WO2000009978A1 - Apparatus for measuring a light beam wavelength - Google Patents

Apparatus for measuring a light beam wavelength Download PDF

Info

Publication number
WO2000009978A1
WO2000009978A1 PCT/FR1999/001967 FR9901967W WO0009978A1 WO 2000009978 A1 WO2000009978 A1 WO 2000009978A1 FR 9901967 W FR9901967 W FR 9901967W WO 0009978 A1 WO0009978 A1 WO 0009978A1
Authority
WO
WIPO (PCT)
Prior art keywords
fizeau
corner
light beam
wavelength
point
Prior art date
Application number
PCT/FR1999/001967
Other languages
French (fr)
Inventor
Christian Chappuis
Michel Chevalier
Philippe Cormont
François VIALA
Original Assignee
Commissariat A L'energie Atomique
Compagnie Generale Des Matieres Nucleaires
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique, Compagnie Generale Des Matieres Nucleaires filed Critical Commissariat A L'energie Atomique
Priority to EP99936719A priority Critical patent/EP1019688A1/en
Priority to JP2000565373A priority patent/JP2002522782A/en
Publication of WO2000009978A1 publication Critical patent/WO2000009978A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Definitions

  • the present invention relates to an apparatus for measuring the wavelength of a light beam.
  • laser beams for example to those used in spectroscopy or for isotopic separation by laser.
  • Document (6) discloses the existence of problems of parasitic reflections on the Fizeau corner of the apparatus known from documents (2) to (4) and, to solve these problems, proposes to use a Fizeau corner having an entry blade with non-parallel faces.
  • the present invention relates to a device for measuring the wavelength of a light beam, which is reliable and simpler to manufacture than the devices known from documents (5) and (6), the problem of stray reflections. not being moreover posed in document (5).
  • the present invention proposes an easy solution to implement from the technological point of view from the configuration described in documents (2) to (4), namely to illuminate the corner of Fizeau d 'a device of the kind described in these documents by a spherical and slightly divergent light wave.
  • This is by no means obvious in view of the state of the art because, according to the principle of Fizeau interferometers, it is necessary to illuminate the corner of Fizeau with a plane wave, any deviation from such illumination resulting in the creation of aberrations.
  • the present invention relates to an apparatus for measuring the wavelength of a light beam, this device comprising an interferometric measurement assembly comprising:
  • At least one corner of Fizeau delimited by first and second fixed, transparent blades and slightly inclined with respect to each other, the light beam crossing the corner of Fizeau according to an optical path of determined length and penetrating this corner of Fizeau by the first plate, the external face of this first plate being treated with anti-reflection, and - means for detecting, at high resolution, interference fringes resulting from reflections of the light beam on the respective internal faces of the first and second plate, these detection means generating electrical signals corresponding to these interference fringes, the apparatus also comprising means for processing these electrical signals, these processing means being able to calculate the wavelength of the light beam at from the positions of the axima of the electrical signals, this apparatus being characterized in that the interferometric measuring assembly further comprises optical transformation means provided for transforming the light beam into a slightly divergent spherical light wave and for illuminating the corner of Fizeau with this wave so as to eliminate the measurement uncertainties resulting from parasitic reflections on the first plate.
  • Anti-reflection treatment of the external face of the first plate does not completely eliminate stray reflections for all wavelengths.
  • the measurement uncertainties due to these parasitic reflections greatly decrease when lighting the corner of Fizeau with the slightly divergent spherical wave.
  • Admittedly, such an illumination causes a modulation of the amplitude of the interference fringes at a spatial frequency much higher than that generated by the illumination by a plane wave. This frequency is sufficient so that the average value of the pitch of the fringes is no longer affected by this modulation.
  • the optical transformation means comprise:
  • the collimating means can comprise a collimating lens but they preferably comprise a spherical or parabolic mirror.
  • the means for forming the beam diverging from said point may comprise a mask pierced with a hole, this hole being placed at the focal point of an objective such as a microscope objective.
  • the detection means are preferably placed in a particular plane, called “plane of section "or" shearing plane ", corresponding to the corner of Fizeau. Regarding this plan, consult documents (1), (3) and (4).
  • the device object of the invention comprises two corners of Fizeau intended to be illuminated by • the spherical wave light diverging slightly, the detection means being provided for detecting the interference fringes corresponding to the two corners of Fizeau.
  • Such precision of 6xl0 ⁇ 8 is required to measure the wavelength of a laser source in pulsed regime, in the case of isotopic separation by laser or spectroscopy.
  • said interferometric measurement assembly further comprises means for compensating for the chromaticism capable of being introduced by the first plate corresponding to each corner of Fizeau.
  • the detection means can advantageously comprise a strip of photodiodes for each corner of Fizeau.
  • each corner of Fizeau is preferably under vacuum ("vacuum"). To do this, it is possible to create a vacuum in the space between the two blades corresponding to each corner of Fizeau.
  • the device which is the subject of the invention furthermore comprises a sealed enclosure provided with means for evacuating it and enclosing the measurement assembly. interferometric.
  • the device which is the subject of the invention, it further comprises a base, which is provided to support the interferometric measurement assembly, and means for mechanical stabilization of this base.
  • the apparatus which is the subject of the invention to further comprise means for maintaining the interferometric measuring assembly at a constant temperature.
  • FIG. 1 is a schematic perspective view of a particular embodiment of the wavelength measuring device object of the invention.
  • Figure 2 is a schematic and partial top view of this device.
  • the device according to the invention shown in these Figures 1 and 2 is intended to measure the wavelength of a light beam 2 emitted by a laser 4.
  • a part 6 of this beam 2 is taken for example by means of a semi-reflecting mirror 8 placed at 45 ° to the beam 2.
  • the light beam formed by this part 6 is ' used to measure the wavelength' of the beam 2 with the apparatus.
  • This beam 6 is injected via a lens 10 into one end of an optical fiber 12, preferably single-mode.
  • the other end of the optical fiber 12 is mounted in a tip 14 ("ferrule").
  • 1 and 2 comprises a spherical or parabolic mirror 16, two superimposed corners of Fizeau 18 and 20, two mirrors 22 and 24, two superimposed compensation blades 26 and 28 and two arrays of photodiodes 30 and 32.
  • the mirror 16, the corners of Fizeau 18 and 20, the mirrors 22 and 24, the compensation blades 26 and 28 and the photodiode arrays 30 and 32 are placed on a base 34.
  • the end piece 14 of the optical fiber 12 is fixed in a support 36 comprising lower 38 and upper 40 blades provided with V-shaped grooves facing each other.
  • the end piece is immobilized between these two grooves when the upper blade 40 is fixed, for example by screws 41, to the lower blade 38.
  • the support 36 also includes a base 42 on which the two blades 38 and 40 are fixed.
  • the base 42 is mobile according to three degrees of freedom on the base 34 facing the mirror 16: in the example shown the base 34 comprises a groove 44 perpendicular to the axis X of the mirror 16 and the base 42 is capable of sliding in this groove 44 (along the arrow fl); the base 42 is also adjustable in height (along the arrow f2) relative to the base 34 for example by removable shims 46 of small thickness, interposed between this base and the bottom of the groove; in addition, this groove has a sufficient width to be able to vary the translational position of this base 42 in the groove 44 (which is symbolized by the arrow f3).
  • the support 36 is adjusted so that the axis Y of the end of the fiber placed in the end-piece 14 coincides with the axis X of the mirror 16 and that the point of intersection of the axis Y with the face of this end is offset longitudinally by a few hundred micrometers, typically 600 ⁇ , from the focal point F of this mirror 16.
  • the divergent light beam coming from this end is then reflected by the mirror 16 in the form of a spherical light wave forming a slightly divergent beam 48 (instead of being precisely collimated if this point of intersection was exactly at focus F).
  • the two blades 38 and 40 are thin enough (each of them for example has a thickness of two millimeters) to intercept only a very small part of the slightly divergent beam 48 reflected by the mirror 16.
  • the end of the fiber optic placed in the tip 14 is between the mirror 16 and the two superimposed corners of Fizeau 18 and 20 as seen in FIG. 1.
  • the slightly divergent beam 48 reflected by the mirror 16 therefore reaches these two corners of Fizeau. More precisely, the upper part 48s (respectively lower 48i) of this beam 48 is reflected by the upper corner of Fizeau (respectively lower 18) towards the plane mirror 24 (respectively 22).
  • FIG. 2 schematically shows the lower Fizeau corner 18 but this diagram is valid for the upper Fizeau corner 20.
  • each Fizeau corner is delimited by two blades 49 and 50 of silica.
  • the blade 49 constitutes the input blade of the corner of Fizeau and has parallel faces and a thickness for example equal to 10 mm.
  • the external face or entry face 52 of this strip 49 the face which receives the beam reflected by the mirror 16, is covered with an anti-reflection layer, not shown.
  • the respective internal faces 54 and 56 of the two plates 49 and 50 have a flatness of ⁇ / 100 peak to peak, ⁇ being the wavelength of a test laser (633 nm).
  • these internal faces 54 and 56 form an acute angle ⁇ of small value between them, typically 2/1000 radians.
  • Wedges of thickness 58 and 60 in zerodur type glass are interposed between the two blades 49 and 50 and have a thickness of the order of 1 mm for the upper Fizeau corner 20 and 20 mm for the lower Fizeau corner 18.
  • These shims of thickness 58 and 60 are fixed to the blades 49 and 50 by molecular adhesion.
  • the shims 58 and 60 of the same corner have of course not exactly the same thickness, because the angle ⁇ is not zero.
  • the upper Fizeau corner 20 is fixed to the lower Fizeau corner 18 by molecular adhesion of their respective blades 50.
  • the corner of Lower fizeau 18 is fixed to the base 34 by molecular adhesion of the corresponding blade 50.
  • the two blades 50 can have a great thickness equal for example to 25 mm.
  • the shearing plane is the plane in which the images of the points of the internal faces 54 and 56 are merged where the beam 48 is reflected, such as for example the points A and B in FIG. 2).
  • the orientations and relative positions of the corners of Fizeau, of the plane mirrors, of the compensating plates and of the arrays of photodiodes are provided for this purpose.
  • the heights and relative arrangements of the mirrors 22 and 24 are provided so that the lower beam parts 48i and upper 48s, which are reflected by the two corners of Fizeau, reconstitute the beam 48 beyond the mirror 22.
  • each of the parts lower and upper of the beam 48 crosses the corresponding compensating plate and reaches the corresponding array of photodiodes.
  • the bars 30 and 32 are mounted on a block 62 crossed by a lower slot 64, one end of which receives the lower part 48i of the bundle 48 and the other end of which faces the bar of corresponding photodiodes 30 for transmitting thereto the part 48i via the slot 64.
  • This block 62 is provided with another slot 66 situated above the slot 64 and designed to receive the upper part 48s of the beam 48.
  • This slot 66 opens, in block 60, onto a plane mirror 68 at 45 ° which also receives this upper part and reflects it towards the corresponding photodiodes array 32 through another slot 70 of block 62.
  • the mirror 16, the mirror 22, the mirror 24 and the compensation blade 26 are made of silica and fixed to the base 34 of silica by molecular adhesion.
  • the blade 28 is made of silica and fixed by molecular adhesion to the blade 26.
  • the base 34 is placed on three shock absorbers of which only two are shown in FIG. 1 and symbolized by arrows M. These shock absorbers form a stable support "line, point , plan ". All of these three shock absorbers absorb external vibrations and eliminate mechanical stresses. This ensures very good mechanical stability for the base 34 and the components thereon. Other devices are of course possible to ensure the mechanical stability of the base 34.
  • the arrays of photodiodes are arrays of 1024 pixels, of the kind which are marketed by the company Reticon.
  • the pixels of these bars have a height of 2.5 mm for a width of 25 ⁇ m, which provides sufficient sensitivity so as not to have to use focusing lenses.
  • the electrical signals respectively supplied by the photodiodes arrays are characteristic of the corresponding interference fringes.
  • the electrical signal supplied by the bar 30 (respectively 32) is sent to an electronic card 72 (respectively 74) for amplifying this signal.
  • the signals thus amplified are sent to a computer 76 which calculates the wavelength of the light beam 2 emitted by the laser 4 using the algorithm relating to the apparatus described in documents (2) to (4) to which we are report to.
  • This computer is provided with means 78 for displaying the calculations.
  • the base 34 as well as all the elements which are on this base are placed in a sealed enclosure 80 provided with pumping means 82 to evacuate it. Means 84 for measuring the pressure in this enclosure are also provided. It is specified that this enclosure 80 (the use of which is facilitated by the compact arrangement of the device of FIG. 1) has sealed passages for pumping and for measuring the pressure, for the passage of the optical fiber 12 , for the connections of the photodiodes arrays to their electronic cards and for the connection of a temperature probe to regulation means which are discussed below.
  • the interior of the enclosure 80 is maintained at a stable temperature better than one tenth of a degree.
  • This temperature is monitored by a temperature probe 86 placed on the base 34, in the enclosure 80.
  • the temperature stability is obtained by placing the vacuum enclosure 80 in a second thermal regulation enclosure, not shown.
  • This thermal regulation is carried out using heating resistors 88 which are between the enclosure 80 and the thermal regulation enclosure and the temperature 86.
  • a set temperature is indicated to an electronic regulator 90 which starts the operation of the heating resistors as soon as the temperature measured by the probe 86 becomes lower than the set temperature.
  • An electronic device 92 called a "dimmer" is connected between the regulator 90 and the resistors 88 and enables these resistors to be started gradually.
  • the long-term stability of the device of FIGS. 1 and 2 is ensured by the vacuuming of the components placed on the base 34. It is preferable that the electronic amplification cards 72 and 74 are also in the enclosure 80 under empty in view of this stability. Temperature regulation and vibration absorption also contribute to this long-term stability. This stability eliminates the need to regularly calibrate the device. It is specified that the latter is calibrated from interference fringes relating to the emission of laser sources whose spectral characteristics are known.
  • the device can be placed in an air-conditioned room, measure the temperature in the latter and correct wavelength measurement as a function of the temperature measured.
  • the invention is not limited to measuring the wavelength of a laser beam. It also applies to the measurement of the wavelength of a light beam which is not perfectly coherent. The invention is also not limited to measuring the length of a perfectly monochromatic light beam. It also applies to measurements of light sources with several lines by appropriately modifying the algorithm.
  • the beam whose wavelength is measured can be visible or invisible (infrared and ultraviolet). In addition, it can be continuous or impulse.

Abstract

The invention concerns an apparatus for measuring a light beam wavelength comprising at least a Fizeau wedge (18, 20) delimited by first and second plates, means (30, 32) for high resolution detection of interference fringes resulting from the light beam reflections on the internal surfaces of the plates, means (72, 74, 76) for processing electric signals, generated by the detecting means, for computing the beam wavelength, and means for transforming the beam into a slightly divergent spherical light wave and for illuminating the Fizeau wedge with said wave.

Description

APPAREIL DE MESURE DE LA LONGUEUR D'ONDE D'UN FAISCEAU APPARATUS FOR MEASURING THE WAVELENGTH OF A BEAM
LUMINEUXLUMINOUS
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
La présente invention concerne un appareil de mesure de la longueur d'onde d'un faisceau lumineux.The present invention relates to an apparatus for measuring the wavelength of a light beam.
Elle s'applique notamment aux faisceaux lasers, par exemple à ceux qui sont utilisés en spectroscopie ou pour la séparation isotopique par laser.It applies in particular to laser beams, for example to those used in spectroscopy or for isotopic separation by laser.
ÉTAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART
On connaît déjà des appareils de mesure de la longueur d'onde d'un faisceau lumineux par le document (1) qui, comme les autres documents cités par la suite, est mentionné à la fin de la présente description.Apparatus for measuring the wavelength of a light beam is already known from document (1) which, like the other documents cited below, is mentioned at the end of this description.
On connaît aussi, par les documents (2) ,We also know from documents (2),
(3) et (4), un tel appareil qui comprend un coin de Fizeau (« Fizeau wedge ») ayant une lame d'entrée à faces parallèles, ce coin de Fizeau étant utilisé en réflexion. Cet appareil permet de mesurer la longueur d'onde d'un faisceau lumineux de manière absolue et avec précision mais pose un problème de fiabilité des mesures . Le document (5) propose d'améliorer la précision de l'appareil connu par les documents (2) à(3) and (4), such an apparatus which comprises a Fizeau wedge (“Fizeau wedge”) having an input blade with parallel faces, this Fizeau wedge being used in reflection. This device makes it possible to measure the wavelength of a light beam absolutely and precisely, but poses a problem of reliability of the measurements. Document (5) proposes to improve the accuracy of the device known from documents (2) to
(4) en modifiant la forme du coin de Fizeau. Le document (6) divulgue l'existence de problèmes de réflexions parasites sur le coin de Fizeau de l'appareil connu par les documents (2) à (4) et, pour résoudre ces problèmes, propose d'utiliser un coin de Fizeau ayant une lame d'entrée à faces non parallèles .(4) by modifying the shape of the Fizeau wedge. Document (6) discloses the existence of problems of parasitic reflections on the Fizeau corner of the apparatus known from documents (2) to (4) and, to solve these problems, proposes to use a Fizeau corner having an entry blade with non-parallel faces.
EXPOSÉ DE L' INVENTIONSTATEMENT OF THE INVENTION
La présente invention a pour objet un appareil de mesure de la longueur d'onde d'un faisceau lumineux, qui est fiable et plus simple à fabriquer que les appareils connus par les documents (5) et (6), le problème des réflexions parasites n'étant d'ailleurs pas posé dans le document (5) .The present invention relates to a device for measuring the wavelength of a light beam, which is reliable and simpler to manufacture than the devices known from documents (5) and (6), the problem of stray reflections. not being moreover posed in document (5).
Les auteurs de la présente invention ont découvert que le manque de fiabilité de l'appareil connu par les documents (2) à (4) était lié aux réflexions parasites sur la face d'entrée du coin de Fizeau. Pour résoudre ce problème de fiabilité, l'invention propose une solution facile à mettre en oeuvre du point de vue technologique à partir de la configuration décrite dans les documents (2) à (4), à savoir d'éclairer le coin de Fizeau d'un appareil du genre de celui qui est décrit dans ces documents par une onde lumineuse sphérique et légèrement divergente. Ceci n'est nullement évident au vu de l'état de la technique car, selon le principe des interféromètres de Fizeau, il faut éclairer le coin de Fizeau avec une onde plane, tout écart à un tel éclairement se traduisant par la création d'aberrations. De façon précise, la présente invention a pour objet un appareil de mesure de la longueur d'onde d'un faisceau lumineux, cet appareil comportant un ensemble de mesure interferometrique comprenant :The authors of the present invention have discovered that the lack of reliability of the device known from documents (2) to (4) was linked to parasitic reflections on the entrance face of the corner of Fizeau. To solve this reliability problem, the invention proposes an easy solution to implement from the technological point of view from the configuration described in documents (2) to (4), namely to illuminate the corner of Fizeau d 'a device of the kind described in these documents by a spherical and slightly divergent light wave. This is by no means obvious in view of the state of the art because, according to the principle of Fizeau interferometers, it is necessary to illuminate the corner of Fizeau with a plane wave, any deviation from such illumination resulting in the creation of aberrations. Specifically, the present invention relates to an apparatus for measuring the wavelength of a light beam, this device comprising an interferometric measurement assembly comprising:
- au moins un coin de Fizeau délimité par des première et deuxième lames fixes, transparentes et faiblement inclinées l'une par rapport à l'autre, le faisceau lumineux traversant le coin de Fizeau selon un chemin optique de longueur déterminée et pénétrant dans ce coin de Fizeau par la première lame, la face externe de cette première lame étant traitée anti-reflet, et - des moyens de détection, à haute résolution, de franges d'interférence résultant de réflexions du faisceau lumineux sur les faces internes respectives des première et deuxième lames, ces moyens de détection engendrant des signaux électriques correspondant à ces franges d'interférence, l'appareil comportant aussi des moyens de traitement de ces signaux électriques, ces moyens de traitement étant aptes à calculer la longueur d'onde du faisceau lumineux à partir dés positions des axima des signaux électriques, cet appareil étant caractérisé en ce que l'ensemble de mesure interferometrique comprend en outre des moyens de transformation optique prévus pour transformer le faisceau lumineux en une onde lumineuse sphérique légèrement divergente et pour éclairer le coin de Fizeau avec cette onde de manière à éliminer les incertitudes de mesure résultant de réflexions parasites sur la première lame.- At least one corner of Fizeau delimited by first and second fixed, transparent blades and slightly inclined with respect to each other, the light beam crossing the corner of Fizeau according to an optical path of determined length and penetrating this corner of Fizeau by the first plate, the external face of this first plate being treated with anti-reflection, and - means for detecting, at high resolution, interference fringes resulting from reflections of the light beam on the respective internal faces of the first and second plate, these detection means generating electrical signals corresponding to these interference fringes, the apparatus also comprising means for processing these electrical signals, these processing means being able to calculate the wavelength of the light beam at from the positions of the axima of the electrical signals, this apparatus being characterized in that the interferometric measuring assembly further comprises optical transformation means provided for transforming the light beam into a slightly divergent spherical light wave and for illuminating the corner of Fizeau with this wave so as to eliminate the measurement uncertainties resulting from parasitic reflections on the first plate.
Un traitement anti-reflet de la face externe de la première lame ne permet pas d'éliminer complètement les réflexions parasites pour toutes les longueurs d'onde. Les incertitudes de mesure dues à ces réflexions parasites diminuent fortement en éclairant le coin de Fizeau avec l'onde sphérique légèrement divergente. Certes, un tel éclairement provoque une modulation de l'amplitude des franges d'interférence à une fréquence spatiale très supérieure à celle engendrée par l' éclairement par une onde plane. Cette fréquence est suffisante pour que la valeur moyenne du pas des franges ne soit plus affectée par cette modulation.Anti-reflection treatment of the external face of the first plate does not completely eliminate stray reflections for all wavelengths. The measurement uncertainties due to these parasitic reflections greatly decrease when lighting the corner of Fizeau with the slightly divergent spherical wave. Admittedly, such an illumination causes a modulation of the amplitude of the interference fringes at a spatial frequency much higher than that generated by the illumination by a plane wave. This frequency is sufficient so that the average value of the pitch of the fringes is no longer affected by this modulation.
Selon un mode de réalisation préféré de l'appareil objet de l'invention, les moyens de transformation optique comprennent :According to a preferred embodiment of the apparatus which is the subject of the invention, the optical transformation means comprise:
- des moyens de formation, à partir du faisceau lumineux, d'un faisceau divergeant à partir d'un point, et - des moyens de collimation prévus pour recevoir ce faisceau divergeant à partir d'un point et transformer celui-ci en l'onde lumineuse sphérique légèrement divergente, ces moyens de collimation ayant un foyer légèrement espacé, d'une distance déterminée, dudit point.- means for forming, from the light beam, a beam diverging from a point, and - collimation means provided for receiving this diverging beam from a point and transforming it into the slightly diverging spherical light wave, these collimating means having a focal point slightly spaced, by a determined distance, from said point.
Les moyens de collimation peuvent comprendre une lentille de collimation mais ils comprennent de préférence un miroir sphérique ou parabolique. Les moyens de formation du faisceau divergeant à partir dudit point peuvent comprendre un masque percé d'un trou, ce trou étant placé au foyer d'un objectif tel qu'un objectif de microscopeThe collimating means can comprise a collimating lens but they preferably comprise a spherical or parabolic mirror. The means for forming the beam diverging from said point may comprise a mask pierced with a hole, this hole being placed at the focal point of an objective such as a microscope objective.
(recevant le faisceau dont on veut mesurer la longueur d'onde), mais ils comprennent de préférence une fibre optique prévue pour transporter le faisceau lumineux, ledit point étant situé en une face d'extrémité de cette fibre optique. De manière à s'affranchir du problème de la variation du pas des franges d'interférence avec les aberrations du front d' onde incident sur le coin de Fizeau, les moyens de détection sont de préférence placés dans un plan particulier, appelé "plan de coupe" ou "plan de shearing", correspondant au coin de Fizeau. Au sujet de ce plan, on consultera les documents (1), (3) et (4) .(receiving the beam whose wavelength is to be measured), but they preferably comprise an optical fiber intended to transport the light beam, said point being located at an end face of this optical fiber. In order to overcome the problem of the variation of the pitch of the interference fringes with the aberrations of the wavefront incident on the corner of Fizeau, the detection means are preferably placed in a particular plane, called "plane of section "or" shearing plane ", corresponding to the corner of Fizeau. Regarding this plan, consult documents (1), (3) and (4).
De préférence, pour mesurer la longueur d'onde du faisceau lumineux de manière absolue avec une précision très grande, susceptible d'être égale à 6xl0~8, l' appareil objet de l'invention comprend deux coins de Fizeau destinés à être éclairés par l'onde lumineuse sphérique légèrement divergente, les moyens de détection étant prévus pour détecter les franges d' interférence correspondant à ces deux coins de Fizeau. Une telle précision de 6xl0~8 est requise pour mesurer la longueur d'onde d'une source laser en régime puisé, dans le cas de la séparation isotopique par laser ou de la spectroscopie.Preferably, in order to measure the wavelength of the light beam in an absolute manner with a very high precision, capable of being equal to 6 × 10 -8, the device object of the invention comprises two corners of Fizeau intended to be illuminated by the spherical wave light diverging slightly, the detection means being provided for detecting the interference fringes corresponding to the two corners of Fizeau. Such precision of 6xl0 ~ 8 is required to measure the wavelength of a laser source in pulsed regime, in the case of isotopic separation by laser or spectroscopy.
De préférence également, ledit ensemble de mesure interferometrique comprend en outre des moyens de compensation du chromatisme susceptible d'être introduit par la première lame correspondant à chaque coin de Fizeau.Also preferably, said interferometric measurement assembly further comprises means for compensating for the chromaticism capable of being introduced by the first plate corresponding to each corner of Fizeau.
Les moyens de détection peuvent comprendre avantageusement une barrette de photodiodes pour chaque coin de Fizeau.The detection means can advantageously comprise a strip of photodiodes for each corner of Fizeau.
Pour s'affranchir des variations d'indice de réfraction de l'air, chaque coin de Fizeau est de préférence sous vide ("vacuum") . Pour ce faire, il est possible de faire le vide dans l'espace compris entre les deux lames correspondant à chaque coin de Fizeau. Cependant, selon un mode de réalisation préféré, particulièrement intéressant lorsque l'ensemble de mesure interferometrique est compact, l'appareil objet de l'invention comprend en outre une enceinte étanche munie de moyens pour y faire le vide et enfermant l'ensemble de mesure interferometrique.To overcome variations in the refractive index of air, each corner of Fizeau is preferably under vacuum ("vacuum"). To do this, it is possible to create a vacuum in the space between the two blades corresponding to each corner of Fizeau. However, according to a preferred embodiment, which is particularly advantageous when the interferometric measurement assembly is compact, the device which is the subject of the invention furthermore comprises a sealed enclosure provided with means for evacuating it and enclosing the measurement assembly. interferometric.
De préférence, en vue d'une stabilité à long terme de l'appareil objet de l'invention, celui-ci comprend en outre un socle, qui est prévu pour supporter l'ensemble de mesure interferometrique, et des moyens de stabilisation mécanique de ce socle.Preferably, with a view to long-term stability of the device which is the subject of the invention, it further comprises a base, which is provided to support the interferometric measurement assembly, and means for mechanical stabilization of this base.
En vue de cette stabilité à long terme, il est également préférable que l'appareil objet de l'invention comprenne en outre des moyens de maintien de l'ensemble de mesure interferometrique à une température constante.In view of this long-term stability, it is also preferable for the apparatus which is the subject of the invention to further comprise means for maintaining the interferometric measuring assembly at a constant temperature.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :The present invention will be better understood on reading the description of exemplary embodiments given below, by way of purely indicative and in no way limiting, with reference to the appended drawings in which:
• la figure 1 est une vue en perspective schématique d'un mode de réalisation particulier de l'appareil de mesure de longueur d'onde objet de l'invention etFIG. 1 is a schematic perspective view of a particular embodiment of the wavelength measuring device object of the invention and
• la figure 2 est une vue de dessus schématique et partielle de cet appareil. EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS• Figure 2 is a schematic and partial top view of this device. DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
L'appareil conforme à l'invention représenté sur ces figures 1 et 2 est destiné à mesurer la longueur d'onde d'un faisceau lumineux 2 émis par un laser 4. Une partie 6 de ce faisceau 2 est prélevée par exemple grâce à un miroir semi-réfléchissant 8 placé à 45° du faisceau 2. Le faisceau lumineux constitué par cette partie 6 est' utilisé pour mesurer la longueur d'onde ' du faisceau 2 avec l'appareil. Ce faisceau 6 est injecté par l'intermédiaire d'une lentille 10 dans une extrémité d'une fibre optique 12 de préférence monomode. L'autre extrémité de la fibre optique 12 est montée dans un embout 14 (« ferrule ») . L'appareil des figures 1 et 2 comprend un miroir sphérique ou parabolique 16, deux coins de Fizeau superposés 18 et 20, deux miroirs 22 et 24, deux lames de compensation superposées 26 et 28 et deux barrettes de photodiodes 30 et 32. Le miroir 16, les coins de Fizeau 18 et 20, les miroirs 22 et 24, les lames de compensation 26 et 28 et les barrettes de photodiode 30 et 32 sont placés sur un socle 34.The device according to the invention shown in these Figures 1 and 2 is intended to measure the wavelength of a light beam 2 emitted by a laser 4. A part 6 of this beam 2 is taken for example by means of a semi-reflecting mirror 8 placed at 45 ° to the beam 2. The light beam formed by this part 6 is ' used to measure the wavelength' of the beam 2 with the apparatus. This beam 6 is injected via a lens 10 into one end of an optical fiber 12, preferably single-mode. The other end of the optical fiber 12 is mounted in a tip 14 ("ferrule"). The apparatus of FIGS. 1 and 2 comprises a spherical or parabolic mirror 16, two superimposed corners of Fizeau 18 and 20, two mirrors 22 and 24, two superimposed compensation blades 26 and 28 and two arrays of photodiodes 30 and 32. The mirror 16, the corners of Fizeau 18 and 20, the mirrors 22 and 24, the compensation blades 26 and 28 and the photodiode arrays 30 and 32 are placed on a base 34.
L'embout 14 de la fibre optique 12 est fixé dans un support 36 comprenant des lames inférieure 38 et supérieure 40 pourvues de rainures en forme de V en regard l'une de l'autre. L'embout est immobilisé entre ces deux rainures lorsque la lame supérieure 40 est fixée, par exemple par des vis 41, à la lame inférieure 38. Le support 36 comprend également une base 42 sur laquelle sont fixées les deux lames 38 et 40. Cette base 42 est mobile suivant trois degrés de liberté sur le socle 34 en regard du miroir 16 : dans l'exemple représenté le socle 34 comprend une rainure 44 perpendiculaire à l'axe X du miroir 16 et la base 42 est apte à coulisser dans cette rainure 44 (suivant la flèche fl) ; la base 42 est aussi réglable en hauteur (suivant la flèche f2) par rapport au socle 34 par exemple grâce à des cales amovibles 46 de faible épaisseur, interposées entre cette base et le fond de la rainure ; de plus cette rainure a une largeur suffisante pour pouvoir faire varier la position en translation de cette base 42 dans la rainure 44 (ce que l'on a symbolisé par la flèche f3) .The end piece 14 of the optical fiber 12 is fixed in a support 36 comprising lower 38 and upper 40 blades provided with V-shaped grooves facing each other. The end piece is immobilized between these two grooves when the upper blade 40 is fixed, for example by screws 41, to the lower blade 38. The support 36 also includes a base 42 on which the two blades 38 and 40 are fixed. base 42 is mobile according to three degrees of freedom on the base 34 facing the mirror 16: in the example shown the base 34 comprises a groove 44 perpendicular to the axis X of the mirror 16 and the base 42 is capable of sliding in this groove 44 (along the arrow fl); the base 42 is also adjustable in height (along the arrow f2) relative to the base 34 for example by removable shims 46 of small thickness, interposed between this base and the bottom of the groove; in addition, this groove has a sufficient width to be able to vary the translational position of this base 42 in the groove 44 (which is symbolized by the arrow f3).
On règle le support 36 de façon que l'axe Y de l'extrémité de la fibre placée dans l'embout 14 soit confondu avec l'axe X du miroir 16 et que le point d'intersection de l'axe Y avec la face de cette extrémité soit décalé longitudinalement de quelques centaines de micromètres, typiquement 600 μ , du foyer F de ce miroir 16. Le faisceau lumineux divergent issu de cette extrémité est alors réfléchi par le miroir 16 sous la forme d'une onde lumineuse sphérique formant un faisceau légèrement divergent 48 (au lieu d'être précisément collimaté si ce point d'intersection était exactement au foyer F) . Les deux lames 38 et 40 sont suffisamment minces (chacune d'elles a par exemple une épaisseur de deux millimètres) pour n'intercepter qu'une très faible partie du faisceau légèrement divergent 48 réfléchi par le miroir 16. L'extrémité de la fibre optique placée dans l'embout 14 est comprise entre le miroir 16 et les deux coins de Fizeau superposés 18 et 20 comme on le voit sur la figure 1. Le faisceau légèrement divergent 48 réfléchi par le miroir 16 atteint donc ces deux coins de Fizeau. Plus précisément, la partie supérieure 48s (respectivement inférieure 48i) de ce faisceau 48 est réfléchie par le coin de Fizeau supérieur (respectivement inférieur 18) vers le miroir plan 24 (respectivement 22) .The support 36 is adjusted so that the axis Y of the end of the fiber placed in the end-piece 14 coincides with the axis X of the mirror 16 and that the point of intersection of the axis Y with the face of this end is offset longitudinally by a few hundred micrometers, typically 600 μ, from the focal point F of this mirror 16. The divergent light beam coming from this end is then reflected by the mirror 16 in the form of a spherical light wave forming a slightly divergent beam 48 (instead of being precisely collimated if this point of intersection was exactly at focus F). The two blades 38 and 40 are thin enough (each of them for example has a thickness of two millimeters) to intercept only a very small part of the slightly divergent beam 48 reflected by the mirror 16. The end of the fiber optic placed in the tip 14 is between the mirror 16 and the two superimposed corners of Fizeau 18 and 20 as seen in FIG. 1. The slightly divergent beam 48 reflected by the mirror 16 therefore reaches these two corners of Fizeau. More precisely, the upper part 48s (respectively lower 48i) of this beam 48 is reflected by the upper corner of Fizeau (respectively lower 18) towards the plane mirror 24 (respectively 22).
La figure 2 montre schématiquement le coin de Fizeau inférieur 18 mais ce schéma est valable pour le coin de Fizeau supérieur 20. On voit que chaque coin de Fizeau est délimité par deux lames 49 et 50 en silice. La lame 49 constitue la lame d'entrée du coin de Fizeau et a des faces parallèles et une épaisseur par exemple égale à 10 mm. La face externe ou face d'entrée 52 de cette lame 49, face qui reçoit le faisceau réfléchi par le miroir 16, est recouverte d'une couche anti-reflet non représentée. Les faces internes respectives 54 et 56 des deux lames 49 et 50 ont une planéité de λ/100 crête à crête, λ étant la longueur d'onde d'un laser de test (633 nm) . De plus ces faces internes 54 et 56 font entre elles un angle aigu α de faible valeur, typiquement 2/1000 radian. Des cales d'épaisseur 58 et 60 en verre de type zérodur sont intercalées entre les deux lames 49 et 50 et ont une épaisseur de l'ordre de 1 mm pour le coin de Fizeau supérieur 20 et de 20 mm pour le coin de Fizeau inférieur 18. Ces cales d'épaisseur 58 et 60 sont fixées aux lames 49 et 50 par adhérence moléculaire.FIG. 2 schematically shows the lower Fizeau corner 18 but this diagram is valid for the upper Fizeau corner 20. It can be seen that each Fizeau corner is delimited by two blades 49 and 50 of silica. The blade 49 constitutes the input blade of the corner of Fizeau and has parallel faces and a thickness for example equal to 10 mm. The external face or entry face 52 of this strip 49, the face which receives the beam reflected by the mirror 16, is covered with an anti-reflection layer, not shown. The respective internal faces 54 and 56 of the two plates 49 and 50 have a flatness of λ / 100 peak to peak, λ being the wavelength of a test laser (633 nm). In addition, these internal faces 54 and 56 form an acute angle α of small value between them, typically 2/1000 radians. Wedges of thickness 58 and 60 in zerodur type glass are interposed between the two blades 49 and 50 and have a thickness of the order of 1 mm for the upper Fizeau corner 20 and 20 mm for the lower Fizeau corner 18. These shims of thickness 58 and 60 are fixed to the blades 49 and 50 by molecular adhesion.
Les cales 58 et 60 d'un même coin n'ont bien entendu pas exactement la même épaisseur, car l'angle α est non nul.The shims 58 and 60 of the same corner have of course not exactly the same thickness, because the angle α is not zero.
Le coin de Fizeau supérieur 20 est fixé au coin de Fizeau inférieur 18 par adhérence moléculaire de leurs lames respectives 50. De plus, le coin de Fizeau inférieur 18 est fixé au socle 34 par adhérence moléculaire de la lame correspondante 50. Les deux lames 50 peuvent avoir une grande épaisseur égale par exemple à 25 mm. La lumière provenant du coin 18The upper Fizeau corner 20 is fixed to the lower Fizeau corner 18 by molecular adhesion of their respective blades 50. In addition, the corner of Lower fizeau 18 is fixed to the base 34 by molecular adhesion of the corresponding blade 50. The two blades 50 can have a great thickness equal for example to 25 mm. Light from corner 18
(respectivement 20) et réfléchie par le miroir 22(respectively 20) and reflected by the mirror 22
(respectivement 24) traverse la lame compensatrice 26(respectively 24) passes through the compensating blade 26
(respectivement 28) . Ces lames compensatrices corrigent le chromatisme introduit par les lames 49 des deux coins de Fizeau. Cette correction de chromatisme peut être améliorée en introduisant des coefficients de chromatisme de l'ensemble de l'appareil, coefficients que l'on peut calculer pendant la phase d'étalonnage de cet appareil. Les ondes lumineuses réfléchies par les faces internes 54 et 56 de chaque coin de Fizeau 18 ou 20 interfèrent l'une avec l'autre pour former, après avoir traversé la lame compensatrice correspondante 26 ou 28, des franges d'interférence sur la barrette de photodiodes correspondante 30 ou 32. Chaque barrette de photodiode est placée au plan de shearing du coin de(respectively 28). These compensating plates correct the chromatism introduced by the plates 49 from the two corners of Fizeau. This chromaticism correction can be improved by introducing chromaticity coefficients for the whole apparatus, coefficients which can be calculated during the calibration phase of this apparatus. The light waves reflected by the internal faces 54 and 56 of each corner of Fizeau 18 or 20 interfere with each other to form, after passing through the corresponding compensating plate 26 or 28, interference fringes on the strip of corresponding photodiodes 30 or 32. Each photodiode strip is placed on the shearing plane of the corner of
Fizeau correspondant (voir à ce sujet les documentsCorresponding section (see the documents on this subject
(1), (3) et (4) : on rappelle que, pour un coin de(1), (3) and (4): remember that for a corner of
Fizeau donné, le plan de shearing est le plan en lequel sont confondues les images des points des faces internes 54 et 56 où se réfléchit le faisceau 48, comme par exemple les points A et B de la figure 2) . Les orientations et positions relatives des coins de Fizeau, des miroirs plans, des lames compensatrices et des barrettes de photodiodes (prévues pour capter respectivement les franges d'interférence qui leur correspondent) sont prévues à cet effet. Les hauteurs et agencements relatifs des miroirs 22 et 24 sont prévus pour que les parties de faisceau inférieure 48i et supérieure 48s, qui sont réfléchies par les deux coins de Fizeau, reconstituent le faisceau 48 au-delà du miroir 22. Ensuite, chacune des parties inférieure et supérieure du faisceau 48 traverse la lame compensatrice correspondante et atteint la barrette de photodiodes correspondante.Given this, the shearing plane is the plane in which the images of the points of the internal faces 54 and 56 are merged where the beam 48 is reflected, such as for example the points A and B in FIG. 2). The orientations and relative positions of the corners of Fizeau, of the plane mirrors, of the compensating plates and of the arrays of photodiodes (intended to capture respectively the interference fringes which correspond to them) are provided for this purpose. The heights and relative arrangements of the mirrors 22 and 24 are provided so that the lower beam parts 48i and upper 48s, which are reflected by the two corners of Fizeau, reconstitute the beam 48 beyond the mirror 22. Next, each of the parts lower and upper of the beam 48 crosses the corresponding compensating plate and reaches the corresponding array of photodiodes.
Dans l'exemple représenté sur la figure 1, les barrettes 30 et 32 sont montées sur un bloc 62 traversé par une fente inférieure 64 dont une extrémité reçoit la partie inférieure 48i du faisceau 48 et dont l'autre extrémité est en regard de la barrette de photodiodes correspondante 30 pour transmettre à celle- ci la partie 48i par l'intermédiaire de la fente 64. Ce bloc 62 est pourvu d'une autre fente 66 située au- dessus de la fente 64 et prévue pour recevoir la partie supérieure 48s du faisceau 48. Cette fente 66 débouche, dans le bloc 60, sur un miroir plan 68 à 45° qui reçoit aussi cette partie supérieure et la réfléchit vers la barrette de photodiodes correspondante 32 à travers une autre fente 70 du bloc 62.In the example shown in FIG. 1, the bars 30 and 32 are mounted on a block 62 crossed by a lower slot 64, one end of which receives the lower part 48i of the bundle 48 and the other end of which faces the bar of corresponding photodiodes 30 for transmitting thereto the part 48i via the slot 64. This block 62 is provided with another slot 66 situated above the slot 64 and designed to receive the upper part 48s of the beam 48. This slot 66 opens, in block 60, onto a plane mirror 68 at 45 ° which also receives this upper part and reflects it towards the corresponding photodiodes array 32 through another slot 70 of block 62.
Le miroir 16, le miroir 22, le miroir 24 et la lame de compensation 26 sont en silice et fixés au socle 34 en silice par adhérence moléculaire. La lame 28 est en silice et fixée par adhérence moléculaire à la lame 26. Le socle 34 est placé sur trois amortisseurs dont deux seulement sont représentés sur la figure 1 et symbolisés par des flèches M. Ces amortisseurs forment un appui stable « trait, point, plan ». L'ensemble de ces trois amortisseurs permet d'absorber les vibrations extérieures et d'éliminer les contraintes mécaniques. On assure ainsi une très bonne stabilité mécanique pour le socle 34 et les composants qui se trouvent sur ce dernier. D'autres dispositifs sont bien entendu possibles pour assurer la stabilité mécanique du socle 34. A titre purement indicatif et nullement limitatif, les barrettes de photodiodes sont des barrettes de 1024 pixels, du genre de celles qui sont commercialisées par la société Reticon. Les pixels de ces barrettes ont une hauteur de 2,5 mm pour une largeur de 25 um, ce qui procure une sensibilité suffisante pour ne pas avoir à utiliser des lentilles de focalisation.The mirror 16, the mirror 22, the mirror 24 and the compensation blade 26 are made of silica and fixed to the base 34 of silica by molecular adhesion. The blade 28 is made of silica and fixed by molecular adhesion to the blade 26. The base 34 is placed on three shock absorbers of which only two are shown in FIG. 1 and symbolized by arrows M. These shock absorbers form a stable support "line, point , plan ". All of these three shock absorbers absorb external vibrations and eliminate mechanical stresses. This ensures very good mechanical stability for the base 34 and the components thereon. Other devices are of course possible to ensure the mechanical stability of the base 34. As a purely indicative and in no way limiting, the arrays of photodiodes are arrays of 1024 pixels, of the kind which are marketed by the company Reticon. The pixels of these bars have a height of 2.5 mm for a width of 25 μm, which provides sufficient sensitivity so as not to have to use focusing lenses.
Les signaux électriques respectivement fournis par les barrettes de photodiodes sont caractéristiques des franges d'interférence correspondantes. Le signal électrique fourni par la barrette 30 (respectivement 32) est envoyé à une carte électronique 72 (respectivement 74) d'amplification de ce signal. Les signaux ainsi amplifiés sont envoyés à un ordinateur 76 qui calcule la longueur d'onde du faisceau lumineux 2 émis par le laser 4 en utilisant l'algorithme relatif à l'appareil décrit dans les documents (2) à (4) auxquels on se reportera. Cet ordinateur est muni de moyens 78 d'affichage des calculs.The electrical signals respectively supplied by the photodiodes arrays are characteristic of the corresponding interference fringes. The electrical signal supplied by the bar 30 (respectively 32) is sent to an electronic card 72 (respectively 74) for amplifying this signal. The signals thus amplified are sent to a computer 76 which calculates the wavelength of the light beam 2 emitted by the laser 4 using the algorithm relating to the apparatus described in documents (2) to (4) to which we are report to. This computer is provided with means 78 for displaying the calculations.
On précise que l'utilisation des deux coins de Fizeau permet une mesure de longueur d'onde beaucoup plus précise que si l'on utilisait un seul coin de Fizeau étant donné que l'intervalle compris entre les deux lames du coin de Fizeau supérieur est beaucoup plus grand que l'intervalle correspondant du coin de Fizeau inférieur, environ 20 fois plus grand dans l'exemple décrit. Le coin de Fizeau inférieur coopère avec la barrette de photodiodes correspondante pour mesurer le pas des franges, d'où une valeur approximative de la longueur d'onde du faisceau 2 émis par le laser 4. Au moyen de cette valeur approximative, on numérote les franges. Les numéros dépendent des épaisseurs traversées. On aboutit à une deuxième estimation de la longueur d'onde avec une précision améliorée. Avec cette deuxième estimation, on sait numéroter les franges correspondant au coin de Fizeau supérieur dont l'épaisseur est plus grande.It is specified that the use of the two corners of Fizeau allows a measurement of wavelength much more precise than if one used a single corner of Fizeau since the interval comprised between the two blades of the corner of upper Fizeau is much larger than the corresponding interval of the lower Fizeau corner, about 20 times larger in the example described. Lower Fizeau corner cooperates with the corresponding photodiodes strip to measure the pitch of the fringes, hence an approximate value of the wavelength of the beam 2 emitted by the laser 4. By means of this approximate value, the fringes are numbered. The numbers depend on the thicknesses crossed. This leads to a second estimation of the wavelength with improved precision. With this second estimate, we know how to number the fringes corresponding to the upper Fizeau corner whose thickness is greater.
Le socle 34 ainsi que tous les éléments qui se trouvent sur ce socle sont placés dans une enceinte étanche 80 munie de moyens de pompage 82 pour y faire le vide. Des moyens 84 de mesure de la pression dans cette enceinte sont également prévus. On précise que cette enceinte 80 (dont l'utilisation est facilitée par l'agencement compact de l'appareil de la figure 1) possède des passages etanches pour le pompage et pour la mesure de la pression, pour le passage de la fibre optique 12, pour les liaisons des barrettes de photodiodes à leurs cartes électroniques et pour la liaison d'une sonde de température à des moyens de régulation dont il est question ci-après.The base 34 as well as all the elements which are on this base are placed in a sealed enclosure 80 provided with pumping means 82 to evacuate it. Means 84 for measuring the pressure in this enclosure are also provided. It is specified that this enclosure 80 (the use of which is facilitated by the compact arrangement of the device of FIG. 1) has sealed passages for pumping and for measuring the pressure, for the passage of the optical fiber 12 , for the connections of the photodiodes arrays to their electronic cards and for the connection of a temperature probe to regulation means which are discussed below.
L'intérieur de l'enceinte 80 est maintenu à une température stable à mieux qu'un dixième de degré. Cette température est surveillée par une sonde de température 86 placée sur le socle 34, dans l'enceinte 80. La stabilité en température s'obtient en plaçant l'enceinte à vide 80 dans une deuxième enceinte de régulation thermique non représentée. Cette régulation thermique s'effectue à l'aide de résistances chauffantes 88 qui sont comprises entre l'enceinte 80 et l'enceinte de régulation thermique et de la sonde de température 86. Une température de consigne est indiquée à un régulateur électronique 90 qui enclenche le fonctionnement des résistances chauffantes dès que la température mesurée par la sonde 86 devient inférieure à la température de consigne. Un appareil électronique 92 appelé "gradateur" est connecté entre le régulateur 90 et les résistances 88 et permet une mise en marche progressive de ces résistances.The interior of the enclosure 80 is maintained at a stable temperature better than one tenth of a degree. This temperature is monitored by a temperature probe 86 placed on the base 34, in the enclosure 80. The temperature stability is obtained by placing the vacuum enclosure 80 in a second thermal regulation enclosure, not shown. This thermal regulation is carried out using heating resistors 88 which are between the enclosure 80 and the thermal regulation enclosure and the temperature 86. A set temperature is indicated to an electronic regulator 90 which starts the operation of the heating resistors as soon as the temperature measured by the probe 86 becomes lower than the set temperature. An electronic device 92 called a "dimmer" is connected between the regulator 90 and the resistors 88 and enables these resistors to be started gradually.
La stabilité à long terme de l'appareil des figures 1 et 2 est assurée par la mise sous vide des composants placés sur le socle 34. Il est préférable que les cartes électroniques d'amplification 72 et 74 soient également dans l'enceinte 80 sous vide en vue de cette stabilité. La régulation de la température et l'absorption des vibrations contribuent aussi à cette stabilité à long terme. Cette stabilité permet de ne pas avoir à effectuer régulièrement un étalonnage de l'appareil. On précise que ce dernier est étalonné à partir des franges d' interférence relatives à l'émission de sources lasers dont les caractéristiques spectrales sont connues.The long-term stability of the device of FIGS. 1 and 2 is ensured by the vacuuming of the components placed on the base 34. It is preferable that the electronic amplification cards 72 and 74 are also in the enclosure 80 under empty in view of this stability. Temperature regulation and vibration absorption also contribute to this long-term stability. This stability eliminates the need to regularly calibrate the device. It is specified that the latter is calibrated from interference fringes relating to the emission of laser sources whose spectral characteristics are known.
Si l'on souhaite une précision inférieure à 6xl0-8 sur la mesure de la longueur d'onde, par exemple une précision de 3xl0"6, il est possible de simplifier l'appareil en utilisant un seul coin de Fizeau ainsi que le miroir plan, la lame compensatrice et la barrette de photodiodes correspondant à ce coin de Fizeau.If one wishes an accuracy lower than 6xl0 -8 on the measurement of the wavelength, for example an accuracy of 3xl0 "6 , it is possible to simplify the apparatus by using only one corner of Fizeau as well as the mirror plan, the compensating plate and the array of photodiodes corresponding to this corner of Fizeau.
De plus, au lieu des moyens de stabilisation de température mentionnés plus haut, on peut placer l'appareil dans une pièce climatisée, mesurer la température dans cette dernière et corriger la mesure de longueur d'onde en fonction de la température mesurée.In addition, instead of the temperature stabilization means mentioned above, the device can be placed in an air-conditioned room, measure the temperature in the latter and correct wavelength measurement as a function of the temperature measured.
L'invention n'est pas limitée à la mesure de la longueur d'onde d'un faisceau laser. Elle s'applique également à la mesure de la longueur d'onde d'un faisceau lumineux qui n'est pas parfaitement cohérent. L'invention n'est pas non plus limitée à la mesure de la longueur d'un faisceau lumineux parfaitement monochromatique. Elle s'applique également à des mesures de sources lumineuses à plusieurs raies en modifiant de façon appropriée l'algorithme.The invention is not limited to measuring the wavelength of a laser beam. It also applies to the measurement of the wavelength of a light beam which is not perfectly coherent. The invention is also not limited to measuring the length of a perfectly monochromatic light beam. It also applies to measurements of light sources with several lines by appropriately modifying the algorithm.
Le faisceau dont on mesure la longueur d'onde peut être visible ou invisible (infrarouge et ultraviolet) . De plus, il peut être continu ou impulsionnel.The beam whose wavelength is measured can be visible or invisible (infrared and ultraviolet). In addition, it can be continuous or impulse.
Les documents cités dans la présente description sont les suivants :The documents cited in this description are as follows:
(1) J.J. Snyder, Laser wavelength meter, Laser Focus, vol.18, 1982, p.55(1) J.J. Snyder, Laser wavelength meter, Laser Focus, vol.18, 1982, p.55
(2) J.J. Snyder, Apparatus and method for détermination of wavelength : brevet US 4,173,442(2) J.J. Snyder, Apparatus and method for determination of wavelength: US patent 4,173,442
(3) J.J. Snyder, Algorithm for fast digital analysis of interférence fringes, Applied Optics, vol.19, n°8, 1980, p.1223(3) J.J. Snyder, Algorithm for fast digital analysis of interference fringes, Applied Optics, vol.19, n ° 8, 1980, p.1223
(4) M.B. Morris, T.J. Mellrath and J.J. Snyder, Fizeau wavemeters for pulsed laser wavelength measurements, Applied Optics, vol.23, n°21, 1984, p.3862 (5) R.P. Hackel and M. Feldman, Wavelength meter having elliptical wedge : brevet US 5,168,324(4) MB Morris, TJ Mellrath and JJ Snyder, Fizeau wavemeters for pulsed laser wavelength measurements, Applied Optics, vol.23, n ° 21, 1984, p.3862 (5) RP Hackel and M. Feldman, Wavelength meter having elliptical wedge: US patent 5,168,324
(6) R. Spolaczyk and K.E. Elssner : brevet DD290051. (6) R. Spolaczyk and K.E. Elssner: patent DD290051.

Claims

REVENDICATIONS
1. Appareil de mesure de la longueur d'onde d'un faisceau lumineux (2), cet appareil comportant un ensemble de mesure interferometrique comprenant : - au moins un coin de Fizeau (18, 20) délimité par des première et deuxième lames fixes, transparentes et faiblement inclinées l'une par rapport à l'autre, le faisceau lumineux traversant le coin de Fizeau selon un chemin optique de longueur déterminée et pénétrant dans ce coin de Fizeau par la première lame, la face externe de cette première lame étant traitée antireflet, et - des moyens (30, 32) de détection, à haute résolution, de franges d' interférence résultant de réflexions du faisceau lumineux sur les faces internes respectives des première et deuxième lames, ces moyens de détection engendrant des signaux électriques correspondant à ces franges d'interférence, l'appareil comportant aussi des moyens (72, 74, 76) de traitement de ces signaux électriques, ces moyens de traitement étant aptes à calculer la longueur d'onde du faisceau lumineux à partir des positions des maxima des signaux électriques, cet appareil étant caractérisé en ce que l'ensemble de mesure interferometrique comprend en outre des moyens de transformation optique (12, 16) prévus pour transformer le faisceau lumineux en une onde lumineuse sphérique légèrement divergente et pour éclairer le coin de Fizeau avec cette onde de manière à éliminer les incertitudes de mesure résultant de réflexions parasites sur la première lame. 1. Apparatus for measuring the wavelength of a light beam (2), this apparatus comprising an interferometric measurement assembly comprising: - at least one Fizeau wedge (18, 20) delimited by first and second fixed blades , transparent and slightly inclined with respect to each other, the light beam passing through the corner of Fizeau along an optical path of determined length and penetrating into this corner of Fizeau by the first strip, the external face of this first strip being anti-reflective treatment, and - means (30, 32) for detecting, at high resolution, interference fringes resulting from reflections of the light beam on the respective internal faces of the first and second plates, these detection means generating corresponding electrical signals at these interference fringes, the apparatus also comprising means (72, 74, 76) for processing these electrical signals, these processing means being able to calculate the wavelength of the light beam from the positions of the maxima of the electrical signals, this apparatus being characterized in that the interferometric measurement assembly further comprises optical transformation means (12, 16) provided for transforming the light beam into a slightly diverging spherical light wave and to illuminate the corner of Fizeau with this wave so as to eliminate the measurement uncertainties resulting from parasitic reflections on the first plate.
2. Appareil selon la revendication 1, dans lequel les moyens de transformation optique comprennent :2. Apparatus according to claim 1, in which the optical transformation means comprise:
- des moyens (12) de formation, à partir du faisceau lumineux, d'un faisceau divergeant à partir d'un point, et- means (12) for forming, from the light beam, a beam diverging from a point, and
- des moyens de collimation (16) prévus pour recevoir ce faisceau divergeant à partir d'un point et transformer celui-ci en l'onde lumineuse sphérique légèrement divergente, ces moyens de collimation ayant un foyer (F) légèrement espacé, d'une distance déterminée, dudit point.- collimation means (16) provided for receiving this diverging beam from a point and transforming it into the slightly diverging spherical light wave, these collimation means having a focal point (F) slightly spaced, of a determined distance from said point.
3. Appareil selon la revendication 2, dans lequel les moyens de collimation comprennent un miroir sphérique ou parabolique (16) .3. Apparatus according to claim 2, wherein the collimating means comprise a spherical or parabolic mirror (16).
4. Appareil selon l'une quelconque des revendications 2 et 3, dans lequel les moyens de formation comprennent une fibre optique (12) prévue pour transporter le faisceau lumineux, ledit point étant situé en une face d'extrémité de cette fibre optique.4. Apparatus according to any one of claims 2 and 3, wherein the forming means comprise an optical fiber (12) provided for transporting the light beam, said point being located at an end face of this optical fiber.
5. Appareil selon l'une quelconque des revendications 1 à 4, dans lequel les moyens de détection (30, 32) sont placés dans le plan de shearing correspondant au coin de Fizeau (18, 20) .5. Apparatus according to any one of claims 1 to 4, wherein the detection means (30, 32) are placed in the shearing plane corresponding to the corner of Fizeau (18, 20).
6. Appareil selon l'une quelconque des revendications 1 à 5, comprenant deux coins de Fizeau (18, 20) destinés à être éclairés par l'onde lumineuse sphérique légèrement divergente, les moyens de détection (30, 32) • étant prévus pour détecter les franges d'interférence correspondant à ces deux coins de Fizeau. 6. Apparatus according to any one of claims 1 to 5, comprising two corners of Fizeau (18, 20) intended to be illuminated by the slightly divergent spherical light wave, the detection means (30, 32) • being provided for detect the interference fringes corresponding to these two corners of Fizeau.
7. Appareil selon l'une quelconque des revendications 1 à 6, dans lequel l'ensemble de mesure interferometrique comprend en outre des moyens (26, 28) de compensation du chromatisme susceptible d'être introduit par la première lame (49) correspondant à chaque coin de Fizeau (18, 20) .7. Apparatus according to any one of claims 1 to 6, in which the interferometric measuring assembly further comprises means (26, 28) for compensating for the chromaticism capable of being introduced by the first plate (49) corresponding to each corner of Fizeau (18, 20).
8. Appareil selon l'une quelconque des revendications 1 à 7, dans lequel les moyens de détection comprennent une barrette de photodiodes (30, 32) pour chaque coin de Fizeau (18, 20) .8. Apparatus according to any one of claims 1 to 7, wherein the detection means comprise a strip of photodiodes (30, 32) for each corner of Fizeau (18, 20).
9. Appareil selon l'une quelconque des revendications 1 à 8, dans lequel chaque coin de Fizeau (18, 20) est sous vide.9. Apparatus according to any one of claims 1 to 8, wherein each corner of Fizeau (18, 20) is vacuum.
10. Appareil selon la revendication 9, comprenant en outre une enceinte étanche (80) munie de moyens (82) pour y faire le vide et enfermant l'ensemble de mesure interferometrique.10. Apparatus according to claim 9, further comprising a sealed enclosure (80) provided with means (82) for evacuating it and enclosing the interferometric measurement assembly.
11. Appareil selon l'une quelconque des revendications 1 à 10, comprenant en outre un socle (34), qui est prévu pour supporter l'ensemble de mesure interferometrique, et des moyens (M) de stabilisation mécanique de ce socle.11. Apparatus according to any one of claims 1 to 10, further comprising a base (34), which is provided to support the interferometric measurement assembly, and means (M) for mechanical stabilization of this base.
12. Appareil selon l'une quelconque des revendications 1 à 11, comprenant en outre des moyens (86, 88, 90, 92) de maintien de l'ensemble de mesure interferometrique à une température constante. 12. Apparatus according to any one of claims 1 to 11, further comprising means (86, 88, 90, 92) for maintaining the interferometric measurement assembly at a constant temperature.
PCT/FR1999/001967 1998-08-12 1999-08-11 Apparatus for measuring a light beam wavelength WO2000009978A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99936719A EP1019688A1 (en) 1998-08-12 1999-08-11 Orrichtung z
JP2000565373A JP2002522782A (en) 1998-08-12 1999-08-11 Apparatus for measuring the wavelength of the emission beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9810329A FR2782383B1 (en) 1998-08-12 1998-08-12 APPARATUS FOR MEASURING THE WAVELENGTH OF A LIGHT BEAM
FR98/10329 1998-08-12

Publications (1)

Publication Number Publication Date
WO2000009978A1 true WO2000009978A1 (en) 2000-02-24

Family

ID=9529614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001967 WO2000009978A1 (en) 1998-08-12 1999-08-11 Apparatus for measuring a light beam wavelength

Country Status (4)

Country Link
EP (1) EP1019688A1 (en)
JP (1) JP2002522782A (en)
FR (1) FR2782383B1 (en)
WO (1) WO2000009978A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9003447B2 (en) 2008-12-31 2015-04-07 Google Technology Holdings LLC System and method for customizing communication in a social television framework
CN114485964A (en) * 2022-04-18 2022-05-13 苏州联讯仪器有限公司 Laser wavelength measuring system, laser wavelength calculating method and calculating system
CN114942081A (en) * 2022-07-25 2022-08-26 苏州联讯仪器有限公司 Optical wavelength measuring method and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008092A1 (en) 2002-07-15 2004-01-22 Campus Technologies Ag Device and method for optical spectroscopy, optical sensor and use of said device
EP2518178B1 (en) 2011-04-29 2014-01-01 Applied Materials, Inc. Tooling carrier for inline coating machine, method of operating thereof and process of coating a substrate
US10948356B1 (en) * 2020-06-22 2021-03-16 Quantum Valley Ideas Laboratories Measuring wavelength of light

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD290051A5 (en) * 1989-12-12 1991-05-16 Adw Zi F. Optik U. Spektroskopie,De METHOD AND ARRANGEMENT FOR INTERFEROMETRIC MEASUREMENT OF THE WAVE LENGTH OF LASER RADIATION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD290051A5 (en) * 1989-12-12 1991-05-16 Adw Zi F. Optik U. Spektroskopie,De METHOD AND ARRANGEMENT FOR INTERFEROMETRIC MEASUREMENT OF THE WAVE LENGTH OF LASER RADIATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARK B. MORRIS ET AL.: "Fizeau wavemeter for pulsed laser wavelength measurement", APPLIED OPTICS., vol. 23, no. 21, 1 November 1984 (1984-11-01), NEW YORK US, pages 3862 - 3868, XP002103226 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9003447B2 (en) 2008-12-31 2015-04-07 Google Technology Holdings LLC System and method for customizing communication in a social television framework
CN114485964A (en) * 2022-04-18 2022-05-13 苏州联讯仪器有限公司 Laser wavelength measuring system, laser wavelength calculating method and calculating system
CN114942081A (en) * 2022-07-25 2022-08-26 苏州联讯仪器有限公司 Optical wavelength measuring method and system

Also Published As

Publication number Publication date
JP2002522782A (en) 2002-07-23
FR2782383A1 (en) 2000-02-18
EP1019688A1 (en) 2000-07-19
FR2782383B1 (en) 2000-09-15

Similar Documents

Publication Publication Date Title
WO2017108400A1 (en) Device and method for measuring height in the presence of thin layers
FR2458830A1 (en) OPTICAL REPRESENTATION SYSTEM PROVIDED WITH AN OPTOELECTRONIC DETECTION SYSTEM FOR DETERMINING A GAP BETWEEN THE IMAGE PLAN OF THE REPRESENTATION SYSTEM AND A SECOND PLAN FOR REPRESENTATION
FR2520499A1 (en) DEFORMATION MEASURER
FR2648915A1 (en) DEVICE FOR MEASURING THE SPEED OF THE WIND AT AVERAGE ALTITUDE
EP0027763B1 (en) Process and apparatus for measuring distance by laser interferometry with two wavelengths
WO2015071116A1 (en) Three-dimensional focusing device and method for a microscope
EP0020238B1 (en) Method and device for the measurement of the thermal transfers of a sample, and application to the measurement of the absorption coefficient
FR2970090A1 (en) DEVICE FOR FORMING AN INTERFERENCE NETWORK ON A SAMPLE
EP3527967B1 (en) Acousto-optic detector with opto-mechanical coupling
WO2000009978A1 (en) Apparatus for measuring a light beam wavelength
EP0942261B1 (en) Procedure and device to measure the bottom of craters on a surface of a sample
EP3650836B1 (en) Measurement apparatus based on optical detection of the motion of an opto-mechanical cavity
EP0971203A1 (en) Method and apparatus for measuring the thickness of a transparent material
EP0601081A1 (en) Microsensor including a temperature compensated vibratory bar.
FR2737779A1 (en) HIGH SPATIAL ELLIPSOMETER DEVICE
FR2848664A1 (en) Position and reflectivity meter for use in photometry and metrology has a light source with at least two different wavelengths that are processed separately by a measurement system
EP2828635B1 (en) System for measuring a zone of separation in a substrate
FR2716722A1 (en) Interferometric system for detecting and locating defective reflective structures guiding light.
EP0077259B1 (en) Process and device to measure the effective diameter of the guide mode in a monomode optical fibre
FR2620224A1 (en) DEVICE FOR THE SPECTRAL CHARACTERIZATION OF A LASER EMISSION
FR2765964A1 (en) Optical distance measuring system using precision interferometers
FR3132947A1 (en) Systems and methods for analyzing the surface quality of a parallel face blade
EP3004821A1 (en) Interferometric device and corresponding spectrometer
FR2772910A1 (en) Hard disc surface flatness measuring apparatus
CH517288A (en) Precision optical measuring device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999936719

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09529463

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999936719

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999936719

Country of ref document: EP