WO2000012748A1 - Organisms for the extracellular production of riboflavin - Google Patents

Organisms for the extracellular production of riboflavin Download PDF

Info

Publication number
WO2000012748A1
WO2000012748A1 PCT/EP1999/006328 EP9906328W WO0012748A1 WO 2000012748 A1 WO2000012748 A1 WO 2000012748A1 EP 9906328 W EP9906328 W EP 9906328W WO 0012748 A1 WO0012748 A1 WO 0012748A1
Authority
WO
WIPO (PCT)
Prior art keywords
riboflavin
organism
atpase
gene
production
Prior art date
Application number
PCT/EP1999/006328
Other languages
German (de)
French (fr)
Inventor
Oskar Zelder
Reinhard Krämer
Carola FÖRSTER
Jose L. Revuelta Doval
Maria Angeles Santos Garcia
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP99944543A priority Critical patent/EP1133570A1/en
Priority to JP2000567731A priority patent/JP2002523109A/en
Priority to CA002341715A priority patent/CA2341715A1/en
Publication of WO2000012748A1 publication Critical patent/WO2000012748A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P25/00Preparation of compounds containing alloxazine or isoalloxazine nucleus, e.g. riboflavin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)

Definitions

  • the present invention relates to a unicellular or multicellular organism for producing riboflavin by means of microorganisms.
  • Vitamin B 2 also called riboflavin, is essential for humans and animals. If there is a lack of Nitamine B 2 , inflammation of the mucous membranes of the mouth and throat, cracks in the corners of the mouth, itching and inflammation in the skin folds, among other things, skin damage, conjunctivitis, decreased visual acuity and clouding of the cornea. In babies and children growth stagnation and weight loss can occur. Vitamin B 2 is therefore of economic importance, particularly as a vitamin preparation for vitamin deficiency and as a feed additive. In addition, it is also used as a food coloring, for example in mayonnaise, ice cream, pudding, etc.
  • Riboflavin is produced either chemically or microbially. In the chemical production process, riboflavin is usually obtained as a pure end product in multi-stage processes, although relatively expensive starting products - such as D-ribose - must also be used. Therefore, the chemical synthesis of riboflavin is only considered for those applications for which pure riboflavin is necessary, such as. b. in human medicine.
  • riboflavin An alternative to the chemical production of riboflavin is the production of this substance by microorganisms.
  • the microbial production of riboflavin is particularly suitable for those cases in which high purity of this substance is not required. This is the case, for example, when the riboflavin is to be used as an additive to feed products. In such cases, the microbial production of riboflavin has the advantage that this substance can be obtained in a one-step process. Renewable raw materials such as vegetable oils can also be used as starting products for microbial synthesis.
  • riboflavin by fermentation of fungi such as Ashbya gossypii or Eremothecium ashbyi is known (The Merck Index, Windholz et al., eds. Merck & Co., page 1183, 1983; A. Bacher, F. Lingens, Angew. Chemistry 1969, 393); but also yeasts, such as. B. Candida or Saccharomyces, and bacteria such as Clostridium are suitable for riboflavin production.
  • yeast Candida famata methods using the yeast Candida famata are described, for example, in US 05231007.
  • Riboflavin-overproducing bacterial strains are described, for example, in EP 405370, the strains being obtained by transforming the riboflavin biosynthesis genes from Bacillus subtilis.
  • the fermentative production of riboflavin by means of special mutants of Bacillus subtilis is also described in GB 1434299, in German Offenlegungsschrift 3420310 and EP 0821063.
  • prokaryotic genes were unsuitable for a recombinant riboflavin production process using eukaryotes such as Saccharomyces cerevisiae or Ashbya gossypii. Therefore, according to WO 93/03183, specific genes for riboflavin biosynthesis were isolated from a eukaryote, namely from Saccharomyces cerevisiae, in order to provide a recombinant production process for riboflavin in a eukaryotic production organism. Such recombinant
  • German Patent 195 25 281 a process for the production of riboflavin is known, in which microorganisms are cultivated which are resistant to substances that inhibit isocitrate lyase.
  • the object of the present invention is accordingly to provide a single-cell or multi-cell organism, preferably a microorganism, for the biotechnical production of riboflavin, which enables the riboflavin to be obtained without disruption of the cells and thus a u. a. enables continuous production of riboflavin.
  • This object is achieved by a single or multicellular organism whose intracellular mass transfer processes are modified in such a way that the majority of riboflavin is obtained extracellularly.
  • the transport or the transport speed of the riboflavin into the vacuole is preferably reduced, so that the predominant part of the riboflavin is released through the cytoplasmic membrane into the fermentation medium. It is particularly preferred that the transport of the riboflavin into the vacuole is at least partially blocked. Complete blocking of the transport of the riboflavin into the vacuole membrane is most preferred.
  • strain improvement of organisms can be achieved with the known methods of strain improvement of organisms.
  • corresponding strains can be produced by means of screening according to the selection which is customary in microbiology.
  • the mutation with subsequent selection can also be used.
  • the mutation can be carried out using chemical as well as physical mutagenesis.
  • Another method is selection and mutation with subsequent recombination.
  • the organisms according to the invention can be produced by means of genetic engineering.
  • the organism is preferably changed such that it produces riboflavin almost exclusively extracellularly.
  • This increase in Extracellular production of riboflavin can be achieved according to the invention, for example, by producing an organism in which the enzyme activity of the vacuolar H ⁇ -ATPase (V-ATPase) is reduced or completely blocked. The consequence of this is that the transport of the riboflavin through the nacuole membrane is partially or completely inhibited.
  • V-ATPase This can be achieved, for example, by reducing the substrate conversion by changing the catalytic center or by increasing the action of enzyme inhibitors.
  • a reduced enzyme activity of the V-ATPase can also be brought about by reducing the enzyme synthesis, for example by switching off factors which activate the enzyme biosynthesis.
  • the ATPase activity can preferably be reduced or completely inhibited by mutation, inactivation or removal of the ATPase gene.
  • mutations can either be generated undirected by classic methods, such as by UV radiation or mutation-triggering chemicals, or specifically by means of genetic engineering methods, such as deletion, insertion, nucleotide exchange or substitutions in the structural gene or the associated regulatory elements, promoters and transcription factors.
  • the ATPase gene expression can accordingly z. b. be reduced or completely blocked by removing or inactivating the ATPase gene and / or by changing regulatory factors which influence gene expression.
  • regulatory elements can preferably be reduced at the transcription level, in particular by changing the transcription signals.
  • a reduction in translation is also possible, for example, by changing the m-R ⁇ A.
  • the ATPase gene modified in the manner described can be incorporated into a gene construct or into a vector.
  • a riboflavin-producing microorganism is then transformed with this gene construct or vector.
  • the gene expression of the V-ATPase can also be reduced or completely inhibited by exchanging the promoter. It is possible to achieve the reduced enzymatic activity alternatively by incorporating gene copies or by exchanging the promoter. Equally, however, it is also possible to achieve the desired change in enzyme activity by simultaneously exchanging the promoter and incorporating gene copies.
  • Any organisms whose cells contain the sequence for the formation of the V-ATPase can be used for the isolation of the gene according to the invention.
  • the modified gene is preferably isolated from microorganisms, particularly preferably from fungi. Mushrooms of the genus Ashbya are particularly preferred. The species Ashbya gossypii is most preferred.
  • the gene can be isolated by homologous or heterologous complementation of an ATPase defect mutant or an ATPase deletion mutant.
  • the gene can also be isolated using a PCR approach with degenerate primers using amino acid homology to known Vma proteins and subsequent screening of a gene bank.
  • the gene can then be completely sequenced by subcloning (cutting with suitable restriction enzymes and cloning the fragments obtained into suitable vectors) of the complementing clone or the positive clone of the screened gene bank.
  • Disruption constructs (deletion / substitution alleles) can be prepared by cutting out part of the sequences of the gene with restriction enzymes and replacing this fragment with an antibiotic resistance cassette plus a promoter on a plasmid. Such disruption constructs can then be used to transform a riboflavin producer.
  • nucleotide sequences which are preferably according to the amino acid sequence.
  • Allelic variations include, in particular, derivatives which can be obtained by deleting, inserting and substituting nucleotides from corresponding sequences, the V-ATPase Activity remains intact.
  • a corresponding sequence in the amino acid sequence given above is the range from nucleotide 1 to 3881, AGVMA1 even in the sequenced range according to nucleotides 910-2763.
  • Figure 2 corresponds.
  • the gene can be preceded by a promoter which differs from the promoter with the specified nucleotide sequence by one or more nucleotide exchanges, by insertion and / or deletion.
  • the effectiveness of the promoter can be changed by changing its sequence or can be completely replaced by other promoters.
  • the V-ATPase gene can also be assigned regulatory gene sequences or regulatory genes which in particular reduce the V-ATPase gene activity. So z. B. a changed V-ATPase gene expression can be brought about via a modified interaction between RNA polymerase and DNA.
  • V-ATPase gene modified or inactivated according to the invention with or without an upstream promoter or with or without a regulator gene can be preceded and / or followed by one or more DNA sequences so that the gene is contained in a gene structure.
  • plasmids or vectors are obtainable which contain the modified or inactivated V-ATPase gene or no V-ATPase gene and are suitable for transforming a riboflavin producer.
  • the cells obtainable by transformation contain the gene in replicable form, i.e. H. in additional copies on the chromosome, the gene copies being integrated at any point in the genome by homologous recombination and / or on a plasmid or vector.
  • Another way to increase the extracellularly occurring riboflavin is to increase the transport speed of the riboflavin through the Increase cytoplasmic membrane in the fermentation medium. This shifts the equilibrium between the transport through the vacuole membrane and through the cytoplasmic membrane in such a way that the majority of the riboflavin is obtained extracellularly.
  • the single or multicellular organisms modified according to the invention can be any cells that can be used for biotechnical processes. These include, for example, fungi, yeasts, bacteria, and plant and animal cells. According to the invention, these are preferably transformed cells of fungi, particularly preferably those from the order of the Endomycetales. In particular, the family of Saccharomycetaceae is preferred. Fungi of the genus Ashbya and Eremothecium are very particularly preferred. The species Ashbya gossipii and Eremothecium ashbyii are most preferred.
  • the changes described in the transport processes can also be achieved by changing the fermentation conditions.
  • the addition of chemical substances to the fermentation medium can at least partially block the intracellular accumulation of riboflavin.
  • an inhibitor can be added to the fermentation medium which inactivates the V-ATPase.
  • Examples of such substances are concanamycins, bafilomycins, N-ethylmaleimide, nitrate.
  • the production and compartmentalization of the stronger producing mutant ItaGSOl with / without the addition of concanamycin A was determined in 4 independent experiments.
  • the cells were grown on production medium (yeast extract: 10 g / 1; soybean oil: 10 g / 1; glycine: 6 g / 1) and harvested at defined times in the course of production.
  • production medium yeast extract: 10 g / 1; soybean oil: 10 g / 1; glycine: 6 g / 1
  • the technique of selective permeabilization of the plasma membrane of A. gossypii was used for the compartmentalization analysis.
  • the goal of the selective permeabilization of the piadma membrane is the separate analysis of cytosolic and vacuolar compartments.
  • the mycelium was harvested by filtration at the desired point in time (glass fiber round filter, O 4.5 cm) and washed with NaP buffer.
  • the fungal cells (0.5 g wet weight) were resuspended in 10 ml permeabilization solution 0.003% (w / v) digitonin in 50 mM NaP buffer and incubated in this permeabilization solution for 10 min at 30 ° C., 120 rpm in a laboratory shaker to permeabilize the plasma membrane. After incubation, the cells were separated from the solution by filtration and the filtrate was used for the analysis of cytosolic cell components.
  • the cell suspension was incubated for a further 10 min with 0.02% (w / v) digitonin to destroy all cellular membranes.
  • the vacuolar content of the cells for analysis could then be obtained by filtration.
  • the cell residues remaining on the filter were discarded.
  • the riboflavin content of the permeabilization filtrates is determined by HPLC under the separation conditions described below:
  • the riboflavin content of the individual compartments was then related to the dry biomass used to calculate the compartmentalization between medium, cytosol and vacuole.
  • 20-50 ml soybean oil culture was first transferred to 50 ml Falcon tubes, 10 min. Centrifuged at 1500 x g and then carefully removed the oil layer above with a pipette. The oil-free suspension was then filtered through tared glass fiber round filters and washed with 10 times the volume of NaP buffer. The mycelium on the filter was dried to constant weight in a drying cabinet at 60 ° and then weighed.
  • the cytosolic and vacuolar riboflavin contents and the amount of riboflavin secreted into the medium were determined for control and concanamycin-treated cells (5 ⁇ M) at the 3 points in time 24 h, 43 h and 67 h:
  • the diagrams clearly show (can also be seen optically / highly microscopically) that the cells of the mutant ItaGSOl can no longer store riboflavin in their vacuoles if the V-ATPase inhibitor concanamycin A is added to the medium at the beginning of the production phase.
  • the total production is the same for control and concanamycin A batches, with concanamycin A addition being used to secrete the otherwise intravacuously stored amount of riboflavin (30 - 60% of total production) into the medium.
  • V-ATPase complex An attempt was made to implement the riboflavin flow redirection achieved with the aid of the inhibitor concanamycin A by molecular biology by constructing a strain with dysfunctional V-ATPase.
  • the catalytic subunit A of the V-ATPase complex was cloned and disrupted.
  • the catalytic subunit A is encoded by the VMA1 gene (yacuolar membrane ATPase protein 1).
  • PCR design of degenerate oligonucleotide primers from highly conserved sequences in the VMAlp alignment
  • the PCR (30 s 94 ° C, 60 s 52 ° C, 60 s 72 ° C, 35 cycles) was carried out in the Gene Amp® PCR System 9700 (Applied Biosystems) with Taq polymerase (Boehringer Mannheim, Germany), buffers like recommended by the manufacturer, 8 uM primer CFla, 4uM primer CFlb.
  • the amplified PCR fragment was then used to screen a A. gossypii cosmid gene library (cosmid vector SuperCosl, Stratagene). To identify positive Cos id clones that contained homologous regions of DNA, the PCR fragment was analyzed with (a- 32 P) dCTP radioactively labeled by T7 polymerase.
  • the cosmid-DANN of the positive clones was digested with Baml and screened again with the radioactive PCR fragment. The gene was then sequenced after subcloning into the plasmid vector Bluescript, Stratagene.
  • the nucleotide sequence can be obtained in the EMBL database after filing of the patent and the associated publication under the accession number AJ009881.
  • the protein alignment for AgVMAlp with the V-ATPase-A subunits of various other organisms showed that a strongly conserved protein sequence is also present in Ashbya.
  • the phylogenetic pedigree of the VMA1 proteins also showed that the VMA1 protein most closely related to the corresponding protein of the yeast S. cerevisiae and known to date has been found with AgVMAlp. Genomic Southern analysis confirmed that it is a single-copy gene (like the rest of the yeast).
  • vmal deletion / substitution allele was constructed for the disruption.
  • the VMA1 PCR fragment was cloned into a modified pGEM ® T-vector (Promega) without PstI site was generated resulting in plasmid pJR1767.
  • the coding sequence for VMA1 was finally disrupted on the plasmid by replacing the 0.25 kb BamHl-Pstl region with the TEF-G418 marker, thereby generating plasmid pJR1773.
  • the linear 2.5 kb fragment Ncol-Spel of this plasmid was finally used to transform sprouted spores of A. gossypii (starting strains wild-type, stronger producing mutant ItaGSOl). Geneticin-resistant clones were selected and the disruption of the vma 1 gene was confirmed by Southern blot (Fig. 2).
  • the riboflavin compartmentation was again quantitatively investigated using the selective membrane permeation technique (see 1.1.).
  • V-ATPase subunit A was able to redirect the riboflavin influences. So there are 3 new strains without vacuolar riboflavin accumulation (product retention) available.
  • Fig. 1 Compartmentalization of riboflavin in Ashbya under standard production conditions (left column) and during production with the addition of the V-ATPase inhibitor concanamycin A
  • Fig. 2 Disruption of AgVMAl with the TEF-G418 marker
  • Fig. 3 Riboflavin compartmentalization in parent strain

Abstract

The invention relates to a monocellular or multicellular organism, especially a microorganism for biotechnically producing riboflavin. The organism is characterized in that the intracellular processes thereof for transporting material are modified in such a way that the predominant part of riboflavin accumulates in an extracellular manner.

Description

Organismen zur extrazellulären Herstellung von RiboflavinOrganisms for extracellular production of riboflavin
Die vorliegende Erfindung betrifft einen ein- oder mehrzelligen Organismus zur Herstellung von Riboflavin mittels Mikroorganismen.The present invention relates to a unicellular or multicellular organism for producing riboflavin by means of microorganisms.
Das Vitamin B2, auch Riboflavin genannt, ist für Mensch und Tier essentiell. Bei Nitamin-B2-Mangel treten Entzündungen der Mund- und Rachenschleimhäute, Risse in den Mundwinkeln, Juckreiz und Entzündungen in den Hautfalten u.a. Hautschäden, Bindehautentzündungen, verminderte Sehschärfe und Trübung der Hornhaut auf. Bei Säuglingen und Kindern können Wachstumsstillstand und Gewichtsabnahme eintreten. Das Vitamin B2 hat daher wirtschaftliche Bedeutung insbesondere als Vitaminpräparat bei Vitaminmangel sowie als Futtermittelzusatz. Daneben wird es auch als Lebensmittelfarbstoff, beispielsweise in Mayonnaise, Eiscreme, Pudding, etc., eingesetzt.Vitamin B 2 , also called riboflavin, is essential for humans and animals. If there is a lack of Nitamine B 2 , inflammation of the mucous membranes of the mouth and throat, cracks in the corners of the mouth, itching and inflammation in the skin folds, among other things, skin damage, conjunctivitis, decreased visual acuity and clouding of the cornea. In babies and children growth stagnation and weight loss can occur. Vitamin B 2 is therefore of economic importance, particularly as a vitamin preparation for vitamin deficiency and as a feed additive. In addition, it is also used as a food coloring, for example in mayonnaise, ice cream, pudding, etc.
Die Herstellung von Riboflavin erfolgt entweder chemisch oder mikrobiell. Bei den chemischen Herstellungsverfahren wird das Riboflavin in der Regel in mehrstufigen Prozessen als reines Endprodukt gewonnen, wobei allerdings auch relativ kostspielige Ausgangsprodukte - wie beispielsweise D-Ribose - eingesetzt werden müssen. Daher kommt die chemische Syntehse des Riboflavins nur für solche Anwendungszwecke in Betracht, für die reines Riboflavin notwendig ist, wie z. b. in der Humanmedizin.Riboflavin is produced either chemically or microbially. In the chemical production process, riboflavin is usually obtained as a pure end product in multi-stage processes, although relatively expensive starting products - such as D-ribose - must also be used. Therefore, the chemical synthesis of riboflavin is only considered for those applications for which pure riboflavin is necessary, such as. b. in human medicine.
Eine Alternative zur chemischen Herstellung des Riboflavins bietet die Herstellung dieses Stoffes durch Mikroorganismen. Die mikrobielle Herstellung des Riboflavins eignet sich insbesondere für solche Fälle, in denen eine hohe Reinheit dieser Substanz nicht erforderlich ist. Dies ist beispielsweise dann der Fall, wenn das Riboflavin als Zusatz zu Futtermittelprodukten eingesetzt werden soll. In solchen Fällen hat die mikrobielle Herstellung des Riboflavins den Vorteil, daß diese Substanz in einem einstufigen Prozeß gewinnbar ist. Auch können als Ausgangsprodukte für die mikrobielle Synthese nachwachsende Rohstoffe, wie beispielsweise pflanzliche Öle, eingesetzt werden.An alternative to the chemical production of riboflavin is the production of this substance by microorganisms. The microbial production of riboflavin is particularly suitable for those cases in which high purity of this substance is not required. This is the case, for example, when the riboflavin is to be used as an additive to feed products. In such cases, the microbial production of riboflavin has the advantage that this substance can be obtained in a one-step process. Renewable raw materials such as vegetable oils can also be used as starting products for microbial synthesis.
Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Ashbya gossypii oder Eremothecium ashbyi ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983; A. Bacher, F. Lingens, Angew. Chemie 1969, 393); aber auch Hefen, wie z. B. Candida oder Saccharomyces, und Bakterien wie Clostridium, sind zur Riboflavinproduktion geeignet.The production of riboflavin by fermentation of fungi such as Ashbya gossypii or Eremothecium ashbyi is known (The Merck Index, Windholz et al., eds. Merck & Co., page 1183, 1983; A. Bacher, F. Lingens, Angew. Chemistry 1969, 393); but also yeasts, such as. B. Candida or Saccharomyces, and bacteria such as Clostridium are suitable for riboflavin production.
Zudem sind Verfahren mit der Hefe Candida famata beispielsweise in der US 05231007 beschrieben.In addition, methods using the yeast Candida famata are described, for example, in US 05231007.
Riboflavin-überproduzierende Bakterienstämme sind beispielsweise in der EP 405370 beschrieben, wobei die Stämme durch Transformation der Riboflavin- Biosynthese-Gene aus Bacillus subtilis erhalten wurden. Die fermentative Herstellung von Riboflavin mittels spezieller Mutanten von Bacillus subtilis wird auch in der GB 1434299, in der deutschen Offenlegungsschrift 3420310 und der EP 0821063 beschrieben.Riboflavin-overproducing bacterial strains are described, for example, in EP 405370, the strains being obtained by transforming the riboflavin biosynthesis genes from Bacillus subtilis. The fermentative production of riboflavin by means of special mutants of Bacillus subtilis is also described in GB 1434299, in German Offenlegungsschrift 3420310 and EP 0821063.
Diese Prokaryonten-Gene waren aber für ein rekombinantes Riboflavin- Herstellungsverfahren mit Eukaryonten wie Saccharomyces cerevisiae oder Ashbya gossypii ungeeignet. Daher wurden gemäß der WO 93/03183 für die Riboflavin-Biosynthese spezifische Gene aus einem Eukaryonten, nämlich aus Saccharomyces cerevisiae, isoliert, um damit ein rekombinantes Herstellungsverfahren für Riboflavin in einem eukaryontischen Produktionsorganismus bereitzustellen. Derartige rekombinanteHowever, these prokaryotic genes were unsuitable for a recombinant riboflavin production process using eukaryotes such as Saccharomyces cerevisiae or Ashbya gossypii. Therefore, according to WO 93/03183, specific genes for riboflavin biosynthesis were isolated from a eukaryote, namely from Saccharomyces cerevisiae, in order to provide a recombinant production process for riboflavin in a eukaryotic production organism. Such recombinant
Herstellungsverfahren haben für die Riboflavin-Produktion jedoch dann keinen oder nur begrenzten Erfolg, wenn die Bereitstellung von Substrat für die an der Riboflavin-Biosynthese spezifisch beteiligten Enzyme unzureichend ist.Manufacturing processes have no or only limited success for riboflavin production if the provision of substrate for the enzymes specifically involved in riboflavin biosynthesis is insufficient.
Aus der deutschen Patentschrift 195 25 281 ist ein Verfahren zur Herstellung von Riboflavin bekannt, bei dem Mikroorganismen kultiviert werden, die resistent gegenüber auf Isocitratlyase hemmend wirkenden Substanzen sind.From German Patent 195 25 281 a process for the production of riboflavin is known, in which microorganisms are cultivated which are resistant to substances that inhibit isocitrate lyase.
Aus der deutschen Offenlegungsschrift 19545468.5-41 ist ein Verfahren zur mikrobiellen Herstellung von Riboflavin bekannt, bei dem die Isocitratlyase- Aktivität oder die Isocitratlyase-Genexpression eines Riboflavin produzierenden Mikroorganismus erhöht ist. Allen bisher bekannten Verfahren haftet jedoch der Nachteil an, daß ein großer Teil des Riboflavins intrazellulär anfällt. Zu dessen Gewinnung muß demgemäß die Zelle aufgeschlossen werden. Eine kontinuierliche Produktion des Riboflavins ist demgemäß auf biotechnischem Weg bisher nicht möglich.A process for the microbial production of riboflavin is known from German published patent application 19545468.5-41, in which the isocitrate lyase activity or the isocitrate lyase gene expression of a riboflavin-producing microorganism is increased. However, all previously known processes have the disadvantage that a large part of the riboflavin is obtained intracellularly. Accordingly, the cell must be unlocked to obtain it. A continuous production of the riboflavin has therefore not been possible using biotechnology.
Aufgabe der vorliegenden Erfindung ist es demgemäß, einen ein- oder mehrzelligen Organismus, vorzugsweise einen Mikroorganismus, für die biotechnische Herstellung von Riboflavin zur Verfügung zu stellen, der eine Gewinnung des Riboflavins ohne Aufschluß der Zellen und damit eine u. a. kontinuierliche Produktion des Riboflavins ermöglicht.The object of the present invention is accordingly to provide a single-cell or multi-cell organism, preferably a microorganism, for the biotechnical production of riboflavin, which enables the riboflavin to be obtained without disruption of the cells and thus a u. a. enables continuous production of riboflavin.
Diese Aufgabe wird durch einen ein- oder mehrzelligen Organismus gelöst, dessen intrazelluläre Stofftransportvorgänge derart verändert sind, daß der überwiegende Teil an Riboflavin extrazellulär anfällt.This object is achieved by a single or multicellular organism whose intracellular mass transfer processes are modified in such a way that the majority of riboflavin is obtained extracellularly.
Vorzugsweise wird erfindungsgemäß der Transport bzw. die Transportgeschwindigkeit des Riboflavins in die Vakuole vermindert, so daß der überwiegende Teil des Riboflavins durch die Cytoplasmamembran in das Fermentationsmedium abgegeben wird. Besonders bevorzugt ist, daß der Transport des Riboflavins in die Vakuole wenigstens teilweise blockiert ist. Höchst bevorzugt ist die vollständige Blockierung des Transports des Riboflavins in die Vakuolenmembran.According to the invention, the transport or the transport speed of the riboflavin into the vacuole is preferably reduced, so that the predominant part of the riboflavin is released through the cytoplasmic membrane into the fermentation medium. It is particularly preferred that the transport of the riboflavin into the vacuole is at least partially blocked. Complete blocking of the transport of the riboflavin into the vacuole membrane is most preferred.
Das Ziel dieser angestrebten Veränderung des intrazellulären Stofftransports kann mit den bekannten Methoden der Stammverbesserung von Organismen erreicht werden. D. h. im einfachsten Falle lassen sich entsprechende Stämme nach der in der Mikrobiologie üblichen Selektion mittels Screening herstellen. Ebenso ist die Mutation mit anschließender Selektion einsetzbar. Die Mutation kann hierbei sowohl mittels chemischer als auch mittels physikalischer Mutagenese ausgeführt werden. Eine weitere Methode ist die Selektion und Mutation mit anschließender Rekombination. Schließlich lassen sich die erfindungsgemäßen Organismen mittels Genmanipulation herstellen.The goal of this desired change in intracellular mass transport can be achieved with the known methods of strain improvement of organisms. I.e. in the simplest case, corresponding strains can be produced by means of screening according to the selection which is customary in microbiology. The mutation with subsequent selection can also be used. The mutation can be carried out using chemical as well as physical mutagenesis. Another method is selection and mutation with subsequent recombination. Finally, the organisms according to the invention can be produced by means of genetic engineering.
Erfindungsgemäß wird vorzugsweise der Organismus derart verändert, daß er Riboflavin nahezu ausschließlich extrazellulär erzeugt. Diese Erhöhung der extrazellulären Erzeugung von Riboflavin läßt sich erfindungsgemäß beispielsweise dadurch erreichen, daß ein Organismus hergestellt wird, bei dem die Enzymaktivität der vakuolären H^-ATPase (V-ATPase) vermindert oder vollständig blockiert ist. Die Folge hiervon ist, daß der Transport des Riboflavins durch die Nakuolenmembran teilweise oder ganz gehemmt ist.According to the invention, the organism is preferably changed such that it produces riboflavin almost exclusively extracellularly. This increase in Extracellular production of riboflavin can be achieved according to the invention, for example, by producing an organism in which the enzyme activity of the vacuolar H ^ -ATPase (V-ATPase) is reduced or completely blocked. The consequence of this is that the transport of the riboflavin through the nacuole membrane is partially or completely inhibited.
Dies kann beispielsweise dadurch erreicht werden, daß durch Veränderung des katalytischen Zentrums ein verminderter Substratumsatz erfolgt oder indem die Wirkung von Enzyminhibitoren erhöht wird. Auch kann eine verringerte Enzymaktivität der V-ATPase durch Verminderung der Enzymsynthese, beispielsweise durch Ausschaltung von Faktoren, die die Enzym-Biosynthese aktivieren, hervorgerufen werden.This can be achieved, for example, by reducing the substrate conversion by changing the catalytic center or by increasing the action of enzyme inhibitors. A reduced enzyme activity of the V-ATPase can also be brought about by reducing the enzyme synthesis, for example by switching off factors which activate the enzyme biosynthesis.
Die ATPase-Aktivität kann erfindungsgemäß vorzugsweise durch Mutation, Inaktivierung oder Entfernung des ATPase-Gens vermindert oder vollständig gehemmt werden. Derartige Mutationen können entweder nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder mutationsauslösende Chemikalien, oder gezielt mittels gentechnologischer Methoden, wie Deletion, Insertion, Νukleotid-Austausch oder Substitutionen im Strukturgen oder den damit verbundenen regulatorischen Elementen, Promotoren und Transkriptionsfaktoren.According to the invention, the ATPase activity can preferably be reduced or completely inhibited by mutation, inactivation or removal of the ATPase gene. Such mutations can either be generated undirected by classic methods, such as by UV radiation or mutation-triggering chemicals, or specifically by means of genetic engineering methods, such as deletion, insertion, nucleotide exchange or substitutions in the structural gene or the associated regulatory elements, promoters and transcription factors.
Die ATPase-Genexpression kann demgemäß z. b. durch Entfernung oder Inaktivierung des ATPase-Gens und/oder durch Veränderung regulatorischer Faktoren, die die Genexpression beeinflussen, vermindert oder vollständig blockiert werden. So kann eine Verminderung regulatorischer Elemente vorzugsweise auf Transkriptionsebene erfolgen, indem insbesondere die Transkriptionssignale verändert werden. Daneben ist aber auch eine Verminderung der Translation möglich, indem beispielsweise die m-RΝA verändert wird.The ATPase gene expression can accordingly z. b. be reduced or completely blocked by removing or inactivating the ATPase gene and / or by changing regulatory factors which influence gene expression. For example, regulatory elements can preferably be reduced at the transcription level, in particular by changing the transcription signals. In addition, a reduction in translation is also possible, for example, by changing the m-RΝA.
Erfindungsgemäß kann das in der beschriebenen Weise veränderte ATPase-Gen in ein Genkonstrukt bzw. in einen Vektor eingebaut werden. Anschließend wird ein Riboflavin-produzierender Mikroorganismus mit diesem Genkonstrukt bzw. Vektor transformiert. Erfindungsgemäß kann die Genexpression der V-ATPase auch durch Austausch des Promotors vermindert oder vollständig gehemmt werden. Hierbei ist es möglich, die verminderte enzymatische Aktivität alternativ durch Einbau von Genkopien oder durch Austausch des Promotors zu erzielen. Gleichermaßen ist es jedoch auch möglich, durch gleichzeitigen Austausch des Promotors und Einbau von Genkopien die gewünschte Änderung der Enzymaktivität zu erzielen.According to the invention, the ATPase gene modified in the manner described can be incorporated into a gene construct or into a vector. A riboflavin-producing microorganism is then transformed with this gene construct or vector. According to the invention, the gene expression of the V-ATPase can also be reduced or completely inhibited by exchanging the promoter. It is possible to achieve the reduced enzymatic activity alternatively by incorporating gene copies or by exchanging the promoter. Equally, however, it is also possible to achieve the desired change in enzyme activity by simultaneously exchanging the promoter and incorporating gene copies.
Für die Isolierung des erfindungsgemäßen Gens kommen beliebige Organismen, deren Zellen die Sequenz zur Bildung der V-ATPase enthalten, also auch pflanzliche und tierische Zellen, in Betracht. Das veränderte Gen wird vorzugsweise aus Mikroorganismen, besonders bevorzugt aus Pilzen, isoliert. Besonders bevorzugt sind Pilze der Gattung Ashbya. Höchst bevorzugt ist die Spezies Ashbya gossypii.Any organisms whose cells contain the sequence for the formation of the V-ATPase, that is to say also plant and animal cells, can be used for the isolation of the gene according to the invention. The modified gene is preferably isolated from microorganisms, particularly preferably from fungi. Mushrooms of the genus Ashbya are particularly preferred. The species Ashbya gossypii is most preferred.
Die Isolierung des Gens kann durch homologe oder heterologe Komplementation einer ATPase-Defektmutante oder einer ATPase-Deletionsmutante erfolgen. Die Isolierung des Gens kann auch über einen PCR-Ansatz mit degenerierten Primern über Aminosäurehomologie zu bereits bekannten Vma-Proteinen und anschließendes Screening einer Genbank erfolgen. Das Gen kann durch Subklonieren (Schneiden mit geeigneten Restriktionsenzymen und Einklonieren der erhaltenen Fragmente in geeignete Vektoren) des komplementierenden Klons oder des positiven Klons der gescreenten Genbank anschließend vollständig sequenziert werden. Disruptionskonstrukte (Deletions-/ Substitutionsallele) können durch Ausschneiden eines Teils der Sequens des Gens mit Restriktionsenzymen und Ersetzen dieses Fragmentes durch eine Antibiotikum- Resistenzkassette plus einem Promotor auf einem Plasmid angefertigt werden. Solche Disruptionskonstrukte können dann zur Transformation eines Riboflavinproduzenten eingesetzt werden.The gene can be isolated by homologous or heterologous complementation of an ATPase defect mutant or an ATPase deletion mutant. The gene can also be isolated using a PCR approach with degenerate primers using amino acid homology to known Vma proteins and subsequent screening of a gene bank. The gene can then be completely sequenced by subcloning (cutting with suitable restriction enzymes and cloning the fragments obtained into suitable vectors) of the complementing clone or the positive clone of the screened gene bank. Disruption constructs (deletion / substitution alleles) can be prepared by cutting out part of the sequences of the gene with restriction enzymes and replacing this fragment with an antibiotic resistance cassette plus a promoter on a plasmid. Such disruption constructs can then be used to transform a riboflavin producer.
Nach Isolierung und Sequenzierung sind die erfindungsgemäßen Gene mit Nukleotidsequenzen erhältlich, die vorzugsweise für die Aminosäuresequenz gem. Figur 1 oder deren Allelvariation kodieren. Allelvariationen umfassen insbesondere Derivate, die durch Deletion, Insertion und Substitution von Nukleotiden aus entsprechenden Sequenzen erhältlich sind, wobei die V-ATPase- Aktivität erhalten bleibt. Eine entsprechende Sequenz ist in der oben angegebenen Aminosäuresequenz der Bereich von Nukleotid 1 bis 3881, wobei AGVMA1 selbst im sequenzierten Bereich den Nukleotiden 910-2763 gem. Figur 2 entspricht.After isolation and sequencing, the genes according to the invention can be obtained with nucleotide sequences which are preferably according to the amino acid sequence. Figure 1 or encode allele variation. Allelic variations include, in particular, derivatives which can be obtained by deleting, inserting and substituting nucleotides from corresponding sequences, the V-ATPase Activity remains intact. A corresponding sequence in the amino acid sequence given above is the range from nucleotide 1 to 3881, AGVMA1 even in the sequenced range according to nucleotides 910-2763. Figure 2 corresponds.
Den erfindungsgemäßen Genen kann insbesondere ein Promotor der Nukleotidsequenz von Nukleotid 1 bis 3881 gem. oben angegebenen Aminosäuresequenz oder eine im wesentlichen gleich wirkende DNA-Sequenz vorgeschaltet sein. So kann beispielsweise dem Gen ein Promotor vorgeschaltet sein, der sich von dem Promotor mit der angegebenen Nukleotidsequenz durch ein oder mehrere Nukleotidaustausche, durch Insertion und/oder Deletion unterscheidet. Des weiteren kann der Promotor durch Veränderung seiner Seqenz in seiner Wirksamkeit verändert oder komplett durch andere Promotoren ersetzt werden.A promoter of the nucleotide sequence of nucleotide 1 to 3881 according to. Above amino acid sequence or a DNA sequence having essentially the same effect. For example, the gene can be preceded by a promoter which differs from the promoter with the specified nucleotide sequence by one or more nucleotide exchanges, by insertion and / or deletion. Furthermore, the effectiveness of the promoter can be changed by changing its sequence or can be completely replaced by other promoters.
Dem V-ATPase-Gen können des weiteren regulatorische Gen-Sequenzen bzw. Regulatorgene zugeordnet sein, die insbesondere die V-ATPase-Gen-Aktivität vermindern. So können z. B. über eine veränderte Wechselwirkung zwischen RNA-Polymerase und DNA eine verminderte V-ATPase-Gen-Expression bewirkt werden.The V-ATPase gene can also be assigned regulatory gene sequences or regulatory genes which in particular reduce the V-ATPase gene activity. So z. B. a changed V-ATPase gene expression can be brought about via a modified interaction between RNA polymerase and DNA.
Dem erfindungsgemäß veränderten oder inaktivierten V-ATPase-Gen mit oder ohne vorgeschaltetem Promotor bzw. mit oder ohne Regulator-Gen können ein oder mehrere DNA-Sequenzen vor- und/oder nachgeschaltet sein, so daß das Gen in einer Gen-Struktur enthalten ist. Durch Klonierung des erfindungsgemäßen Gens sind Plasmide bzw. Vektoren erhältlich, die das veränderte oder inaktivierte V-ATPase-Gen oder kein V-ATPase-Gen enthalten und zur Transformation eines Riboflavin-Produzenten geeignet sind. Die durch Transformation erhältlichen Zellen enthalten das Gen in replizierbarer Form, d. h. in zusätzlichen Kopien auf dem Chromosom, wobei die Genkopien durch homologe Rekombination an beliebigen Stellen des Genoms integriert werden und/oder auf einem Plasmid bzw. Vektor.The V-ATPase gene modified or inactivated according to the invention with or without an upstream promoter or with or without a regulator gene can be preceded and / or followed by one or more DNA sequences so that the gene is contained in a gene structure. By cloning the gene according to the invention, plasmids or vectors are obtainable which contain the modified or inactivated V-ATPase gene or no V-ATPase gene and are suitable for transforming a riboflavin producer. The cells obtainable by transformation contain the gene in replicable form, i.e. H. in additional copies on the chromosome, the gene copies being integrated at any point in the genome by homologous recombination and / or on a plasmid or vector.
Eine andere Möglichkeit zur Erhöhung des extrazellulär anfallenden Riboflavins besteht darin, die Transportgeschwindigkeit des Riboflavins durch die Cytoplasmamembran in das Fermentationsmedium zu erhöhen. Dadurch wird das Gleichgewicht zwischen dem Transport durch die Vakuolenmembran und durch die Cytoplasmamembran derart verschoben, daß der überwiegende Teil des Riboflavins extrazellulär anfällt.Another way to increase the extracellularly occurring riboflavin is to increase the transport speed of the riboflavin through the Increase cytoplasmic membrane in the fermentation medium. This shifts the equilibrium between the transport through the vacuole membrane and through the cytoplasmic membrane in such a way that the majority of the riboflavin is obtained extracellularly.
Dies läßt sich z. B. dadurch erreichen, daß eine stärkere Expression des für den Transport codierenden Gens oder eine Erhöhung seiner Aktivität bewirkt wird.This can be done e.g. B. achieve that a stronger expression of the gene coding for transport or an increase in its activity is effected.
Bei den erfindungsgemäß veränderten ein- oder mehrzelligen Organismen kann es sich um beliebige für biotechnische Verfahren einsetzbare Zellen handeln. Hierzu zählen beispielsweise Pilze, Hefen, Bakterien sowie pflanzliche und tierische Zellen. Erfindungsgemäß handelt es sich vorzugsweise um transformierte Zellen von Pilzen, besonders bevorzugt solche aus der Ordnung der Endomycetales. Insbesondere ist die Familie der Saccharomycetaceae bevorzugt. Ganz besonders bevorzugt sind Pilze der Gattung Ashbya und Eremothecium. Hierbei sind die Spezies Ashbya gossipii und Eremothecium ashbyii höchst bevorzugt.The single or multicellular organisms modified according to the invention can be any cells that can be used for biotechnical processes. These include, for example, fungi, yeasts, bacteria, and plant and animal cells. According to the invention, these are preferably transformed cells of fungi, particularly preferably those from the order of the Endomycetales. In particular, the family of Saccharomycetaceae is preferred. Fungi of the genus Ashbya and Eremothecium are very particularly preferred. The species Ashbya gossipii and Eremothecium ashbyii are most preferred.
Grundsätzlich können die beschriebenen Veränderungen in den Transportvorgängen auch durch Veränderung der Fermentationsbedingungen erreicht werden. Insbesondere kann durch Zusatz von chemischen Stoffen zum Fermentationsmedium eine wenigstens teilweise Blockierung der intrazellulären Akkumulation von Riboflavin erreicht werden. Beispielsweise kann erfindungsgemäß dem Fermentationsmedium ein Inhibitor zugesetzt werden, der eine Inaktivierung der V-ATPase bewirkt.In principle, the changes described in the transport processes can also be achieved by changing the fermentation conditions. In particular, the addition of chemical substances to the fermentation medium can at least partially block the intracellular accumulation of riboflavin. For example, according to the invention, an inhibitor can be added to the fermentation medium which inactivates the V-ATPase.
Beispiele für solche Stoffe sind Concanamycine, Bafilomycine, N-Ethylmaleimid, Nitrat.Examples of such substances are concanamycins, bafilomycins, N-ethylmaleimide, nitrate.
Im folgenden wird die Erfindung näher anhand von Beispielen erläutert, ohne daß damit eine Begrenzung auf den Gegenstand der Beispiele verbunden sein soll: L Kompartimentierung von Riboflavin in A. gossypii unter ProduktionsbedingungenThe invention is explained in more detail below with the aid of examples, without this being intended to limit the subject matter of the examples: L Compartmentalization of riboflavin in A. gossypii under production conditions
1.1 Permeabilisierungstechnik1.1 Permeabilization technology
Mit Hilfe der selektiven Permeabilisierungstechnik wurde die Produktion und Kompartimentierung der stärker produzierenden Mutante ItaGSOl mit/ohne Zusatz von Concanamycin A in 4 unabhängigen Experimenten bestimmt. Hierfür wurden die Zellen auf Produktionsmedium angezogen (Hefeextrakt: 10 g/1; Sojaöl: 10 g/1; Glycin: 6 g/1) und zu definierten Zeitpunkten im Produktionsverlauf geerntet. Zur Kompartimentierungsanalyse wurde die Technik der selektiven Permeabilisierung der Plasmamembran von A. gossypii angewendet. Ziel der selektiven Permeabilisierung der Piadmamembran ist die getrennte Analyse von cytosolischen und vakuolärem Kompartiment. Hierfür wurde das Myzel zum gewünschten Zeitpunkt durch Filtration geerntet (Glasfaser-Rundfilter, O 4,5 cm) und mit NaP-Puffer gewaschen. Die Pilzzellen (0,5 g Feuchtmasse) wurden in 10 ml Permeabilisierungslösung 0,003 % (w/v) Digitonin in 50 mM NaP-Puffer resuspendiert und in dieser Permeabilisierungslösung 10 min bei 30 ° C, 120 rpm im Laborschüttler zur Permeabilisierung der Plasmamembran inkubiert. Nach erfolgter Inkubation wurden die Zellen durch Filtration aus der Lösung abgetrennt und das Filtrat zur Analyse cytosolischer Zellbestandteile eingesetzt. Die Zellsuspension wurde weitere 10 min mit 0,02 % (w/v) Digitonin zur Zerstörung aller zellulären Membranen inkubiert. Durch Filtration konnte dann der vakuoläre Inhalt der Zellen für Analysen (Riboflavinbesti mung) gewonnen werden. Die auf dem Filter verbleibenden Zellreste wurden verworfen. With the help of the selective permeabilization technique, the production and compartmentalization of the stronger producing mutant ItaGSOl with / without the addition of concanamycin A was determined in 4 independent experiments. For this purpose, the cells were grown on production medium (yeast extract: 10 g / 1; soybean oil: 10 g / 1; glycine: 6 g / 1) and harvested at defined times in the course of production. The technique of selective permeabilization of the plasma membrane of A. gossypii was used for the compartmentalization analysis. The goal of the selective permeabilization of the piadma membrane is the separate analysis of cytosolic and vacuolar compartments. For this purpose, the mycelium was harvested by filtration at the desired point in time (glass fiber round filter, O 4.5 cm) and washed with NaP buffer. The fungal cells (0.5 g wet weight) were resuspended in 10 ml permeabilization solution 0.003% (w / v) digitonin in 50 mM NaP buffer and incubated in this permeabilization solution for 10 min at 30 ° C., 120 rpm in a laboratory shaker to permeabilize the plasma membrane. After incubation, the cells were separated from the solution by filtration and the filtrate was used for the analysis of cytosolic cell components. The cell suspension was incubated for a further 10 min with 0.02% (w / v) digitonin to destroy all cellular membranes. The vacuolar content of the cells for analysis (riboflavin determination) could then be obtained by filtration. The cell residues remaining on the filter were discarded.
1.2 Quantitative Bestimmung von Biotrockenmasse und Riboflavin1.2 Quantitative determination of dry biomass and riboflavin
Der Riboflavingehalt der Permeabilisierungsfiltrate wird über HPLC unter den nachfolgend beschriebenen Trennbedingungen ermittelt:The riboflavin content of the permeabilization filtrates is determined by HPLC under the separation conditions described below:
Säule: LiCrospher Q. D 100 RP-18 (5 um) (Merck, DarmstacColumn: LiCrospher Q. D 100 RP-18 (5 µm) (Merck, Darmstac
I-aufrnittel: 50 mM NaH2PO4 I portion: 50 mM NaH 2 PO 4
I mM TramethylammoniumchloridI mM tramethylammonium chloride
12 % Acetonitril12% acetonitrile
Fluß: 1 ml/minFlow: 1 ml / min
Elution: isokratischElution: isocratic
Detektion: 270 nmDetection: 270 nm
Der Riboflavingehalt der einzelnen Kompartimente wurde dann zur Berechnung der Kompartimentierung zwischen Medium, Cytosol und Vakuole auf die eingesetzte Biotrockenmasse bezogen. Zur Bestimmung der Pilztrockenmasse wurden 20 - 50 ml Sojaöl-Kultur zunächst in 50 ml-Falcon Tubes überführt, 10 min. bei 1500 x g zentrifugiert und die dann oben befindliche Ölschicht vorsichtig mit einer Pipette abgenommen. Die öl reie Suspension wurde danach über tarierte Glasfaser-Rundfilter abfiltriert und mit lOfachem Volumen NaP- Puffer gewaschen. Das Myzel auf dem Filter wurde bis zur Gewichtskonstanz bei 60 °in einem Trockenschrank getrocknet und anschließend gewogen.The riboflavin content of the individual compartments was then related to the dry biomass used to calculate the compartmentalization between medium, cytosol and vacuole. To determine the dry mushroom mass, 20-50 ml soybean oil culture was first transferred to 50 ml Falcon tubes, 10 min. Centrifuged at 1500 x g and then carefully removed the oil layer above with a pipette. The oil-free suspension was then filtered through tared glass fiber round filters and washed with 10 times the volume of NaP buffer. The mycelium on the filter was dried to constant weight in a drying cabinet at 60 ° and then weighed.
1.3 Kompartimentierung von Riboflavin unter Produktionsbedingungen1.3 Compartmentalization of riboflavin under production conditions
Es wurden jeweils für Kontrolle und Concanamycin-behandelte Zellen (5 uM) zu den 3 Zeitpunkten 24 h, 43 h und 67 h die cytosolischen und vakuolären Riboflavingehalte sowie die ins Medium sezernierte Riboflavinmenge determiniert: Die Diagramme zeigen deutlich (auch optisch/Hchtmikroskopisch gut zu sehen), daß die Zellen der Mutante ItaGSOl in ihren Vakuolen kein Riboflavin mehr speichern können, wenn der V-ATPase-Inhibitor Concanamycin A dem Medium zu Beginn der Produktionsphase zugesetzt wird. Die Gesamtproduktion ist bei Kontrolle und Concanamycin A-Ansätzen gleich, wobei unter Concanamycin A- Zusatz die sonst intravakuolär gespeicherte Riboflavinmenge (30 - 60 % der Gesamtproduktion) ins Medium sezerniert wird.The cytosolic and vacuolar riboflavin contents and the amount of riboflavin secreted into the medium were determined for control and concanamycin-treated cells (5 μM) at the 3 points in time 24 h, 43 h and 67 h: The diagrams clearly show (can also be seen optically / highly microscopically) that the cells of the mutant ItaGSOl can no longer store riboflavin in their vacuoles if the V-ATPase inhibitor concanamycin A is added to the medium at the beginning of the production phase. The total production is the same for control and concanamycin A batches, with concanamycin A addition being used to secrete the otherwise intravacuously stored amount of riboflavin (30 - 60% of total production) into the medium.
2. Klonierung. Sequenzierung und Disruption des VMAl-Gens von A.gossvpii2. Cloning. Sequencing and disruption of the A.gossvpii VMAl gene
Es wurde der Versuch unternommen, die mit Hilfe des Inhibitors Concanamycin A erzielte Riboflavinfluss-Umlenkung molekularbiologisch durch Konstruktion eines Stammes mit dysfunktionaler V-ATPase umzusetzen. Es wurde hierfür die katalytische Untereinheit A des V-ATPase-Komplexes kloniert und disruptiert. Die katalytische Untereinheit A wird durch das VMAl-Gen kodiert (yacuolar membrane ATPase protein 1).An attempt was made to implement the riboflavin flow redirection achieved with the aid of the inhibitor concanamycin A by molecular biology by constructing a strain with dysfunctional V-ATPase. For this purpose, the catalytic subunit A of the V-ATPase complex was cloned and disrupted. The catalytic subunit A is encoded by the VMA1 gene (yacuolar membrane ATPase protein 1).
2.1. Klonierung und Seqenzierung2.1. Cloning and sequencing
Über PCR (Design von degenerierten Oligonukleotid-Primern aus hochkonservierten Sequenzen im VMAlp-Alignment) konnte ein Fragment des Ag VMAl-Gens (evolutiv stark konserviert) amplifiziert werden: für die PCR wurden degenerierte Oligonukleotid-Primer aus hochkonservierten Aminosäure- Abschnitten verschiedener VMA1 -Proteine entwickelt: CFla (5- ATYCARGTBTAYGARAC-3) und GFlb (5-ATVACRGTYTTRCCRCA-3) wurden bei MWG Biotech (Ebersberg) bestellt. Die PCR (30 s 94 ° C, 60 s 52 ° C, 60 s 72 ° C, 35 Zyklen) wurde im Gene Amp® PCR System 9700 (Applied Biosystems) mit Taq-Polymerase (Boehringer Mannheim, Germany) durchgeführt, Puffer wie vom Hersteller empfohlen, 8 uM Primer CFla, 4uM Primer CFlb. Das amplifizierte PCR-Fragment wurde dann genutzt, um eine Cosmid-Genbibliothek (cosmid vector SuperCosl, Stratagene) von A. gossypii zu screenen. Um positive Cos id-Klone, die homologe Regionen von DNA enthielten, zu identifizieren, wurde das PCR-Fragment mit (a-32P)dCTP mit Hilfe von T7-Polymerase radioaktiv markiert. Die Cosmid-DANN der positiven Klone wurde mit Baml verdaut und wieder mit dem radioaktiven PCR-Fragment gescreent. Das Gen wurde dann nach Subklonieren in den Plasmid- Vektor Bluescript, Stratagene, seqzenziert. Die Nukleotid-Sequenz ist nach Einreichen des Patents und der dazugehörigen Publikation unter der Accession-Nummer AJ009881 in der EMBL-Datenbank zu erhalten. Das Proteinalignment für AgVMAlp mit den V-ATPase-A-Untereinheiten versch. Anderer Organismen zeigte, daß auch in Ashbya eine stark konservierte Proteinsequenz vorliegt. Der phylogenetische Stammbaum der VMA1 -Proteine zeigte ausserdem, daß mit AgVMAlp das zum entsprechenden Protein der Hefe S. cerevisiae am nächsten verwandte VMA1 -Protein, das bisher bekannt ist, gefunden wurde. Genomische Southern-Analyse bestätigte, daß es sich um ein single-copy-Gen handelt (wie im übrigen auch bei der Hefe).Using PCR (design of degenerate oligonucleotide primers from highly conserved sequences in the VMAlp alignment) it was possible to amplify a fragment of the Ag VMAl gene (highly conserved in evolution): for the PCR, degenerate oligonucleotide primers from highly conserved amino acid sections of various VMA1 proteins were used Developed: CFla (5- ATYCARGTBTAYGARAC-3) and GFlb (5-ATVACRGTYTTRCCRCA-3) were ordered from MWG Biotech (Ebersberg). The PCR (30 s 94 ° C, 60 s 52 ° C, 60 s 72 ° C, 35 cycles) was carried out in the Gene Amp® PCR System 9700 (Applied Biosystems) with Taq polymerase (Boehringer Mannheim, Germany), buffers like recommended by the manufacturer, 8 uM primer CFla, 4uM primer CFlb. The amplified PCR fragment was then used to screen a A. gossypii cosmid gene library (cosmid vector SuperCosl, Stratagene). To identify positive Cos id clones that contained homologous regions of DNA, the PCR fragment was analyzed with (a- 32 P) dCTP radioactively labeled by T7 polymerase. The cosmid-DANN of the positive clones was digested with Baml and screened again with the radioactive PCR fragment. The gene was then sequenced after subcloning into the plasmid vector Bluescript, Stratagene. The nucleotide sequence can be obtained in the EMBL database after filing of the patent and the associated publication under the accession number AJ009881. The protein alignment for AgVMAlp with the V-ATPase-A subunits of various other organisms showed that a strongly conserved protein sequence is also present in Ashbya. The phylogenetic pedigree of the VMA1 proteins also showed that the VMA1 protein most closely related to the corresponding protein of the yeast S. cerevisiae and known to date has been found with AgVMAlp. Genomic Southern analysis confirmed that it is a single-copy gene (like the rest of the yeast).
2.2 Disruption des vmal Gens2.2 Disruption of the vmal gene
Zur Disruption wurde ein vmal-Deletions/Substitutions-Allel, genannt vmal: G418 konstruiert. Hierfür wurde das 0,25kb BamHl-Pstl-Fragment im VMA1- PCR-Fragment, welches einen Teil des VMA1-ORF enthält,mit der Geneticin- Resistenz-Kassette TEF-G418 ersetzt. Zunächst wurde das VMA1 -PCR-Fragment in einen modifizierten pGEM®T-Vektor (Promega) ohne Pstl-Schnittstelle kloniert, wodurch das Plasmid pJR1767 erzeugt wurde. Die codierende Sequenz für VMA1 wurde schließlich auf dem Plasmid disruptiert, indem die 0,25 kb- BamHl-Pstl-Region mit dem TEF-G418-Marker ersetzt, wodurch das Plasmid pJR1773 erzeugt wurde. Das lineare 2,5-kb-Fragment Ncol-Spel dieses Plasmids wurde schließlich zur Transformation gekeimter Sporen von A. gossypii (Ausgangsstämme Wildtyp, stärker produzierende Mutante ItaGSOl) eingesetzt. Geneticin-resistente Klone wurden selektioniert und die Disruption des vma 1- Gens durch Southern-Blot bestätigt (Abb. 2).A vmal deletion / substitution allele, called vmal: G418, was constructed for the disruption. For this, the 0.25 kb BamHl-Pstl fragment in the VMA1-PCR fragment, which contains part of the VMA1-ORF, was replaced with the genetic resistance cassette TEF-G418. First, the VMA1 PCR fragment was cloned into a modified pGEM ® T-vector (Promega) without PstI site was generated resulting in plasmid pJR1767. The coding sequence for VMA1 was finally disrupted on the plasmid by replacing the 0.25 kb BamHl-Pstl region with the TEF-G418 marker, thereby generating plasmid pJR1773. The linear 2.5 kb fragment Ncol-Spel of this plasmid was finally used to transform sprouted spores of A. gossypii (starting strains wild-type, stronger producing mutant ItaGSOl). Geneticin-resistant clones were selected and the disruption of the vma 1 gene was confirmed by Southern blot (Fig. 2).
2.2. Stofflußumlenkung von Riboflavin durch die Disruption von VMA-1 Die Disruptanten zeigen auf Platte charakteristische, dicht/kraterartig wachsende Kolonien im Gegensatz zum flachigen Wachstum der Ausgangsstämme. Die Zellen sezernieren Riboflavien (gelb gefärbte Agarplatten), die Hyphen selbst sind aber komplett weiss, speichern in ihren Vakuolen kein Riboflavin mehr (erster Nachweis über Fluoreszenzmikroskopie). Dagegen sind die Hyphen der Ausgangsstämme gelb gefärbt vom intravakuolär gespeicherten Riboflavin (oft sogar in Kristallen).2.2. Redirection of riboflavin by the disruption of VMA-1 The disruptants show characteristic, densely / crater-like colonies on plate in contrast to the flat growth of the original strains. The cells secrete riboflavia (yellow-colored agar plates), but the hyphae themselves are completely white and no longer store riboflavin in their vacuoles (first detection using fluorescence microscopy). In contrast, the hyphae of the parent strains are colored yellow by the intravacuously stored riboflavin (often even in crystals).
Die Riboflavinkompartimentierung wurde wiederum mit Hilfe der selektiven Membran-permeabiüsierangstechnik (s. 1.1.) quantitativ untersucht.The riboflavin compartmentation was again quantitatively investigated using the selective membrane permeation technique (see 1.1.).
Über die Disruption der V-ATPase-Untereinheit A konnte (wie oben unter Zusatz des V-ATPase-Inhibitors Concanamycin) eine Umlenkung der Riboflavinflüsse erzielt werden. Es stehen also 3 neue Stämme ohne vakuoläre Riboflavinakkumulation (Produkt-Retention) zur Verfügung.The disruption of the V-ATPase subunit A (as above with the addition of the V-ATPase inhibitor concanamycin) was able to redirect the riboflavin influences. So there are 3 new strains without vacuolar riboflavin accumulation (product retention) available.
Erläuterungen zu den Figuren:Explanations to the figures:
Abb. 1 : Kompartimentierung von Riboflavin in Ashbya unter Standard- Produktionsbedingungen (linke Säule) und bei der Produktion unter Zusatz des V-ATPase-Inhibitors Concanamycin AFig. 1: Compartmentalization of riboflavin in Ashbya under standard production conditions (left column) and during production with the addition of the V-ATPase inhibitor concanamycin A
Abb. 2: Disruption von AgVMAl mit dem TEF-G418-Marker, (A)Fig. 2: Disruption of AgVMAl with the TEF-G418 marker, (A)
Konstruktion, (B) Southern-Analyse Tl : Disruptante vom WildstammConstruction, (B) Southern analysis Tl: Disruptant from the wild strain
T2: Disruptante von ItaGSOlT2: Disruptant of ItaGSOl
Abb. 3: Riboflavinkompartimentierung in Ausgangsstamm undFig. 3: Riboflavin compartmentalization in parent strain and
Disruptante der Mutante ItaGSOl Disruptant of the mutant ItaGSOl

Claims

Ansprüche Expectations
1. Ein- oder mehrzelhger Organismus, insbesondere Mikroorganismus, zur biotechnischen Herstellung von Riboflavin dadurch gekennzeichnet, daß dessen intrazelluläre1. One or more organism, in particular microorganism, for the biotechnical production of riboflavin, characterized in that its intracellular
Stofftransportvorgänge derart verändert sind, daß der überwiegende Teil an Riboflavin extrazellulär anfällt.Mass transport processes are changed in such a way that the majority of riboflavin is obtained extracellularly.
2. Ein- oder mehrzelliger Organismus nach Anspruch 1 dadurch gekennzeichnet, daß bei ihm der2. Single- or multi-cell organism according to claim 1, characterized in that the
Transport des Riboflavins in die Vakuole vermindert ist.Transport of the riboflavin into the vacuole is reduced.
3. Ein- oder mehrzelliger Organismus nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Transport des Riboflavins in der Vakuole wenigstens teilweise gehemmt ist.3. Single or multi-cell organism according to one of claims 1 or 2, characterized in that the transport of the riboflavin in the vacuole is at least partially inhibited.
4. Ein- oder mehrzelhger Organismus nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei ihm die V-4. single or multiple organism according to one of claims 1 to 3, characterized in that with it the V-
ATPase-Aktivität wenigstens teilweise blockiert ist.ATPase activity is at least partially blocked.
5. Ein- oder mehrzelhger Organismus nach Anspruch 4, dadurch gekennzeichnet, daß bei ihm die Transportgeschwindigkeit des Riboflavins durch die Cytoplasmamembran höher ist, als diejenige durch die Vakuolenmembran ist.5. single or multi organism according to claim 4, characterized in that with him the transport speed of the riboflavin through the cytoplasmic membrane is higher than that through the vacuole membrane.
6. Ein- oder mehrzelhger Organismus nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß er ein Pilz ist.6. single or multiple organism according to one of claims 4 or 5, characterized in that it is a fungus.
7. Ein- oder mehrzelhger Organismus nach Anspruch 6, dadurch gekennzeichnet, daß er ein filamentöser7. single or multiple organism according to claim 6, characterized in that it is a filamentous
Pilz ist. Is mushroom.
8. Ein- oder mehrzelliger Organismus nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß er ein Pilz aus der Familie der Saccharomycetaceae ist.8. single or multi-cell organism according to one of claims 1 to 7, characterized in that it is a fungus from the family of the Saccharomycetaceae.
9. Ein- oder mehrzelhger Organismus nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, daß er ein Pilz aus der9. single or multiple organism according to one of claims 1 to 8, characterized in that it is a fungus from the
Gattung der Spezies Ashbya, vorzugsweise Ashbya gossypii ist.Genus of the Ashbya species, preferably Ashbya gossypii.
10. V-ATPase-Gene dadurch gekennzeichnet, daß sie durch Mutation wenigstens teilweise inaktiviert sind.10. V-ATPase genes characterized in that they are at least partially inactivated by mutation.
11. V-ATPase-Gene nach Anspruch 10 mit einer für die Aminosäuresequenz gem. Figur 1 und deren Allelvariation kodierenden Nukleotidsequenz.11. V-ATPase genes according to claim 10 with a for the amino acid sequence acc. Figure 1 and their allele variation coding nucleotide sequence.
12. V-ATPase-Gene nach einem der Ansprüche 10 oder 11 mit der Nukleotidsequenz von Nukleotid 1 bis 3881 gem. der in Figur 2 angegebenen Aminosäuresequenz oder einer im wesentlichen gleich wirkenden DNA-Sequenz.12. V-ATPase genes according to one of claims 10 or 11 with the nucleotide sequence of nucleotide 1 to 3881 acc. the amino acid sequence indicated in FIG. 2 or a DNA sequence which acts essentially in the same way.
13. V-ATPase-Gene nach einem der Ansprüche 10 bis 12 mit diesem zugeordneten regulatorischen Gensequenzen.13. V-ATPase genes according to one of claims 10 to 12 with this associated regulatory gene sequences.
14. Gen zur Herstellung eines Riboflavin produzierden ein- oder mehrzelligen Organismus dadurch gekennzeichnet, daß es kein V-ATPase-Gen enthält.14. Gene for the production of a riboflavin-producing single or multicellular organism, characterized in that it contains no V-ATPase gene.
15. Vektor enthaltend ein Gen nach einem der Ansprüche 10 bis 14.15. Vector containing a gene according to one of claims 10 to 14.
16. Transformierter Organismus zur Herstellung von Riboflavin enthaltend in replizierbarer Form ein Gen nach einem der Ansprüche 10 bis 14.16. Transformed organism for the production of riboflavin containing in a replicable form a gene according to one of claims 10 to 14.
17. Transformierter Organismus enthaltend einen Vektor nach Anspruch 15. 17. A transformed organism containing a vector according to claim 15.
18. Verfahren zur Herstellung von Riboflavin, dadurch gekennzeichnet, daß ein Organismus gem. einem der Ansprüche 1 bis 9 eingesetzt wird.18. A process for the preparation of riboflavin, characterized in that an organism acc. one of claims 1 to 9 is used.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß dem19. The method according to claim 18, characterized in that the
Fermentationsmedium ein chemischer Inhibitor zugesetzt wird.A chemical inhibitor is added to the fermentation medium.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß dem Fermentationsmedium Concanamycine, Bafilomycine, N-Ethylmaleimid,20. The method according to claim 19, characterized in that the fermentation medium concanamycine, bafilomycine, N-ethylmaleimide,
Nitrat als Inhibitoren zugesetzt werden.Nitrate can be added as inhibitors.
21. Verfahren zur Herstellung eines Riboflavin produzierenden ein- oder mehrzelligen Organismus, dadurch gekennzeichnet, daß er so verändert wird, daß die überwiegende Menge des entstehenden Riboflavins extrazellulär anfällt.21. A process for the production of a riboflavin-producing single or multicellular organism, characterized in that it is changed so that the predominant amount of the resulting riboflavin is obtained extracellularly.
22. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, daß die Veränderung des Organismus mittels gentechnischer Methoden erfolgt.22. The method according to claim 21, characterized in that the change in the organism takes place by means of genetic engineering methods.
23. Verfahren nach einem der Ansprüche 20 bis 22 dadurch gekennzeichnet, daß durch Veränderung oder Entfernung des V-ATPase-Gens die Aktivität der ATPase wenigstens teilweise oder vollständig blockiert wird.23. The method according to any one of claims 20 to 22, characterized in that the activity of the ATPase is at least partially or completely blocked by changing or removing the V-ATPase gene.
24. Verwendung des Organimus nach einem der Ansprüche 1 bis 9 sowie 16 und 17 zur Herstellung von Riboflavin.24. Use of the organimus according to one of claims 1 to 9 and 16 and 17 for the production of riboflavin.
25. Verwendung des ATPase-Gens nach einem der Ansprüche 10 bis 13 zur Herstellung eines Organismus nach einem der Ansprüche 1 bis 9 sowie 16 und 17. 25. Use of the ATPase gene according to one of claims 10 to 13 for the production of an organism according to one of claims 1 to 9 and 16 and 17.
6. Verwendung des Vektors nach Anspruch 14 zur Herstellung eines Organismus nach einem der Ansprüche 1 bis 9 sowie 15 und 16. 6. Use of the vector according to claim 14 for the production of an organism according to one of claims 1 to 9 and 15 and 16.
PCT/EP1999/006328 1998-08-31 1999-08-27 Organisms for the extracellular production of riboflavin WO2000012748A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99944543A EP1133570A1 (en) 1998-08-31 1999-08-27 Organisms for the extracellular production of riboflavin
JP2000567731A JP2002523109A (en) 1998-08-31 1999-08-27 Organisms for extracellular production of riboflavin
CA002341715A CA2341715A1 (en) 1998-08-31 1999-08-27 Organisms for the extracellular production of riboflavin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19839567.1 1998-08-31
DE19839567A DE19839567A1 (en) 1998-08-31 1998-08-31 Organisms for extracellular production of riboflavin

Publications (1)

Publication Number Publication Date
WO2000012748A1 true WO2000012748A1 (en) 2000-03-09

Family

ID=7879273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006328 WO2000012748A1 (en) 1998-08-31 1999-08-27 Organisms for the extracellular production of riboflavin

Country Status (6)

Country Link
EP (1) EP1133570A1 (en)
JP (1) JP2002523109A (en)
CN (1) CN1316009A (en)
CA (1) CA2341715A1 (en)
DE (1) DE19839567A1 (en)
WO (1) WO2000012748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022824A2 (en) * 2000-09-15 2002-03-21 Basf Aktiengesellschaft Ashbya gossypii genes coding for proteins involved in membrane transport

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987598B (en) * 2017-05-05 2020-07-03 南京农业大学 Jerusalem artichoke V-type proton pump c subunit gene HtVHAc1, and cloning method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420785A1 (en) * 1994-03-25 1995-10-05 Basf Ag Riboflavin biosynthesis in fungi
WO1997003208A1 (en) * 1995-07-13 1997-01-30 Basf Aktiengesellschaft Riboflavin-production process by means of micro-organisms with modified isocitratlyase activity
WO1998029539A2 (en) * 1996-12-31 1998-07-09 Basf Aktiengesellschaft Partial sequences of purine biosynthesis genes from ashbya gossypii and their use in the microbial riboflavin synthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420785A1 (en) * 1994-03-25 1995-10-05 Basf Ag Riboflavin biosynthesis in fungi
WO1997003208A1 (en) * 1995-07-13 1997-01-30 Basf Aktiengesellschaft Riboflavin-production process by means of micro-organisms with modified isocitratlyase activity
WO1998029539A2 (en) * 1996-12-31 1998-07-09 Basf Aktiengesellschaft Partial sequences of purine biosynthesis genes from ashbya gossypii and their use in the microbial riboflavin synthesis
WO1998029538A2 (en) * 1996-12-31 1998-07-09 Basf Aktiengesellschaft Gene for adenylate cyclase and its use
EP0866129A2 (en) * 1996-12-31 1998-09-23 Novartis AG Genomic DNA sequences of Ashbya gossypii and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C. FÖRSTER ET AL.: "Monitoring riboflavin fluxes across the vacuolar membrane of the filamentous fungus Ashbya gossypii by selective permeabilization of the plasma membrane", MEDEDELINGEN FACULTEIT LANDBOUWKUNDIGE EN TOEGEPASTE BIOLOGISCHE WETENSCHAPPEN UNIVERSITEIT GENT, vol. 62, no. 4A-B, 1997, gENT, bE, pages 1245 - 1248, XP000866354 *
FORSTER C ET AL: "Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii.", JOURNAL OF BIOLOGICAL CHEMISTRY, (1999 APR 2) 274 (14) 9442-8. JOURNAL CODE: HIV., XP000866044 *
R. HIRATA AND Y. ANRAKU: "Mutations at the putative junction site of the yeast VMA1 protein, the catalytic subunit of the vacuolar membrane H+-ATPAse, inhibit its processing by protein splicing", BIOCHEM. AND BIOPHYS. RES. COMMUNICATIONS, vol. 188, no. 1, 15 October 1992 (1992-10-15), ACADEMIC PRESS, NEW YORK, US, pages 40 - 47, XP002126512 *
R. HIRATA ET AL.: "Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocation adenosine triphosphatase from vacuolar membrane of Saccharomyces cerevisiae", J. BIOL. CHEM., vol. 265, no. 12, 25 April 1990 (1990-04-25), AM. SOC. BIOCHEM. MOL.BIOL.,INC.,BALTIMORE,US, pages 6726 - 6733, XP002126513 *
S. DRÖSE ET AL.: "Inhibitory effect of modified bafilomycin and concanamycin on P- and V-type adenosinetriphosphatases", BIOCHEMISTRY, vol. 32, 1993, AM. CHEM. SOC.,WASHINGTON,DC,US, pages 3902 - 3906, XP002127379 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022824A2 (en) * 2000-09-15 2002-03-21 Basf Aktiengesellschaft Ashbya gossypii genes coding for proteins involved in membrane transport
WO2002022824A3 (en) * 2000-09-15 2002-12-19 Basf Ag Ashbya gossypii genes coding for proteins involved in membrane transport

Also Published As

Publication number Publication date
CN1316009A (en) 2001-10-03
JP2002523109A (en) 2002-07-30
EP1133570A1 (en) 2001-09-19
DE19839567A1 (en) 2000-03-09
CA2341715A1 (en) 2000-03-09

Similar Documents

Publication Publication Date Title
DE69832624T2 (en) HEFESTAMMS FOR THE PREPARATION OF MILKY ACID
DE60028777T2 (en) PROCESS FOR THE PREPARATION OF 1,3-PROPANEDIOL BY A RECOMBINANT MICROORGANISM IN THE ABSENCE OF COENZYME B12
EP0751995B1 (en) Riboflavin synthesis in fungi
EP0915981B1 (en) Isolation of the biosynthesis genes for pseudo-oligosaccharides from streptomyces glaucescens gla.o and their use
EP3121192A1 (en) New gene products of bacillus licheniformis decomposing polyamino acids and associated improved biotechnological production method
WO1999033993A1 (en) Promoter from ashbya gossypii
EP1015597B1 (en) Method for producing ergosterol and intermediate products thereof by means of recombinant yeasts
WO2006131240A2 (en) Recycling of biomasses subjected to lysis as nutrient medium on fermentative production of riboflavin
WO1998029538A2 (en) Gene for adenylate cyclase and its use
CH640268A5 (en) Process for the preparation of filamentous hybrid phages, novel hybrid phages and their use
EP1133570A1 (en) Organisms for the extracellular production of riboflavin
DE69535507T2 (en) YEAST WITH CHANGED PERMEABILITY
WO2003064652A1 (en) Method for the production of zymosterol and/or the biosynthetic intermediate and/or subsequent products thereof in transgenic organisms
WO2004063360A2 (en) Improved method for the production of vitamin b12
DE112019000467T5 (en) Recombinant microorganism, process for its production and its use in the production of coenzyme Q10
EP1918379A1 (en) Expression vectors for multiple gene integration and Overexpression of homologous and heterologous proteins in yeasts of the species Arxula
EP1606390A1 (en) Method for producing ergosta-5,7-dienol and/or biosynthetic intermediate and/or secondary products thereof in transgenic organisms
AT408442B (en) MUTANT RIBOSOMAL PROTEIN L3
DE60126767T2 (en) NOVEL (R) -2-HYDROXY-3-PHENYLPROPIONATE (D-PHENYL LACTATE) DEHYDROGENASE AND FOR THAT ENCODING GENE
DE102004013988A1 (en) The factor RecA from Bacillus licheniformis and recA-inactivated safety strains for biotechnological production
DE3331860A1 (en) Process for the preparation of tendamistat
EP1200600A2 (en) Monocellular or multicellular organisms for the production of riboflavin
EP0930367A2 (en) Uni- or multicellular microorganisms for the production of riboflavin
DE19840709A1 (en) Organism for riboflavin production
WO2001023576A1 (en) Protein production using ashbya gossypii

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99810477.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999944543

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2341715

Country of ref document: CA

Ref document number: 2341715

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09763702

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999944543

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999944543

Country of ref document: EP