WO2000016897A1 - Microfiltration filter layer for separating endotoxins and the use of said microfiltration filter layer - Google Patents

Microfiltration filter layer for separating endotoxins and the use of said microfiltration filter layer Download PDF

Info

Publication number
WO2000016897A1
WO2000016897A1 PCT/EP1998/005974 EP9805974W WO0016897A1 WO 2000016897 A1 WO2000016897 A1 WO 2000016897A1 EP 9805974 W EP9805974 W EP 9805974W WO 0016897 A1 WO0016897 A1 WO 0016897A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter layer
microfiltration filter
derivatives
layer according
endotoxin
Prior art date
Application number
PCT/EP1998/005974
Other languages
German (de)
French (fr)
Inventor
Birger Anspach
Dagmar Petsch
Thomas Beeskow
Wolf-Dieter Deckwer
Original Assignee
GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19740770A priority Critical patent/DE19740770A1/en
Application filed by GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) filed Critical GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF)
Priority to PCT/EP1998/005974 priority patent/WO2000016897A1/en
Publication of WO2000016897A1 publication Critical patent/WO2000016897A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis

Definitions

  • Microfiltration filter layer for the separation of endotoxins and their use
  • the invention relates to a microfiltration filter layer for separating endotoxins from liquid media and to the use of this microfiltration filter layer.
  • Endotoxins are ipopolysaccharides from the outer cell filter layer of Gram-negative bacteria, which act as pyrogens. Due to the ubiquity of bacteria, endotoxins are also ubiguitary. In contrast to bacteria, however, they cannot be removed or rendered harmless by standard methods such as sterile filtration or autoclaving (1). For this reason, sterile is not synonymous with endotoxin-free.
  • sterile is not synonymous with endotoxin-free.
  • the presence of endotoxins in injection or infusion solutions (parenterals) is particularly critical, since they are administered intravenously and have a febrile effect in amounts of 1 ng per kg body weight. The symptoms range from a correspondingly high dose (e.g. due to large-volume parenterals) to severe shock and death (2, 3)).
  • Raw materials such as plasma or tissue, which can already be contaminated with bacteria.
  • thermostable active ingredients The heat decontamination (30 minutes at 250 ° C) that is usual for thermostable active ingredients is just as unsuitable for the preparations as treatment with acids, alkalis or strongly oxidizing agents (H2O2) (1).
  • Ultrafiltration has become very popular as a very gentle method in the field of endotoxin removal.
  • cut-offs of 10,000 or 5,000 are used to effectively separate monomeric components (MW approx. 14,000) that are present in addition to high-molecular aggregates (up to several million molecular weights). Nonetheless, problems with low molecular weight fragments that also have a pyrogenic effect occur (eg Lipid A). This applies above all to hemodialysis.
  • the dialysis buffers are ultrafiltered, z. B In the United States, 400,000 hemodialysis patients have septic symptoms annually (7). - The need for small cut-offs limits the use of ultrafiltration to the decontamination of small molecules (8).
  • this prior art can be improved by a microfiltration filter layer for separating endotoxins from liquid media, in particular water, protein solutions or parenterals, the microfiltration filter layer being characterized by covalently bound ligands for endotoxins, the ligands being carried by a polymer which is applied to the filter layer.
  • the filter layer materials can be depth filters.
  • the covalently bound ligands can be (a) an endotoxin-specific ligand, preferably histamine, histidine, polyethyleneimine, poly-L-lysine or polyxin
  • B and / or (b) act as a non-endotoxin-specific ligand per se, preferably diaminohexane, diethylaminoethyl or deoxycholate.
  • the filter layer material for the microfiltration filter layer according to the invention can be polysaccharides, e.g. Cellulose, in particular regenerated and microcrystalline cellulose and derivatives, in particular cellulose acetate, agarose and derivatives, crosslinked dextran and derivatives, chitosan and derivatives,
  • polysaccharides e.g. Cellulose, in particular regenerated and microcrystalline cellulose and derivatives, in particular cellulose acetate, agarose and derivatives, crosslinked dextran and derivatives, chitosan and derivatives,
  • Synthetic organic polymers e.g. Polyacrylonitrile, polysulfone, polyamide, in particular nylon, polyvinyl alcohol, polyethylene vinyl alcohol, polystyrene and polyacrylates and their derivatives,
  • Inorganic materials e.g. Trade silica gel, glass and ceramic carriers and their derivatives.
  • the materials can be fibrous or particulate / spherical or irregularly shaped with a porous or non-porous structure, such as those used for chromatographic supports; parts of other structures can also be used, e.g. Fragments or specially cut hollow fiber membranes, broken particles or pearls.
  • the materials should be water insoluble.
  • the size of the base materials is chosen so that the structure to be produced has a pore diameter in the layer as is customary for microfiltration, in particular between 0.1 and 10 ⁇ m.
  • the polymer which is applied to the microfiltration filter layer according to the invention can be a hydrophilic
  • the polymers act, in particular dextran, polyvinyl alcohol or modified cellulose, preferably hydroxyethyl cellulose.
  • This hydrophilic polymer can itself be water-soluble, water-swellable or water-insoluble.
  • the polymer can be carried by the microfiltration filter layer according to the invention with the aid of a spacer.
  • the covalently bound ligands can also be carried by a spacer. These spacers can be spacers derived from bisoxirane, glutardialdehyde, epihalohydrin or diisocyanate, if appropriate after oxidative activation.
  • microfiltration filter layers are therefore provided which are surface-modified in a suitable manner and remove endotoxins from water and aqueous solutions (buffers, protein solutions).
  • the surface modification can consist in the application of a bifunctional covalently bound spacer, which is reacted with a hydrophilic polymer, whereby non-specific interactions of the filter layer, especially with proteins, are reduced.
  • the covalently bound hydrophilic polymer can be reacted with endotoxin-specific ligands, optionally via a further spacer.
  • the endotoxin depletion success in the presence of proteins may prove to be dependent on the net charge of the proteins.
  • acidic proteins such as BSA and mouse IgG 1
  • basic proteins such as lysozyme and bFGF
  • high depletions can also be achieved.
  • Polymer-coated microfiltration filter layers according to the invention with covalently bound endotoxin-specific ligands can remove endotoxins in one pass, even from highly contaminated solutions (6000 EU ml -1 ).
  • the filter layers are constructed in accordance with FIG. 1.
  • a hydrophilic polymer is first applied via a spacer, which is then reacted further, possibly via a spacer, with endotoxin-specific ligands.
  • the following are particularly suitable as filter layer materials:
  • Cellulose in particular regenerated and microcrystalline cellulose and derivatives, in particular cellulose acetate,
  • Reactive bifunctional compounds are suitable as spacers. The following are particularly suitable:
  • oxidation by periodate can optionally be used, an aldehyde group being formed.
  • the spacer bound to the filter layer is further reacted with hydrophilic polymers. As such, the following are preferred:
  • Modified celluloses especially hydroxyethyl cellulose (HEC)
  • the further reaction takes place either directly with the endotoxin-specific ligand or again via the mediation of one of the spacers mentioned above, if appropriate after its oxidative activation.
  • the following act as endotoxin-specific ligands see list of abbreviations: DAH, Him, His, PEI, PLL, PMB.
  • the new filter layers can be used to remove endotoxins from water and parenterals. Good results are also achieved in the presence of proteins. In the case of basic proteins, however, it must be taken into account that interactions of the proteins with the endotoxin can occur, which can lead to endotoxic masking. Protein-bound endotoxin cannot be clearly identified with the LAL test. In this context it should be mentioned that it has not been finally clarified whether protein-bound endotoxin is still toxic.
  • the filter layers according to the invention can be used in a variety of ways.
  • Hydrophilic polymers in particular dextran, polyvinyl alcohol and hydroxyethyl cellulose, are covalently bound to microfiltration filter layers.
  • endotoxin-specific ligands are immobilized on the applied polymers.
  • Figure 1 illustrates the structure of a filter layer material based on nylon.
  • Microfiltration filter layers e.g. based on nylon hollow fibers or cellulose fibers, are first activated with bisoxirane:
  • Such layers based on nylon hollow fibers are incubated for 16 hours at 80 ° C. in a reaction solution of 1 ml 25 M sodium carbonate (pH 11), 1 ml ethanol (96%) and 9 ml bisoxirane (FIG. 2a) .
  • Such layers based on cellulose fibers are shaken for three hours at room temperature in a mixture of 100 mg sodium borohydride in 15 ml 2 M sodium hydroxide solution, 25 ml water and 5 ml bisoxirane.
  • both filter layers are then incubated for 15 minutes at room temperature with 5 ml of a 20 percent dextran 40,000 solution (pH 11) (see Figure 2b using the example of nylon).
  • the filter layers are then dried at 120 ° C. for 14 hours.
  • the filter layers are washed three times with 0.1 M sodium hydroxide solution and then three times with water.
  • the filter layers on the basis of coated filter layer materials are characterized by significantly more unspecific interactions - expressed by the amount of hemoglobin adsorbed.
  • FIG. 3 also shows that a simple dextran coating cannot achieve the same effect as with PVA and HEC.
  • a second layer can be used to achieve a further improvement, while a third layer has only minor effects. Dextran was therefore always used as a double coating.
  • the PLL, PMB and PEI ligands are either immobilized directly on the periodate-activated coating polymers or after incorporation of a periodate-oxidizable spacer (bisoxirane).
  • a periodate-oxidizable spacer bisoxirane
  • the procedure is shown by way of example in FIG. 4.
  • DEAE is coupled directly to the matrices without a spacer, the other low-molecular ligands were bound via epibromohydrin.
  • the filter layers coated with hydrophilic polymers are incubated for three hours at room temperature in a mixture of 100 mg sodium borohydride, 5 ml bisoxirane and 45 ml 1 M sodium hydroxide solution.
  • the filter layers are washed with a solution of 0.5 g PEI (MW 50000) in 0.1 M phosphate buffer, which is adjusted to pH 8, at room temperature, so that the structure shown in FIG. 1 results. Finally, it is washed with a 1 molar sodium chloride solution and water.
  • Histidine is immobilized on epibromohydrin-activated coated filter layers via DAH.
  • Epibromohydrin activation is carried out as described for bisoxiran.
  • Immobilized DAH is activated by reaction for 8 minutes with a mixture of 5 ml epibromohydrin and 5 ml 4 M sodium hydroxide solution at 90 ° C and immediately reacted with L-histidine at 80 ° C (0.5 g L-histidine in 20 ml water, pH 12).
  • the finished filter layer is washed with 1 M sodium chloride and water.
  • the filter layer materials can first be chemically modified and then the structure of the filter layer can be produced by washing the filter layer materials onto a suitable base body.
  • hydrophilic polymers in particular dextran, polyvinyl alcohol and hydroxyethyl cellulose, are covalently bound to the filter layer materials.
  • endotoxin-specific ligands are immobilized on the applied polymers.
  • the structure of the filter layer materials is also shown in FIG. 1.
  • Sepharose 4B was activated with bisoxirane according to a protocol by Sundberg and Porath (J. Chromatogr. 90, 1974, 87). In contrast to the regulation, the reaction time was reduced to 2 hours in order to ensure minimal loss of oxirane groups. For this purpose, 40 ml of a Sepharose 4B suspension with 20 ml of a 0.5 molar NaOH solution, 8 ml of bisoxirane and 40 mg of sodium borohydride were combined in a flask and shaken at 40 ° C. over a period of 2 hours. The activated Sepharose was then suctioned off and washed several times with water. see.
  • the activated gel was combined with the same volume of a reaction solution which consisted of 20% dextran with an average molecular weight of 40,000 and 0.2% sodium borohydride in a 0.025 molar carbonate buffer and was adjusted to pH 11. This solution was shaken at room temperature for 60 minutes. The coated Sepharose was separated from the dextran solution by filtration and then incubated at 80 ° C. for a period of 24 hours.
  • the PLL, PMB and PEI ligands were either immobilized directly on the periodate-activated coating polymers or after incorporation of a periodate-oxidizable spacer (bisoxirane).
  • DEAE was coupled directly to the matrices without a spacer, the other low-molecular ligands were bound via epibromohydrin.
  • the activation of the dextran-coated Sepharose with bisoxiran was carried out according to Sundberg and Porath, as described in 2.1.
  • the filter layer materials were mixed for two hours at room temperature with a solution which was adjusted to pH 8 and was composed of 0.5 g PEI with an average molecular weight of 50,000 and 10 ml of a 0.1 molar phosphate buffer. Finally, it was washed with 1 M sodium chloride solution and water. The mixing ratios of solids and reaction solution were chosen in each case so that a shaken suspension was formed.
  • Histidine was immobilized on epibromohydrin-activated coated filter layer materials via DAH.
  • Epibromohydrin activation was carried out as described for bisoxiran. Real estate dated DAH was activated by reaction for 8 minutes with a mixture of 5 ml epibromohydrin and 5 ml 4 M sodium hydroxide solution at 90 ° C and immediately reacted with L-histidine at 80 ° C (0.5 g L-histidine in 20 ml water, pH 12). The finished filter sheet material was washed with 1 M sodium chloride and water. Here too, the mixing ratios of solids and reaction solutions were chosen so that shakable suspensions were formed.
  • One filter layer disk each was fixed to the bottom of an ultrafiltration cell (filter layer area 13.4 cm 2 ) and washed with 30% ethanolic 0.1 M sodium hydroxide solution, 1.5 M sodium chloride solution and pyrogen-free water in order to remove traces of endotoxin. After equilibration of the filter layer, 20 ml of contaminated solution were filtered through the filter layer at a flow rate of 2 ml / min. The filtrate was collected and examined in the LAL test.
  • LAL test A chromogenic Limulus amebocyte lysate test (LAL test) was used to quantify endotoxin in the starting solutions and filtrates. This test is based on the fact that endotoxin induces the release of the chromogen p-nitroaniline, with a linear between the released amount of p-nitroaniline and the present endotoxin concentration in the range 0 to 1.2 EU / ml Connection exists. From the photometric determination of p-nitroaniline, the endotoxin concentration of the samples can be determined using a calibration line (standard endotoxin E. coli 0111: B4).
  • the LAL test was introduced in Europe in 1985 by the European Pharmacopoeia Commission for testing for endotoxins and has also replaced the rabbit test in the monograph "Water for Injection Purposes" since 1989.
  • the filter layers marked with -d represent filter layers in which the incorporation of a spacer has been dispensed with.
  • PEI filtrate ⁇ 0.015 EU / ml
  • DAHHis filtrate 0.07 EU / ml

Abstract

The invention relates to a microfiltration filter layer for separating endotoxins from liquid media, especially water, protein solutions or parenteral fluids characterized by covalently bonded ligands for endotoxins, wherein the ligands are supported by a polymer applied on the filter layer material.

Description

Mikrofiltrationsfilterschicht zur Abtrennung von Endotoxinen und deren VerwendungMicrofiltration filter layer for the separation of endotoxins and their use
Die Erfindung betrifft eine Mikrofiltrationsfilterschicht zur Abtrennung von Endotoxinen aus flüssigen Medien sowie die Verwendung dieser Mikrofiltrationsfilterschicht .The invention relates to a microfiltration filter layer for separating endotoxins from liquid media and to the use of this microfiltration filter layer.
Endotoxine sind ipopolysaccharide aus der äußeren Zellfilterschicht Gram-negativer Bakterien, die als Pyrogene wirken. Aufgrund der Allgegenwärtigkeit von Bakterien sind auch Endotoxine ubiguitär . Sie können im Gegensatz zu Bakterien jedoch nicht durch Standard-Methoden wie Sterilfiltrieren oder Autoklavieren entfernt bzw. unschädlich gemacht werden (1 ) . Aus diesem Grund ist steril nicht gleichbedeutend mit endotoxin-frei . Besonders kritisch ist die Anwesenheit von Endotoxinen in Injektions- bzw. Infusionslösungen (Parenteralia) , da sie intravenös appliziert bereits in Mengen von 1 ng pro kg Körpergewicht fiebererregend wirken. Die Symptomatik reicht bei entsprechend hoher Dosierung (z. B. durch großvolumige Parenteralia) bis zu schwerem Schock und Tod (2 , 3) ) . Daher schreiben fast alle Pharmacopöen neben der Keimfreiheit strenge Endotoxin-Höchstwerte vor: z. B. 0,2 EU pro mg Chloramphenicol zur Injektion oder nur 0,003 EU pro Hepa- rin-Unit (4) . Die Erfüllung dieser Forderungen bereitet in der Praxis einige Schwierigkeiten. Insbesondere die Produktion biologischer Arzneimittel kann nicht in allen Schritten endotoxin- frei erfolgen. Als Endotoxin-Quellen kommen hauptsächlich in Frage :Endotoxins are ipopolysaccharides from the outer cell filter layer of Gram-negative bacteria, which act as pyrogens. Due to the ubiquity of bacteria, endotoxins are also ubiguitary. In contrast to bacteria, however, they cannot be removed or rendered harmless by standard methods such as sterile filtration or autoclaving (1). For this reason, sterile is not synonymous with endotoxin-free. The presence of endotoxins in injection or infusion solutions (parenterals) is particularly critical, since they are administered intravenously and have a febrile effect in amounts of 1 ng per kg body weight. The symptoms range from a correspondingly high dose (e.g. due to large-volume parenterals) to severe shock and death (2, 3)). Therefore almost all pharmacopoeias write alongside the sterility, strict endotoxin limits: z. B. 0.2 EU per mg chloramphenicol for injection or only 0.003 EU per heparin unit (4). In practice, meeting these requirements presents some difficulties. In particular, the production of biological drugs cannot be endotoxin-free in all steps. The main endotoxin sources are:
- Rohstoffe wie Plasma oder Gewebe, die bereits Bakterien-konta- miniert sein können.- Raw materials such as plasma or tissue, which can already be contaminated with bacteria.
- Bei rekombinanten Produkten ist mit dem Eintrag von Host-spezifischen Endotoxinen zu rechnen.- In the case of recombinant products, the entry of host-specific endotoxins can be expected.
- Bakterielle Kontamination von Geräten, Filtern oder Hilfsstoffen während der Herstellung.- Bacterial contamination of devices, filters or auxiliary materials during manufacture.
Die für thermostabile Wirkstoffe übliche Hitzedekontamination (30 Minuten bei 250 °C) ist für die Präparate ebenso wenig geeignet wie Behandlung mit Säuren, Laugen oder stark oxidierenden Agenzien (H2O2) (1) .The heat decontamination (30 minutes at 250 ° C) that is usual for thermostable active ingredients is just as unsuitable for the preparations as treatment with acids, alkalis or strongly oxidizing agents (H2O2) (1).
Beim Einsatz von Aktivkohle sind häufig merkliche Produktverluste zu verzeichnen, so daß ihre Anwendung auf die Wasseraufbereitung beschränkt bleibt (5 , 6) .When using activated carbon there are often noticeable product losses, so that their use remains limited to water treatment (5, 6).
Die Ultrafiltration hat als sehr schonende Methode große Popularität auf dem Gebiet der Endotoxin-Entfernung erlangt. Hierbei wird i. a. mit cut-offs von 10000 oder 5000 gearbeitet, um auch monomere Bestandteile (MW ca. 14000) wirkungsvoll abzutrennen, die neben hochmolekularen Aggregaten (bis zu mehreren Millionen Molekulargewicht) vorliegen. Trotzdem treten immer wieder Probleme mit niedermolekularen Spaltstücken auf, die ebenfalls py- rogen wirken (z. B. Lipid A) . Das betrifft vor allem die Hämo- dialyse : Obwohl die Dialysepuffer ultrafiltriert werden, entwickeln z . B in den USA jährlich 400000 Hämodialyse-Patienten septische Symptome (7) . - Die Notwendigkeit der kleinen cut-offs beschränkt die Anwendung der Ultrafiltration zudem auf die De- kontaminierung niedermolekularer Substanzen (8) .Ultrafiltration has become very popular as a very gentle method in the field of endotoxin removal. In general, cut-offs of 10,000 or 5,000 are used to effectively separate monomeric components (MW approx. 14,000) that are present in addition to high-molecular aggregates (up to several million molecular weights). Nonetheless, problems with low molecular weight fragments that also have a pyrogenic effect occur (eg Lipid A). This applies above all to hemodialysis. Although the dialysis buffers are ultrafiltered, z. B In the United States, 400,000 hemodialysis patients have septic symptoms annually (7). - The need for small cut-offs limits the use of ultrafiltration to the decontamination of small molecules (8).
Im Fall von hochmolekularen Produkten wie Pharmaproteinen, Albumin-Präparaten oder Heparin existieren nach wie vor große Schwierigkeiten: Treten in diesen Präparaten Endotoxin-Verunreinigungen auf, bleibt gegenwärtig nur die Möglichkeit des Repro- zessierens, um den Vorschriften von FDA, USP oder EP gerecht zu werden .In the case of high molecular weight products such as pharmaceutical proteins, albumin preparations or heparin, great difficulties still exist: If endotoxin contamination occurs in these preparations, the only option currently available is reprocessing in order to comply with the regulations of the FDA, USP or EP become .
Um dieses aufwendige Verfahren zu vermeiden, das Produkt aber trotzdem seiner Bestimmung zuzuführen, wurde die Möglichkeit geprüft, verseuchte Produkte über chromatographische Sorbentien mit endotoxin-spezifischen Liganden selektiv zu dekontaminieren. Auch dies brachte nicht den gewünschten Erfolg: Bisher beschriebene Affinitätssorbentien mit His, Hirn, PMB als Liganden erwiesen sich trotz hoher bis sehr hoher Assoziationskonstanten bei hohen Endotoxin-Eingangskonzentrationen als nicht geeignet (9) . Ferner wurde in Gegenwart von Proteinen konkurrierende Proteinadsorption beobachtet, die zu verringerten Endotoxin-Abrei- cherungsraten und teilweise hohen Proteinverlusten führte (insbesondere bei sauren Proteinen wie BSA) .In order to avoid this time-consuming process, but still lead the product to its intended use, the possibility was examined to selectively decontaminate contaminated products using chromatographic sorbents with endotoxin-specific ligands. This also did not bring the desired success: Affinity sorbents with His, brain, PMB as ligands described so far proved to be unsuitable despite high to very high association constants at high endotoxin input concentrations (9). In addition, competing protein adsorption was observed in the presence of proteins, which led to reduced endotoxin depletion rates and sometimes high protein losses (especially with acidic proteins such as BSA).
Literaturliterature
(1) S.K. Sharma(1) S.K. Sharma
Endotoxin detection and elimination in biotechnology Biotechnol. Appl . Biochem. 8 (1986), 5 - 22Endotoxin detection and elimination in biotechnology Biotechnol. Appl. Biochem. 8: 5-22 (1986)
(2) N. Haeffner-Cavaillon, J.M. Cavaillon, L. Szabό(2) N. Haeffner-Cavaillon, J.M. Cavaillon, L. Szabό
Cellular receptors for endotoxinCellular receptors for endotoxin
Handbook of Endotoxins, Vol. 3: Biology of Endotoxins,Handbook of Endotoxins, Vol. 3: Biology of Endotoxins,
1 - 241-24
Elsevier Science Publishers B.V. (1985)Elsevier Science Publishers B.V. (1985)
(3) D.C. Morrison, J.L. Ryan(3) D.C. Morrison, J.L. Ryan
Endotoxins and disease mechanisms Ann. Rev: Med. 38 (1987), 417 - 32Endotoxins and disease mechanisms Ann. Rev: Med. 38 (1987), 417-32
(4) USP XXII Suppl. 5 (Nov. 1991) (5) K.C. Hou, R. Zaniewski(4) USP XXII Suppl. 5 (Nov. 1991) (5) KC Hou, R. Zaniewski
Depyrogenation by endotoxin removal with positively charged depth filter cartridgeDepyrogenation by endotoxin removal with positively charged depth filter cartridge
J. Parenteral Sei. Tech., Vol. 44, No . 4 (1990), 204 - 209J. Parenteral Sei. Tech., Vol. 44, No. 4: 204-209 (1990)
(6) CUNO Newsletter for Pharmaceuticals (Okt. 1995), S. 3(6) CUNO Newsletter for Pharmaceuticals (Oct. 1995), p. 3
(7) B.P. Smollich, D. Falkenhagen, J. Schneidewind, S. Mitzner, H. Klinkmann(7) B.P. Smollich, D. Falkenhagen, J. Schneidewind, S. Mitzner, H. Klinkmann
Importance of endotoxins in high-flux dialysis Nephrol. Dial . Transplant 3 (Suppl.) (1991) 83 - 85Importance of endotoxins in high-flux dialysis nephrol. Dial. Transplant 3 (Suppl.) (1991) 83-85
(8) E. Flindt(8) E. Flindt
Pyrogenentfernung mittels Ultrafiltration Memoscript CONCEPT-Symposium "Pyrogene II" (Juni 1983) , S . 54 - 60Pyrogen removal using ultrafiltration Memoscript CONCEPT symposium "Pyrogene II" (June 1983), p. 54-60
(9) F.B. Anspach, O. Hillbeck(9) F.B. Anspach, O. Hillbeck
Removal of endotoxins by affinity sorbents J. Chromatogr. A 711 (1995) , 81 - 92Removal of endotoxins by affinity sorbents J. Chromatogr. A 711 (1995), 81-92
Dieser Stand der Technik läßt sich erfindungsgemäß durch eine Mikrofiltrationsfilterschicht zur Abtrennung von Endotoxinen aus flüssigen Medien, insbesondere Wasser, Proteinlösungen oder Pa- renteralien verbessern, wobei die Mikrofiltrationsfilterschicht durch kovalent gebundene Liganden für Endotoxine gekennzeichnet ist, wobei die Liganden von einem Polymeren getragen werden, das auf der Filterschicht aufgebracht ist.According to the invention, this prior art can be improved by a microfiltration filter layer for separating endotoxins from liquid media, in particular water, protein solutions or parenterals, the microfiltration filter layer being characterized by covalently bound ligands for endotoxins, the ligands being carried by a polymer which is applied to the filter layer.
Zur Filterschichttechnologie und auch Filterschichtherstellung kann auf C. Dickenson, Filters and Filtration Handbook, Elsevier Science Publishers, Oxford 1992, sowie Ho & Sirkar (Herausgeber) , Membrane Handbook, Verlag van Nostrand Reinhold, New York, 1992, verwiesen werden. Insbesondere kann es sich bei den Filterschichtmaterialien um Tiefenfilter handeln.For filter layer technology and filter layer production, reference can be made to C. Dickenson, Filters and Filtration Handbook, Elsevier Science Publishers, Oxford 1992, and Ho & Sirkar (Editor), Membrane Handbook, Verlag van Nostrand Reinhold, New York, 1992. In particular, the filter layer materials can be depth filters.
Bei den kovalent gebundenen Liganden kann es sich um (a) einen endotoxin-spezifischen Liganden, vorzugsweise Hist- amin, Histidin, Polyethylenimin, Poly-L-lysin oder Poly yxinThe covalently bound ligands can be (a) an endotoxin-specific ligand, preferably histamine, histidine, polyethyleneimine, poly-L-lysine or polyxin
B und/oder (b) einen per se nicht-endotoxin-spezifischen Liganden handeln, vorzugsweise Diaminohexan, Diethylaminoethyl oder Desoxycho- lat .B and / or (b) act as a non-endotoxin-specific ligand per se, preferably diaminohexane, diethylaminoethyl or deoxycholate.
Bei dem Filterschichtmaterial für die erfindungsgemäße Mikrofil- trationsfilterschicht kann es sich um Polysaccharide, z.B. Zellulose, insbesondere regenerierte und mikrokristalline Zellulose und -derivate, insbesondere Zelluloseacetat , Agarose und -deri- vate, quervernetztes Dextran und -derivate, Chitosan und -derivate,The filter layer material for the microfiltration filter layer according to the invention can be polysaccharides, e.g. Cellulose, in particular regenerated and microcrystalline cellulose and derivatives, in particular cellulose acetate, agarose and derivatives, crosslinked dextran and derivatives, chitosan and derivatives,
Synthetische organische Polymere, z.B. Polyacrylnitril , Polysul- fon, Polyamid, insbesondere Nylon, Polyvinylalkohol , Polyethy- lenvinylalkohol , Polystyrol und Polyacrylate sowie deren Derivate,Synthetic organic polymers, e.g. Polyacrylonitrile, polysulfone, polyamide, in particular nylon, polyvinyl alcohol, polyethylene vinyl alcohol, polystyrene and polyacrylates and their derivatives,
Anorganische Materialien, z.B. Kieselgel, Glas und keramische Träger sowie deren Derivate handeln.Inorganic materials, e.g. Trade silica gel, glass and ceramic carriers and their derivatives.
Die Materialien können faserförmig oder partikulär/ sphärisch oder unregelmäßig geformt mit porösem oder unporösem Aufbau vorkommen, wie sie beispielsweise für chromatographische Träger zum Einsatz kommen; ebenso können Teile anderer Strukturen eingesetzt werden, wie z.B. Bruchstücke oder speziell zugeschnittene Hohlfasermembranen, gebrochene Partikel oder Perlen. Vorzugsweise sollten die Materialien wasserunlöslich sein.The materials can be fibrous or particulate / spherical or irregularly shaped with a porous or non-porous structure, such as those used for chromatographic supports; parts of other structures can also be used, e.g. Fragments or specially cut hollow fiber membranes, broken particles or pearls. Preferably the materials should be water insoluble.
Die Größe der Grundstoffe wird so gewählt, daß die herzustellende Struktur in der Schicht einen Porendurchmesser aufweist, wie er für die Mikrofiltration gebräuchlich ist, insbesondere zwischen 0,1 und 10 μm.The size of the base materials is chosen so that the structure to be produced has a pore diameter in the layer as is customary for microfiltration, in particular between 0.1 and 10 μm.
Bei dem Polymeren, das auf die erfindungsgemäße Mikrofiltrationsfilterschicht aufgebracht ist, kann es sich um ein hydrophi- les Polymere handeln, insbesondere um Dextran, Polyvinylalkohol oder modifizierte Zellulose, vorzugsweise Hydroxyethylzellulose .The polymer which is applied to the microfiltration filter layer according to the invention can be a hydrophilic The polymers act, in particular dextran, polyvinyl alcohol or modified cellulose, preferably hydroxyethyl cellulose.
Dieses hydrophile Polymere kann für sich wasserlöslich, in Wasser quellbar oder wasserunlöslich sein.This hydrophilic polymer can itself be water-soluble, water-swellable or water-insoluble.
Das Polymere kann von der erfindungsgemäßen Mikrofiltrationsfilterschicht mit Hilfe eines Spacers getragen werden. Auch die kovalent gebundenen Liganden können von einem Spacer getragen werden. Bei diesen Spacern kann es sich um Spacer handeln, die sich von Bisoxiran, Glutardialdehyd, Epihalogenhydrin oder Diisocya- nat herleiten, gegebenenfalls nach oxidativer Aktivierung.The polymer can be carried by the microfiltration filter layer according to the invention with the aid of a spacer. The covalently bound ligands can also be carried by a spacer. These spacers can be spacers derived from bisoxirane, glutardialdehyde, epihalohydrin or diisocyanate, if appropriate after oxidative activation.
Zur Aktivierungs- und Immobilisierungschemie, die auch auf endo- toxin-spezifische Liganden und Spacer eingeht, sei beispielsweise auf Hermanson, Mallia & Smith, Immobilized Affinity Ligand Techniques, Academic Press Inc., San Diego, 1992, verwiesen.For activation and immobilization chemistry, which also deals with endotoxin-specific ligands and spacers, reference is made, for example, to Hermanson, Mallia & Smith, Immobilized Affinity Ligand Techniques, Academic Press Inc., San Diego, 1992.
Erfindungsgemäß werden also Mikrofiltrationsfilterschichten vorgesehen, die in geeigneter Weise oberflächenmodifiziert sind und aus Wasser und wäßrigen Lösungen (Puffer, Proteinlösungen) Endotoxine entfernen. Die Oberflächenmodifikation kann im Aufbringen eines bifunktionellen kovalent gebundenen Spacers bestehen, der mit einem hydrophilen Polymeren umgesetzt wird, wobei unspezifische Wechselwirkungen der Filterschicht, speziell mit Proteinen, reduziert werden. Das kovalent gebundene hydrophile Polymere kann mit endotoxin- spezifischen Liganden umgesetzt werden, gegebenenfalls über einen weiteren Spacer. Zum Prinzip der Oberflächenmodifikation der Filterschicht vergleiche man Figur 1.According to the invention, microfiltration filter layers are therefore provided which are surface-modified in a suitable manner and remove endotoxins from water and aqueous solutions (buffers, protein solutions). The surface modification can consist in the application of a bifunctional covalently bound spacer, which is reacted with a hydrophilic polymer, whereby non-specific interactions of the filter layer, especially with proteins, are reduced. The covalently bound hydrophilic polymer can be reacted with endotoxin-specific ligands, optionally via a further spacer. For the principle of surface modification of the filter layer, see Figure 1.
Der Endotoxin-Abreicherungserfolg kann sich in Gegenwart von Proteinen als abhängig von der Nettoladung der Proteine erweisen. Durch Optimierung der Bedingungen (pH-Wert) können saure Proteine (wie BSA und Maus-IgG 1) vollständig dekontaminiert werden, und zwar ohne nennenswerte Verluste an Protein. Im Fall basischer Proteine (wie beispielsweise Lysozym und bFGF) lassen sich ebenfalls hohe Abreicherungen erzielen.The endotoxin depletion success in the presence of proteins may prove to be dependent on the net charge of the proteins. By optimizing the conditions (pH value), acidic proteins (such as BSA and mouse IgG 1) can be completely decontaminated without any significant loss of protein. In the case of basic proteins (such as lysozyme and bFGF), high depletions can also be achieved.
Polymer-gecoatete erfindungsgemäße Mikrofiltrationsfilterschich- ten mit kovalent gebundenen endotoxin-spezifischen Liganden können Endotoxine in einem Durchgang entfernen, und zwar auch aus hochbelasteten Lösungen (6000 EU ml-1) .Polymer-coated microfiltration filter layers according to the invention with covalently bound endotoxin-specific ligands can remove endotoxins in one pass, even from highly contaminated solutions (6000 EU ml -1 ).
Vom Prinzip her sind die Filterschichten entsprechend Figur 1. aufgebaut . Zunächst wird über einen Spacer ein hydrophiles Polymer aufgebracht, das dann weiter, ggf. über einen Spacer, mit endotoxin-spezifischen Liganden umgesetzt wird. Als Filterschichtmaterialien kommen insbesondere infrage :In principle, the filter layers are constructed in accordance with FIG. 1. A hydrophilic polymer is first applied via a spacer, which is then reacted further, possibly via a spacer, with endotoxin-specific ligands. The following are particularly suitable as filter layer materials:
- Polysaccharide, wie- polysaccharides, such as
- Zellulose, insbesondere regenerierte und mikrokristalline Zellulose und -derivate, insbesondere Zelluloseacetat ,Cellulose, in particular regenerated and microcrystalline cellulose and derivatives, in particular cellulose acetate,
- Agarose und -derivate, quervernetztes Dextran und -derivate,- agarose and derivatives, cross-linked dextran and derivatives,
- Chitosan und -derivate,- chitosan and derivatives,
- Synthetische organische Polymere, wie- Synthetic organic polymers such as
- Polyacrylnitril sowie dessen Derivate- Polyacrylonitrile and its derivatives
- Polysulfon sowie dessen Derivate- Polysulfone and its derivatives
- Polyamid, insbesondere Nylon, sowie dessen Derivate- Polyamide, especially nylon, and its derivatives
- Polyvinylalkohol sowie dessen Derivate- Polyvinyl alcohol and its derivatives
- Polyethylenvinylalkohol sowie dessen Derivate- Polyethylene vinyl alcohol and its derivatives
- Polystyrol sowie dessen Derivate und- polystyrene and its derivatives and
- Polyacrylate sowie deren Derivate,Polyacrylates and their derivatives,
- Anorganische Materialien wie- Inorganic materials like
- Kieselgel sowie dessen Derivate- silica gel and its derivatives
- Glas und- glass and
- keramische Träger. Als Spacer eignen sich reaktive bifunktionale Verbindungen. Speziell geeignet sind:- ceramic supports. Reactive bifunctional compounds are suitable as spacers. The following are particularly suitable:
Bisoxiran Glutardialdehyd Epihalogenhydrine DiisocyanateBisoxiran Glutardialdehyde Epihalohydrine Diisocyanate
Zur Aktivierung der bei Verwendung von Bisoxiran und Epihalogen- hydrin entstehenden vicinalen Diolbindung kann ggf. Oxidation durch Periodat angewandt werden, wobei eine Aldehydgruppe entsteht . Der an die Filterschicht gebundene Spacer wird weiter umgesetzt mit hydrophilen Polymeren. Als solche kommen bevorzugt infrage :To activate the vicinal diol bond formed when bisoxirane and epihalohydrin are used, oxidation by periodate can optionally be used, an aldehyde group being formed. The spacer bound to the filter layer is further reacted with hydrophilic polymers. As such, the following are preferred:
DextranDextran
Polyvinylalkohol (PVA)Polyvinyl alcohol (PVA)
Modifizierte Zellulosen, speziell Hydroxyethylzellulose (HEC)Modified celluloses, especially hydroxyethyl cellulose (HEC)
Die weitere Reaktion erfolgt entweder direkt mit dem endotoxin- spezifischen Liganden oder wiederum über die Vermittlung eines der oben angeführten Spacer, ggf. nach dessen oxidativer Aktivierung. Als endotoxin-spezifische Liganden wirken (s. Liste der Abkürzungen) : DAH, Him, His, PEI, PLL, PMB . Auch die üblicherweise nicht endotoxin-spezifischen Liganden wie DEAE und DOC erwiesen sich in der Filterschichtkonfiguration als hochspezifisch bei gleichzeitig hoher Wiederfindung der Proteine.The further reaction takes place either directly with the endotoxin-specific ligand or again via the mediation of one of the spacers mentioned above, if appropriate after its oxidative activation. The following act as endotoxin-specific ligands (see list of abbreviations): DAH, Him, His, PEI, PLL, PMB. The usually non-endotoxin-specific ligands, such as DEAE and DOC, also proved to be highly specific in the filter layer configuration with a high recovery of the proteins.
Die Leistungsfähigkeit der entwickelten Filterschichten geht aus den angeführten Beispielen hervor. Die Endotoxin-Entfernung kann fast immer als vollständig bezeichnet werden. Sie liegt in der Regel unter 1 EU ml-1, oft unterhalb der Nachweisgrenze mit dem LAL-Test. An Kontrollfilterschichten (Nylon ohne Modifikation und mit aufgebrachtem hydrophilen Polymer mit oder ohne Spacer) ohne endotoxin-spezifischen Liganden wurde keine Endotoxinabreicherung erhalten.The performance of the developed filter layers is evident from the examples given. Endotoxin removal can almost always be said to be complete. It is usually below 1 EU ml -1 , often below the detection limit with the LAL test. No endotoxin depletion was obtained on control filter layers (nylon without modification and with applied hydrophilic polymer with or without spacer) without endotoxin-specific ligands.
Die neuen Filterschichten können eingesetzt werden zur Endoto- xinentfernung aus Wasser und Parenteralia. Auch in Gegenwart von Proteinen werden gute Ergebnisse erzielt. Im Fall basischer Proteine ist allerdings zu berücksichtigen, daß Wechselwirkungen der Proteine mit dem Endotoxin auftreten können, die zu einer endotoxischen Maskierung führen können. Proteingebundenes Endotoxin kann mit dem LAL-Test nicht eindeutig nachgewiesen werden. In diesem Zusammenhang ist zu erwähnen, daß nicht endgültig geklärt ist, ob proteingebundenes Endotoxin noch toxisch wirkt.The new filter layers can be used to remove endotoxins from water and parenterals. Good results are also achieved in the presence of proteins. In the case of basic proteins, however, it must be taken into account that interactions of the proteins with the endotoxin can occur, which can lead to endotoxic masking. Protein-bound endotoxin cannot be clearly identified with the LAL test. In this context it should be mentioned that it has not been finally clarified whether protein-bound endotoxin is still toxic.
Die erfindungsgemäßen Filterschichten können vielseitig angewandt werden.The filter layers according to the invention can be used in a variety of ways.
Medizinisch-pharmazeutischer Bereich :Medical-pharmaceutical area:
- Hämodialyse .- hemodialysis.
- Unbedenkliche Infusions- und Injektionslösungen- Safe infusion and injection solutions
(Parenteralia) .(Parenterals).
- Sichere Diagnostika (z. B. Antikörper). In der Biotechnologie:- Safe diagnostics (e.g. antibodies). In biotechnology:
- Herstellung von Pharmaprodukten.- Manufacture of pharmaceutical products.
- Endotoxin-Abreicherung in Prozesswasser und Rohstoffen.- Endotoxin depletion in process water and raw materials.
- Dekontaminierung von Produkten (Aufwand für Prozessierung entfällt) . - Decontamination of products (processing costs are eliminated).
MethodenMethods
1. Herstellung der Filterschichten1. Production of the filter layers
An Mikrofiltrationsfilterschichten werden hydrophile Polymere, insbesondere Dextran, Polyvinylalkohol und Hydroxyethylzellulose kovalent gebunden. Im nächsten Schritt werden an die aufgebrachten Polymere endotoxin-spezifische Liganden immobilisiert. Figur 1 illustriert den Aufbau eines Filterschichtmaterials auf der Basis von Nylon.Hydrophilic polymers, in particular dextran, polyvinyl alcohol and hydroxyethyl cellulose, are covalently bound to microfiltration filter layers. In the next step, endotoxin-specific ligands are immobilized on the applied polymers. Figure 1 illustrates the structure of a filter layer material based on nylon.
1.1. Coating einer Filterschicht am Beispiel von Dextran1.1. Coating a filter layer using the example of dextran
Mikrofiltrationsfilterschichten, z.B. auf der Basis von Nylon- Hohlfasern oder Zellulosefasern, werden zunächst mit Bisoxiran aktiviert :Microfiltration filter layers, e.g. based on nylon hollow fibers or cellulose fibers, are first activated with bisoxirane:
Solche Schichten auf der Basis von Nylon-Hohlfasern werden 16 Stunden bei 80 °C in einer Reaktionslösung aus 1 ml 25 M Natri- umcarbonat (pH 11) , 1 ml Ethanol (96 %-ig) und 9 ml Bisoxiran inkubiert (Figur 2a) .Such layers based on nylon hollow fibers are incubated for 16 hours at 80 ° C. in a reaction solution of 1 ml 25 M sodium carbonate (pH 11), 1 ml ethanol (96%) and 9 ml bisoxirane (FIG. 2a) .
Solche Schichten auf der Basis von Zellulosefasern werden hierzu drei Stunden bei Raumtemperatur in einer Mischung aus 100 mg Natriumborhydrid in 15 ml 2 M Natronlauge, 25 ml Wasser und 5 ml Bisoxiran geschüttelt.Such layers based on cellulose fibers are shaken for three hours at room temperature in a mixture of 100 mg sodium borohydride in 15 ml 2 M sodium hydroxide solution, 25 ml water and 5 ml bisoxirane.
Jeweils beide Filterschichten werden anschließend nach gründlichem Waschen mit 5 ml einer 20-prozentigen Dextran 40000-Lösung (pH 11) 15 Minuten bei Raumtemperatur inkubiert (s. Abbildung 2b am Beispiel Nylon) . Anschließend werden die Filterschichten 14 Stunden bei 120 °C getrocknet. Um unspezifisch gebundenes Dextran zu entfernen, werden die Filterschichten dreimal mit 0,1 M Natronlauge und dann dreimal mit Wasser gewaschen.After thorough washing, both filter layers are then incubated for 15 minutes at room temperature with 5 ml of a 20 percent dextran 40,000 solution (pH 11) (see Figure 2b using the example of nylon). The filter layers are then dried at 120 ° C. for 14 hours. In order to remove non-specifically bound dextran, the filter layers are washed three times with 0.1 M sodium hydroxide solution and then three times with water.
Wie Figur 3 zeigt, zeichnen sich die Filterschichten auf der Basis gecoateter Filterschichtmaterialien durch signifikant gerin- gere unspezifische Wechselwirkungen - ausgedrückt durch adsorbierte Menge Hämoglobin - aus.As FIG. 3 shows, the filter layers on the basis of coated filter layer materials are characterized by significantly more unspecific interactions - expressed by the amount of hemoglobin adsorbed.
Aus der Figur 3 geht auch hervor, daß mit einem einfachen Dex- tran-coating nicht der gleiche Effekt erreicht werden kann wie mit PVA und HEC. Durch einen zweiten Layer kann eine weitere Verbesserung erzielt werden, während ein dritter Layer nur noch geringfügige Auswirkungen hat . Dextran wurde daher immer als Doppel-coating eingesetzt.FIG. 3 also shows that a simple dextran coating cannot achieve the same effect as with PVA and HEC. A second layer can be used to achieve a further improvement, while a third layer has only minor effects. Dextran was therefore always used as a double coating.
1.2. Immobilisierung von endotoxin-spezifischen Liganden1.2. Immobilization of endotoxin-specific ligands
Die Liganden PLL, PMB und PEI werden entweder direkt an die Per- jodat-aktivierten Coating-Polymere oder nach Inkorporation eines Perjodat-oxidierbaren Spacers (Bisoxiran) immobilisiert. Das Vorgehen ist beispielhaft in Figur 4 dargestellt . DEAE wird ohne Spacer direkt an die Matrices gekoppelt, die anderen niedermolekularen Liganden wurden über Epibromhydrin gebunden.The PLL, PMB and PEI ligands are either immobilized directly on the periodate-activated coating polymers or after incorporation of a periodate-oxidizable spacer (bisoxirane). The procedure is shown by way of example in FIG. 4. DEAE is coupled directly to the matrices without a spacer, the other low-molecular ligands were bound via epibromohydrin.
1.2.1. PEI-Immobilisierung über Bisoxiran1.2.1. PEI immobilization via bisoxirane
Zur Aktivierung werden die mit hydrophilen Polymeren gecoateten Filterschichten drei Stunden bei Raumtemperatur in einer Mischung aus 100 mg Natriumborhydrid, 5 ml Bisoxiran und 45 ml 1 M Natronlauge inkubiert. Nach Hydrolyse des freien Oxiranringes (30 Minuten Inkubation bei pH 2,5) und Perjodatoxidation des erhaltenen vicinalen Diols (90 Minuten Inkubation in 0,2 M Natri- umperjodat) werden die Filterschichten zwei Stunden mit einer Lösung von 0,5 g PEI (MW 50000) in 0,1 M Phosphatpuffer, die auf pH 8 eingestellt wird, bei Raumtemperatur umgesetzt, so daß sich der in Figur 1 gezeigte Aufbau ergibt. Abschließend wird mit einer 1 -molaren Natriumchlorid-Lösung und Wasser gewaschen.For activation, the filter layers coated with hydrophilic polymers are incubated for three hours at room temperature in a mixture of 100 mg sodium borohydride, 5 ml bisoxirane and 45 ml 1 M sodium hydroxide solution. After hydrolysis of the free oxirane ring (30 minutes incubation at pH 2.5) and periodate oxidation of the vicinal diol obtained (90 minutes incubation in 0.2 M sodium periodate), the filter layers are washed with a solution of 0.5 g PEI (MW 50000) in 0.1 M phosphate buffer, which is adjusted to pH 8, at room temperature, so that the structure shown in FIG. 1 results. Finally, it is washed with a 1 molar sodium chloride solution and water.
1.2.2. Histidin- Immobilisierung1.2.2. Histidine immobilization
Histidin wird über DAH an Epibromhydrin-aktivierte gecoatete Filterschichten immobilisiert. Epibromhydrin-Aktivierung wird wie für Bisoxiran beschrieben durchgeführt. Immobilisiertes DAH wird durch 8-minütige Reaktion mit einer Mischung von 5 ml Epi- bromhydrin und 5 ml 4 M Natronlauge bei 90 °C aktiviert und sofort bei 80 °C mit L-Histidin umgesetzt (0,5 g L-Histidin in 20 ml Wasser, pH 12) . Die fertige Filterschicht wird mit 1 M Natriumchlorid und Wasser gewaschen.Histidine is immobilized on epibromohydrin-activated coated filter layers via DAH. Epibromohydrin activation is carried out as described for bisoxiran. Immobilized DAH is activated by reaction for 8 minutes with a mixture of 5 ml epibromohydrin and 5 ml 4 M sodium hydroxide solution at 90 ° C and immediately reacted with L-histidine at 80 ° C (0.5 g L-histidine in 20 ml water, pH 12). The finished filter layer is washed with 1 M sodium chloride and water.
Entsprechende Vorschriften werden angewandt für das Coating mit anderen Polymeren und die kovalente Bindung mit den anderen endotoxin-spezifischen Liganden.Corresponding regulations are applied for the coating with other polymers and the covalent binding with the other endotoxin-specific ligands.
2. Weitere Methode zur Herstellung der Filterschichten2. Another method for producing the filter layers
Als Alternative zu der unter 1. genannten Methode können zuerst die Filterschichtmaterialien chemisch modifiziert und im Anschluß daran die Struktur der Filterschicht durch Anschwemmung der Filterschichtmaterialien auf einen geeigneten Grundkörper hergestellt werden.As an alternative to the method mentioned under 1., the filter layer materials can first be chemically modified and then the structure of the filter layer can be produced by washing the filter layer materials onto a suitable base body.
Hierzu werden an die Filterschichtmaterialien hydrophile Polymere, insbesondere Dextran, Polyvinylalkohol und Hydroxyethylzellulose kovalent gebunden. Im nächsten Schritt werden an die aufgebrachten Polymere endotoxin-spezifische Liganden immobilisiert. Die Struktur an den Filterschichtmaterialien wird ebenso durch Figur 1 wiedergegeben.For this purpose, hydrophilic polymers, in particular dextran, polyvinyl alcohol and hydroxyethyl cellulose, are covalently bound to the filter layer materials. In the next step, endotoxin-specific ligands are immobilized on the applied polymers. The structure of the filter layer materials is also shown in FIG. 1.
2.1 Coating eines Filterschichtmaterials am Beispiel von Sepharose 4B und Dextran2.1 Coating a filter layer material using the example of Sepharose 4B and dextran
Sepharose 4B wurde nach einer Vorschrift von Sundberg und Porath (J. Chromatogr. 90, 1974, 87) mit Bisoxiran aktiviert. In Abänderung zur Vorschrift wurde die Reaktionsdauer auf 2 Stunden reduziert, um einen minimalen Verlust an Oxirangruppen sicherzustellen. Hierzu wurden 40 ml einer Sepharose 4B-Suspension mit 20 ml einer 0,5-molaren NaOH-Lösung, 8 ml Bisoxiran und 40 mg Natriumborhydrid in einem Kolben vereint und bei 40 °C über einen Zeitraum von 2 Stunden geschüttelt. Anschließend wurde die aktivierte Sepharose abgesaugt und mehrmals mit Wasser gewa- sehen. Das aktivierte Gel wurde mit dem gleichen Volumen einer Reaktionslösung vereint, die aus 20 % Dextran mit einem mittleren Molekulargewicht von 40000 und 0,2 % Natriumborhydrid in einem 0 , 025-molaren Carbonatpuffer bestand und auf pH 11 eingestellt war. Diese Lösung wurde 60 Minuten bei Raumtemperatur geschüttelt . Die gecoatete Sepharose wurde von der Dextranlösung durch Filtration getrennt und anschließend über einen Zeitraum von 24 Stunden bei 80 °C inkubiert.Sepharose 4B was activated with bisoxirane according to a protocol by Sundberg and Porath (J. Chromatogr. 90, 1974, 87). In contrast to the regulation, the reaction time was reduced to 2 hours in order to ensure minimal loss of oxirane groups. For this purpose, 40 ml of a Sepharose 4B suspension with 20 ml of a 0.5 molar NaOH solution, 8 ml of bisoxirane and 40 mg of sodium borohydride were combined in a flask and shaken at 40 ° C. over a period of 2 hours. The activated Sepharose was then suctioned off and washed several times with water. see. The activated gel was combined with the same volume of a reaction solution which consisted of 20% dextran with an average molecular weight of 40,000 and 0.2% sodium borohydride in a 0.025 molar carbonate buffer and was adjusted to pH 11. This solution was shaken at room temperature for 60 minutes. The coated Sepharose was separated from the dextran solution by filtration and then incubated at 80 ° C. for a period of 24 hours.
2.2 Immobilisierung von endotoxin-spezifischen Liganden2.2 Immobilization of endotoxin-specific ligands
Die Liganden PLL, PMB und PEI wurden entweder direkt an die Per- jodat-aktivierten Coating-Polymere oder nach Inkorporation eines Perjodat-oxidierbaren Spacers (Bisoxiran) immobilisiert. DEAE wurde ohne Spacer direkt an die Matrices gekoppelt, die anderen niedermolekularen Liganden wurden über Epibromhydrin gebunden.The PLL, PMB and PEI ligands were either immobilized directly on the periodate-activated coating polymers or after incorporation of a periodate-oxidizable spacer (bisoxirane). DEAE was coupled directly to the matrices without a spacer, the other low-molecular ligands were bound via epibromohydrin.
2.2.1 Immobilisierung von PEI über Bisoxiran2.2.1 Immobilization of PEI over Bisoxiran
Die Aktivierung der Dextran-gecoateten Sepharose mit Bisoxiran erfolgte nach Sundberg und Porath, wie in 2.1 beschrieben. Nach Hydrolyse des freien Oxiranringes (30 Minuten Inkubation bei pH 2,5) und Perjodatoxidation des erhaltenen vicinalen Diols (90 Minuten Inkubation in 0,2 M Natriumperjodat ) wurden die Filterschichtmaterialien zwei Stunden bei Raumtemperatur mit einer Lösung versetzt, die auf pH 8 eingestellt und aus 0,5 g PEI mit einem mittleren Molekulargewicht von 50000 und 10 ml eines 0,1- molaren Phosphatpuffers zusammengesetzt war. Abschließend wurde mit 1 M Natriumchlorid-Lösung und Wasser gewaschen. Die Mischungsverhältnisse von Festkörper und Reaktionslösung wurden bei den einzelnen Reaktionen jeweils so gewählt, daß eine schüttelbare Suspension entstand.The activation of the dextran-coated Sepharose with bisoxiran was carried out according to Sundberg and Porath, as described in 2.1. After hydrolysis of the free oxirane ring (30 minutes incubation at pH 2.5) and periodate oxidation of the vicinal diol obtained (90 minutes incubation in 0.2 M sodium periodate), the filter layer materials were mixed for two hours at room temperature with a solution which was adjusted to pH 8 and was composed of 0.5 g PEI with an average molecular weight of 50,000 and 10 ml of a 0.1 molar phosphate buffer. Finally, it was washed with 1 M sodium chloride solution and water. The mixing ratios of solids and reaction solution were chosen in each case so that a shaken suspension was formed.
2.2.2. Immobilisierung von Histidin2.2.2. Immobilization of histidine
Histidin wurde über DAH an Epibromhydrin-aktivierte gecoatete Filterschichtmaterialien immobilisiert. Epibromhydrin-Aktivie- rung wurde wie für Bisoxiran beschrieben durchgeführt. Immobili- siertes DAH wurde durch 8-minütige Reaktion mit einer Mischung von 5 ml Epibromhydrin und 5 ml 4 M Natronlauge bei 90 °C aktiviert und sofort bei 80 °C mit L-Histidin umgesetzt (0,5 g L-Histidin in 20 ml Wasser, pH 12) . Das fertige Filterschichtmaterial wurde mit 1 M Natriumchlorid und Wasser gewaschen. Auch hier wurden die Mischungsverhältnisse von Festkörper und Reaktionslösungen so gewählt, daß schüttelbare Suspensionen entstanden.Histidine was immobilized on epibromohydrin-activated coated filter layer materials via DAH. Epibromohydrin activation was carried out as described for bisoxiran. Real estate dated DAH was activated by reaction for 8 minutes with a mixture of 5 ml epibromohydrin and 5 ml 4 M sodium hydroxide solution at 90 ° C and immediately reacted with L-histidine at 80 ° C (0.5 g L-histidine in 20 ml water, pH 12). The finished filter sheet material was washed with 1 M sodium chloride and water. Here too, the mixing ratios of solids and reaction solutions were chosen so that shakable suspensions were formed.
Entsprechende Vorschriften werden angewandt für das Coating mit anderen Polymeren und anderen Filterschichtmaterialien sowie die kovalente Bindung mit anderen endotoxin-spezifischen Liganden.Corresponding regulations are applied for the coating with other polymers and other filter layer materials as well as for the covalent binding with other endotoxin-specific ligands.
3. Abreicherungsexperimente3. Depletion experiments
Alle Untersuchungen zum Adsorptionsverhalten von Endotoxinen an den Filterschichten wurden bei Raumtemperatur im Dead-end-Modus durchgeführt .All studies on the adsorption behavior of endotoxins on the filter layers were carried out at room temperature in dead-end mode.
Je eine Filterschichtscheibe wurde am Boden einer Ultrafiltrationszelle (Filterschichtfläche 13,4 cm2) fixiert und mit 30 % ethanolischer 0,1 M Natronlauge, 1,5 M Natriumchlorid-Lösung und pyrogenfreiem Wasser gewaschen, um Endotoxin-Spuren zu entfernen. Nach Equilibrierung der Filterschicht wurden jeweils 20 ml kontaminierter Lösung mit einer Flußgeschwindigkeit von 2 ml/min durch die Filterschicht filtriert. Das Filtrat wurde gesammelt und im LAL-Test untersucht.One filter layer disk each was fixed to the bottom of an ultrafiltration cell (filter layer area 13.4 cm 2 ) and washed with 30% ethanolic 0.1 M sodium hydroxide solution, 1.5 M sodium chloride solution and pyrogen-free water in order to remove traces of endotoxin. After equilibration of the filter layer, 20 ml of contaminated solution were filtered through the filter layer at a flow rate of 2 ml / min. The filtrate was collected and examined in the LAL test.
4. Endotoxintest4. Endotoxin test
Zur Endotoxin-Quantifizierung in den Ausgangslösungen und Fil- traten wurde ein chromogener Limulus Amöbozyt Lysat Test (LAL- Test) eingesetzt. Dieser Test beruht darauf, daß Endotoxin die Freisetzung des Chromogens p-Nitroanilin induziert, wobei zwischen der freigesetzten Menge p-Nitroanilin und der vorliegenden Endotoxin-Konzentration im Bereich 0 bis 1,2 EU/ml ein linearer Zusammenhang besteht. Aus der photometrischen p-Nitroanilin-Be- stimmung kann mit Hilfe einer Kalibriergeraden (Standard-Endotoxin E. coli 0111:B4) auf die Endotoxin-Konzentration der Proben geschlossen werden.A chromogenic Limulus amebocyte lysate test (LAL test) was used to quantify endotoxin in the starting solutions and filtrates. This test is based on the fact that endotoxin induces the release of the chromogen p-nitroaniline, with a linear between the released amount of p-nitroaniline and the present endotoxin concentration in the range 0 to 1.2 EU / ml Connection exists. From the photometric determination of p-nitroaniline, the endotoxin concentration of the samples can be determined using a calibration line (standard endotoxin E. coli 0111: B4).
Der LAL-Test wurde in Europa 1985 von der Europäischen Arzneibuch-Kommission zur Prüfung auf Endotoxine eingeführt und ersetzt seit 1989 auch in der Monographie "Wasser für Injektionszwecke" den Kaninchen-Test.The LAL test was introduced in Europe in 1985 by the European Pharmacopoeia Commission for testing for endotoxins and has also replaced the rabbit test in the monograph "Water for Injection Purposes" since 1989.
AnwendungsbeispieleExamples of use
1. (Fig. 5) Abreicherung aus hochbelasteten Pufferlösungen Feed: 20 ml 20 mM Phosphatpuffer (pH 7) mit 6000 EU/ml versetzt1. (Fig. 5) depletion from highly loaded buffer solutions Feed: 20 ml 20 mM phosphate buffer (pH 7) mixed with 6000 EU / ml
Die mit -d gekennzeichneten Filterschichten stellen Filterschichten dar, bei denen auf Inkorporation eines Spacers verzichtet wurde.The filter layers marked with -d represent filter layers in which the incorporation of a spacer has been dispensed with.
2. (Fig. 6 bis 7) Abreicherung aus Endotoxin-angereicherten BSA- Lösungen2. (Fig. 6 to 7) depletion from endotoxin-enriched BSA solutions
Feed: 20 ml 20 mM Phosphatpuffer (pH 4,66) mit 1 mg/ml BSA und 6610 EU/ml versetztFeed: 20 ml 20 mM phosphate buffer (pH 4.66) mixed with 1 mg / ml BSA and 6610 EU / ml
Proteinwiederfindung BSAProtein recovery BSA
3. (Fig. 8) Abreicherung aus Handels-BSA3. (Fig. 8) depletion from commercial BSA
Feed: 20 ml 20 mM Phosphatpuffer (pH 4,66) mit 1 mg/ml BSA Endotoxinkonzentration 65 EU/mlFeed: 20 ml 20 mM phosphate buffer (pH 4.66) with 1 mg / ml BSA endotoxin concentration 65 EU / ml
4. (Fig. 9 bis 10) Abreicherung aus Handels-Lysozym4. (Fig. 9 to 10) depletion from commercial lysozyme
Feed: 20 ml 20 mM Phosphatpuffer (pH 7) mit 1 mg/ml Lysozym - .16 c -Feed: 20 ml 20 mM phosphate buffer (pH 7) with 1 mg / ml lysozyme - .16 c -
Endotoxinkonzentration 134 EU/mlEndotoxin concentration 134 EU / ml
Proteinwiederfindung LysozymProtein recovery lysozyme
5. (Fig. 11 bis 12) Abreicherung aus MAX 16 H 55. (Fig. 11 to 12) depletion from MAX 16 H 5
Feed: 20 ml 20 mM Phosphatpuffer (pH 5,5) mit 3 mg/ml Protein Endotoxinkonzentration 62,5 EU/mlFeed: 20 ml 20 mM phosphate buffer (pH 5.5) with 3 mg / ml protein endotoxin concentration 62.5 EU / ml
Proteinwiederfindung IgGProtein recovery IgG
6. Abreicherung aus bereits aufgereinigtem bFGF Feed: 5 ml bFGF, das 9 EU/ml enthielt6. Depletion from already purified bFGF feed: 5 ml bFGF, which contained 9 EU / ml
Es wurde das Abreicherungsverfahren einer PEI-Filterschicht untersucht. Im Filtrat waren noch 0,202 EU/ml nachweisbar.The depletion process of a PEI filter layer was examined. 0.202 EU / ml was still detectable in the filtrate.
7. Abreicherung aus Milli-Q-Wasser, das mit Endotoxin versetzt wurde7. Depletion from Milli-Q water that has been treated with endotoxin
Feed: 1 1 Wasser mit 270 EU/ml versetztFeed: 1 1 water mixed with 270 EU / ml
Zur Abreicherung wurden eine PEI- und eine DAHHis-Filterschicht eingesetzt. PEI-Filtrat: < 0,015 EU/ml DAHHis-Filtrat: 0,07 EU/ml A PEI and a DAHHis filter layer were used for depletion. PEI filtrate: <0.015 EU / ml DAHHis filtrate: 0.07 EU / ml

Claims

Patentansprüche claims
1. Mikrofiltrationsfilterschicht zur Abtrennung von Endotoxinen aus flüssigen Medien, insbesondere Wasser, Proteinlösungen oder Parenteralien, gekennzeichnet durch kovalent gebundene Liganden für Endotoxine, wobei die Liganden von einem Polymeren getragen werden, das auf dem Filterschichtmaterial aufgebracht ist.1. Microfiltration filter layer for separating endotoxins from liquid media, in particular water, protein solutions or parenterals, characterized by covalently bound ligands for endotoxins, the ligands being carried by a polymer which is applied to the filter layer material.
2. Mikrofiltrationsfilterschicht nach Anspruch 1, gekennzeichnet durch2. Microfiltration filter layer according to claim 1, characterized by
(a) einen endotoxin-spezifischen Liganden, vorzugsweise Hist- amin, Histidin, Polyethylenimin, Poly-L-lysin oder Polymyxin B und/oder (b) einen per se nicht-endotoxin-spezifischen Liganden, vorzugsweise Diaminohexan, Diethylaminoethyl oder Desoxycholat .(a) an endotoxin-specific ligand, preferably histamine, histidine, polyethyleneimine, poly-L-lysine or polymyxin B and / or (b) a non-endotoxin-specific ligand per se, preferably diaminohexane, diethylaminoethyl or deoxycholate.
3. Mikrofiltrationsfilterschicht nach Anspruch 1 oder 2, gekennzeichnet durch Polysaccharide, z.B. Zellulose, insbesondere regenerierte und mikrokristalline Zellulose und -derivate, insbesondere Zelluloseacetat , Agarose und -derivate, quervernetztes Dextran und -derivate, Chitosan und -derivate,3. microfiltration filter layer according to claim 1 or 2, characterized by polysaccharides, e.g. Cellulose, in particular regenerated and microcrystalline cellulose and derivatives, in particular cellulose acetate, agarose and derivatives, crosslinked dextran and derivatives, chitosan and derivatives,
Synthetische organische Polymere, z.B. Polyacrylnitril , Polysul- fon, Polyamid, insbesondere Nylon, Polyvinylalkohol , Polyethy- lenvinylalkohol, Polystyrol und Polyacrylate sowie deren Derivate,Synthetic organic polymers, e.g. Polyacrylonitrile, polysulfone, polyamide, in particular nylon, polyvinyl alcohol, polyethylene vinyl alcohol, polystyrene and polyacrylates and their derivatives,
Anorganische Materialien, z.B. Kieselgel, Glas und keramische Träger sowie deren Derivate als Filterschichtmaterial.Inorganic materials, e.g. Silica gel, glass and ceramic supports as well as their derivatives as filter layer material.
4. Mikrofiltrationsfilterschicht nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein hydrophiles Polymeres, insbesondere Dextran, Polyvinylalkohol oder modifizierte Zellulose, vorzugsweise Hydroxyethylzellulose .4. microfiltration filter layer according to one of the preceding claims, characterized by a hydrophilic polymer, in particular dextran, polyvinyl alcohol or modified cellulose, preferably hydroxyethyl cellulose.
5. Mikrofiltrationsfilterschicht nach Anspruch 4, dadurch gekennzeichnet, daß das hydrophile Polymere für sich wasserlöslich oder wasserunlöslich ist.5. microfiltration filter layer according to claim 4, characterized in that the hydrophilic polymer is itself water-soluble or water-insoluble.
6. Mikrofiltrationsfilterschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Polymere von der Filterschicht mit Hilfe eines Spacers getragen wird.6. Microfiltration filter layer according to one of the preceding claims, characterized in that the polymer is carried by the filter layer with the aid of a spacer.
7. Mikrofiltrationsfilterschicht nach Anspruch 6, gekennzeichnet durch einen sich von Bisoxiran, Glutardialdehyd, Epihalogenhy- drin oder Diisocyanat herleitenden Spacer. 7. Microfiltration filter layer according to claim 6, characterized by a spacer derived from bisoxirane, glutardialdehyde, epihalohydrin or diisocyanate.
8. Mikrofiltrationsfilterschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Liganden von dem Polymeren mit Hilfe eines Spacers getragen werden.8. Microfiltration filter layer according to one of the preceding claims, characterized in that the ligands are carried by the polymer with the aid of a spacer.
9. Mikrofiltrationsfilterschicht nach Anspruch 8, gekennzeichnet durch einen sich von Bisoxiran, Glutardialdehyd, Epihalogenhy- drin oder Diisocyanat herleitenden Spacer, gegebenenfalls nach oxidativer Aktivierung.9. Microfiltration filter layer according to claim 8, characterized by a spacer derived from bisoxirane, glutardialdehyde, epihalohydrin or diisocyanate, optionally after oxidative activation.
10. Verwendung einer Mikrofiltrationsfilterschicht gemäß einem der vorhergehenden Ansprüche zum Entfernen von Endotoxinen aus flüssigen Medien, insbesondere aus Wasser, Proteinlösungen oder Parenteralien. 10. Use of a microfiltration filter layer according to one of the preceding claims for removing endotoxins from liquid media, in particular from water, protein solutions or parenterals.
PCT/EP1998/005974 1997-09-17 1998-09-18 Microfiltration filter layer for separating endotoxins and the use of said microfiltration filter layer WO2000016897A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19740770A DE19740770A1 (en) 1997-09-17 1997-09-17 Microfiltration layer for removing endotoxins from liquids
PCT/EP1998/005974 WO2000016897A1 (en) 1997-09-17 1998-09-18 Microfiltration filter layer for separating endotoxins and the use of said microfiltration filter layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19740770A DE19740770A1 (en) 1997-09-17 1997-09-17 Microfiltration layer for removing endotoxins from liquids
PCT/EP1998/005974 WO2000016897A1 (en) 1997-09-17 1998-09-18 Microfiltration filter layer for separating endotoxins and the use of said microfiltration filter layer

Publications (1)

Publication Number Publication Date
WO2000016897A1 true WO2000016897A1 (en) 2000-03-30

Family

ID=26040025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/005974 WO2000016897A1 (en) 1997-09-17 1998-09-18 Microfiltration filter layer for separating endotoxins and the use of said microfiltration filter layer

Country Status (2)

Country Link
DE (1) DE19740770A1 (en)
WO (1) WO2000016897A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511354A (en) * 1999-09-29 2003-03-25 ガンブロ ディアリサトレン ゲーエムベーハー ウント コンパニー カーゲー Endotoxin removal method in vitro
CN104379242A (en) * 2012-02-29 2015-02-25 沃特曼有限责任公司 Membrane filter including bile acid and method of manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258944A1 (en) 2002-12-17 2004-07-01 B. Braun Medizintechnologie Gmbh Device for removing bacterial toxins from blood or plasma, useful for treating sepsis, also for analysis and diagnosis, includes hollow fiber material for selective binding of the toxins
EP1602387B1 (en) * 2004-06-03 2007-03-14 B. Braun Medizintechnologie GmbH Device for removal of bacterial lipopolysaccharides and/or lipoteichonic acids from liquids containing proteins and use for the manufacture of means for the removal of these compounds
MY144940A (en) * 2005-01-25 2011-11-30 Avantor Performance Mat Inc Chromatographic media

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2092470A (en) * 1981-02-10 1982-08-18 Tanabe Seiyaku Co Method for reducing the pyrogen content of or removing pyrogens from solutions contaminated therewith
EP0110409A2 (en) * 1982-12-02 1984-06-13 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Adsorbent and process for preparing the same
EP0328256A1 (en) * 1988-01-21 1989-08-16 Owens-Corning Fiberglas Corporation Glass fibers coated with agarose for use as column packing or chromatographic media for bioseparations
EP0418517A2 (en) * 1989-08-09 1991-03-27 Daicel Chemical Industries, Ltd. Separating membrane and separation method
EP0424698A1 (en) * 1989-10-03 1991-05-02 Fresenius AG Adsorbent for removing biomacromolecules, particularly LDL and endotoxines, from whole blood in extracorporeal circuit
DE4113602A1 (en) * 1991-04-23 1992-10-29 Falkenhagen Dieter Dr Sc Med Highly selective endotoxin adsorber - consists of bead-like water swollen cellulose prod. contg. polyethylene-imine as the functional ligand
DE19609479A1 (en) * 1996-03-11 1997-09-18 Biotechnolog Forschung Gmbh Endotoxin-specific membranes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2092470A (en) * 1981-02-10 1982-08-18 Tanabe Seiyaku Co Method for reducing the pyrogen content of or removing pyrogens from solutions contaminated therewith
EP0110409A2 (en) * 1982-12-02 1984-06-13 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Adsorbent and process for preparing the same
EP0328256A1 (en) * 1988-01-21 1989-08-16 Owens-Corning Fiberglas Corporation Glass fibers coated with agarose for use as column packing or chromatographic media for bioseparations
EP0418517A2 (en) * 1989-08-09 1991-03-27 Daicel Chemical Industries, Ltd. Separating membrane and separation method
EP0424698A1 (en) * 1989-10-03 1991-05-02 Fresenius AG Adsorbent for removing biomacromolecules, particularly LDL and endotoxines, from whole blood in extracorporeal circuit
DE4113602A1 (en) * 1991-04-23 1992-10-29 Falkenhagen Dieter Dr Sc Med Highly selective endotoxin adsorber - consists of bead-like water swollen cellulose prod. contg. polyethylene-imine as the functional ligand
DE19609479A1 (en) * 1996-03-11 1997-09-18 Biotechnolog Forschung Gmbh Endotoxin-specific membranes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511354A (en) * 1999-09-29 2003-03-25 ガンブロ ディアリサトレン ゲーエムベーハー ウント コンパニー カーゲー Endotoxin removal method in vitro
JP4709452B2 (en) * 1999-09-29 2011-06-22 ガンブロ ディアリサトレン ゲーエムベーハー Endotoxin removal method
CN104379242A (en) * 2012-02-29 2015-02-25 沃特曼有限责任公司 Membrane filter including bile acid and method of manufacturing same
CN104379242B (en) * 2012-02-29 2017-04-19 沃特曼有限责任公司 Membrane filter including bile acid and method of manufacturing same

Also Published As

Publication number Publication date
DE19740770A1 (en) 1999-03-18

Similar Documents

Publication Publication Date Title
DE3382834T3 (en) Sorbent and its production process
EP0739630B1 (en) Process for the simultaneous elimination of tumor necrosis factor alpha and bacterial lipopolysaccharides from whole blood and/or blood plasma
DE3115608C2 (en) Device for the adsorption of blood proteins
DE60306135T2 (en) IMPROVED SEPARATION
EP1923117A2 (en) Filtering material and method for the production thereof, a filter and filtering method
EP2389242B1 (en) Sorbent for endotoxins
EP2585132B1 (en) Novel sorbent for endotoxins
DE69837993T2 (en) ADSORBENTS FOR TOXIC SHOCKSYNDROME TOXIN-1, METHOD FOR REMOVING TOXIN BY ADSORBTION
KR930000269B1 (en) Seperating membrane and seperation method
DE2840503A1 (en) MATERIAL FOR REVERSIBLE FIXATION OF BIOLOGICAL MACROMOLECULES, METHOD OF ITS MANUFACTURING AND USE
EP0424698B1 (en) Adsorbent for removing biomacromolecules, particularly LDL and endotoxines, from whole blood in extracorporeal circuit
DE3412616A1 (en) ADSORBENS FOR AUTO-ANTIBODY AND IMMUNE COMPLEXES, THE ADSORPTION DEVICE CONTAINING THEM AND THE BLOOD CLEANER CONTAINING THIS
EP2679301A1 (en) Extracorporeal perfusion device
DE69734749T2 (en) DEVICE WITH ADSORBENS FOR THE ADSORPTIVE REMOVAL OF ILLNESSIFICATED FACTORS IN BODY FLUIDS
WO2000016897A1 (en) Microfiltration filter layer for separating endotoxins and the use of said microfiltration filter layer
EP0888172A1 (en) Endotoxin-specific membranes
DE60131710T2 (en) Methods of adsorption and removal, and use of an adsorbent for endogenous cannabinoids
DE19900681A1 (en) Production of an endotoxin-free nucleic acid solution comprises binding nucleic acids on a microporous weakly basic anion-exchange membrane and eluting them with buffer of high ionic strength
DE10258944A1 (en) Device for removing bacterial toxins from blood or plasma, useful for treating sepsis, also for analysis and diagnosis, includes hollow fiber material for selective binding of the toxins
EP0222146B1 (en) Selective adsorbent for binding immunocouplers
DE4209988A1 (en) Endotoxin adsorber having high binding capacity - comprises polyethyleneimine bonded to porous carrier, esp. polysaccharide
EP1602387B1 (en) Device for removal of bacterial lipopolysaccharides and/or lipoteichonic acids from liquids containing proteins and use for the manufacture of means for the removal of these compounds
DE10053553C2 (en) Device for the detection and enrichment of biomolecules
DE10262333B4 (en) Device for removing bacterial toxins from blood or plasma, useful for treating sepsis, also for analysis and diagnosis, includes hollow fiber material for selective binding of the toxins
DE10065241A1 (en) Production of adsorbers used for the extracoporeal purification of blood comprises converting carbonate activated carriers with a relatively low degree of activation with protein A in strong salt-containing buffers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase