arranged at intervals of. Further, in the first substrate 10, a plurality of rows of first electrode patterns 40 for driving liquid crystal spread on both sides from the first inter-substrate conduction terminal 60 to the opposing substrate side 102. After extending obliquely, it is formed to extend in a direction orthogonal to the substrate sides 101 and 102 in the liquid crystal sealing region 35.
第 7図および第 9図に示すように、 第 2の基板 2 0において、 第 2の端子形成 領域 2 1も基板辺 2 0 1に沿って形成されているが、 この第 2の端子形成領域 2 1は、 基板辺 2 0 1の両端を除く比較的広い範囲にわたって形成され、 この第 2 の端子形成領域には、 基板辺 2 0 1に沿って所定の間隔をもって並ぶ複数の外部 入力用端子 8 0が形成されている。 外部入力用端子 8 0は、 第 2の端子形成領域 2 1において、 対向する基板辺 2 0 2 (第 7図参照。 ) に向かって直線的に延び ている。 張出部分 2 5には第 1の電極パターン 4 0に画像データを供給し、 第 2 の電極パターン 5 0を供給する駆動用 I C 8が実装されている。 駆動用 I C 8の 入力端子は外部入力用端子 8 0に接続されており (外部入力用端子 8 0と駆動用 I Cの接続部は省略する。 ) 、 液晶パネル 1の外部からの信号は外部入力用端子 8 0から駆動用 I C 8に入力される。 駆動用 I Cの出力端子は、 第 2の電極パ夕 ーン 5 0、 及びに第 1、 第 2の基板間導通用端子 6 0 , 7 0を介して第 1の電極 パターン 4 0に接続されている。  As shown in FIGS. 7 and 9, in the second substrate 20, the second terminal formation region 21 is also formed along the substrate side 201, and this second terminal formation region 21 is formed over a relatively wide range excluding both ends of the board side 201, and the second terminal formation region includes a plurality of external input terminals arranged at a predetermined interval along the board side 201. 80 are formed. The external input terminal 80 extends linearly toward the opposing substrate side 202 (see FIG. 7) in the second terminal formation region 21. A driving IC 8 that supplies image data to the first electrode pattern 40 and supplies a second electrode pattern 50 is mounted on the overhang portion 25. The input terminal of the driving IC 8 is connected to the external input terminal 80 (the connection between the external input terminal 80 and the driving IC is omitted.). Is input to the driving IC 8 from the driving terminal 80. The output terminal of the driving IC is connected to the first electrode pattern 40 via the second electrode pattern 50 and the first and second inter-substrate conduction terminals 60 and 70. ing.
本形態において、 第 2の基板 2 0には、 外部入力用端子 8 0に対して液晶封入 領域 3 5の側で隣接する領域に半導体 ( I C ) 実装領域 7が形成され、 この半導 体 ( I C ) 実装領域 7には駆動用 I C 8が実装されている。 この I C実装領域 7 の長手方向の中央領域に配置される駆動用 I C 8の出力端子 (第 2の端子形成領 域 2 1の中央領域に位置する端子) からは、 第 1の基板 1 0と第 2の基板 2 0と を貼り合わせたときに第 1の基板間導通用端子 6 0と対応して重なる部位まで基 板辺 2 0 2に向かって直線的に配線されて複数の第 2の基板間導通用端子 7 0が 形成されている。 (第 2の基板間導通用端子 7 0、 及び第 2の電極パターン 5 0 の直線部分 5 0 1と駆動用 I Cの接続部は省略する。 ) また、 半導体 ( I C ) 実 装領域 7の長さ方向の両側領域に配置される駆動用 I Cの出力端子 (第 2の端子 形成領域 2 1の両側領域に位置する端子) からは、 第 1の基板 1 0と第 2の基板 2 0とを貼り合わせたときに第 1の電極パターン 4 0の形成領域の両側に相当す る領域を回り込むように、 直線部分 5 0 1から斜線部分 5 0 2を経由して複数列 の液晶駆動用の第 2の電極パターン 5 0が形成され、 これらの第 2の電極パ夕一 ン 5 0は、 液晶封入領域 3 5内において第 1の電極パターン 4 0と交差するよう に延びている。 In the present embodiment, a semiconductor (IC) mounting area 7 is formed on the second substrate 20 in an area adjacent to the external input terminal 80 on the liquid crystal enclosing area 35 side. IC) The driving IC 8 is mounted in the mounting area 7. From the output terminals of the driving IC 8 (terminals located in the central area of the second terminal forming area 21) located in the central area in the longitudinal direction of the IC mounting area 7, the first substrate 10 When the second substrate 20 and the second substrate 20 are bonded to each other, the wiring is linearly routed toward the substrate side 202 until a portion corresponding to the first inter-substrate conduction terminal 60 overlaps, and a plurality of second An inter-substrate conduction terminal 70 is formed. (Second inter-substrate conduction terminal 70 and second electrode pattern 50 The connection between the linear part 501 and the driving IC is omitted. Also, the output terminals of the driving IC (terminals located on both sides of the second terminal formation area 21) arranged on both sides in the length direction of the semiconductor (IC) mounting area 7 When the substrate 10 and the second substrate 20 are bonded to each other, the straight line portion 501 and the oblique line portion 50 extend around the regions corresponding to both sides of the formation region of the first electrode pattern 40. A plurality of rows of second electrode patterns 50 for driving the liquid crystal are formed via the second electrode pattern 50, and these second electrode patterns 50 are connected to the first electrode patterns 4 in the liquid crystal sealing area 35. It extends to intersect zero.
このように構成した第 1の基板 1 0および第 2の基板 2 0を用いて液晶パネル 1を構成するにあたって、 本形態で、 第 1の基板 1 0と第 2の基板 2 0とをシ一 ル材 3 0を介して貼り合わせる際に、 シール材 3 0にはギヤップ材および導通材 を配合しておくとともに、 シール材 3 0は第 1の基板間導通用端子 6 0および第 2の基板間導通用端子 7 0が重なる領域にも形成されている。 それ故、 第 1の基 板 1 0と第 2の基板 2 0とを重ねた状態でその間隙を狭めるような力を加えなが らシール材 3 0を溶融、 硬化させると、 導電材は、 第 1の基板 1 0と第 2の基板 2 0との間で押圧又は押し潰された状態で第 1の基板間導通用端子 6 0と第 2の 基板間導通用端子 7 0とを導通させる。  In configuring the liquid crystal panel 1 using the first substrate 10 and the second substrate 20 configured as described above, the first substrate 10 and the second substrate 20 are combined in this embodiment. When bonding via the sealing material 30, a gap material and a conductive material are compounded in the sealing material 30, and the sealing material 30 is used as the first inter-substrate conduction terminal 60 and the second substrate. It is also formed in an area where the inter-terminal terminals 70 overlap. Therefore, when the sealing material 30 is melted and hardened while applying a force to narrow the gap in a state where the first substrate 10 and the second substrate 20 are overlapped, the conductive material becomes The first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 are conducted in a state of being pressed or crushed between the first substrate 10 and the second substrate 20. .
第 1 0図は、 第 8図に示す第 1の基板と、 第 9図に示す第 2の基板とを貼り合 わせたときの電極パターンおよび端子を拡大して示す平面図である。  FIG. 10 is an enlarged plan view showing an electrode pattern and terminals when the first substrate shown in FIG. 8 and the second substrate shown in FIG. 9 are bonded together.
第 1 0図に示すように、 第 1の基板 1 0と第 2の基板 2 0とをシ一ル材 3 0を 介して貼り合わせると、 第 1の電極パターン 4 0と第 2の電極パターン 5 0との 交差部分によって画素 5がマトリクス状に形成される。 このため、 第 2の基板 2 0の第 2の端子形成領域 2 1の基板辺 2 0 1側の端部に対してフレキシブル基板 9 0を異方性導電材などを用いて実装した後、 このフレキシブル基板 9 0を介し て外部入力用端子 8 0に信号入力すると、 駆動用 I C 8からは第 2の電極パター ン 5 0に対して走査信号を印加することができ、 かつ、 第 1の基板 1 0に形成さ れている第 1の電極パターン 4 0には、 駆動用 I C 8から、 第 2の基板間導通用 端子 7 0、 導通材および第 1の基板間導通用端子 6 0を介して画像データを信号 入力することができる。 よって、 これらの画像デ一夕および走査信号によって、 各画素 5において第 1の電極パターン 4 0と第 2の電極パターン 5 0との間に位 置する液晶の配向状態を制御することができるので、 所定の画像を表示すること ができる。 As shown in FIG. 10, when the first substrate 10 and the second substrate 20 are bonded together via the sealing material 30, the first electrode pattern 40 and the second electrode pattern Pixels 5 are formed in a matrix at the intersection with 50. For this reason, after mounting the flexible substrate 90 to the end of the second terminal forming region 21 of the second substrate 20 on the substrate side 201 side using an anisotropic conductive material or the like, When a signal is input to the external input terminal 80 via the flexible substrate 90, a scanning signal can be applied to the second electrode pattern 50 from the driving IC 8, and the first substrate The first electrode pattern 40 formed on the substrate 10 is electrically connected to the second IC between the driving IC 8 and the second substrate. Image data can be input as a signal through the terminal 70, the conductive material, and the first inter-substrate conductive terminal 60. Therefore, the alignment state of the liquid crystal positioned between the first electrode pattern 40 and the second electrode pattern 50 in each pixel 5 can be controlled by the image data and the scanning signal. A predetermined image can be displayed.
このように、 従来であれば、 縦方向の第 1の電極パターン 4 0については、 外 部入力用端子から直接、 信号入力を行い、 この第 1の電極パターン 4 0を避ける ように両側に引き回された横方向の第 2の電極パターン 5 0については、 斜めに 延びる基板間導通用端子を介して信号入力していたものを、 本形態では、 第 1の 電極パターン 4 0を避けるように両側に引き回された横方向の第 2の電極パター ン 5 0については、 駆動用 I C 8から直接、 信号入力を行うことにより、 基板間 導通によって信号入力を行うにあたって、 基板間導通を行う第 1の基板間導通用 端子 6 0および第 2の基板間導通用端子 7 0を真つ直ぐに形成することができる 。 このように、 縦方向の第 1の電極パターン 4 0については第 2の基板 2を経由 して基板間導通によって信号入力を行っているため、 パターンを斜めに延ばさざ るを得ない部分 (第 2の電極パターン 5 0の最も内側に位置するパターンが表示 領域付近で屈曲する角部分と、 第 2の電極パターン 5 0の最も外側に位置するパ ターンの角部分との間でパターンを斜めに形成せざるを得ない領域 (矢印 Aで示 す領域幅) ) で基板間導通を行う必要がなく、 その部分には、 パターン間の距離 を狭めることのできる第 2の電極パターン 5 0のみを形成することができる。 こ のため、 第 2の電極パターン 5 0では、 隣接するパターンの間において直線部分 5 0 1の長さ寸法に小さな差をつけてそこから斜めに曲げればよく、 第 2の電極 パターン 5 0の斜め部分 5 0 2同士の間隔を狭くすることができる。 従って、 第 9図からわかるように、 第 2の電極パターン 5 0において直線部分 5 0 1と斜め 部分 5 0 2との境界を結んだ線 Fが基板辺 2 0 1となす角度/?が小さい分、 この ようなレイアウト上の制約の大きな領域であっても多数のパターンを形成できる 。 それ故、 このようなレイアウト上の制約の大きな領域に形成するパターンの数 を増大する場合でも、 第 1の基板間導通用端子 6 0および第 2の基板間導通用端 子 7 0の間隔を狭める必要がない。 更には、 パターンの線幅を狭める必要もない 。 よって、 本形態によれば、 信頼性や表示品位を低下させることなく、 液晶駆動 用の電極パターン数の増大を図ることができる。 逆にいえば、 パターンの数が等 しければ第 2の基板 2 0においてパターンを斜めに延ばさざるを得ない部分を従 来より狭めることができるので、 外形寸法が等しい大きさの液晶パネル 1におい て、 表示領域を拡張できる。 さらに、 第 2の基板 2 0においてパターンを斜めに 延ばさざるを得ない部分を従来より狭めることができるのであれば、 従来と表示 領域が等しい大きさの液晶パネル 1において、 その外形寸法を小さくできる。 As described above, in the related art, for the first electrode pattern 40 in the vertical direction, a signal is directly input from the external input terminal, and the signal is pulled to both sides so as to avoid the first electrode pattern 40. Regarding the rotated second electrode pattern 50 in the horizontal direction, a signal input via an obliquely extending inter-substrate conduction terminal is performed, but in the present embodiment, the first electrode pattern 40 is avoided. Regarding the second horizontal electrode pattern 50 that is routed to both sides, the signal is directly input from the driving IC 8, and when the signal is input by the inter-substrate conduction, the second inter-substrate conduction is performed. The first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 can be formed straight. As described above, since the signal is input to the first electrode pattern 40 in the vertical direction by inter-substrate conduction via the second substrate 2, the pattern must be obliquely extended (the The pattern is inclined diagonally between the corner where the innermost pattern of the second electrode pattern 50 is bent near the display area and the corner of the outermost pattern of the second electrode pattern 50. It is not necessary to carry out inter-substrate conduction in the area where the formation is inevitable (the area width indicated by arrow A). Can be formed. For this reason, in the second electrode pattern 50, the linear portion 501 may be bent obliquely from the adjacent pattern with a small difference in the length dimension, and the second electrode pattern 50 The interval between the oblique portions 502 can be narrowed. Therefore, as can be seen from FIG. 9, the angle /? Formed by the line F connecting the boundary between the linear portion 501 and the oblique portion 502 in the second electrode pattern 50 with the substrate side 201 is small. For this reason, a large number of patterns can be formed even in such a region having a large layout constraint. Therefore, the number of patterns to be formed in such a region with a large layout constraint It is not necessary to reduce the distance between the first inter-substrate conduction terminal 60 and the second inter-substrate conduction terminal 70 even when the number of components increases. Further, it is not necessary to reduce the line width of the pattern. Therefore, according to the present embodiment, it is possible to increase the number of electrode patterns for driving the liquid crystal without deteriorating reliability or display quality. Conversely, if the number of patterns is equal, the portion of the second substrate 20 where the pattern must be obliquely extended can be narrower than before, so that the liquid crystal panel 1 having the same external dimensions can be used. To expand the display area. Furthermore, if the portion of the second substrate 20 which has to extend the pattern obliquely can be made smaller than before, the outer dimensions of the liquid crystal panel 1 having the same display area as the conventional one can be reduced. .
[その他の実施の形態] [Other embodiments]
なお、 実施の形態 1では、 第 1の電極パターン 4 0および第 2の電極パターン 5 0のいずれもが、 液晶パネルの外部に設けられた外付け駆動用 I Cから外部入 力用端子 8 1、 8 2を介して画像デ一夕または走査信号が供給され印加される構 成であり、 実施の形態 2では、 第 1の電極パターン 4 0および第 2の電極パ夕一 ン 5 0のいずれもが、 第 2の基板上に実装された駆動用 I C 8から画像データ及 び走査信号が印加される構成であつたが、 第 1の電極パターンが基板間導通を利 用して信号入力される構成であれば、 実施の形態 1と実施の形態 2とを組み合わ せてもよい。 すなわち、 第 1の電極パターン 4 0がガラス基板又はプラスチック 基板上に搭載されたの駆動用 I Cから基板間導通を利用して画像データが印加さ れ、 他方の第 2の電極パターン 5 0には液晶パネルの外部からの外付け駆動用 I Cから走査信号が印加される構成であってもよい。  In the first embodiment, both the first electrode pattern 40 and the second electrode pattern 50 are connected to an external input terminal 81 and an external drive IC provided outside the liquid crystal panel. In the second embodiment, both the first electrode pattern 40 and the second electrode pattern 50 are configured so that an image data or a scanning signal is supplied and applied via the second electrode pattern 82. However, the configuration is such that the image data and the scanning signal are applied from the driving IC 8 mounted on the second substrate, but the first electrode pattern receives the signal using the inter-substrate conduction. If it is a configuration, the first embodiment and the second embodiment may be combined. That is, the first electrode pattern 40 is applied with image data from a driving IC mounted on a glass substrate or a plastic substrate using inter-substrate conduction, while the other second electrode pattern 50 is applied to the other second electrode pattern 50. The configuration may be such that a scanning signal is applied from an external driving IC external to the liquid crystal panel.
なお、 外部入力用端子 8 0、 8 1、 8 2に対してはフレシキブル基板 9 0を接 続する構成であつたが、 ラバーコネ.クタなどを介してその他の回路基板が接続さ れる構成であってもよい。  Although the flexible board 90 is connected to the external input terminals 80, 81, and 82, other circuit boards are connected via a rubber connector or the like. You may.

Claims

2 1 請 求 の 範 囲 2 1 Scope of request
1 . 基板の辺に隣接して配置された第 1の基板間導通用端子と、 前記第 1の基 板間導通用端子と電気的に接続されており、 前記第 1の基板間導通用端子が隣接 する辺と対向する辺に向かって延びるように配置された第 1の電極パターンを有 する第 1の基板、 及び 1. The first inter-substrate conduction terminal disposed adjacent to a side of the substrate, and electrically connected to the first inter-substrate conduction terminal, the first inter-substrate conduction terminal A first substrate having a first electrode pattern disposed so as to extend toward a side opposite to an adjacent side, and
基板の辺に隣接して配置された第 1の外部入力用端子と、 前記第 1の外部入力 用端子と電気的に接続された第 2の基板間導通用端子と、 前記第 1の外部入力用 端子の両側に配置された第 2の外部入力用端子と、 前記第 2の外部入力用端子と 電気的に接続された第 2の電極パターンとを有する第 2の基板、 を具備し、 前記第 1の基板と前記第 2の基板は、 前記第 1の電極パターンと前記第 2の電 極パターンが互いに交差する方向に延びるように対向して配置されてなり、 前記第 1の基板間導通用端子及び前記第 2の基板間導通用端子は、 前記第 1の 基板と前記第 2の基板との間に挟まれた導通材によって電気的に接続されている ことを特徴とする液晶表示装置。  A first external input terminal arranged adjacent to a side of the substrate, a second inter-substrate conduction terminal electrically connected to the first external input terminal, and the first external input A second substrate having a second external input terminal disposed on both sides of the second external input terminal, and a second electrode pattern electrically connected to the second external input terminal. The first substrate and the second substrate are disposed so as to face each other such that the first electrode pattern and the second electrode pattern extend in a direction intersecting each other, and the first inter-substrate conductor is provided. A liquid crystal display device, wherein the common terminal and the second inter-substrate conduction terminal are electrically connected by a conduction material sandwiched between the first substrate and the second substrate. .
2 . 請求項 1に記載の液晶表示装置において、 2. The liquid crystal display device according to claim 1,
前記第 1の基板間導通用端子、 及び前記第 2の基板間導通用端子はそれらが隣 接する辺と対向する辺に向かって直線的に配置されていることを特徴とする液晶 表示装置。  The liquid crystal display device, wherein the first inter-substrate conduction terminal and the second inter-substrate conduction terminal are linearly arranged toward a side facing an adjacent side.
3 . 請求項 1に記載の液晶表示装置において、 3. The liquid crystal display device according to claim 1,
前記第 1の電極パターンには画像デ一夕が供給され、前記第 2の電極パターン には走査信号が供給されることを特徴とする液晶表示装置。  A liquid crystal display device, wherein an image data is supplied to the first electrode pattern, and a scanning signal is supplied to the second electrode pattern.
4 . 基板の辺に隣接して配置された第 1の基板間導通用端子と、 前記第 1の基板 間導通用端子と電気的に接続されており、 前記第 1の基板間導通用端子が隣接す る辺と対向する辺に向かって延びるように配置された第 1の電極パターンを有す る第 1の基板と、 4. The first inter-substrate conduction terminal disposed adjacent to the side of the substrate, and the first inter-substrate conduction terminal is electrically connected to the first inter-substrate conduction terminal. Adjacent A first substrate having a first electrode pattern arranged so as to extend toward a side opposite to the side opposite to the first side;
基板の辺に隣接して配置された外部入力用端子と、 第 2の基板間導通用端子と 、 第 2の電極パターンと、 を有する第 2の基板とを、 前記第 1の電極パターンと 前記第 2の電極パターンが互いに交差する方向に延びるように対向して配置して なり、  A second substrate having: an external input terminal disposed adjacent to a side of the substrate; a second inter-substrate conduction terminal; and a second electrode pattern. The second electrode patterns are arranged facing each other so as to extend in a direction intersecting with each other,
前記第 2の基板に実装されてなり、 入力端子が前記外部入力用端子と電気的に 接続され、 出力端子が前記第 2の基板間導通用端子及び前記第 2の電極パターン に電気的に接続された駆動用 I Cを有し、  An input terminal is electrically connected to the external input terminal, and an output terminal is electrically connected to the second inter-substrate conduction terminal and the second electrode pattern. Drive IC
前記第 1の基板間導通用端子及び前記第 2の基板間導通用端子は、 前記第 1の 基板と前記第 2の基板との間に挟まれた導通材によって電気的に接続されている ことを特徴とする液晶表示装置。  The first inter-substrate conduction terminal and the second inter-substrate conduction terminal are electrically connected by a conductive material sandwiched between the first substrate and the second substrate. A liquid crystal display device characterized by the above-mentioned.
5 . 請求項 4に記載の液晶表示装置において、 5. The liquid crystal display device according to claim 4,
前記第 1の基板間導通用端子、 及び前記第 2の基板間導通用端子はそれらが形 成された辺と対向する辺に向かって直線的に配置されていることを特徴とする液  The liquid, wherein the first inter-substrate conduction terminal and the second inter-substrate conduction terminal are linearly arranged toward a side opposite to a side on which they are formed.
6 . 請求項 4に記載の液晶表示装置において、 6. The liquid crystal display device according to claim 4,
前記第 1の電極パターンには画像データが供給され、前記第 2の電極パターン には走査信号が供給されることを特徴とする液晶表示装置。  A liquid crystal display device, wherein image data is supplied to the first electrode pattern, and a scanning signal is supplied to the second electrode pattern.
PCT/JP1999/006190 1998-11-11 1999-11-05 Liquid crystal display device WO2000028373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000581498A JP3508723B2 (en) 1998-11-11 1999-11-05 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32048998 1998-11-11
JP10/320489 1998-11-11

Publications (1)

Publication Number Publication Date
WO2000028373A1 true WO2000028373A1 (en) 2000-05-18

Family

ID=18122025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006190 WO2000028373A1 (en) 1998-11-11 1999-11-05 Liquid crystal display device

Country Status (4)

Country Link
JP (1) JP3508723B2 (en)
KR (1) KR100473456B1 (en)
CN (1) CN1149438C (en)
WO (1) WO2000028373A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829030B2 (en) 2000-06-15 2004-12-07 Seiko Epson Corporation Electro-optic device and electronic apparatus
JP2006047378A (en) * 2004-07-30 2006-02-16 Optrex Corp Display apparatus
EP2261975A1 (en) * 2001-07-12 2010-12-15 LG Electronics, Inc. Organic EL display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903568B1 (en) 2012-07-19 2018-10-04 삼성디스플레이 주식회사 Display device
KR101990692B1 (en) 2017-09-28 2019-06-18 장희선 Locking device for screens preventing crimees and insections
KR101990693B1 (en) 2017-09-28 2019-06-18 장희선 Locking device for screens preventing crimees and insections

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107890A (en) * 1974-01-30 1975-08-25
JPS5620927Y2 (en) * 1976-10-01 1981-05-18
JPH02287433A (en) * 1989-04-28 1990-11-27 Kyocera Corp Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107890A (en) * 1974-01-30 1975-08-25
JPS5620927Y2 (en) * 1976-10-01 1981-05-18
JPH02287433A (en) * 1989-04-28 1990-11-27 Kyocera Corp Liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829030B2 (en) 2000-06-15 2004-12-07 Seiko Epson Corporation Electro-optic device and electronic apparatus
US6963384B2 (en) 2000-06-15 2005-11-08 Seiko Epson Corporation Electro-optical device and electronic apparatus
EP2261975A1 (en) * 2001-07-12 2010-12-15 LG Electronics, Inc. Organic EL display device
JP2006047378A (en) * 2004-07-30 2006-02-16 Optrex Corp Display apparatus

Also Published As

Publication number Publication date
CN1149438C (en) 2004-05-12
JP3508723B2 (en) 2004-03-22
KR100473456B1 (en) 2005-03-08
KR20010033956A (en) 2001-04-25
CN1288527A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP3578110B2 (en) Electro-optical devices and electronic equipment
TW538272B (en) Method for manufacturing electro-optical device, method for connecting terminals, electro-optical device, and electronic apparatus
JP4635915B2 (en) Electro-optical device and electronic apparatus
US6542374B1 (en) Circuit board, method for manufacturing the circuit board, and display device and electronic equipment employing the circuit board
JP5274564B2 (en) Flexible substrate and electric circuit structure
JP4603522B2 (en) Mounting structure, electro-optical device, and electronic apparatus
JP3503597B2 (en) Liquid crystal panel and manufacturing method thereof
JP2002215059A (en) Electrooptical device
JP2000250031A (en) Electro-optic device
WO2000028373A1 (en) Liquid crystal display device
JP2004111810A (en) Manufacturing method of composite substrate, structure of composite substrate, electro-optical device, and electronic apparatus
JP3695265B2 (en) Display device and electronic device
JP3365305B2 (en) Semiconductor chip, its mounting structure and liquid crystal display device
US20070246836A1 (en) Electric terminal device and method of connecting the same
JP2000284261A (en) Liquid crystal device and electronic apparatus
JP5332219B2 (en) Manufacturing method of electro-optical device
JP2001166329A (en) Liquid crystal display device
JP3684886B2 (en) Semiconductor chip mounting structure, liquid crystal device and electronic device
JP4158351B2 (en) Electro-optical device and electronic apparatus
KR20210028777A (en) Display device
JP3861530B2 (en) Manufacturing method of liquid crystal display device
JP3954152B2 (en) Connection structure of panel substrate and flexible wiring board, and liquid crystal display device using the same
JP3633394B2 (en) Electro-optical device and electronic apparatus
JP2000275672A (en) Liquid crystal device, production of liquid crystal device and electronic apparatus
JP4465734B2 (en) Electro-optic panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802084.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

WWE Wipo information: entry into national phase

Ref document number: 1020007007541

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09600145

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007007541

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007007541

Country of ref document: KR