WO2000007710A2 - Procedimiento para la preparacion de silicatos mesoporosos conteniendo ti y compuestos organicos directamente unidos a atomos de la red, y su uso como catalizador - Google Patents

Procedimiento para la preparacion de silicatos mesoporosos conteniendo ti y compuestos organicos directamente unidos a atomos de la red, y su uso como catalizador Download PDF

Info

Publication number
WO2000007710A2
WO2000007710A2 PCT/ES1999/000249 ES9900249W WO0007710A2 WO 2000007710 A2 WO2000007710 A2 WO 2000007710A2 ES 9900249 W ES9900249 W ES 9900249W WO 0007710 A2 WO0007710 A2 WO 0007710A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
groups
aryl
organic
group
Prior art date
Application number
PCT/ES1999/000249
Other languages
English (en)
French (fr)
Other versions
WO2000007710A3 (es
Inventor
María Teresa NAVARRO VILLALBA
Avelino Corma Canos
Jose Luis Jorda Moret
Fernando Rey Garcia
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2000007710A2 publication Critical patent/WO2000007710A2/es
Publication of WO2000007710A3 publication Critical patent/WO2000007710A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride

Definitions

  • This invention describes a method for the preparation of active and selective catalysts in selective oxidation reactions and in acid catalyzed reactions using organosilicon compounds in their synthesis. This method allows obtaining in a single step micro and mesoporous materials of high specific surface, with narrow pore distributions and a marked hydrophobic character. These properties give these materials high activity and selectivity.
  • an organosilicon or organomethyl agent (Ge, Sn, Ti or Zr) is incorporated in the synthesis gel which also contains another major agent that can be alkoxysilane, alkoxygerman or any hydrolysable compound of Si, Ti or Ge, an organic or inorganic hydroxide or an amine, a surfactant that may be cationic, anionic or neutral, a minor hydrolyzable compound of Ti, Al, B, Fe, Cr, V, etc. which will lead to the active centers of the catalyst and water.
  • an organosilicon or organomethyl agent (Ge, Sn, Ti or Zr)
  • another major agent that can be alkoxysilane, alkoxygerman or any hydrolysable compound of Si, Ti or Ge, an organic or inorganic hydroxide or an amine, a surfactant that may be cationic, anionic or neutral, a minor hydrolyzable compound of Ti, Al, B, Fe, Cr, V, etc. which will lead to the active centers of the catalyst
  • micro or mesoporous materials are obtained that contain the occluded surfactant inside its pores and in which part of the atoms that constitute its structure are linked to organic groups through M-R bonds, where M It is an element between Si, Ti, Zr, Ge or Sn and R is an organic or hydrogen group.
  • M It is an element between Si, Ti, Zr, Ge or Sn and R is an organic or hydrogen group.
  • the present invention relates to the preparation by a single step of micro and mesoporous compositing materials:
  • Y represents one or more elements of valence 4 preferably Ti, Si, Zr, Ge or Sn or combinations thereof.
  • R represents an organic group that is introduced into the synthesis gel as RjYL4-j where Y may be Si, Ge, Zr, Sn or Ti and R an organic group, preferably hydrogen, alkyl chains between 1 and 22 carbons.
  • Aromatic and polyaromatic R may also have functional groups or not, such as thiols, halides, amines, acids, esters, sulfonic, etc., and j can be varied between 1 and 3
  • L is a group that can be hydrolyzed in the synthesis medium, with preference being preferred halides, ethoxide, methoxide, and alkoxides in general or Si-NH-Si and p groups may be varied between 0.0001 and 0.75.
  • X represents one or more minor elements in the composition (0.0000 ⁇ m ⁇ 0.25) of valence 3, preferably Al, Ga, B, Fe or Cr.
  • Y represents one or several minor elements in the composition (0.000 ⁇ and ⁇ 0.25) of Valencia 4, preferably Ti, V, Zr, Sn or Ge.
  • T represents one or more minor elements in the composition (0.000 ⁇ q ⁇ 0.25) of valence 2, preferably Zn, Ni, Cu, Co, Be, Sn or Mg.
  • S can be a cationic, anionic or neutral surfactant.
  • Cationic surfactants respond to the formula R1R2R3R4Q + where Q is nitrogen or phosphorus and where at least one of the substituents Rl, R2, R3 or R4 is an aryl or alkyl group containing more than 6 carbon atoms and less than 36, and each Of the remaining groups R1, R2, R3 or R4 is a hydrogen or an alkyl or aryl group with less than five carbons.
  • cationic surfactants can be incorporated into the gel composition so-called gemstone surfactants, R1R2R3QR4QR1R2R3 or RlR2R3Q (R4R5QR6QR4R5) QnRlR2R3 where Q is a nitrogen or phosphorus and at least one of the substituents R1 or R6 is an alkyl group aryl with more than six carbon atoms and less than 36, and each of the remaining R1-R6 groups are hydrogens or alkyl or aryl groups with less than five carbon atoms or mixtures thereof. In these cases two of the groups Rl, R2, R3 or R4 can be interconnected giving place to cycled compounds.
  • Cationic surfactants are introduced into the synthesis gel composition in the form of hydroxide, halide, nitrate, sulfate, carbonate or silicate or mixtures thereof.
  • Non-limiting examples of them are cetyltrimethylammonium, dodecyltrimethylammonium, cetylpyridinium, cetyltrimethylphosphonium, etc.
  • S may also refer to a neutral surfactant, in which case they respond to the formula R1R2R3Q where Q is nitrogen or phosphorus and where at least one of the substituents Rl, R2, or R3 is an aryl or alkyl group containing more than 6 carbon atoms and less than 36., and each of the remaining Rl, R2 or R3 groups is a hydrogen or an alkyl or aryl group with less than five carbons, non-limiting examples being dodecylamine, cetylamine and cetylpyridine.
  • nR-EO which consist of an alkyl polyethylene oxides, alkyl aryl polyethylene oxides and alkyl polypropylene and alkylene ethylene copolymers may also act as neutral surfactants, commercial surfactants termed Tergitol 15-S being non-limiting examples. 9, Triton X-114,
  • esters derived from fatty acids obtained by reaction with short chain alcohols, sugars, amino acids, amines and polymers or copolymers derived from polypropylene, polyethylene, polyacrylamide or polyvinyl alcohol may also be included in the formulation, non-limiting examples are lisolecithin, lecithin, dodecyl ether of pentaoxyethylene, phosphatyldilauryldiethanolamine, digalactose diglyceride and monogalactose diglyceride.
  • the surfactant can also be an anionic surfactant that respond to the formula RQ- where R is an aryl or alkyl group containing more than 6 carbon atoms and less than 36, and Q is a sulfate, carboxylic, phosphate or sulfate group, examples being non-limiting dodecyl sulfate, stearic acid, Aerosol OT and phospholipids such as phosphatyl choline and diethanolamine phosphatyl.
  • RQ- is an aryl or alkyl group containing more than 6 carbon atoms and less than 36
  • Q is a sulfate, carboxylic, phosphate or sulfate group, examples being non-limiting dodecyl sulfate, stearic acid, Aerosol OT and phospholipids such as phosphatyl choline and diethanolamine phosphatyl.
  • the preparation is carried out by preparing a composition gel
  • YO2 p RhYO2-h / 2: m X2O3: and ZO2: q TO: n S: n TAAOH: j HL: z H2O
  • R represents one or more elements of valence 4, such as Si, Ge, Sn or Ti or combinations thereof
  • R represents an organic group, hydrogen being preferred, alkyl chains between 1 and 22 carbons or arnics that may or may not have groups functional such as thiols, esters, halides, acids, amines, sulfonic groups.
  • the sources of YO2 and RhYO2-h / 2 may be the oxides or oxyhydroxides of element Y, as well as compounds that respond to the formula RjYL4-j, where L is a hydrolyzable group in the synthesis medium, such as halogens, amines or alkoxides of alkyl or aryl groups.
  • L is a hydrolyzable group in the synthesis medium, such as halogens, amines or alkoxides of alkyl or aryl groups.
  • X represents one or more minor elements in the composition (0.0000 ⁇ m ⁇ 0.25) of valence 3, preferably Al, Ga, B, Fe or Cr.
  • Y represents one or several minor elements in the composition (0.000 ⁇ and ⁇ 0.25) of valence 4, preferably Ti, V, Sn or Ge.
  • T represents one or several minor elements in the composition (0.000 ⁇ q ⁇ 0.25) of valence 2, preferably Zn, Be, Sn or Mg.
  • S can be a cationic, anionic or neutral surfactant.
  • Cationic surfactants respond to the formula R1R2R3R4Q where Q is nitrogen or phosphorus and where at least one of the substituents Rl, R2, R3 or R4 is an aryl or alkyl group containing more than 6 carbon atoms and less than 36., and each one of the remaining Rl, R2, R3 or R4 groups is a hydrogen or an alkyl or aryl group with less than five carbons.
  • gemstone surfactants R1R2R3QR4QR1R2R3 or
  • RlR2R3Q (R4R5QR6QR4R5) nQRlR2R3 where Q is a nitrogen or phosphorus and at least one of the substituents R1-R6 is an alkyl or aryl group with more than six carbon atoms and less than 36, and each of the remaining groups R1-R6 they are hydrogens or alkyl or aryl groups with memos of five carbon atoms or mixtures thereof. In these cases two of the groups R1, R2, R3 or R4 may be interconnected giving rise to cyclized compounds.
  • Cationic surfactants are introduced into the synthesis gel composition in the form of hydroxide, halide, nitrate, sulfate, carbonate or silicate or mixtures thereof. Non-limiting examples of them are cetyltrimethylammonium, dodecyltrimethylammonium, cetylpyridinium, cetyltrimethylphosphonium, etc.
  • S may also refer to a neutral surfactant, in which case they respond to the formula R1R2R3Q where Q is nitrogen or phosphorus and where at least one of the substituents Rl, R2, or R3 is an aryl or alkyl group containing more than 6 carbon atoms and less than 36., and each of the remaining Rl, R2 or R3 groups is a hydrogen or an alkyl or aryl group with less than five carbons, non-limiting examples being dodecylamine, cetylamine and cetylpyridine.
  • Compound neutral surfactants that respond to the nR-EO formula consisting of an alkyl polyethylene oxides, alkyl aryl polyethylene oxides and alkyl polypropylene and alkylene ethylene copolymers may also act as non-limiting examples of commercial surfactants termed Tergitol 15 S 9, Triton X-114, Igepal RC-760, Pluronic 64 L, Tetronic and Sorbitan.
  • Esters derived from fatty acids obtained by reaction with short chain alcohols, sugars, amino acids, amines and polymers or copolymers derived from polypropylene, polyethylene, polyacrylamide or polyvinyl alcohol may also be included in the formulation, non-limiting examples being lisolecithin, lecithin, dodecyl ether of pentaoxyethylene, dilauryldiethanolamine phosphatyl, digalactose diglyceride and monogalactose diglyceride.
  • the surfactant can also be an anionic surfactant that respond to the formula RQ- where R is an aryl or alkyl group containing more than 6 carbon atoms and less than 36, and Q is a sulfate, carboxylic, phosphate or sulfate group, examples being non-limiting dodecyl sulfate, stearic acid, Aerosol OT and phospholipids such as phosphatyl choline and diethanolamine phosphatyl.
  • RQ- is an aryl or alkyl group containing more than 6 carbon atoms and less than 36
  • Q is a sulfate, carboxylic, phosphate or sulfate group, examples being non-limiting dodecyl sulfate, stearic acid, Aerosol OT and phospholipids such as phosphatyl choline and diethanolamine phosphatyl.
  • TAAOH refers to a tetraalkylammonium, tetraarylammonium or arylakylammonium hydroxide, ammonium, alkali metal, alkaline earth metal or mixtures thereof, m can be varied between 0 and 10.
  • synthesis of these materials is carried out by preparing an aqueous, alcoholic solution, or H2O / alcohol mixtures with the source of an element Y of Valencia 4 and selected from Si, Ge, Zr, Sn in the form of oxide, tetraalkoxide, tetrachloride or tetrahalide, these examples being non-limiting, in combination with the compound RhYL4-h.
  • This solution is added with stirring and temperature between 0 ° and 90 ° C on an aqueous solution, alcoholic, or alcohol / H2O containing a source of hydroxide ions TAAOH such as tetramethylammonium or other tetralaquilamonio, NH4OH or hydroxides of alkali metals and / or alkaline earth or mixtures thereof, and a source of other elements of Valencia 2, 3, or 4 (X, Z or T) among which are preferred: Ti, Al, Ga, B. Fe, Cr, Sn, Zn . Alkoxides, oxides, halides or any of their salts can be used as the source of these elements.
  • the surfactant has also been introduced.
  • the mixture of the two solutions is stirred until complete homogeneity. In some cases, the formation of a gel is observed during the mixing process of the two solutions. Stirring is continued for a period of time between 0.1 and
  • the resulting mixture is crystallized in autoclaves at a temperature between 20 ° and 200 ° C, for a time between 10 minutes and 60 hours.
  • the final solids are separated from the mother liquors, dried and subjected to a treatment with a mixture of a mineral or organic acid in a solvent that can be H2O, alcohol, hydrocarbons or mixtures thereof.
  • a solvent that can be H2O, alcohol, hydrocarbons or mixtures thereof.
  • Preferred as acids are H2SO4, HNO3, HCl, HC1O4, mono, di or trichloro or trifiuoroacetic acid, these examples being non-limiting acids.
  • This treatment is to extract the surfactant and quaternary ammonium compounds, without damaging the structure or the organic group directly attached to the Y atoms that make up the walls of the material.
  • This treatment is carried out at temperatures between 5 ° and 250 ° C in one or more extraction stages, even though two or three stages are usually sufficient to extract the desired organic components.
  • the duration of treatment at each stage is between 10 minutes and 40 hours depending on the acid used, the temperature and the liquid / solid ratio.
  • the preferred liquid / solid ratios are in the range 5 and 100 gg-1.
  • the resulting materials can be amorphous or ordered, considering only long-distance order.
  • the nuclear magnetic resonance spectrum of 29Si has two resonance bands at -55 and -65 ppm that are attributed to the presence of Si-C bonds.
  • Ti is a minor element in the composition of the new mesoporous material
  • the Uv-vis spectrum shows an intense absorption band centered at 220 nm, confirming the presence of Ti (IV) in tetrahedral environments.
  • These materials are active and selective catalysts for epoxy oxidation reactions of definas.
  • Al is found as a minor element in the composition of the new mesoporous material, the nuclear magnetic resonance spectrum has a band around 54 ppm characteristic of Al in tetrahedral environments.
  • These materials are characterized by adsorbing bases such as ammonia, pyridine, etc. in the gas phase which indicates the presence of acid centers. It can be used as catalysts in acid catalyzed processes.
  • the resulting material may be subjected to a subsequent silylation stage intended to decrease the number of Y-OH and M-OH groups.
  • This silylation is carried out using R3R'Y, R2R'2Y or RR'3Y where R is H or an alkyl or aryl group that may or may not be functionalized with amines, thiols, sulfonic or acidic groups.
  • R ' is an alkoxide or halide group.
  • M is a metal among which Si, Ge, Sn or Ti is preferred. Being the silylation procedures well known in the art.
  • These materials can be used as adsorbents, and in processes of separation of organic compounds, and as catalysts.
  • catalysts its use in acid catalysis is claimed when one or more trivalent or divalent elements are introduced as an isomorphic substitution of tetravalent elements.
  • materials containing Si and / or Ge and Fe, Al, B, Ga, Sn and / or Zn produce catalysts suitable for acid catalysis processes.
  • the presence of organic groups directly linked to the elements that make up the network allow to control the hydrophilic-hydrophobic properties of the material and therefore its adsorption and catalytic properties.
  • the resulting acid catalysts are active in carbon-carbon bond formation processes such as dimerizations, oligomerizations, alkylations, condensations, and in general reactions of the Diels-Alder, and Friedel-Crafts type. It also allows its use in double bond isomerization, chain and rearrangement reactions of the Beckman pinacol-pinacolone type, and in amine formation reactions from NH3 and alcohols. Likewise, these materials have a good catalytic activity in the synthesis of alkyl glucosides from aliphatic glycides and alcohols.
  • the gel formed was treated in an autoclave at 135 ° C for 18 hours. After this time it was filtered, washed with H2O until neutral pH, and dried at 60 ° C for 12 hours.
  • the resulting product (9.0 g) was treated in a solution containing 2.3 g of H2SO4 (98%>) in 450g of ethanol, at 70 ° C for one hour.
  • the solid is filtered and treated again in a second step, in a solution containing 5.90 g of 36% HCl in 201 g of heptane and 186 g of ethanol.
  • the resulting material has an area of 1023 m2.g-1 and the X-ray diffractogram is given in Figure 1.
  • the molar composition of the material is: (CH3) 0.25 SiO1.875: 0.009 TYPE2
  • a sample is prepared containing Si and Al in the network, and containing methyl groups attached to Si.
  • 14.45 g of Cetyltrimethylammonium bromide (Br CTMA) are dissolved in 95.9 g of H2O.
  • 24.8 g of 25% tetramethylammonium hydroxide (TMAOH) in H2O, and 0.58g of Al isopropoxide are added.
  • the mixture is stirred until complete dissolution of Al (OC3H7) 3, adding slowly and under stirring, a mixture containing 30.6 g of Si (OCH3) 4 and 11.86 g of CH3 (C2OH5) 3 Si. Stirring was continued until evaporation of the alcohols.
  • the gel formed was treated in an autoclave at 135 ° C for 18 hours. After this time it was filtered, washed with H2O until neutral pH, and dried at 60 ° C for 12 hours. The resulting product (9.0 g) was treated in a solution containing 2.3 g of H2SO4
  • the sample obtained in the example is sililized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

La presente invención describe un método para la obtención de silicatos micro y mesoporosos conteniendo elementos de valencia 2, 3 y 4, tales como Ge, Ti, Al, B, Ge, Ga, Cr, Fe, Zn, V, y combinaciones de ellos, y grupos orgánicos directamente unidos a átomos de la red. Estos catalizadores son altamente activos y selectivos para reacciones de oxidación selectiva de compuestos orgánicos con peróxidos orgánicos o inorgánicos. Asimismo, pueden ser empleados como catalizadores ácidos en el caso en que contengan elementos trivalentes en su composición.

Description

TITULO
Procedimiento para la preparación de silicatos mesoporosos conteniendo Ti y compuestos orgánicos directamente unidos a átomos de la red, y su uso como catalizador.
CAMPO DE LA TÉCNICA
Materiales catalíticos
ANTECEDENTES
Recientemente se ha puesto de manifiesto que silicotitanatos con estructuras MFI, MEL y BEA son catalizadores activos en reacciones de epoxidación selectiva de olefinas, así como en otras reacciones de oxidaciones de compuestos orgánicos tales como aléanos, sulfuros, fenol, etc. Sin embargo, estos materiales presentan serias limitaciones difusionales cuando se intentan procesar reactivos voluminosos. Esta limitación ha sido subsanada mediante el empleo de sólidos mesoporosos con estructuras tipo MCM-41 y MCM-48 conteniendo Ti en su composición, ya que estos materiales pueden ser preparados con sistemas de canales con diámetros comprendidos entre 15 a 300 Á. Sin embargo, estos catalizadores mesoporosos presentan una menor actividad y selectividad intrínseca en reacciones de epoxidación de olefinas que sus análogos zeolíticos debido probablemente a la distintas propiedades de adsorción y al diferente entorno de coordinación de los centros activos de Ti (IV). Esta baja actividad y selectividad es uno de los mayores problemas para la potencial aplicación de este tipo de materiales en procesos de epoxidación, donde se requiere una selectividad cercana al 100% trabajando a muy alta conversión de reactantes.
Por otro lado el empleo de alcoxiorganosilanos como agentes de silanización en tratamientos postsíntesis ha sido descrito como un procedimiento altamente efectivo para modificar la propiedades de adsorción de los materiales. Por lo que la obtención de materiales organosilíceos mesoporosos en un único paso conteniendo algún elemento que pudiera aportar actividad catalítica a los materiales sería indudablemente un método ventajoso para la preparación de catalizadores activos y selectivos para la oxidación de olefinas. BREVE DESCRIPCIÓN DE LA INVENCIÓN
En esta invención se describe un método para la preparación de catalizadores activos y selectivos en reacciones de oxidación selectivas y en reacciones catalizadas por ácidos empleando compuestos organosilícicos en su síntesis. Este método permite la obtención en un solo paso de materiales micro y mesoporosos de alta superficie específica, con distribuciones de poro estrechas y un marcado carácter hidrófobo. Estas propiedades confieren a dichos materiales una elevada actividad y selectividad.
Más específicamente, en esta invención se describe un método de preparación en el que se incorpora un agente organosilícico u organometílico (Ge, Sn, Ti ó Zr) en el gel de síntesis que contiene además otro agente mayoritario que puede ser alcoxisilano, alcoxigermano o cualquier compuesto hidrolizable de Si, Ti o Ge, un hidróxido orgánico o inorgánico o una amina, un surfactante que podrá ser catiónico, aniónico o neutro, una compuesto minoritario hidrolizable de Ti, Al, B, Fe, Cr, V, etc. que dará lugar a los centros activos del catalizador y agua. Tras un proceso de cristalización se obtienen materiales micro o mesoporosos que contienen el surfactante ocluido en el interior de sus poros y en el que parte de los átomos que constituyen su estructura se encuentran ligados a grupos orgánicos a través de enlaces M- R, donde M es un elemento entre Si, Ti, Zr, Ge o Sn y R es un grupo orgánico o hidrógeno. Cuando el surfactante ocluido en los poros del material es extraído mediante un proceso postsíntesis que preserva los enlaces M-C o M-H presentes en el sólido original, este material presenta propiedades hidrófobas siendo altamente activo y selectivo en reacciones de oxidación o de catálisis acida. Más específicamente, para el caso de reacciones de epoxidación de olefinas lineales y cíclicas se obtiene conversiones cercanas al 100 % manteniendo un selectividad al epóxido superior al 95 %. Eventualmente, la velocidad de reacción y la selectividad pueden ser mejoradas por medio de un segundo tratamiento postsíntesis de silanización tal y como ha sido descrito ya previamente en la literatura. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a la preparación mediante un solo paso de materiales micro y mesoporosos de composición:
YRpO2-p/2 : mX2O3 : yZO2 : qTO : nS
En donde Y representa uno o varios elementos de valencia 4 preferentemente Ti, Si, Zr, Ge o Sn o combinaciones de ellos. R representa un grupo orgánico que se introduce en el gel de síntesis como RjYL4-j donde Y puede ser Si, Ge, Zr, Sn o Ti y R un grupo orgánico, prefiriéndose hidrógeno, cadenas alquílicas entre 1 y 22 carbonos., aromáticos y poliarómaticos. R además podrá tener grupos funcionales o no, tales como por ejemplo tioles, haluros, aminas, ácidos, esteres, sulfónicos, etc, y j puede variarse entre 1 y 3, L es un grupo que puede ser hidrolizado en el medio de síntesis, prefiriéndose haluros, etóxido, metóxido, y alcoxidos en general o grupos Si-NH-Si y p podrá variarse entre 0.0001 y 0.75. X representa uno o varios elementos minoritarios en la composición (0.0000 < m < 0.25) de valencia 3, preferentemente Al, Ga, B, Fe o Cr. Y representa uno o varios elementos minoritarios en la composición (0.000 < y < 0.25) de valencia 4, preferentemente Ti, V, Zr, Sn o Ge. T representa uno o varios elementos minoritarios en la composición (0.000 < q < 0.25) de valencia 2, preferentemente Zn, Ni, Cu, Co, Be, Sn o Mg. S puede ser un surfactante catiónico, aniónico o neutro. Los surfactantes catiónicos responden a la formula R1R2R3R4Q+ donde Q es nitrógeno o fósforo y donde al menos uno de los sustituyentes Rl, R2, R3 o R4 es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36, y cada uno de los restantes grupos Rl, R2, R3 o R4 es un hidrógeno o un grupo alquilo o arilo con menos de cinco carbonos. También se incluyen dentro de los surfactantes catiónicos que pueden incorporarse a la composición del gel los llamados surfactantes gemínales, R1R2R3QR4QR1R2R3 o RlR2R3Q(R4R5QR6QR4R5)QnRlR2R3 donde Q es un nitrógeno o fósforo y al menos uno de los sustituyentes R1-R6 es una grupo alquilo o arilo con más de seis átomos de carbono y menos de 36, y cada uno de los restantes grupos R1-R6 son hidrógenos o grupos alquilo o arilo con memos de cinco átomos de carbono o mezclas de ellos. En estos casos dos de los grupos Rl, R2, R3 o R4 pueden estar interconectados dando lugar a compuestos ciclados. Los surfactantes catiónicos se introducen en la composición del gel de síntesis en forma de hidróxido, haluro, nitrato, sulfato, carbonato o silicato o mezclas de ellos. Ejemplos no limitantes de ellos son el cetiltrimetilamonio, el dodeciltrimetilamonio, cetylpiridinio, cetiltrimetilfosfonio, etc. S podrá referirse también a un surfactante neutro, en cuyo caso responden a la fórmula R1R2R3Q donde Q es nitrógeno o fósforo y donde al menos uno de los sustituyentes Rl, R2, o R3 es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36., y cada uno de los restantes grupos Rl, R2 o R3 es un hidrógeno o un grupo alquilo o arilo con menos de cinco carbonos, siendo ejemplos no limitantes dodecilamina, cetilamina y cetilpiridina. También podrán actuar como surfactantes neutros compuestos que responden a la fórmula nR-EO que consisten en un óxidos de alquilpolietileno, óxidos de alquil-aril- polietileno y copolímeros de alquilpolipropileno y alquiletileno, siendo ejemplos no limitantes los surfactantes comerciales denominados Tergitol 15-S-9, Tritón X-114,
Igepal RC-760, Pluronic 64 L, Tetronic y Sorbitan. También podrán ser incluidos en la formulación esteres derivados de ácidos grasos obtenido por reacción con alcoholes de cadena corta, azucares, aminoácidos, aminas y polímeros o copolímeros derivados del polipropileno, polietileno, poliacrilamida o polivinilalcohol, siendo ejemplos no limitantes lisolecitina, lecitina, dodecil éter de pentaoxietileno, fosfatildilaurildietanolamina, diglicerido de digalactosa y diglicerido de monogalactosa. El surfactante también puede ser un surfactante aniónico que responden a la fórmula RQ- donde R es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36, y Q es un grupo sulfato, carboxílico, fosfato o sulfato, siendo ejemplos no limitantes el dodecilsulfato, acido esteárico, Aerosol OT y fosfolipidos tales como fosfatil-colina y fosfatilo de dietanolamina.
La preparación se lleva a cabo preparando un gel de composición
YO2 : p RhYO2-h/2 : m X2O3 : y ZO2 : q TO : n S : n TAAOH : j HL : z H2O
En donde Y representa uno o varios elementos de valencia 4, tales como Si, Ge, Sn o Ti o combinaciones de ellos, R representa un grupo orgánico, prefiriéndose hidrógeno, cadenas alquílicas entre 1 y 22 carbonos o árnicas que pueden o no poseer grupos funcionales tales como por ejemplo tioles, esteres, haluros, ácidos, aminas, grupos sulfónicos. R forma enlaces con Y poco hidrolizables Y-C. h puede variarse entre 1 y 3 y p puede variarse entre 0.0001 y 0.75. Las fuentes empleadas de YO2 y RhYO2-h/2 podrán ser los óxidos u oxihidróxidos del elemento Y, así como compuestos que responden a la formula RjYL4-j, donde L es un grupo hidrolizable en el medio de síntesis, tales como halógenos, aminas o alcóxidos de grupos alquilos o arilos. La hidrólisis de estos compuestos da lugar a la formación de HL que se incorpora al medio de síntesis, j puede variarse entre 0 y 3. X representa uno o varios elementos minoritarios en la composición (0.0000 < m < 0.25) de valencia 3, preferentemente Al, Ga, B, Fe o Cr. Y representa uno o varios elementos minoritarios en la composición (0.000 < y < 0.25) de valencia 4, preferentemente Ti, V, Sn o Ge. T representa uno o varios elementos minoritarios en la composición (0.000 < q < 0.25) de valencia 2, preferentemente Zn, Be, Sn o Mg.
S puede ser un surfactante catiónico, aniónico o neutro. Los surfactantes catiónicos responden a la formula R1R2R3R4Q donde Q es nitrógeno o fósforo y donde al menos uno de los sustituyentes Rl, R2, R3 o R4 es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36., y cada uno de los restantes grupos Rl, R2, R3 o R4 es un hidrógeno o un grupo alquilo o arilo con menos de cinco carbonos. También se incluyen dentro de los surfactantes catiónicos que pueden incorporarse a la composición del gel los llamados surfactantes gemínales, R1R2R3QR4QR1R2R3 o
RlR2R3Q(R4R5QR6QR4R5)nQRlR2R3 donde Q es un nitrógeno o fósforo y al menos uno de los sustituyentes R1-R6 es una grupo alquilo o arilo con más de seis átomos de carbono y menos de 36, y cada uno de los restantes grupos R1-R6 son hidrógenos o grupos alquilo o arilo con memos de cinco átomos de carbono o mezclas de ellos. En estos casos dos de los grupos Rl, R2, R3 o R4 pueden estar interconectados dando lugar a compuestos ciclados. Los surfactantes catiónicos se introducen en la composición del gel de síntesis en forma de hidróxido, haluro, nitrato, sulfato, carbonato o silicato o mezclas de ellos. Ejemplos no limitantes de ellos son el cetiltrimetilamonio, el dodeciltrimetilamonio, cetilpiridinio, cetiltrimetilfosfonio, etc.
S podrá referirse también a un surfactante neutro, en cuyo caso responden a la fórmula R1R2R3Q donde Q es nitrógeno o fósforo y donde al menos uno de los sustituyentes Rl, R2, o R3 es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36., y cada uno de los restantes grupos Rl, R2 o R3 es un hidrógeno o un grupo alquilo o arilo con menos de cinco carbonos, siendo ejemplos no limitantes dodecilamina, cetilamina y cetilpiridina. También podrán actuar como surfactantes neutros compuestos que responden a la fórmula nR-EO que consiste en un óxidos de alquilpolietieno, óxidos de alquil-aril- polietileno y copolímeros de alquilpolipropileno y alquiletileno, sinedo ejemplos no limitantes los surfactantes comerciales denominados Tergitol 15 S 9, Tritón X-114, Igepal RC-760, Pluronic 64 L, Tetronic y Sorbitan. También podrán ser incluidos en la formulación esteres derivados de ácidos grasos obtenido por reacción con alcoholes de cadena corta, azucares, aminoácidos, aminas y polímeros o copolímeros derivados del polipropileno, polietileno, poliacrilamida o polivinilalcohol, siendo ejemplos no limitantes lisolecitina, lecitina, dodecil éter de pentaoxietileno, fosfatilo de dilaurildietanolamina, diglicerido de digalactosa y diglicerido de monogalactosa. El surfactante también puede ser un surfactante aniónico que responden a la fórmula RQ- donde R es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36, y Q es un grupo sulfato, carboxílico, fosfato o sulfato, siendo ejemplos no limitantes el dodecilsulfato, acido esteárico, Aerosol OT y fosfolipidos tales como fosfatil-colina y fosfatilo de dietanolamina.
TAAOH se refiere a un hidróxido de tetraalquilamonio, tetraarilamonio o arilaquilamonio, amonio, metal alcalino, alcalinoterreos o mezclas de ellos, m puede variarse entre 0 y 10.
La síntesis de estos materiales se lleva a cabo preparando una solución acuosa, alcohólica, o mezclas H2O/alcohol con la fuente de un elemento Y de valencia 4 y seleccionado entre Si, Ge, Zr, Sn en forma de oxido, tetraalcóxido, tetracloruro ó tetrahaluro, siendo estos ejemplos no limitantes, en combinación con el compuesto RhYL4-h. Esta solución se adiciona con agitación y a temperatura entre 0o y 90°C sobre una solución acuosa, alcohólica, o alcohol/H2O que contiene una fuente de iones hidróxido TAAOH, como por ejemplo tetrametilamonio u otro tetralaquilamonio, NH4OH o hidróxidos de metales alcalinos y/o alcalinoterreos o mezclas de ellos, y una fuente de otros elementos de valencia 2, 3, ó 4 ( X, Z o T) entre los que se prefieren: Ti, Al, Ga, B. Fe, Cr, Sn, Zn. Como fuente de estos elementos se pueden emplear alcóxidos, óxidos, haluros o cualquiera de sus sales. En esta solución se ha introducido también el surfactante. La mezcla de las dos soluciones se agita hasta completa homogeneidad. En algunos casos se observa la formación de un gel durante el proceso de mezclado de las dos soluciones. La agitación se continúa durante un periodo de tiempo comprendido entre 0.1 y
20 horas con el fin de evaporar todo o parte del alcohol o alcoholes formados en el proceso de hidrólisis de los alcóxidos.
La mezcla resultante se cristaliza en autoclaves a una temperatura comprendida entre 20° y 200°C, durante un tiempo comprendido entre 10 minutos y 60 horas. Los sólidos finales se separan de las aguas madres, se secan y se someten a un tratamiento con una mezcla de un ácido mineral u orgánico en un disolvente que puede ser H2O, alcohol, hidrocarburos o mezclas de ellos. Como ácidos se prefieren H2SO4, HNO3, HCl, HC1O4, mono, di o tricloro ó trifiuoroacético, siendo estos ejemplos de ácidos no limitantes..
Este tratamiento tiene por objeto extraer el surfactante y los compuestos de amonio cuaternario, sin dañar la estructura ni el grupo orgánico directamente unido a los átomos Y que conforman las paredes del material. Este tratamiento se lleva a cabo a temperaturas entre 5° y 250°C en una o más etapas de extracción, aun cuando dos o tres etapas suelen ser suficientes para extraer los componentes orgánicos deseados. La duración del tratamiento en cada etapa está comprendida entre 10 minutos y 40 horas dependiendo del ácido utilizado, la temperatura y la relación líquido/sólido. Las relaciones líquido/sólido preferidas están en el rango 5 y 100 g.g-1. Los materiales resultantes pueden ser amorfos u ordenados, considerando sólo orden a larga distancia. Se caracterizan por poseer una elevada superficie específica superior a 100 m2g-l y un volumen de poro superior 0.3 cm3g-l con una distribución de poro estrecha que puede estar centrada entre 10 y 300 Á. En el caso de la preparación de una muestra que contiene Si como elemento mayoritario el espectro de resonancia magnética nuclear de 29Si presenta dos bandas de resonancia a -55 y -65 ppm que se atribuyen a la presencia de enlaces Si-C. Cuando además de Si, el Ti se encuentra como elemento minoritario en la composición del nuevo material mesoporoso, el espectro Uv-vis muestra una banda de absorción intensa centrada a 220 nm, lo que confirma la presencia de Ti(IV) en entornos tetraédricos. Estos materiales son catalizadores activos y selectivos para reacciones de epoxidación de definas. Como por ejemplo epoxidación de ciclohexeno, 1-hexeno, vinilciclohexeno y (-pineno. Cuando además de Si, se encuentra Al como elemento minoritario en la composición del nuevo material mesoporoso, el espectro de resonancia magnética nuclear presenta una banda alrededor de 54 ppm característica de Al en entornos tetraédricos. Estos materiales se caracterizan por adsorber bases tales como amoníaco, piridina, etc en fase gas lo que indica la presencia de centros ácidos. Pudiendo ser empleados como catalizadores en procesos catalizados por ácidos.
En caso de que se desee, el material resultante puede ser sometido a una etapa posterior de sililación destinada a disminuir el número de grupos Y-OH y M-OH. Esta sililación se lleva a cabo utilizando R3R'Y, R2R'2Y o RR'3Y en donde R es H o un grupo alquilo o arilo que puede estar o no funcionalizado con aminas, tioles, grupos sulfónicos o ácidos. R' es un grupo alcóxido o haluro. M es un metal entre los que se prefiere Si, Ge, Sn o Ti. Siendo los procedimientos de sililación bien conocidos en el arte.
Estos materiales pueden ser utilizados como adsorbentes, y en procesos de separación de compuestos orgánicos, y como catalizadores. Como catalizadores, se reivindica su uso en catálisis acida cuando se introduce uno o más elementos trivalentes o divalentes como substitución isomórfica de elementos tetravalentes. Así, por ejemplo, materiales conteniendo Si y/o Ge y Fe, Al, B, Ga, Sn y/o Zn producen catalizadores adecuados para procesos de catálisis acida. En este caso la presencia de grupos orgánicos directamente unidos a los elementos que conforman la red, permiten controlar las propiedades hidrófilas-hidrófobas del material y por tanto sus propiedades de adsorción y catalíticas.
Los catalizadores ácidos resultantes son activos en procesos de formación de enlaces carbono-carbono tales como dimerizaciones, oligomerizaciones, alquilaciones, condensaciones, y en general reacciones del tipo Diels-Alder, y Friedel-Crafts. También permite su uso en reacciones de isomerización de doble enlace, cadena y reordenaciones del tipo Beckman pinacol-pinacolona, y en reacciones de formación de aminas a partir de NH3 y alcoholes. Igualmente estos materiales presentan una buena actividad catalítica en la síntesis de alquilglucosidos a partir de glucidos y alcoholes alifáticos.
Cuando se introduce Ti, Sn, V, Cr, y Fe o mezclas de ellos en la red de los materiales resultantes son activos en reacciones redox o de oxotransferencia, así como en procesos que involucran ácidos Lewis. Hemos visto que en el caso de los materiales que contienen Ti éstos presentan una buena actividad y selectividad en procesos de epoxidación de olefinas utilizando peróxidos, y en especial hidroperóxidos orgánicos.
Los siguientes ejemplos ilustran la preparación de estos materiales así como sus aplicaciones como catalizadores.
EJEMPLOS Ejemplo 1 :
En este ejemplo se prepara una muestra conteniendo Si y Ti en la red, y grupos metilo unidos al Si. 14.45 g de Bromuro de cetiltrimetilamonio (BrCTMA) se disuelven en 95.9 g de
H2O. Sobre esta disolución se adicionan 24.8 g de hidróxido de tetrametilamonio (TMAOH) al 25%o en H2O, y 0.32g de Ti (OC2H5)4. La mezcla se agita hasta completa disolución del Ti (OC2H5), adicionándose lentamente y bajo agitación, una mezcla que contiene 30.6 g de Si(OCH3)4 y 11.86 g de CH3Si(OC2H5)3 Si. La agitación se continuó hasta evaporación de los alcoholes.
El gel formado se trató en una autoclave a 135°C durante 18 horas. Después de este tiempo se filtró, lavó con H2O hasta pH neutro, y se secó a 60°C durante 12 horas.
El producto resultante (9.0 g) se trató e una disolución que contenía 2.3 g de H2SO4 (98%>) en 450g de etanol, a 70°C durante una hora. El sólido se filtra y se vuelve a tratar en un segundo paso, en una solución que contiene 5.90 g de HCl al 36% en 201 g de heptano y 186 g de etanol. Después de filtrar y lavar, el material resultante tiene un área de 1023 m2.g- 1 y el difractograma de Rayos X se da en la Figura 1. La composición molar del material es: (CH3)0.25SiO1.875 : 0.009TÍO2
Ejemplo 2:
En este ejemplo se prepara una muestra conteniendo Si y Al en la red, y conteniendo grupos metilo unidos al Si. 14.45 g de Bromuro de cetiltrimetilamonio (Br CTMA) se disuelven en 95.9 g de H2O. Sobre esta disolución se adicionan 24.8 g de hidróxido de tetrametilamonio (TMAOH) al 25%) en H2O, y 0.58g de isopropóxido de Al. La mezcla se agita hasta completa disolución del Al(OC3H7)3, adicionándose lentamente y bajo agitación, una mezcla que contiene 30.6 g de Si(OCH3)4 y 11.86 g de CH3 (C2OH5)3 Si. La agitación se continuó hasta evaporación de los alcoholes.
El gel formado se trató en una autoclave a 135°C durante 18 horas. Después de este tiempo se filtró, lavó con H2O hasta pH neutro, y se secó a 60°C durante 12 horas. El producto resultante (9.0 g) se trató e una disolución que contenía 2.3 g de H2SO4
(98%>) en 450g de etanol, a 70°C durante una hora. El sólido se filtra y se vuelve a tratar en un segundo paso, en una solución que contiene 5.90 g de HCl al 36%> en 201 g de heptano y 186 g de etanol. Después de filtrar y lavar, el material resultante tiene un área de 870 m2.g-l y el difractograma de Rayos X se da en la Figure 2. La composición del material molar es: (CH3)0.25SiO1.875 : 0.008A12O3
Ejemplo 3:
En este ejemplo se sililiza la muestra obtenida en el ejemplol.
2.0 g de la muestra obtendrá en el ejemplo 1, se deshidratan a 100°C y 10-3 Tor durante 2 horas. La muestra se enfría, y a temperatura ambiente se adiciona una disolución de 1.88g de hexametildisilazano (CH3)3Si-NH-Si(CH3)3) en 30g de tolueno. La mezcla resultante se refluye a 120°C durante 90 minutos y se lava con tolueno. El producto final se seca a 60°C. El material resultante presenta la siguiente composición molar: (CH3)0.76SiO1.62 : 0.01TiO2 El diagrama de difracción de Rayos X del material se muestra en la figura 3.
Ejemplo 4:
En este ejemplo se presenta la actividad catalítica de la muestra obtenida en el ejemplo 1, para la epoxidación de ciclohexeno. 300 mg del material descrito en el ejemplo 1, se introducen en un reactor de vidrio a
60°C que contiene 4500 mg de ciclohexeno, y 1538mg de tercbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 5h. La conversión de ciclohexeno, con respecto al máximo posible es del 92.8%>, siendo la selectividad al epóxido del 93%, y una eficiencia del hidroperóxido del 95%>. Ejemplo 5:
En este ejemplo se presenta la actividad catalítica de la muestra obtenida en el ejemplo 3, para la epoxidación de ciclohexeno.
300mg del material descrito en el ejemplo 3, se introducen en un reactor de vidrio a 60°C, que contiene 4500 mg de ciclohexeno y 1538g de tertbutilhidroperóxido. La mezcla de reacción se agita, y se toma una muestra de reacción a 5h. La conversión de ciclohexano con respecto al máximo posible, es del 99.75 con una selectividad al epóxido del 98.7%> y una eficiencia del terbutilhidroperóxido del 100%>

Claims

REIVINDICACIONES
1. Un material de composición YRpO2-p/2 : yZO2 : nS en donde Y representa a uno o varios elementos de valencia 4, preferentemente Si, Ge, Ti, Zr o Sn, R es hidrógeno o un grupo alquilo, arilo, poliaromático que puede o no estar funcionalizado con grupos acido, amino, tiol, etc y se encuentra unido directamente a los átomos que componen la estructura por medio de enlaces C-Y. p puede variarse entre 10-5 y 0.75. Z es un elemento tetravalente minoritario en la composición (10-5 < y < 0.25) que puede ser Si, Ge, Ti, V, Zr o Sn. Y donde S representa a un surfactante catiónico, neutro o aniónico.
2. Un material de composición YRpO2-p/2 : yX2O3 : nS en donde Y representa a uno o varios elementos de valencia 4, preferentemente Si, Ge, Ti, Zr o Sn, R es hidrógeno o un grupo alquilo, arilo, poliaromático que puede o no estar funcionalizado con grupos acido, amino, tiol, etc y se encuentra unido directamente a los átomos que componen la estructura por medio de enlaces C-Y. p puede variarse entre 10-5 y 0.75. X es un elemento trivalente minoritario en la composición (10-5 < y < 0.25) que puede ser Al, B, Ga, Fe y Cr,. Y donde S representa a un surfactante catiónico, neutro o aniónico.
3. Un procedimiento de preparación en un solo peso de un material micro o mesoporoso según reivindicaciones 1 y 2 caracterizado porque en la etapa de síntesis se introduce un precursor RjYL4-j donde Y puede ser Si, Ge, Sn, Ti o Zr y R un hidrógeno o grupo orgánico prefiriéndose cadenas alquílicas de 1 a 22 carbonos, aromáticos o poliaromáticos. R podrá además contener grupos funcionales orgánicos tales como aminas, ácidos, haluros, esteres, grupos sulfónicos y tioles. L es un grupo que puede hidrolizarse en el medio de síntesis, prefiriéndose haluros, amino, etóxido, metóxido, propóxido, butóxido y alcóxidos en general como por ejemplo metiltrietoxisilano, metiltriclorogermano, iodopropiltrmetoxisilano, dicloruro de titanoceno, metiltricloroestaño, hexametildisilazano, dietildiclorosilano etc.
4. Un procedimiento de preparación en un solo paso según reivindicación 3 en el que S es un sufactante catiónico, neutro o aniónico. Los surfactantes catiónicos responden a la formula R1R2R3R4Q donde Q es nitrógeno o fósforo y donde al menos uno de los sustituyentes Rl , R2, R3 o R4 es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36., y cada uno de los restantes grupos Rl , R2, R3 o R4 es un hidrógeno o un grupo alquilo o arilo con menos de cinco carbonos. También se incluyen dentro de los surfactantes catiónicos que pueden incorporarse a la composición del gel los llamados surfactantes gemínales, R1R2R3QR4QR1R2R3 o
RlR2R3Q(R4R5QR6QR4R5)nQRlR2R3 donde Q es un nitrógeno o fósforo y al menos uno de los sustituyentes R1-R6 es una grupo alquilo o arilo con más de seis átomos de carbono y menos de 36, y cada uno de los restantes grupos R1-R6 son hidrógenos o grupos alquilo o arilo con memos de cinco átomos de carbono o mezclas de ellos. En estos casos dos de los grupos Rl, R2, R3 o R4 pueden estar interconectados dando lugar a compuestos ciclados. Los surfactantes catiónicos se introducen en la composición del gel de síntesis en forma de hidróxido, haluro, nitrato, sulfato, carbonato o silicato o mezclas de ellos. Ejemplos no limitantes de ellos son el cetiltrimetilamonio, el dodeciltrimetilamonio, cetilpiridinio, cetiltrimetilfosfonio, etc.
S podrá referirse también a un surfactante neutro, en cuyo caso responden a la fórmula R1R2R3Q donde Q es nitrógeno o fósforo y donde al menos uno de los sustituyentes Rl , R2, o R3 es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36., y cada uno de los restantes grupos Rl, R2 o R3 es un hidrógeno o un grupo alquilo o arilo con menos de cinco carbonos, siendo ejemplos no limitantes dodecilamina, cetilamina y cetilpiridina. También podrán actuar como surfactantes neutros compuestos que responden a la fórmula nR-EO que consiste en un óxidos de alquilpolietieno, óxidos de alquil-aril-polietileno y copolímeros de alquilpolipropileno y alquiletileno, siendo ejemplos no limitantes los surfactantes comerciales denominados Tergitol 15 S 9, Tritón
X-l 14, Igepal RC-760, Pluronic 64 L, Tetronic y Sorbitan. También podrán ser incluidos en la formulación esteres derivados de ácidos grasos obtenido por reacción con alcoholes de cadena corta, azucares, aminoácidos, aminas y polímeros o copolímeros derivados del polipropileno, polietileno, poliacrilamida o polivinilalcohol, siendo ejemplos no limitantes lisolecitina, lecitina, dodecil éter de pentaoxietileno, fosfatilo de dilaurildietanolamina, diglicerido de digalactosa y diglicerido de monogalactosa. El surfactante también puede ser un surfactante aniónico que responden a la fórmula RQ- donde R es un grupo arilo o alquilo conteniendo más de 6 átomos de carbono y menos de 36, y Q es un grupo sulfato, carboxílico, fosfato o sulfato, siendo ejemplos no limitantes el dodecilsulfato, acido esteárico, Aerosol OT y fosfolipidos tales como fosfatil-colina y fosfatilo de dietanolamina.
5. Un procedimiento de preparación en un solo paso según reivindicaciones 3 y 4 en el que el surfactante se elimina por medio de un proceso de extracción mediante tratamiento con un disolución de un ácido mineral u orgánico en un disolvente que puede ser agua, alcohol, hidrocarburos o mezclas de ellos.
6. Procedimiento de preparación según reivindicaciones 3, 4 y 5 y en el que un material según reivindicación 1 se somete a una etapa posterior de sililación.
7. Procedimiento de preparación según 3, 4 y 5 y en el que un material según reivindicaciones 2 se somete a una etapa posterior de sililación.
8. Aplicación de los materiales según reivindicaciones 1 y 6 a procesos de oxotranferencia y más específicamente a procesos de epoxidación de definas, hidroxilación de aromáticos y aromáticos substituidos, oxidación de alcoholes.
9. Aplicación de materiales según reivindicación 2 y 7 a procesos de catálisis acida.
10. Aplicación de los materiales según reivindicaciones 1 y 6 a la conversión de (-pineno al epóxido, utilizando hidroperóxidos orgánicos o inorgánicos.
11. Aplicación de los materiales según reivindicaciones 1 y 6 a la conversión del (-pineno a aldehido canfolénico utilizando hidroperóxidos orgánicos o inorgánicos.
12. Aplicación de los materiales según reivindicaciones 2 y 7 a la conversión de (-pineno a aldehido canfolénico utilizando hidroperóxidos orgánicos o inorgánicos.
13. Preparación de epóxido de propileno utilizando un catalizador según reivindicación 1 y 6, utilizando hidroperóxidos orgánicos o inorgánicos.
PCT/ES1999/000249 1998-08-04 1999-08-02 Procedimiento para la preparacion de silicatos mesoporosos conteniendo ti y compuestos organicos directamente unidos a atomos de la red, y su uso como catalizador WO2000007710A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES9801687A ES2155747B1 (es) 1998-08-04 1998-08-04 Procedimiento para la preparacion de silicatos mesoporosos conteniendoti y compuestos organicos directamente unidos a atomos de la red,y su uso como catalizador.
ESP9801687 1998-08-04

Publications (2)

Publication Number Publication Date
WO2000007710A2 true WO2000007710A2 (es) 2000-02-17
WO2000007710A3 WO2000007710A3 (es) 2000-05-11

Family

ID=8304805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000249 WO2000007710A2 (es) 1998-08-04 1999-08-02 Procedimiento para la preparacion de silicatos mesoporosos conteniendo ti y compuestos organicos directamente unidos a atomos de la red, y su uso como catalizador

Country Status (2)

Country Link
ES (1) ES2155747B1 (es)
WO (1) WO2000007710A2 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083819A1 (es) * 2001-04-12 2002-10-24 Consejo Superior De Investigaciones Cientificas Proceso y catalizadores para la eliminacion de compuestos de azufre de la fraccion diesel
US7132092B2 (en) * 2002-02-08 2006-11-07 Sumitomo Chemical Company, Limited Metallized mesoporous silicate and method of oxidation with the same
CN1312037C (zh) * 2004-10-14 2007-04-25 中国科学院大连化学物理研究所 一种中孔mzpa-8材料及其制备方法
US20100160698A1 (en) * 2008-12-12 2010-06-24 Eni S.P.A. Process for the production of hydrocarbons, useful for motor vehicles, from mixtures of a biological origin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076576A1 (en) * 1981-09-24 1983-04-13 Mobil Oil Corporation Use of a catalyst and process for polymerizing olefins
US5308811A (en) * 1991-05-01 1994-05-03 Mitsubishi Kasei Corporation Catalyst for polymerizing an olefin and method for producing an olefin polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076576A1 (en) * 1981-09-24 1983-04-13 Mobil Oil Corporation Use of a catalyst and process for polymerizing olefins
US5308811A (en) * 1991-05-01 1994-05-03 Mitsubishi Kasei Corporation Catalyst for polymerizing an olefin and method for producing an olefin polymer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CORMA A. ET AL.: 'One step synthesis of highly active and selective epoxidation catalysts formed by organic-inorganic Ti containing mesoporous composites' CHEM. COMMUN., no. 17, 07 September 1998, (CAMBRIDGE), pages 1899 - 1900 *
CORMA A. ET AL.: 'Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41' CHEM. COMMUN., no. 20, 21 October 1998, (CAMBRIDGE), pages 2211 - 2212 *
MASCHMEYER I. et al., "Developments in silica-supported organometallic catalysis. Silsesquioxanes and mesoporous MCM-41 silicates", NATO ASI Ser., Ser. C. (1997), 498 (New Trends in Materials Chemistry), pages 461-494. *
MASCHMEYER T.: 'Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica' NATURE, vol. 378, 09 November 1995, pages 159 - 162 *
TUDOR J. ET AL.: 'Stereospecific propene polymerisation catalysis using an organometallic modified mesoporous silicate' CHEM. COMMUN., no. 6, 1997, (CAMBRIDGE), pages 603 - 604 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083819A1 (es) * 2001-04-12 2002-10-24 Consejo Superior De Investigaciones Cientificas Proceso y catalizadores para la eliminacion de compuestos de azufre de la fraccion diesel
ES2183710A1 (es) * 2001-04-12 2003-03-16 Univ Valencia Politecnica Proceso y catalizadores para la eliminacion de compuestos de azufre de la fraccion diesel.
US7371318B2 (en) 2001-04-12 2008-05-13 Consejo Superior De Investigaciones Cientificas Method and catalysts for the elimination of sulphur compounds from the diesel fraction
US7132092B2 (en) * 2002-02-08 2006-11-07 Sumitomo Chemical Company, Limited Metallized mesoporous silicate and method of oxidation with the same
CN1310836C (zh) * 2002-02-08 2007-04-18 住友化学工业株式会社 金属化中孔硅酸盐及用其进行氧化的方法
CN1312037C (zh) * 2004-10-14 2007-04-25 中国科学院大连化学物理研究所 一种中孔mzpa-8材料及其制备方法
US20100160698A1 (en) * 2008-12-12 2010-06-24 Eni S.P.A. Process for the production of hydrocarbons, useful for motor vehicles, from mixtures of a biological origin
US8581014B2 (en) * 2008-12-12 2013-11-12 Eni S.P.A. Process for the production of hydrocarbons, useful for motor vehicles, from mixtures of a biological origin

Also Published As

Publication number Publication date
WO2000007710A3 (es) 2000-05-11
ES2155747A1 (es) 2001-05-16
ES2155747B1 (es) 2001-12-01

Similar Documents

Publication Publication Date Title
Wu et al. A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes
Biz et al. Synthesis and characterization of mesostructured materials
Wu et al. A novel titanosilicate with MWW structure: III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2
US5800800A (en) Crystalline inorganic oxide compositions prepared by neutral templating route
US5783167A (en) Structure material of the zeolite type with ultralarge pores and a lattice comprised of silicone and titanium oxides: its synthesis and utilization for the selective oxidation of organic products
Wu et al. A novel titanosilicate with MWW structure: catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide
US5621122A (en) Epoxidation process
US6413902B1 (en) Catalytic applications of mesoporous metallosilicate molecular sieves and methods for their preparation
US5785946A (en) Crystalline inorganic oxide compositions prepared by neutral templating route
Bhaumik et al. Ammoximation of ketones catalyzed by titanium-containing ethane bridged hybrid mesoporous silsesquioxane
WO2002031086A1 (es) Procedimiento y catalizadores para la eliminación de compuestos de azufre de la fracción gasolina
ES2236000T3 (es) Materiales microporosos de alta superficie activos en reacciones de oxidacion tiq-6 y metiq-6.
EP1010667A1 (en) Stannosilicate molecular sieves having the zeolite beta structure
Shylesh et al. Periodic mesoporous silicas and organosilicas: An overview towards catalysis
US5474754A (en) Preparation of an aluminosilicotitanate isomorphous with zeolite beta
Moliner et al. Direct synthesis of a titanosilicate molecular sieve containing large and medium pores in its structure
Corma et al. Ti-ferrierite and TiITQ-6: synthesis and catalytic activity for the epoxidation of olefins with H 2 O 2
Shylesh et al. Vanadium-containing ethane–silica hybrid periodic mesoporous organosilicas: Synthesis, structural characterization and catalytic applications
Goa et al. Controlled detitanation of ETS-10 materials through the post-synthetic treatment and their applications to the liquid-phase epoxidation of alkenes
US6087514A (en) Titanium silicate molecular sieve oxidation catalysts and the production thereof
WO2000007710A2 (es) Procedimiento para la preparacion de silicatos mesoporosos conteniendo ti y compuestos organicos directamente unidos a atomos de la red, y su uso como catalizador
WO2000054880A1 (es) MATERIALES MESOPOROSOS TIPO MCM-41 CONTENIENDO TITANIO Y SU USO COMO CATALIZADORES EN LA OXIDACIÓN DE α PINENO
WO2000044670A1 (es) Procedimiento para la preparacion de titanosilicatos mesoporosos tipo mcm-48, y su uso como catalizador en reacciones de oxidacion selectiva
ES2201915B1 (es) Aluminosilicatos mesoporosos y microporosos con elevada actividad catalitica en reacciones de catalisis acida y su procedimiento de preparacion.
Novak Tušar et al. Manganese‐Containing Porous Silicates: Synthesis, Structural Properties and Catalytic Applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase