WO2000020816A1 - Laminated type heat exchanger - Google Patents

Laminated type heat exchanger Download PDF

Info

Publication number
WO2000020816A1
WO2000020816A1 PCT/JP1999/003685 JP9903685W WO0020816A1 WO 2000020816 A1 WO2000020816 A1 WO 2000020816A1 JP 9903685 W JP9903685 W JP 9903685W WO 0020816 A1 WO0020816 A1 WO 0020816A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
tank
heat exchanger
plate
forming
Prior art date
Application number
PCT/JP1999/003685
Other languages
French (fr)
Japanese (ja)
Inventor
Mutsumi Fukushima
Muneo Sakurada
Kunihiko Nishishita
Shozo Sekiguchi
Masaya Moruta
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP28074998A external-priority patent/JP2952593B1/en
Priority claimed from JP10370265A external-priority patent/JP2000193392A/en
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Priority to EP99929747A priority Critical patent/EP1118829A4/en
Publication of WO2000020816A1 publication Critical patent/WO2000020816A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Definitions

  • the present invention relates to a laminated heat exchanger that is used in a refrigeration cycle of a vehicle air conditioner and has a large number of tube elements laminated. It is suitable for the stacked heat exchanger of the above. Background art
  • FIG. 1 or FIG. 2 As the heat exchanger, a heat exchanger shown in FIG. 1 or FIG. 2 and a single-tank type heat exchanger shown in FIG. 15 or FIG. 16 are known.
  • the heat exchanger as shown in FIGS. 1 and 2 forms a core body in which tube elements are laminated via fins 2 and turns a pair of tank sections 12 provided on one side of the tube element.
  • a plurality of heat exchange medium paths are formed in the core body by appropriately communicating the tank sections 12 of the adjacent tube elements with each other by the passage section 13, and a heat exchange medium is formed at one end of the core body in the stacking direction.
  • An inlet 4 and an outlet 5 are provided for the body, and the inlet 4 is connected to the tank block 21 on the most upstream side via a communication pipe 30 and the outlet 5 is a tank block on the lowermost side. It is designed to communicate directly with 22.
  • 15 and 16 form a core body in which tube elements are laminated via fins 2 and a pair of tubes provided on one side (lower side) of the tube element.
  • the tank section 12 is communicated with the folded passage section 13 and the tank section 12 of the adjacent tube element is appropriately communicated to connect
  • a plurality of heat exchange medium paths are formed in the main body of the core. Unlike the heat exchanger, an inlet 4 and an outlet 5 for the heat exchange medium are provided on the front of the core body.
  • the heat exchange medium that has flowed in from the inlet 4 is connected to the upstreammost block of the heat exchange medium path 21 through the communication pipe 30 or directly. After passing through a plurality of passes, it reaches the tank block 22 on the most downstream side of the heat exchange medium path, and flows out of the outlet 5 communicating with the tank block 22.
  • a one-way flow in which the heat exchange medium flows from the tank portion to the return passage portion or from the return passage portion to the tank portion is counted as one pass.
  • a two-pass heat exchanger is called a four-pass heat exchanger if it passes through the turn-back passage 13 twice from the tank block to the tank block on the most downstream side, and a six-pass heat exchanger if it passes three times.
  • the heat exchange medium is used when shifting from the second pass to the third pass. Flows in the laminating direction through the tank part communicating with the heat exchanger, but the heat exchange medium concentrates at the back of the third pass due to the inertial force of the heat exchange medium, and the partition 18 in the third and fourth passes The flow rate of the heat exchange medium is reduced by the tube element close to. For this reason, when a refrigerant is used as the heat exchange medium, the temperature of the air passing between the tube elements at the same position is higher than that of the other parts, as is clear from the experimental results shown by the broken line in FIG. And the heat exchange efficiency decreases.
  • the tube number (TUBEN o.) Is the number of tube elements counted from the right side in FIG.
  • the passing air temperature Indicates the temperature of the air that has passed between the tube elements and exchanged heat with the fins, and is measured at a position 1 to 2 cm away from the downstream end face of the core body. Temperature.
  • the present applicant first provided a throttle section for narrowing the cross section of the flow path at a portion where the even-numbered pass changes to the odd-numbered pass, and provided a tube near the partition portion.
  • a configuration in which a heat exchange medium is sufficiently supplied to the element has been proposed (Japanese Patent Application Laid-Open No. 8-285407).
  • the flow velocity is reduced by narrowing the cross section of the flow path, or the bias of the heat exchange medium is prevented by complicating the flow of the heat exchange medium. Therefore, careful design is required because of the concern that passage resistance may increase.
  • the heat exchange medium is transferred from the upstream heat exchange block to the downstream heat exchange block.
  • a configuration in which a swirl flow generating plate for swirling a heat exchange medium around a center line of the flow path is provided in the inter-tank flow path to be supplied is also known.
  • a laminar heat exchange system capable of reducing the drift of the heat exchange medium and allowing the heat exchange medium to flow almost evenly to any of the tube elements in the laminating direction to improve the heat exchange efficiency.
  • the challenge is to provide equipment. It is another object of the present invention to obtain a stacked heat exchanger that can reduce the bias by more actively dispersing the heat exchange medium while keeping the passage resistance low. Disclosure of the invention
  • the stacked heat exchanger according to the present invention includes a tube element having a plurality of tanks and a passage communicating with the tanks, the tanks being sequentially attached to each other, and the tube elements are stacked in many stages. All or a part of the tanks are communicated through through holes formed in each tank, and a path is provided for flowing the heat exchange medium from a plurality of connected tanks to a passage communicating with the tanks. At the transition to the path, the heat exchange medium is moved in the stacking direction through the through holes. In the configuration, the flow of the heat exchange medium moving in the laminating direction at at least one point in or near the transition portion is directed straight toward a communication portion between the tank portion at the transfer destination and a passage portion communicating with the tank portion. It is characterized by the provision of a guide plate to make it work.
  • the heat exchange medium moving in the stacking direction through the through holes is positively changed in the rectilinear direction by the guide plate, and the communication between the movement destination tank portion and the passage portion communicating therewith. Since the heat exchange medium travels straight toward the portion, the heat exchange medium can be distributed to each passage portion, and the heat exchange medium can be prevented from gathering near the end in the stacking direction.
  • a fin is used as a tube element having a pair of tank portions provided on one side and a folded passage portion communicating the pair of tank portions.
  • the tank portions of adjacent tube elements are sequentially attached to each other, and the joined ink portions are communicated through through holes for each block, and the number of tanks constituting each block is appropriately determined.
  • An odd-numbered path through which the heat exchange medium flows from the tank element to the passage of the tube element and an even-numbered path through which the heat exchange medium flows from the path to the tank of the tube element are provided.
  • the transition portion or Is provided at at least one location in the vicinity thereof with a guide plate which directs the flow of the heat exchange medium moving in the laminating direction toward a communication portion between the tank portion of the odd-numbered path and the passage portion communicating therewith. What is necessary is just to be a structure.
  • the heat exchange medium that has flowed into the block on the most upstream side passes through the plurality of passes and then flows out of the block on the most downstream side.
  • a guide plate is provided at the transition part of As a result, the direction in which the heat exchange medium travels is positively changed by the guide plate, and the heat exchange medium travels straight in each of the passages constituting the odd-numbered paths and is distributed substantially uniformly.
  • the heat exchange medium can sufficiently flow through the tube element, and as a result, as shown by the solid line in FIG. 55, the temperature of the passing air does not vary greatly at various places. Can be.
  • an inlet portion and an outlet portion of the heat exchange medium are provided at one end of the tube element in the stacking direction, and the inlet portion communicates with a block on the most upstream side, Even if the outlet is connected to the block at the most downstream side, an inlet at right angles to the stacking direction is provided at the block at the most upstream side, and the outlet at right angles to the stacking direction is provided at the block at the most downstream side. A part may be provided.
  • the tube element is formed by joining two forming plates, and the forming plate provided with a partition for preventing communication between the tank portions in the laminating direction is arranged at a predetermined position, so that the heat exchange medium is formed in the tank.
  • the guide plate provided at the transition part may be provided on the forming plate adjacent to the forming plate provided with the partition part.
  • the partition plate may be provided on the formed plate itself. Further, the partition and the guide plate may be shifted back and forth in the laminating direction within a range in which the flow rate of the heat exchange medium flowing near the partition is improved, and the guide plate provided near the transition portion is Such a configuration is also included.
  • the inclination angle of the guide plate is too small with respect to the laminating direction, it is not possible to make a large change to eliminate the drift in the heat exchange medium, and if the inclination angle is too large, the passage resistance increases. As a result, the flow rate of the heat exchange medium is suppressed, and the heat exchange efficiency may be reduced. For this reason, the slope of the guide plate When the length is set in the range of 1 to 15 mm due to the effect of changing the flow direction and manufacturing restrictions, it is preferable that the inclination angle be selected in the range of 5 to 65 degrees. .
  • the guide plate may be formed separately from the tank portion, but may be formed integrally with the members constituting the tank portion in order to reduce the number of manufacturing steps and to facilitate the manufacturing.
  • the guide plate is composed of an erect portion provided so as to pass through the through hole, and an inclined portion which is bent from the side edge of the erect portion and inclines.
  • it may be configured to be bent from the periphery of the through hole and be inclined, or may be configured by twisting a portion provided to pass through the through hole and inclining the whole.
  • a large number of guide plates may be formed at or near the transition portion.
  • a path for flowing the heat exchange medium from a plurality of connected tank sections to a passage section communicating therewith is provided, and a transition portion to this path, for example, a transition portion from two passes to three passes or a portion thereof.
  • a laminated heat exchanger provided with a guide plate for changing the flow of the heat exchange medium moving in the laminating direction to at least one location in the vicinity toward the communicating portion between the destination tank portion and the passage portion communicating therewith.
  • This guide plate is provided in the through hole formed in the bulging portion for forming the tank of the forming plate that constitutes the tube element. It is manufactured by leaving unnecessary sections.
  • a guide plate is provided in a through hole formed in the bulging portion for forming a tank of the forming plate of the tube element, and it is preferable that the guide plate has a curved surface along the lateral direction of the forming plate.
  • the strength is increased by the curved surface formed on the guide plate, and the durability can be improved. Also, due to the curved surface shape, the heat exchange medium can be changed favorably, and the formability and dimensional accuracy can be improved.
  • the curved shape of the guide portion may be an example formed by bending at a constant curvature, a curved shape may be formed in a portion near both ends in the lateral direction, or a bag-shaped process may be performed on the curved shape.
  • straight portions may be formed at both lateral ends of the curved guide plate, or the straight portions may be formed in a bridge portion provided so as to pass through holes.
  • the stacked heat exchanger according to the present invention is a stacked heat exchanger comprising a plurality of stacked tube elements each having a plurality of tank portions and a passage portion communicating with the tank portions,
  • a planner plate is provided in a through hole formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and at least one bead is provided on this guide plate in a projecting direction from the forming plate. You may do so.
  • the length of the guide bead should be the same as or the same as the length of the guide in the protruding direction. Shorter dimensions may be used. Further, the shape may be a rhombus.
  • the laminated heat exchanger of the present invention is a laminated heat exchanger in which a plurality of tank elements and a tube element having a passage communicating with the tank part are laminated in a multi-stage manner.
  • a guide plate is provided in a passage formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and the guide plate has rounded shoulder portions at a tip end in a direction protruding from the forming plate. You may do so.
  • the laminated heat exchanger is a laminated heat exchanger in which a plurality of tank sections and a tube element having a passage communicating with the tank section are laminated in a multi-stage manner.
  • a guide plate is provided in a through hole formed in a bulging portion for forming a tank of a forming plate which constitutes an element.
  • the guide plate has a curved surface along a lateral direction of the forming plate and has a curved surface in a projecting direction of the guide plate. At least one bead may be provided.
  • the guide plate has a curved surface shape and a bead, so that the strength can be increased.
  • the laminated heat exchanger is a laminated heat exchanger in which a plurality of tank sections and a tube element having a passage communicating with the tank section are laminated in a multi-stage manner.
  • a guide plate is provided in a passage formed in a bulging portion for forming a tank of a forming plate that constitutes an element, and the guide plate has a curved surface along a lateral direction of the forming plate and protrudes from the forming plate.
  • a configuration in which both shoulders at the tip in the direction are rounded may be used.
  • the guide plate has a curved shape and both shoulders are rounded for strength. The improvement of the degree and the occurrence of vibration are prevented.
  • the laminated heat exchanger is a laminated heat exchanger in which a plurality of tank elements and a tube element having a passage communicating with the tank part are laminated in a multi-stage manner.
  • a guide plate is provided in the passage formed in the bulging portion for forming the tank of the forming plate, and the inner plate is provided with at least one bead in a direction protruding from the forming plate and protrudes from the forming plate. The two shoulders at the end of the direction may be rounded.
  • a bead is formed on the guide plate, and both shoulders are rounded to improve strength and suppress vibration.
  • the laminated heat exchanger is a laminated heat exchanger formed by laminating a plurality of tank elements and a tube element having a passage portion communicating with the tank section in a multi-stage manner.
  • a guide plate is provided in a passage formed in a bulging portion for forming a tank of a forming plate, which constitutes a tube element.
  • the guide plate has a curved surface along a lateral direction of the forming plate and a projecting direction of the guide plate. It is also possible to provide at least one or more beads at each end, and to make both shoulders at the front end in the direction protruding from the forming plate round.
  • FIG. 1 shows a first embodiment of the laminated heat exchanger according to the present invention, and is a view showing an end face of the heat exchanger which is perpendicular to a ventilation direction.
  • FIG. 2 (a) is a diagram showing a side surface of the stacked heat exchanger shown in FIG. 1 where an inlet / outlet portion is provided
  • FIG. 2 (b) is a diagram of the stacked heat exchanger shown in FIG. The bottom FIG.
  • Fig. 3 shows a forming plate of a tube element used for a stacked heat exchanger.
  • Fig. 3 (a) shows a normal forming plate 6a
  • Fig. 3 (b) shows a forming plate 6 having a partition.
  • Fig. 3 (c) shows a molded plate 6e having a guide plate.
  • -Fig. 4 is a diagram showing an example of a configuration in which the guide plate is formed substantially at the center of the through hole.
  • Fig. 4 (a) is an enlarged front view of a part of the forming plate on which the guide plate is formed.
  • FIG. 4 (b) shows a tube element having a guide plate and a tube element laminated downstream from the tube element, and illustrates the shape of the guide plate and the flow of the heat exchange medium.
  • FIG. 5 is an enlarged view showing a tank portion of a tube element having a guide plate.
  • FIG. 6 is a front view of a forming plate showing a configuration example in which the guide plate is formed below the center of the hole.
  • FIG. 7 is a front view of a forming plate showing a configuration example in which the guide plate is formed above the center of the hole.
  • FIG. 8 is a front view of a forming plate showing a configuration example in which a guide plate is integrally formed at a lower end portion of a bulging portion for forming a tank.
  • FIG. 9 is a diagram showing another example of the configuration in which the guide plate is formed substantially at the center of the through hole.
  • FIG. 9 (a) is a front view in which a part of the forming plate on which the guide plate is formed is enlarged.
  • FIG. 9 (b) shows a tube element having a guide plate and a tube element stacked downstream from the tube element, and illustrates the shape of the guide plate and the flow of the heat exchange medium.
  • FIG. 10 is a diagram showing a configuration example in which a guide plate is formed by bending a guide plate outside a tank portion provided with the guide plate.
  • FIG. 11 is a diagram showing a configuration example in which the inclination angle of the guide plate is gradually increased.
  • FIG. 12 is a diagram showing an example of a configuration in which a plurality of guide plates are formed in the upper half of the through hole.
  • FIG. 12 (a) is an enlarged view of a part of the forming plate on which the guide plates are formed.
  • FIG. 12 (b) is a front view showing a tube element having a guide plate and a tube element laminated downstream from the tube element, illustrating the shape of the guide plate and the flow of the heat exchange medium.
  • FIG. 12 is a diagram showing a configuration example in which a guide plate is formed by bending a guide plate outside a tank portion provided with the guide plate.
  • FIG. 11 is a diagram showing a configuration example in which the inclination angle of the guide plate is gradually increased
  • FIG. 13 is a diagram showing a configuration example in which a plurality of guide plates are formed in the entire through hole.
  • FIG. 13 (a) is an enlarged view of a part of the forming plate in which the guide plates are formed.
  • FIG. 13 (b) is a diagram showing a tube element having a guide plate and a tube element laminated downstream thereof, and illustrating the shape of the guide plate and the flow of the heat exchange medium. is there.
  • FIG. 14 is a diagram showing an example of the configuration of FIG. 13 in which the guide plate in the lower half of the through hole is horizontal, and FIG. 14 (a) shows a configuration in which the guide plate is formed.
  • Fig. 14 (b) is an enlarged front view of a part of the forming plate.
  • Fig. 14 (b) shows a tube element having a guide plate and a tube element laminated downstream from the tube element. It is a figure explaining the flow of a heat exchange medium.
  • FIG. 15 shows a second embodiment of the stacked heat exchanger according to the present invention, and is a diagram showing an end face of the stacked heat exchanger which is perpendicular to the ventilation direction.
  • FIG. 16 (a) is a diagram showing a side view of the stacked heat exchanger shown in FIG. 15, and FIG. 16 (b) is a view of the stacked heat exchanger shown in FIG. It is a figure which shows a bottom surface.
  • FIG. 17 is an enlarged front view of a part of a forming plate having a guide plate and a partition formed in a body.
  • FIG. 18 is a view showing a configuration in which guide plates are provided at two places of adjacent tube elements, and the inner plates are brought into contact with each other to make the inclined portions continuous.
  • FIG. 19 is a diagram showing a state in which guide plates are provided at two locations of adjacent tube elements, and the guide plates are formed with an interval therebetween.
  • FIGS. 20 to 52 show an embodiment of the guide plate 19 according to the present invention.
  • FIG. 20 shows one example of a forming plate having a guide plate having a curved surface shape having a constant curvature. It is a part enlarged front view.
  • -Fig. 21 is a cross-sectional view of the same.
  • FIG. 22 is a longitudinal sectional view of the same.
  • FIG. 23 is a view showing a tube element having the above-mentioned guide plate and a laminated tube element on the downstream side thereof, and illustrating the shape of the guide plate and the flow of the heat exchange medium.
  • FIG. 24 is a partially enlarged portion of a forming plate having a guide plate having a curved surface formed in a portion near both ends in the lateral direction.
  • FIG. 25 is a cross-sectional view of the same.
  • FIG. 26 is a longitudinal sectional view of the same.
  • FIG. 27 is a partially enlarged front view of a forming plate having a guide plate obtained by performing a bag-like processing on a curved surface shape.
  • FIG. 28 is a cross-sectional view of the same.
  • FIG. 29 is a longitudinal sectional view of the same.
  • FIG. 30 is a partially enlarged front view of a forming plate in which straight portions are provided at both lateral ends of a guide plate having a curved shape.
  • FIG. 31 is a cross-sectional view of the same.
  • FIG. 32 is a longitudinal sectional view of the same.
  • FIG. 33 is a partially enlarged front view of a forming plate having a guide plate having rounded shoulder portions.
  • FIG. 34 is a cross-sectional view of the same.
  • FIG. 35 is a longitudinal sectional view of the same.
  • FIG. 36 is a partially enlarged front view of a forming plate having a guide plate formed with beads.
  • FIG. 37 is a cross-sectional view of the same.
  • FIG. 38 is a longitudinal sectional view of the same.
  • -Fig. 39 is a partially enlarged longitudinal sectional view of a forming plate having a guide plate formed with a short bead.
  • FIG. 40 is a partially enlarged front view of a forming plate having a guide plate in which a curved shape is formed near both ends in the lateral direction and a bead is formed.
  • FIG. 41 is a cross-sectional view of the same.
  • FIG. 42 is a longitudinal sectional view of the same.
  • FIG. 43 is a partially enlarged front view of a forming plate having a guide plate on which a curved surface is subjected to bag-like processing and a bead is formed.
  • FIG. 44 is a cross-sectional view of the same.
  • FIG. 45 is a longitudinal sectional view of the same.
  • FIG. 46 is a partially enlarged front view of a forming plate in which straight portions are provided at both lateral ends of a guide plate on which a bead is formed into a curved surface and a bead is formed.
  • FIG. 47 is a cross-sectional view of the same.
  • FIG. 48 is a longitudinal sectional view of the same.
  • FIG. 49 is a partially enlarged front view of a forming plate having a guide plate formed with rhombic beads.
  • FIG. 50 is a partially enlarged front view of a forming plate having a slope formed by cutting a guide plate from a lower edge of a through hole.
  • FIG. 51 is a cross-sectional view of the same.
  • FIG. 52 is a longitudinal sectional view of the same.
  • FIG. 53 is a partially enlarged front view of a forming plate in which a guide portion and a partition portion are integrally formed.
  • FIG. 54 (a) is a conceptual diagram illustrating the flow of the heat exchange medium in a conventional four-pass laminated heat exchanger having a heat exchange medium inlet / outlet at one end of the core body in the stacking direction.
  • Fig. 54 (b) is a conceptual diagram illustrating the flow of the heat exchange medium in a conventional six-pass type stacked heat exchanger.
  • FIG. 55 (a) is a characteristic diagram showing the temperature of air passing through the upper portion of the stacked heat exchanger of the first embodiment (representative temperature of air passing through the upper half between the tube elements).
  • FIG. 55 (b) is a characteristic diagram showing the temperature of air passing through the lower part of the stacked heat exchanger of the first embodiment (representative temperature of air passing through the lower half between the tube elements). is there. BEST MODE FOR CARRYING OUT THE INVENTION
  • the laminated heat exchanger 1 has, for example, a core body formed by alternately laminating a plurality of fins 2 and tube elements 3 in a plurality of stages, and having one end of the tube element 3 in the laminating direction.
  • a four-pass evaporator with an inlet 4 and an outlet 5 for the heat exchange medium is provided.
  • the tube element 3 includes the tube elements 3a and 3b at both ends in the stacking direction, and an enlarged tank section described later. Excluding the tube element 3c, the tube element 3d at the center and the tube element 3e adjacent to the tube element 3c, it is formed by joining two molded plates 6a shown in Fig. 3 (a). .
  • the forming plate 6a is formed by pressing an aluminum plate, and has two bowl-shaped bulging portions 7, 7 at one end. Is formed, and a bulging portion 8 for forming a passage is formed subsequently thereto. A concave portion 9 for attaching a communication pipe to be described later is formed between the bulging portions for forming a tank.
  • the forming bulge 8 is formed with a ridge 10 extending from between the two tank forming bulges 7, 7 to near the other end of the forming plate 6a. Further, a protrusion 11 (shown in FIG. 1) for preventing the fins 2 from dropping out at the time of assembly before brazing is provided at the other end of the forming plate 6.
  • the bulging portion 7 for forming a tank is formed to protrude larger than the bulging portion 8 for forming a passage, and the ridge 10 is formed so as to protrude so as to be flush with the margin of the peripheral edge of the forming plate.
  • the ridges 10 are also joined, and a pair of tank portions 12, 12 are formed by the opposed bulging portions 7 for tank formation, and the opposed The folded passage-forming bulging portion 8 forms a folded passage portion 13 communicating between the tank portions.
  • the tube element 3a at the end in the laminating direction is formed by joining a flat plate 14 to the forming plate 6a in FIG. 3 (a), and the tube element 3b is formed as shown in FIG. 3 (a).
  • the molding plate 6a is formed by joining the molding plate 6a and a molding plate which has been flattened without the bulge portion for forming the ink.
  • the forming plates 6b and 6c constituting the tube element 3c are formed so as to be enlarged so that one of the bulging portions for forming a tank approaches the bulging portion for forming the other tank. Therefore, the tank element 12 formed in the ordinary tube element 3 and the tank part 12a expanded so as to fill the concave portion are formed in the tube element 3c.
  • the other configuration that is, the passage forming bulge 8 is formed following the tank forming bulge, and the ridge 1 extends from between the tank forming bulge 8 and the other end of the forming plate. 0 Is formed, and the other end of the forming plate is provided with a protruding piece 11 for preventing the fin 2 from falling off. The description is omitted because it is the same.
  • the tube element 3 d is constituted by combining a forming plate 6 a shown in FIG. 3 (a) and a forming plate 6 d shown in FIG. 3 (b). Is formed by combining a forming plate 6a shown in FIG. 3 (a) and a forming plate 6e shown in FIG. 3 (c).
  • the forming plate 6d does not have a through-hole formed in the one tank forming bulging portion 7a, and a partitioning portion 18 that partitions the one tank group 15 with this non-communicating portion is formed.
  • the partition 18 is configured such that the adjacent tube element 3 e is also a blind tank having no through-hole, and the tank-forming bulging portions having no through-hole are joined together.
  • a configuration may be adopted in which a thin plate is sandwiched between the tube element 3d and the tube element 3e to close the through hole communicating between the tank portions.
  • the forming plate 6e is adjacent to the forming plate 6d, and a guide plate 19 described below is provided in the bulging portion for forming a tank.
  • the first and second heat exchangers extend in the stacking direction (perpendicular to the ventilation direction) with the adjacent tube elements abutting on the tank portion.
  • Two tank groups 15 and 16 are formed, and one of the tank groups 15 including the enlarged tank section 12 a is formed with the exception of the forming plate 6 d located almost at the center in the stacking direction.
  • the tanks communicate with each other through the through holes 17 formed in the bulging portion 9, and the other tank group 16 communicates with all the tanks through the holes 17 without being partitioned. ing.
  • the first tank group 15 is divided by the partition 18 into an expanded tank section.
  • a second tank group 16 which is partitioned into a first tank block 21 containing 1 a and a second tank block 22 communicating with the outlet section 5, has an inner plate 19.
  • the third tank block 23 is constituted.
  • the tube elements are stacked in a total of 27 layers, and the tube element 3c is in the sixth layer, the tube element 3-d is in the fourth layer, and the 15-layer is in the fourth layer, counting from the left in the figure.
  • Tube elements 3e are arranged on the eyes, respectively.
  • the inlet part 4 and the outlet part 5 provided at one end in the laminating direction are configured by joining an entrance / exit passage forming plate 24 to the flat plate 14 forming an end plate.
  • An inlet passage 25 and an outlet passage 26 extending in the longitudinal direction are formed by these plates 14 and 24, and the upper portion of the inlet / outlet passage forming plate 24 is provided with an inlet via an expansion valve fixing joint 27.
  • An inlet 28 connected to the passage 25 and an outlet 29 connected to the outlet 26 are provided.
  • the inlet passage 25 and the enlarged tank portion 12a are connected to each other by connecting a communication pipe 30 fixed to the concave portion 9 to a hole formed in the plate 14 and the forming plate 6b.
  • the tank block 22 and the outlet passage 26 communicate with each other through a hole formed in the plate 14.
  • the refrigerant flowing in from the inlet 4 enters the expansion tank 12 a through the communication pipe 30, is dispersed throughout the first tank block 21, and corresponds to the first tank block 21.
  • the ascending passage section 13 of the tube element rises along the ridge 10 (first pass). Then, it goes down over the protruding line 10 after making a U-down (2nd pass), and reaches the tank group on the opposite side (3rd tank block 23). After that, it moves in the laminating direction toward the remaining tube element constituting the third tank block 23 through the through hole 17, and passes through the folded passage portion 13 of the tube element along the ridge 10. Rise (third pass). Then, make a U-turn above the ridge 10 and descend (4th pass).
  • the tank is guided to the tank constituting the tank block 22 and then flows out from the outlet 5. For this reason, the refrigerant exchanges heat with the air through the fins 2 in the process of flowing through the return passage 13 forming the first to fourth passes.
  • the guide plate 19 provided on the forming plate 6e is provided in order to improve this since it is likely to flow unevenly as described above at the transition from the second pass to the third pass. As shown in FIGS. 4 and 5, the guide plate 19 has a bridge portion 19a extending in the horizontal direction substantially at the center of the through hole 7 formed in the bulging portion 7 for tank formation. And an inclined portion 19 b bent from the upper edge toward the inside of the tank portion 12.
  • the guide plate 19 is formed integrally with the bulging portion 7 for forming the tank while forming the forming plate, leaving a part of the portion to be originally punched out to form the through hole 17.
  • the inclination angle ( ⁇ ) with respect to the stacking direction is set in the range of 5 to 65 degrees, and more preferably, in the range of 5 to 30 degrees in the heat exchanger described above.
  • the length of the inclined portion in the tank portion (L: in this example, the length of the inclined portion 19b protruding from the erection portion) may be set in the range of 1 to 15 mm, as described above. In the configuration, it is set to about 2 to 6 mm.
  • the angle of the inclined portion 19b is too large, the passage resistance increases and the pressure loss increases, and the amount of heat radiation (heat exchange) decreases due to the decrease in the refrigerant flow rate. If the value is too small, the flow direction of the refrigerant cannot be changed sufficiently, and the conventional disadvantageous distribution of the refrigerant cannot be eliminated. In addition, since the flow of the refrigerant varies depending on the configuration of the heat exchanger, in order to improve the flow of the refrigerant based on these circumstances, it is necessary to use a gradient of 5 ⁇ ( ⁇ 65 degrees. In this angle range, if 6> is large, the flow of the refrigerant is increased even if the length L of the inclined portion is small.
  • the most suitable guide plate 19 may be formed by combining and L in such a range, and in the above-described four-pass heat exchanger, after examining various combinations, It is set to a numeric value.
  • the refrigerant that moves in the stacking direction through the through holes 17 through the third tank process 23 to move from the second pass to the third pass forms the third pass by the guide plate 19.
  • the rectilinear direction is changed toward the communicating portion between the tank portion 12 and the passage portion 13 communicating with the tank portion 12, so that the refrigerant can sufficiently flow also in the vicinity of the partition portion 18.
  • the improvement of the refrigerant flow by providing such a guide plate 19 means that the refrigerant flows substantially uniformly to each tube element, and that the amount of heat exchange in each place does not greatly vary.
  • the passing air temperature was measured, as shown by the solid line, the air passed through the upper part of the tube element (particularly TUBEN No. 5 to 13) near the partition. It was confirmed that the air temperature was lower than that of the conventional air conditioner without the guide plate 19, and the temperature distribution was uniform throughout.
  • the above-described guide plate 19 is formed by an erecting portion 19a and an inclined portion 19b bent from the erecting portion 19a, and has a configuration in which only one is formed substantially at the center of the through hole 17.
  • FIGS. 6 to 14 an example thereof is shown in FIGS. 6 to 14, and the configuration shown in FIG. 6 is a guide plate 19 constituted by an erection portion 19a and an inclined portion 19b. Shaped so that it is biased downward from the approximate center of through hole 17
  • the configuration shown in Fig. 7 is different from the configuration shown in Fig.
  • the configuration shown in FIG. 8 has an inclined portion 19 b that is bent inward from the periphery of the lower end of the through hole 17 formed in the bulging portion 7 for tank formation to the inside of the tank portion. It is formed integrally. -Also, as shown in Fig. 9, the shape of the guide plate 19 is such that the remaining part, which passes through the through hole 17 horizontally, is twisted with both ends as fulcrums, and the whole is inclined. Also, as shown in FIG.
  • the inclined portion 1 is bent at an acute angle from the upper edge of the erection portion 19a toward the outside of the tank portion 12 on which the guide plate 19 is provided.
  • the inclined portion 19b may be formed in a curved shape in which the angle gradually increases as shown in FIG.
  • guide plates 19 By forming a large number of guide plates 19, it is possible to more effectively change the direction of straight movement of the refrigerant, and as shown in FIG. 12, as shown in FIG. A plurality (three in this example) of guide plates 19 may be formed so as to be inclined upward toward, and the guide plate 19 may not be formed in the lower half. These guide plates 19 may be formed integrally with the bulging portion 7 for tank formation, and may be formed in parallel with equal inclination angles.
  • the refrigerant that has passed through the lower half of the through hole 17 is sent straight to the stacking direction and sent to the back of the third tank block 23, and the refrigerant that has passed through the upper half is guided by the guide.
  • the straight traveling direction is changed by the plate 19 and flows toward the inflow portion of each passage portion 13 of the tube element constituting the third pass. Therefore, the refrigerant sufficiently flows also in the tube element near the partition, and the same effect as described above can be obtained.
  • the guide plate 19 has a through hole 17 A plurality (five in this example) of guide plates 19 that incline the downstream side upward in the entire through hole are formed integrally, and the flow direction of the refrigerant moving to the third pass is totally You may change it.
  • the guide plate 19 formed in the lower half may be horizontal to secure the flow of the refrigerant flowing in the laminating direction.
  • the former configuration is effective when the number of tube elements constituting the third pass is small, and the latter configuration has a large number of tube elements, and the refrigerant is evenly distributed to the front and back. This is effective when you want to drain.
  • the configuration of the guide plate is not limited to the above-described configuration, and the same effects can be obtained in the above-described various configurations even if the number of the guide plates and the formation position are appropriately changed. .
  • FIGS. 15 and 16 show a second embodiment of the laminated heat exchanger.
  • different portions will be mainly described, and the same portions shown in the drawings will be denoted by the same reference numerals. And the description is omitted.
  • This laminated heat exchanger is, for example, a four-pass evaporator having a heat exchange medium inlet 4 and an outlet 5 provided on the end face of the core body (the front face in FIG. 15).
  • the tube elements 3a and 3b at both ends are formed flat by removing the forming plate 6a of FIG. 3 (a) and the bulging portion for forming the tank of the forming plate 6a. It is configured by joining a plate.
  • the bulging portion for forming the tank on the upstream side 7 protrudes and opens in the ventilation direction, and therefore, the tube element 3 f is formed with an inlet portion 4 or an outlet portion 5 by joining the protruding and open portions face-to-face.
  • Other configurations that is, a through hole is formed in the tank forming bulge, a passage forming bulge is formed following the tank forming bulge, and a tank forming bulge is formed.
  • a ridge is formed from between the protruding portions to the vicinity of the other end of the forming plate, and a ridge is provided at the other end of the forming plate to prevent the fins 2 from falling off.
  • This is the same as the forming plate 6 in FIG. 3 (a), and the other tube elements have the same configuration as that described above, so that the description is omitted.
  • the partition 18 and the guide plate 19 have the same configuration as described above. However, in this heat exchanger, 26 tube elements are stacked, and the seventh row is counted from the left in the figure.
  • the inlet 4 has an outlet at the 20th stage, and the partition 18 and the throttle 19 are the 13th stage (tube element 3e) and the 14th stage (tube element 3d) from the left. Is formed between.
  • the guide plate 19 may have various configurations shown in FIG. 4 to FIG. 14 or a configuration in which the number and the formation position are different from these, and the guide plate 19 is inclined at an angle ⁇ with respect to the horizontal direction.
  • the length L of the portion is formed in the range of 5 ⁇ 6> ⁇ 65 degrees and 1 ⁇ L15 mm described above.
  • the refrigerant flowing from the inlet 4 is dispersed throughout the first tank block 21, and the return path of the tube element corresponding to the first tank block 21 is formed.
  • Ascend Part 13 along ridge 10 Pass 1). Then, it goes down above the ridges 10 and goes down (second pass) until it reaches the tank group on the opposite side (third tank block 23). After that, it moves in the laminating direction toward the remaining tube elements constituting the third tank block 23, and turns back the tube elements 1 3 Ascend along the ridge 10 (3rd pass). Then, it makes a U-turn above the protruding ridge 10 and descends (4th pass), and is guided to the evening portion forming the second tank block 22, and then flows out of the outlet portion 5.
  • the refrigerant exchanges heat with the air via the fins 2 in the process of flowing through the return passage portion 13 forming the first to fourth passes.
  • the refrigerant traveling from the second pass to the third pass is changed in the straight traveling direction by the guide plate 19 formed at the transition portion in the same manner as in the above-described configuration, and is also transmitted to the tube element near the partition. It will flow enough.
  • the forming plate provided with the partition 18 and the forming plate provided with the guide plate 19 are formed separately.
  • the forming plate required for assembling the heat exchanger is formed.
  • the partition 18 and the guide plate 19 may be formed on one forming plate. According to the configuration described above, the forming plate 6e in FIG. 3 (c) is replaced with a forming plate 6e ′ as shown in FIG. 17, and the adjacent plate is replaced with the plate in FIG. ) May be used as the forming plate 6a.
  • the guide plate 19 provided at the transition portion from the even-numbered pass to the odd-numbered pass is formed on the forming plate adjacent to the partition portion 18 or the forming plate provided with the partition portion.
  • the present invention is not limited to this.
  • the vicinity of the transition portion of the second or third pass (for example, a tube element one or two away from the tube element having the partition 19) May be provided with a guide plate.
  • the numerous guide plates 19 described above suppress the drift by suppressing the passage resistance and actively change the straight direction of the heat exchange medium, and also suppress the swirl flow of the heat exchange medium, thereby reducing the heat exchange.
  • the direction of the medium is changed without fail, and the heat exchange medium can easily flow into the return passage 13 of each tube element. It is characterized in that the drift is suppressed, and the throttle portion disclosed in Japanese Patent Application Laid-Open No. H08-285707 cannot be obtained by the guide plate disclosed in Japanese Patent Application Laid-Open No. H08-178851. It is effective.
  • the guide plate 19 of the present invention may be used in combination with the throttle section disclosed in Japanese Patent Application Laid-Open No. 8-285407. Since the throttle portion of the publication also aims at the same effect of suppressing the drift of the heat exchange medium, it is sufficiently possible to prevent the drift by using it together.
  • the guide plate 19 may be formed in the vicinity of the forming plate provided with the partition portion 18 or the forming plate provided with the partition portion 18.
  • the guide plate may be provided at a plurality of positions on the plate and in the vicinity thereof so as to be shifted in the laminating direction.
  • Providing the guide plate at at least one location in or near the transition portion means not only the configuration shown in FIGS. 12 to 14 but also a plurality of locations where the guide plate is shifted in the stacking direction. It also includes the case where it is provided in
  • the guide plates 19 are provided at a plurality of positions shifted in the laminating direction, for example, the configuration shown in FIG. 18 or FIG. 19 can be considered.
  • 6 e and 6 f are provided with guide plates, and these guide plates 19 are inclined portions 1 which are bent inward from the periphery of the lower end of the through hole 17 formed in the bulging portion 7 for tank formation to the inside of the tank portion. 9b is integrally formed.
  • the guide plate 19 formed on the forming plate 6 e is extended to the through hole of the other forming plate 6 a constituting the tube element 3 e, and the forming plate 6 This is in contact with the guide plate 19 formed on f.
  • the two inclined guide plates are connected continuously, and the length L of the inclined portion as a whole is determined by the length L 1 of the guide plate 19 formed on the forming plate 6 e and the guide formed on the forming plate 6 f. This is the total length of the plate 19 and the length L2.
  • the length L of the inclined portion set in the range of 1 ⁇ L ⁇ 15 mm described above is a range for setting the length of the inclined portion 19 b of each guide plate 19-
  • this is also a range for setting the total length when a plurality of inclined portions of the guide plate are connected. If the inclined portions of the plurality of guide plates are made continuous as described above, the flow direction of the heat exchange medium flowing in the laminating direction can be reliably guided in the intended direction, and the tube near the partition portion 18 It is easy to obtain a substantially uniform temperature distribution by sufficiently supplying the refrigerant to the element.
  • FIG. 19 is similar to the structure shown in FIG. 18 except that the length L 1 of the inclined portion 19 b of the guide plate 19 formed on the forming plate 6 e is shortened. An interval is provided between the guide plate 19 formed on the element and the guide plate 19 formed on the forming plate 6f on the extension of the guide plate 19 formed on the forming plate 6e. It is common to Fig. 18 in that it is provided.
  • the guide plate 19 described above 6e it may have a curved surface shape along the horizontal direction. This curved shape is bent to a certain curvature. By adopting this curved surface shape, the strength of the guide plate 19 can be improved, and the change of the flowing heat exchange medium (coolant) can be improved.
  • the guide plate 19 has a rounded (R-shaped) shape at both shoulders at the tip end in the direction (stacking direction) protruding from the forming plate. With this roundness, the shoulder is no longer angular, and vibration due to the flow of the refrigerant is suppressed.
  • the curved shape of the guide plate 19 is limited to a portion near the both ends in the transverse direction of the forming plate 6e, and a flat plate therebetween. It is shaped like a letter. Also in this example, the shoulders of the guide plate are rounded.
  • the guide plate 19 has a curved shape along the horizontal direction of the forming plate 6e and a bag shape (bowl shape) toward the protruding end as shown in Figs. Has formed. Also in this example, both shoulders of the guide plate 19 are rounded.
  • the curved surface of the guide plate 19 has a curved shape along the lateral direction of the forming plate 6e and a bag shape (bowl shape) toward the protruding end. Is formed in the same manner as described above, but has straight portions 33, 33 in the erected portion 19a crossing the through hole 17 on both sides of the guide plate. Also in this example, both shoulders of the guide plate 19 are rounded.
  • the guide plate 19 is shown in the example in which both shoulders are rounded in the above-mentioned curved surface shape, but is not limited thereto. It may be provided in a flat plate shape.
  • the guide plate 19 has an inclined portion 19b bent at a predetermined angle with the erection portion 19a, and the guide surface has a flat plate shape.
  • a continuous bent portion (referred to as a bead) 35 protruding downward from the forming plate 6e in the protruding direction is formed from the erection portion 9a to the inclined portion 9b.
  • the dimension of the bead 35 is the same as the direction in which the guide plate 19 protrudes (the laminating direction).
  • the strength of the guide plate 19 can be improved, and it also contributes to the improvement of formability and dimensional accuracy.
  • both shoulders of the guide plate are rounded.
  • the beads 35 formed on the guide plate 19 may have the same dimensions as described above, but may have shorter dimensions as shown in FIG.
  • the bead 35 is formed on a guide plate 19 having a curved surface at a portion near both ends in the lateral direction along the lateral direction of the forming plate 6e. You may. Thereby, the strength is further improved from the two configurations of the bead 35 and the curved surface formation.
  • the bead 35 is formed so as to have a curved surface along the lateral direction of the forming plate 6e and a bag shape (bowl shape) toward the protruding end. It may be provided on the guide plate 19 formed in the above. Also in this example, both shoulders of the guide plate 19 are rounded.
  • the guide plate 19 has the same configuration as that of the above-mentioned example, and the strut portions 33, 3 are attached to the erection portions 19a on both sides. It may be provided on a guide plate having 3. In this example, both shoulders of the inner plate 19 are rounded.
  • the bead 35 may be formed in a rhombic shape at a bent portion of the erected portion 19a and the inclined portion 19b. Thereby, the strength can be improved.
  • the above-described bead 35 is a single display example. However, although not shown, plural examples such as two may be used.
  • the guide plate 19 is provided with an erect portion 19 a provided so as to pass through the through hole 17, and an inclined portion 1 which is bent and inclined from a side edge of the erect portion.
  • 9 and 9b as shown in FIGS. 50 and 52, an inclined portion 19b is formed by inclining from the lower edge of the through hole, and the through hole 17 May be provided above the figure.
  • the round plate is formed, and the connecting bent part (bead) 35 is formed in the projecting direction from the forming plate 6 e. It is formed from-to the inclined portion 9b.
  • the guide plate 19 has straight portions 33, 33 on both sides.
  • the inclined portion 19b may be bent to have a curved surface shape.
  • the guide plate 19 described above can be similarly provided. That is, the guide plate 19 has the same configuration as that of the embodiment shown in FIGS. 20 to 49, and forms a curved surface, forms a bead, and furthermore, rounds both shoulders to increase strength. The reinforcement and prevention of vibration are achieved.
  • the forming plate provided with the partition 18 and the forming plate provided with the guide plate 19 are formed separately, but the forming plate required for assembling the heat exchanger is formed.
  • the partition 18 and the guide plate 19 may be formed on one forming plate. According to the configuration described above, the forming plate 6e in FIG. 3 (c) is replaced with a forming plate 6e 'as shown in FIG. 53, and a plate adjacent thereto is replaced with the plate shown in FIG.
  • the forming plate 6a shown in (a) may be used.
  • the heat exchange medium is transferred from the tank portion to the passage portion communicating therewith.
  • a guide plate is provided to guide the flow of the heat exchange medium moving in the stacking direction straight toward the communicating part between the destination tank part and the passage part communicating therewith.
  • the heat exchange medium can be distributed almost uniformly to each tube element, and it is possible to prevent the flow of the heat exchange medium from being biased and the passing air temperature from being greatly different depending on the passage location.
  • the guide plate was used to actively change the direction of the heat exchange medium in the straight direction, it was possible to reduce the deviation of the heat exchange medium while keeping the passage resistance low, and to generate a swirling flow. Since the heat exchange medium can be suppressed, the heat exchange medium can be easily guided to the passage near the transition portion.
  • a forming plate provided with a partitioning portion that bounds a path for flowing the heat exchange medium from the tank portion to the passage portion is provided.
  • the heat exchange medium can be easily guided to the passage near the partition.
  • the guide plate and the partition are provided on the same forming plate, the types of forming plates required for assembling the heat exchanger can be reduced.
  • the improvement of the flow of the heat exchange medium by the guide plate depends on how the inclination angle of the guide plate and the length of the inclined part are combined, but the inclination angle in the range of 5 to 65 degrees and the range of 1 to 15 mm If the lengths of the inclined portions are appropriately set, the deviation of the heat exchange medium can be reduced and the heat exchange efficiency can be improved. In addition, if the guide plate is formed integrally with the members constituting the tank part, the number of manufacturing steps can be reduced, Manufacturing can be facilitated.
  • the guide plate can be of various shapes, but it may be constructed by an erect portion provided to pass through the through-hole and an inclined portion which is bent from the side edge of the erect portion and inclines. If the shape is formed by bending directly from the periphery of the hole and inclined, or by twisting the part provided so as to pass through the hole, the entire shape is inclined.- It is possible to provide a structure that is easy to manufacture and easy to put into practical use. . Further, if a large number of guide plates are formed at or near the transition portion, the flow of the heat exchange medium can be reliably changed, and the drift of the heat exchange medium can be effectively suppressed.
  • the tube element at a predetermined position is used.
  • a guide plate is provided in the through hole of the tank, and the flow of the heat exchange medium moving in the stacking direction is changed toward the communicating portion between the destination tank portion and the passage portion communicating therewith. It is possible to improve the strength by shaping or providing a bead, and to have the effect of preventing vibration by rounding both shoulders of the guide plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A laminated type heat exchanger, comprising a guide plate (19) which moves a heat exchange medium moving in the laminating direction straight toward a communication part between a tank part as a destination and a path part communicating with the tank part; specifically, a single tank laminated type heat exchanger, comprising a guide plate (19) which moves a heat exchange medium moving in the laminating direction straight toward a communication part between a tank part on an odd numbered path and a path part communicating with the tank part is installed on a transfer part from an even numbered path to the odd numbered path, wherein the inclined angle of the guide plate (19) is within 5 to 65° relative to the laminating direction, and the length of the inclined portion is set in the range of 1 to 15 mm, whereby, in the laminated type heat exchange medium which is passed from the tank part to the path part after the heat exchange medium is moved in the laminating direction in the communicating tank part, the non-uniform flow of the heat exchange medium is reduced and heat exchange medium is passed generally uniformly to any tube element so as to increase a heat exchange efficiency, the guide plate is formed in a curved shape and beads are provided on the guide plate for reinforcement, and both shoulder parts of the guide plate are rounded so as to prevent it from being vibrated.

Description

明 細 書 積層型熱交換器 技術分野  Description Stacked heat exchanger Technical field
この発明は、 車両用空調装置の冷凍サイクル等に利用され、 多数のチュ —ブエレメントを積層した積層型熱交換器に関し、 チューブエレメントを フィンを介して積層し、 熱交換媒体を複数パスさせる形式の積層型熱交換 器に適したものである。 背景技術  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger that is used in a refrigeration cycle of a vehicle air conditioner and has a large number of tube elements laminated. It is suitable for the stacked heat exchanger of the above. Background art
熱交換器として、 第 1図又は第 2図で示される熱交換器や、 第 1 5図又 は第 1 6図で示される片タンク式の熱交換器が知られている。  As the heat exchanger, a heat exchanger shown in FIG. 1 or FIG. 2 and a single-tank type heat exchanger shown in FIG. 15 or FIG. 16 are known.
第 1図及び第 2図に示されるような熱交換器は、 チューブエレメントを フィン 2を介して積層したコア本体を形成し、 チューブエレメン卜の片側 に設けられた一対のタンク部 1 2を折返し通路部 1 3によって連通し、 隣 り合うチューブエレメン卜のタンク部 1 2を適宜連通してコア本体に複数 パスの熱交換媒体経路を形成し、 コア本体の積層方向の一方端に熱交換媒 体の入口部 4と出口部 5とを設け、 入口部 4を最上流側のタンクプロック 2 1に対して連通パイプ 3 0を介して連通させると共に、 出口部 5を最下 流側のタンクブロック 2 2と直接連通させるようにしたものである。 また、 第 1 5図及び第 1 6図に示される熱交換器は、 チューブエレメン トをフィン 2を介して積層したコア本体を形成し、 チューブエレメントの 片側 (下側) に設けられた一対のタンク部 1 2を折返し通路部 1 3によつ て連通し、 隣り合うチューブエレメン卜のタンク部 1 2を適宜連通してコ ァ本体に複数パスの熱交換媒体経路を形成したもので、 前記熱交換器と異 なり、 熱交換媒体の入口部 4と出口部 5とがコア本体の正面に設けられて いる。 The heat exchanger as shown in FIGS. 1 and 2 forms a core body in which tube elements are laminated via fins 2 and turns a pair of tank sections 12 provided on one side of the tube element. A plurality of heat exchange medium paths are formed in the core body by appropriately communicating the tank sections 12 of the adjacent tube elements with each other by the passage section 13, and a heat exchange medium is formed at one end of the core body in the stacking direction. An inlet 4 and an outlet 5 are provided for the body, and the inlet 4 is connected to the tank block 21 on the most upstream side via a communication pipe 30 and the outlet 5 is a tank block on the lowermost side. It is designed to communicate directly with 22. The heat exchangers shown in FIGS. 15 and 16 form a core body in which tube elements are laminated via fins 2 and a pair of tubes provided on one side (lower side) of the tube element. The tank section 12 is communicated with the folded passage section 13 and the tank section 12 of the adjacent tube element is appropriately communicated to connect A plurality of heat exchange medium paths are formed in the main body of the core. Unlike the heat exchanger, an inlet 4 and an outlet 5 for the heat exchange medium are provided on the front of the core body.
上述したこれらの熱交換器にあっては、 入口部 4から流入した熱交換媒 体が、 連通パイプ 3 0を介して又は直接に熱交換媒体経路の最上流側の夕 - ンクブロック 2 1に入り、 複数パスした後に熱交換媒体経路の最下流側の タンクブロック 2 2に至り、 このタンクブロック 2 2と連通する出口部 5 から流出される。 ここで、 熱交換媒体がタンク部から折返し通路部へ、 或 いは、 折返し通路部からタンク部へ流れる一方向の流れが 1パスとして数 えられ、 例えば、 熱交換媒体経路の最上流側のタンクブロックから最下流 側のタンクプロックに至るまでに折返し通路部 1 3を 2回通過すれば 4パ スの熱交換器、 3回通過すれば 6パスの熱交換器と呼ばれる。  In these heat exchangers described above, the heat exchange medium that has flowed in from the inlet 4 is connected to the upstreammost block of the heat exchange medium path 21 through the communication pipe 30 or directly. After passing through a plurality of passes, it reaches the tank block 22 on the most downstream side of the heat exchange medium path, and flows out of the outlet 5 communicating with the tank block 22. Here, a one-way flow in which the heat exchange medium flows from the tank portion to the return passage portion or from the return passage portion to the tank portion is counted as one pass. A two-pass heat exchanger is called a four-pass heat exchanger if it passes through the turn-back passage 13 twice from the tank block to the tank block on the most downstream side, and a six-pass heat exchanger if it passes three times.
しかしながら、 前者の熱交換器において、 例えば 4パスの熱交換器であ れば、 第 5 4図 (a ) に示されるように、 第 2パスから第 3パスへ移行す る際に熱交換媒体が連通しているタンク部を介して積層方向に流れるが、 熱交換媒体の慣性力によって第 3パスの奥に熱交換媒体が集中し、 第 3及 び第 4パスにおいては、 仕切部 1 8に近いチューブエレメントで熱交換媒 体の流量が少なくなる。 このため、 熱交換媒体として冷媒を用いた場合に は、 第 5 5図の破線で示される実験結果から明らかなように、 同位置のチ ユーブエレメント間を通過した空気温度が他の部分に比べて高くなり、 熱 交換効率が低下する不都合がある。  However, in the former heat exchanger, for example, in the case of a four-pass heat exchanger, as shown in Fig. 54 (a), the heat exchange medium is used when shifting from the second pass to the third pass. Flows in the laminating direction through the tank part communicating with the heat exchanger, but the heat exchange medium concentrates at the back of the third pass due to the inertial force of the heat exchange medium, and the partition 18 in the third and fourth passes The flow rate of the heat exchange medium is reduced by the tube element close to. For this reason, when a refrigerant is used as the heat exchange medium, the temperature of the air passing between the tube elements at the same position is higher than that of the other parts, as is clear from the experimental results shown by the broken line in FIG. And the heat exchange efficiency decreases.
尚、 図中、 チューブナンバー (T U B E N o . ) とは、 第 1図の右側 から数えたチューブエレメント数である。 また、 通過空気温度 (A I R T E M P . ) とは、 チューブエレメント間を通過してフィンと熱交換した 空気温度を示し、 コァ本体の下流側端面から 1〜 2 c m離れた位置で測定 した温度である。 In the figure, the tube number (TUBEN o.) Is the number of tube elements counted from the right side in FIG. The passing air temperature (AIRTEMP.) Indicates the temperature of the air that has passed between the tube elements and exchanged heat with the fins, and is measured at a position 1 to 2 cm away from the downstream end face of the core body. Temperature.
上述の不都合は、 6パスの熱交換器においても想定されることで、 第 5 4図 (b ) に示されるように、 熱交換媒体の流れが偏り、 その結果、 第 3 パスから第 4パス、 第 5パスから第 6パスにかけては仕切部 1 8に近い部 分で他の部分に比べて通過空気温度が大きく異なってしまう。 更に、 後者- の熱交換器においても、 偶数番目のパスから奇数番目のパスへ移行する際 に熱交換媒体が偏り、 仕切部 1 8に近い部分で熱交換媒体の流量が少なく なる。  The above-mentioned inconvenience is assumed even in a 6-pass heat exchanger, and as shown in Fig. 54 (b), the flow of the heat exchange medium is biased. However, in the fifth and sixth passes, the passing air temperature is greatly different in the portion close to the partition 18 than in the other portions. Further, in the latter heat exchanger as well, the heat exchange medium is biased when moving from the even-numbered path to the odd-numbered path, and the flow rate of the heat exchange medium is reduced near the partition 18.
このような熱交換媒体の偏りを解消する対策として、 本出願人は、 先に 偶数番目のパスから奇数番目のパスへ移行する部分に流路断面を絞る絞り 部を設けて仕切部近傍のチューブエレメントにも十分に熱交換媒体を流す ようにした構成を提案している (特開平 8— 2 8 5 4 0 7号公報) 。 しか しながら、 先に提案した構成によれば、 流路断面を絞ることで流速を低下 させ、 或いは熱交換媒体の流れを複雑にすることによつて熱交換媒体の偏 りを防ごうとするものであり、 ともすれば通路抵抗の増大が懸念されるこ とから、 慎重な設計が要求される。  As a countermeasure to eliminate such bias of the heat exchange medium, the present applicant first provided a throttle section for narrowing the cross section of the flow path at a portion where the even-numbered pass changes to the odd-numbered pass, and provided a tube near the partition portion. A configuration in which a heat exchange medium is sufficiently supplied to the element has been proposed (Japanese Patent Application Laid-Open No. 8-285407). However, according to the configuration proposed earlier, the flow velocity is reduced by narrowing the cross section of the flow path, or the bias of the heat exchange medium is prevented by complicating the flow of the heat exchange medium. Therefore, careful design is required because of the concern that passage resistance may increase.
また、 熱交換媒体の流れの不均一を解消する対策として、 特開平 8— 1 7 8 5 8 1号公報に示されるように、 上流側熱交換プロックから下流側熱 交換プロックへ熱交換媒体を供給するタンク間流路に、 この流路の中心線 の回りに熱交換媒体を旋回させる旋回流発生板を設けた構成も公知となつ ている。  As a measure to eliminate the uneven flow of the heat exchange medium, as shown in Japanese Patent Application Laid-Open No. 8-178851, the heat exchange medium is transferred from the upstream heat exchange block to the downstream heat exchange block. A configuration in which a swirl flow generating plate for swirling a heat exchange medium around a center line of the flow path is provided in the inter-tank flow path to be supplied is also known.
しかしながら、 このような構成は、 熱交換媒体の偏りを解消するといつ ても、 タンク間流路で熱交換媒体が気液 2相状態になることを防ぐために、 旋回流発生板によって熱交換媒体を攪拌して均一な気液混合状態を形成し、 もってタンクの上下配置によって熱交換性能に優劣が生じないようにした ものであり、 各チューブエレメン卜に気液混合状態の冷媒を導く点で有効 な構成といえるが、 熱交換媒体を旋回させて気液を混合させるだけで、 上 述の如く、 例えば 4パスの熱交換器であれば、 第 5 4図 (a ) に示される ように、 熱交換媒体の慣性力によって第 3パスの奥に熱交換媒体が集中し てしまうことを避けることはできない。 むしろ、 旋回しながら熱交換媒体- がタンク間流路を進む場合には、 その旋回の慣性によって各通路部への熱 交換媒体の流入が阻害されたりタンク間流路の中心線に沿って進む熱交換 媒体の方向変換が困難となり、 第 3パスの奥へ熱交換媒体がより一層集中 してしまうことが懸念され、 第 3及び第 4パスにおいては、 仕切部 1 8に 近いチューブエレメン卜で熱交換媒体の流量が少なくなる不都合が顕著に なると思われる。 However, such a configuration, even when the bias of the heat exchange medium is eliminated, prevents the heat exchange medium from being in a gas-liquid two-phase state in the inter-tank flow path, so that the heat exchange medium is supplied by the swirling flow generating plate. Stirring to form a uniform gas-liquid mixed state, so that the upper and lower tanks do not give or remove heat exchange performance This is an effective configuration in that refrigerant in a gas-liquid mixed state is guided to each tube element.However, just turning the heat exchange medium to mix gas-liquid, as described above, for example, a four-pass In the case of a heat exchanger, as shown in Fig. 54 (a), it cannot be avoided that the heat exchange medium concentrates in the third pass due to the inertial force of the heat exchange medium. Rather, when the heat exchange medium moves along the inter-tank flow path while turning, the inertia of the turn hinders the flow of the heat exchange medium into each passage section or proceeds along the center line of the inter-tank flow path. It is difficult to change the direction of the heat exchange medium, and there is a concern that the heat exchange medium will be further concentrated in the third pass, and in the third and fourth passes, a tube element close to the partition 18 is used. The inconvenience of reducing the flow rate of the heat exchange medium is likely to be significant.
そこで、 この発明においては、 熱交換媒体の偏流を少なく し、 積層方向 のどのチューブエレメントに対してもほぼ均等に熱交換媒体を流して熱交 換効率の向上を図ることができる積層型熱交換器を提供することを課題と している。 また、 通路抵抗を低く抑えつつ熱交換媒体をより積極的に分散 させることで偏りを小さくすることができる積層型熱交換器を得ることを 課題としている。 発明の開示  Therefore, in the present invention, a laminar heat exchange system capable of reducing the drift of the heat exchange medium and allowing the heat exchange medium to flow almost evenly to any of the tube elements in the laminating direction to improve the heat exchange efficiency. The challenge is to provide equipment. It is another object of the present invention to obtain a stacked heat exchanger that can reduce the bias by more actively dispersing the heat exchange medium while keeping the passage resistance low. Disclosure of the invention
本発明に係る積層型熱交換器は、 複数のタンク部とこのタンク部に連通 する通路部とを有してなるチューブエレメントを前記タンク部を順次付き 合わせて多数段に積層し、 この付き合わされたタンク部の全部又は一部を 各々のタンク部に形成された通孔を介して連通し、 複数の連接したタンク 部からこれに連通する通路部へ熱交換媒体を流入するパスを設け、 このパ スへの移行部分において前記通孔を介して熱交換媒体を積層方向へ移動さ せる構成において、 前記移行部分又はその近傍の少なくとも 1箇所に、 前 記積層方向へ移動する熱交換媒体の流れを前記移動先のタンク部とこれに 連通する通路部との連通部位へ向けて直進させる案内板を設けたことを特 徴としている。 The stacked heat exchanger according to the present invention includes a tube element having a plurality of tanks and a passage communicating with the tanks, the tanks being sequentially attached to each other, and the tube elements are stacked in many stages. All or a part of the tanks are communicated through through holes formed in each tank, and a path is provided for flowing the heat exchange medium from a plurality of connected tanks to a passage communicating with the tanks. At the transition to the path, the heat exchange medium is moved in the stacking direction through the through holes. In the configuration, the flow of the heat exchange medium moving in the laminating direction at at least one point in or near the transition portion is directed straight toward a communication portion between the tank portion at the transfer destination and a passage portion communicating with the tank portion. It is characterized by the provision of a guide plate to make it work.
このような構成によれば、 通孔を介して積層方向に移動する熱交換媒体- が案内板によって直進方向が積極的に変更されて移動先のタンク部とこれ に連通する通路部との連通部位へ向かって直進するので、 各通路部に熱交 換媒体を分配させることができ、 積層方向の終端近くに熱交換媒体が集ま つてしまうことを避けることができる。  According to such a configuration, the heat exchange medium moving in the stacking direction through the through holes is positively changed in the rectilinear direction by the guide plate, and the communication between the movement destination tank portion and the passage portion communicating therewith. Since the heat exchange medium travels straight toward the portion, the heat exchange medium can be distributed to each passage portion, and the heat exchange medium can be prevented from gathering near the end in the stacking direction.
特に、 片タンク型の積層型熱交換器の場合、 即ち、 片側に設けられた一 対のタンク部とこの一対のタンク部を連通する折返し通路部とを有してな るチューブエレメントをフィンを介して多数段に積層し、 隣合うチューブ エレメン卜のタンク部を順次付き合わせると共に、 この付き合わされた夕 ンク部をプロック毎に通孔を介して連通し、 各プロックを構成するタンク 部数を適宜設定してチューブエレメン卜のタンク部から通路部にかけて熱 交換媒体が流動する奇数番目のパスと、 チューブエレメン卜の通路部から タンク部にかけて熱交換媒体が流動する偶数番目のパスとを設け、 偶数番 目のパスから奇数番目のパスへの移行部分で、 前記通孔を介して熱交換媒 体が積層方向へ移動する積層型熱交換器の場合には、 前記移行部分又はそ の近傍の少なくとも 1箇所に、 前記積層方向へ移動する熱交換媒体の流れ を前記奇数番目のパスのタンク部とこれに連通する通路部との連通部位へ 向けて直進する案内板を設ける構成とすればよい。  In particular, in the case of a one-tank type stacked heat exchanger, a fin is used as a tube element having a pair of tank portions provided on one side and a folded passage portion communicating the pair of tank portions. The tank portions of adjacent tube elements are sequentially attached to each other, and the joined ink portions are communicated through through holes for each block, and the number of tanks constituting each block is appropriately determined. An odd-numbered path through which the heat exchange medium flows from the tank element to the passage of the tube element and an even-numbered path through which the heat exchange medium flows from the path to the tank of the tube element are provided. In the case of a stacked heat exchanger in which the heat exchange medium moves in the stacking direction through the through holes at the transition portion from the second pass to the odd-numbered pass, the transition portion or Is provided at at least one location in the vicinity thereof with a guide plate which directs the flow of the heat exchange medium moving in the laminating direction toward a communication portion between the tank portion of the odd-numbered path and the passage portion communicating therewith. What is necessary is just to be a structure.
したがって、 このような構成においては、 最上流側のブロックに流入さ れた熱交換媒体が複数パスした後に最下流側のプロックから流出され、 こ の際、 偶数番目のパスから奇数番目のパスへの移行部分には案内板が設け られているので、 この案内板によって熱交換媒体の直進方向が積極的に変 更されて奇数番目のパスを構成する各通路部に熱交換媒体が直進して略均 一に分配され、 全てのチューブエレメントに熱交換媒体を十分に流すこと ができ、 これにより、 第 5 5図の実線で示されるように、 通過空気温度が 各所で大きくばらつくことがなくなり、 そのため、 上記課題を達成するこ- とができる。 Therefore, in such a configuration, the heat exchange medium that has flowed into the block on the most upstream side passes through the plurality of passes and then flows out of the block on the most downstream side. A guide plate is provided at the transition part of As a result, the direction in which the heat exchange medium travels is positively changed by the guide plate, and the heat exchange medium travels straight in each of the passages constituting the odd-numbered paths and is distributed substantially uniformly. The heat exchange medium can sufficiently flow through the tube element, and as a result, as shown by the solid line in FIG. 55, the temperature of the passing air does not vary greatly at various places. Can be.
ここで、 片タンク型の積層型熱交換器としては、 チューブエレメントの 積層方向の一方端部に熱交換媒体の入口部と出口部とを設け、 入口部を最 上流側のプロックに連通し、 出口部を最下流側のプロックに連通させる構 成であっても、 また、 最上流側のブロックに積層方向と直角をなす入口部 を設け、 最下流側のプロックに積層方向と直角をなす出口部を設けるもの であってもよい。  Here, as a single-tank type stacked heat exchanger, an inlet portion and an outlet portion of the heat exchange medium are provided at one end of the tube element in the stacking direction, and the inlet portion communicates with a block on the most upstream side, Even if the outlet is connected to the block at the most downstream side, an inlet at right angles to the stacking direction is provided at the block at the most upstream side, and the outlet at right angles to the stacking direction is provided at the block at the most downstream side. A part may be provided.
また、 チューブエレメントを 2枚の成形プレートを接合して構成し、 積 層方向のタンク部間の連通を阻止する仕切部を設けた成形プレートを所定 位置に配置することで前記熱交換媒体がタンク部から通路部へ流動するパ スを境界づける熱交換器にあっては、 移行部分に設けられる案内板を、 仕 切部を設けた成形プレートに隣接している成形プレートに設けるようにし ても、 仕切部が設けられた成形プレートそのものに設けるようにしてもよ レ、。 さらに、 仕切部近傍を流れる熱交換媒体の流量が改善される範囲内で、 仕切部と案内板とを積層方向に前後してずらしてもよく、 移行部分の近傍 に設けられる案内板は、 このような構成をも包含するものである。  In addition, the tube element is formed by joining two forming plates, and the forming plate provided with a partition for preventing communication between the tank portions in the laminating direction is arranged at a predetermined position, so that the heat exchange medium is formed in the tank. In the heat exchanger that bounds the path flowing from the part to the passage, the guide plate provided at the transition part may be provided on the forming plate adjacent to the forming plate provided with the partition part. Alternatively, the partition plate may be provided on the formed plate itself. Further, the partition and the guide plate may be shifted back and forth in the laminating direction within a range in which the flow rate of the heat exchange medium flowing near the partition is improved, and the guide plate provided near the transition portion is Such a configuration is also included.
ところで、 積層方向に対して案内板の傾斜角度が小さすぎると、 熱交換 媒体に前記偏流を無くすだけの大きな変更を加えることができず、 また、 傾斜角度が大きすぎると、 通路抵抗が大きくなって熱交換媒体の流量が抑 えられ、 熱交換効率の低下が心配される。 このため、 案内板の傾斜部分の 長さが、 流動方向を変える効果や製造上の制約などから 1〜 1 5 mmの範 囲で設定されると、 傾斜角度としては、 5〜 6 5度の範囲で選択されるこ とが望ましい。 さらに、 案内板は、 タンク部と別体に形成されるものであ つてもよいが、 製造工数の削減、 製造の容易化を図るために、 タンク部を 構成する部材と一体に形成してもよい 。 - 案内板の実用化しやすい具体的な態様としては、 通孔を渡すように設け られた架設部と、 この架設部の側縁から曲げられて傾斜する傾斜部とによ り構成するようにしても、 通孔の周縁から曲げられて傾斜するように構成 しても、 通孔を渡すように設けられた部分を捻って全体を傾斜させて構成 するようにしてもよい。 さらには、 熱交換媒体の直進方向を確実に変更す るために、 前記移行部分又はその近傍に案内板を多数形成するものであつ てもよい。 By the way, if the inclination angle of the guide plate is too small with respect to the laminating direction, it is not possible to make a large change to eliminate the drift in the heat exchange medium, and if the inclination angle is too large, the passage resistance increases. As a result, the flow rate of the heat exchange medium is suppressed, and the heat exchange efficiency may be reduced. For this reason, the slope of the guide plate When the length is set in the range of 1 to 15 mm due to the effect of changing the flow direction and manufacturing restrictions, it is preferable that the inclination angle be selected in the range of 5 to 65 degrees. . Further, the guide plate may be formed separately from the tank portion, but may be formed integrally with the members constituting the tank portion in order to reduce the number of manufacturing steps and to facilitate the manufacturing. Good. -As a specific mode that the guide plate is easy to put into practical use, the guide plate is composed of an erect portion provided so as to pass through the through hole, and an inclined portion which is bent from the side edge of the erect portion and inclines. Alternatively, it may be configured to be bent from the periphery of the through hole and be inclined, or may be configured by twisting a portion provided to pass through the through hole and inclining the whole. Furthermore, in order to surely change the direction in which the heat exchange medium goes straight, a large number of guide plates may be formed at or near the transition portion.
上述の構成においては、 複数の連接したタンク部からこれに連通する通 路部へ熱交換媒体を流入するパスを設け、 このパスへの移行部分、 例えば 2パスから 3パスへの移行部分又はその近傍の少なくとも 1ケ所に積層方 向へ移動する熱交換媒体の流れを前記移動先のタンク部と、 これに連通す る通路部との連通部位へ向けて変更する案内板を設けた積層型熱交換器を 提案するものであるが、 この案内板は、 チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成された通孔に設けられ、 その案内 板が通孔打抜き時に今まで不要とされていた切片を残すことで製造される ことになる。 しかし、 移行部分の通孔は、 冷媒が多量に早く流れることか ら、 案内部に力が加わり、 振動がおき、 この振動がチューブエレメントを 介して騒音として外部に発信されたり、 また案内部が変形して案内方向が ずれてしまうおそれがある。  In the above-described configuration, a path for flowing the heat exchange medium from a plurality of connected tank sections to a passage section communicating therewith is provided, and a transition portion to this path, for example, a transition portion from two passes to three passes or a portion thereof. A laminated heat exchanger provided with a guide plate for changing the flow of the heat exchange medium moving in the laminating direction to at least one location in the vicinity toward the communicating portion between the destination tank portion and the passage portion communicating therewith. This guide plate is provided in the through hole formed in the bulging portion for forming the tank of the forming plate that constitutes the tube element. It is manufactured by leaving unnecessary sections. However, since a large amount of refrigerant flows through the through-hole at the transition part, a force is applied to the guide part and vibration occurs, and this vibration is transmitted to the outside as noise through the tube element, or the guide part is The guide direction may be distorted due to deformation.
このため、 熱交換媒体の偏流を少なくする目的のために使用する案内板 において、 強度アップと共に、 振動防止を図ることを念頭に入れる必要が ある。 For this reason, the guide plate used for the purpose of reducing the drift of the heat exchange medium It is necessary to keep in mind that not only should the strength be increased, but also that vibration be prevented.
そこで、 この点を解消する手段として、 複数のタンク部とこのタンク部 に連通する通路部を有するチューブエレメントを多数段積層して成る積層 型熱交換器において、 前記チューブエレメントの一部に、 該チューブエレ - メントを構成する成形プレートのタンク形成用膨出部に形成の通孔に案内 板が設けられ、 この案内板は成形プレートの横方向に添う曲面形状とする ことが望ましい。  Therefore, as a means for solving this point, in a laminated heat exchanger in which a plurality of tank elements and a tube element having a passage communicating with the tank part are stacked in many stages, A guide plate is provided in a through hole formed in the bulging portion for forming a tank of the forming plate of the tube element, and it is preferable that the guide plate has a curved surface along the lateral direction of the forming plate.
これにより、 案内板に形成の曲面状により強度がアップされ、 耐久性の 向上が図れる。 また、 曲面形状のために、 熱交換媒体の変更が良好に行わ れ、 さらに、 成形性、 寸法精度の向上が図れるものである。  As a result, the strength is increased by the curved surface formed on the guide plate, and the durability can be improved. Also, due to the curved surface shape, the heat exchange medium can be changed favorably, and the formability and dimensional accuracy can be improved.
また、 案内部の曲面形状は、 一定の曲率にて曲げて成る例や、 横方向両 端に近い部分に曲面形状を形成しても良いし、 曲面形状に袋状加工を施し ても良い。 また、 曲面形状の案内板の横方向両端にストレート部を形成し ても良いし、 そのス トレート部は、 通孔を渡すように設けられた架設部に 形成しても良い。  Further, the curved shape of the guide portion may be an example formed by bending at a constant curvature, a curved shape may be formed in a portion near both ends in the lateral direction, or a bag-shaped process may be performed on the curved shape. Also, straight portions may be formed at both lateral ends of the curved guide plate, or the straight portions may be formed in a bridge portion provided so as to pass through holes.
また、 この発明に係る積層型熱交換器は、 複数のタンク部とこのタンク 部に連通する通路部を有するチューブエレメン卜を多数段積層して成る積 層型熱交換器において、 前記チューブエレメントの一部に、 該チューブェ レメントを構成する成形プレートのタンク形成用膨出部に形成の通孔に案 内板が設けられ、 この案内板に成形プレートから突出方向に少なくとも 1 ケ所以上のビードを設けるようにしてもよい。  Further, the stacked heat exchanger according to the present invention is a stacked heat exchanger comprising a plurality of stacked tube elements each having a plurality of tank portions and a passage portion communicating with the tank portions, In part, a planner plate is provided in a through hole formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and at least one bead is provided on this guide plate in a projecting direction from the forming plate. You may do so.
これにより、 案内板のビードにより、 強度がアップされ、 耐久性が向上 する。 また、 成形性、 寸法精度を小さくすることが出来る。  Thereby, the strength of the bead of the guide plate is increased, and the durability is improved. In addition, formability and dimensional accuracy can be reduced.
案内のビ一ドは、 その長さを案内部の突出方向の長さと同一寸法又はそ れより短い寸法としても良い。 さらには、 菱形の形状としても良い。 The length of the guide bead should be the same as or the same as the length of the guide in the protruding direction. Shorter dimensions may be used. Further, the shape may be a rhombus.
さらに、 この発明の積層型熱交換器は、 複数のタンク部とこのタンク部 に連通する通路部を有するチューブエレメントを多数段積層して成る積層 型熱交換器において、 前記チューブエレメントの一部に、 該チューブエレ メントを構成する成形プレートのタンク形成用膨出部に形成の通路に案内- 板が設けられ、 この案内板は成形プレートから突出する方向の先端の両肩 部に丸みを持たせるようにしてもよい。  Further, the laminated heat exchanger of the present invention is a laminated heat exchanger in which a plurality of tank elements and a tube element having a passage communicating with the tank part are laminated in a multi-stage manner. A guide plate is provided in a passage formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and the guide plate has rounded shoulder portions at a tip end in a direction protruding from the forming plate. You may do so.
これにより、 案内部の両肩部の丸み形状にて熱交換媒体が流れても、 角 張っている部分がなくなり、 案内部の振動が抑えられ、 振動音の発生が阻 止される。 また、 成形性、 寸法精度を良くすることができる。  As a result, even if the heat exchange medium flows in the rounded shape of the shoulders of the guide portion, there is no angular portion, and the vibration of the guide portion is suppressed, and the generation of vibration noise is prevented. In addition, moldability and dimensional accuracy can be improved.
積層型熱交換器は、 複数のタンク部と、 このタンク部に連通する通路部 を有するチューブエレメントを多数段積層して成る積層型熱交換器におい て、 前記チューブエレメントの一部に、 該チューブエレメントを構成する 成形プレートのタンク形成用膨出部に形成の通孔に案内板が設けられ、 こ の案内板は成形プレートの横方向に添う曲面形状とすると共に、 該案内板 の突出方向に少なくとも 1ケ所以上のビ一ドを設ける構成としてもよい。 この例では、 案内板に曲面形状とビ一ドを施したことで強度アップを図 ることが出来る。  The laminated heat exchanger is a laminated heat exchanger in which a plurality of tank sections and a tube element having a passage communicating with the tank section are laminated in a multi-stage manner. A guide plate is provided in a through hole formed in a bulging portion for forming a tank of a forming plate which constitutes an element.The guide plate has a curved surface along a lateral direction of the forming plate and has a curved surface in a projecting direction of the guide plate. At least one bead may be provided. In this example, the guide plate has a curved surface shape and a bead, so that the strength can be increased.
積層型熱交換器は、 複数のタンク部と、 このタンク部に連通する通路部 を有するチューブエレメントを多数段積層して成る積層型熱交換器におい て、 前記チューブエレメントの一部に、 該チューブエレメントを構成する 成形プレー卜のタンク形成用膨出部に形成の通路に案内板が設けられ、 こ の案内板は成形プレートの横方向に添う曲面形状とすると共に、 成形プレ 一卜から突出する方向の先端の両肩部に丸みを持たせる構成としてもよい。 この例では、 案内板を曲面形状とすると共に、 両肩部に丸みを付けて強 度の向上と振動の発生を防いでいる。 The laminated heat exchanger is a laminated heat exchanger in which a plurality of tank sections and a tube element having a passage communicating with the tank section are laminated in a multi-stage manner. A guide plate is provided in a passage formed in a bulging portion for forming a tank of a forming plate that constitutes an element, and the guide plate has a curved surface along a lateral direction of the forming plate and protrudes from the forming plate. A configuration in which both shoulders at the tip in the direction are rounded may be used. In this example, the guide plate has a curved shape and both shoulders are rounded for strength. The improvement of the degree and the occurrence of vibration are prevented.
積層型熱交換器は、 複数のタンク部とこのタンク部に連通する通路部を 有するチューブエレメントを多数段積層して成る積層型熱交換器において、 前記チューブエレメン卜の一部に、 該チューブエレメントを構成する成形 プレートのタンク形成用膨出部に形成の通路に案内板が設けられ、 この案- 内板は成形プレートから突出する方向に少なくとも 1ケ所以上のビードを 設けると共に、 成形プレートから突出する方向先端の両肩部に丸みを持た せるようにしてもよい。  The laminated heat exchanger is a laminated heat exchanger in which a plurality of tank elements and a tube element having a passage communicating with the tank part are laminated in a multi-stage manner. A guide plate is provided in the passage formed in the bulging portion for forming the tank of the forming plate, and the inner plate is provided with at least one bead in a direction protruding from the forming plate and protrudes from the forming plate. The two shoulders at the end of the direction may be rounded.
この例では、 案内板にビ一ドを形成することと、 両肩部に丸みを付けて 強度の向上と振動の発生を抑えている。  In this example, a bead is formed on the guide plate, and both shoulders are rounded to improve strength and suppress vibration.
積層型熱交換器は、 複数のタンク部と、 このタンク部に連通する通路部 を有するチューブエレメン卜を多数段積層して成る積層型熱交換器におい て、 前記チューブエレメントの一部に、 該チューブエレメントを構成する 成形プレートのタンク形成用膨出部に形成の通路に案内板が設けられ、 こ の案内板は成形プレー卜の横方向に添う曲面形状とすると共に、 該案内板 の突出方向に少なくとも 1ケ所以上のビードを設け、 且つ該成形プレート から突出する方向先端の両肩部に丸みを持たせるようにしてもよい。  The laminated heat exchanger is a laminated heat exchanger formed by laminating a plurality of tank elements and a tube element having a passage portion communicating with the tank section in a multi-stage manner. A guide plate is provided in a passage formed in a bulging portion for forming a tank of a forming plate, which constitutes a tube element. The guide plate has a curved surface along a lateral direction of the forming plate and a projecting direction of the guide plate. It is also possible to provide at least one or more beads at each end, and to make both shoulders at the front end in the direction protruding from the forming plate round.
この例では、 案内板にビードを形成することと、 曲面形状にすること及 び両肩部に丸みを付することで強度のアップと振動の発生を防いでいる。 図面の簡単な説明  In this example, by forming a bead on the guide plate, forming a curved surface, and rounding both shoulders, the strength is increased and vibration is prevented. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る積層型熱交換器の第 1の形態を示すもので、 熱 交換器の通風方向と直角になる端面を示す図である。  FIG. 1 shows a first embodiment of the laminated heat exchanger according to the present invention, and is a view showing an end face of the heat exchanger which is perpendicular to a ventilation direction.
第 2図 (a ) は、 図 1に示す積層型熱交換器の出入口部が設けられた側 面を示す図であり、 第 2図 (b ) は、 図 1に示す積層型熱交換器の底面を 示す図である。 FIG. 2 (a) is a diagram showing a side surface of the stacked heat exchanger shown in FIG. 1 where an inlet / outlet portion is provided, and FIG. 2 (b) is a diagram of the stacked heat exchanger shown in FIG. The bottom FIG.
第 3図は、 積層型熱交換器に用いるチューブエレメントの成形プレート を示し、 第 3図 (a ) は通常の成形プレート 6 aを示し、 第 3図 (b ) は 仕切部を有する成形プレート 6 dを示し、 第 3図 (c ) は案内板を有する 成形プレ一ト 6 eを示す。 - 第 4図は、 案内板を通孔の略中央に形成した構成例を示す図であり、 第 4図 (a ) は、 案内板が形成された成形プレートの一部を拡大した正面図 であり、 第 4図 (b ) は、 案内板を有するチューブエレメントとそれより 下流側に積層されたチューブエレメントを示し、 案内板の形状と熱交換媒 体の流れを説明する図である。  Fig. 3 shows a forming plate of a tube element used for a stacked heat exchanger. Fig. 3 (a) shows a normal forming plate 6a, and Fig. 3 (b) shows a forming plate 6 having a partition. Fig. 3 (c) shows a molded plate 6e having a guide plate. -Fig. 4 is a diagram showing an example of a configuration in which the guide plate is formed substantially at the center of the through hole. Fig. 4 (a) is an enlarged front view of a part of the forming plate on which the guide plate is formed. FIG. 4 (b) shows a tube element having a guide plate and a tube element laminated downstream from the tube element, and illustrates the shape of the guide plate and the flow of the heat exchange medium.
第 5図は、 案内板を有するチューブエレメントのタンク部を示す拡大図 である。  FIG. 5 is an enlarged view showing a tank portion of a tube element having a guide plate.
第 6図は、 案内板を通孔の中央よりも下方に形成した構成例を示す成形 プレートの正面図である。  FIG. 6 is a front view of a forming plate showing a configuration example in which the guide plate is formed below the center of the hole.
第 7図は、 案内板を通孔の中央よりも上方に形成した構成例を示す成形 プレー卜の正面図である。  FIG. 7 is a front view of a forming plate showing a configuration example in which the guide plate is formed above the center of the hole.
第 8図は、 案内板をタンク形成用膨出部の下端部に一体に形成した構成 例を示す成形プレー卜の正面図である。  FIG. 8 is a front view of a forming plate showing a configuration example in which a guide plate is integrally formed at a lower end portion of a bulging portion for forming a tank.
第 9図は、 案内板を通孔の略中央に形成した他の構成例を示す図であり、 第 9図 (a ) は、 案内板が形成された成形プレートの一部を拡大した正面 図であり、 第 9図 (b ) は、 案内板を有するチューブエレメントとそれよ り下流側に積層されたチューブエレメントを示し、 案内板の形状と熱交換 媒体の流れを説明する図である。  FIG. 9 is a diagram showing another example of the configuration in which the guide plate is formed substantially at the center of the through hole. FIG. 9 (a) is a front view in which a part of the forming plate on which the guide plate is formed is enlarged. FIG. 9 (b) shows a tube element having a guide plate and a tube element stacked downstream from the tube element, and illustrates the shape of the guide plate and the flow of the heat exchange medium.
第 1 0図は、 案内板を、 これが設けられたタンク部の外側に屈曲させて 形成した構成例を示す図である。 第 1 1図は、 案内板の傾斜角を徐々に大きく した構成例を示す図である。 第 1 2図は、 通孔の上半分に複数の案内板を形成した構成例を示す図で あり、 第 1 2図 (a ) は、 案内板が形成された成形プレートの一部を拡大 した正面図であり、 第 1 2図 (b ) は、 案内板を有するチューブエレメン 卜とそれより下流側に積層されたチューブエレメントを示し、 案内板の形- 状と熱交換媒体の流れを説明する図である。 FIG. 10 is a diagram showing a configuration example in which a guide plate is formed by bending a guide plate outside a tank portion provided with the guide plate. FIG. 11 is a diagram showing a configuration example in which the inclination angle of the guide plate is gradually increased. FIG. 12 is a diagram showing an example of a configuration in which a plurality of guide plates are formed in the upper half of the through hole. FIG. 12 (a) is an enlarged view of a part of the forming plate on which the guide plates are formed. FIG. 12 (b) is a front view showing a tube element having a guide plate and a tube element laminated downstream from the tube element, illustrating the shape of the guide plate and the flow of the heat exchange medium. FIG.
第 1 3図は、 通孔の全体に複数の案内板を形成した構成例を示す図であ り、 第 1 3図 (a ) は、 案内板が形成された成形プレートの一部を拡大し た正面図であり、 第 1 3図 (b ) は、 案内板を有するチューブエレメント とそれより下流側に積層されたチューブエレメントを示し、 案内板の形状 と熱交換媒体の流れを説明する図である。  FIG. 13 is a diagram showing a configuration example in which a plurality of guide plates are formed in the entire through hole. FIG. 13 (a) is an enlarged view of a part of the forming plate in which the guide plates are formed. FIG. 13 (b) is a diagram showing a tube element having a guide plate and a tube element laminated downstream thereof, and illustrating the shape of the guide plate and the flow of the heat exchange medium. is there.
第 1 4図は、 第 1 3図の構成のうち、 通孔の下半分の案内板を水平にし た構成例を示す図であり、 第 1 4図 (a ) は、 案内板が形成された成形プ レートの一部を拡大した正面図であり、 第 1 4図 (b ) は、 案内板を有す るチューブエレメントとそれより下流側に積層されたチューブエレメント を示し、 案内板の形状と熱交換媒体の流れを説明する図である。  FIG. 14 is a diagram showing an example of the configuration of FIG. 13 in which the guide plate in the lower half of the through hole is horizontal, and FIG. 14 (a) shows a configuration in which the guide plate is formed. Fig. 14 (b) is an enlarged front view of a part of the forming plate. Fig. 14 (b) shows a tube element having a guide plate and a tube element laminated downstream from the tube element. It is a figure explaining the flow of a heat exchange medium.
第 1 5図は、 本発明にかかる積層型熱交換器の第 2の形態を示すもので、 積層型熱交換器の通風方向と直角になる端面を示す図である。  FIG. 15 shows a second embodiment of the stacked heat exchanger according to the present invention, and is a diagram showing an end face of the stacked heat exchanger which is perpendicular to the ventilation direction.
第 1 6図 (a ) は、 第 1 5図に示す積層型熱交換器の側面を示す図であ り、 第 1 6図 (b ) は、 第 1 5図に示す積層型熱交換器の底面を示す図で ある。  FIG. 16 (a) is a diagram showing a side view of the stacked heat exchanger shown in FIG. 15, and FIG. 16 (b) is a view of the stacked heat exchanger shown in FIG. It is a figure which shows a bottom surface.
第 1 7図は、 案内板と仕切部とがー体に形成された成形プレートの一部 を拡大した正面図である。  FIG. 17 is an enlarged front view of a part of a forming plate having a guide plate and a partition formed in a body.
第 1 8図は、 隣り合うチューブエレメントの 2箇所に案内板を設け、 案 内板同士を当接させて傾斜部を連続させた構成を示す図である。 第 1 9図は、 隣り合うチューブエレメン トの 2箇所に案内板を設け、 こ れら案内板の間隔をあけて形成した状態を示す図である。 FIG. 18 is a view showing a configuration in which guide plates are provided at two places of adjacent tube elements, and the inner plates are brought into contact with each other to make the inclined portions continuous. FIG. 19 is a diagram showing a state in which guide plates are provided at two locations of adjacent tube elements, and the guide plates are formed with an interval therebetween.
第 2 0図から第 5 2図までは、 この発明における案内板 1 9の実施例が 示され、 第 2 0図は、 一定の曲率の曲面形状を持つ案内板を有する成形プ レー卜の一部拡大正面図である。 - 第 2 1図は、 同上の横断面図である。  FIGS. 20 to 52 show an embodiment of the guide plate 19 according to the present invention. FIG. 20 shows one example of a forming plate having a guide plate having a curved surface shape having a constant curvature. It is a part enlarged front view. -Fig. 21 is a cross-sectional view of the same.
第 2 2図は、 同上の縦断面図である。  FIG. 22 is a longitudinal sectional view of the same.
第 2 3図は、 同上の案内板を有するチューブエレメン卜とこれより下流 側の積層されたチューブエレメントを示し、 案内板の形状と熱交換媒体の 流れを説明する図である。  FIG. 23 is a view showing a tube element having the above-mentioned guide plate and a laminated tube element on the downstream side thereof, and illustrating the shape of the guide plate and the flow of the heat exchange medium.
第 2 4図は、 横方向両端に近い部分に曲面形状を形成した案内板を有す る成形プレートの一部拡大部である。  FIG. 24 is a partially enlarged portion of a forming plate having a guide plate having a curved surface formed in a portion near both ends in the lateral direction.
第 2 5図は、 同上の横断面図である。  FIG. 25 is a cross-sectional view of the same.
第 2 6図は、 同上の縦断面図である。  FIG. 26 is a longitudinal sectional view of the same.
第 2 7図、 曲面形状に袋状加工を施した案内板を有する成形プレートの 一部拡大正面図である。  FIG. 27 is a partially enlarged front view of a forming plate having a guide plate obtained by performing a bag-like processing on a curved surface shape.
第 2 8図は、 同上の横断面図である。  FIG. 28 is a cross-sectional view of the same.
第 2 9図は、 同上の縦断面図である。  FIG. 29 is a longitudinal sectional view of the same.
第 3 0図は、 曲面形状を持つ案内板の横方向両端にストレート部を設け た成形プレートの一部拡大正面図である。  FIG. 30 is a partially enlarged front view of a forming plate in which straight portions are provided at both lateral ends of a guide plate having a curved shape.
第 3 1図は、 同上の横断面図である。  FIG. 31 is a cross-sectional view of the same.
第 3 2図は、 同上の縦断面図である。  FIG. 32 is a longitudinal sectional view of the same.
第 3 3図は、 両肩部に丸みを形成した案内板を有する成形プレートの一 部拡大正面図である。  FIG. 33 is a partially enlarged front view of a forming plate having a guide plate having rounded shoulder portions.
第 3 4図は、 同上の横断面図である。 第 3 5図は、 同上の縦断面図である。 FIG. 34 is a cross-sectional view of the same. FIG. 35 is a longitudinal sectional view of the same.
第 3 6図は、 ビードを形成した案内板を有する成形プレートの一部拡大 正面図である。  FIG. 36 is a partially enlarged front view of a forming plate having a guide plate formed with beads.
第 3 7図は、 同上の横断面図である。  FIG. 37 is a cross-sectional view of the same.
第 3 8図は、 同上の縦断面図である。 - 第 3 9図は、 短いビードを形成した案内板を有する成形プレートの一部 拡大縦断面図である。  FIG. 38 is a longitudinal sectional view of the same. -Fig. 39 is a partially enlarged longitudinal sectional view of a forming plate having a guide plate formed with a short bead.
第 4 0図は、 横方向両端に近い部分に曲面形状を形成すると共にビード を形成した案内板を有する成形プレートの一部拡大正面図である。  FIG. 40 is a partially enlarged front view of a forming plate having a guide plate in which a curved shape is formed near both ends in the lateral direction and a bead is formed.
第 4 1図は、 同上の横断面図である。  FIG. 41 is a cross-sectional view of the same.
第 4 2図は、 同上の縦断面図である。  FIG. 42 is a longitudinal sectional view of the same.
第 4 3図は、 曲面形状に袋状加工を施すと共にビードを形成した案内板 を有する成形プレートの一部拡大正面図である。  FIG. 43 is a partially enlarged front view of a forming plate having a guide plate on which a curved surface is subjected to bag-like processing and a bead is formed.
第 4 4図は、 同上の横断面図である。  FIG. 44 is a cross-sectional view of the same.
第 4 5図は、 同上の縦断面図である。  FIG. 45 is a longitudinal sectional view of the same.
第 4 6図は、 曲面形状に袋状加工を施すと共にビ一ドを形成した案内板 の横方向両端にストレート部を設けた成形プレートの一部拡大正面図であ る。  FIG. 46 is a partially enlarged front view of a forming plate in which straight portions are provided at both lateral ends of a guide plate on which a bead is formed into a curved surface and a bead is formed.
第 4 7図は、 同上の横断面図である。  FIG. 47 is a cross-sectional view of the same.
第 4 8図は、 同上縦断面図である。  FIG. 48 is a longitudinal sectional view of the same.
第 4 9図は、 菱形のビードを形成した案内板を有する成形プレートの一 部拡大正面図である。  FIG. 49 is a partially enlarged front view of a forming plate having a guide plate formed with rhombic beads.
第 5 0図は、 案内板が通孔の下方の周縁から切り越して形成の傾斜部か ら成る成形プレー卜の一部拡大正面図である。  FIG. 50 is a partially enlarged front view of a forming plate having a slope formed by cutting a guide plate from a lower edge of a through hole.
第 5 1図は、 同上の横断面図である。 第 5 2図は、 同上の縦断面図である。 FIG. 51 is a cross-sectional view of the same. FIG. 52 is a longitudinal sectional view of the same.
第 5 3図は、 案内部と仕切部が一体に形成された成形プレートの一部拡 大正面図である。  FIG. 53 is a partially enlarged front view of a forming plate in which a guide portion and a partition portion are integrally formed.
第 5 4図 (a ) は、 コア本体の積層方向の一方端に熱交換媒体の出入口 部を有する従来の 4パス型の積層型熱交換器における熱交換媒体の流れを- 説明する概念図であり、 第 5 4図 (b ) は従来の 6パス型の積層型熱交換 器における熱交換媒体の流れを説明する概念図である。  FIG. 54 (a) is a conceptual diagram illustrating the flow of the heat exchange medium in a conventional four-pass laminated heat exchanger having a heat exchange medium inlet / outlet at one end of the core body in the stacking direction. Yes, Fig. 54 (b) is a conceptual diagram illustrating the flow of the heat exchange medium in a conventional six-pass type stacked heat exchanger.
第 5 5図 (a ) は、 第 1の形態の積層型熱交換器の上部を通過した空気 の温度 (チューブエレメント間の上半分を通過した空気の代表温度) を示 す特性線図であり、 第 5 5図 (b ) は、 第 1の形態の積層型熱交換器の下 部を通過した空気の温度 (チューブエレメント間の下半分を通過した空気 の代表温度) を示す特性線図である。 発明を実施するための最良の形態  FIG. 55 (a) is a characteristic diagram showing the temperature of air passing through the upper portion of the stacked heat exchanger of the first embodiment (representative temperature of air passing through the upper half between the tube elements). FIG. 55 (b) is a characteristic diagram showing the temperature of air passing through the lower part of the stacked heat exchanger of the first embodiment (representative temperature of air passing through the lower half between the tube elements). is there. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を図面により説明する。 第 1図及び第 2図 において、 積層型熱交換器 1は、 例えば、 フィ ン 2とチューブエレメント 3とを交互に複数段積層してコア本体を形成し、 チューブエレメント 3の 積層方向の一端に熱交換媒体の入口部 4及び出口部 5が設けられている例 えば 4パスのエバポレー夕であり、 チューブエレメント 3は、 積層方向両 端のチューブエレメント 3 a, 3 b、 後述する拡大タンク部を有するチュ —ブエレメント 3 c、 ほぼ中央のチューブエレメント 3 dとこれに隣接す るチューブエレメント 3 eを除いて第 3図 (a ) に示す成形プレート 6 a を 2枚接合して構成されている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIGS. 1 and 2, the laminated heat exchanger 1 has, for example, a core body formed by alternately laminating a plurality of fins 2 and tube elements 3 in a plurality of stages, and having one end of the tube element 3 in the laminating direction. For example, a four-pass evaporator with an inlet 4 and an outlet 5 for the heat exchange medium is provided. The tube element 3 includes the tube elements 3a and 3b at both ends in the stacking direction, and an enlarged tank section described later. Excluding the tube element 3c, the tube element 3d at the center and the tube element 3e adjacent to the tube element 3c, it is formed by joining two molded plates 6a shown in Fig. 3 (a). .
この成形プレート 6 aは、 アルミニウム製のプレートをプレス加工して 形成されているもので、 一端部に椀状の 2つのタンク形成用膨出部 7, 7 が形成されていると共に、 これに続いて通路形成用膨出部 8が形成されて おり、 タンク形成用膨出部間には後述する連通パイプを取り付けるための 凹部 9が形成され、 また、 通路形成用膨出部 8には 2つのタンク形成用膨 出部 7, 7の間から成形プレート 6 aの他端近傍まで延びる突条 1 0が形 成されている。 また、 成形プレート 6の他端部には、 ろう付前の組付時に- おいて、 フィン 2の脱落を防止するための突片 1 1 (第 1図に示される) が設けられている。 The forming plate 6a is formed by pressing an aluminum plate, and has two bowl-shaped bulging portions 7, 7 at one end. Is formed, and a bulging portion 8 for forming a passage is formed subsequently thereto. A concave portion 9 for attaching a communication pipe to be described later is formed between the bulging portions for forming a tank. The forming bulge 8 is formed with a ridge 10 extending from between the two tank forming bulges 7, 7 to near the other end of the forming plate 6a. Further, a protrusion 11 (shown in FIG. 1) for preventing the fins 2 from dropping out at the time of assembly before brazing is provided at the other end of the forming plate 6.
タンク形成用膨出部 7は通路形成用膨出部 8より大きく膨出形成され、 また、 突条 1 0は成形プレート周縁の接合代と同一面上になるよう突出形 成されており、 2つの成形プレート 6 aがその周縁で接合されると互いの 突条 1 0も接合され、 対向するタンク形成用膨出部 7によって一対のタン ク部 1 2、 1 2が形成されると共に、 対向する通路形成用膨出部 8によつ て、 タンク部間を連通する折返し通路部 1 3が形成されるようになってい る。  The bulging portion 7 for forming a tank is formed to protrude larger than the bulging portion 8 for forming a passage, and the ridge 10 is formed so as to protrude so as to be flush with the margin of the peripheral edge of the forming plate. When the two forming plates 6a are joined at their peripheral edges, the ridges 10 are also joined, and a pair of tank portions 12, 12 are formed by the opposed bulging portions 7 for tank formation, and the opposed The folded passage-forming bulging portion 8 forms a folded passage portion 13 communicating between the tank portions.
積層方向端部のチューブエレメント 3 aは、 第 3図 (a ) の成形プレー ト 6 aに平板状のプレート 1 4を接合して構成され、 チューブエレメント 3 bは、 第 3図 (a ) の成形プレート 6 aと、 この成形プレート 6 aの夕 ンク形成用膨出部をなく して平坦にした成形プレートとを接合して構成さ れている。 また、 チューブエレメント 3 cを構成する成形プレート 6 b, 6 cは、 一方のタンク形成用膨出部が他方のタンク形成用膨出部に近づく ように拡大形成されている。 したがって、 チューブエレメント 3 cには、 通常のチューブエレメント 3に形成されるタンク部 1 2と、 前記凹部を埋 めるように拡大されたタンク部 1 2 aとが形成される。 その他の構成、 即 ち、 タンク形成用膨出部に続いて通路形成用膨出部 8が形成されている点、 タンク形成用膨出部 8の間から成形プレートの他端近傍にかけて突条 1 0 が形成されている点、 更には、 成形プレートの他端部にフィン 2の脱落を 防止するための突片 1 1が設けられている点等については第 3図 (a ) の 成形プレート 6と同様であるので説明を省略する。 The tube element 3a at the end in the laminating direction is formed by joining a flat plate 14 to the forming plate 6a in FIG. 3 (a), and the tube element 3b is formed as shown in FIG. 3 (a). The molding plate 6a is formed by joining the molding plate 6a and a molding plate which has been flattened without the bulge portion for forming the ink. The forming plates 6b and 6c constituting the tube element 3c are formed so as to be enlarged so that one of the bulging portions for forming a tank approaches the bulging portion for forming the other tank. Therefore, the tank element 12 formed in the ordinary tube element 3 and the tank part 12a expanded so as to fill the concave portion are formed in the tube element 3c. The other configuration, that is, the passage forming bulge 8 is formed following the tank forming bulge, and the ridge 1 extends from between the tank forming bulge 8 and the other end of the forming plate. 0 Is formed, and the other end of the forming plate is provided with a protruding piece 11 for preventing the fin 2 from falling off. The description is omitted because it is the same.
また、 チューブエレメント 3 dは、 第 3図 (a ) で示される成形プレー ト 6 aと第 3図 (b ) で示される成形プレート 6 dとを組み合わせて構成- され、 また、 チューブエレメント 3 eは、 第 3図 (a ) で示される成形プ レート 6 aと第 3図 (c ) で示される成形プレート 6 eとを組み合わせて 構成されている。  Further, the tube element 3 d is constituted by combining a forming plate 6 a shown in FIG. 3 (a) and a forming plate 6 d shown in FIG. 3 (b). Is formed by combining a forming plate 6a shown in FIG. 3 (a) and a forming plate 6e shown in FIG. 3 (c).
このうち、 成形プレート 6 dには、 一方のタンク形成用膨出部 7 aに通 孔が形成されておらず、 この非連通部分をもって一方のタンク群 1 5を仕 切る仕切部 1 8が形成されている。 この仕切部 1 8は、 補強を図る目的か ら隣のチューブエレメント 3 eをも通孔を有しない盲タンクとし、 通孔を 有しないタンク形成用膨出部同士を接合させて構成するようにしても、 盲 タンクを用いる代わりに、 チューブエレメント 3 dとチューブエレメント 3 eとの間に薄板を挟んでタンク部間を連通する通孔を閉塞する構成とし てもよい。 また、 成形プレート 6 eは、 成形プレート 6 dと隣接し、 タン ク形成用膨出部には、 下記する案内板 1 9が設けられている。  Of these, the forming plate 6d does not have a through-hole formed in the one tank forming bulging portion 7a, and a partitioning portion 18 that partitions the one tank group 15 with this non-communicating portion is formed. Have been. For the purpose of reinforcement, the partition 18 is configured such that the adjacent tube element 3 e is also a blind tank having no through-hole, and the tank-forming bulging portions having no through-hole are joined together. Alternatively, instead of using a blind tank, a configuration may be adopted in which a thin plate is sandwiched between the tube element 3d and the tube element 3e to close the through hole communicating between the tank portions. Further, the forming plate 6e is adjacent to the forming plate 6d, and a guide plate 19 described below is provided in the bulging portion for forming a tank.
そして、 熱交換器は、 第 1図及び第 2図に示すように、 隣合うチューブ エレメントがタンク部で突き合わされて、 積層方向 (通風方向に対して直 角) に延びる第 1及び第 2の 2つのタンク群 1 5、 1 6を形成しており、 拡大されたタンク部 1 2 aを含む一方のタンク群 1 5は、 積層方向のほぼ 中央に位置する成形プレート 6 dを除いてタンク形成用膨出部 9に形成さ れた通孔 1 7を介して各タンク部が連通され、 他方のタンク群 1 6は, 仕 切られることなく通孔 1 7を介して全タンク部が連通されている。  Then, as shown in FIG. 1 and FIG. 2, the first and second heat exchangers extend in the stacking direction (perpendicular to the ventilation direction) with the adjacent tube elements abutting on the tank portion. Two tank groups 15 and 16 are formed, and one of the tank groups 15 including the enlarged tank section 12 a is formed with the exception of the forming plate 6 d located almost at the center in the stacking direction. The tanks communicate with each other through the through holes 17 formed in the bulging portion 9, and the other tank group 16 communicates with all the tanks through the holes 17 without being partitioned. ing.
したがって、 仕切部 1 8によって第 1のタンク群 1 5は、 拡大タンク部 1 2 aを含む第 1タンクブロック 2 1と、 出口部 5と連通する第 2タンク ブロック 2 2とに区画され、 仕切られていない第 2のタンク群 1 6は、 案 内板 1 9を有する第 3タンクブロック 2 3を構成している。 この形態にお いては、 チューブエレメントは、 全部で 2 7段積層され、 図中左から数え て 6段目にチューブエレメント 3 cが、 1 4段目にチューブエレメント 3 - dが、 1 5段目にチューブエレメント 3 eがそれぞれ配置されている。 積層方向の一端に設けられる入口部 4及び出口部 5は、 出入口通路形成 用プレート 2 4をェンドプレートを成す前記平板状のプレート 1 4に接合 して構成されている。 これらプレート 1 4 , 2 4によって長手方向に延び る入口通路 2 5と出口通路 2 6とが形成され、 出入口通路形成用プレート 2 4の上部には、 膨張弁固定用継手 2 7を介して入口通路 2 5に接続する 流入口 2 8と出口通路 2 6に接続する流出口 2 9とがそれぞれ設けられて いる。 入口通路 2 5と拡大タンク部 1 2 aとは、 前記凹部 9に固定された 連通パイプ 3 0をプレート 1 4と成形プレート 6 bに形成された孔に接合 して連通されており、 第 2タンクブロック 2 2と出口通路 2 6とは、 プレ ―ト 1 4に形成された孔を介して連通されている。 Therefore, the first tank group 15 is divided by the partition 18 into an expanded tank section. A second tank group 16, which is partitioned into a first tank block 21 containing 1 a and a second tank block 22 communicating with the outlet section 5, has an inner plate 19. The third tank block 23 is constituted. In this configuration, the tube elements are stacked in a total of 27 layers, and the tube element 3c is in the sixth layer, the tube element 3-d is in the fourth layer, and the 15-layer is in the fourth layer, counting from the left in the figure. Tube elements 3e are arranged on the eyes, respectively. The inlet part 4 and the outlet part 5 provided at one end in the laminating direction are configured by joining an entrance / exit passage forming plate 24 to the flat plate 14 forming an end plate. An inlet passage 25 and an outlet passage 26 extending in the longitudinal direction are formed by these plates 14 and 24, and the upper portion of the inlet / outlet passage forming plate 24 is provided with an inlet via an expansion valve fixing joint 27. An inlet 28 connected to the passage 25 and an outlet 29 connected to the outlet 26 are provided. The inlet passage 25 and the enlarged tank portion 12a are connected to each other by connecting a communication pipe 30 fixed to the concave portion 9 to a hole formed in the plate 14 and the forming plate 6b. The tank block 22 and the outlet passage 26 communicate with each other through a hole formed in the plate 14.
したがって、 入口部 4から流入された冷媒は、 連通パイプ 3 0を通って 拡大タンク部 1 2 aに入り、 第 1タンクブロック 2 1全体に分散され、 こ の第 1タンクブロック 2 1に対応するチューブエレメントの折返し通路部 1 3を突条 1 0に沿って上昇する (第 1パス) 。 そして、 突条 1 0の上方 を U夕一ンして下降し (第 2パス) 、 反対側のタンク群 (第 3タンクプロ ヅク 2 3 ) に至る。 その後、 通孔 1 7を介して第 3タンクブロック 2 3を 構成する残りのチューブエレメン卜に向かって積層方向に移動し、 そのチ ユーブエレメン卜の折返し通路部 1 3を突条 1 0に沿って上昇する (第 3 パス) 。 そして、 突条 1 0の上方を Uターンして下降し (第 4パス) 、 第 2タンクブロック 2 2を構成するタンク部に導かれ、 しかる後に出口部 5 から流出する。 このため、 冷媒は、 第 1パス〜第 4パスを構成する折返し 通路部 1 3を流れる過程において、 フィン 2を介して空気と熱交換される。 成形プレート 6 eに設けられた案内板 1 9は、 第 2パスから第 3パスに 移行する部分で、 前述した如く偏って流れやすいことから、 これを改善す- るために設けられているもので、 この案内板 1 9は、 第 4図及び第 5図に も示されるように、 タンク形成用膨出部 7に形成された通孔 7の略中央に 水平方向に延びる架設部 1 9 aを形成し、 この架設部 1 9 aと、 この上縁 からタンク部 1 2の内側に向けて屈曲された傾斜部 1 9 bとによって構成 されている。 この案内板 1 9は、 通孔 1 7を形成するためにタンク形成用 膨出部 7に本来打ち抜く部分の一部を残して成形プレートの成形時に一体 形成されるもので、 傾斜部 1 9 bの積層方向に対する傾斜角 ( Θ ) は、 5 ~ 6 5度の範囲で設定され、 特に上述の熱交換器にあっては、 より好まし くは、 5 ~ 3 0度の範囲で設定される。 また、 タンク部内で傾斜する部分 の長さ (L : この例では、 架設部から突出している傾斜部 1 9 bの長さ) は、 1〜 1 5 m mの範囲で設定すればよく、 上述の構成では 2〜 6 m m程 度に設定されている。 Therefore, the refrigerant flowing in from the inlet 4 enters the expansion tank 12 a through the communication pipe 30, is dispersed throughout the first tank block 21, and corresponds to the first tank block 21. The ascending passage section 13 of the tube element rises along the ridge 10 (first pass). Then, it goes down over the protruding line 10 after making a U-down (2nd pass), and reaches the tank group on the opposite side (3rd tank block 23). After that, it moves in the laminating direction toward the remaining tube element constituting the third tank block 23 through the through hole 17, and passes through the folded passage portion 13 of the tube element along the ridge 10. Rise (third pass). Then, make a U-turn above the ridge 10 and descend (4th pass). 2 The tank is guided to the tank constituting the tank block 22 and then flows out from the outlet 5. For this reason, the refrigerant exchanges heat with the air through the fins 2 in the process of flowing through the return passage 13 forming the first to fourth passes. The guide plate 19 provided on the forming plate 6e is provided in order to improve this since it is likely to flow unevenly as described above at the transition from the second pass to the third pass. As shown in FIGS. 4 and 5, the guide plate 19 has a bridge portion 19a extending in the horizontal direction substantially at the center of the through hole 7 formed in the bulging portion 7 for tank formation. And an inclined portion 19 b bent from the upper edge toward the inside of the tank portion 12. The guide plate 19 is formed integrally with the bulging portion 7 for forming the tank while forming the forming plate, leaving a part of the portion to be originally punched out to form the through hole 17. The inclination angle (Θ) with respect to the stacking direction is set in the range of 5 to 65 degrees, and more preferably, in the range of 5 to 30 degrees in the heat exchanger described above. . In addition, the length of the inclined portion in the tank portion (L: in this example, the length of the inclined portion 19b protruding from the erection portion) may be set in the range of 1 to 15 mm, as described above. In the configuration, it is set to about 2 to 6 mm.
上述した傾斜部 1 9 bの角度は、 これを大きくし過ぎると通路抵抗が大 きくなつて圧力損失が大きくなり、 冷媒流量の低下により放熱量 (熱交換 量) が小さくなるし、 逆に角度を小さくし過ぎると、 冷媒の流動方向を十 分に変えることができず、 従来の不都合であった冷媒の偏りが解消されな い。 また、 熱交換器の構成によっては、 冷媒の流れ方にも差異があること から、 これらの事情を踏まえて、 冷媒の流れを改善するためには、 5≤( ≤ 6 5度の範囲で傾斜角を設定する必要がある。 また、 このような角度範 囲に対して、 6>が大きければ傾斜部の長さ Lは小さくても冷媒の流れをあ る程度変更することができ、 気が小さければ、 Lは適当な長さに延ばして 冷媒の流れ方向を定める必要があり、 また、 タンク形成用膨出部を切り起 こして傾斜部を形成する製造上の制約から、 Lを 1≤L≤ 1 5 mmの範囲 で設定する必要がある。 したがって、 このような範囲で と Lを組み合わ せて最も適した案内板 1 9を形成すればよく、 上述の 4パス型熱交換器に - おいては、 数々の組み合わせを検討した結果、 前述した数値に設定されて いる。 If the angle of the inclined portion 19b is too large, the passage resistance increases and the pressure loss increases, and the amount of heat radiation (heat exchange) decreases due to the decrease in the refrigerant flow rate. If the value is too small, the flow direction of the refrigerant cannot be changed sufficiently, and the conventional disadvantageous distribution of the refrigerant cannot be eliminated. In addition, since the flow of the refrigerant varies depending on the configuration of the heat exchanger, in order to improve the flow of the refrigerant based on these circumstances, it is necessary to use a gradient of 5 ≤ (≤ 65 degrees. In this angle range, if 6> is large, the flow of the refrigerant is increased even if the length L of the inclined portion is small. If the air is small, it is necessary to extend L to an appropriate length to determine the flow direction of the refrigerant, and to cut and raise the bulging part for tank formation to form an inclined part L must be set within the range of 1≤L≤15 mm due to manufacturing restrictions. Therefore, the most suitable guide plate 19 may be formed by combining and L in such a range, and in the above-described four-pass heat exchanger, after examining various combinations, It is set to a numeric value.
したがって、 第 2パスから第 3パスに移行するために第 3タンクプロヅ ク 2 3を通孔 1 7を介して積層方向に移動する冷媒は、 案内板 1 9によつ て、 第 3パスを構成するタンク部 1 2とこれに連通する通路部 1 3との連 通部位に向けて直進方向が変更され、 仕切部 1 8の近傍においても冷媒が 十分流れるようになる。  Therefore, the refrigerant that moves in the stacking direction through the through holes 17 through the third tank process 23 to move from the second pass to the third pass forms the third pass by the guide plate 19. The rectilinear direction is changed toward the communicating portion between the tank portion 12 and the passage portion 13 communicating with the tank portion 12, so that the refrigerant can sufficiently flow also in the vicinity of the partition portion 18.
このような案内板 1 9を設けたことによる冷媒流の改善は、 冷媒が各チ ユーブエレメン卜に略均一に流れて各所での熱交換量に大きなばらつきが なくなることを意味している。 実際に、 通過空気温度を測定した第 5 5図 の実験結果によれば、 実線で示されるように、 仕切部近傍のチューブエレ メント (特に T U B E N o . 5〜 1 3 ) の上段間を通過した空気温度が、 案内板 1 9のない従来のものに比べて低くなり、 全体的に均された温度分 布になることが確認された。  The improvement of the refrigerant flow by providing such a guide plate 19 means that the refrigerant flows substantially uniformly to each tube element, and that the amount of heat exchange in each place does not greatly vary. Actually, according to the experimental results in Fig. 55 where the passing air temperature was measured, as shown by the solid line, the air passed through the upper part of the tube element (particularly TUBEN No. 5 to 13) near the partition. It was confirmed that the air temperature was lower than that of the conventional air conditioner without the guide plate 19, and the temperature distribution was uniform throughout.
上述の案内板 1 9は、 架設部 1 9 aと、 この架設部 1 9 aから屈曲され た傾斜部 1 9 bとによって形成され、 通孔 1 7のほぼ中央に 1つだけ形成 した構成であるが、 形成個所や案内板の形状、 数等を異ならせて同様の作 用効果を得ることは可能である。 以下、 その例を第 6図〜第 1 4図におい てを示すと、 第 6図に示される構成は、 架設部 1 9 aと傾斜部 1 9 bとに よって構成された案内板 1 9を通孔 1 7の略中央よりも下側に偏らせて形 成したものであり、 第 7図に示される構成は、 逆に、 架設部 1 9 aと傾斜 部 1 9 bとによって構成された案内板 1 9を通孔 1 7の略中央よりも上側 に偏らせて形成したものであり、 第 8図に示される構成は、 タンク形成用 膨出部 7に形成された通孔 1 7の下端周縁からタンク部の内側へ屈曲する 傾斜部 1 9 bを一体に形成したものである。 - また、 案内板 1 9の形状は、 第 9図に示されるように、 通孔 17を水平 に渡すように残された部分を両端を支点として捻じ曲げ、 全体を傾斜させ たものであっても、 また、 第 1 0図に示されるように、 架設部 1 9 aの上 縁からこの案内板 1 9が設けられたタンク部 1 2の外側に向けて鋭角に屈 曲させて傾斜部 1 9 bを形成する構成としても、 さらには、 第 1 1図に示 されるように、 傾斜部 1 9 bを徐々に角度が大きくなる湾曲状に形成する ものであってもよい。 The above-described guide plate 19 is formed by an erecting portion 19a and an inclined portion 19b bent from the erecting portion 19a, and has a configuration in which only one is formed substantially at the center of the through hole 17. However, it is possible to obtain the same operation effect by changing the shape, number, etc. of the forming locations and the guide plates. In the following, an example thereof is shown in FIGS. 6 to 14, and the configuration shown in FIG. 6 is a guide plate 19 constituted by an erection portion 19a and an inclined portion 19b. Shaped so that it is biased downward from the approximate center of through hole 17 On the contrary, the configuration shown in Fig. 7 is different from the configuration shown in Fig. 7 in that the guide plate 19 formed by the erected portion 19a and the inclined portion 19b is positioned above the substantially center of the hole 17. The configuration shown in FIG. 8 has an inclined portion 19 b that is bent inward from the periphery of the lower end of the through hole 17 formed in the bulging portion 7 for tank formation to the inside of the tank portion. It is formed integrally. -Also, as shown in Fig. 9, the shape of the guide plate 19 is such that the remaining part, which passes through the through hole 17 horizontally, is twisted with both ends as fulcrums, and the whole is inclined. Also, as shown in FIG. 10, the inclined portion 1 is bent at an acute angle from the upper edge of the erection portion 19a toward the outside of the tank portion 12 on which the guide plate 19 is provided. As shown in FIG. 11, the inclined portion 19b may be formed in a curved shape in which the angle gradually increases as shown in FIG.
案内板 1 9は、 多数形成することにより、 より効果的な冷媒の直進方向 の変更が可能となり、 第 1 2図に示されるように、 通孔 1 7の上半分に上 流側から下流側にかけて上方へ傾斜する複数 (この例では、 3つ) の案内 板 1 9を形成し、 下半分には、 案内板 1 9を形成しないようにしてもよい。 これら案内板 1 9は、 タンク形成用膨出部 7と一体に形成し、 傾斜角度を 等しくして平行に形成するとよい。  By forming a large number of guide plates 19, it is possible to more effectively change the direction of straight movement of the refrigerant, and as shown in FIG. 12, as shown in FIG. A plurality (three in this example) of guide plates 19 may be formed so as to be inclined upward toward, and the guide plate 19 may not be formed in the lower half. These guide plates 19 may be formed integrally with the bulging portion 7 for tank formation, and may be formed in parallel with equal inclination angles.
このような構成によれば、 通孔 1 7の下半分を通過した冷媒は、 積層方 向に直進して第 3タンクブロック 2 3の奥へ送られ、 上半分を通過した冷 媒は、 案内板 1 9で直進方向が変えられて第 3パスを構成するチューブェ レメン卜の各通路部 1 3の流入部位へ向かって流れる。 このため、 仕切部 近傍のチューブエレメントにも冷媒が十分流れ、 前述と同様の効果を得る ことができる。  According to such a configuration, the refrigerant that has passed through the lower half of the through hole 17 is sent straight to the stacking direction and sent to the back of the third tank block 23, and the refrigerant that has passed through the upper half is guided by the guide. The straight traveling direction is changed by the plate 19 and flows toward the inflow portion of each passage portion 13 of the tube element constituting the third pass. Therefore, the refrigerant sufficiently flows also in the tube element near the partition, and the same effect as described above can be obtained.
他の例としては、 第 1 3図に示されるように、 案内板 1 9を通孔 1 7下 半分にも設け、 通孔全体に下流側を上方へ傾斜させる複数 (この例では、 5つ) の案内板 1 9を一体に形成し、 第 3パスへ移行する冷媒の流動方向 を全体的に変えるようにしてもよい。 また、 第 1 4図に示されるように、 下半分に形成された案内板 1 9を水平にして、 積層方向に流れる冷媒の流 れを確保するようにしてもよい。 特に、 前者の構成は、 第 3パスを構成す るチューブエレメントの数が少ない場合に有効であり、 後者の構成は、 同 チューブエレメン卜の数が多く、 冷媒を手前にも奥にも均等に流したい場 合に有効である。 As another example, as shown in FIG. 13, the guide plate 19 has a through hole 17 A plurality (five in this example) of guide plates 19 that incline the downstream side upward in the entire through hole are formed integrally, and the flow direction of the refrigerant moving to the third pass is totally You may change it. Further, as shown in FIG. 14, the guide plate 19 formed in the lower half may be horizontal to secure the flow of the refrigerant flowing in the laminating direction. In particular, the former configuration is effective when the number of tube elements constituting the third pass is small, and the latter configuration has a large number of tube elements, and the refrigerant is evenly distributed to the front and back. This is effective when you want to drain.
尚、 案内板の構成は、 上述したものに限られるものではなく、 上述した 各種構成において、 案内板の数や形成位置を適宜異ならせた変形態様であ つても同様の効果を奏することができる。  Note that the configuration of the guide plate is not limited to the above-described configuration, and the same effects can be obtained in the above-described various configurations even if the number of the guide plates and the formation position are appropriately changed. .
第 1 5図及び第 1 6図において、 積層型熱交換器の第 2の実施形態が示 され、 以下異なる部分を主として説明し、 図面に現れる同一部分にあって は同一箇所に同一番号を付して説明を省略する。  FIGS. 15 and 16 show a second embodiment of the laminated heat exchanger. Hereinafter, different portions will be mainly described, and the same portions shown in the drawings will be denoted by the same reference numerals. And the description is omitted.
この積層型熱交換器は、 コア本体の端面 (第 1 5図の正面) に熱交換媒 体の入口部 4及び出口部 5が設けられている例えば 4パスのエバポレー夕 であり、 チューブエレメント 3は、 積層方向両端のチューブエレメント 3 a , 3 b、 ほぼ中央のチューブエレメント 3 dとこれに隣接するチューブ エレメント 3 e、 入口部 4及び出口部 5がー体に形成されたチューブエレ メント 3 f を除いて第 3図 (a ) に示す成形プレート 6 aを 2枚接合して 構成されている。  This laminated heat exchanger is, for example, a four-pass evaporator having a heat exchange medium inlet 4 and an outlet 5 provided on the end face of the core body (the front face in FIG. 15). The tube elements 3a and 3b at both ends in the stacking direction, the tube element 3d at the substantially center, the tube element 3e adjacent to the tube element 3e, and the tube element 3f in which the inlet 4 and the outlet 5 are formed in a body. Except for this, it is constructed by joining two forming plates 6a shown in Fig. 3 (a).
この構成において、 両端のチューブエレメント 3 a, 3 bは、 いずれも 第 3図 (a ) の成形プレート 6 aと、 この成形プレート 6 aのタンク形成 用膨出部をなく して平坦にした成形プレー卜とを接合して構成されている。 また、 チューブエレメント 3 f にあっては、 上流側のタンク形成用膨出部 7が通風方向に突出開放し、 したがって、 チューブエレメント 3 f には、 この突出開放した部分が対面接合されることにより入口部 4又は出口部 5 が形成されている。 その他の構成、 即ち、 タンク形成用膨出部に通孔が形 成されている点、 タンク形成用膨出部に続いて通路形成用膨出部が形成さ れている点、 タンク形成用膨出部の間から成形プレートの他端近傍にかけ- て突条が形成されている点、 更には、 成形プレートの他端部にフィン 2の 脱落を防止するための突片が設けられている点等については第 3図 (a ) の成形プレート 6と同様であり、 また、 他のチューブエレメントにおいて も前述したものと同様の構成であるので説明を省略する。 In this configuration, the tube elements 3a and 3b at both ends are formed flat by removing the forming plate 6a of FIG. 3 (a) and the bulging portion for forming the tank of the forming plate 6a. It is configured by joining a plate. In the case of the tube element 3f, the bulging portion for forming the tank on the upstream side 7 protrudes and opens in the ventilation direction, and therefore, the tube element 3 f is formed with an inlet portion 4 or an outlet portion 5 by joining the protruding and open portions face-to-face. Other configurations, that is, a through hole is formed in the tank forming bulge, a passage forming bulge is formed following the tank forming bulge, and a tank forming bulge is formed. A ridge is formed from between the protruding portions to the vicinity of the other end of the forming plate, and a ridge is provided at the other end of the forming plate to prevent the fins 2 from falling off. This is the same as the forming plate 6 in FIG. 3 (a), and the other tube elements have the same configuration as that described above, so that the description is omitted.
また、 仕切部 1 8及び案内板 1 9は、 前述と同様の構成であるが、 この 熱交換器にあっては、 チューブエレメントが 2 6段積層され、 図中左から 数えて 7段目に入口部 4が、 2 0段目に出口部が形成され、 仕切部 1 8及 び絞り部 1 9は左から 1 3段目 (チューブエレメント 3 e ) と 1 4段目 (チューブエレメント 3 d ) の間に形成されている。 ここで、 案内板 1 9 は、 第 4図〜第 1 4図に示される各種構成、 又は、 これらと数や形成位置 を異ならせた構成とすればよく、 水平方向に対する角度 < と傾斜された部 分の長さ Lは、 前述した 5≤6>≤ 6 5度、 1≤L 1 5 mmの範囲で形成 されている。  The partition 18 and the guide plate 19 have the same configuration as described above. However, in this heat exchanger, 26 tube elements are stacked, and the seventh row is counted from the left in the figure. The inlet 4 has an outlet at the 20th stage, and the partition 18 and the throttle 19 are the 13th stage (tube element 3e) and the 14th stage (tube element 3d) from the left. Is formed between. Here, the guide plate 19 may have various configurations shown in FIG. 4 to FIG. 14 or a configuration in which the number and the formation position are different from these, and the guide plate 19 is inclined at an angle <with respect to the horizontal direction. The length L of the portion is formed in the range of 5≤6> ≤65 degrees and 1≤L15 mm described above.
したがって、 このような熱交換器にあっては、 入口部 4から流入された 冷媒は、 第 1タンクブロック 2 1全体に分散され、 この第 1タンクブロッ ク 2 1に対応するチューブエレメントの折返し通路部 1 3を突条 1 0に沿 つて上昇する (第 1パス) 。 そして、 突条 1 0の上方を U夕一ンして下降 し (第 2パス) 、 反対側のタンク群 (第 3タンクブロック 2 3 ) に至る。 その後、 第 3タンクブロック 2 3を構成する残りのチューブエレメン卜に 向かって積層方向に移動し、 そのチューブエレメントの折返し通路部 1 3 を突条 1 0に沿って上昇する (第 3パス) 。 そして、 突条 1 0の上方を U ターンして下降し (第 4パス) 、 第 2タンクブロック 2 2を構成する夕ン ク部に導かれ、 しかる後に出口部 5から流出する。 このため、 冷媒は、 第 1パス〜第 4パスを構成する折返し通路部 1 3を流れる過程において、 フ イン 2を介して空気と熱交換される。 この際、 第 2パスから第 3パスに移- 行する冷媒は、 移行部分に形成された案内板 1 9によって、 前記構成と同 様に直進方向が変えられ、 仕切部近傍のチューブエレメントにも十分流れ るようになる。 Therefore, in such a heat exchanger, the refrigerant flowing from the inlet 4 is dispersed throughout the first tank block 21, and the return path of the tube element corresponding to the first tank block 21 is formed. Ascend Part 13 along ridge 10 (Pass 1). Then, it goes down above the ridges 10 and goes down (second pass) until it reaches the tank group on the opposite side (third tank block 23). After that, it moves in the laminating direction toward the remaining tube elements constituting the third tank block 23, and turns back the tube elements 1 3 Ascend along the ridge 10 (3rd pass). Then, it makes a U-turn above the protruding ridge 10 and descends (4th pass), and is guided to the evening portion forming the second tank block 22, and then flows out of the outlet portion 5. For this reason, the refrigerant exchanges heat with the air via the fins 2 in the process of flowing through the return passage portion 13 forming the first to fourth passes. At this time, the refrigerant traveling from the second pass to the third pass is changed in the straight traveling direction by the guide plate 19 formed at the transition portion in the same manner as in the above-described configuration, and is also transmitted to the tube element near the partition. It will flow enough.
尚、 上述した構成においては、 仕切部 1 8が設けられている成形プレー トと案内板 1 9が設けられている成形プレートとが別々に形成されている が、 熱交換器の組み付けに要する成形プレートの種類を削減するために、 仕切部 1 8と案内板 1 9とを 1つの成形プレート上に形成してもよい。 前 述の構成によれば、 第 3図 (c ) の成形プレート 6 eを第 1 7図に示され るような成形プレート 6 e ' に置き換え、 これに隣接するプレートを、 第 3図 (a ) に示される成形プレート 6 aとすればよい。  In the above-described configuration, the forming plate provided with the partition 18 and the forming plate provided with the guide plate 19 are formed separately. However, the forming plate required for assembling the heat exchanger is formed. In order to reduce the number of types of plates, the partition 18 and the guide plate 19 may be formed on one forming plate. According to the configuration described above, the forming plate 6e in FIG. 3 (c) is replaced with a forming plate 6e ′ as shown in FIG. 17, and the adjacent plate is replaced with the plate in FIG. ) May be used as the forming plate 6a.
また、 上述の構成においては、 偶数番目のパスから奇数番目のパスへの 移行部分に設けられる案内板 1 9を仕切部 1 8に隣接する成形プレート、 又は、 仕切部が設けられた成形プレートに形成する場合を示したが、 これ に限定されるものではなく、 第 2又は第 3パスの移行部分近傍 (例えば、 仕切部 1 9を有するチューブエレメン卜から 1つ又は 2つ離れたチューブ エレメント) に案内板を設けるようにしてもよい。  Further, in the above-described configuration, the guide plate 19 provided at the transition portion from the even-numbered pass to the odd-numbered pass is formed on the forming plate adjacent to the partition portion 18 or the forming plate provided with the partition portion. Although the case of forming is shown, the present invention is not limited to this. The vicinity of the transition portion of the second or third pass (for example, a tube element one or two away from the tube element having the partition 19) May be provided with a guide plate.
上述した数々の案内板 1 9は、 通路抵抗を低く抑えつつ熱交換媒体の直 進方向を積極的に変更して偏流を抑えたり、 熱交換媒体の旋回流を抑え、 これによつて熱交換媒体の直進方向を確実に変更すると共に各チューブェ レメン卜の折返し通路部 1 3に熱交換媒体が容易に流入できるようにして 偏流を抑える点に特徴があり、 特開平 8— 2 8 5 4 0 7号公報に示される 絞り部ゃ特開平 8— 1 7 8 5 8 1号公報の案内板によっては得られない特 有の効果を奏するものである。 しかしながら、 例えば、 特開平 8— 2 8 5 4 0 7号公報に示される絞り部と本発明の案内板 1 9とを併用するように してもよい。 同公報の絞り部も熱交換媒体の偏流を抑えるという同様の効- 果を狙っていることから、 併用することによる偏流防止は十分に可能であ る。 The numerous guide plates 19 described above suppress the drift by suppressing the passage resistance and actively change the straight direction of the heat exchange medium, and also suppress the swirl flow of the heat exchange medium, thereby reducing the heat exchange. The direction of the medium is changed without fail, and the heat exchange medium can easily flow into the return passage 13 of each tube element. It is characterized in that the drift is suppressed, and the throttle portion disclosed in Japanese Patent Application Laid-Open No. H08-285707 cannot be obtained by the guide plate disclosed in Japanese Patent Application Laid-Open No. H08-178851. It is effective. However, for example, the guide plate 19 of the present invention may be used in combination with the throttle section disclosed in Japanese Patent Application Laid-Open No. 8-285407. Since the throttle portion of the publication also aims at the same effect of suppressing the drift of the heat exchange medium, it is sufficiently possible to prevent the drift by using it together.
さらには、 案内板 1 9を成形プレー卜とは別体の部材で構成するように しても、 仕切部 1 8が設けられた成形プレートの近傍、 又は、 仕切部 1 8 が設けられた成形プレートとその近傍において、 積層方向にずらして案内 板を複数箇所に設けるようにしてもよい。 移行部分又はその近傍の少なく とも 1箇所に案内板を設けるとは、 第 1 2図〜第 1 4図に示される構成の みならず、 このように、 案内板を積層方向にずらして複数箇所に設ける場 合をも含むものである。  Further, even if the guide plate 19 is formed of a member separate from the forming plate, the guide plate 19 may be formed in the vicinity of the forming plate provided with the partition portion 18 or the forming plate provided with the partition portion 18. The guide plate may be provided at a plurality of positions on the plate and in the vicinity thereof so as to be shifted in the laminating direction. Providing the guide plate at at least one location in or near the transition portion means not only the configuration shown in FIGS. 12 to 14 but also a plurality of locations where the guide plate is shifted in the stacking direction. It also includes the case where it is provided in
積層方向にずらして案内板 1 9を複数箇所に設ける構成としては、 例え ば、 第 1 8図又は第 1 9図に示される構成が考えられる。 これらの例は、 前記チューブエレメント 3 eとこれに隣り合うチューブエレメント 3 gに おいて、 第 3タンクブロック 2 3を積層方向へ移動する熱交換媒体の流れ に対して上流側に位置する成形プレート 6 e , 6 f に案内板を設けたもの で、 これら案内板 1 9は、 タンク形成用膨出部 7に形成された通孔 1 7の 下端周縁からタンク部の内側へ屈曲する傾斜部 1 9 bを一体に形成して構 成されている。  As a configuration in which the guide plates 19 are provided at a plurality of positions shifted in the laminating direction, for example, the configuration shown in FIG. 18 or FIG. 19 can be considered. In these examples, in the tube element 3 e and the tube element 3 g adjacent thereto, the forming plate located on the upstream side with respect to the flow of the heat exchange medium moving the third tank block 23 in the laminating direction. 6 e and 6 f are provided with guide plates, and these guide plates 19 are inclined portions 1 which are bent inward from the periphery of the lower end of the through hole 17 formed in the bulging portion 7 for tank formation to the inside of the tank portion. 9b is integrally formed.
特に、 第 1 8図に示される例は、 成形プレート 6 eに形成される案内板 1 9を、 チューブエレメント 3 eを構成する他方の成形プレート 6 aの通 孔まで延設し、 成形プレート 6 f に形成される案内板 1 9と当接してこれ ら 2つの傾斜する案内板を連続させ、 全体として、 傾斜部分の長さ Lを、 成形プレート 6 eに形成される案内板 1 9の長さ L 1と成形プレー卜 6 f に形成される案内板 1 9の長さ L 2との合計長としたものである。 In particular, in the example shown in FIG. 18, the guide plate 19 formed on the forming plate 6 e is extended to the through hole of the other forming plate 6 a constituting the tube element 3 e, and the forming plate 6 This is in contact with the guide plate 19 formed on f. The two inclined guide plates are connected continuously, and the length L of the inclined portion as a whole is determined by the length L 1 of the guide plate 19 formed on the forming plate 6 e and the guide formed on the forming plate 6 f. This is the total length of the plate 19 and the length L2.
よって、 前述した 1≤L≤ 1 5 mmの範囲で設定される傾斜部分の長さ Lは、 1つ 1つの案内板 1 9の傾斜部 1 9 bの長さを設定する範囲である- と共に、 1つの傾斜部によっては十分な長さを確保できない場合に、 複数 の案内板の傾斜部を連続された場合の合計長を設定する範囲でもある。 このように、 複数の案内板の傾斜部を連続させるようにすれば、 積層方 向に流れる熱交換媒体の流動方向を確実に意図した方向へ導くことが可能 となり、 仕切部 1 8近傍のチューブエレメントにも冷媒を十分に供給して ほぼ均一な温度分布を得やすいものとなる。  Therefore, the length L of the inclined portion set in the range of 1 ≤ L ≤ 15 mm described above is a range for setting the length of the inclined portion 19 b of each guide plate 19- However, when a sufficient length cannot be ensured by one inclined portion, this is also a range for setting the total length when a plurality of inclined portions of the guide plate are connected. If the inclined portions of the plurality of guide plates are made continuous as described above, the flow direction of the heat exchange medium flowing in the laminating direction can be reliably guided in the intended direction, and the tube near the partition portion 18 It is easy to obtain a substantially uniform temperature distribution by sufficiently supplying the refrigerant to the element.
また、 第 1 9図に示される例は、 第 1 8図の構成において成形プレート 6 eに形成される案内板 1 9の傾斜部 1 9 bの長さ L 1を短くして隣り合 うチューブエレメントに形成される案内板 1 9との間に間隔を設けたもの で、 成形プレー卜 6 eに形成される案内板 1 9の延長線上に成形プレート 6 f に形成される案内板 1 9が設けられている点で第 1 8図と共通してい る。  Further, the example shown in FIG. 19 is similar to the structure shown in FIG. 18 except that the length L 1 of the inclined portion 19 b of the guide plate 19 formed on the forming plate 6 e is shortened. An interval is provided between the guide plate 19 formed on the element and the guide plate 19 formed on the forming plate 6f on the extension of the guide plate 19 formed on the forming plate 6e. It is common to Fig. 18 in that it is provided.
このような構成としても、 手前の案内板によって流動方向が変更された 冷媒は、 慣性によって奥側の案内板へスムーズに移行し、 この移行した案 内板によってさらに案内されて各チューブエレメン卜へ分散されることと なり、 同様の効果を得ることができる。  Even with such a configuration, the refrigerant whose flow direction has been changed by the front guide plate smoothly moves to the back guide plate due to inertia, and is further guided by this transferred inner plate to each tube element. As a result, the same effect can be obtained.
尚、 上述した構成以外にも、 複数の案内板を積層方向にずらして設ける 構成はいろいろ考えられ、 本願発明の趣旨に沿う範囲で適宜形成位置を異 ならせても、 あるいは、 前述した数々の形態と組み合わせてもよい。  In addition to the above-described configuration, various configurations in which a plurality of guide plates are provided to be shifted in the laminating direction are conceivable, and even if the formation positions are appropriately changed within a range in accordance with the gist of the present invention, or You may combine with a form.
上述の案内板 1 9は、 第 2 0図〜第 2 3図に示すように、 成形プレート 6 eの横方向に沿う曲面形状をなすようにしてもよい。 この曲面形状は一 定の曲率にと曲げられている。 この曲面形状を採用することで、 案内板 1 9の強度の向上を図ることが出来るし、 そして、 流れる熱交換媒体 (冷 媒) の変更が良好となるものである。 この例では、 案内板 1 9は成形プレ 一卜から突出する方向 (積層方向) の先端の両肩部に丸み (R形状) を持- たせている。 この丸みにて肩部の角ばりがなくなり、 冷媒の流れにて振動 することが抑えられる。 As shown in FIGS. 20 to 23, the guide plate 19 described above 6e, it may have a curved surface shape along the horizontal direction. This curved shape is bent to a certain curvature. By adopting this curved surface shape, the strength of the guide plate 19 can be improved, and the change of the flowing heat exchange medium (coolant) can be improved. In this example, the guide plate 19 has a rounded (R-shaped) shape at both shoulders at the tip end in the direction (stacking direction) protruding from the forming plate. With this roundness, the shoulder is no longer angular, and vibration due to the flow of the refrigerant is suppressed.
また、 案内板 1 9の曲面形状は、 第 2 4図及至第 2 6図に示すように、 成形プレ一ト 6 eの横方向に添う方向で横方向両端に近い部分のみとし、 その間は平板状の形状となっている。 この例でも、 案内板の両肩部に丸み を持たせている。  As shown in FIGS. 24 and 26, the curved shape of the guide plate 19 is limited to a portion near the both ends in the transverse direction of the forming plate 6e, and a flat plate therebetween. It is shaped like a letter. Also in this example, the shoulders of the guide plate are rounded.
案内板 1 9の曲面形状は、 第 2 7図及至第 2 9図に示すように、 成形プ レート 6 e横方向に添う曲面形状を持つと共に、 突出端に向かって袋状 (椀状) に形成している。 この例でも、 案内板 1 9の両肩部に丸みを持た せている。  As shown in Figs. 27 and 29, the guide plate 19 has a curved shape along the horizontal direction of the forming plate 6e and a bag shape (bowl shape) toward the protruding end as shown in Figs. Has formed. Also in this example, both shoulders of the guide plate 19 are rounded.
案内板 1 9の曲面形成は、 第 3 0図及至第 3 2図に示すように、 成形プ レート 6 eの横方向に添う曲面形状を持つと共に、 突出端に向かって袋状 (椀状) に形成される点は、 前述と同様であるが、 案内板の両側で通孔 1 7を渡る架設部 1 9 aにストレート部 3 3, 3 3を有している。 この例で も案内板 1 9の両肩部に丸みを持たせている。  As shown in FIGS. 30 to 32, the curved surface of the guide plate 19 has a curved shape along the lateral direction of the forming plate 6e and a bag shape (bowl shape) toward the protruding end. Is formed in the same manner as described above, but has straight portions 33, 33 in the erected portion 19a crossing the through hole 17 on both sides of the guide plate. Also in this example, both shoulders of the guide plate 19 are rounded.
案内板 1 9は、 第 3 3図及至第 3 5図に示すように、 両肩部に丸みを付 けるのを前述の曲面形状に設けられた例に示しているが、 これに限らず、 平板状に設けても良いものである。  As shown in FIGS. 33 and 35, the guide plate 19 is shown in the example in which both shoulders are rounded in the above-mentioned curved surface shape, but is not limited thereto. It may be provided in a flat plate shape.
案内板 1 9は、 第 3 6図及至第 3 8図に示すように、 傾斜部 1 9 bが架 設部 1 9 aと所定の角度を持って折曲され、 案内面は平板状をなしている が、 成形プレート 6 eから突出方向に下方に突出する連続曲げ加工部 (ビ —ド称する。 ) 3 5が架設部 9 aから傾斜部 9 bにかけて形成されている。 そのビード 3 5の寸法は、 案内板 1 9の突出方向 (積層方向) と同寸法で ある。 このビード 3 5を採用することで、 案内板 1 9の強度の向上を図る ことが出来るし、 また成形性、 寸法精度の向上に寄与するものである。 こ- の例でも、 案内板の両肩部に丸みを持たせている。 案内板 1 9に形成のビ —ド 3 5は、 前述のごとく同寸法でも良いが、 第 3 9図に示すように、 そ れょりも短い寸法であっても良い。 As shown in Fig. 36 and Fig. 38, the guide plate 19 has an inclined portion 19b bent at a predetermined angle with the erection portion 19a, and the guide surface has a flat plate shape. ing However, a continuous bent portion (referred to as a bead) 35 protruding downward from the forming plate 6e in the protruding direction is formed from the erection portion 9a to the inclined portion 9b. The dimension of the bead 35 is the same as the direction in which the guide plate 19 protrudes (the laminating direction). By using the bead 35, the strength of the guide plate 19 can be improved, and it also contributes to the improvement of formability and dimensional accuracy. Also in this example, both shoulders of the guide plate are rounded. The beads 35 formed on the guide plate 19 may have the same dimensions as described above, but may have shorter dimensions as shown in FIG.
ビード 3 5の形成は、 第 4 0図及至第 4 2図に示すように、 成形プレー ト 6 eの横方向に添う方向で、 横方向両端に近い部分に曲面形成した案内 板 1 9に形成しても良い。 これにより、 ビ一ド 3 5と曲面形成の 2つの構 成から、 より強度が向上するものである。  As shown in FIGS. 40 and 42, the bead 35 is formed on a guide plate 19 having a curved surface at a portion near both ends in the lateral direction along the lateral direction of the forming plate 6e. You may. Thereby, the strength is further improved from the two configurations of the bead 35 and the curved surface formation.
ビ一ド 3 5の形成は、 第 4 3図及至第 4 5図に示すように、 成形プレー ト 6 eの横方向に添う曲面形状を持つと共に、 突出端に向かって袋状 (椀 状) に形成した案内板 1 9に設けても良い。 この例でも案内板 1 9の両肩 部に丸みを持たせている。 同じように、 第 4 6図及至第 4 8図に示すよう に、 案内板 1 9を前記例と同様な構成にあって、 両側で架設部 1 9 aにス トレ一ト部 3 3, 3 3を有している案内板に設けても良い。 この例でも案 内板 1 9の両肩部に丸みを持たせている。  As shown in FIGS. 43 and 45, the bead 35 is formed so as to have a curved surface along the lateral direction of the forming plate 6e and a bag shape (bowl shape) toward the protruding end. It may be provided on the guide plate 19 formed in the above. Also in this example, both shoulders of the guide plate 19 are rounded. Similarly, as shown in FIGS. 46 and 48, the guide plate 19 has the same configuration as that of the above-mentioned example, and the strut portions 33, 3 are attached to the erection portions 19a on both sides. It may be provided on a guide plate having 3. In this example, both shoulders of the inner plate 19 are rounded.
ビード 3 5の形成は、 第 4 9図に示すように、 架設部 1 9 aと傾斜部 1 9 bとの折り曲げ部に菱形状の形状としても良いものである。 これにより、 強度の向上が図れるものである。 なお、 前記したビ一ド 3 5は単数の表示 例であるが、 図示しないが 2つなど複数例であつても良いものである。 前記した実施の形態では、 案内板 1 9は、 通孔 1 7を渡すように設けら れた架設部 1 9 aと、 こと架設部の側縁から曲げられて傾斜する傾斜部 1 9 bとより構成のものを示しているが、 第 5 0図及至第 5 2図に示すよう に、 通孔の下方の周縁から傾斜して傾斜部 1 9 bが構成され、 通孔 1 7を 図上方に有する構造としても良い。 その具体的形態は、 第 2 0図以下から 適宜採用できるが、 この例では、 丸みを持たせていると共に、 成形プレー ト 6 eから突出方向に連結曲げ加工部 (ビード) 3 5が成形プレートから- 傾斜部 9 bにかけて形成されている。 As shown in FIG. 49, the bead 35 may be formed in a rhombic shape at a bent portion of the erected portion 19a and the inclined portion 19b. Thereby, the strength can be improved. The above-described bead 35 is a single display example. However, although not shown, plural examples such as two may be used. In the above-described embodiment, the guide plate 19 is provided with an erect portion 19 a provided so as to pass through the through hole 17, and an inclined portion 1 which is bent and inclined from a side edge of the erect portion. 9 and 9b, as shown in FIGS. 50 and 52, an inclined portion 19b is formed by inclining from the lower edge of the through hole, and the through hole 17 May be provided above the figure. The specific form can be adopted as appropriate from FIG. 20 and onward. In this example, the round plate is formed, and the connecting bent part (bead) 35 is formed in the projecting direction from the forming plate 6 e. It is formed from-to the inclined portion 9b.
この構成から、 ビード 3 5によって強度が向上するし、 また丸み加工 ( R加工) により振動の防止が図られるものである。 なお、 この案内板 1 9の両側にストレート部 3 3, 3 3を有している。 また、 図示しないが、 傾斜部 1 9 bに曲げ加工を施して曲面形状を持たせることもできる。  From this configuration, the strength is improved by the bead 35, and vibration is prevented by rounding (R processing). Note that the guide plate 19 has straight portions 33, 33 on both sides. Although not shown, the inclined portion 19b may be bent to have a curved surface shape.
第 1 5図及び第 1 6図に示す熱交換器においても、 上述した案内板 1 9 を同様に設けることができる。 即ち、 案内板 1 9は、 第 2 0図〜第 4 9図 に示される実施例と同構成となり、 曲面形成や、 ビ一ドの形成や、 さらに は両肩部に丸みを付けて強度の補強や振動の防止が図られるものである。 尚、 上述した構成においては、 仕切部 1 8が設けられている成形プレー トと案内板 1 9が設けられている成形プレートとが別々に形成されている が、 熱交換器の組み付けに要する成形プレートの種類を削減するために、 仕切部 1 8と案内板 1 9とを 1つの成形プレート上に形成してもよい。 前 述の構成によれば、 第 3図 (c ) の成形プレート 6 eを第 5 3図に示され るような成形プレート 6 e ' に置き換え、 これに隣接するプレ一トを、 第 3図 (a ) に示される成形プレート 6 aとすればよい。 産業上の利用可能性  In the heat exchangers shown in FIGS. 15 and 16, the guide plate 19 described above can be similarly provided. That is, the guide plate 19 has the same configuration as that of the embodiment shown in FIGS. 20 to 49, and forms a curved surface, forms a bead, and furthermore, rounds both shoulders to increase strength. The reinforcement and prevention of vibration are achieved. In the above-described configuration, the forming plate provided with the partition 18 and the forming plate provided with the guide plate 19 are formed separately, but the forming plate required for assembling the heat exchanger is formed. In order to reduce the number of types of plates, the partition 18 and the guide plate 19 may be formed on one forming plate. According to the configuration described above, the forming plate 6e in FIG. 3 (c) is replaced with a forming plate 6e 'as shown in FIG. 53, and a plate adjacent thereto is replaced with the plate shown in FIG. The forming plate 6a shown in (a) may be used. Industrial applicability
以上述べたように、 この発明によれば、 連通するタンク部で熱交換媒体 を積層方向へ移動させた後にタンク部からこれに連通する通路部へ熱交換 媒体を流入させる場合に、 案内板を設けて積層方向へ移動する熱交換媒体 の流れを移動先のタンク部とこれに連通する通路部との連通部位へ向けて 直進させる案内板を設けたので、 各チューブエレメントに熱交換媒体をほ ぽ均一に分配させることができ、 熱交換媒体の流れが偏つて通過空気温度 が通過場所によって大きく異なってしまうことを避けることができる。 ま- た、 案内板によって熱交換媒体の直進方向を積極的に変更することで対応 したので、 通路抵抗を低く抑えつつ熱交換媒体の偏りを小さくすることが でき、 且つ、 旋回流の発生も抑えることができるので移行部分近くの通路 部へ熱交換媒体を導きやすくなる。 As described above, according to the present invention, after the heat exchange medium is moved in the laminating direction in the communicating tank portion, the heat exchange medium is transferred from the tank portion to the passage portion communicating therewith. When a medium is introduced, a guide plate is provided to guide the flow of the heat exchange medium moving in the stacking direction straight toward the communicating part between the destination tank part and the passage part communicating therewith. In addition, the heat exchange medium can be distributed almost uniformly to each tube element, and it is possible to prevent the flow of the heat exchange medium from being biased and the passing air temperature from being greatly different depending on the passage location. Also, since the guide plate was used to actively change the direction of the heat exchange medium in the straight direction, it was possible to reduce the deviation of the heat exchange medium while keeping the passage resistance low, and to generate a swirling flow. Since the heat exchange medium can be suppressed, the heat exchange medium can be easily guided to the passage near the transition portion.
特に、 片タンク型の熱交換器においては、 偶数番目のパスから奇数番目 のパスへの移行部分に案内板を設ければ、 奇数番目のパスへ移行した直後 の通路部にも熱交換媒体が導かれるようになり、 熱交換分布をほぼ均一に することができる。  In particular, in a single-tank heat exchanger, if a guide plate is provided at the transition from the even-numbered pass to the odd-numbered pass, the heat exchange medium will also be provided in the passage immediately after the transition to the odd-numbered pass. As a result, the heat exchange distribution can be made almost uniform.
また、 チューブエレメントを構成する成形プレートのうち、 タンク部か ら通路部へ熱交換媒体を流動させるパスを境界づける仕切部が設けられる 成形プレートに対して、 案内板をこれに隣接する成形プレート、 或いは、 この仕切部が設けられた成形プレートに設ければ、 熱交換媒体を仕切部に 近い通路部へ導きやすくなる。 特に、 案内板と仕切部とを同じ成形プレー 卜に設けた場合には、 熱交換器の組み立てに必要な成形プレートの種類を 削減することができる。  In addition, among the forming plates constituting the tube element, a forming plate provided with a partitioning portion that bounds a path for flowing the heat exchange medium from the tank portion to the passage portion is provided. Alternatively, if the heat exchange medium is provided on the forming plate provided with the partition, the heat exchange medium can be easily guided to the passage near the partition. In particular, when the guide plate and the partition are provided on the same forming plate, the types of forming plates required for assembling the heat exchanger can be reduced.
案内板による熱交換媒体の流れの改善は、 案内板の傾斜角度と傾斜部分 の長さとを如何に組み合わせるかによるが、 5〜6 5度の範囲で傾斜角度 を、 1〜 1 5 mmの範囲で傾斜部分の長さをそれぞれ適宜設定すれば、 熱 交換媒体の偏流を小さくして熱交換効率の向上を図ることができる。 また、 案内板をタンク部を構成する部材と一体に形成すれば、 製造工数の削減、 製造の容易化を図ることができる。 The improvement of the flow of the heat exchange medium by the guide plate depends on how the inclination angle of the guide plate and the length of the inclined part are combined, but the inclination angle in the range of 5 to 65 degrees and the range of 1 to 15 mm If the lengths of the inclined portions are appropriately set, the deviation of the heat exchange medium can be reduced and the heat exchange efficiency can be improved. In addition, if the guide plate is formed integrally with the members constituting the tank part, the number of manufacturing steps can be reduced, Manufacturing can be facilitated.
案内板としては、 いろいろな形状が可能であるが、 通孔を渡すように設 けられた架設部と、 この架設部の側縁から曲げられて傾斜する傾斜部とに より構成したり、 通孔の周縁から直接曲げて傾斜させる形状としたり、 通 孔を渡すように設けられた部分を捻って全体を傾斜させる形状とすれば、 - 製造が容易で実用化しやすい構造を提供することができる。 また、 移行部 分又はその近傍に案内板を多数形成すれば、 熱交換媒体の流れを確実に変 更でき、 熱交換媒体の偏流を効果的に抑えることができる。  The guide plate can be of various shapes, but it may be constructed by an erect portion provided to pass through the through-hole and an inclined portion which is bent from the side edge of the erect portion and inclines. If the shape is formed by bending directly from the periphery of the hole and inclined, or by twisting the part provided so as to pass through the hole, the entire shape is inclined.- It is possible to provide a structure that is easy to manufacture and easy to put into practical use. . Further, if a large number of guide plates are formed at or near the transition portion, the flow of the heat exchange medium can be reliably changed, and the drift of the heat exchange medium can be effectively suppressed.
また、 以上の構成によれば、 連通するタンク部で熱交換媒体を積層方向 へ移動させた後にタンク部からこれに連通する通路部へ熱交換媒体を流入 させる場合に所定の位置のチューブエレメン卜の通孔に案内板を設けて、 積層方向へ移動する熱交換媒体の流れを移動先のタンク部とこれに連通す る通路部との連通部位へ向けて変更させるが、 この案内板を曲面形状にし たり、 またビ一ドを設けたりして強度の向上を図ることが出来ると共に、 案内板の両肩部に丸みを付けることで振動の防止が図れる効果を有するも のである。  Further, according to the above configuration, when the heat exchange medium is moved in the stacking direction in the communicating tank portion and then flows into the passage portion communicating with the heat exchange medium from the tank portion, the tube element at a predetermined position is used. A guide plate is provided in the through hole of the tank, and the flow of the heat exchange medium moving in the stacking direction is changed toward the communicating portion between the destination tank portion and the passage portion communicating therewith. It is possible to improve the strength by shaping or providing a bead, and to have the effect of preventing vibration by rounding both shoulders of the guide plate.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数のタンク部とこのタンク部に連通する通路部とを有してなるチ ュ一ブエレメントを前記タンク部を順次付き合わせて多数段に積層し、 こ の付き合わされたタンク部の全部又は一部を各々のタンク部に形成された- 通孔を介して連通し、 複数の連接したタンク部からこれに連通する通路部 へ熱交換媒体を流入するパスを設け、 このパスへの移行部分において前記 通孔を介して熱交換媒体を積層方向へ移動させる積層型熱交換器において、 前記移行部分又はその近傍の少なくとも 1箇所に、 前記積層方向へ移動 する熱交換媒体の流れを前記移動先のタンク部とこれに連通する通路部と の連通部位へ向けて直進させる案内板を設けたことを特徴とする積層型熱 交換器。 1. A plurality of tube elements each having a plurality of tank portions and a passage portion communicating with the tank portions are laminated in a number of stages by sequentially contacting the tank portions, and all of the joined tank portions are stacked. Alternatively, a part of the tank is communicated through a through hole formed in each tank part, and a path for flowing the heat exchange medium from a plurality of connected tank parts to a passage part communicating with the tank part is provided. In the laminated heat exchanger in which the heat exchange medium is moved in the laminating direction through the through hole in the portion, the flow of the heat exchange medium moving in the laminating direction is moved to the transition portion or at least one location near the transition portion. A stacked heat exchanger, comprising a guide plate for straightly moving toward a communicating portion between the preceding tank portion and a passage portion communicating therewith.
2 . 片側に設けられた一対のタンク部とこの一対のタンク部を連通する 折返し通路部とを有してなるチューブエレメントをフィンを介して多数段 に積層し、 隣合うチューブエレメントのタンク部を順次付き合わせると共 に、 この付き合わされたタンク部をブロック毎に通孔を介して連通し、 各 プロックを構成するタンク部数を適宜設定してチューブエレメン卜の夕ン ク部から通路部にかけて熱交換媒体が流動する奇数番目のパスと、 チュー ブエレメン卜の通路部からタンク部にかけて熱交換媒体が流動する偶数番 目のパスとを設け、 前記偶数番目のパスから奇数番目のパスへの移行部分 で前記通孔を介して熱交換媒体が積層方向へ移動する積層型熱交換器にお いて、  2. A tube element having a pair of tank portions provided on one side and a folded passage portion communicating with the pair of tank portions is laminated in multiple stages via fins, and the tank portions of adjacent tube elements are stacked. When the tanks are connected sequentially, the tanks connected to each other are communicated through the through holes for each block, and the number of tanks constituting each block is set appropriately and heat is applied from the evening to the passage of the tube element. An odd-numbered path through which the exchange medium flows and an even-numbered path through which the heat exchange medium flows from the passage of the tube element to the tank are provided, and a transition from the even-numbered path to the odd-numbered path is provided. In the stacked heat exchanger in which the heat exchange medium moves in the stacking direction through the through holes,
前記移行部分又はその近傍の少なくとも 1箇所に、 前記積層方向へ移動 する熱交換媒体の流れを前記奇数番目のパスのタンク部とこれに連通する 通路部との連通部位へ向けて直進させる案内板を設けたことを特徴とする 積層型熱交換器。 A guide plate for directing the flow of the heat exchange medium moving in the laminating direction toward the communication portion between the tank portion of the odd-numbered path and the passage portion communicating therewith at the transition portion or at least one portion near the transition portion. Characterized by the provision of Stacked heat exchanger.
3 . 前記チューブエレメントを 2枚の成形プレートを接合して構成し、 積層方向のタンク部間の連通を阻止する仕切部を設けた成形プレートを所 定位置に配置することで前記熱交換媒体がタンク部から通路部へ流動する パスを境界づけ、 前記移行部分に設けられる案内板を、 前記仕切部を設け- た成形プレートと隣接している成形プレートに設けたことを特徴とする請 求項第 1項又は第 2項記載の積層型熱交換器。  3. The tube element is formed by joining two molding plates, and the heat exchange medium is disposed at a predetermined position by disposing a molding plate provided with a partition for preventing communication between the tanks in the stacking direction. Claims characterized in that a guide plate provided at the transition portion is provided on a forming plate adjacent to the forming plate provided with the partition portion, which bounds a path flowing from the tank portion to the passage portion. 3. The laminated heat exchanger according to paragraph 1 or 2.
4 . 前記チューブエレメントを 2枚の成形プレートを接合して構成し、 積層方向のタンク部間の連通を阻止する仕切部を設けた成形プレー卜を所 定位置に配置することで前記熱交換媒体がタンク部から通路部へ流動する パスを境界づけ、 前記移行部分に設けられる案内板を、 前記仕切部を設け た成形プレートに設けたことを特徴とする請求項第 1項又は第 2項記載の 積層型熱交換器。  4. The heat exchange medium is formed by joining the tube element with two molding plates and disposing a molding plate having a partition for preventing communication between the tanks in the stacking direction at a predetermined position. 3.A path that flows from the tank section to the passage section is bounded, and a guide plate provided at the transition portion is provided on a forming plate provided with the partition section. Stacked heat exchanger.
5 . 前記案内板は、 前記チューブエレメントの積層方向に対して 5 ~ 6 5度の範囲で傾斜され、 この傾斜部分の長さが 1〜 1 5 mmの範囲に設定 されている請求項第 1項〜第 4項のいずれか 1つに記載された積層型熱交 換器。  5. The guide plate is inclined in a range of 5 to 65 degrees with respect to a stacking direction of the tube elements, and a length of the inclined portion is set in a range of 1 to 15 mm. Item 5. The multilayer heat exchanger according to any one of Items 4 to 4.
6 . 前記案内板は、 タンク部を構成する部材と一体に形成されている請 求項第 1項〜第 4項のいずれか 1つに記載された積層型熱交換器。  6. The laminated heat exchanger according to any one of claims 1 to 4, wherein the guide plate is formed integrally with a member constituting a tank portion.
7 . 前記案内板は、 前記通孔を渡すように設けられた架設部と、 この架 設部の側縁から曲げられて傾斜する傾斜部とにより構成されている請求項 第 1項〜第 6項のいずれか 1つに記載された積層型熱交換器。 7. The guide plate is composed of an erect portion provided so as to pass through the through-hole, and an inclined portion which is bent from a side edge of the erect portion and inclines. Stacked heat exchanger according to any one of the preceding clauses.
8 . 前記案内板は、 前記通孔の周縁から傾斜して構成されている請求項 第 1項〜第 6項のいずれか 1つに記載の積層型熱交換器。 8. The laminated heat exchanger according to any one of claims 1 to 6, wherein the guide plate is configured to be inclined from a periphery of the through hole.
9 . 前記案内板は、 前記通孔を渡すように設けられた部分を捻って全体 を傾斜させて構成されている請求項第 1項〜第 6項のいずれか 1つに記載 の積層型熱交換器。 9. The guide plate is formed by twisting a part provided to pass the through hole. The stacked heat exchanger according to any one of claims 1 to 6, wherein the stacked heat exchanger is configured to be inclined.
1 0 . 前記案内板は、 前記移行部分又はその近傍に多数形成されている 請求項第 1項〜第 6項のいずれか 1つに記載の積層型熱交換器。  10. The stacked heat exchanger according to any one of claims 1 to 6, wherein a large number of the guide plates are formed at or near the transition portion.
1 1 . 複数の夕ンク部とこのタンク部に連通する通路部を有するチュー- ブエレメントを多数段積層して成る積層型熱交換器において、  11. A stacked heat exchanger comprising a plurality of tube elements having a plurality of tube portions and a passage portion communicating with the tank portion in a multi-layer structure.
前記チューブエレメン卜の一部に、 該チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成の通孔に案内板が設けられ、 この 案内板は成形プレートの横方向に添う曲面形状とすることを特徴とする積 層型熱交換器。  A guide plate is provided in a part of the tube element in a through hole formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and the guide plate has a curved surface along a lateral direction of the forming plate. A stacked heat exchanger characterized by the following.
1 2 . 前記案内板を成形プレートの横方向に添う曲面形状とすることを 特徴とする請求項第 1項〜第 8項のいずれか 1つに記載の積層型熱交換器。  12. The laminated heat exchanger according to any one of claims 1 to 8, wherein the guide plate has a curved surface shape extending along a lateral direction of the forming plate.
1 3 . 曲面形状を一定の曲率に曲げて成ることを特徴とする請求項第 1 1項又は請求項第 1 2項に記載の積層型熱交換器。 13. The stacked heat exchanger according to claim 11, wherein the curved surface shape is bent to a constant curvature.
1 4 . 横方向両端に近い部分に曲面形状を形成したことを特徴とする請 求項第 1 1項又は請求項第 1 2項に記載の積層型熱交換器。  14. The laminated heat exchanger according to claim 11 or claim 12, wherein a curved surface is formed at a portion near both ends in the lateral direction.
1 5 . 曲面形状に袋状加工を施したことを特徴とする請求項第 1 1項〜 第 1 4項のいずれかに記載の積層型熱交換器。  15. The laminated heat exchanger according to any one of claims 11 to 14, wherein the curved shape is subjected to bag-like processing.
1 6 . 曲面形状を持つ案内板の横方向両端にストレート部を形成したこ とを特徴とする請求項第 1 1項又は請求項第 1 2項に記載の積層型熱交換  16. The laminated heat exchanger according to claim 11, wherein straight portions are formed at both lateral ends of the guide plate having a curved shape.
1 7 . ストレート部は、 通孔を渡すように設けられた架設部に形成され ることを特徴とする請求項 1 6記載の積層型熱交換器。 17. The laminated heat exchanger according to claim 16, wherein the straight portion is formed in a bridge portion provided so as to pass through the through hole.
1 8 . 複数のタンク部とこのタンク部に連通する通路部を有するチュー ブエレメントを多数段積層して成る積層型熱交換器において、 前記チューブエレメントの一部に、 該チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成の通孔に案内板が設けられ、 この 案内板に成形プレートから突出方向に少なくとも 1ケ所以上のビ一ドを設 けたことを特徴とする積層型熱交換器。 18. A stacked heat exchanger in which a plurality of tube elements each having a plurality of tank sections and a passage section communicating with the tank sections are stacked in multiple stages, A guide plate is provided in a part of the tube element in a through hole formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and the guide plate has at least one or more locations in a projecting direction from the forming plate. A stacked heat exchanger characterized by a bead.
1 9 . 前記案内板に成形プレートから突出方向に少なくとも 1ケ所以上- のビードを設けたことを特徴とする請求項第 1項〜第 8項のいずれか 1つ に記載の積層型熱交換器。  19. The laminated heat exchanger according to any one of claims 1 to 8, wherein the guide plate is provided with at least one or more beads in a projecting direction from the forming plate. .
2 0 . ビードの長さを突出方向の長さと同一寸法としたことを特徴とす る請求項第 1 8項又は請求項第 1 9項に記載の積層型熱交換器。  20. The stacked heat exchanger according to claim 18 or claim 19, wherein the length of the bead is the same as the length in the protruding direction.
2 1 . ビード長さを突出方向の長さより短い寸法としたことを特徴とす る請求項第 1 8項又は請求項第 1 9項に記載の積層型熱交換器。 21. The laminated heat exchanger according to claim 18 or claim 19, wherein the length of the bead is shorter than the length in the protruding direction.
2 2 . ビードを菱形状の形状としたことを特徴とする請求項第 1 8項又 は請求項第 1 9項に記載の積層型熱交換器。 22. The laminated heat exchanger according to claim 18 or claim 19, wherein the beads have a rhombic shape.
2 3 . 複数のタンク部とこのタンク部に連通する通路部を有するチュー ブエレメントを多数段積層して成る積層型熱交換器において、  23. In a laminated heat exchanger formed by stacking a plurality of tube elements each having a plurality of tank sections and a passage section communicating with the tank sections,
前記チューブエレメン卜の一部に、 該チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成の通路に案内板が設けられ、 この 案内板は成形プレートから突出する方向の先端の両肩部に丸みを持たせた ことを特徴とする積層型熱交換器。  A guide plate is provided in a part of the tube element in a passage formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and the guide plate is provided at both ends in a direction protruding from the forming plate. A stacked heat exchanger with a rounded shoulder.
2 4 . 前記案内板は成形プレートから突出する方向の先端の両肩部に丸み を持たせたことを特徴とする請求項第 1項〜第 8項のいずれか 1つに記載 の積層型熱交換器。 24. The laminated heat source according to any one of claims 1 to 8, wherein the guide plate has rounded both shoulders at a tip in a direction protruding from the forming plate. Exchanger.
2 5 . 複数のタンク部と、 このタンク部に連通する通路部を有するチュ ーブエレメン卜を多数段積層して成る積層型熱交換器において、  25. In a laminated heat exchanger formed by stacking a plurality of tube elements and a plurality of tube elements each having a passage portion communicating with the tank section,
前記チューブエレメントの一部に、 該チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成の通孔に案内板が設けられ、 この 案内板は成形プレートの横方向に添う曲面形状とすると共に、 該案内板の 突出方向に少なくとも 1ケ所以上のビードを設けたことを特徴とする積層 型熱交換器。 A component constituting the tube element is provided in a part of the tube element. A guide plate is provided in a through hole formed in the bulging portion for forming a tank of the shaped plate, and the guide plate has a curved surface shape along the lateral direction of the forming plate, and at least one or more places in the projecting direction of the guide plate. A stacked heat exchanger characterized by providing beads.
2 6 . 前記案内板を成形プレートの横方向に添う曲面形状にすると共に; 該案内板の突出方向に少なくとも 1ケ所以上のビ一ドを設けたことを特徴 とする請求項第 1項〜第 8項のいずれか 1つに記載の積層型熱交換器。  26. The guide plate is formed into a curved shape along a lateral direction of a forming plate, and at least one bead is provided in a projecting direction of the guide plate. 9. The stacked heat exchanger according to any one of items 8 to 9.
2 7 . 複数のタンク部と、 このタンク部に連通する通路部を有するチュ —ブエレメントを多数段積層して成る積層型熱交換器において、 27. In a laminated heat exchanger comprising a plurality of stacked tank elements each having a plurality of tank sections and a passage section communicating with the tank sections,
前記チューブエレメントの一部に、 該チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成の通路に案内板が設けられ、 この 案内板は成形プレートの横方向に添う曲面形状とすると共に、 成形プレー 卜から突出する方向の先端の両肩部に丸みを持たせたことを特徴とする積 層型熱交換器。  A guide plate is provided in a part of the tube element in a passage formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and the guide plate has a curved surface along a lateral direction of the forming plate. In addition, a stacked heat exchanger characterized in that both ends of the tip in the direction protruding from the forming plate are rounded.
2 8 . 前記案内板を成形プレートの横方向に添う曲面形状にすると共に、 成形プレートから突出する方向の先端の両肩部に丸みを持たせたことを特 徴とする請求項第 1項〜第 8項のいずれか 1つに記載の積層型熱交換器。 28. The method according to claim 1, wherein the guide plate is formed into a curved shape along a lateral direction of the forming plate, and both shoulders at a tip in a direction protruding from the forming plate are rounded. 9. The stacked heat exchanger according to any one of clauses 8.
2 9 . 複数のタンク部とこのタンク部に連通する通路部を有するチュー ブェレメントを多数段積層して成る積層型熱交換器において、 29. In a laminated heat exchanger formed by stacking a plurality of tube elements each having a plurality of tank sections and a passage section communicating with the tank sections,
前記チューブエレメン トの一部に、 該チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成の通路に案内板が設けられ、 この 案内板は成形プレートから突出する方向に少なくとも 1ケ所以上のビード を設けると共に、 成形プレートから突出する方向先端の両肩部に丸みを持 たせたことを特徴とする積層型熱交換器。  A guide plate is provided in a part of the tube element in a passage formed in a bulging portion for forming a tank of a forming plate constituting the tube element, and the guide plate is provided in at least one position in a direction protruding from the forming plate. A stacked heat exchanger comprising the above-mentioned beads and rounded shoulders at the tip in the direction protruding from the forming plate.
3 0 . 前記案内板に成形プレートから突出する方向に少なくとも 1ケ所 以上のビードを設けると共に、 成形プレートから突出する方向先端の両肩 部に丸みを持たせたことを特徴とする請求項第 1項〜第 8項のいずれか 1 つに記載の積層型熱交換器。 30. At least one point on the guide plate in the direction protruding from the forming plate 9. The laminated heat exchanger according to claim 1, wherein the beads are provided, and both shoulders at a tip end in a direction protruding from the forming plate are rounded. vessel.
3 1 . 複数のタンク部と、 この夕ンク部に連通する通路部を有するチュ —ブエレメン卜を多数段積層して成る積層型熱交換器において、 - 前記チューブエレメン卜の一部に、 該チューブエレメントを構成する成 形プレートのタンク形成用膨出部に形成の通路に案内板が設けられ、 この 案内板は成形プレー卜の横方向に添う曲面形状とすると共に、 該案内板の 突出方向に少なくとも 1ケ所以上のビードを設け、 且つ該成形プレートか ら突出する方向先端の両肩部に丸みを持たせたことを特徴とする積層型熱 交換器。  31. A stacked heat exchanger comprising a plurality of stacked tube elements having a plurality of tank sections and a passage section communicating with the ink section, wherein:-a tube element is provided in a part of the tube element; A guide plate is provided in a passage formed in the bulging portion for forming a tank of the forming plate constituting the element, and the guide plate has a curved surface along a lateral direction of the forming plate and has a A laminated heat exchanger comprising at least one bead and at least two shoulders at a tip end in a direction protruding from the molding plate.
3 2 . 前記案内板を成形プレートの横方向に添う曲面形状にすると共に、 該案内板の突出方向に少なくとも 1ケ所以上のビ一ドを設け、 且つ該成形 プレートから突出する方向先端の両肩部に丸みを持たせたことを特徴とす る請求項第 1項〜第 8項のいずれか 1つに記載の積層型熱交換器。  32. The guide plate is formed into a curved shape along the lateral direction of the forming plate, and at least one bead is provided in a projecting direction of the guide plate, and both shoulders at a tip end in a direction protruding from the forming plate are provided. The laminated heat exchanger according to any one of claims 1 to 8, wherein the portion is rounded.
PCT/JP1999/003685 1998-10-02 1999-07-08 Laminated type heat exchanger WO2000020816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99929747A EP1118829A4 (en) 1998-10-02 1999-07-08 Laminated type heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/280749 1998-10-02
JP28074998A JP2952593B1 (en) 1998-10-02 1998-10-02 Stacked heat exchanger
JP10370265A JP2000193392A (en) 1998-12-25 1998-12-25 Laminated heat exchanger
JP10/370265 1998-12-25

Publications (1)

Publication Number Publication Date
WO2000020816A1 true WO2000020816A1 (en) 2000-04-13

Family

ID=26553904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003685 WO2000020816A1 (en) 1998-10-02 1999-07-08 Laminated type heat exchanger

Country Status (2)

Country Link
EP (1) EP1118829A4 (en)
WO (1) WO2000020816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217340A1 (en) * 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118394U (en) * 1984-06-30 1986-02-03 カルソニックカンセイ株式会社 Heat exchanger
JPH08178581A (en) * 1994-12-28 1996-07-12 Nippon Climate Syst:Kk Stacked type heat exchanger
JPH08285407A (en) * 1995-02-16 1996-11-01 Zexel Corp Laminated type heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151640B2 (en) * 1992-10-01 2001-04-03 株式会社ゼクセルヴァレオクライメートコントロール Heat exchanger
JPH10267462A (en) * 1997-03-25 1998-10-09 Showa Alum Corp Evaporator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118394U (en) * 1984-06-30 1986-02-03 カルソニックカンセイ株式会社 Heat exchanger
JPH08178581A (en) * 1994-12-28 1996-07-12 Nippon Climate Syst:Kk Stacked type heat exchanger
JPH08285407A (en) * 1995-02-16 1996-11-01 Zexel Corp Laminated type heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1118829A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217340A1 (en) * 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Heat exchanger
US9709338B2 (en) 2012-09-25 2017-07-18 Mahle International Gmbh Heat exchanger

Also Published As

Publication number Publication date
EP1118829A1 (en) 2001-07-25
EP1118829A4 (en) 2002-07-03

Similar Documents

Publication Publication Date Title
JP3172859B2 (en) Stacked heat exchanger
CN101523150B (en) Heat exchanger
JP5002797B2 (en) Heat exchanger
JP4047891B2 (en) Heat exchanger
JP2005326135A (en) Heat exchanger
US6823933B2 (en) Stacked-type, multi-flow heat exchangers
CN105102917A (en) Heat exchanger
US5979544A (en) Laminated heat exchanger
US6742577B2 (en) Laminate type evaporator
JP6842915B2 (en) Evaporator
CN100362303C (en) Flat pipe comprising a return bend section and a heat exchanger constructed therewith
JPH09309321A (en) Lamination type heat exchanger
US7918266B2 (en) Heat exchanger
JP2887442B2 (en) Stacked heat exchanger
JP2000193392A (en) Laminated heat exchanger
JP2952593B1 (en) Stacked heat exchanger
WO2000020816A1 (en) Laminated type heat exchanger
JP6785137B2 (en) Evaporator
JP4759297B2 (en) Heat exchanger
WO2014045629A1 (en) Heat exchanger
JP2008025956A (en) Heat exchanger
JP5525805B2 (en) Heat exchanger
JP2011158130A (en) Heat exchanger
JP5499834B2 (en) Evaporator
JP2008180479A (en) Heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09701469

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999929747

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999929747

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999929747

Country of ref document: EP