WO2000010274A1 - Method and apparatus for collect information in a digital loop carrier system - Google Patents

Method and apparatus for collect information in a digital loop carrier system Download PDF

Info

Publication number
WO2000010274A1
WO2000010274A1 PCT/US1999/018182 US9918182W WO0010274A1 WO 2000010274 A1 WO2000010274 A1 WO 2000010274A1 US 9918182 W US9918182 W US 9918182W WO 0010274 A1 WO0010274 A1 WO 0010274A1
Authority
WO
WIPO (PCT)
Prior art keywords
given
call
digital loop
loop carrier
carrier system
Prior art date
Application number
PCT/US1999/018182
Other languages
French (fr)
Inventor
Dan Kesner Carter
Perry Joe Brown
Original Assignee
Infinitec Communications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infinitec Communications, Inc. filed Critical Infinitec Communications, Inc.
Priority to AU56723/99A priority Critical patent/AU5672399A/en
Publication of WO2000010274A1 publication Critical patent/WO2000010274A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5603Access techniques
    • H04L2012/5609Topology
    • H04L2012/561Star, e.g. cross-connect, concentrator, subscriber group equipment, remote electronics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5625Operations, administration and maintenance [OAM]
    • H04L2012/5626Network management, e.g. Intelligent nets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5629Admission control
    • H04L2012/5631Resource management and allocation
    • H04L2012/5632Bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5638Services, e.g. multimedia, GOS, QOS
    • H04L2012/5639Tariffs or charging

Definitions

  • the present invention relates generally to digital loop carrier (DLC) systems and, more particularly, to collecting information in DLC systems to facilitate network planning and costing.
  • DLC digital loop carrier
  • DLC systems have been an important part of local exchange carrier line deployment for over 1 5 years. They reduce the copper cabling used in local loops, which comprise the physical connection between a subscriber's premises and the telecommunications network provider.
  • a DLC system consolidates multiple individual subscriber telephone lines into one or more copper or fiber carrier lines extending from the subscriber area to the network provider central office (CO). DLC systems thereby enable network providers to leverage investments in copper cable in the field by allowing it to transport more subscribers in larger geographic areas.
  • a known method for increasing available bandwidth in existing communication networks comprises compressing all loop traffic (namely, both voice frequency and data) using compression techniques such as adaptive pulse code modulation (ADPCM) and other compression algorithms. While voice signals can generally be compressed without significant degradation, compression has a detrimental effect on the quality and bit rate of data transmission. Consequently, compression techniques are not widely used in loop systems.
  • ADPCM adaptive pulse code modulation
  • a primary object of the invention is to provide a method and apparatus for intelligently managing bandwidth in a DLC system by identifying and selectively compressing signals that can be compressed without significant degradation.
  • Another object of the invention is to provide a bandwidth management scheme for a DLC system that ensures each new call of getting at least a given default bandwidth when initiated.
  • An additional object of the invention is to provide a method and apparatus for optimizing bandwidth usage in a DLC system with the surplus bandwidth being made available for broadband transmission and other services.
  • Yet another object of the invention is to provide a system including central and remote terminals having advanced bandwidth management capability that furnish higher channel capacity in less space, and that are easy to install, use and maintain.
  • the system includes service cards connectable to at least one transport card having a given bandwidth capacity. Each of the service cards supports multiple subscriber channels.
  • the system Upon initiation of a first call, the system allocates the call to a given time slot of the transport card. The given time slot is assigned a given default bandwidth, e.g., 64 kbps.
  • the system determines whether the call is voice or data (e.g., modem). If the first call is voice, the system may selectively reduce the given default bandwidth allocated to the first call if necessary to ensure that a second call, if initiated while the first call remains in progress, can be assigned the given default bandwidth.
  • each new call is ensured of getting at least the default bandwidth when initiated.
  • FIGURE 1 is a schematic block diagram illustrating a DLC system in accordance with the invention
  • FIGURE 2 is a front view of a Central Digital Terminal (CDT) of the DLC system in accordance with the invention
  • FIGURE 3 is a schematic block diagram illustrating functional components of a Remote Digital Terminal (RDT) in accordance with the invention
  • FIGURE 4 is a schematic block diagram illustrating in greater detail the functional components of the CPU card of the RDT;
  • FIGURE 5 is a flowchart illustrating operation of the RDT to allocate a time slot for a call
  • FIGURE 6 is a flowchart illustrating operation of the RDT to selectively compress a call
  • FIGURE 7 is a flowchart illustrating operation of the RDT to update a database containing information on system traffic
  • FIGURES 8A-8C are graphs illustrating use of an algorithm template to distinguish between voice and data signals
  • FIGURE 9 is a block diagram of the database used for storing data on system traffic.
  • FIG. 1 illustrates a DLC system 10 according to the present invention.
  • the system 1 0 preferably includes a Central Digital Terminal (CDT) 1 2, which is located at the CO 14 (i.e., local exchange switch), and a Remote Digital
  • the CDT 1 2 and the RDT 1 6 are connected by one or more media 1 8, 20 such as carrier lines (e.g., copper, coaxial cable, and optical fiber lines) and wireless media.
  • carrier lines e.g., copper, coaxial cable, and optical fiber lines
  • the RDT 1 6 generally serves as a multiple line network node providing services to multiple subscribers 22. Both digital and analog services can be provided including POTS, COIN, broadband, ISDN, frame relay, ATM and other services.
  • the DLC system shown in FIGURE 1 is a point-to-point system. It should be noted, however, that the invention can be implemented in a variety of network topologies including star, ring, drop and insert, and star from remote terminals topologies or some combination thereof.
  • the CDT and RDT units preferably are functionally similar, each preferably comprising a channel bank assembly, an example of which (for the CDT) is shown in FIGURE 2.
  • the CDT channel bank assembly 24 has a plurality of slots 26 for receiving various operating cards. (The RDT typically includes fewer slots since the CDT typically serves more than one RDT.)
  • the slots 26 include preferably two Central Processing Unit (CPU) slots (for redundancy) for receiving
  • CPU cards 28 two power supply slots (also for redundancy) for receiving power supply cards 30, and multiple general purpose slots.
  • the general purpose slots are equipped with various service cards (e.g., POTS cards) and so-called transport cards for providing phone and data services to customers.
  • the unit 24 preferably has inter-shelf connectivity through a backplane; it can be easily expanded by linking additional channel bank assemblies to a primary shelf by means of a fiber optic cable (not shown) in a daisy-chain formation.
  • FIGURE 3 illustrates in general the operation of the RDT 1 6.
  • the RDT 1 6 includes a CPU card 31 , a more detailed block diagram of which is shown in
  • the CPU card 31 is designed for system wide control. It provides bandwidth management and control, alarm management, maintenance and testing, timing generation, and system provisioning.
  • the CPU card 31 includes a Field Programmable Gate Array (FPGA) 32, a digital signal processor (DSP) 34, a CPU 36, a dual port random access memory
  • FPGA Field Programmable Gate Array
  • DSP digital signal processor
  • the CPU card 31 also includes a low power real time clock 41 for time stamping alarms and system activities.
  • the CPU 36 is the controlling element of each shelf.
  • the CPU 36 is preferably designed to operate in either stand-alone or redundant configurations.
  • the CPU 36 preferably comprises a Motorola MCF5206 Coldfire processor. It should be noted, however, that a variety of other processors capable of performing the functions described herein can alternatively be used.
  • the 5206 processor runs on a 1 6 bit bus with 1 6 bit program and data memory spaces defined.
  • the architecture provides dynamic bus sizing options to provide support for 8 bit peripherals.
  • the architecture is based on a Reduced Instruction Set Computing (RISC) core that provides extremely efficient, high speed operation.
  • RISC Reduced Instruction Set Computing
  • the CPU 36 is preferably supported by various memory units.
  • SRAM memory 45 is provided for storage of program data.
  • a 4 Megabyte (51 2k X 8) flash memory 47 is provided for configuration and provisioning.
  • a serial EEPROM 49 is also provided for card provisioning.
  • the CPU 36 controls traffic based on information received from the DSP 34. It also controls a linked list 51 in the DPR 38, which contains information including data on time slot allocation, by adding and removing items from the list.
  • the FPGA 32 provides access to the DSP 34.
  • the FPGA 32 can be remotely modified to change system hardware as desired.
  • the DSP 34 samples and analyzes traffic to determine if traffic in a particular time slot is voice or data using an algorithm described below. After analyzing the time slot, the DSP 34 updates the DPR linked list 51 with its last evaluation of the sample it took.
  • the database 40 contains current and historical traffic information for use in network planning and operation, as will be described below.
  • the RDT 1 6 also includes one or more transport cards 42, 44 (two transport cards are shown in FIGURE 3) connected to one or more service cards 46, 48 (two POTS service cards are shown). There are “n" service cards per transport card.
  • a systems communications bus 50 connects each of the cards and CPU 36 for carrying control signals.
  • the bus 50 is a time division multiplex (TDM) bus.
  • a pulse code modulation (PCM) bus 52 connects the service cards 46, 48 and the transport cards 42, 44 for traffic flow.
  • the service cards 46, 48 shown each provide POTS service to a plurality of subscribers 22.
  • the POTS service cards 46, 48 can contain eight channels servicing eight subscribers.
  • the system can include a variety of other service cards providing other services such as COIN, digital, broadband, ISDN, frame relay, ATM and other services.
  • the transport cards 42, 44 of the RDT 1 6 are connected to corresponding transport cards (not shown) in the CDT 1 2 by various media (e.g., carrier lines and wireless media).
  • the transport cards provide a high speed link between the
  • one set of transport cards is connected by an optical fiber line 1 8, and the other set of transport cards 44 is connected by copper cabling 20 supporting one of a variety of protocols including ISDN, MDSL, HDSL, ADSL and T1 , which have varying bandwidth capacities.
  • the bandwidth can be divided into time slots 53 having a given bandwidth, e.g., 64 kbps, 32 kbps or 1 6 kbps.
  • FIGURE 5 is a flow chart illustrating CPU-controlled operation of the RDT 1 6.
  • one of the service cards 46, 48 which are interrupt driven, detects a request for service from one of the subscribers 22, i.e., an off- hook condition.
  • the CPU 36 determines what transport card to use at step 56 based on the level of service pre-selected by the subscriber 22.
  • time slot availability for the transport card is analyzed at step 58.
  • a time slot is then assigned to the service having a given default bandwidth, preferably 64 kbps, at step 60.
  • the linked list 51 in the DPR 38 is then updated with information on this call.
  • bandwidth can alternatively be allocated on a service card basis.
  • Bandwidth can alternatively be allocated on a service card basis.
  • the DSP 34 analyzes the system periodically, e.g., at every second. First, at steps 64, 66, the time slot allocation in each transport card is analyzed to determine whether a preset threshold value relating to the transport card capacity has been exceeded. If not, the analysis for this period ends at 68. If the threshold has been exceeded, the database 40 is inspected at 70 to analyze all active time slots on the transport card. Then at step 72, the DSP uses an algorithm to determine whether there are any active calls that can be compressed without significant degradation (e.g., primarily voice, but optionally low speed data traffic).
  • significant degradation e.g., primarily voice, but optionally low speed data traffic
  • each subscriber channel can be provisioned to be locked at a given bandwidth or level of service if desired.
  • the DSP analysis for this period ends at 74. If the DSP determines that a call can be compressed, a compression time slot having a reduced bandwidth (e.g., 32 kbps) is set up at 76, and the service time slot (i.e., the one currently hosting the compressible call) is moved on the fly to the compression time slot. Bandwidth on the service time slot is thus freed up for usage at step 80.
  • the linked list 51 in the DPR 38 is then updated at step 84 to indicate the time slot change.
  • the CPU 36 Upon reallocation of the time slot, the CPU 36 notifies the corresponding POTS service card in the CDT 1 2 that the signal is to be received on the new time slot. There is no service interruption during the time slot transfer because the signal will be transmitted on two time slots (at the default bandwidth and at the compressed bandwidth) during setup of the compression time slot.
  • the CPU instructs the POTS card to multicast the call on the two time slots until the compression algorithm is equalized. Thereafter, transmission on the default bandwidth time slot is stopped and the time slot is released. Users thereby avoid hearing noise during time slot transfer.
  • the circuitry for performing the compression is located on the transport cards, although this is not required. Such circuitry could optionally be implemented in firmware and software, or on the service card, or centrally located elsewhere in the shelf.
  • the CPU 36 also analyzes the system periodically, e.g., at every second, to determine if the DSP 34 has completed some analysis at steps 86, 88.
  • the CPU 36 analyzes time slot linked list 51 in the DPR 38 in a round robin basis (as indicated by the arrows 90). If no changes have been made since the previous time period, the CPU analysis for this time period ends at 92. If some change has been made, then the database is updated at 94 and the item is removed from the linked list and the DSP scan list at 96.
  • the system preferably includes a craft interface 1 06 (shown, e.g., in
  • FIGURE 2 through which it can be programmed to perform selective signal compression.
  • the system can be set up to assure that no compression takes place for any call made by a particular subscriber. In this case, all the subscriber's calls will be assigned the default bandwidth (preferably 64 kbps). A subscriber can also specify an unacceptable level of service, e.g., that no call will be assigned a bandwidth less than 32 kbps.
  • the system can also be programmed to provide substantially greater compression, e.g., to 1 6 kbps, to ensure emergency service during periods of heavy usage.
  • the system can use two craft interface options: a menu-driven interface and a Windows based graphical user interface (GUI).
  • the menu-driven interface can be used to access the system from any CDT or RDT with a dumb terminal, a personal computer (PC) with emulation software, or a modem.
  • the GUI can also be used to access the system from any CDT or RDT with a PC preferably operating with Windows 95.TM
  • the craft interface function facilitates system administration, maintenance, provisioning, and testing.
  • FIGURES 8A-8C are graphs illustrating use of a filtering algorithm to distinguish between voice and data calls.
  • FIGURES 8A and 8B show generalized exemplary voice and data signals, respectively.
  • the data signal has a substantially steady amplitude over a given frequency range compared to the fluctuating voice frequency signal.
  • the algorithm overlays a sample signal on a data signal template. The error or difference between the signals (shown shaded) is then normalized and analyzed to determine whether it exceeds a given value. If so, the signal is identified as a voice signal. If not, the signal is identified as data.
  • the database 40 allows customers, i.e., operators of the DLC systems, to compile data on subscriber use of the system.
  • the database 40 preferably is stored in non-volatile memory. Accordingly, information will not be lost if the card containing the memory is pulled out of the unit or if there is a power outage.
  • the database 40 is preferably periodically backed-up to a remotely located main database (not shown).
  • the database 40 preferably is subdivided into an active channel database 98, an active transport database 1 00, a historical channel database 1 02, and a historical transport database 104.
  • the channel databases 98, 1 02 preferably contain per channel data including information on:
  • the transport databases 100, 1 04 preferably contain transport card data including information on:
  • any suitable statistical method may be used to analyze collected data.
  • Known statistical methods include, without limitation, pattern matching algorithms, fuzzy logic algorithms, an adaptive inference engine having a set of learning rules, and other known or later- developed statistical evaluation routines.
  • the particular routine is preferably implemented in software running on a computer connected to the craft input 1 06. While a statistical analysis on the data is the preferred, one of ordinary skill will appreciate that deterministic analysis techniques can also be used. All such variations are within the scope of this invention.
  • the data collected by the system can be used by customers for network planning to keep track of system demand and needs.
  • the data also can be used to provide incremental revenue. For example, customers can charge subscribers different rates for voice calls and data calls or can charge rates dependent on the amount of bandwidth used for a given call.
  • the data collection means described herein can be advantageously used in a variety of networks and is not limited to DLC systems.
  • the DLC system in accordance with the invention thus has numerous advantages. It comprises an advanced network transmission system that significantly increases local loop capacity and allows communications providers to meet increasingly high demands for service and reliability.
  • the system is economical and flexible, making it ideal both for upgrades to existing networks and for new applications. It adds value to existing DLC systems by maximizing use of existing carrier line infrastructure. It can be expanded quickly and easily, and deployed in a variety of configurations including point-to-point, star, and drop and insert or any combination of these network topologies.
  • the system is designed with redundancy, inter-shelf connectivity, and shared system intelligence.
  • the system operates on a variety of transport or carrier media including copper (supporting a variety of protocols including MDSL, ADSL, HDSL, and T1 ), fiber, coax, and wireless. It provides a high pair gain (e.g., 48: 1 ) over a single twisted pair. It also enables a large number (e.g., 44-88) of simultaneous off- hook voice connections per twisted pair.
  • transport or carrier media including copper (supporting a variety of protocols including MDSL, ADSL, HDSL, and T1 ), fiber, coax, and wireless. It provides a high pair gain (e.g., 48: 1 ) over a single twisted pair. It also enables a large number (e.g., 44-88) of simultaneous off- hook voice connections per twisted pair.
  • system units furnish higher channel capacity in less space, and are easy to install, use, and maintain.
  • the system also advantageously provides a means for collecting data on usage to facilitate network planning and costing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

A method and apparatus are provided for managing bandwidth operative in a digital loop carrier system (10). The system includes service cards (46, 48) connectable to at least one transport card (42, 44) having a given bandwidth capacity. Each of the service cards (46, 48) supports multiple subscriber channels (8). Upon initiation of a first call, the system (10) allocates the call to a given time slot (53) of the transport card (42, 44). The given time slot (53) is assigned a given default bandwidth, e.g., 64 kbps. While the first call is in progress, the system determines (34, 36) whether the call is voice or data. If the first call is voice, the system may selectively reduce the given default bandwidth allocated to the first call if necessary to ensure that a second call, if initiated while the first call remains in progress, can be assigned the given default bandwidth. As calls are processed by the system, information on usage is collected in a database (38, 40) to facilitate network planning and costing.

Description

METHOD AND APPARATUS FOR COLLECT INFORMATION IN A DIGITAL LOOP CARRIER SYSTEM
BACKGROUND OF THE INVENTION Technical Field The present invention relates generally to digital loop carrier (DLC) systems and, more particularly, to collecting information in DLC systems to facilitate network planning and costing.
Description of the Related Art DLC systems have been an important part of local exchange carrier line deployment for over 1 5 years. They reduce the copper cabling used in local loops, which comprise the physical connection between a subscriber's premises and the telecommunications network provider. A DLC system consolidates multiple individual subscriber telephone lines into one or more copper or fiber carrier lines extending from the subscriber area to the network provider central office (CO). DLC systems thereby enable network providers to leverage investments in copper cable in the field by allowing it to transport more subscribers in larger geographic areas.
It has become increasingly important to scale networks to higher speed technologies such as, e.g., digital subscriber line (xDSL) technology, integrated synchronous digital network (ISDN) and other services. These technologies allow data to be transmitted over standard copper cable at speeds of several megabits of data per second. Many factors are driving the need for faster transport capabilities, the most significant of which is increased Internet usage by subscribers.
The resulting increased network traffic has caused bottlenecking in existing DLC systems because of the finite bandwidth capacity of the carrier line infrastructure leading to the CO. A tremendous need thus exists for increasing the capacity and flexibility of existing carrier line infrastructure. A known method for increasing available bandwidth in existing communication networks comprises compressing all loop traffic (namely, both voice frequency and data) using compression techniques such as adaptive pulse code modulation (ADPCM) and other compression algorithms. While voice signals can generally be compressed without significant degradation, compression has a detrimental effect on the quality and bit rate of data transmission. Consequently, compression techniques are not widely used in loop systems.
BRIEF SUMMARY OF THE INVENTION
A primary object of the invention is to provide a method and apparatus for intelligently managing bandwidth in a DLC system by identifying and selectively compressing signals that can be compressed without significant degradation.
Another object of the invention is to provide a bandwidth management scheme for a DLC system that ensures each new call of getting at least a given default bandwidth when initiated.
An additional object of the invention is to provide a method and apparatus for optimizing bandwidth usage in a DLC system with the surplus bandwidth being made available for broadband transmission and other services.
Yet another object of the invention is to provide a system including central and remote terminals having advanced bandwidth management capability that furnish higher channel capacity in less space, and that are easy to install, use and maintain.
A further object of the invention is to provide a DLC system with a sophisticated bandwidth management scheme that supports multiple telecommunications services, including plain old telephone service (POTS), COIN, digital, broadband, ISDN, frame relay, ATM and other services. Still another object of the invention is to provide a method and apparatus for collecting data on system usage to facilitate network planning and costing.
These and other objects are accomplished by a method and apparatus for managing bandwidth in a DLC system. In a preferred embodiment, the system includes service cards connectable to at least one transport card having a given bandwidth capacity. Each of the service cards supports multiple subscriber channels. Upon initiation of a first call, the system allocates the call to a given time slot of the transport card. The given time slot is assigned a given default bandwidth, e.g., 64 kbps. While the first call is in progress, the system determines whether the call is voice or data (e.g., modem). If the first call is voice, the system may selectively reduce the given default bandwidth allocated to the first call if necessary to ensure that a second call, if initiated while the first call remains in progress, can be assigned the given default bandwidth. Thus, according to the inventive bandwidth management scheme, each new call is ensured of getting at least the default bandwidth when initiated.
The foregoing has outlined some of the more pertinent objects and features of the present invention. These objects should be construed to be merely illustrative of some of the more prominent features and applications of the invention. Many other beneficial results can be attained by applying the disclosed invention in a different manner or modifying the invention as will be described. Accordingly, other objects and a fuller understanding of the invention may be had by referring to the following Detailed Description of the Preferred Embodiment.
BRIEF DESCRIPTION OF THE DRAWINGS For a more complete understanding of the present invention and the advantages thereof, reference should be made to the following Detailed Description taken in connection with the accompanying drawings, in which: FIGURE 1 is a schematic block diagram illustrating a DLC system in accordance with the invention;
FIGURE 2 is a front view of a Central Digital Terminal (CDT) of the DLC system in accordance with the invention;
FIGURE 3 is a schematic block diagram illustrating functional components of a Remote Digital Terminal (RDT) in accordance with the invention;
FIGURE 4 is a schematic block diagram illustrating in greater detail the functional components of the CPU card of the RDT;
FIGURE 5 is a flowchart illustrating operation of the RDT to allocate a time slot for a call; FIGURE 6 is a flowchart illustrating operation of the RDT to selectively compress a call;
FIGURE 7 is a flowchart illustrating operation of the RDT to update a database containing information on system traffic; FIGURES 8A-8C are graphs illustrating use of an algorithm template to distinguish between voice and data signals; and
FIGURE 9 is a block diagram of the database used for storing data on system traffic.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Figure 1 illustrates a DLC system 10 according to the present invention.
Certain aspects and features of the inventive bandwidth management solution used in the system may be implemented in network architectures other than DLCs. However, for convenience of illustration, the invention is described in the context of a DLC system.
The system 1 0 preferably includes a Central Digital Terminal (CDT) 1 2, which is located at the CO 14 (i.e., local exchange switch), and a Remote Digital
Terminal (RDT) 1 6, which is located near subscribers. The CDT 1 2 and the RDT 1 6 are connected by one or more media 1 8, 20 such as carrier lines (e.g., copper, coaxial cable, and optical fiber lines) and wireless media.
The RDT 1 6 generally serves as a multiple line network node providing services to multiple subscribers 22. Both digital and analog services can be provided including POTS, COIN, broadband, ISDN, frame relay, ATM and other services.
The DLC system shown in FIGURE 1 is a point-to-point system. It should be noted, however, that the invention can be implemented in a variety of network topologies including star, ring, drop and insert, and star from remote terminals topologies or some combination thereof. The CDT and RDT units preferably are functionally similar, each preferably comprising a channel bank assembly, an example of which (for the CDT) is shown in FIGURE 2. The CDT channel bank assembly 24 has a plurality of slots 26 for receiving various operating cards. (The RDT typically includes fewer slots since the CDT typically serves more than one RDT.) The slots 26 include preferably two Central Processing Unit (CPU) slots (for redundancy) for receiving
CPU cards 28, two power supply slots (also for redundancy) for receiving power supply cards 30, and multiple general purpose slots. The general purpose slots are equipped with various service cards (e.g., POTS cards) and so-called transport cards for providing phone and data services to customers.
The unit 24 preferably has inter-shelf connectivity through a backplane; it can be easily expanded by linking additional channel bank assemblies to a primary shelf by means of a fiber optic cable (not shown) in a daisy-chain formation.
FIGURE 3 illustrates in general the operation of the RDT 1 6. The RDT 1 6 includes a CPU card 31 , a more detailed block diagram of which is shown in
FIGURE 4. The CPU card 31 is designed for system wide control. It provides bandwidth management and control, alarm management, maintenance and testing, timing generation, and system provisioning.
The CPU card 31 includes a Field Programmable Gate Array (FPGA) 32, a digital signal processor (DSP) 34, a CPU 36, a dual port random access memory
(DSR) 38, which interfaces the CPU 36 to the DSP 34, and a database 40. The CPU card 31 also includes a low power real time clock 41 for time stamping alarms and system activities.
The CPU 36 is the controlling element of each shelf. The CPU 36 is preferably designed to operate in either stand-alone or redundant configurations. In the embodiment described herein, the CPU 36 preferably comprises a Motorola MCF5206 Coldfire processor. It should be noted, however, that a variety of other processors capable of performing the functions described herein can alternatively be used. The 5206 processor runs on a 1 6 bit bus with 1 6 bit program and data memory spaces defined. The architecture provides dynamic bus sizing options to provide support for 8 bit peripherals. The architecture is based on a Reduced Instruction Set Computing (RISC) core that provides extremely efficient, high speed operation.
The CPU 36 is preferably supported by various memory units. A 32
Megabyte ( 1 .5M X 1 6) flash memory 43 is provided for program storage. A 1 6
Megabyte ( 1 M X 1 6) SRAM memory 45 is provided for storage of program data. A 4 Megabyte (51 2k X 8) flash memory 47 is provided for configuration and provisioning. A serial EEPROM 49 is also provided for card provisioning.
The CPU 36 controls traffic based on information received from the DSP 34. It also controls a linked list 51 in the DPR 38, which contains information including data on time slot allocation, by adding and removing items from the list.
The FPGA 32 provides access to the DSP 34. The FPGA 32 can be remotely modified to change system hardware as desired. Among other functions, the DSP 34 samples and analyzes traffic to determine if traffic in a particular time slot is voice or data using an algorithm described below. After analyzing the time slot, the DSP 34 updates the DPR linked list 51 with its last evaluation of the sample it took.
The database 40 contains current and historical traffic information for use in network planning and operation, as will be described below.
The RDT 1 6 also includes one or more transport cards 42, 44 (two transport cards are shown in FIGURE 3) connected to one or more service cards 46, 48 (two POTS service cards are shown). There are "n" service cards per transport card. A systems communications bus 50 connects each of the cards and CPU 36 for carrying control signals. The bus 50 is a time division multiplex (TDM) bus. A pulse code modulation (PCM) bus 52 connects the service cards 46, 48 and the transport cards 42, 44 for traffic flow.
The service cards 46, 48 shown each provide POTS service to a plurality of subscribers 22. For example, the POTS service cards 46, 48 can contain eight channels servicing eight subscribers. Though not shown, the system can include a variety of other service cards providing other services such as COIN, digital, broadband, ISDN, frame relay, ATM and other services.
The transport cards 42, 44 of the RDT 1 6 are connected to corresponding transport cards (not shown) in the CDT 1 2 by various media (e.g., carrier lines and wireless media). The transport cards provide a high speed link between the
RDT 1 6 and the CDT 1 2. In the FIGURE 3 system, one set of transport cards is connected by an optical fiber line 1 8, and the other set of transport cards 44 is connected by copper cabling 20 supporting one of a variety of protocols including ISDN, MDSL, HDSL, ADSL and T1 , which have varying bandwidth capacities. The bandwidth can be divided into time slots 53 having a given bandwidth, e.g., 64 kbps, 32 kbps or 1 6 kbps.
FIGURE 5 is a flow chart illustrating CPU-controlled operation of the RDT 1 6. Initially at step 54, one of the service cards 46, 48, which are interrupt driven, detects a request for service from one of the subscribers 22, i.e., an off- hook condition. The CPU 36 then determines what transport card to use at step 56 based on the level of service pre-selected by the subscriber 22. Next, time slot availability for the transport card is analyzed at step 58. A time slot is then assigned to the service having a given default bandwidth, preferably 64 kbps, at step 60. The linked list 51 in the DPR 38 is then updated with information on this call.
It is preferred, though not required, to allocate bandwidth on a transport card basis. Bandwidth can alternatively be allocated on a service card basis. As shown in FIGURE 6, while the call is in progress, the DSP 34 analyzes the system periodically, e.g., at every second. First, at steps 64, 66, the time slot allocation in each transport card is analyzed to determine whether a preset threshold value relating to the transport card capacity has been exceeded. If not, the analysis for this period ends at 68. If the threshold has been exceeded, the database 40 is inspected at 70 to analyze all active time slots on the transport card. Then at step 72, the DSP uses an algorithm to determine whether there are any active calls that can be compressed without significant degradation (e.g., primarily voice, but optionally low speed data traffic). If such calls are found, they are further analyzed to determine whether the system is authorized to compress any of these calls. (Subscribers can be given the option to have none of their calls compressed including those that can be compressed without significant degradation. In other words, each subscriber channel can be provisioned to be locked at a given bandwidth or level of service if desired.) If no calls can be compressed, the DSP analysis for this period ends at 74. If the DSP determines that a call can be compressed, a compression time slot having a reduced bandwidth (e.g., 32 kbps) is set up at 76, and the service time slot (i.e., the one currently hosting the compressible call) is moved on the fly to the compression time slot. Bandwidth on the service time slot is thus freed up for usage at step 80. The linked list 51 in the DPR 38 is then updated at step 84 to indicate the time slot change.
Upon reallocation of the time slot, the CPU 36 notifies the corresponding POTS service card in the CDT 1 2 that the signal is to be received on the new time slot. There is no service interruption during the time slot transfer because the signal will be transmitted on two time slots (at the default bandwidth and at the compressed bandwidth) during setup of the compression time slot. The CPU instructs the POTS card to multicast the call on the two time slots until the compression algorithm is equalized. Thereafter, transmission on the default bandwidth time slot is stopped and the time slot is released. Users thereby avoid hearing noise during time slot transfer.
The circuitry for performing the compression is located on the transport cards, although this is not required. Such circuitry could optionally be implemented in firmware and software, or on the service card, or centrally located elsewhere in the shelf.
As shown in FIGURE 7, while the call is in progress, the CPU 36 also analyzes the system periodically, e.g., at every second, to determine if the DSP 34 has completed some analysis at steps 86, 88. In this respect, the CPU 36 analyzes time slot linked list 51 in the DPR 38 in a round robin basis (as indicated by the arrows 90). If no changes have been made since the previous time period, the CPU analysis for this time period ends at 92. If some change has been made, then the database is updated at 94 and the item is removed from the linked list and the DSP scan list at 96. The system preferably includes a craft interface 1 06 (shown, e.g., in
FIGURE 2), through which it can be programmed to perform selective signal compression. For instance, the system can be set up to assure that no compression takes place for any call made by a particular subscriber. In this case, all the subscriber's calls will be assigned the default bandwidth (preferably 64 kbps). A subscriber can also specify an unacceptable level of service, e.g., that no call will be assigned a bandwidth less than 32 kbps. The system can also be programmed to provide substantially greater compression, e.g., to 1 6 kbps, to ensure emergency service during periods of heavy usage.
The system can use two craft interface options: a menu-driven interface and a Windows based graphical user interface (GUI). The menu-driven interface can be used to access the system from any CDT or RDT with a dumb terminal, a personal computer (PC) with emulation software, or a modem. The GUI can also be used to access the system from any CDT or RDT with a PC preferably operating with Windows 95.™ The craft interface function facilitates system administration, maintenance, provisioning, and testing.
FIGURES 8A-8C are graphs illustrating use of a filtering algorithm to distinguish between voice and data calls. FIGURES 8A and 8B show generalized exemplary voice and data signals, respectively. As shown, the data signal has a substantially steady amplitude over a given frequency range compared to the fluctuating voice frequency signal. As shown in FIGURE 8C, the algorithm overlays a sample signal on a data signal template. The error or difference between the signals (shown shaded) is then normalized and analyzed to determine whether it exceeds a given value. If so, the signal is identified as a voice signal. If not, the signal is identified as data.
The database 40 allows customers, i.e., operators of the DLC systems, to compile data on subscriber use of the system. The database 40 preferably is stored in non-volatile memory. Accordingly, information will not be lost if the card containing the memory is pulled out of the unit or if there is a power outage. The database 40 is preferably periodically backed-up to a remotely located main database (not shown).
As shown in FIGURE 9, the database 40 preferably is subdivided into an active channel database 98, an active transport database 1 00, a historical channel database 1 02, and a historical transport database 104.
The channel databases 98, 1 02 preferably contain per channel data including information on:
-the number of calls at each service level; -the number of voice calls; -the number of data calls;
-the lowest order of service;
-the number of call minutes;
-the number of average call minutes;
-the number of blocked calls when system capacity is exceeded; and -customer options.
The transport databases 100, 1 04 preferably contain transport card data including information on:
-the number of maximum time slots assigned; -the number of blocked seconds;
-the minimum service level duration;
-customer options;
-the number of service level alarms activated when service level reaches a given bandwidth;
-average call duration;
-average number of active calls; and
-the channel/time slot ratio.
According to the present invention, any suitable statistical method may be used to analyze collected data. Known statistical methods include, without limitation, pattern matching algorithms, fuzzy logic algorithms, an adaptive inference engine having a set of learning rules, and other known or later- developed statistical evaluation routines. The particular routine is preferably implemented in software running on a computer connected to the craft input 1 06. While a statistical analysis on the data is the preferred, one of ordinary skill will appreciate that deterministic analysis techniques can also be used. All such variations are within the scope of this invention.
The data collected by the system can be used by customers for network planning to keep track of system demand and needs. The data also can be used to provide incremental revenue. For example, customers can charge subscribers different rates for voice calls and data calls or can charge rates dependent on the amount of bandwidth used for a given call.
It should be noted that the data collection means described herein can be advantageously used in a variety of networks and is not limited to DLC systems. The DLC system in accordance with the invention thus has numerous advantages. It comprises an advanced network transmission system that significantly increases local loop capacity and allows communications providers to meet increasingly high demands for service and reliability.
The system is economical and flexible, making it ideal both for upgrades to existing networks and for new applications. It adds value to existing DLC systems by maximizing use of existing carrier line infrastructure. It can be expanded quickly and easily, and deployed in a variety of configurations including point-to-point, star, and drop and insert or any combination of these network topologies. The system is designed with redundancy, inter-shelf connectivity, and shared system intelligence.
The system operates on a variety of transport or carrier media including copper (supporting a variety of protocols including MDSL, ADSL, HDSL, and T1 ), fiber, coax, and wireless. It provides a high pair gain (e.g., 48: 1 ) over a single twisted pair. It also enables a large number (e.g., 44-88) of simultaneous off- hook voice connections per twisted pair.
In addition, the system units furnish higher channel capacity in less space, and are easy to install, use, and maintain. The system also advantageously provides a means for collecting data on usage to facilitate network planning and costing.
Having thus described our invention, what we claim as new and desire to secure by Letters Patent is set forth in the following claims.

Claims

1 . A method for managing a digital loop carrier system, the system comprising a plurality of service cards connectable to at least one transport card having a given bandwidth capacity, each of the service cards supporting at least a plurality of channels, the method comprising the steps of: collecting channel usage information and transport card usage information in a database as calls are processed through the transport card; processing the channel usage information and the transport card usage information to facilitate a given network management activity.
2. The method of Claim 1 wherein the given network management activity includes a determination of whether the digital loop carrier system can accommodate a given level of call traffic.
3. The method of Claim 2 wherein the given network management activity further includes reallocating resources to change a throughput capacity of the system.
4. The method of Claim 3 wherein reallocating resources to change the throughput capacity of the system includes reallocating at least one of the service cards to a new transport card.
5. The method of Claim 1 wherein the given network management activity includes a determination of how much a given subscriber of the digital loop carrier system should be charged for a given quality of service.
6. The method of Claim 1 wherein the given network management activity includes a determination of how much a given subscriber of the digital loop carrier system should be charged for a given call based on the bandwidth allocated to said call.
7. The method of Claim 1 wherein the processing step includes applying a statistical model to the information.
8. The method of Claim 1 wherein the processing step includes applying a deterministic model to the information.
9. The method of Claim 1 wherein digital loop carrier system manages time slot bandwidth allocation as the information is collected.
10. An apparatus for managing a digital loop carrier system, the system comprising a plurality of service cards connectable to at least one transport card having a given bandwidth capacity, each of the service cards supporting at least a plurality of channels, the apparatus comprising: means for collecting channel usage information and transport card usage information in a database as calls are processed through the transport card; means for processing the channel usage information and the transport card usage information to facilitate a given network management activity.
1 1 . The apparatus of Claim 10 wherein the given network management activity includes a determination of whether the digital loop carrier system can accommodate a given level of call traffic.
1 2. The apparatus of Claim 1 1 wherein the given network management activity further includes reallocating resources to change a throughput capacity of the system.
1 3. The apparatus of Claim 1 2 wherein reallocating resources to change the throughput capacity of the system includes reallocating at least one of the service cards to a new transport card.
14. The apparatus of Claim 1 0 wherein the given network management activity includes a determination of how much a given subscriber of the digital loop carrier system should be charged for a given quality of service.
1 5. The apparatus of Claim 1 0 wherein the given network management activity includes a determination of how much a given subscriber of the digital loop carrier system should be charged for a given call based on the bandwidth allocated to said call.
1 6. The apparatus of Claim 1 0 wherein the means for processing include means for applying a statistical model to the information.
1 7. The apparatus of Claim 1 0 wherein the means for processing include means for applying a deterministic model to the information.
1 8. The apparatus of Claim 1 0 wherein digital loop carrier system manages time slot bandwidth allocation as the information is collected.
PCT/US1999/018182 1998-08-14 1999-08-11 Method and apparatus for collect information in a digital loop carrier system WO2000010274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU56723/99A AU5672399A (en) 1998-08-14 1999-08-11 Method and apparatus for collect information in a digital loop carrier system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13412998A 1998-08-14 1998-08-14
US09/134,129 1998-08-14

Publications (1)

Publication Number Publication Date
WO2000010274A1 true WO2000010274A1 (en) 2000-02-24

Family

ID=22461891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/018182 WO2000010274A1 (en) 1998-08-14 1999-08-11 Method and apparatus for collect information in a digital loop carrier system

Country Status (2)

Country Link
AU (1) AU5672399A (en)
WO (1) WO2000010274A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610910A (en) * 1995-08-17 1997-03-11 Northern Telecom Limited Access to telecommunications networks in multi-service environment
US5717745A (en) * 1995-04-24 1998-02-10 Mci Communications Corporation System and method of efficiently evaluating different messages by a server in a telecommunications environment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717745A (en) * 1995-04-24 1998-02-10 Mci Communications Corporation System and method of efficiently evaluating different messages by a server in a telecommunications environment
US5610910A (en) * 1995-08-17 1997-03-11 Northern Telecom Limited Access to telecommunications networks in multi-service environment

Also Published As

Publication number Publication date
AU5672399A (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US6421356B2 (en) Method and apparatus for bandwidth management in a digital loop carrier system
US5745694A (en) Network resource reservation with admission and link control functions separated for expandability and high-speed operation
US8116298B2 (en) Communication server apparatus providing XDSL services and method
US10834486B2 (en) Management of telecommunications connections
US6744780B1 (en) Method and system for adaptively managing a communications network
US6069894A (en) Enhancement of network operation and performance
US6754221B1 (en) System and method for selecting a compression algorithm according to an available bandwidth
EP0885544B1 (en) Dynamic allocation of telecommunications resources
CN103957144B (en) Monitoring to network connection
CN102388565B (en) dynamic line management
US6775232B1 (en) Method for scheduling data for communication on a digital subscriber line
WO2004102349A2 (en) Telecommunication diagnostic information management
US6118766A (en) Multiple ISDN carrier system
CN1613213B (en) Non-chronological system statistics
CN101919206A (en) Data communication
US6765913B1 (en) Bandwidth manager linked list optimization scheme in a digital loop carrier system
WO2000010274A1 (en) Method and apparatus for collect information in a digital loop carrier system
JP3433383B2 (en) Sell grant mechanism
US7649850B2 (en) Method for obtaining the convergence ratio and apparatus thereof
US6687232B1 (en) Subscriber loop terminal equipment-resident mechanism for determining bit rate of high-level data link control communication channel
US6895041B1 (en) Digital subscriber line power reduction
US7181504B1 (en) System and method for selecting a modem for service
US20020122477A1 (en) Circuit termination method and a circuit terminating apparatus
CA2517556C (en) Method and apparatus for configuring an automatic cross connect system at a remote wiring hub
CN1984417A (en) Method for improving interface bandwidth utilization rate between wireless network controller and base-station

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase