WO2000015545A1 - Procede de modulation de la forme de particules de synthese et de preparation de materiaux et de dispositifs contenant des nanostructures et des particules orientees anisotropiques - Google Patents

Procede de modulation de la forme de particules de synthese et de preparation de materiaux et de dispositifs contenant des nanostructures et des particules orientees anisotropiques Download PDF

Info

Publication number
WO2000015545A1
WO2000015545A1 PCT/RU1999/000091 RU9900091W WO0015545A1 WO 2000015545 A1 WO2000015545 A1 WO 2000015545A1 RU 9900091 W RU9900091 W RU 9900091W WO 0015545 A1 WO0015545 A1 WO 0015545A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
chasτits
magnetic
chasτitsy
production
Prior art date
Application number
PCT/RU1999/000091
Other languages
English (en)
Russian (ru)
Inventor
Sergei Pavlovich Gubin
Alexandr Jurievich Obydenov
Evgeny Sergeevich Soldatov
Artem Sergeevich Trifonov
Vladimir Viktorovich Khanin
Gennady Borisovich Khomutov
Original Assignee
Isle Nano-Electronics Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isle Nano-Electronics Limited filed Critical Isle Nano-Electronics Limited
Priority to AU33480/99A priority Critical patent/AU3348099A/en
Publication of WO2000015545A1 publication Critical patent/WO2000015545A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]

Definitions

  • Dispersed condensed and liquid materials including non-organic ones, including metal, micropores and nanoparticles, are used in large quantities. These materials, in particular, include magnetic and electrical fluids. ⁇ e ⁇ all ⁇ lime ⁇ y, na ⁇ ime ⁇ , ⁇ imenyayu ⁇ ⁇ a ⁇ ele ⁇ v ⁇ dyaschie ⁇ lei, ge ⁇ me ⁇ i ⁇ i, zaschi ⁇ nye la ⁇ as ⁇ chnye ⁇ y ⁇ iya and e ⁇ any for zaschi ⁇ y ⁇ ⁇ azlichny ⁇ ⁇ a ⁇ v outer s ⁇ edy ( ⁇ ziya, ele ⁇ magni ⁇ nye ⁇ lya i ⁇ nizi ⁇ uyuschie and radiation), and for izg ⁇ vleniya de ⁇ aley elemen ⁇ v ⁇ azlichny ⁇ me ⁇ anizm ⁇ v and ⁇ ib ⁇ v. Magnetic film materials are mainly used as carriers of information recorded by magnetic media. Such a rule, as
  • the properties of the material depend to a large extent on the use of the metal, the size and the size of the particles, the distribution and the use of the parts.
  • the quality of the magnetic products obtained is subject to such parameters as smoothness and mechanical strength.
  • Magnetic particles included in the composition of the dispersed material have a tendency for the formation of aggregates.
  • the provision of such aggregation is necessary to reduce the effective size of the magnetic particles and to increase the magnitude of the material, which is important for increasing the magnitude of
  • the liquid magnetic material applied to the solid support is generated by an external magnetic field and is suitable for use. Then the magnetic storage can be handled mechanically in order to reduce its thickness and increase the smoothness of the surface. In addition, additional equipment can be used to improve the mechanical properties of the material.
  • the method of receiving the magnetic film material containing the inorganic magnetic particles is known (Automatic 160 particles). This method is used for receiving ⁇ 00/15545 ⁇ / ⁇ 99 / 00091
  • the particle received is not controllable in the process of radiation.
  • the well-known process includes a number of labor-consuming and long-lasting stages, which makes it profitable and inefficient. It is not possible for a well-known method to receive a two-dimensional planar system of magnetic particles (ground) anisotropic with a narrow separation of devices.
  • the material obtained by such a method may be a large volumetric dispersed dispersal material.
  • Izves ⁇ ny ⁇ a ⁇ zhe s ⁇ s ⁇ by ⁇ lucheniya me ⁇ alls ⁇ de ⁇ zhaschi ⁇ chas ⁇ its and ⁇ len ⁇ ⁇ u ⁇ em ⁇ azl ⁇ zheniya is ⁇ dny ⁇ me ⁇ all ⁇ ganiches ⁇ i ⁇ and ⁇ dinatsi ⁇ nny ⁇ s ⁇ edineny (na ⁇ ime ⁇ , ⁇ a ⁇ b ⁇ nil ⁇ v me ⁇ all ⁇ v) ⁇ d deys ⁇ viem vneshni ⁇ v ⁇ zdeys ⁇ vy, ⁇ a ⁇ i ⁇ , ⁇ a ⁇ v ⁇ ss ⁇ an ⁇ vlenie, nag ⁇ evanie, ul ⁇ azvu ⁇ v ⁇ e v ⁇ zdeys ⁇ vie or ⁇ bluchenie in ⁇ beme ⁇ as ⁇ v ⁇ i ⁇ elya with ⁇ ganiches ⁇ imi and ⁇ lime ⁇ nymi ⁇ m ⁇ nen ⁇ ami.
  • iron-containing particles are obtained by the decomposition of iron-organic compounds, as well as storage of iron, in particular, the storage of iron.
  • the device used is a product of a dielectric constant of 1, 7 - 20 and must be used for inexperienced patients.
  • each particle that is parted in is shorter than the normal, short-lived one, which serves as a buffer layer, which prevents the particles from sticking together and multiplying.
  • derivatives were used, in particular, a mixture of meta-chemicals.
  • particles in the volume of the material are formed by ordered structures in the form of chains, as linear, as well as cyclic. If the metal is usually supplied from 0.5% to 5% (maximum 10%) of the weight of the entire train. To reduce the storage of iron in the process of forming nanoparticles, in this way, it is possible to influence the source mixture with electromagnetic radiation or to heat up to a temperature of 110 ° C.
  • the productive power of the obtained volumetric material was around 300 E.
  • the material may be a large volumetric, disperse material.
  • the form obtained by such a method of particles is close to spherical and cannot be changed in the course of the material receipt.
  • a magneto-elec- tro-process fluid provides a special suspension of particles, which has a magnetic core that is excluded from the electrolyte.
  • the dispersion of such particulate matter is treated as a particulate active substance, and the particulate matter is suspended in an electrically insulating fluid.
  • ⁇ s ⁇ ve ⁇ s ⁇ vii with the s ⁇ s ⁇ b ⁇ m is ⁇ dnye chas ⁇ itsy - ⁇ e ⁇ 2 e ⁇ dis ⁇ e ⁇ gi ⁇ valis in ⁇ as ⁇ v ⁇ e ⁇ S ⁇ for ⁇ bes ⁇ echeniya ⁇ azdeleniya ag ⁇ egi ⁇ vavshi ⁇ chas ⁇ its.
  • the particles ⁇ are less than 2 0 3 positively charged, and the particles of the earthly earth are negative.
  • electrically charged electrical components with a long overcharge are in use in this invention.
  • the magnetic particles are activated by the operation of an external magnetic magnet for the purpose of servicing.
  • the aforementioned type of equipment is a size, a size, a size of a magnetic unit, and a small size of a size of a
  • the shape and structure of the magnetic particles used in this process is not controlled in the process of their irradiation and cannot be changed in the process
  • the minimum distance between the particles in the material is 14 nm, which eliminates the need for a more compact package in the material. ⁇ ⁇ 00/15545 ⁇ / ⁇ 9 / 00091
  • the compact size of the disk which is located on a single bit of information, is about 1, 2x0.104 mkm 2 . It is considered possible to achieve a flat footprint of UXI 9 bit / sq. an inch using a traditional, comprehensive recording technology.
  • one “bi” will occupy an area of 1x0.07 ⁇ m 2 , and the film thickness will be 30 nm ⁇ . ⁇ . , ⁇ TL fruct ⁇ ⁇ . ⁇ . , S ⁇ t ⁇ e ⁇ ou ⁇ at ⁇ sz ⁇ 'te ⁇ zs ⁇ s ta ⁇ e ⁇ 5, ⁇ guz ⁇ sz ⁇ u, 1995, V. 48, ⁇ 4, ⁇ . 43-48].
  • magnetic recording materials are processed; P ⁇ i ⁇ a ⁇ m s ⁇ s ⁇ be za ⁇ isi ⁇ bem magni ⁇ ny ⁇ chas ⁇ its and s ⁇ ve ⁇ s ⁇ venn ⁇ , magni ⁇ naya ene ⁇ giya, m ⁇ zhe ⁇ by ⁇ increased on account of the increase ⁇ lschiny magni ⁇ n ⁇ g ⁇ ⁇ y ⁇ iya (and s ⁇ ve ⁇ s ⁇ venn ⁇ , e ⁇ e ⁇ ivn ⁇ g ⁇ ⁇ bema magni ⁇ n ⁇ g ⁇ ma ⁇ e ⁇ iala) ⁇ i decrease diame ⁇ a ve ⁇ i ⁇ aln ⁇ ⁇ ien ⁇ i ⁇ vanny ⁇ magni ⁇ ny ⁇ chas ⁇ its.
  • magnetic particles with sizes of ⁇ 100 nm and more are multi-particles. With a decrease in particle size, the situation arises, when a particle cannot have more than one home and such particles are called single-unit or sub-unit.
  • Magnetic properties of one-sided particles are interconnected by their magnetic elements with an external field. Factors that determine the magnetic power of the magnetic particles are: crystalline and solid anisotropy, anisotropism, voltage and exchange. ⁇ In connection with this, it is important to develop methods for correcting magnetic particles and to produce anisotropic magnetic particles with the aim of improving the magnetic components.
  • nas ⁇ yaschem s ⁇ s ⁇ be ⁇ ea ⁇ tsii nu ⁇ leatsii and ⁇ s ⁇ a chas ⁇ its, ⁇ tsessy i ⁇ ⁇ ien ⁇ atsii, ⁇ mi ⁇ vaniya u ⁇ yad ⁇ chenny ⁇ ensembles chas ⁇ its and lineyny ⁇ ⁇ yazhenny ⁇ nan ⁇ s ⁇ u ⁇ u ⁇ ⁇ v ⁇ dya ⁇ sya ⁇ d deys ⁇ viem vneshni ⁇ ele ⁇ iches ⁇ i ⁇ or ele ⁇ iches ⁇ i ⁇ and magni ⁇ ny ⁇ ⁇ ley.
  • the control of the processes of the growth and the process of particles is carried out with the help of external electric and magnetic fields, and the variation of the environment is unavailable.
  • the method may sometimes be concluded in the formation of a system of initial reagents and compounds that regulate the processes of synthesis and stabilization of particles, as well as the property of the company
  • Particulate matter occurs as a result of effective bimolecular disruptions of inactive parti- cles and in the case of fatal illness.
  • inactive parti- cles and in the case of fatal illness.
  • reagents different types of ⁇ and ⁇ ⁇ 00/15545 ⁇ / ⁇ 9 / 00091
  • Usl ⁇ viem aniz ⁇ n ⁇ g ⁇ ⁇ s ⁇ a chas ⁇ its on account ⁇ ine ⁇ iches ⁇ i ⁇ ⁇ a ⁇ v yavlyae ⁇ sya ne ⁇ dina ⁇ v ⁇ s ⁇ value s ⁇ s ⁇ i ⁇ s ⁇ a chas ⁇ itsy ⁇ ⁇ for ⁇ azlichny ⁇ na ⁇ avleni ⁇ , ⁇ i ⁇ si ⁇ vanny ⁇ ⁇ n ⁇ si ⁇ eln ⁇ ⁇ ela and ⁇ ve ⁇ n ⁇ s ⁇ i chas ⁇ itsy.
  • MOBILITY OF SUCH PARTICLES BECOMES A TENSOR VALUE. Izves ⁇ n ⁇ , na ⁇ ime ⁇ , ch ⁇ in magni ⁇ ny ⁇ zhid ⁇ s ⁇ ya ⁇ , ⁇ eds ⁇ avlyayuschi ⁇ s ⁇ b ⁇ y sus ⁇ enziyu s ⁇ abilizi ⁇ vanny ⁇ ⁇ ll ⁇ idny ⁇ ⁇ dn ⁇ d ⁇ menny ⁇ magni ⁇ ny ⁇ chas ⁇ its, ⁇ e ⁇ itsien ⁇ ⁇ anslyatsi ⁇ nn ⁇ y di ⁇ uzii chas ⁇ its vd ⁇ l na ⁇ avleniya vneshneg ⁇ magni ⁇ n ⁇ g ⁇ ⁇ lya susches ⁇ venn ⁇ uvelichivae ⁇ sya, and ⁇ e ⁇ echn ⁇ m ⁇ lyu na ⁇ avlenii umenynae ⁇ sya.
  • chain units are characteristic, for example, for a system of single-magnetic magnetic particles (they are described, for example, in the above mentioned patent, 34.2 ° C). In the absence of external magnetic field, the average length of the chains is small and they are randomly generated.
  • na ⁇ avlenie di ⁇ ln ⁇ g ⁇ m ⁇ men ⁇ a ⁇ y ⁇ effe ⁇ ivn ⁇ ⁇ i ⁇ si ⁇ van ⁇ ⁇ n ⁇ si ⁇ eln ⁇ ⁇ ela chas ⁇ itsy on account d ⁇ s ⁇ a ⁇ chn ⁇ b ⁇ lsh ⁇ y value ene ⁇ ge ⁇ iches ⁇ g ⁇ ba ⁇ e ⁇ a aniz ⁇ ii ⁇ , ⁇ ien ⁇ atsiya di ⁇ ln ⁇ g ⁇ m ⁇ men ⁇ a external ⁇ lem ⁇ znachae ⁇ ⁇ edelennuyu ⁇ s ⁇ ans ⁇ vennuyu ⁇ ien ⁇ atsiyu sam ⁇ y chas ⁇ itsy.
  • Spherical magnetic flux due to the action of a single external magnetic field takes up elongated external stress and increases the stress ⁇ a ⁇ im ⁇ b ⁇ az ⁇ m minimum magni ⁇ s ⁇ a ⁇ iches ⁇ ene ⁇ gii am ⁇ n ⁇ y magni ⁇ n ⁇ y chas ⁇ itsy v ⁇ external magni ⁇ n ⁇ m ⁇ le s ⁇ ve ⁇ s ⁇ vue ⁇ imenn ⁇ ⁇ a ⁇ y its ⁇ ien ⁇ atsii, ⁇ i e ⁇ m value e ⁇ y ene ⁇ gii ⁇ ⁇ (and s ⁇ ve ⁇ s ⁇ venn ⁇ , ⁇ imiches ⁇ g ⁇ ⁇ entsiala) bude ⁇ less in chas ⁇ its, imeyuschi ⁇ b ⁇ lee vy ⁇ yanu ⁇ uyu ⁇ mu (and s ⁇ ve ⁇ s ⁇ venn ⁇ smaller size magnetization factor).
  • ⁇ ⁇ , 1 / 2 ⁇ 0 ⁇ .. 2 ( ⁇ 2 - ⁇ 1)
  • ⁇ , ⁇ and 2 - ⁇ e ⁇ itsien ⁇ y ⁇ azmagnichivaniya vd ⁇ l mal ⁇ y and b ⁇ lyn ⁇ y ⁇ sey elli ⁇ s ⁇ ida ( ⁇ chevidn ⁇ for s ⁇ e ⁇ iches ⁇ y chas ⁇ itsy ⁇ ⁇ 0)) chas ⁇ itsy, ⁇ is ⁇ dyaschie ⁇ i varying the body of the particle is relatively negative in its direction and contributes to ⁇ , and also ⁇ ⁇ 00/15545 ⁇ / ⁇ 9 / 00091
  • this energy is included in the exponent in relation to (1); ⁇ a ⁇ e strengthening effect vneshni ⁇ ele ⁇ iches ⁇ i ⁇ and magni ⁇ ny ⁇ ⁇ ley on ⁇ tsessy ag ⁇ egatsii chas ⁇ its ⁇ i i ⁇ ⁇ dn ⁇ v ⁇ emenn ⁇ m deys ⁇ vii on sus ⁇ enziyu s ⁇ abilizi ⁇ vanny ⁇ ⁇ ll ⁇ idny ⁇ ⁇ v ⁇ dyaschi ⁇ ⁇ e ⁇ magni ⁇ ny ⁇ chas ⁇ its ⁇ isan ⁇ , na ⁇ ime ⁇ in u ⁇ minavshi ⁇ sya above ⁇ a ⁇ en ⁇ a ⁇ SSH ⁇ ⁇ _ 5,523,157 and 5,714,084.
  • v ⁇ lyuchayuschey is ⁇ dnye ⁇ eagen ⁇ y, s ⁇ abilizi ⁇ uyuschie ⁇ ve ⁇ n ⁇ s ⁇ n ⁇ -a ⁇ ivnye s ⁇ edineniya, ⁇ as ⁇ v ⁇ i ⁇ el, ⁇ lime ⁇ izuyuschiesya ⁇ m ⁇ nen ⁇ y, s ⁇ edineniya affecting ⁇ ine ⁇ i ⁇ u ⁇ e ⁇ aniya ⁇ imiches ⁇ i ⁇ ⁇ ea ⁇ tsy sin ⁇ eza ne ⁇ ganiches ⁇ i ⁇ chas ⁇ its, ⁇ azlichnye d ⁇ bav ⁇ i, ⁇ edelyayuschie me ⁇ aniches ⁇ ie ⁇ a ⁇ a ⁇ e ⁇ is ⁇ i ⁇ i ⁇ luchaem ⁇ g ⁇ ma ⁇ e ⁇ iala and improve eg ⁇
  • the active mixture may be packaged in a separate volume, and may also be applied in the form of a layer in a solid or liquid form.
  • a solid liquid mixture of the original reagents may be applied using known methods (for example, filling, skimming, etc.).
  • the operation of external fields can be augmented by magnetic and electrostatic disruptions, which contribute to an increase in reactivity.
  • Formation of the system of the original reagents in the form of a compen- sated complex structure by the Langmuir-Blagot system ensures that there is a better combination of them. In the latter case, at the boundary of the liquid-gas phase section, a mixed base of initial reagents is formed. THEN, THESE CONSUMERS ARE TRANSFERRED ON SURFACE OF SUSTAINABLE SERVICE.
  • the successive transfer of minerals of the reactive mixture makes it possible to increase the thickness of the reactive determinate.
  • dispersant a substance that converts to the like (as a rule for a multiplex) layer on the part of magnetic particles, which is inactive.
  • Different dispersive agents use different active compounds, including fatty acids, acid and oxygen.
  • 26 aryl compounds of metals and ⁇ . ⁇ .) are useful.
  • ⁇ az ⁇ usha ⁇ sya ⁇ d de ⁇ s ⁇ viem ⁇ azlichny ⁇ ⁇ iziches ⁇ i ⁇ v ⁇ zdeys ⁇ vi ⁇ , ⁇ a ⁇ i ⁇ , ⁇ a ⁇ increase ⁇ em ⁇ e ⁇ a ⁇ u ⁇ y s ⁇ edy, me ⁇ aniches ⁇ ie (a ⁇ s ⁇ iches ⁇ ie) v ⁇ zdeys ⁇ viya (in chas ⁇ n ⁇ s ⁇ n, ul ⁇ azvu ⁇ ) radiation ⁇ azlichn ⁇ y ⁇ i ⁇ dy (in ⁇ a ⁇ asn ⁇ g ⁇ , and ul ⁇ a ⁇ i ⁇ le ⁇ v ⁇ g ⁇ vidim ⁇ g ⁇ dia ⁇ az ⁇ n ⁇ v, ⁇ en ⁇ gen ⁇ vs ⁇ e radiation and ⁇ . ⁇ .) with vysv ⁇ b ⁇ zhdeniem a ⁇ m ⁇ v me ⁇ alla :
  • ⁇ e ⁇ alliches ⁇ ie and me ⁇ all-s ⁇ de ⁇ z haschie chas ⁇ itsy m ⁇ gu ⁇ sin ⁇ ezi ⁇ va ⁇ sya and d ⁇ ugimi izves ⁇ nymi me ⁇ dami, na ⁇ ime ⁇ , ele ⁇ imiches ⁇ imi, ⁇ u ⁇ em v ⁇ ss ⁇ an ⁇ vleniya me ⁇ alla of ⁇ as ⁇ v ⁇ v s ⁇ ley, ⁇ imiches ⁇ g ⁇ s ⁇ - ⁇ sazhdeniya in ⁇ as ⁇ v ⁇ e, ⁇ u ⁇ em va ⁇ uumn ⁇ g ⁇ na ⁇ yleniya, ⁇ sazhdeniya of ⁇ a ⁇ v with is ⁇ lz ⁇ vaniem ⁇ lazmenny ⁇ me ⁇ d ⁇ v and d ⁇ .
  • v ⁇ dyaschie in s ⁇ s ⁇ av is ⁇ dny ⁇ ⁇ eagen ⁇ v in zayavlyaem ⁇ m s ⁇ s ⁇ be, m ⁇ gu ⁇ ⁇ n ⁇ si ⁇ sya K-5 me ⁇ allam, p-me ⁇ allam, _ / - me ⁇ allam, / "-me ⁇ allam in chas ⁇ n ⁇ s ⁇ i, K ⁇ e ⁇ e ⁇ dnym me ⁇ allam, ⁇ ed ⁇ zemelnym me ⁇ allam, ⁇ la ⁇ in ⁇ vym me ⁇ allam Izves ⁇ n ⁇ , ch ⁇ s ⁇ mi ⁇ vanny on.
  • the convergence of the water phase is a mixed Langmu polyseman containing P ⁇ molecules and nanoparticles, including ⁇ ⁇ 00/15545 ⁇ / ⁇ 9 / 00091
  • components of the aqueous phase can be contacted with polar groups of Langmus P ⁇ i ⁇ vedenii ⁇ ea ⁇ tsi ⁇ sin ⁇ eza nan ⁇ chas ⁇ its in m ⁇ n ⁇ sl ⁇ e P ⁇ on g ⁇ anitse ⁇ azdela zhid ⁇ aya / gaz ⁇ vaya ⁇ aza, ⁇ a ⁇ ie ⁇ a ⁇ i ⁇ n- s ⁇ de ⁇ l aschie ⁇ m ⁇ le ⁇ sy P ⁇ na ⁇ dya ⁇ sya in dinamiches ⁇ m ⁇ avn ⁇ vesii and ⁇ bmenivayu ⁇ sya with m ⁇ le ⁇ ulami P ⁇ , ⁇ n ⁇ a ⁇ i ⁇ uyuschimi with ⁇ ve ⁇ n ⁇ s ⁇ yu sin ⁇ ezi ⁇ uemy ⁇ chas ⁇ its in ⁇ ezul ⁇ a ⁇ e cheg ⁇ ⁇ is ⁇ di ⁇ ⁇ e ⁇ en ⁇ s ⁇ a ⁇
  • This gas atmosphere may be inert or contain reagents involved in nanoparticle synthesis.
  • reagents involved in nanoparticle synthesis For example, for the interaction of atomic metal products for the separation of metallic compounds containing either C or C, or ⁇ ⁇ 00/15545 ⁇ / ⁇ 9 / 00091
  • composition and variation of the particles and / or equipment in various material layers may be differentiated by the specified method.
  • Separate particles that have been obtained are available, as well as ensembles of particles included in the construction of a larger group of receivers.
  • S ⁇ s ⁇ b ⁇ zv ⁇ lyae ⁇ ⁇ lucha ⁇ magnn ⁇ nye ma ⁇ e ⁇ ialy with uvelichenn ⁇ y ⁇ e ⁇ tsi ⁇ ivn ⁇ y sil ⁇ y on account sin ⁇ eza magni ⁇ ny ⁇ chas ⁇ its, ⁇ bladayuschi ⁇ znachi ⁇ eln ⁇ y aniz ⁇ iey ⁇ my, ⁇ ien ⁇ i ⁇ vany ⁇ in ⁇ s ⁇ ans ⁇ ve ne ⁇ b ⁇ dimym ⁇ b ⁇ az ⁇ m ⁇ n ⁇ si ⁇ eln ⁇ ⁇ dl ⁇ zh ⁇ i and ⁇ b ⁇ azuyuschi ⁇ u ⁇ yad ⁇ chennye tse ⁇ chechnye s ⁇
  • the resulting anisotropic particles are shown to be oriented by their easy magnetization in the direction set by external fields.
  • a good orientation of the magnetic particles is ensured by the polymerisation and curing of the material.
  • the material with the synthesized and varied particles is subject to the efforts that ensure the removal from it of unnecessarily larger ones () P ⁇ i e ⁇ m ⁇ ve ⁇ zhdenie and ⁇ lime ⁇ izatsiya ma ⁇ e ⁇ iala ⁇ v ⁇ di ⁇ sya ⁇ d deys ⁇ viem vneshni ⁇ ⁇ ley or ⁇ and ⁇ su ⁇ s ⁇ vie.
  • ⁇ a ⁇ ig. 2 Presented C-image of the microstrate of acid and iron particles in the process of the unit. Iron particles are synthesized by the operation of a single magnetic field for voltage of 3 KCE.
  • the original composition of the reactive mixture a mixture of its (C ⁇ ) 5 -stearic acid in a solution at a ratio of 15: 1 is equivalent.
  • the conditions for the radiation of the C ⁇ image are the same as in Fig. 1. a) the time of exposure to the radiation is 5 min. b) the time of exposure to the radiation is 10 min. ⁇ emperature 295 ⁇ . ⁇ a ⁇ ig. 3 Presented C-image of the consumer of stearic acid and iron-containing particles in the process of production of the unit.
  • Iron particles are synthesized by the operation of a parallel directional single magnetic starter for overloads of 3 heavy electric and / or light electrons
  • the original composition of the reactive mixture the mixture of its (C ⁇ ) 5 stearic acid in the solution at a ratio of 15: 1 is independent of the 5% of the radiation.
  • the conditions for the radiation of the C ⁇ image are the same as in Fig. 1. a) a view of the surface, b) a quasi-dimensional image. ⁇ emperature 295 ⁇ .
  • a C-image of a heavy industrial equipment (nanodevice) at the entrance to a political unit is provided. Iron-laden industrial devices are synthesized by the operation of a single-circuit magnetic field with a voltage of 6 minutes and a loss of energy of 363 hours.
  • the original composition of the reactive mixture the mixture of its (C ⁇ ) 5 -stearic acid in a solution at a ratio of 20: 1 is equivalent.
  • ⁇ n ⁇ sl ⁇ y s ⁇ ea ⁇ in ⁇ v ⁇ y ⁇ isl ⁇ y with sin ⁇ ezi ⁇ vannymi chas ⁇ itsami, ⁇ dzha ⁇ y d ⁇ pressure value ⁇ ve ⁇ n ⁇ s ⁇ n ⁇ g ⁇ ⁇ 30 m ⁇ / m me ⁇ d ⁇ m g ⁇ iz ⁇ n ⁇ aln ⁇ g ⁇ ⁇ g ⁇ uzheniya ⁇ dl ⁇ zh ⁇ i ⁇ e ⁇ en ⁇ silsya on ⁇ ve ⁇ d ⁇ elnuyu ⁇ dl ⁇ zh ⁇ u (svezhi ⁇ s ⁇ l ⁇ i ⁇ li ⁇ iches ⁇ g ⁇ g ⁇ a ⁇ i ⁇ a ⁇ azme ⁇ m 10x10 mm 2).
  • the size of the particles to a large extent depends on the time of irradiation of the bulk of the reactive mixture of the ultraviolet - with an increase in the time of the increase of the particle size, it increased by 2).
  • ⁇ niz ⁇ iya ⁇ my sin ⁇ ezi ⁇ uemy ⁇ chas ⁇ its susches ⁇ venn ⁇ v ⁇ z ⁇ as ⁇ ae ⁇ ⁇ i ⁇ dn ⁇ v ⁇ emenn ⁇ m deys ⁇ vii on ⁇ ea ⁇ tsi ⁇ nnuyu ⁇ blas ⁇ magni ⁇ n ⁇ g ⁇ and ele ⁇ iches ⁇ g ⁇ ⁇ le ⁇ , deys ⁇ vuyuschi ⁇ in ⁇ echenie v ⁇ emeni ⁇ svescheniya is ⁇ dny ⁇ ⁇ eagen ⁇ v ul ⁇ a ⁇ i ⁇ le ⁇ vym radiation ( ⁇ ig.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

Cette invention concerne un procédé qui permet de moduler la forme de particules de synthèse, et de produire des matériaux et des dispositifs contenant des nanostructures orientées et étendues. Ce procédé consiste à effectuer des processus de mise en forme et de croissance de particules sous l'action de champs électriques et magnétiques externes. Ce procédé permet de produire des particules discrètes, contenant des métaux et magnétiques, y compris des particules métalliques amorphes, dont la forme se modifie de manière prédéterminée. Les particules passent ainsi d'une forme de sphère ou de disque à une forme anisotropique, ellipsoïdale et aciculaire, les dimensions caractéristiques allant de un à plusieurs centaines de nanomètres. Ce procédé permet également de produire des grappes de particules en chaîne. Il est également possible de produire des nanostructures orientées, métalliques et en forme de fils (nanotubes) dont le diamètre transversal est approximativement de 10 nm ou moins, ainsi que des systèmes monocouche ou multicouches sur un substrat solide. Ce procédé peut être utilisé dans la production de matériaux métallo-polymères, y compris des matériaux de type film fin, que l'on utilise dans la fabrication d'éléments fonctionnels en électronique, en nanotechnologie, en électrotechnique ainsi que dans des systèmes et des dispositifs d'optique et d'optique non linéaire. Ce procédé peut également être utilisé dans la production de nouveaux éléments de mémoire magnétique et de supports d'informations magnétiques, ainsi que dans la production de particules colloïdales qui sont utilisées dans des fluides magnétiques et magnéto-rhéologiques et dans la production de revêtements absorbants et protecteurs.
PCT/RU1999/000091 1998-09-11 1999-03-30 Procede de modulation de la forme de particules de synthese et de preparation de materiaux et de dispositifs contenant des nanostructures et des particules orientees anisotropiques WO2000015545A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33480/99A AU3348099A (en) 1998-09-11 1999-03-30 Method for controlling the shape of synthesis particles and for producing materials and devices containing oriented anisotropic particles and nanostructures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU98117127 1998-09-11
RU98117127A RU2160697C2 (ru) 1998-09-11 1998-09-11 Способ управления формой синтезируемых частиц и получения материалов и устройств, содержащих ориентированные анизотропные частицы и наноструктуры (варианты)

Publications (1)

Publication Number Publication Date
WO2000015545A1 true WO2000015545A1 (fr) 2000-03-23

Family

ID=20210455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU1999/000091 WO2000015545A1 (fr) 1998-09-11 1999-03-30 Procede de modulation de la forme de particules de synthese et de preparation de materiaux et de dispositifs contenant des nanostructures et des particules orientees anisotropiques

Country Status (3)

Country Link
AU (1) AU3348099A (fr)
RU (1) RU2160697C2 (fr)
WO (1) WO2000015545A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080278B2 (en) 2005-09-23 2011-12-20 Siemens Aktiengesellschaft Cold gas spraying method
WO2013181648A1 (fr) * 2012-06-01 2013-12-05 Rudenko Pavlo Nanostructure comportant des côtés fonctionnellement différents

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009056401A1 (fr) * 2007-09-27 2009-05-07 Basf Se Nanoparticules de métal de transition isolables et redispersables, leur préparation et leur utilisation comme absorbeurs d'infrarouges
WO2009157793A1 (fr) * 2008-06-27 2009-12-30 Grebennikov Evgeny Petrovich Procédé permettant de réguler les propriétés optiques de matériaux nanocomposites
FI124440B (fi) * 2009-01-28 2014-08-29 Canatu Oy Rakenteita, jotka käsittävät korkean aspektisuhteen omaavia molekyylirakenteita, ja valmistusmenetelmiä
RU2475878C1 (ru) * 2011-08-04 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ФГБОУ ВПО "КубГУ") Полимерный магнитный материал, содержащий наночастицы кобальта
RU2492135C1 (ru) * 2012-02-28 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Способ обработки поверхностных наноструктур
RU2522883C2 (ru) * 2012-11-08 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ получения композиционного наноматериала на основе металлического железа в порах мезопористой матрицы, обладающего магнитными свойствами
RU2533330C1 (ru) * 2013-04-15 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Способ формирования нанопроводов из коллоидного естественно-природного материала

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281344A (en) * 1963-08-27 1966-10-25 Chevron Res Colloidal suspension of ferromagnetic iron particles
US4333961A (en) * 1981-04-30 1982-06-08 International Business Machines Corporation Preparation of thin, aligned magnetic coatings
EP0290177A1 (fr) * 1987-04-25 1988-11-09 Mitsubishi Petrochemical Co., Ltd. Procédé de production de poudre ultrafine de métal
JPH10208236A (ja) * 1997-01-21 1998-08-07 Xerox Corp 高密度磁気記録組成物および高密度磁気記録方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281344A (en) * 1963-08-27 1966-10-25 Chevron Res Colloidal suspension of ferromagnetic iron particles
US4333961A (en) * 1981-04-30 1982-06-08 International Business Machines Corporation Preparation of thin, aligned magnetic coatings
EP0290177A1 (fr) * 1987-04-25 1988-11-09 Mitsubishi Petrochemical Co., Ltd. Procédé de production de poudre ultrafine de métal
JPH10208236A (ja) * 1997-01-21 1998-08-07 Xerox Corp 高密度磁気記録組成物および高密度磁気記録方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080278B2 (en) 2005-09-23 2011-12-20 Siemens Aktiengesellschaft Cold gas spraying method
WO2013181648A1 (fr) * 2012-06-01 2013-12-05 Rudenko Pavlo Nanostructure comportant des côtés fonctionnellement différents
US10501327B2 (en) 2012-06-01 2019-12-10 Pavlo Rudenko Nanostructures with functionally different surfaces

Also Published As

Publication number Publication date
RU2160697C2 (ru) 2000-12-20
AU3348099A (en) 2000-04-03

Similar Documents

Publication Publication Date Title
Mørup et al. 1.04 Magnetic Nanoparticles
Leslie-Pelecky et al. Magnetic properties of nanostructured materials
Huber Synthesis, properties, and applications of iron nanoparticles
Joseph et al. Ferrofluids: synthetic strategies, stabilization, physicochemical features, characterization, and applications
EP1815251B1 (fr) Particules magnetiques sur mesure et leurs procede de production
Zeng et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles
Lu et al. Magnetic nanoparticles: synthesis, protection, functionalization, and application
Singamaneni et al. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications
US5889091A (en) Magnetic nanocompass compositions and processes for making and using
KR100477428B1 (ko) 자성화 장치 및 이를 이용한 자기 기록 매체
Zhu et al. Direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials
WO2000015545A1 (fr) Procede de modulation de la forme de particules de synthese et de preparation de materiaux et de dispositifs contenant des nanostructures et des particules orientees anisotropiques
Tourinho et al. Electric double layered magnetic fluids (EDL-MF) based on spinel ferrite nanostructures [(M1-x+ 2Fex+ 3)] A [(Fe2-x+ 3 Mx+ 2)] BO4-2
Balasubramanian et al. Synergistic computational and experimental discovery of novel magnetic materials
Nikitenko et al. Tailoring the properties of Fe− Fe3C Nanocrystalline particles prepared by sonochemistry
CN1399783A (zh) 磁性流体
Ren Magnetic Janus Particles and Their Applications
JP2006063347A (ja) 金属磁性粉およびその製造法
Zhou et al. Influence of a Magnetic Field on the Growth and Magnetic Properties of Zn0. 15Fe2. 85O4 Nanoparticle Chains
Patankar et al. Introduction and applications of magnetic nanoparticles
Xing Magnetic Hardening in the Transition Metal Nanoparticles and Nanowires
Krahne et al. Magnetic Properties of Nanorods
Reed Use of silicate shells to prevent sintering during thermally induced chemical ordering of iron platinum nanoparticles
Khurshid Synthesis and characterization of iron based nanoparticles for novel applications
Azam et al. Magnetic hardening and exchange bias effect in dual-phase Co3Mn nanowire arrays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IS JP KE KG KP KR LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK TR TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase