WO2000017254A1 - PREPARATION OF CROSS-LINKED 2-DIMENSIONAL POLYMERS WITH SIDEDNESS FROM α,β-LACTONES - Google Patents
PREPARATION OF CROSS-LINKED 2-DIMENSIONAL POLYMERS WITH SIDEDNESS FROM α,β-LACTONES Download PDFInfo
- Publication number
- WO2000017254A1 WO2000017254A1 PCT/US1999/021692 US9921692W WO0017254A1 WO 2000017254 A1 WO2000017254 A1 WO 2000017254A1 US 9921692 W US9921692 W US 9921692W WO 0017254 A1 WO0017254 A1 WO 0017254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide
- group
- alkyl
- polymer
- polymers
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 196
- 238000002360 preparation method Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 claims abstract description 70
- 230000008569 process Effects 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 150000001412 amines Chemical class 0.000 claims abstract description 35
- VIHAEDVKXSOUAT-UHFFFAOYSA-N but-2-en-4-olide Chemical compound O=C1OCC=C1 VIHAEDVKXSOUAT-UHFFFAOYSA-N 0.000 claims abstract description 33
- 150000002596 lactones Chemical class 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims description 83
- 239000004952 Polyamide Substances 0.000 claims description 74
- 229920002647 polyamide Polymers 0.000 claims description 74
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 48
- 125000000217 alkyl group Chemical group 0.000 claims description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 25
- 229920000768 polyamine Polymers 0.000 claims description 21
- 229910019142 PO4 Inorganic materials 0.000 claims description 19
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 18
- 239000010452 phosphate Chemical group 0.000 claims description 18
- 239000011541 reaction mixture Substances 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical group [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 150000001336 alkenes Chemical group 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 125000002947 alkylene group Chemical group 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 150000002825 nitriles Chemical group 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical group [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 10
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical group NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 150000001345 alkine derivatives Chemical group 0.000 claims description 9
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 9
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 9
- 125000005208 trialkylammonium group Chemical group 0.000 claims description 9
- 229910052794 bromium Inorganic materials 0.000 claims description 8
- 229910052801 chlorine Inorganic materials 0.000 claims description 8
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- 150000002367 halogens Chemical class 0.000 claims description 8
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 239000011593 sulfur Chemical group 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Chemical group 0.000 claims description 5
- 150000003973 alkyl amines Chemical class 0.000 claims description 4
- NHWGPUVJQFTOQX-UHFFFAOYSA-N ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium Chemical group CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC NHWGPUVJQFTOQX-UHFFFAOYSA-N 0.000 claims description 3
- 125000003944 tolyl group Chemical group 0.000 claims description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical group [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims 4
- 229910052698 phosphorus Inorganic materials 0.000 claims 3
- 125000005496 phosphonium group Chemical group 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 29
- 239000002184 metal Substances 0.000 abstract description 29
- 239000000017 hydrogel Substances 0.000 abstract description 19
- -1 2(5H)-furanone Chemical class 0.000 abstract description 17
- 239000003960 organic solvent Substances 0.000 abstract description 12
- 150000003141 primary amines Chemical class 0.000 abstract description 10
- 238000006116 polymerization reaction Methods 0.000 abstract description 9
- 230000002194 synthesizing effect Effects 0.000 abstract description 9
- 150000002739 metals Chemical class 0.000 abstract description 8
- 230000001453 nonthrombogenic effect Effects 0.000 abstract description 6
- 239000008394 flocculating agent Substances 0.000 abstract description 4
- 238000000746 purification Methods 0.000 abstract description 4
- 230000001629 suppression Effects 0.000 abstract description 4
- 150000003868 ammonium compounds Chemical class 0.000 abstract 1
- 239000000463 material Substances 0.000 description 41
- 239000000047 product Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 21
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 17
- 230000002209 hydrophobic effect Effects 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- RHDGNLCLDBVESU-UHFFFAOYSA-N but-3-en-4-olide Chemical compound O=C1CC=CO1 RHDGNLCLDBVESU-UHFFFAOYSA-N 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 12
- 239000008280 blood Substances 0.000 description 12
- 239000000499 gel Substances 0.000 description 12
- 229910021645 metal ion Inorganic materials 0.000 description 12
- 235000021317 phosphate Nutrition 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 125000002091 cationic group Chemical group 0.000 description 9
- 230000002949 hemolytic effect Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 229920006318 anionic polymer Polymers 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 7
- 239000000806 elastomer Substances 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 6
- 239000012620 biological material Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000003973 paint Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 206010053567 Coagulopathies Diseases 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 150000001720 carbohydrates Chemical group 0.000 description 5
- 238000005277 cation exchange chromatography Methods 0.000 description 5
- 230000035602 clotting Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 229960002897 heparin Drugs 0.000 description 5
- 229920000669 heparin Polymers 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 4
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000010668 complexation reaction Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 206010018910 Haemolysis Diseases 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 125000003180 beta-lactone group Chemical group 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 230000008034 disappearance Effects 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000000457 gamma-lactone group Chemical group 0.000 description 3
- 230000008588 hemolysis Effects 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000002885 thrombogenetic effect Effects 0.000 description 3
- 229960004295 valine Drugs 0.000 description 3
- CBOJBBMQJBVCMW-NQZVPSPJSA-N (2r,3r,4r,5r)-2-amino-3,4,5,6-tetrahydroxyhexanal;hydrochloride Chemical compound Cl.O=C[C@H](N)[C@@H](O)[C@@H](O)[C@H](O)CO CBOJBBMQJBVCMW-NQZVPSPJSA-N 0.000 description 2
- CBOJBBMQJBVCMW-BTVCFUMJSA-N (2r,3r,4s,5r)-2-amino-3,4,5,6-tetrahydroxyhexanal;hydrochloride Chemical compound Cl.O=C[C@H](N)[C@@H](O)[C@H](O)[C@H](O)CO CBOJBBMQJBVCMW-BTVCFUMJSA-N 0.000 description 2
- SQEBMLCQNJOCBG-HVHJFMEUSA-N (5s)-3-(hydroxymethyl)-5-methoxy-4-methyl-5-[(e)-2-phenylethenyl]furan-2-one Chemical compound C=1C=CC=CC=1/C=C/[C@]1(OC)OC(=O)C(CO)=C1C SQEBMLCQNJOCBG-HVHJFMEUSA-N 0.000 description 2
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 2
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 2
- FHZGLAQURVGMES-UHFFFAOYSA-N 2-aminoethyl dihydrogen phosphate;sodium Chemical compound [Na].NCCOP(O)(O)=O FHZGLAQURVGMES-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- FBMORZZOJSDNRQ-UHFFFAOYSA-N Demethoxy,B,HCl-Adriamycin Natural products C1C2C(=C)CCCC2(C)CC2(O)C1=C(C)C(=O)O2 FBMORZZOJSDNRQ-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229940000635 beta-alanine Drugs 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 244000078885 bloodborne pathogen Species 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 150000003983 crown ethers Chemical group 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 229960001911 glucosamine hydrochloride Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical group C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- GJIDOLBZYSCZRX-UHFFFAOYSA-N hydroxymethyl prop-2-enoate Chemical compound OCOC(=O)C=C GJIDOLBZYSCZRX-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 2
- JUTMAMXOAOYKHT-UHFFFAOYSA-N karrikinolide Natural products C1=COC=C2OC(=O)C(C)=C21 JUTMAMXOAOYKHT-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000002135 phase contrast microscopy Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 241001120493 Arene Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- ZUNGGJHBMLMRFJ-UHFFFAOYSA-N CCOP(=O)=O Chemical group CCOP(=O)=O ZUNGGJHBMLMRFJ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 241000277284 Salvelinus fontinalis Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- RSDOASZYYCOXIB-UHFFFAOYSA-N beta-alaninamide Chemical class NCCC(N)=O RSDOASZYYCOXIB-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000032770 biofilm formation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical group 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229920006238 degradable plastic Polymers 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003295 industrial effluent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000005267 main chain polymer Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000011846 petroleum-based material Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000001907 polarising light microscopy Methods 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000005266 side chain polymer Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/5328—Conductive materials containing conductive organic materials or pastes, e.g. conductive adhesives, inks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/06—Use of macromolecular materials
- A61L33/068—Use of macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/04—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/28—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D177/00—Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49866—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
- H01L23/49883—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials the conductive materials containing organic materials or pastes, e.g. for thick films
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
Definitions
- the present invention provides polymeric compositions and processes for synthesizing the polymer compositions.
- the process is a polymerization reaction involving a cyclic ⁇ , ⁇ -unsaturated lactone and a long chain primary amine.
- the polymer compositions self- assemble and can form sheets with a polar face and a non-polar face, two polar faces, or two non-polar faces wherein the "face" is defined as the opposed sides of the sheet.
- the polymer compositions are polyamides synthesized from 2 (5H) -furanone.
- the present invention further provides polymer compositions and processes for synthesizing the polymer compositions from 2 (5H) -furanone for uses as hydrogels, polymers that can bind metals and form complexes that are soluble in organic solvents, polymers for use as flocculants in water purification, polymers for use on non-fouling surfaces for biofilm suppression, polymers for use on non-thrombogenic surfaces, and polymers with uses as thin conductive films for microchips and other electronic devices.
- organic polymeric materials with more sophisticated properties. These include materials that can conduct electricity, that are magnetic, and materials that change some property such as color or refractive index under the influence of various external factors such as pressure, electric fields, magnetic fields, pH changes, or temperature alterations. In all of these applications, one critical requirement is that some functional group or groups along the polymer backbone be aligned in a regular repeating fashion with very high density. Polymeric materials with very different properties can be made depending on the choice of the functional groups. Electron donor-acceptor pairs can be conductive or have optical properties that are influenced by electric or magnetic fields. Such polymeric materials have applications in sensor devices and optical switches.
- An array of negatively charged groups is a typical arrangement sought for conducting organic polymers where the charge carriers are metal ions and protons.
- Hydrogels can be formed if charges are present on the side chains.
- Materials with special conductive, magnetic or electro-optical properties can be fabricated from polymers having specialized aromatic side chains.
- U.S. Patent No. 2,968,629 to Thompson discloses a method of inhibiting metal corrosion using a condensation product of beta-lactone.
- U.S. Patent No. 3,525,718 to Derie ⁇ et al discloses a process for producing a polyamide resin from beta-lactone. The process consists of reacting beta-lactone under anhydrous conditions at reduced temperatures to produce an amino acid addition product, and then in a subsequent step subjecting said product to polymerization conditions at elevated temperatures in which said product is substantially dehydrated to form a polyamide resin which is linear without side chains.
- the resin has properties that suggest it may be used in applications where nylon and Dacron have been used. All of the abovementioned inventions disclose processes to make a specific product. None of the above mentioned inventions disclose processes for synthesizing a wide variety of polymers with distinct properties.
- the preferred method is one that does not require activation of groups of the monomer (s), does not produce any by products that have to be eliminated, that proceeds under mild conditions, that is compatible with a large spectrum of functional groups including alcohols, acids, phosphate groups, sulfonates, nitriles, amides and amines, and which can be carried out in a wide variety of solvents from aprotic solvents to water. Because most polymers are derived from fossil fuels which are a limited resource and a resource that for the most part is imported, there is a need for said polymers be derived from renewable resources.
- the present invention provides a process for the preparation of polyamide polymers from , ⁇ -unsaturated lactone and an amine selected from the group consisting of RNH 2 ' RNH 3 + and mixtures thereof which can optionally be substituted in R with heteroatoms such as 0, N, S and combinations thereof which allow the formation of a polyamide polymer wherein each of the R can be the same or different and separating the polyamide polymer from the reaction mixture, wherein multiple of the R are in vertically aligned spaced relationship along a backbone formed by the polyamide.
- the present invention particularly provides a process for producing polymers using ⁇ , ⁇ -unsaturated gamma-lactone (2 (5H) -furanone or butenolide) as an agent to effect the regular, sequential alignment of side chains along a polyamide backbone.
- ⁇ , ⁇ -unsaturated gamma-lactone (2 (5H) -furanone or butenolide) as an agent to effect the regular, sequential alignment of side chains along a polyamide backbone.
- the polymers prepared according to the present invention can have side groups selected from the group consisting of alkyl, alkene, alkyne, cycloalkyl, aryl, aralkyl, hydroxyl, nitrile, carboxyl, sulfate, phosphate, sulfonyl, trialkyl-ammonium, amino acids, carbohydrates and combinations thereof.
- the present invention further provides polymer compositions which are made from , ⁇ -unsaturated lactones, an example being 2 (5H) -furanone, and an amine selected from RNH 2 and RNH 3 + or combinations thereof, according to the process of the present invention.
- the polymers of the present invention are two-dimensional polymers that can be used as conductive polymers, for binding metals to form complexes which are then soluble in organic solvents for sequestering or forming thin conductive films for electronic devices, for forming hydrogels with high water capacity for medical and new mechano-electrical applications, and coating surfaces for biofilm suppression, and rendering surfaces non- thrombogenic and non-hemolytic.
- Another object of the present invention is to provide polymer compositions which can form sheets with a polar face and a non-polar face, two polar faces, or two non-polar faces.
- a further object of the present invention to provide polymer compositions synthesized according to the present invention which can be used as hydrogels, for binding metals, for coating surfaces to make the surface hydrophobic or hydrophilic, and for forming conductive films.
- polyamide compositions that can be synthesized by the process of the present invention.
- IA shows a stabilized lamellar sheets in which the polar headgroups are part of the polyamide chain.
- IB shows a polyamide with polyacetylene side chains capable of being conjugated to form a ⁇ -conducting sheet.
- 1C shows a polyamide with crown ether side chains for metal complexation.
- ID shows a polyamide with amine groups for metal complexation.
- IE shows a polyamide with carboxylate groups for metal complexation.
- Figure 2 shows the process for synthesizing polymeric compositions from 2 (5H) -furanone according to the preferred process of the present invention.
- Figure 3 shows a space filling model which shows the organization of the hydrocarbon chains and polar groups in the two-dimensional polymers (polyamides) formed by using long chain alkylamines as described in the present invention.
- Figures 4A and 4B show a two-dimensional sheet of a polymeric composition of the present invention.
- Figure 4A is formed at a water/ether interface and visualized by phase contrast microscopy (XI0)
- Figure 4B is a polarized light micrograph of the two-dimensional sheet.
- Figure 5 shows a proton NMR spectrum of 2-D polymer of the present invention synthesized from 2 (5H) -furanone and tetradecylamine.
- Figure 6 shows the structure of an interpenetrating hydro gel system wherein the alkyl chains of the two- dimensional polymer are anchored to the hydrophobic face of the hydrophobic substrate (basement substrate) with the polar heads of the polymer forming a hydrogel.
- An interpenetrating gel matrix comprising the anionic heparin gel and the cationic gel is formed.
- A) represents the anionic heparin gel layer
- B) represents the interpenetrating gel matrix layer
- C) represents the cationic gel layer.
- Figure 7 shows the structure of a two-dimensional polymer gel bound to metal ions (M + ) which is then reduced to the free metal.
- the present invention provides a polyamide prepared by reacting an , ⁇ -unsaturated lactone with an amine selected from the group consisting of RNH 2 and RNH 3 + or mixtures thereof, wherein R is between 1 and 50 carbon atoms alone and is optionally substituted with oxygen, nitrogen, sulfur, phosphate or other groups and combinations thereof, wherein multiple of the R are in vertically aligned and spaced relationship along a backbone forming the polyamide.
- the R is selected from the group consisting of alkyl, alkene, alkyne, cycloalkyl, aryl, aralkyl, hydroxyl, nitrile, carboxyl, sulfate, phosphate, sulfonyl, trialkylammonium and combinations thereof and the R groups can further be optionally substituted with a halogen selected from the group consisting of chlorine, iodine, bromine, and fluorine.
- the present invention particularly provides a polymer composition that is a polyamide with the formula:
- n is between about 50 and 10,000, wherein R is between 1 and 50 carbon atoms alone and is optionally substituted with oxygen, nitrogen, sulfur, or phosphate and combinations thereof, wherein multiple of the R are in a vertically aligned spaced relationship along a backbone forming the polyamide and wherein R can be positively or negatively charged.
- the R is selected from the group consisting of alkyl, alkene, alkyne, cycloalkyl, aryl, aralkyl, hydroxyl, nitrile, carboxyl, sulfate, phosphate, sulfonyl, trialkylammonium and combinations thereof and the R groups can further be optionally substituted with a halogen selected from the group consisting of chlorine, iodine, bromine, and fluorine.
- the alkyl contains one to thirty carbon atoms.
- the R is an alkenyl polyamine group.
- the R is a pentaethyleneyl hexamine group and in a further still embodiment of the composition, the R is a mixture of alkyl and alkenyl groups .
- the present invention further provides a process for the preparation of polyamide polymers from , ⁇ - unsaturated lactone and an amine selected from the group consisting of RNH 2 , RNH 3 + and mixtures thereof which can optionally be substituted with oxygen, nitrogen, sulfur, phosphate and combinations thereof which allow the formation of a polyamide polymer wherein each of the R can be the same or different and separating the polyamide polymer from the reaction mixture, wherein multiple of the R are in vertically aligned spaced relationship along a backbone formed by the polyamide.
- the R is selected from the group consisting of alkyl, alkene, alkyne, cycloalkyl, aryl, aralkyl, hydroxyl, nitrile, carboxyl, sulfate, phosphate, sulfonyl, trialkylammonium and combinations thereof and the R groups can further be optionally substituted with a halogen selected from the group consisting of chlorine, iodine, bromine, and fluorine.
- the present invention particularly provides a process for the preparation of a polymer composition that is a polyamide wherein the process comprises reacting in a reaction mixture 2- (5H) furanone and a primary amine selected from the group consisting of RNH 2 , R 2 NH, -RNH 3 + and mixtures thereof, wherein R contains between 1 and 50 carbon atoms alone and is optionally substituted with oxygen, nitrogen, sulfur, and phosphate and combinations thereof which allow the formation of a polyamide polymer in the reaction mixture of the formula:
- n is between 50 and 10,000; and separating the polyamide polymer from the reaction mixture, wherein multiple of the R are in vertically aligned spaced relationship along a backbone formed by the polyamide.
- the R is selected from the group consisting of alkyl, alkene, alkyne, cyclical, aryl, aralkyl, hydroxyl, nitrile, carboxyl, sulfate, phosphate, sulfonyl, trialkylammonium and combinations thereof and the R groups can further be optionally substituted with a halogen selected from the group consisting of chlorine, iodine, bromine, and fluorine.
- the R is an alkyl group containing one to eight carbon atoms and the reaction is conducted in the absence of a solvent for the primary amine.
- the R is an alkyl group containing nine to thirty carbon atoms and the reaction is conducted in the presence of a solvent for the primary amine.
- the solvent is toluene.
- the primary amine is an alkylene polyamine and the reaction is conducted in the presence of a solvent for the alkylene polyamine.
- the alkylene polyamine is pentaethylene hexamine
- the preferred solvent is selected from the group consisting of ethanol, a low- molecular weight alcohol, water containing tetrahydrofuron and water containing dioxane.
- the alkylene polyamine is admixed with an alkylamine in the reaction mixture.
- the preferred solvent is selected from the group consisting of chloroform and toluene A.
- the focus of the present invention is a process for preparing a variety of new polymer or polyamides with unusual and unique properties starting from ⁇ , ⁇ - unsaturated lactones such as 2 (5H) -furanone.
- 2 (5H) -furanone can be used in a process to make polyamides or polymers which process and polymers are the object of the present invention.
- Polymers derived from lactose have the appeal that they are derived from a renewable resource.
- the chemical functionalities which can be imparted to polymers derived from 2 (5H) -furanone are many.
- the chemical functionality available from 2 (5H) -furanone compliments that obtained from alkenes such as propylene, ethylene, acrylic acid, acrylonitrile, and styrene, all of these are very common monomers used to make polymers.
- the R group can also be a molecular system with special optical or electrical properties (Figure IB) , crown ethers (Figure 1C) , polyamines with high metal complexation or ion-capture properties (Figure ID) or carboxylates with cation exchange or capture properties ( Figure IE) .
- Figure IB optical or electrical properties
- Figure 1C crown ethers
- Figure ID polyamines with high metal complexation or ion-capture properties
- Figure ID carboxylates with cation exchange or capture properties
- Figure IE carboxylates with cation exchange or capture properties
- the present invention is a process for synthesizing highly functionalized and functionalizable new polymeric materials capable of a wide variety of uses from starch or lactose derived monomers.
- the ability of the present invention for forming charged, neutral, hydrophobic, hydrophilic, electro-active, optically active, magnetically active or other types of polymers from one generalized reaction parallels the well-known radical polymerization of propylene, ethylene, acrylic acid, acrylonitrile, styrene, and other alkenes to form polymers with different physical properties.
- the present invention represents a departure for polymer chemistry from reliance on fossil fuels towards a direction in which agriculturally- derived materials are used as the primary building block.
- the present invention provides processes for the synthesis of new and novel polymer compositions.
- the polymers of the present invention when having an R group, form two-dimensional polymers which means that one end of the polymer, the headgroup which forms the backbone, is different from the other end, the R group which forms the side chains.
- the present invention also provides an opportunity to integrate biopolymers within the polyamide frameworks such as incorporation of biopolymers including but not limited to starch, chitin, chitosan, or cellulose into the reaction mixtures to achieve grafting or bonding. Furthermore, the functionalities present provides some measure of biodegradability for the polymers according to the present invention.
- polymer compositions of the present invention are, but are not limited to, 1) thin conductive films for electronic or electro-magnetic devices, 2) hydrogels with high water capacity for medical and new mechanical-electrical applications, 3) conductive polymers, 4) polyamino-polyamides for metal recovery, and for use as a flocculant in water purification, 5) non-fouling surfaces for biofilm suppression, 6) non-thrombogenic surfaces, and 7) as micelles or liposome or adjuvants for drug delivery.
- the polymerization reaction of the present invention involves a cyclic , ⁇ -unsaturated gamma- lactone and a long chain primary amine.
- the long alkyl chains stack in a parallel manner and are held together by hydrophobic forces thereby forming an extended two- dimensional sheet.
- the terminus of the alkyl chain can be a saturated alkyl group such as methyl, isopropyl or isobutyl group or it can be a polar group, such as hydroxyl, nitrile, or amide, or an unsaturated function such as an alkene, acetylene or aryl group.
- the group can be any functionality that does not interfere with reaction of the amino group with the , ⁇ -unsaturated gamma-lactone.
- These functionalities can also appear at any position along the alkyl chains thereby giving the polymers special properties such as a band of polar groups (in the case of hydroxyl functions) or a band of stacked ⁇ functions
- polystyrene resin in the case of alkenes, acetylenes, or arenes.
- These polymer compositions can be used for light or electron conduction or for conferring special magnetic or optical properties or for further polymerization.
- the polymers can be ordered by allowing them to form at the interface between a polar and a non-polar layer, e.g. the interface between water and ether.
- the polymers can be used to replace Langmuir Blodgett layers in most applications since the hydroxyl groups on the polar faces can be converted to a wide variety of functionalities by standard chemical techniques. These include but are not limited to acids, esters, amines, amides, nitriles, phosphates, phosphonates, sulfate, thiol, and halo groups.
- the present invention particularly uses an ⁇ , ⁇ - unsaturated gamma-lactone (2 (5H) -furanone or butenolide) as an agent to effect the regular, sequential alignment of side chains along a polyamide backbone.
- the method is based on the reactivity of the furanone which undergoes facile reaction with a primary amine by Michael-type addition to yield , ⁇ -amino gamma-lactone which then polymerizes to form a polyamide chain with the pendant side chain.
- the method of the present invention can produce many different types of new compositions.
- two-dimensional polymer compositions in which the hydrophobic alkyl chains are on one face and the polar hydroxymethyl groups on the other face are fabricated.
- Two-dimensional polymer compositions are prepared according to the method of the present invention by heating one equivalent of furanone with the appropriate primary amine.
- tetradecylamine is an example, a solvent is required to dissolve the longer chain amine.
- the polymer compositions prepared according to the method of the present invention can be used for coating plastics to render the plastics hydrophilic.
- the free hydroxyl groups on one side of the polymer compositions can be used as sites for functionalization for further surface modifications .
- the R group can be polar or neutral and can range in size from a simple alcohol to a complex carbohydrate residue. When the R group is a carbohydrate, the polymer compositions tend to form stable gels in aqueous solution to form the polymer composition that is a two-dimensional polymer.
- the polymer compositions are anionic.
- Anionic polymer compositions are prepared according to the method of the present invention by heating one equivalent of furanone with the appropriate amino acid in water or water/ethanol in the presence of sufficient base to deprotonate the amino group to form the polymer composition that is an anionic polymer.
- the polymer compositions are cross-linked cationic elastomers.
- Cross-linked cationic elastomer polymer compositions are prepared according to the method of the present invention by heating one or 0.5 equivalents of furanone with the appropriate polyamine in ethanol to form the polymer composition that is a cross-linked elastomer.
- the polymer composition When the R group is a mixture of a long chain aliphatic primary amines and polyamines, the polymer composition is soluble in an organic solvent but can complex metal ions and anions.
- the metal binding polymer composition allows solubilization of metal ions such as copper II, gold I, silver I, nickel I, and iron II and III in solvents such as chloroform or toluene.
- the present invention has established the general conditions for adding amines to 2 (5) -furanone to yield polyamides.
- the mechanism for the reaction is shown in Figure 2.
- Reaction of 2 (5) -furanone with a long chain primary amine yields polyamides with structures similar to that shown in Figure IA.
- the molecular weight of the polyamides can be controlled by adjusting the temperature and time for which the amine and 2(5)- furanone are reacted.
- a non-polar solvent such as ether
- a polymer sheet is formed ( Figure 3) which has been shown by polarized light microscopy to be highly oriented ( Figure 4) .
- the present invention also allows the properties of the polymer compositions to be altered by controlling the degree of polymerization (average molecular weight) , the length of the hydrocarbon chain (R group) , the degree the hydrocarbon chain is unsaturated, and combinations thereof.
- the polymers of the present invention are completely new materials in the art of polymer chemistry.
- the polymers are two-dimensional sheets having a hydrophobic face and a hydrophilic face which have uses such as modifying the properties of the surfaces of plastics to increase wettability or biocompatibility, or waterproofing hydrophilic surfaces.
- Polymers that can waterproof of hydrophilic surfaces is an important application for the present invention.
- paper is the dominant material for the fabrication of disposable plates and cups and other similar products and for wrapping. Treatment of paper products with certain polymers of the present invention that will make them non-wettable would reduce reliance on the use of non-degradable plastics.
- the ability to control the surface properties of diverse materials with the polymers of the present invention is an important advance in material and surface science. For example, by using polyunsaturated alkyl groups as the side chain
- Hydrogels can be made according to the present invention by synthesizing polyamides with structures as shown in Figure ID which when the pH is adjusted to a low value, the polyamides become highly charged and readily form stable hydrogels which can hold many tens of times their weight of water.
- the properties of the hydrogels made according to the present invention can be controlled by adjusting the pH, the ionic strength of the solution, and the number of amino acids per side chain.
- Hydrogels are an important material with a wide variety of uses which include artificial tissue (Refojo and Leong (1981). J. Biomed. Mater. Res., vol. 15, pp. 497-509), surgical implants (Corkhill et al . (1990). Proc. Inst. Mech. Eng., vol.
- Hydrogels are primarily polymeric compositions that can retain a very high proportion of water.
- a basic structural feature of hydrogels is that the polymer backbone is hydrophilic and often charged. The hydrophilicity ensures good solvation and the charged groups cause the framework to expand because of repulsion of like charge.
- synthesis of hydrogels usually involve vinyl alcohol (Mongia et al . (1996). J. Biomater. Sci., vol. 7, pp. 1055-1064; Peppas and Merrill (1977) . J. Biomed. Mater. Res., vol. 11, pp.
- the polymers of the present invention solve the need by providing polymers that are soluble in water and which bind metals in the water producing polymer-metal complexes which then can be extracted into an organic solvent.
- the aforementioned polymers are compositions that are balanced between long hydrocarbon chains and polyamino chains. The hydrocarbon chains pack together to form a two-dimensional lamellar system with the polar polyamino groups on the polar face.
- Such polymers can bind many transition elements which allows the elements to be extracted into organic solvents such as toluene, chloroform, ether or ethyl acetate with very high efficiency.
- metals that can be bound by the polymers are copper II, gold I, silver I, nickel I and iron II and III.
- the polymers of the present invention when complexed with a metal such as copper and gold and in an organic solvent can be deposited, painted or printed onto circuit boards or microchips to connect various elements. The solvent evaporates leaving behind the metal which can conduct electrical currents. Therefore, the polymers can be used to make conductive tracks on an insulating surface which is highly desirable for microelectronics fabrication such as microchips and circuit boards.
- Atomic force microscopy demonstrates that the film surface made by the polymers of the present invention is extremely flat, much flatter than can typically be attained by the leading edge technologies of chemical vapor deposition or sputter coating. Chemical vapor deposition and sputter coating require high vacuums, very high temperatures and/or the formation of very reactive species.
- the polymers of the present invention represent a major step forward in coating technologies and in preparing planar materials.
- the polymers of the present invention can be used in the manufacture of marine paints containing metals such as copper. Copper is toxic to the growth of microorganisms and is a desired component of marine paints (Llewellyn (1972) . Ann. Occup. Hyg., vol. 15, pp. 393-397).
- marine paints are oil-based and the forms of copper that are soluble in organic solvents in high proportions are difficult to manufacture. Therefore in many marine paints, copper metal is used because soluble forms of copper are not available.
- Toluene is a common paint solvent and the polymers of the present invention comprising toluene-soluble copper solutions have much promise in manufacture of marine paints especially since the polymers form layers thus increasing the surface availability of the metal. Copper surfaces lead to less fouling than do plastic surfaces in studies involving potable water (Rogers et al . (1994). Appl. Environ. Microbiol., vol. 60, pp. 1585-1592).
- the area of water recovery is another area that can benefit from the polymers of the present invention.
- Polycationic materials such as chitosan are used as flocculants for removal of metal ions, bacteria, and viruses from water (Steinmann and Havemeister (1982) . Zentra-lbl. Bakteriol . Mikrobiol. Hyg. B., vol. 176, pp.546-552) .
- the polymers of the present invention can be used for precious metal and radioactive metal recovery (Onsoyen and Skaugrud (1990). J. Che . Technol. Biotechnol., vol. 49, pp. 395-404; Muzzarelli and Rocchetti (1974). J. Chromatogr., vol. 96, pp. 115-121), toluene-soluble metal complexes will allow the extraction of transition metal ions into organic solvents.
- n-octylamine for producing polymers of the present invention which have short chain amines.
- 5H 5H
- n-octylamine (1.29 g, 0.01 mol)
- Stirring was continued at room temperature until the mixture formed a thick paste.
- the mixture was then heated at 70°C for four hours during which time the mixture formed a waxy polymeric solid.
- 1 H-NMR spectroscopy in deuterated chloroform showed the disappearance of the signals for furanone between 5.0 and 7.0 ppm and the appearance of new signals between 2.5 and 4.2 ppm representative of the polymer.
- EXAMPLE 2 An example using benzylamine for producing polymers of the present invention, which have short chain amines, was performed. 2 (5H) -furanone (0.84 g, 0.01 mol) was added to a vigorously stirred solution of benzylamine
- EXAMPLE 3 An example using hexylamine for producing polymers of the present invention which have short chain amines was performed. 2 (5H) -furanone (0.84 g, 0.01 mol) was added to a vigorously stirred solution of hexylamine
- EXAMPLE 5 An example using n-hexadecylamine for producing polymers of the present invention which have long chain amines was performed. 2 (5H)-furanone (0.84 g, 0.01 mol) was added to a vigorously stirred solution of n- hexadecylamine (2.41 g, 0.01 mol) suspended in 10 ml of a 1:1 solution of toluene to chloroform (volume/volume) at 70°C. The mixture was stirred at 70°C for four hours after which the toluene was removed by distillation. A brittle polymer with the n-tetradecyl side chains was formed by the reaction.
- n-octadecylamine for producing polymers of the present invention which have long chain amines was performed.
- 2 (5H) -furanone (0.84 g, 0.01 mol) was added to a vigorously stirred solution of n- octadecylamine (2.69 g, 0.01 mol) suspended in 10 ml of toluene at 70°C.
- the mixture was stirred at 70°C for four hours after which the toluene was removed by distillation.
- a brittle polymer with the n-octadecyl side chains was formed by the reaction.
- EXAMPLE 7 An example using glucosamine hydrochloride for producing polymers of the present invention which have very polar amines was performed. 2 (5H) -furanone (0.84 g, 0.01 mol) was added to a vigorously stirred solution of glucosamine hydrochloride (2.15 g, 0.01 mol) dissolved in 20 ml of water containing one equivalent of sodium carbonate. The mixture was stirred two hours at room temperature and then at 70°C for three hours. The reaction mixture was cooled and the polymer product purified by gel filtration on a Biogel P2 (BioRad) column using water as the eluant. The polymer product had glucosyl side chains.
- EXAMPLE 8 An example using galactosamine hydrochloride for producing polymers of the present invention which have very polar amines.
- 2 (5H) -furanone (0.84 g, 0.01 mol) was added to a vigorously stirred solution of galactosamine hydrochloride (2.15 g, 0.01 mol) dissolved in 20 ml of water containing one equivalent of sodium carbonate.
- the mixture was stirred two hours at room temperature and then at 70°C for three hours.
- the reaction mixture was cooled and the polymer product purified by gel filtration on a Biogel P2 (BioRad) column using water as the eluant.
- the polymer product had galactosyl side chains.
- EXAMPLE 9 An example using 2-aminoethanol for producing polymers of the present invention which have very polar amines was performed. 2 (5H) -furanone (0.84 g, 0.01 mol) was added to a vigorously stirred solution of 2- aminoethanol (0.61 g, 0.01 mol) dissolved in 20 ml of ethanol. The mixture was stirred two hours at room temperature and then at 70°C for three hours. The reaction mixture was cooled and concentrated to dryness yielding a very thick syrup comprising the polymer having hydroxyethyl side chains.
- EXAMPLE 10 An example using L-valine to produce an anionic polymer was performed. 1.0 equivalent of sodium hydroxide was added to 0.27 g L-valine in 20 ml of water. Then 2 ml of ethanol was added, followed by 0.25 g (1 equivalent) of furanone. The mixture was stirred at room temperature for 1 hour and then heated at 70°C for three hours. After three hours, the polymer product was purified by cation exchange chromatography to remove the sodium ions and lyophilized. The polymer product had butylene 5-methyl carboxylic acid side chains.
- EXAMPLE 11 An example using L-glycine to produce an anionic polymer was performed. 1.0 equivalent of sodium hydroxide was added to 0.22 g L-valine in 20 ml of water. Then 2 ml of ethanol was added, followed by 0.25 g (1 equivalent) of furanone. The mixture was stirred at room temperature for 1 hour and then heated at 70°C for three hours. After three hours, the polymer product was purified by cation exchange chromatography to remove the sodium ions and lyophilized. The polymer product had methylene carboxylic acid side chains.
- EXAMPLE 12 An example using propionic acid to produce an anionic polymer was performed. 1.0 equivalent of sodium hydroxide was added to 0.22 g intestinalonic acid in 20 ml of water. Then 2 ml of ethanol was added, followed by 0.25 g (1 equivalent) of furanone. The mixture was stirred at room temperature for 1 hour and then heated at 70°C for three hours. After three hours, the polymer product was purified by cation exchange chromatography to remove the sodium ions and lyophilized. The polymer product had propionyl acid side chains.
- pentadecanoic acid to produce an anionic polymer was performed. 1.0 equivalent of sodium hydroxide was added to 0.22 g pentadecanoic acid in 20 ml of water. Then 2 ml of ethanol was added, followed by 0.25 g (1 equivalent) of furanone. The mixture was stirred at room temperature for 1 hour and then heated at 70°C for three hours. After three hours, the polymer product was purified by cation exchange chromatography to remove the sodium ions and lyophilized. The polymer product had pentadecanyl acid side chains.
- EXAMPLE 14 An example for producing an anionic polymer from phosphoethanolamine sodium salt was performed. 1.0 equivalent of sodium hydroxide was added to 1.63 g phosphoethanolamine sodium salt (0.01 mol) in 20 ml of water. Then 2 ml of ethanol was added, followed by 0.25 g (1 equivalent) of furanone. The mixture was stirred at room temperature for 1 hour and then heated at 70°C for three hours. After three hours, the polymer product was purified by cation exchange chromatography to remove the sodium ions and lyophilized. The polymer had phosphoethanol side chains.
- EXAMPLE 15 An example for producing a cross-linked cationic elastomer polymer from pentaethylenehexamine was performed.
- EXAMPLE 16 An example for producing a mixed side chain polymer was performed.
- the polymer was soluble in organic solvents but can complex metal ions and anions from which is useful for solubilization of metal ions such as copper II, gold I, silver I, nickel I, and iron II and III in solvents as non-polar as chloroform or toluene.
- the polymer product was shown to be able to complex metal ions which were then soluble in an organic solvent.
- a reaction wherein the polymer was stirred in an aqueous solution of metal ions followed by extraction of the reaction with an organic solvent resulted in the extraction of the metal ions into the organic layer as judged by the color of said layer.
- EXAMPLES 17 to 25 An example of producing a polymer film was performed using the two-dimensional polymers from any one of examples 1 through 9.
- the polymer of Example 4 was used to make a two-dimensional polymer film.
- the polymer containing tetradecylamine R groups from Example 4 was dissolved in diethyl ether to form a 0.1% solution.
- Ten ml of the solution was floated on a water surface contained in a petri dish with a radius of 5 centimeters.
- the ether was allowed to dry by slow, unforced evaporation after which time a thin film of the two-dimensional polymer was formed on the water surface.
- the polymer film was recovered and analyzed by laser scanning confocal microscopy in the phase contrast mode, phase contrast microscopy (Figure 4A) , and in the polarizing mode with crossed polarizers ( Figure 4B) .
- the layered structure of the polymer was readily observable by either technique.
- Figure 4A note the smooth fabric-like texture (the sheet was wrinkled during transfer) and in Figure 4B note how thin the edges are in comparison to the area. Also note that there is ordering or chain alignment in a top to bottom direction.
- Similar films were prepared from the polymers from examples 1 through 3, and 5 through 9.
- EXAMPLE 26 Two-dimensional polymer compositions of the present invention having a hydrophobic face on one side and a polar poly-cationic face on the other were used to coat materials such as Teflon and polypropylene which were then tested to determine whether said coated materials were thrombogenic and therefore not useful for medical applications such as contact with blood. Applications anticipated are use of the two-dimensional polymers for the preparation of non-thrombogenic surfaces for applications where blood would come in contact with a foreign surface (e.g., an implant or catheter) which would present risk of clotting or coagulation.
- a foreign surface e.g., an implant or catheter
- FIG. 6 is a schematic diagram showing the alkyl chains of the two- dimensional polymer adsorbed to the hydrophobic face of the material (basement substrate) and the polar heads of the polymer forming a hydrogel comprising the anionic heparin gel, interpenetrating gel matrix, and the cationic gel .
- the following test was performed to quantitate the thrombogenic potential of materials coated with the two- dimensional polymer of the present invention.
- the test was a standard recalcification procedure which consisted of measurement of the clotting time of plasma in contact with the material after addition of excess calcium.
- the procedure consisted of drawing blood using vacutainers containing 0.1 M sodium citrate at a ratio of 9:1 (blood to anticoagulant).
- the blood was stored refrigerated until used in the testing which was within four hours of being drawn. Handling of the drawn blood was in compliance with the Department of Labor, Occupational Safety and Health Administration (OSHA) , Occupation Exposure to Bloodborne Pathogens, Final Rule Standard, 29 CFR Part 1910.1030.
- the samples were prepared by immersing 1.8 cm 2 sample in plasma.
- the amount of test material tested was based on USP surface area recommendations or by weight (4.0 g/20 ml extract fluid for polymers and plastic, 2.0 g/20 ml extract fluid for elastomers. Each sample was tested six times.
- test reagents were equilibrated at 37°C for sixty minutes. Samples were prepared in 10 x 75 mm plastic tubes. Plasma (0.2 ml) and sterile saline (0.2 ml) were added to each sample and control tubes. Samples and control tubes were equilibrated exactly ten minutes. Calcium chloride (0.2 ml) was then added to each test and control tube, gently mixed and held at 37°C until the sample clotted. The tubes were inspected by gentle tilting every five seconds. The positive control tube contained plasma and sterile saline and glass beads of approximately the same surface area as the tested sample, and the negative control tube contained polypropylene beads of approximately the same surface area as the tested sample. The control and sample tubes were run through the test concurrently.
- EXAMPLE 27 Two-dimensional polymer compositions of the present invention having a hydrophobic face on one side and a polar poly-cationic face were used to coat materials which were then tested to determine whether said coated materials had hemolytic activity and therefore not useful for applications which required contact with blood.
- a two-dimensional polymer with a hydrophobic face on one side and a polar polycationic face on the other prepared from n-octylamine, n-tetradecylamine, pentaethylamine tetramine and 2 (5H) -furanone was used to coat material TEFLON® and polypropylene such that the hydrophobic face was adsorbed to the material by soaking the substrate in a trough containing the polymer in an ethyl, alcohol and water solution.
- the polycationic face was then hydrated to form a hydrogel and an interpenetrating gel-layer of Na-heparin was then formed upon the polymer.
- the test was a standard procedure which consisted of measuring the percent hemolysis of serum in contact with materials coated with said compositions.
- the procedure consisted of drawing blood using vacutainers containing 3.8% sodium citrate. The drawn blood was stored refrigerated until used in the testing. Handling of the blood was in compliance with the Department of Labor, Occupational Safety and Health Administration (OSHA) , Occupation Exposure to Bloodborne Pathogens, Final Rule Standard, 29 CFR Part 1910.1030.
- the samples were prepared by immersing 1.8 cm 2 sample in plasma.
- test material tested was based on USP surface area recommendations or by weight (4.0 g/20 ml extract fluid for polymers and plastic, 2.0 g/20 ml extract fluid for elastomers. Each sample was tested three times. To each test tube 14.7 cm 2 of sample and 4.9 ml of the physiological saline was added. Then 0.16 ml of blood was added to each tube. The tubes were gently mixed, then incubated at 37°C for one hour. A hemolytic positive control consisting of 0.1% Na2C03 in sterile water and a non-hemolytic negative control consisting of uncoated polypropylene beads were included in the test. After incubation, the samples were centrifuged at 500 x g and the optical density (OD) of the supernatant fluid was read at 540 nm in a spectrophotometer. The percent hemolysis was interpreted using the following equation:
- T is the test sample OD
- N is the negative control OD
- P is the positive control OD.
- This example is a method for metallizing plastic, glass, or other non-metallic surfaces.
- a two dimensional polymer with hydrocarbon chains on one face and metal ion chelating groups (to which ions are bound) on the other face was prepared from n-octylamine, tetradecylamine, 2 (5H) -furanone and pentaethylene hexamine.
- the polymer was layered (hydrophobic side down) onto the non-metallic surface.
- the ions are then reduced with a suitable reductant to the free metal which remains as a film on the surface.
- Figure 7 represents a two-dimensional polymer with the alkyl chains adsorbed to a hydrophobic substrate (basement membrane) and complexed to metal ions which are then reduced to the metal.
- a copper II solution in toluene was prepared and a dried film of a chloroform solution of the polymer was prepared from n-octylamine, tetradecylamine, 2 (5H) -furanone and pentaethylene hexamine on the bottom of an Erlenmeyer flask.
- the solutions when painted onto a glass surface form very even films which are conductive which can be reduced to thin films of copper metal by reacting with dilute borohydride solutions. The metal inhibits biofilm formation.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Manufacturing & Machinery (AREA)
- Veterinary Medicine (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Wood Science & Technology (AREA)
- Polyamides (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000574160A JP3448277B2 (en) | 1998-09-24 | 1999-09-20 | Preparation of cross-linked two-dimensional polymer having surface from α, β-lactone |
CA002342857A CA2342857C (en) | 1998-09-24 | 1999-09-20 | Preparation of cross-linked 2-dimensional polymers with sidedness from .alpha.,.beta.-lactones |
DE69926780T DE69926780T2 (en) | 1998-09-24 | 1999-09-20 | PREPARATION OF NETWORKED TWIN-DIMENSIONAL POLYMERS WITH AN ASYMMETRY OF $ G (a), $ G (b) LACTONES |
AT99948335T ATE302230T1 (en) | 1998-09-24 | 1999-09-20 | PREPARATION OF CROSS-LINKED TWO-DIMENSIONAL POLYMERS WITH ASYMMETRY OF $G(A), $G(B)-LACTONES |
AU61539/99A AU738224B2 (en) | 1998-09-24 | 1999-09-20 | Preparation of cross-linked 2-dimensional polymers with sidedness from alpha,beta-lactones |
EP99948335A EP1124882B1 (en) | 1998-09-24 | 1999-09-20 | PREPARATION OF CROSS-LINKED 2-DIMENSIONAL POLYMERS WITH SIDEDNESS FROM $g(a),$g(b)-LACTONES |
BR9913619-8A BR9913619A (en) | 1998-09-24 | 1999-09-20 | Process for the preparation of a polyamide and polyamide polymer prepared by the reaction of a <244>, ß- unsaturated lactone and an amine selected from a group consisting of rnh2, rnh3 + and their mixtures |
IL14206099A IL142060A0 (en) | 1998-09-24 | 1999-09-20 | PREPARATION OF CROSS-LINKED 2-DIMENSIONAL POLYMERS WITH SIDEDNESS FROM δ,β-LACTONES |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/159,305 US6153724A (en) | 1998-09-24 | 1998-09-24 | Preparation of cross-linked 2-dimensional polymers with sidedness from α,β-lactones |
US09/159,305 | 1998-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000017254A1 true WO2000017254A1 (en) | 2000-03-30 |
Family
ID=22571993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/021692 WO2000017254A1 (en) | 1998-09-24 | 1999-09-20 | PREPARATION OF CROSS-LINKED 2-DIMENSIONAL POLYMERS WITH SIDEDNESS FROM α,β-LACTONES |
Country Status (14)
Country | Link |
---|---|
US (1) | US6153724A (en) |
EP (1) | EP1124882B1 (en) |
JP (1) | JP3448277B2 (en) |
KR (1) | KR100423575B1 (en) |
CN (1) | CN1211416C (en) |
AT (1) | ATE302230T1 (en) |
AU (1) | AU738224B2 (en) |
BR (1) | BR9913619A (en) |
CA (1) | CA2342857C (en) |
DE (1) | DE69926780T2 (en) |
ES (1) | ES2246581T3 (en) |
IL (1) | IL142060A0 (en) |
RU (1) | RU2226198C2 (en) |
WO (1) | WO2000017254A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026887A2 (en) * | 2000-09-27 | 2002-04-04 | Michigan Biotechnology Institute | Crosslinked polyamide |
WO2002038649A2 (en) * | 2000-10-27 | 2002-05-16 | Michigan Biotechnology Institute | Two dimensional polyamides prepared from unsaturated carboxylic acids and amines |
WO2002058758A2 (en) * | 2000-12-05 | 2002-08-01 | Michigan Biotechnology Institute | Antithrombogenic polymer coating |
WO2003080730A1 (en) * | 2002-03-20 | 2003-10-02 | Michigan Biotechnology Institute | Conductive polymer-based material |
US6797743B2 (en) | 2000-09-27 | 2004-09-28 | Michigan Biotechnology Institute | Antimicrobial polymer |
US6939554B2 (en) | 2002-02-05 | 2005-09-06 | Michigan Biotechnology Institute | Antimicrobial polymer |
EP1777250A1 (en) * | 2005-10-15 | 2007-04-25 | DECHEMA Gesellschaft für Chemische Technologie und Biotechnologie e.V. | Process for preventing or reducing biofilms on a substrate |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050043506A1 (en) * | 2000-09-27 | 2005-02-24 | Michigan Biotechnology Institute | Polyamide materials based on unsaturated carboxylic acids and amines |
US6541601B1 (en) * | 2001-11-27 | 2003-04-01 | Board Of Trustees Of Michigan State University | Unsaturated side chain polyamide polymers |
US6951902B2 (en) * | 2002-08-16 | 2005-10-04 | Michigan Biotechnology Institute | Two dimensional polymer that generates nitric oxide |
US8062729B2 (en) | 2005-01-14 | 2011-11-22 | Ndsu Research Foundation | Polymeric material with surface microdomains |
US7771833B2 (en) * | 2005-05-09 | 2010-08-10 | Ndsu Research Foundation | Anti-fouling materials containing cationic polysiloxanes |
US7799434B2 (en) * | 2005-07-29 | 2010-09-21 | Ndsu Research Foundation | Functionalized polysiloxane polymers |
US7989074B2 (en) * | 2006-06-09 | 2011-08-02 | Ndsu Research Foundation | Thermoset siloxane-urethane fouling release coatings |
US8372384B2 (en) * | 2007-01-08 | 2013-02-12 | Ndsu Research Foundation | Quaternary ammonium functionalized cross-linked polyalkylsiloxanes with anti-fouling activity |
US8299200B2 (en) * | 2007-06-11 | 2012-10-30 | Ndsu Research Foundation | Anchored polysiloxane-modified polyurethane coatings and uses thereof |
US8709394B2 (en) * | 2007-09-28 | 2014-04-29 | Ndsu Research Foundation | Antimicrobial polysiloxane materials containing metal species |
US20100004202A1 (en) * | 2008-02-15 | 2010-01-07 | Ndsu Research Foundation | Quaternary ammonium-functionalized-POSS compounds |
KR101653531B1 (en) | 2014-10-24 | 2016-09-05 | 한국과학기술연구원 | Syntheses of alternating copolymer from furane dicarboxyate, diamine, and adipic acid |
CA3034383A1 (en) | 2016-08-25 | 2018-03-01 | General Electric Company | Reduced fouling of hydrocarbon oil |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5292939A (en) * | 1991-05-13 | 1994-03-08 | Board Of Trustees Operating Michigan State University | Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2274831A (en) * | 1939-07-20 | 1942-03-03 | Du Pont | Polyamides and process for their preparation |
US2691643A (en) * | 1950-11-15 | 1954-10-12 | Transparent Package Company | Preparation of polypeptides of beta-alanine |
US2786045A (en) * | 1953-01-21 | 1957-03-19 | Tee Pak Inc | Hydroxyacyl-amino acids and their polymers |
US2968629A (en) * | 1958-09-29 | 1961-01-17 | Universal Oil Prod Co | Method of inhibiting corrosion |
US3525718A (en) * | 1967-04-25 | 1970-08-25 | Celanese Corp | Process for the production of polyamide resin and product |
US5125929A (en) * | 1990-11-29 | 1992-06-30 | E. I. Du Pont De Nemours And Company | Fluorescent paper strength enhancing resin |
-
1998
- 1998-09-24 US US09/159,305 patent/US6153724A/en not_active Expired - Fee Related
-
1999
- 1999-09-20 CA CA002342857A patent/CA2342857C/en not_active Expired - Fee Related
- 1999-09-20 CN CNB99811409XA patent/CN1211416C/en not_active Expired - Fee Related
- 1999-09-20 AU AU61539/99A patent/AU738224B2/en not_active Ceased
- 1999-09-20 JP JP2000574160A patent/JP3448277B2/en not_active Expired - Fee Related
- 1999-09-20 WO PCT/US1999/021692 patent/WO2000017254A1/en active IP Right Grant
- 1999-09-20 RU RU2001107965/04A patent/RU2226198C2/en not_active IP Right Cessation
- 1999-09-20 KR KR10-2001-7003201A patent/KR100423575B1/en not_active IP Right Cessation
- 1999-09-20 DE DE69926780T patent/DE69926780T2/en not_active Expired - Fee Related
- 1999-09-20 IL IL14206099A patent/IL142060A0/en unknown
- 1999-09-20 ES ES99948335T patent/ES2246581T3/en not_active Expired - Lifetime
- 1999-09-20 EP EP99948335A patent/EP1124882B1/en not_active Expired - Lifetime
- 1999-09-20 AT AT99948335T patent/ATE302230T1/en not_active IP Right Cessation
- 1999-09-20 BR BR9913619-8A patent/BR9913619A/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5292939A (en) * | 1991-05-13 | 1994-03-08 | Board Of Trustees Operating Michigan State University | Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof |
Non-Patent Citations (2)
Title |
---|
CORKHILL ET AL.: "Synthetic Hydrogels VI. Hydrogel composites as wound dressings and implant materials", BIOMATERIALS,, vol. 10, January 1989 (1989-01-01), pages 3 - 10, XP002925210 * |
REFOJO M.F. ET AL.: "Poly(methyl) acrylate-co-hydroxyethyl acrylate) hydrogel implant material of strength and softness", J. BIOMED. MATER. RES.,, vol. 15, 1981, pages 497 - 509, XP002925209 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026887A2 (en) * | 2000-09-27 | 2002-04-04 | Michigan Biotechnology Institute | Crosslinked polyamide |
CN1297587C (en) * | 2000-09-27 | 2007-01-31 | 密执安生物技术研究所 | Crosslinked polyamide |
US6399714B1 (en) | 2000-09-27 | 2002-06-04 | Michigan Biotechnology Institute | Crosslinked polyamide |
WO2002026887A3 (en) * | 2000-09-27 | 2002-07-04 | Michigan Biotech Inst | Crosslinked polyamide |
US6797743B2 (en) | 2000-09-27 | 2004-09-28 | Michigan Biotechnology Institute | Antimicrobial polymer |
US6495657B1 (en) | 2000-10-27 | 2002-12-17 | Michigan Biotechnology Institute | Two dimensional polyamides prepared from unsaturated carboxylic acids and amines |
WO2002038649A3 (en) * | 2000-10-27 | 2003-05-15 | Michigan Biotech Inst | Two dimensional polyamides prepared from unsaturated carboxylic acids and amines |
WO2002038649A2 (en) * | 2000-10-27 | 2002-05-16 | Michigan Biotechnology Institute | Two dimensional polyamides prepared from unsaturated carboxylic acids and amines |
WO2002058758A3 (en) * | 2000-12-05 | 2002-10-31 | Michigan Biotech Inst | Antithrombogenic polymer coating |
US6509104B2 (en) | 2000-12-05 | 2003-01-21 | Michigan Biotechnology Institute | Antithrombogenic polymer coating |
WO2002058758A2 (en) * | 2000-12-05 | 2002-08-01 | Michigan Biotechnology Institute | Antithrombogenic polymer coating |
US6939554B2 (en) | 2002-02-05 | 2005-09-06 | Michigan Biotechnology Institute | Antimicrobial polymer |
WO2003080730A1 (en) * | 2002-03-20 | 2003-10-02 | Michigan Biotechnology Institute | Conductive polymer-based material |
US7204940B2 (en) | 2002-03-20 | 2007-04-17 | Michigan Biotechnology Institute | Conductive polymer-based material |
EP1777250A1 (en) * | 2005-10-15 | 2007-04-25 | DECHEMA Gesellschaft für Chemische Technologie und Biotechnologie e.V. | Process for preventing or reducing biofilms on a substrate |
Also Published As
Publication number | Publication date |
---|---|
AU6153999A (en) | 2000-04-10 |
AU738224B2 (en) | 2001-09-13 |
IL142060A0 (en) | 2002-03-10 |
ES2246581T3 (en) | 2006-02-16 |
JP2002526577A (en) | 2002-08-20 |
EP1124882A1 (en) | 2001-08-22 |
ATE302230T1 (en) | 2005-09-15 |
DE69926780D1 (en) | 2005-09-22 |
CA2342857C (en) | 2004-06-22 |
KR100423575B1 (en) | 2004-03-22 |
BR9913619A (en) | 2001-10-09 |
RU2226198C2 (en) | 2004-03-27 |
EP1124882A4 (en) | 2004-04-21 |
JP3448277B2 (en) | 2003-09-22 |
US6153724A (en) | 2000-11-28 |
DE69926780T2 (en) | 2006-02-02 |
KR20010079806A (en) | 2001-08-22 |
CA2342857A1 (en) | 2000-03-30 |
CN1211416C (en) | 2005-07-20 |
CN1320136A (en) | 2001-10-31 |
EP1124882B1 (en) | 2005-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1124882B1 (en) | PREPARATION OF CROSS-LINKED 2-DIMENSIONAL POLYMERS WITH SIDEDNESS FROM $g(a),$g(b)-LACTONES | |
Ueda et al. | Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility | |
Payne et al. | Chitosan: a soft interconnect for hierarchical assembly of nano-scale components | |
Bekturov et al. | Interpolymer complexes | |
CN112375191B (en) | Block copolymer, preparation method and application thereof | |
EP1330484B1 (en) | Two dimensional polyamides prepared from unsaturated carboxylic acids and amines | |
Don et al. | Preparation and antibacterial test of chitosan/PAA/PEGDA bi-layer composite membranes | |
US5606012A (en) | Polyetheramidoamine hydrogels as heparinizable materials | |
CN111454479A (en) | Coating for SU-8 photoresist surface modification and preparation method thereof | |
MXPA01002623A (en) | PREPARATION OF CROSS-LINKED 2-DIMENSIONAL POLYMERS WITH SIDEDNESS FROM&agr;,&bgr;-LACTONES | |
WO2005103125A1 (en) | Ultrathin polymer film using cucurbituril derivative and method of forming the same | |
CN1757431A (en) | Visualized aquogel, and its preparing method | |
WO2009128737A1 (en) | Grafted hydroxypropylcellulose polymer, a method of the synthesis of grafted hydroxypropylcellulose polymer, and the applications of grafted hydroxypropylcellulose polymer | |
KR20220151377A (en) | Surface-modified Substrate with Unsaturated Acyclic Amine compound and Method for Surface-modification thereof | |
TWI659742B (en) | An antibiofouling layer and application thereof | |
KR20220151376A (en) | Surface-modified Substrate with Furfurylamine compound and Method for Surface-modification thereof | |
SU1504237A1 (en) | Method of producing chytosane films | |
KR0139649B1 (en) | Process for preparing phosphorilated crosslinked chitosan chelate resins | |
KR920005832B1 (en) | Equipment for producing monomolecular films | |
CN118165470A (en) | Conjugated polymer film and preparation method and application thereof | |
KR20210094491A (en) | Surface-modified Substrate with Vinyl Amino Non-aromatic cyclic compound and Method for Surface-modification thereof | |
RO134947A2 (en) | Antimicrobial multilayer nanoassembled films and process for manufacturing the same | |
JPS6351129A (en) | Method of treatment to make aromatic polysulfone molded product hydrophilic | |
JPS6330533A (en) | Production of graft polymer | |
KR20100122881A (en) | A gamma-cyclodextrin derivative and polyelectrolyte multilayer comprising gamma-cyclodextrin derivative layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99811409.X Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 61539/99 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2342857 Country of ref document: CA Ref document number: 2342857 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2001/002623 Country of ref document: MX Ref document number: 1020017003201 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 142060 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2000 574160 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999948335 Country of ref document: EP Ref document number: IN/PCT/2001/416/CHE Country of ref document: IN |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1999948335 Country of ref document: EP Ref document number: 1020017003201 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 61539/99 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020017003201 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1999948335 Country of ref document: EP |