WO2000013221A1 - Process for optimizing mechanical strength of nanoporous silica - Google Patents
Process for optimizing mechanical strength of nanoporous silica Download PDFInfo
- Publication number
- WO2000013221A1 WO2000013221A1 PCT/US1999/018497 US9918497W WO0013221A1 WO 2000013221 A1 WO2000013221 A1 WO 2000013221A1 US 9918497 W US9918497 W US 9918497W WO 0013221 A1 WO0013221 A1 WO 0013221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkoxysilane
- organic solvent
- substrate
- gel composition
- glycol
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 54
- 239000000377 silicon dioxide Substances 0.000 title claims description 27
- 239000000203 mixture Substances 0.000 claims abstract description 79
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 239000003960 organic solvent Substances 0.000 claims abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000012298 atmosphere Substances 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims description 55
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000010703 silicon Substances 0.000 claims description 19
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 17
- 239000005977 Ethylene Substances 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 11
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 10
- 238000012986 modification Methods 0.000 claims description 10
- 230000004048 modification Effects 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 7
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- -1 alcohol amines Chemical group 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 6
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 6
- 150000003973 alkyl amines Chemical class 0.000 claims description 5
- 230000002209 hydrophobic effect Effects 0.000 claims description 5
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- YAXKTBLXMTYWDQ-UHFFFAOYSA-N 1,2,3-butanetriol Chemical compound CC(O)C(O)CO YAXKTBLXMTYWDQ-UHFFFAOYSA-N 0.000 claims description 3
- SZJXEIBPJWMWQR-UHFFFAOYSA-N 2-methylpropane-1,1,1-triol Chemical compound CC(C)C(O)(O)O SZJXEIBPJWMWQR-UHFFFAOYSA-N 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 claims description 3
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 150000004982 aromatic amines Chemical group 0.000 claims description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 2
- 229920005862 polyol Polymers 0.000 claims description 2
- 150000003077 polyols Chemical class 0.000 claims description 2
- 229920005591 polysilicon Polymers 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229940043375 1,5-pentanediol Drugs 0.000 claims 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 2
- SFRDXVJWXWOTEW-UHFFFAOYSA-N 2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)CO SFRDXVJWXWOTEW-UHFFFAOYSA-N 0.000 claims 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 claims 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims 1
- 239000010408 film Substances 0.000 description 78
- 239000002243 precursor Substances 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 239000003570 air Substances 0.000 description 15
- 235000012431 wafers Nutrition 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 13
- 229920006395 saturated elastomer Polymers 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 9
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 9
- 239000004809 Teflon Substances 0.000 description 9
- 229920006362 Teflon® Polymers 0.000 description 9
- 239000000908 ammonium hydroxide Substances 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- 238000000572 ellipsometry Methods 0.000 description 9
- 229910017604 nitric acid Inorganic materials 0.000 description 9
- 238000005057 refrigeration Methods 0.000 description 9
- 239000011800 void material Substances 0.000 description 9
- 230000032683 aging Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 7
- 230000008021 deposition Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- FBADCSUQBLLAHW-SOFGYWHQSA-N (e)-4-trimethylsilyloxypent-3-en-2-one Chemical compound CC(=O)\C=C(/C)O[Si](C)(C)C FBADCSUQBLLAHW-SOFGYWHQSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ASUDFOJKTJLAIK-UHFFFAOYSA-N 2-methoxyethanamine Chemical compound COCCN ASUDFOJKTJLAIK-UHFFFAOYSA-N 0.000 description 1
- JDMMZVAKMAONFU-UHFFFAOYSA-N 2-trimethylsilylacetic acid Chemical compound C[Si](C)(C)CC(O)=O JDMMZVAKMAONFU-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- YKFRUJSEPGHZFJ-UHFFFAOYSA-N N-trimethylsilylimidazole Chemical compound C[Si](C)(C)N1C=CN=C1 YKFRUJSEPGHZFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- PEGHITPVRNZWSI-UHFFFAOYSA-N [[bis(trimethylsilyl)amino]-dimethylsilyl]methane Chemical compound C[Si](C)(C)N([Si](C)(C)C)[Si](C)(C)C PEGHITPVRNZWSI-UHFFFAOYSA-N 0.000 description 1
- RQVFGTYFBUVGOP-UHFFFAOYSA-N [acetyloxy(dimethyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(C)OC(C)=O RQVFGTYFBUVGOP-UHFFFAOYSA-N 0.000 description 1
- CNOSLBKTVBFPBB-UHFFFAOYSA-N [acetyloxy(diphenyl)silyl] acetate Chemical compound C=1C=CC=CC=1[Si](OC(C)=O)(OC(=O)C)C1=CC=CC=C1 CNOSLBKTVBFPBB-UHFFFAOYSA-N 0.000 description 1
- TVJPBVNWVPUZBM-UHFFFAOYSA-N [diacetyloxy(methyl)silyl] acetate Chemical compound CC(=O)O[Si](C)(OC(C)=O)OC(C)=O TVJPBVNWVPUZBM-UHFFFAOYSA-N 0.000 description 1
- VLFKGWCMFMCFRM-UHFFFAOYSA-N [diacetyloxy(phenyl)silyl] acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)C1=CC=CC=C1 VLFKGWCMFMCFRM-UHFFFAOYSA-N 0.000 description 1
- BTHCBXJLLCHNMS-UHFFFAOYSA-N acetyloxysilicon Chemical compound CC(=O)O[Si] BTHCBXJLLCHNMS-UHFFFAOYSA-N 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- OLLFKUHHDPMQFR-UHFFFAOYSA-N dihydroxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](O)(O)C1=CC=CC=C1 OLLFKUHHDPMQFR-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- RSIHJDGMBDPTIM-UHFFFAOYSA-N ethoxy(trimethyl)silane Chemical compound CCO[Si](C)(C)C RSIHJDGMBDPTIM-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 1
- LWFWUJCJKPUZLV-UHFFFAOYSA-N n-trimethylsilylacetamide Chemical compound CC(=O)N[Si](C)(C)C LWFWUJCJKPUZLV-UHFFFAOYSA-N 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- FGWRMMTYIZKYMA-UHFFFAOYSA-N tert-butyl-hydroxy-dimethylsilane Chemical compound CC(C)(C)[Si](C)(C)O FGWRMMTYIZKYMA-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- WVMSIBFANXCZKT-UHFFFAOYSA-N triethyl(hydroxy)silane Chemical compound CC[Si](O)(CC)CC WVMSIBFANXCZKT-UHFFFAOYSA-N 0.000 description 1
- AAPLIUHOKVUFCC-UHFFFAOYSA-N trimethylsilanol Chemical compound C[Si](C)(C)O AAPLIUHOKVUFCC-UHFFFAOYSA-N 0.000 description 1
- MAEQOWMWOCEXKP-UHFFFAOYSA-N trimethylsilyl 2-trimethylsilyloxyacetate Chemical compound C[Si](C)(C)OCC(=O)O[Si](C)(C)C MAEQOWMWOCEXKP-UHFFFAOYSA-N 0.000 description 1
- QHUNJMXHQHHWQP-UHFFFAOYSA-N trimethylsilyl acetate Chemical compound CC(=O)O[Si](C)(C)C QHUNJMXHQHHWQP-UHFFFAOYSA-N 0.000 description 1
- LCNWHVJMIOOGTC-UHFFFAOYSA-N trimethylsilyl prop-2-ynoate Chemical compound C[Si](C)(C)OC(=O)C#C LCNWHVJMIOOGTC-UHFFFAOYSA-N 0.000 description 1
- NLSXASIDNWDYMI-UHFFFAOYSA-N triphenylsilanol Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(O)C1=CC=CC=C1 NLSXASIDNWDYMI-UHFFFAOYSA-N 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02203—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
- H01L21/02216—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31695—Deposition of porous oxides or porous glassy oxides or oxide based porous glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
Definitions
- the invention relates to nanoporous dielectric films and to a process for their manufacture. Such films are useful in the production of integrated circuits.
- Nanoporous silica as porous substrate, interlevel and intermetal dielectrics and, which have dielectric constants in the range of about 1 to 3.
- Nanoporous silica films are typically formed on substrates by methods such as dip-coating or spin-coating. Nanoporous silica is particularly attractive due to the ability to carefully control its pore size and pore distribution, and because it employs similar precursors such as tetraethoxysilane (TEOS), as is presently used for spin-on glass (SOG's), and CVD SiO 2 .
- TEOS tetraethoxysilane
- SOG's spin-on glass
- CVD SiO 2 tetraethoxysilane
- nanoporous silica offers other advantages for microelectronics, including thermal stability up to 900°C; small pore size ( « microelectronics features); use of materials, namely silica and its precursors, that are widely used in the semiconductor industry; the ability to tune dielectric constant over a wide range; and deposition using similar tools as employed for conventional spin-on glass processing.
- EP patent application EP 0 775 669 A2 which is incorporated herein by reference, shows a method for producing a nanoporous silica film with uniform density throughout the film thickness.
- a key parameter controlling property of importance for nanoporous silica dielectrics is porosity, the inverse of density. Higher porosity materials lead to a lower dielectric constant than dense materials. As porosity increases, density and dielectric constant decrease. However, the mechanical strength of the material decreases as well. Mechanical strength is essential for the production of integral circuits. During the fabrication of integral circuits, many layers of metal conductors and insulating dielectric films are deposited on a substrate. These layers must be able to endure multiple temperature changes at very high temperatures. This temperature cycling can produce high stress levels between the individual layers of the integral circuits due to thermal coefficient of expansion mismatches. Inadequate mechanical strength of any one of the layers can lead to cracking or delamination, which results in poor yield.
- a method is needed for producing a nanoporous film of adequate mechanical strength and low K to be used for producing adequate integral circuits.
- the present invention offers a solution to this problem. It has been unexpectedly found that heating a wet alkoxysilane gel composition in an organic solvent vapor atmosphere after deposition onto a substrate results in a nanoporous dielectric film of higher mechanical strength and lower K. According to the present invention, a wet alkoxysilane gel composition is formed on a suitable substrate and is placed in an organic solvent vapor atmosphere.
- the gel composition having extremely low mechanical strength, is then aged by heating in the solvent vapor atmosphere.
- the solvent vapor atmosphere prevents the gel composition from drying during heating.
- the aged alkoxysilane gel composition of this invention is then cured or dried. Using this process, a relatively uniform nanoporous silica film is produced having optimal mechanical strength and a low K.
- the invention provides a process for forming a nanoporous dielectric coating on a substrate which comprises:
- alkoxysilane gel composition comprises a combination of at least one alkoxysilane, an organic solvent composition, water, and an optional base catalyst;
- This invention still further provides a semiconductor device produced by the above process wherein the substrate is a semiconductor substrate.
- an alkoxysilane gel composition is formed on a surface of a substrate from at least one alkoxysilane, an organic solvent composition, water, and an optional base catalyst.
- the alkoxysilane gel composition may be formed on the surface of a substrate in a variety of ways.
- the alkoxysilane gel composition is formed by depositing a pre-formed mixture of an alkoxysilane, an organic solvent composition, water, and an optional base catalyst onto a surface of a substrate.
- a combined stream of alkoxysilane, organic solvent composition, and optional base catalyst is deposited onto the substrate and then exposed to water.
- a combined stream is exposed to water before deposition onto the substrate.
- a combined stream is simultaneously exposed to water and deposited onto the substrate.
- the water can be in the form of a water stream or a water vapor atmosphere.
- an alkoxysilane gel composition is formed on the substrate which is then subjected to an aging process by hotplate or oven heating in a solvent vapor atmosphere. Once removed from the solvent vapor atmosphere, the aged gel may be cured or dried to thereby form a nanoporous dielectric coating on the substrate having optimal mechanical strength.
- Useful alkoxysilanes for this invention include those which have the formula:
- R groups are independently C ] to C 4 alkoxy groups and the balance, if any, are independently selected from the group consisting of hydrogen, alkyl, phenyl, halogen, substituted phenyl.
- alkoxy includes any other organic group which can be readily cleaved from silicon at temperatures near room temperature by hydrolysis.
- R groups can be ethylene glycoxy or propylene glycoxy or the like, but preferably all four R groups are methoxy, ethoxy, propoxy or butoxy.
- the most preferred alkoxysilanes nonexclusively include tetraethoxysilane (TEOS) and tetramethoxysilane.
- the alkoxysilane component of the alkoxysilane gel composition is preferably present in an amount of from about 3 % to about 50 % by weight of the overall blend, more preferably from about 5 % to about 45 % and most preferably from about 10 % to about 40 %.
- the organic solvent composition comprises a relatively high volatility solvent or a relatively low volatility solvent or both a relatively high volatility solvent and a relatively low volatility solvent.
- the solvent usually the higher volatility solvent, is at least partially evaporated immediately after deposition onto the substrate. This partial drying leads to better planarity due to the lower viscosity of the material after the first solvent or parts of the solvent comes off. The more volatile solvent evaporates over a period of seconds or minutes.
- Slightly elevated temperatures may optionally be employed to accelerate this step. Such temperatures preferably range from about 20 °C to about 80 °C, more preferably from about 20 °C to about 50 °C and most preferably from about 20 °C to about 35 °C.
- a relatively high volatility solvent is one which evaporates at a temperature below, preferably significantly below, that of the relatively low volatility solvent.
- the relatively high volatility solvent preferably has a boiling point of about 120 °C or less, more preferably about 100 °C or less.
- Suitable high volatility solvents nonexclusively include methanol, ethanol, n- propanol, isopropanol, n-butanol and mixtures thereof.
- Other relatively high volatility solvent which are compatible with the other ingredients can be readily determined by those skilled in the art.
- the relatively low volatility solvent is one which evaporates at a temperature above, preferably significantly above, that of the relatively high volatility solvent.
- the relatively low volatility solvent preferably has a boiling point of about 175 °C or higher, more preferably about 200 °C or higher.
- Such preferably have the formula R,(OR 2 ) n OH wherein R, is a linear or branched C, to C 4 alkyl group, R 2 is a C, to C 4 alkylene group, and n is 2-4.
- Preferred low volatility solvent composition components include di(ethylene)glycol monomethyl ether, tri(ethylene)glycol monomethyl ether, tetra(ethylene)glycol monomethyl ether; di(propylene)glycol monomethyl ether, tri(propylene)glycol monomethyl ether and mixtures thereof.
- suitable low volatility solvent compositions nonexclusively include alcohols and polyols including glycols such as ethylene glycol, 1 ,4-butylene glycol, 1,5-pentanediol, 1,2,4-butanetriol, 1,2,3-butanetriol, 2-methyl-propanetriol, 2-(hydroxymethyl)-l,3-propanediol, 1,4,1,4-butanediol, 2- methyl-l,3-propanediol, tetraethylene glycol, triethylene glycol monomethyl ether, glycerol, di(ethylene)glycol, tri(ethylene)glycol, tetra(ethylene)glycol; penta(ethylene)glycol, di(propylene)glycol, hexa(ethylene)glycol and mixtures thereof.
- Other relatively low volatility solvents which are compatible with the other ingredients can be readily determined by those skilled in the art.
- the organic solvent component is preferably present in the alkoxysilane gel composition an amount of from about 20 % to about 90% by weight of the composition, more preferably from about 30 % to about 70 % and most preferably from about 40 % to about 60 %.
- the high volatility solvent is preferably present in an amount of from about 20 % to about 90 % by weight of the alkoxysilane gel composition, more preferably from about 30 % to about 70 % and a most preferably from about 40 % to about 60 % by weight of the alkoxysilane gel composition.
- the low volatility solvent is preferably present in an amount of from about 1 to about 40 % by weight of the alkoxysilane gel composition, more preferably from about 3 % to about 30% and a most preferably from about 5 % to about 20 % by weight of the alkoxysilane gel composition.
- Water is included in the alkoxysilane gel composition to provide a medium for hydrolyzing the alkoxysilane.
- the mole ratio of water to silane is preferably from about 0 to about 50, more preferably from about 0.1 to about 10 and a most preferably from about 0.5 to about 1.5.
- the base may be mixed with a solvent for combining with the alkoxysilane. Suitable solvents for the base include those listed above as a high volatility solvent. Most preferred solvents for use with the base are alcohols such as ethanol and isopropanol.
- the optional base may be present in the alkoxysilane gel composition in a catalytic amount which can be readily determined by those skilled in the art.
- the molar ratio of base to silane ranges from about 0 to about 0.2, more preferably from about 0.001 to about 0.05, and most preferably from about 0.005 to about 0.02.
- Suitable bases nonexclusively include ammonia and amines, such as primary, secondary and tertiary alkyl amines, aryl amines, alcohol amines and mixtures thereof which have a preferred boiling point of about 200 °C or less, more preferably 100 °C or less and most preferably 25 °C or less.
- Preferred amines are alcoholamines, alkylamines, methylamine, monoethanol amine, diethanol amine, triethanol amine, dimethylamine, trimethylamine, n-butylamine, n-propylamine, tetramethyl ammonium hydroxide, piperidine, 2-methoxyethylamine, mono-, di- or triethanolamines, and mono-, di-, or tri-isopropanolamines.
- the pK b of the base may range from about less than 0 to about 9, more preferably from about 2 to about 6 and most preferably from about 4 to about 5.
- Typical substrates are those suitable to be processed into an integrated circuit or other microelectronic device.
- Suitable substrates for the present invention non- exclusively include semiconductor materials such as gallium arsenide (GaAs), silicon and compositions containing silicon such as crystalline silicon, polysilicon, amorphous silicon, epitaxial silicon, and silicon dioxide (SiO 2 ) and mixtures thereof.
- Lines may optionally be on the substrate surface.
- the lines, when present, are typically formed by well known lithographic techniques and may be composed of a metal, an oxide, a nitride or an oxynitride.
- Suitable materials for the lines include silica, silicon nitride, titanium nitride, tantalum nitride, aluminum, aluminum alloys, copper, copper alloys, tantalum, tungsten and silicon oxynitride. These lines form the conductors or insulators of an integrated circuit. Such are typically closely separated from one another at distances preferably of from about 20 micrometers or less, more preferably from about 1 micrometer or less, and most preferably of from about 0.05 to about 1 micrometer.
- Suitable organic solvents for the vapor atmosphere include those listed above as a low volatility solvent.
- the organic solvent is preferably present in the solvent vapor atmosphere in an amount of from about 50% to about 99.9% saturation, more preferably from about 70% to about 99.9% saturation, and most preferably from about 90% to about 99.9% saturation.
- the balance of the atmosphere may be air, hydrogen, carbon dioxide, water vapor, base vapor or an inert gas such as nitrogen or argon.
- the coated substrate is then aged by heating the substrate for a sufficient time and at a sufficient temperature in an organic solvent vapor atmosphere to thereby condense the gel composition.
- condensing means polymerizing and strengthening the coating.
- the deposited substrate is heated in a conventional way such as placing the substrate on a hot plate within the solvent vapor atmosphere, or heating the entire solvent vapor atmosphere in an oven. Suitable heating temperatures preferably range from about 30 °C to about 200 °C , more preferably from about 60 °C to about 150 °C , most preferably from about 70 °C to about 100 °C.
- the gel may optionally be partially heated with or without the solvent vapor atmosphere prior to aging.
- Suitable aging time for the gel preferably ranges from about 10 seconds to about 60 minutes, more preferably from about 30 seconds to about 3 minutes, and most preferably from about 1 minute to about 2 minutes.
- the aged alkoxysilane gel composition may then be cured or dried in a conventional way, i.e. outside of a solvent atmosphere. Elevated temperatures may be employed to cure or dry the coating. Such temperatures preferably range from about 20 °C to about 450 °C, more preferably from about 50 °C to about 350 °C and most preferably from about 175 °C to about 320 °C.
- curing refers to the curing or drying of the combined composition onto the substrate after deposition and exposure to water.
- the nanoporous dielectric film preferably has a dielectric constant of from about 1.1 to about 3.5, more preferably from about 1.3 to about 3.0, and most preferably from about 1.5 to about 2.5.
- the size of the pores in the nanoporous dielectric film preferably ranges from about 1 run to about 100 nm, more preferably from about 2 nm to about 30 nm, and most preferably from about 3 nm to about 20 nm.
- the density of the nanoporous dielectric film, including the pores preferably ranges from about 0.1 to about 1.9 g/cm 2 , more preferably from about 0.25 to about 1.6 g/cm 2 , and most preferably from about 0.4 to about 1.2 g/cm 2 .
- the nanoporous dielectric film on the substrate may be reacted with an effective amount of a surface modification agent for a period of time sufficient for the surface modification agent to penetrate the pore structure and render it hydrophobic.
- the surface modification must be conducted after aging but may be conducted either before or after drying.
- the surface modification agent is hydrophobic and suitable for silylating silanol moieties on the hydrophilic pore surfaces.
- the R and M groups are preferably independently selected from the group of organic moieties consisting of alkyl, aryl and combinations thereof.
- the alkyl moiety is substituted or unsubstituted and is selected from the group consisting of straight alkyl, branched alkyl, cyclic alkyl and combinations thereof, and wherein said alkyl moiety ranges in size from C, to about C 18 .
- the surface modification agent is selected from the group consisting of acetoxytrimethylsilane, acetoxysilane, diacetoxydimethylsilane, methyltriacetoxysilane, phenyltriacetoxysilane, diphenyldiacetoxysilane, trimethylethoxysilane, trimethylmethoxysilane, 2-trimethylsiloxypent-2-ene-4- one, n-(trimethylsilyl)acetamide, 2-(trimethylsilyl) acetic acid, n- (trimethylsilyl)imidazole, trimethylsilylpropiolate, trimethylsilyl(trimethylsiloxy)-acetate, nonamethyltrisilazane, hexamethyldisilazane, hexamethyldisiloxane, trimethylsilanol, triethy
- a precursor was synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of triethylene glygol monomethylether (TriEGMME), 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution was allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution was allowed to cool, it was stored in refrigeration at 4 °C.
- TriEGMME triethylene glygol monomethylether
- the solution was allowed to cool, it was diluted 50% by volume with ethanol to reduce the viscosity.
- the diluted precursor was filtered to 0.1 mm using a teflon filter. Approximately 2.0 ml of the precursor was deposited onto two 4 inch silicon wafers on a spin chuck, and spun at 2500 rpm for 30 seconds.
- the films were gelled and aged in a vacuum chamber using the following conditions: The chamber was evacuated to -20 inches of Hg. Next, 15M ammonium hydroxide was heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes. Finally, chamber was then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- One film was heated at elevated temperatures for 1 min. each at 175 °C and 320 °C in air.
- the other film was placed in a small void space chamber that had been heated and equilibrated to 45 °C.
- the chamber contained approximately a 2 mm void space above the wafer.
- the film was left in the chamber for 2 minutes then removed and heated at elevated temperatures for 1 min. each at 175 0 and 320 °C in air. Both films were then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness as seen in Table 1.
- This example demonstrates that a low temperature hotplate treatment in a sealed chamber can yield low density uniform films.
- the small void space of the chamber allows for saturation of the porosity control solvent above the wafer with minimal evaporation.
- a precursor was synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution was allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution was allowed to cool, it was stored in refrigeration at 4 °C. After the solution was allowed to cool, it was diluted 50% by volume with ethanol to reduce the viscosity. The diluted precursor was filtered to 0.1 mm using a teflon filter.
- Approximately 2.0 ml of the precursor was deposited onto two 4 inch silicon wafers on a spin chuck, and spun at 2500 m for 30 seconds.
- the films were gelled and aged in a vacuum chamber using the following conditions: The chamber was evacuated to -20 inches of Hg. Next, 15M ammonium hydroxide was heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes. Finally, chamber was then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- One film was heated at elevated temperatures for 1 min. each at 175 °C and 320 °C in air. The other film was placed in a small void space chamber that had been heated and equilibrated to 45 °C.
- the chamber contained approximately a 2 mm void space above the wafer.
- the film was left in the chamber for 1 minutes then removed and heated at elevated temperatures for 1 min. each at 175 ° and 320 °C in air. Both films were then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness as seen in Table 2.
- This example demonstrates that a low temperature hotplate treatment in a sealed chamber can yield low density uniform films.
- the small void space of the chamber allows for saturation of the porosity control solvent above the wafer with minimal evaporation.
- the precursor was synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution was allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution was allowed to cool, it was stored in refrigeration at 4 °C. After the solution was allowed to cool, it was diluted 50%o by volume with ethanol to reduce the viscosity. The diluted precursor was filtered to 0.1 mm using a teflon filter.
- Approximately 2.0 ml of the precursor was deposited onto two 4 inch silicon wafers on a spin chuck, and spun at 2500 m for 30 seconds.
- the films were gelled and aged in a vacuum chamber using the following conditions: 1) The chamber was evacuated to -20 inches of Hg. Next, 15M ammonium hydroxide was heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes. Finally, chamber was then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- One film was heated at elevated temperatures for 1 min. each at 175 °C and 320 °C in air. The other film was placed in a small void space chamber that had been heated and equilibrated to 50 °C.
- the chamber contained approximately a 2 mm void space above the wafer.
- the film was left in the chamber for 2 minutes then removed and heated at elevated temperatures for 1 min. each at 175 ° and 320 °C in air. Both films were then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness as seen in Table 3.
- This example demonstrates that a low temperature hotplate treatment in a open hotplate can yield fairly low density uniform films.
- the low volatility of the porosity control solvent allows the film to be heated at a low temperature on an open hotplate with some evaporation as well as achieving added mechanical strength to reduce film shrinkage.
- a precursor was synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution was allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution was allowed to cool, it was stored in refrigeration at 4 °C. After the solution was allowed to cool, it was diluted 50% by volume with ethanol to reduce the viscosity. The diluted precursor was filtered to 0.1 mm using a teflon filter.
- Approximately 2.0 ml of the precursor was deposited onto two 4 inch silicon wafers on a spin chuck, and spun at 2500 ⁇ m for 30 seconds.
- the films were gelled and aged in a vacuum chamber using the following conditions: The chamber was evacuated to -20 inches of Hg. Next, 15M ammonium hydroxide was heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes. Finally, chamber was then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- One film was heated at elevated temperatures for 1 min. each at 175 °C and 320 °C in air.
- the other film was placed in a open hotplate that had been heated and equilibrated to 45 °C
- the film was left in the chamber for 2 minutes then removed and heated at elevated temperatures for 1 min. each at 175 ° and 320 °C in air. Both films were then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness as seen in Table 4.
- This example demonstrates that a low temperature hotplate treatment in a open hotplate can yield fairly low density uniform films.
- the low volatility of the porosity control solvent allows the film to be heated at a low temperature on an open hotplate with some evaporation as well as achieving added mechanical strength to reduce film shrinkage.
- a precursor was synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution was allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution was allowed to cool, it was stored in refrigeration at 4 °C. After the solution was allowed to cool, it was diluted 50% by volume with ethanol to reduce the viscosity. The diluted precursor was filtered to 0.1 mm using a teflon filter.
- Approximately 2.0 ml of the precursor was deposited onto two 4 inch silicon wafers on a spin chuck, and spun at 2500 ⁇ m for 30 seconds.
- the films were gelled and aged in a vacuum chamber using the following conditions: The chamber was evacuated to -20 inches of Hg. Next, 15M ammonium hydroxide was heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes. Finally, chamber was then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- One film was heated at elevated temperatures for 1 min. each at 175 °C and 320 °C in air. The other film was placed in a open hotplate that had been heated and equilibrated to 45 °C.
- the film was left in the chamber for 1 minute then removed and heated at elevated temperatures for 1 min. each at 175 ° and 320 °C in air. Both films were then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness as seen in Table 5 :
- nanoporous silica film can be heat treated in a solvent saturated environment to improve the mechanical strength.
- a precursor is synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution is allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution is allowed to cool, it is stored in refrigeration at 4 °C. After the solution is allowed to cool, it is diluted 50% by volume with ethanol to reduce the viscosity. The diluted precursor is filtered to 0.1 mm using a teflon filter. Approximately 2.0 ml of the precursor is deposited onto a 4 inch silicon wafer on a spin chuck, and spun at 2500 ⁇ m for 30 seconds.
- the film is gelled and aged in a vacuum chamber that is heated and equilibrated to 30 °C.
- the following conditions are used to perform proper aging:
- the chamber is evacuated to -20 inches of Hg.
- 15M ammonium hydroxide is heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes.
- chamber is then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- the film is left in the chamber whereby a nitrogen bubbler flows a >95% saturated gas of TriEGMME heated at 30 °C.
- the film is left in the chamber for 2 minutes then removed and heated at elevated temperatures for 1 min. each at 175 ° and 320 °C in air.
- the film is then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness. This example demonstrates that films treated with a heated saturated gas shrinks much less due to added strength from the heat treatment.
- nanoporous silica film can be heat treated at 50 °C in a solvent saturated environment to improve the mechanical strength.
- a precursor is synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution is allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution is allowed to cool, it is stored in refrigeration at 4 °C. After the solution is allowed to cool, it is diluted 50% by volume with ethanol to reduce the viscosity. The diluted precursor is filtered to 0.1 mm using a teflon filter.
- Approximately 2.0 ml of the precursor is deposited onto a 4 inch silicon wafer on a spin chuck, and spun at 2500 ⁇ m for 30 seconds.
- the film is gelled and aged in a vacuum chamber that is heated and equilibrated to 50 °C.
- the following conditions are used to perform proper aging:
- the chamber is evacuated to -20 inches of Hg.
- 15M ammonium hydroxide is heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes.
- chamber is then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- the film is left in the chamber whereby a nitrogen bubbler flows a >95% saturated gas of TriEGMME heated at 50 °C.
- the film is left in the chamber for 2 minutes then removed and heated at elevated temperatures for 1 min. each at 175 0 and 320 °C in air. The film is then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness. This example demonstrates that films treated with a heated saturated gas shrinks much less due to added strength from the heat treatment.
- nanoporous silica film can be heat treated at 30 0 C in a solvent saturated environment to improve the mechanical strength.
- a precursor is synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution is allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution is allowed to cool, it is stored in refrigeration at 4 C C. After the solution is allowed to cool, it was diluted 50% by volume with ethanol to reduce the viscosity. The diluted precursor is filtered to 0.1 mm using a teflon filter.
- Approximately 2.0 ml of the precursor is deposited onto a 4 inch silicon wafer on a spin chuck, and spun at 2500 ⁇ m for 30 seconds.
- the film is gelled and aged in a vacuum chamber that is heated and equilibrated to 30 °C.
- the following conditions are used to perform proper aging: The chamber is evacuated to -20 inches of Hg.
- 15M ammonium hydroxide is heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes.
- chamber is then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- the film is left in the chamber whereby a nitrogen bubbler flows a >95% saturated gas of TriEGMME heated at 30 °C.
- the film is left in the chamber for 1 minute then removed and heated at elevated temperatures for 1 min. each at 175 ° and 320 °C in air. The film is then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness. This example demonstrates that films treated with a heated saturated gas shrinks much less due to added strength from the heat treatment.
- a precursor is synthesized by adding 94.0 mL of tetraethoxysilane, 61.0 mL of TriEGMME, 7.28 mL of deionized water, and 0.31 mL of IN nitric acid together in a round bottom flask. The solution is allowed to mix vigorously then heated to -80 °C and refluxed for 1.5 hours to form a solution. After the solution is allowed to cool, it is stored in refrigeration at 4 °C. After the solution is allowed to cool, it is diluted 50% by volume with ethanol to reduce the viscosity.
- the diluted precursor is filtered to 0.1 mm using a teflon filter. Approximately 2.0 ml of the precursor is deposited onto a 4 inch silicon wafer on a spin chuck, and spun at 2500 ⁇ m for 30 seconds.
- the film is gelled and aged in a vacuum chamber that is heated and equilibrated to 50 °C. The following conditions are used to perform proper aging: The chamber is evacuated to -20 inches of Hg. Next, 15M ammonium hydroxide is heated and equilibrated at 45 °C and dosed into the chamber to increase the pressure to -4.0 inches of Hg for 2-3 minutes. Finally, chamber is then evacuated to -20.0 inches of Hg and backfilled with nitrogen.
- the film is left in the chamber whereby a nitrogen bubbler flows a >95% saturated gas of TriEGMME heated at 50 °C.
- the film is left in the chamber for 1 minute then removed and heated at elevated temperatures for 1 min. each at 175 ° and 320 °C in air.
- the film is then inspected by single wavelength multiple angle ellipsometry to determine the refractive index and thickness. This example demonstrates that films treated with a heated saturated gas shrinks much less due to added strength from the heat treatment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Formation Of Insulating Films (AREA)
- Silicon Compounds (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Paints Or Removers (AREA)
- Silicon Polymers (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU55618/99A AU5561899A (en) | 1998-08-27 | 1999-08-17 | Process for optimizing mechanical strength of nanoporous silica |
EP99942184A EP1118110A1 (en) | 1998-08-27 | 1999-08-17 | Process for optimizing mechanical strength of nanoporous silica |
JP2000568113A JP2002524849A (en) | 1998-08-27 | 1999-08-17 | A method to optimize the mechanical strength of nanoporous silica |
KR1020017002564A KR20010073054A (en) | 1998-08-27 | 1999-08-17 | Process for optimizing mechanical strength of nanoporous silica |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14128798A | 1998-08-27 | 1998-08-27 | |
US09/141,287 | 1998-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000013221A1 true WO2000013221A1 (en) | 2000-03-09 |
Family
ID=22495027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/018497 WO2000013221A1 (en) | 1998-08-27 | 1999-08-17 | Process for optimizing mechanical strength of nanoporous silica |
Country Status (8)
Country | Link |
---|---|
US (1) | US20030062600A1 (en) |
EP (1) | EP1118110A1 (en) |
JP (1) | JP2002524849A (en) |
KR (1) | KR20010073054A (en) |
CN (1) | CN1146964C (en) |
AU (1) | AU5561899A (en) |
TW (1) | TW594879B (en) |
WO (1) | WO2000013221A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1142832A1 (en) * | 2000-04-04 | 2001-10-10 | Applied Materials, Inc. | Ionic additives for extreme low dielectric constant chemical formulations |
US6583071B1 (en) | 1999-10-18 | 2003-06-24 | Applied Materials Inc. | Ultrasonic spray coating of liquid precursor for low K dielectric coatings |
WO2004105123A1 (en) * | 2003-05-21 | 2004-12-02 | Fujitsu Limited | Semiconductor device |
US6875687B1 (en) | 1999-10-18 | 2005-04-05 | Applied Materials, Inc. | Capping layer for extreme low dielectric constant films |
WO2006128232A1 (en) * | 2005-05-31 | 2006-12-07 | Xerocoat Pty Ltd | Control of morphology of silica films |
US7265062B2 (en) | 2000-04-04 | 2007-09-04 | Applied Materials, Inc. | Ionic additives for extreme low dielectric constant chemical formulations |
US8227028B2 (en) | 2006-08-28 | 2012-07-24 | Jgc Catalysts And Chemicals Ltd. | Method for forming amorphous silica-based coating film with low dielectric constant and thus obtained amorphous silica-based coating film |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100408436B1 (en) * | 2000-04-04 | 2003-12-06 | 이현종 | A block for recycling waste tire |
JP4572444B2 (en) * | 2000-05-22 | 2010-11-04 | Jsr株式会社 | Film forming composition, film forming method, and silica-based film |
DE102004011110A1 (en) * | 2004-03-08 | 2005-09-22 | Merck Patent Gmbh | Process for producing monodisperse SiO 2 particles |
US7357977B2 (en) * | 2005-01-13 | 2008-04-15 | International Business Machines Corporation | Ultralow dielectric constant layer with controlled biaxial stress |
KR101161189B1 (en) * | 2006-07-31 | 2012-07-02 | 닛뽕소다 가부시키가이샤 | Method for producing organic thin film by using film physical property improving process |
CN101774590B (en) * | 2009-01-09 | 2013-01-09 | 宁波大学 | Three-dimensional SiO2 ultra-thin membrane and preparation method and application thereof |
CN102722084B (en) * | 2011-03-31 | 2014-05-21 | 京东方科技集团股份有限公司 | Lithography method and device |
JP6035097B2 (en) * | 2012-09-27 | 2016-11-30 | 旭化成株式会社 | Condensation reaction product solution for trench filling, and method for producing trench filling film |
CN106672985B (en) * | 2017-01-04 | 2019-07-16 | 广东埃力生高新科技有限公司 | High specific surface area silica aeroge and its fast preparation method |
CN111033688B (en) * | 2017-08-24 | 2024-02-23 | 株式会社Lg化学 | Method for producing silica film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0684642A1 (en) * | 1994-05-20 | 1995-11-29 | Texas Instruments Incorporated | Method of fabrication of a porous dielectric layer for a semiconductor device |
US5736425A (en) * | 1995-11-16 | 1998-04-07 | Texas Instruments Incorporated | Glycol-based method for forming a thin-film nanoporous dielectric |
US5753305A (en) * | 1995-11-16 | 1998-05-19 | Texas Instruments Incorporated | Rapid aging technique for aerogel thin films |
EP0849796A2 (en) * | 1996-12-17 | 1998-06-24 | Texas Instruments Incorporated | Improvements in or relating to integrated circuits |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2053985A1 (en) * | 1990-10-25 | 1992-04-26 | Sumio Hoshino | Process for producing thin glass film by sol-gel method |
US5548159A (en) * | 1994-05-27 | 1996-08-20 | Texas Instruments Incorporated | Porous insulator for line-to-line capacitance reduction |
US5494858A (en) * | 1994-06-07 | 1996-02-27 | Texas Instruments Incorporated | Method for forming porous composites as a low dielectric constant layer with varying porosity distribution electronics applications |
US5807607A (en) * | 1995-11-16 | 1998-09-15 | Texas Instruments Incorporated | Polyol-based method for forming thin film aerogels on semiconductor substrates |
-
1999
- 1999-08-17 KR KR1020017002564A patent/KR20010073054A/en not_active Application Discontinuation
- 1999-08-17 EP EP99942184A patent/EP1118110A1/en not_active Withdrawn
- 1999-08-17 JP JP2000568113A patent/JP2002524849A/en not_active Withdrawn
- 1999-08-17 TW TW088114038A patent/TW594879B/en not_active IP Right Cessation
- 1999-08-17 CN CNB998127639A patent/CN1146964C/en not_active Expired - Fee Related
- 1999-08-17 WO PCT/US1999/018497 patent/WO2000013221A1/en not_active Application Discontinuation
- 1999-08-17 AU AU55618/99A patent/AU5561899A/en not_active Abandoned
-
2002
- 2002-09-30 US US10/260,871 patent/US20030062600A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0684642A1 (en) * | 1994-05-20 | 1995-11-29 | Texas Instruments Incorporated | Method of fabrication of a porous dielectric layer for a semiconductor device |
US5736425A (en) * | 1995-11-16 | 1998-04-07 | Texas Instruments Incorporated | Glycol-based method for forming a thin-film nanoporous dielectric |
US5753305A (en) * | 1995-11-16 | 1998-05-19 | Texas Instruments Incorporated | Rapid aging technique for aerogel thin films |
EP0849796A2 (en) * | 1996-12-17 | 1998-06-24 | Texas Instruments Incorporated | Improvements in or relating to integrated circuits |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6583071B1 (en) | 1999-10-18 | 2003-06-24 | Applied Materials Inc. | Ultrasonic spray coating of liquid precursor for low K dielectric coatings |
US6875687B1 (en) | 1999-10-18 | 2005-04-05 | Applied Materials, Inc. | Capping layer for extreme low dielectric constant films |
EP1142832A1 (en) * | 2000-04-04 | 2001-10-10 | Applied Materials, Inc. | Ionic additives for extreme low dielectric constant chemical formulations |
US6576568B2 (en) * | 2000-04-04 | 2003-06-10 | Applied Materials, Inc. | Ionic additives for extreme low dielectric constant chemical formulations |
US6896955B2 (en) | 2000-04-04 | 2005-05-24 | Air Products & Chemicals, Inc. | Ionic additives for extreme low dielectric constant chemical formulations |
US7265062B2 (en) | 2000-04-04 | 2007-09-04 | Applied Materials, Inc. | Ionic additives for extreme low dielectric constant chemical formulations |
WO2004105123A1 (en) * | 2003-05-21 | 2004-12-02 | Fujitsu Limited | Semiconductor device |
US7170177B2 (en) | 2003-05-21 | 2007-01-30 | Fujitsu Limited | Semiconductor apparatus |
WO2006128232A1 (en) * | 2005-05-31 | 2006-12-07 | Xerocoat Pty Ltd | Control of morphology of silica films |
US8007868B2 (en) | 2005-05-31 | 2011-08-30 | Xerocoat Inc. | Control of morphology of silica films |
US8227028B2 (en) | 2006-08-28 | 2012-07-24 | Jgc Catalysts And Chemicals Ltd. | Method for forming amorphous silica-based coating film with low dielectric constant and thus obtained amorphous silica-based coating film |
Also Published As
Publication number | Publication date |
---|---|
KR20010073054A (en) | 2001-07-31 |
US20030062600A1 (en) | 2003-04-03 |
JP2002524849A (en) | 2002-08-06 |
CN1146964C (en) | 2004-04-21 |
AU5561899A (en) | 2000-03-21 |
CN1325542A (en) | 2001-12-05 |
TW594879B (en) | 2004-06-21 |
EP1118110A1 (en) | 2001-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6042994A (en) | Nanoporous silica dielectric films modified by electron beam exposure and having low dielectric constant and low water content | |
US6318124B1 (en) | Nanoporous silica treated with siloxane polymers for ULSI applications | |
US6048804A (en) | Process for producing nanoporous silica thin films | |
US6177143B1 (en) | Electron beam treatment of siloxane resins | |
EP0975548B1 (en) | Process for producing nanoporous dielectric films at high ph | |
US6372666B1 (en) | Process for producing dielectric thin films | |
US20030062600A1 (en) | Process for optimizing mechanical strength of nanoporous silica | |
US6319855B1 (en) | Deposition of nanoporous silic films using a closed cup coater | |
KR100671850B1 (en) | Method for modifying porous film, modified porous film and use of same | |
EP1097472A1 (en) | Vapor deposition routes to nanoporous silica | |
EP1543549A1 (en) | Interlayer adhesion promoter for low k materials | |
JP2001520805A (en) | Nanoporous dielectric film with graded density and method of making such a film | |
WO2003069672A1 (en) | Nanoporous dielectric films with graded density and process for making such films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99812763.9 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999942184 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017002564 Country of ref document: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1999942184 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017002564 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999942184 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020017002564 Country of ref document: KR |