WO2000002652A1 - Mixer systems - Google Patents

Mixer systems Download PDF

Info

Publication number
WO2000002652A1
WO2000002652A1 PCT/US1999/015407 US9915407W WO0002652A1 WO 2000002652 A1 WO2000002652 A1 WO 2000002652A1 US 9915407 W US9915407 W US 9915407W WO 0002652 A1 WO0002652 A1 WO 0002652A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
mbe
tank
impellers
axis
Prior art date
Application number
PCT/US1999/015407
Other languages
French (fr)
Inventor
John Mcwhirter
Bradley Dominik
Prakash Balan
Original Assignee
The Penn State Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Penn State Research Foundation filed Critical The Penn State Research Foundation
Priority to AU50929/99A priority Critical patent/AU5092999A/en
Publication of WO2000002652A1 publication Critical patent/WO2000002652A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23362Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced under the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2366Parts; Accessories
    • B01F23/2368Mixing receptacles, e.g. tanks, vessels or reactors, being completely closed, e.g. hermetically closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/113Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller
    • B01F27/1134Propeller-shaped stirrers for producing an axial flow, e.g. shaped like a ship or aircraft propeller the impeller being of hydrofoil type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • B01F27/902Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms  cooperating with intermeshing elements fixed on the receptacle walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1125Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/15Stirrers with tubes for guiding the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements

Definitions

  • the present invention relates to mixer systems, and particularly to systems (methods and apparatus) for the circulation and gas-liquid contacting of liquids in a tank, especially when such liquids have non-Newtonian, shear triinning viscosity characteristics Good circulation and mixing of the liquid and intimate gas-hquid contacting facilitates mass transfer of a gaseous component into the liquid
  • the invention is especiallv suitable for use in bio-reaction processes, such as fermentation by circulating slurries containing microbes and growth media, especially where the fermentation process increases the viscosity of the slum
  • the present invention enables improved oxygenation and mixing of such liquids to promote the fermentation process
  • a fermentation process in which the invention finds particular application is a process for producing polysaccha ⁇ des such as xanthan gum. and improves such process by enabling increased circulation and mixing of the solution and oxygenation thereof at high concentrations of xanthan gum which results in such high viscosities so as to preclude effective circulation and mixing thereof by conventional means, such that the value of the product of the fermentation, which is a function of the concentration of xanthan gum. is increased or produced m a shorter pe ⁇ od of time
  • Non-Newtonian liquids which can be effectively mixed and oxygenated with a mixing system embodying the invention have shear thinning characteristics, that is the viscosity of such liquids decreases significantly m the presence of shear Regions in which shear is produced, in the attempt to reduce the viscosity of the liquid so as to enable it to be circulated, have in conventional systems been confined to the immediate vicinity of the impellers used to circulate the liquid Such regions have sometimes been referred to as caverns of shear thinned liquid surrounding the impellers
  • the remaining liquid for example in a tank in which the impellers are located, remains at high viscosity and thus does not circulate or mix to the extent required for effective gas transfer, and particularly oxygenation of the entire body of liquid in the tank.
  • These non-mixed or non-circulating portions of the tank liquid are often referred to as "dead zones " and significantly reduce the overall effectiveness of the fermentation process.
  • circulation of a substantial volume fraction of the liquid in the tank enables circulation of the entire body of liquid in the tank.
  • a shear field or pattern of agitation effects circulation of the liquid when it is achieved within a substantial volume of the liquid in a tank.
  • Shear fields or patterns which produce flow in a direction other than the direction of circulation, for example, a swirling flow, is inhibited in accordance with the invention.
  • the flow through the substantial volume of liquid causes flow elsewhere throughout the tank thereby circulating the entire body of liquid to obtain good top to bottom turnover of the liquid in the tank.
  • the introduction of gas into the circulating flow and the gasification thereof as may be required by the process, for example a fermentation process ongoing in the tank, is then achievable.
  • the present invention may be embodied in a mixer system disposed below the surface of the liquid in a tank (the surface being measured when the liquid is static, as when not being circulated) and utilizes a plurality of impellers spaced from each other along the axis of a stationary draft mbe. around which axis the impellers are rotated.
  • the draft tube provides coaxial regions inside and outside of the tube, with the diameter of the mbe and its length being such that the mbe occupies a substantial volume fraction of the liquid in the tank.
  • the impellers include a plurality of impellers, and the impellers create a shear field or pattern of agitauon and a pressure gradient to produce good circulation upwardly through the inside region and then downwardly through the outside region.
  • the impellers provide agitation fields which are coupled to each other, and particularly which overlap. Swirling flow inside the draft tube is inhibited, for example, by baffles which project radially inwardly from the draft tube wall and axially between the impellers and preferably above and below the upper and lower most impellers
  • Gas may be sparged (injected) into the flow entering the draft mbe and/or at the liquid surface
  • gasification by entrainment of gas in the tank above the liquid surface may be enhanced by the use of a surface aeration impeller
  • circulation at the top ot the draft mbe may be enhanced by a shroud which bridges the inner and outer regions
  • the surface aeration impeller may be provided by a plurality of blades spaced circumferentially from each other and disposed at acute angles to radial lines from the axis of rotation of the impeller.
  • the lower portions of the blades, which may extend below the surface. may be folded outwardly The blades drive the liquid into a spray umbrella in a direction upwardly and outwardly away from the surface.
  • FIG 1 is a diagrammatic, sectional front elevational view of a tank containing a mixing impeller system m accordance with the invention
  • FIG. 2 is a secuonal view taken along the line 2-2 in FIG 1 when viewed in the direction of the arrows;
  • FIG. 3 is a view similar to FIG. 1 showing another embodiment of an impeller system in accordance with the invention
  • FIG 4 is a sectional view taken along the line 4-4 in FIG. 3;
  • FIG. 5 is a view similar to FIG. 1 showing another embodiment of the invention;
  • FIG. 6 is a view, similar to FIG. 1, showing still another embodiment of the invention:
  • FIG. 7 is a sectional view taken along the line 7-7 in FIG. 6 when viewed in the direction of the arrows;
  • FIG. 8 is a view, similar to FIG. 1 showing still another embodiment of the invention:
  • FIG. 9 is a view, similar to FIG 1. showing still another embodiment of the invention:
  • FIG. 10 is a sectional view along the line 10-10 in FIG. 9 when viewed in the direction of the arrows;
  • FIG. 11 is a sectional view along the line 11-11 in FIG. 9; and FIG. 12 is plot showing the changes in concentration of oxygen in a body of liquid, as a function of time, which has been oxygenated in a system such as shown in FIG. 1 , and which plot is useful in deriving the mass transfer coefficient, k L a, resulting from oxygenation of the body of liquid.
  • FIGS. 1 and 2 there is shown a mixing system which has been found practical and effective for use in processes for mixing and circulating and gasifying non-
  • the system of FIG. 1 has been found especially suitable for improving the mixing and mass transfer rate in bioreaction processes, including fermentation, and particularly a process for producing xanthan gum solutions.
  • Presented hereinafter are examples illustrating a mixing and oxygenation process using air as the gaseous oxygenation medium on a solution simulating a high concentration (three to four percent by weight) solution of xanthan gum.
  • the ability to effectively mix and oxygenate such solutions and produce the products of fermentation at concentrations having enhanced commercial value is an important feature of this invention.
  • Non-Newtonian liquids are characterized by having a variable viscosity which is a function of the applied shear force.
  • Newtonian liquids such as water and mineral oil have a constant viscosity.
  • the viscosity of non-Newtonian liquids changes when in a shear field, that is where the liquid is subject to a changing shear rate (1/sec).
  • Xanthan gum solutions in the three percent by weight range are a commercially relevant non-Newtonian solution in that their viscosity, when at rest, is of the order of 10,000 cp, (centipoise) (for example 10.000 to 30,000 cp) and 100 cp when subject to a high shear rate. All viscosity values referred to herein are determined on a Brookfield viscometer.
  • the liquid is in a tank 10 and has a liquid level 12 below the upper end or ⁇ m 14 of the tank when the liquid in the tank is static (that is not being circulated or turned over) between the surface 12 and the bottom 16 of the tank.
  • the tank 10 may be generally cylindrical and the tank walls arranged vertically upright.
  • a cylindrical draft tube 20 is mounted preferably centrally of the tank. Then the axis of the draft mbe 20 is coincident with the axis of the tank 10 when the tank is cylindrical.
  • the diameter of the draft tube and its length is such that the internal volume defined by the mbe 20 is a substantial part, at least 25 % and preferably 50% of the volume of the liquid in the tank 10.
  • a plurality of mixing impellers 26. 28. 30 and 32 are attached to. and driven by. a common shaft 34.
  • the upper end of the shaft may be connected to a drive motor via a gear box (not shown) and the lower end of the shaft 34. may be journaled in a steady bearing 36.
  • the impellers are all of the same type, namely so-called pitched blade turbines (PBT). having a plurality of four blades circumferentially spaced about the axis of rotation, the axis being the axis of the shaft 34 and the blades are disposed at 45 c to that axis.
  • PBT impellers are available from the Lightnin Unit of General Signal Corporation.
  • the mixing system in the draft mbe also includes sets 38, 40, 42 and 44 of four vertical baffles which are 90° displaced circumferentially about the axis of the shaft 34. as shown in other
  • FIGS discussed hereinafter, between the impellers.
  • Other sets of baffles may be located above. and. if desired below, the upper and lower most impellers 32 and 26.
  • two pairs of baffles are contained in each set and the pairs are 180° displaced with respect to each other
  • the impellers 26-32. with the aide of the sets of baffles 38-44. produce a field or pattern of agitation which provide a high level of shear in the liquid in the draft mbe.
  • the circulation which has been found to produce the most effective mixing, is in the upward direction inside the draft mbe to regions at the ends of the draft mbe 32 and 24 where the flow changes direction, so that the flow is downward in the annular region between the draft mbe 20 and the sidewall of the tank 10.
  • the annular region between the draft tube wall 20 and the sidewall of the tank 10 is a region of low shear and hence high effective viscosity for shear thinning liquids. Nonetheless, good uniform flow with no stagnant regions is maintained down through this high viscosity annular region by virtue of the high flow rate generated up through the low viscosity draft tube zone.
  • the annular region between the draft tube wall 20 and the sidewall of the tank 10 has a relatively high average axial fluid velocity and the liquid is quickly recirculated into the high shear, low viscosity draft tube region.
  • the relative sizing of the draft mbe diameter and impellers and their locations in the draft tube are related by the flow rate so that the requisite circulation and mixing may be obtained.
  • the rate of flow and volume contained in the draft mbe and the volume of the tube are sufficient to establish the axial flow between the mbe and wall of the tank over a broad range of viscosities up to and including viscosities of the order of 10 4 cp (Brookfield).
  • an annular plate or ring 46 which defines a fillet to smooth the flow past the comer.
  • the plate may be convexly, inwardly curved so as to provide a generally circular contour for the fillet 46.
  • a sparge pipe 50 directs the gas into the lower end of the draft mbe.
  • the introduction of the gas is known as sparging.
  • the term aeration is generally used to connote the introduction of any gas including atmospheric air or oxygen enriched air. Substantially pure (90 to 95 %) oxygen may also be used.
  • Gas dispersion or gas incorporation into the liquid also occurs due to mrbulence at the liquid surface 12 where there is gas-liquid contacting and entrainment of the gas into the liquid so that it recirculates downwardly through the outer annular region.
  • the liquid is at low viscosity and enables the gas from the sparge pipe 50 to be broken up into fine bubbles which present a large total gas-liquid interfacial area to facilitate mass transfer.
  • the effectiveness of oxygen mass transfer may be measured in terms of the overall liquid phase mass transfer coefficient (k L a).
  • the impellers 26. 28. 30 and 32 are spaced sufficiently close to each other so that the field or pattern of their flow overlaps.
  • the agitation produces not only axial, but also significant radial force on the fluid.
  • the sets 38, 40, 42 and 44 of baffles inhibit this radial component, which produces a swirling flow, so that the flow upward through the draft tube is substantially axial.
  • the baffles preferably project radially inwardly by distances sufficient to inhibit the radial flow of the liquid.
  • the height of the baffles is such that the spacing between the upper and lower edges of the baffles and the adjoining impellers is the minimum to provide a practical running clearance for the impellers 26-32.
  • the ratio of the draft tube diameter to the tank diameter is between about 0.35 and 0.75. with a ratio of about 2/3 (.667) being presently preferred.
  • the ratio of impeller diameter to draft tube diameter is from about 0.5 to 0.96. All of the impellers 26-32 are generally of the same diameter between the tips of the blades. If impellers of different diameter are used, the largest diameter impeller is used in selecting this parameter, i.e. the ratio of the impeller diameter to the draft mbe diameter. 3.
  • Impeller vertical spacing that is the distance between the mean height of the impeller, as measured between the leading and trailing edges of the blades thereof, is between 0.70 and 1.30 of the diameter of the largest of two adjacent impellers. In other words, where the adjacent impellers have the same diameter, they may be from about 0.70 to 1.30 of an impeller diameter apart.
  • the largest diameter is used to determine spacing in the range 0.70 to 1.30 of the larger of the two adjacent impeller diameters.
  • the impellers are spaced apart so that their midlines are separate by about 1.0 impeller diameter.
  • the ratio of the radial width of the vertical baffles inside the draft tube to the diameter of the draft mbe is preferably in the range of about 0.1 to 0.4. A ratio of about 0.33 of radial width to draft mbe diameter is presently preferred.
  • the height of the baffles in the vertical direction should approach the impellers, and preferably be adjacent thereto, allowing only sufficient spacing for rotation of the impellers without interference.
  • baffles there preferably are two to four baffles in each set of baffles adjoining the impellers.
  • the upper end of the draft mbe may be submerged from the liquid surface up to about 0.3 of the diameter of the draft mbe.
  • the submergence of the draft mbe may be sufficient to enable insertion of the surface aerator and/or the flow diverter at the top of the draft mbe.
  • the volume of the liquid in the tank occupied by the draft mbe should remain substantial and be at least about 0.25 of the volume of the liquid in the tank (between the bottom of the tank, the liquid level and within the sidewalls of the tank).
  • the uppermost impeller should also be less than about one impeller diameter from the surface of the liquid in the tank.
  • the placement of the uppermost impeller is selected which engenders good surface mrbulence and further gas-liquid contacting for enhancing the gas transfer rate and the mass transfer coefficient of the system.
  • the off-bottom clearance of the bottom of the draft mbe is preferably from about 0.3 to about 0.7 of the draft mbe diameter.
  • the preferred parameter is 0.5 of the draft tube diameter for the spacing or off-bottom clearance of the bottom or lower end of the draft tube from the bottom of the tank. Referring to FIGS. 3 and 4. there is shown an impeller system having four impellers 60.
  • the axial flow impellers may be PBT's or airfoil blade impellers, such as discussed in connection with FIGS. 1 and 2.
  • the radial flow impellers 62 and 66 may be so-called Rushton turbines, such as R-100 class radial flow impellers, which are presendy available from the Lightnin Unit of General Signal Corporation. Information as to the design of radial flow impellers may be found in Englebrecht and Weetman. U.S. Patent. 4.454.078 and Stanton. U.S. Patent, 4.207,275.
  • FIG. 3 also illustrates a lowermost set 70 of vertical baffles which may extend outwardly from the lower end 22 of the draft mbe, or the lower edge of the baffle may be coincident with the lower end of the draft mbe.
  • the system shown in FIG. 5 is similar to the system shown in FIG. 3 except that the draft tube occupies a larger volume fraction of the liquid in the tank and the baffles extend radially inward a lesser distance in respect to the diameter of the larger impellers (the axial flow impellers 60 and 64) than in the case of the system shown in FIGS. 3 and 4.
  • the use of alternate axial and radial flow impellers provides for adequate mixing, circulation and gasification, and affords ample circulation rates (for example '/. foot per second flow). even in the annulus around the draft mbes, so as to produce good liquid mixing and top to bottom turnover and ample mass transfer of the gas to the liquid and dispersion and solution of the gas into the liquid.
  • FIGS. 6 and 7 there is shown a mixing system 80 in the tank 10 having three axial flow impellers 82, 84 and 86 inside the draft mbe 20 and a radial flow impeller 88 on the shaft 34 common to all the impellers.
  • the radial flow impeller 88 is located below the draft mbe in the region where the liquid flow turns upwardly into the draft mbe.
  • the baffles especially in the set of baffles at the uppermost and lowermost end of the draft tubes (sets 90 and 92 in FIG.
  • the radial flow impeller has a power number (the ratio of the power in horse power which is needed to drive the impeller to the product of the cube of the speed of the impeller and the diameter to the fifth power of the impeller) which is much higher than and preferably about equal to the sum of power numbers of the impellers in the draft tube: thus the radial flow impeller 88 draws at least as much power as all of the three impellers 82, 84 and 86 in the draft tube.
  • the agitation field from the radial flow impeller 88 extends up to the lower end of the draft tube and facilitates the creation of the agitation pattern and shear field in a sufficient volume of the tank to promote complete turnover or circulation (top to bottom mixing) of the liquid in the tank 10. Also the radial flow impeller facilitates effective dispersion of the gas from the sparge pipe into the mixing system.
  • a plurality (at least two pairs) of vertical baffles 96 and 98 are disposed along the sidewalls of the tank 10 and extend at least half the distance from the bottom of the tank to the bottom of the draft tube for typical liquid media which are being mixed, circulated and aerated.
  • the overhead gas space (the distance between the rim 14 of the tank and the liquid level 12. shown at 100 in FIG. 1) be sealed by a cover 102.
  • the overhead is desirably sealed.
  • the oxygen may be introduced by a conduit which enters the overhead 100 via the sidewall of the tank. Referring to FIG. 8. there is shown another embodiment of the invention utilizing a mixing system 200.
  • the surface aeration impeller 202 may suitably be a Lightnin Model R-335 impeller and provides additional gas-liquid interfacial area by affording a spray umbrella, thereby entraining additional air back into the surface liquid which is recirculated down the angular region between the draft mbe 220 and the sidewalls of the tank 222.
  • the surface aerator 202 also provides additional upward liquid pumping action through the draft tube 220.
  • the upper end 224 of the draft mbe may be coincident with the surface 226 of the liquid(the static liquid level in the tank).
  • separate sparge pipes 228 are provided which extend downwardly along the side wall of the tank to the lowermost set 230 of baffles.
  • the sparge pipes hook upwardly into the draft mbe so as to facilitate introduction of the gas directly into the draft tube. It is a feature of the invention to provide sparging either into the draft tube or into the overhead gas space or both. When substantially pure oxygen is used, it is introduced into the overhead space, into the sparge pipes, such as the array of pipes 228. or both into the overhead and into the array of pipes.
  • an impeller system 300 having, in addition to an arrangement of impellers and baffles in a draft mbe 302, similar to the arrangement of impellers 208, 210. 212 and 214 and their associated baffles, a shroud 304 to facilitate the diversion of the upward flow of liquid out of the draft mbe into the annular region between the draft mbe 302 and the sidewalls of the tank 306.
  • This shroud may be a hemi-toroidal shell which has radial baffles at least one and preferably two pairs of baffles 310, 180° apart are used to inhibit radial flow and short circuiting of the flow back into the draft mbe.
  • baffles extend radially inwardly from approximately the draft mbe to the inner periphery of the shroud 304.
  • the shroud 304 may be stiffened by a rod or angle iron 312.
  • the connection to the draft mbe may be by welds along the lower edges of the baffles 310 and the upper edge of the draft tube.
  • Extending through the static surface level 316 of the liquid in the tank 306. is an improved surface aeration impeller.
  • This impeller has a plurality of vertically extending blades 320.
  • Each blade is disposed at an angle (alpha - X of approximately 30° to a successive, circumferentially spaced radial line around the axis of the impeller (the axis of the common shaft 322).
  • These blades have vertical portions 324 at the upward ends thereof.
  • the blades 320 also have, preferably extending below the liquid surface 316. portions 326 which are bent outwardly and define obtuse angles of approximately 120 to 135 degrees with respect to the vertical portions 324 thereof.
  • the blades act as scoops to provide ample flow to the spray umbrella liquid from the surface aerator.
  • the spray falls back over the shroud 304 into the annular region between the sidewalls of the tank 306 and the draft mbe 302. thereby further facilitating the entrainment of gas from the head space above the liquid and providing a larger mass transfer coefficient, k L a.
  • the embodiment shown in FIGS. 9-1 1 may be preferable when high purity oxygen is used as the gas in the process carried out in the tank 306.
  • FIG. 12 there is shown a curve of dissolved oxygen. D.O.. concentration measurements with time which is useful in determining the overall liquid phase mass transfer coefficient.
  • k L a This mass transfer coefficient may be determined by means of an unsteady state reaeration test which uses dissolved oxygen concentration measurements with time from dissolved oxygen probes in the solution or by direct liquid sample titration.
  • accurately determining the D.O. concentration measurements with time for high viscosity, opaque media such as xanthan gum solutions is extremely difficult.
  • the accurate use of the unsteady state reaeration test procedure also requires good liquid mixing in the overall bulk liquid phase with no dead zones. Also regions of high flow are required where accurate calibration and use of D.O. probes can be achieved.
  • the present invention provides an effective liquid mixing and circulation system which satisfies all of these requirements for accurate use of the unsteady state reaeration test procedure.
  • Conventional liquid mixing systems cannot be effectively evaluated using the unsteady state test procedure for high viscosity, shear thinning fluids because of the poor level of bulk liquid mixing and turnover in the tank.
  • the unsteady state reaeration test is carried out by first making up a batch of the xanthan gum solution by mixing and aerating in the actual mixing and aeration system under test. This may be done for several hours so that there is assurance that the equilibrium dissolved oxygen level has been reached. Then, a test sample is extracted from the batch and the equilibrium dissolved oxygen content is measured using a modified Winkler dissolved oxygen titration procedure specifically adapted for high viscosity opaque solutions. The dissolved oxygen content at samration is then used to calibrate the dissolved oxygen probes for the equilibrium-dissolved oxygen level (milligrams per liter of dissolved oxygen) in solution.
  • the tank liquid is stripped of dissolved oxygen by bubbling a non-reacting gas. for example, nitrogen, through the batch in the tank. This may be done in the mixing system by replacing air or oxygen as the aerating gas with nitrogen. Measurements were made with the dissolved oxygen probe to show that the dissolved oxygen has been stripped from the liquid solution. This stripping may take 10 to 15 minutes. Then, reaeration with air or other oxygen containing gas is carried out until oxygen saturation is reached in the bulk liquid phase. Measurements are made of D.O. concentration, during reaeration. at successive periods of time. Then the curve. FIG. 12 is plotted. t 0 is the start of reaeration and C 0 is the initial D.O.
  • a non-reacting gas for example, nitrogen
  • the oxygen transfer rate (OTR) at any point in time is the slope of the curve in FIG. 12 or dC/dt.
  • the slope of the curve is also defined as being equal to k L a (C * - C), where C * is equal to the equilibrium D.O. level, for example, from a sample taken from the middle of the tank.
  • a statistical solution of the equation for the D.O. concentration versus time profile provides an overall lumped parameter k L a for the oxygen mass transfer process. This mass transfer coefficient. k L a.
  • Liquid flow rate up through 3/2 liters/sec. draft tube and down through annular region.
  • Liquid flow rate up through 5/6 liters/sec. draft mbe and down through annular region.
  • Liquid flow rate up through 444 liters/sec draft tube and down through annular region.
  • Liquid flow rate up through 240 liters/sec. draft mbe and down through annular region.
  • the new mixer system designs have no dead zones anywhere within the entire tank system bulk liquid phase and also achieve very effective gas dispersion throughout the tank.
  • the average bubble size escaping from the liquid surface is in the range of '/," to '/:" in diameter as compared to 8" to 12" for conventional design systems.
  • the mechanical stability of the entire mixer and tank system is greath improved with essentially no violation or erratic movement of the mixer and tank system.

Abstract

A system for providing gas-liquid contacting for mass transfer of the gas to the liquid in an upright tank (10). An upright draft tube (20) is mounted within the tank (10) and has a lower end (22) spaced from the tank bottom (16) and an upper end (24) spaced from the liquid surface (12). A plurality of mixing impellers (26, 28, 30, 32) in the draft tube (20) establish a field of agitation to cause shear thinning and upflow through the draft tube (20) and turbulence at the liquid surface (12). A plurality of radially inwardly projecting, circumferentially spaced baffles (38, 40, 42, 44) extend from the draft tube and are proximate to the mixing impellers to prevent swirling within the draft tube. Gas is sparged into the tank (10) adjacent to the lower end (22) of the draft tube (20).

Description

MIXER SYSTEMS
DESCRIPTION
The present invention relates to mixer systems, and particularly to systems (methods and apparatus) for the circulation and gas-liquid contacting of liquids in a tank, especially when such liquids have non-Newtonian, shear triinning viscosity characteristics Good circulation and mixing of the liquid and intimate gas-hquid contacting facilitates mass transfer of a gaseous component into the liquid
The invention is especiallv suitable for use in bio-reaction processes, such as fermentation by circulating slurries containing microbes and growth media, especially where the fermentation process increases the viscosity of the slum The present invention enables improved oxygenation and mixing of such liquids to promote the fermentation process A fermentation process in which the invention finds particular application is a process for producing polysacchaπdes such as xanthan gum. and improves such process by enabling increased circulation and mixing of the solution and oxygenation thereof at high concentrations of xanthan gum which results in such high viscosities so as to preclude effective circulation and mixing thereof by conventional means, such that the value of the product of the fermentation, which is a function of the concentration of xanthan gum. is increased or produced m a shorter peπod of time
Non-Newtonian liquids which can be effectively mixed and oxygenated with a mixing system embodying the invention have shear thinning characteristics, that is the viscosity of such liquids decreases significantly m the presence of shear Regions in which shear is produced, in the attempt to reduce the viscosity of the liquid so as to enable it to be circulated, have in conventional systems been confined to the immediate vicinity of the impellers used to circulate the liquid Such regions have sometimes been referred to as caverns of shear thinned liquid surrounding the impellers The remaining liquid, for example in a tank in which the impellers are located, remains at high viscosity and thus does not circulate or mix to the extent required for effective gas transfer, and particularly oxygenation of the entire body of liquid in the tank. These non-mixed or non-circulating portions of the tank liquid are often referred to as "dead zones" and significantly reduce the overall effectiveness of the fermentation process.
It has been discovered in accordance with the invention that circulation of a substantial volume fraction of the liquid in the tank enables circulation of the entire body of liquid in the tank. In the case of shear thinning (non-Newtonian) liquids, a shear field or pattern of agitation effects circulation of the liquid when it is achieved within a substantial volume of the liquid in a tank. Shear fields or patterns which produce flow in a direction other than the direction of circulation, for example, a swirling flow, is inhibited in accordance with the invention. The flow through the substantial volume of liquid causes flow elsewhere throughout the tank thereby circulating the entire body of liquid to obtain good top to bottom turnover of the liquid in the tank. The introduction of gas into the circulating flow and the gasification thereof as may be required by the process, for example a fermentation process ongoing in the tank, is then achievable.
It has been proposed to use various expedients for enhancing mixing and circulation in a tank. However, these techniques have been unable to provide adequate circulation and mixing at flow rates sufficient to facilitate the process under the severe circulation and mixing conditions such as presented by many non-Newtonian, shear thinning liquids, especially in fermentation processes.
Accordingly it is an object of the invention to provide an improved mixing system which enables effective mixing and circulation of liquids under severe mixing conditions, especially those presented by non-Newtonian (shear thinning) liquids.
It is a still further object of the present invention to provide an improved system involving circulation of liquids and the gasification thereof which can be carried out effectively with high viscosity, shear thinning liquids. It is a still further object of the present invention to provide improved impeller systems, which effect circulation of liquids in a tank, which are efficient in terms of the power required to produce a required flow in the tank.
It is a still further object of the present invention to provide an improved impeller which facilitates surface gasification by creating a spray of liquid above the surface of the liquid in the tank, such surface gasification being referred to herein as surface aeration, without limitation to the nature of the gas (whether air or oxygen or some other gas) at the surface of the liquid in the tank. It is still a further object of the invention to provide a mixing environment that reduces the apparent viscosity of the solution and thereby increases the liquid phase mass transfer and thus increases the overall gas-liquid mass transfer.
It is a still further object of the present invention to provide an improved method of determining the efficiency of gasification which is referred to herein as mass transfer of the gas to the liquid in terms of an overall liquid phase mass transfer coefficient, kLa, and particularly to a method for measurement of the oxygenation of the liquid by unsteady state reaeration so as to enable such measurements to be accurately made where standard dissolved oxygen probes and standard Winkler dissolved oxygen titration procedures are not useful because of the high viscosity and ineffective mixing of the bulk liquid phase and the opaqueness of the aerated liquid medium.
Briefly described, the present invention may be embodied in a mixer system disposed below the surface of the liquid in a tank (the surface being measured when the liquid is static, as when not being circulated) and utilizes a plurality of impellers spaced from each other along the axis of a stationary draft mbe. around which axis the impellers are rotated. The draft tube provides coaxial regions inside and outside of the tube, with the diameter of the mbe and its length being such that the mbe occupies a substantial volume fraction of the liquid in the tank. The impellers include a plurality of impellers, and the impellers create a shear field or pattern of agitauon and a pressure gradient to produce good circulation upwardly through the inside region and then downwardly through the outside region. The impellers provide agitation fields which are coupled to each other, and particularly which overlap. Swirling flow inside the draft tube is inhibited, for example, by baffles which project radially inwardly from the draft tube wall and axially between the impellers and preferably above and below the upper and lower most impellers
Gas may be sparged (injected) into the flow entering the draft mbe and/or at the liquid surface In such event the gasification by entrainment of gas in the tank above the liquid surface may be enhanced by the use of a surface aeration impeller Also the circulation at the top ot the draft mbe may be enhanced by a shroud which bridges the inner and outer regions
The surface aeration impeller may be provided by a plurality of blades spaced circumferentially from each other and disposed at acute angles to radial lines from the axis of rotation of the impeller. The lower portions of the blades, which may extend below the surface. may be folded outwardly The blades drive the liquid into a spray umbrella in a direction upwardly and outwardly away from the surface.
The foregoing and other objects, features and advantages of the invention as well as presently preferred embodiments thereof and the best mode of carrying out the methods provided by the invention will become more apparent from the reading of the following descπption in connection with the accompanying drawings in which FIG 1 is a diagrammatic, sectional front elevational view of a tank containing a mixing impeller system m accordance with the invention,
FIG. 2 is a secuonal view taken along the line 2-2 in FIG 1 when viewed in the direction of the arrows;
FIG. 3 is a view similar to FIG. 1 showing another embodiment of an impeller system in accordance with the invention;
FIG 4 is a sectional view taken along the line 4-4 in FIG. 3; FIG. 5 is a view similar to FIG. 1 showing another embodiment of the invention;
FIG. 6 is a view, similar to FIG. 1, showing still another embodiment of the invention:
FIG. 7 is a sectional view taken along the line 7-7 in FIG. 6 when viewed in the direction of the arrows; FIG. 8 is a view, similar to FIG. 1 showing still another embodiment of the invention:
FIG. 9 is a view, similar to FIG 1. showing still another embodiment of the invention:
FIG. 10 is a sectional view along the line 10-10 in FIG. 9 when viewed in the direction of the arrows;
FIG. 11 is a sectional view along the line 11-11 in FIG. 9; and FIG. 12 is plot showing the changes in concentration of oxygen in a body of liquid, as a function of time, which has been oxygenated in a system such as shown in FIG. 1 , and which plot is useful in deriving the mass transfer coefficient, kLa, resulting from oxygenation of the body of liquid.
Referring first to FIGS. 1 and 2, there is shown a mixing system which has been found practical and effective for use in processes for mixing and circulating and gasifying non-
Newtonian liquids and liquid slurries. The system of FIG. 1 has been found especially suitable for improving the mixing and mass transfer rate in bioreaction processes, including fermentation, and particularly a process for producing xanthan gum solutions. Presented hereinafter are examples illustrating a mixing and oxygenation process using air as the gaseous oxygenation medium on a solution simulating a high concentration (three to four percent by weight) solution of xanthan gum. The ability to effectively mix and oxygenate such solutions and produce the products of fermentation at concentrations having enhanced commercial value is an important feature of this invention.
Non-Newtonian liquids are characterized by having a variable viscosity which is a function of the applied shear force. Newtonian liquids such as water and mineral oil have a constant viscosity. The viscosity of non-Newtonian liquids changes when in a shear field, that is where the liquid is subject to a changing shear rate (1/sec). Xanthan gum solutions in the three percent by weight range are a commercially relevant non-Newtonian solution in that their viscosity, when at rest, is of the order of 10,000 cp, (centipoise) (for example 10.000 to 30,000 cp) and 100 cp when subject to a high shear rate. All viscosity values referred to herein are determined on a Brookfield viscometer.
In gasification processes, such as the oxygenation of the broth m fermentation, it is desirable to continue gasification until the oxygen can no longer be transferred at a high enough rate to sustain the microorganisms in the fermentation broth. When approaching this condition in polysaccharride fermentations, the viscosity increases to a point that the rate of oxygenation and circulation of the broth can no longer supply the oxygen demand of the microorganisms When this condition is reached, the fermentation cannot be continued The mixing systems provided by the present mvenuon maintain non-Newtonian liquids, such as xanthan gum solutions, at low viscosity by maintaining a large fraction of the solution under high shear rates, even under these conditions (high three percent or greater xanthan gum concentrations) so that continued effective oxygen transfer and mixing can be maintained Thus, as the process proceeds from startup, the low viscosity initial condition (100 to 200 cp m xanthan gum solutions) is maintained because of the high shear rate in a significant volume fraction of the liquid being mixed and circulated Gasification can then proceed to higher xanthan gum concentrations in the liquid a large fraction of which is maintained at sufficiently low viscosity to enable good circulation and oxygen transfer throughout the entire volume of liquid in the fermenter.
As shown m FIGS. 1 and 2, the liquid is in a tank 10 and has a liquid level 12 below the upper end or πm 14 of the tank when the liquid in the tank is static (that is not being circulated or turned over) between the surface 12 and the bottom 16 of the tank. The tank 10 may be generally cylindrical and the tank walls arranged vertically upright. A cylindrical draft tube 20 is mounted preferably centrally of the tank. Then the axis of the draft mbe 20 is coincident with the axis of the tank 10 when the tank is cylindrical. The diameter of the draft tube and its length is such that the internal volume defined by the mbe 20 is a substantial part, at least 25 % and preferably 50% of the volume of the liquid in the tank 10. There is clearance between the bottom 16 of the tank and the lower end 22 of the draft mbe. The upper end 24 of the draft tube is in the vicinity of the static liquid surface 12. A plurality of mixing impellers 26. 28. 30 and 32 are attached to. and driven by. a common shaft 34. The upper end of the shaft may be connected to a drive motor via a gear box (not shown) and the lower end of the shaft 34. may be journaled in a steady bearing 36. The impellers are all of the same type, namely so-called pitched blade turbines (PBT). having a plurality of four blades circumferentially spaced about the axis of rotation, the axis being the axis of the shaft 34 and the blades are disposed at 45 c to that axis. Such PBT impellers are available from the Lightnin Unit of General Signal Corporation.
Rochester. New York 14611 , USA, as their Model A200. Alternatively, other axial flow impellers may be used, such as airfoil-type blades (sometimes called hydrofoil blades). Such air foil axial flow impellers may. for example, be the A-315. which is presently available from the Lightnin Unit and which is described in Weetman. U.S. Patent 4,896.971 . Other air foil impellers which may be suitable are described in U.S. Patent 4.468,130. also issued to Weetman.
The mixing system in the draft mbe also includes sets 38, 40, 42 and 44 of four vertical baffles which are 90° displaced circumferentially about the axis of the shaft 34. as shown in other
FIGS, discussed hereinafter, between the impellers. Other sets of baffles may be located above. and. if desired below, the upper and lower most impellers 32 and 26. In other words, two pairs of baffles are contained in each set and the pairs are 180° displaced with respect to each other
(See FIG. 2). The impellers 26-32. with the aide of the sets of baffles 38-44. produce a field or pattern of agitation which provide a high level of shear in the liquid in the draft mbe. Thus, in the case of non-Newtonian, shear thinning liquids, the viscosity of the liquid in the draft tube is maintained sufficiently low so that it enhances mass transfer and promotes improved circulation in the tank. The circulation, which has been found to produce the most effective mixing, is in the upward direction inside the draft mbe to regions at the ends of the draft mbe 32 and 24 where the flow changes direction, so that the flow is downward in the annular region between the draft mbe 20 and the sidewall of the tank 10.
The annular region between the draft tube wall 20 and the sidewall of the tank 10 is a region of low shear and hence high effective viscosity for shear thinning liquids. Nonetheless, good uniform flow with no stagnant regions is maintained down through this high viscosity annular region by virtue of the high flow rate generated up through the low viscosity draft tube zone. Thus, the annular region between the draft tube wall 20 and the sidewall of the tank 10 has a relatively high average axial fluid velocity and the liquid is quickly recirculated into the high shear, low viscosity draft tube region. The relative sizing of the draft mbe diameter and impellers and their locations in the draft tube are related by the flow rate so that the requisite circulation and mixing may be obtained. Then the rate of flow and volume contained in the draft mbe and the volume of the tube are sufficient to establish the axial flow between the mbe and wall of the tank over a broad range of viscosities up to and including viscosities of the order of 104 cp (Brookfield). To prevent stagnant zones at the comer formed by the sidewall and the bottom 16 of the tank 10. it is desirable to install an annular plate or ring 46 which defines a fillet to smooth the flow past the comer. Alternatively, the plate may be convexly, inwardly curved so as to provide a generally circular contour for the fillet 46. In order to gasify the liquid, a sparge pipe 50 directs the gas into the lower end of the draft mbe. preferably in proximity to the tips (the radially outward most or peripheral ends) of the blades of the lower most impeller 26. The introduction of the gas is known as sparging. The term aeration is generally used to connote the introduction of any gas including atmospheric air or oxygen enriched air. Substantially pure (90 to 95 %) oxygen may also be used. Gas dispersion or gas incorporation into the liquid also occurs due to mrbulence at the liquid surface 12 where there is gas-liquid contacting and entrainment of the gas into the liquid so that it recirculates downwardly through the outer annular region. Because of the high shear rate in the draft mbe, the liquid is at low viscosity and enables the gas from the sparge pipe 50 to be broken up into fine bubbles which present a large total gas-liquid interfacial area to facilitate mass transfer. The effectiveness of oxygen mass transfer may be measured in terms of the overall liquid phase mass transfer coefficient (kLa).
In order to provide the high shear conditions (high shear rate sufficient to reduce the viscosity of the liquid in the tank so that it can circulate readily and uniformly), the impellers 26. 28. 30 and 32 are spaced sufficiently close to each other so that the field or pattern of their flow overlaps. When the overlapping fields of flow is created, the agitation produces not only axial, but also significant radial force on the fluid. The sets 38, 40, 42 and 44 of baffles inhibit this radial component, which produces a swirling flow, so that the flow upward through the draft tube is substantially axial. The baffles preferably project radially inwardly by distances sufficient to inhibit the radial flow of the liquid. Preferably, the height of the baffles is such that the spacing between the upper and lower edges of the baffles and the adjoining impellers is the minimum to provide a practical running clearance for the impellers 26-32.
The following parameters have been found to provide suitable conditions for effective liquid circulation and mixing and mass transfer and oxygenation. It will be appreciated that the specific values which are selected, depend upon the material (liquid, liquid slurry or other medium) being circulated and aerated. The characteristics are generally listed in their order of criticality . It is a feature of the invention to provide a mixing system wherein each of these parameters is used so as to secure the benefits of efficient liquid mixing and circulation and effective gas-liquid contacting (mass transfer), especially in bio-reaction processes. The parameters are as follows:
1. The ratio of the draft tube diameter to the tank diameter is between about 0.35 and 0.75. with a ratio of about 2/3 (.667) being presently preferred.
2. The ratio of impeller diameter to draft tube diameter is from about 0.5 to 0.96. All of the impellers 26-32 are generally of the same diameter between the tips of the blades. If impellers of different diameter are used, the largest diameter impeller is used in selecting this parameter, i.e. the ratio of the impeller diameter to the draft mbe diameter. 3. Impeller vertical spacing, that is the distance between the mean height of the impeller, as measured between the leading and trailing edges of the blades thereof, is between 0.70 and 1.30 of the diameter of the largest of two adjacent impellers. In other words, where the adjacent impellers have the same diameter, they may be from about 0.70 to 1.30 of an impeller diameter apart. Where the adjacent impellers have different diameters, the largest diameter is used to determine spacing in the range 0.70 to 1.30 of the larger of the two adjacent impeller diameters. Preferably, the impellers are spaced apart so that their midlines are separate by about 1.0 impeller diameter.
4. The ratio of the radial width of the vertical baffles inside the draft tube to the diameter of the draft mbe is preferably in the range of about 0.1 to 0.4. A ratio of about 0.33 of radial width to draft mbe diameter is presently preferred. The height of the baffles in the vertical direction should approach the impellers, and preferably be adjacent thereto, allowing only sufficient spacing for rotation of the impellers without interference.
5. There preferably are two to four baffles in each set of baffles adjoining the impellers.
6. The upper end of the draft mbe may be submerged from the liquid surface up to about 0.3 of the diameter of the draft mbe. In cases where a surface aeration impeller is used or where a diverting shroud is used, as will be described hereinafter in connection with FIGS . 8 to 1 1. the submergence of the draft mbe may be sufficient to enable insertion of the surface aerator and/or the flow diverter at the top of the draft mbe. However, the volume of the liquid in the tank occupied by the draft mbe should remain substantial and be at least about 0.25 of the volume of the liquid in the tank (between the bottom of the tank, the liquid level and within the sidewalls of the tank). The uppermost impeller should also be less than about one impeller diameter from the surface of the liquid in the tank. The placement of the uppermost impeller is selected which engenders good surface mrbulence and further gas-liquid contacting for enhancing the gas transfer rate and the mass transfer coefficient of the system. 7. The off-bottom clearance of the bottom of the draft mbe is preferably from about 0.3 to about 0.7 of the draft mbe diameter. The preferred parameter is 0.5 of the draft tube diameter for the spacing or off-bottom clearance of the bottom or lower end of the draft tube from the bottom of the tank. Referring to FIGS. 3 and 4. there is shown an impeller system having four impellers 60.
62, 64 and 66. There are two axial flow impellers 60 and 64 and two radial flow impellers 62 and 66 which are disposed alternately along the axis of rotation (which is the axis of a shaft 68 which is common to all of the impellers). The axial flow impellers may be PBT's or airfoil blade impellers, such as discussed in connection with FIGS. 1 and 2. The radial flow impellers 62 and 66 may be so-called Rushton turbines, such as R-100 class radial flow impellers, which are presendy available from the Lightnin Unit of General Signal Corporation. Information as to the design of radial flow impellers may be found in Englebrecht and Weetman. U.S. Patent. 4.454.078 and Stanton. U.S. Patent, 4.207,275.
FIG. 3 also illustrates a lowermost set 70 of vertical baffles which may extend outwardly from the lower end 22 of the draft mbe, or the lower edge of the baffle may be coincident with the lower end of the draft mbe.
Gas is sparged into the lower end of the draft mbe. The radial and axial flow impellers are closely coupled so that their agitation patterns and shear fields overlap thereby enabling good axial upward circulation of the liquid through the draft tube and recirculation through the annulus between the draft mbe and the sidewall of the tank.
The system shown in FIG. 5 is similar to the system shown in FIG. 3 except that the draft tube occupies a larger volume fraction of the liquid in the tank and the baffles extend radially inward a lesser distance in respect to the diameter of the larger impellers (the axial flow impellers 60 and 64) than in the case of the system shown in FIGS. 3 and 4. The use of alternate axial and radial flow impellers provides for adequate mixing, circulation and gasification, and affords ample circulation rates (for example '/. foot per second flow). even in the annulus around the draft mbes, so as to produce good liquid mixing and top to bottom turnover and ample mass transfer of the gas to the liquid and dispersion and solution of the gas into the liquid. To the extent that the parts shown in FIGS. 3, 4, and 5 are similar to those shown in FIGS. 1 and 2, like reference numerals are used. Referring to FIGS. 6 and 7, there is shown a mixing system 80 in the tank 10 having three axial flow impellers 82, 84 and 86 inside the draft mbe 20 and a radial flow impeller 88 on the shaft 34 common to all the impellers. The radial flow impeller 88 is located below the draft mbe in the region where the liquid flow turns upwardly into the draft mbe. In the case of the impellers in the draft mbe, the baffles, especially in the set of baffles at the uppermost and lowermost end of the draft tubes (sets 90 and 92 in FIG. 6), reduces swirl, as well as promoting the circulation upwardly through the draft mbe and then down into the annulus between the sidewalls of the tank and the draft mbe 20. The radial flow impeller has a power number (the ratio of the power in horse power which is needed to drive the impeller to the product of the cube of the speed of the impeller and the diameter to the fifth power of the impeller) which is much higher than and preferably about equal to the sum of power numbers of the impellers in the draft tube: thus the radial flow impeller 88 draws at least as much power as all of the three impellers 82, 84 and 86 in the draft tube. The agitation field from the radial flow impeller 88 extends up to the lower end of the draft tube and facilitates the creation of the agitation pattern and shear field in a sufficient volume of the tank to promote complete turnover or circulation (top to bottom mixing) of the liquid in the tank 10. Also the radial flow impeller facilitates effective dispersion of the gas from the sparge pipe into the mixing system. To inhibit swirl in the mixing pattern of the radial flow impeller 88, a plurality (at least two pairs) of vertical baffles 96 and 98 are disposed along the sidewalls of the tank 10 and extend at least half the distance from the bottom of the tank to the bottom of the draft tube for typical liquid media which are being mixed, circulated and aerated. In the event that gasification is done with a gas other than air and especially in all fermentation processes, it is desirable that the overhead gas space (the distance between the rim 14 of the tank and the liquid level 12. shown at 100 in FIG. 1) be sealed by a cover 102. For example, when oxygen is used as the gas for aeration purposes, the overhead is desirably sealed. The oxygen may be introduced by a conduit which enters the overhead 100 via the sidewall of the tank. Referring to FIG. 8. there is shown another embodiment of the invention utilizing a mixing system 200. having a radial flow surface aeration impeller 202 with blades circumferentially spaced about the axis of rotation 204 of the common drive shaft 206 of the impeller 202 and four axial flow 45 ° PBT impellers 208. 210. 212 and 214. The surface aeration impeller 202 may suitably be a Lightnin Model R-335 impeller and provides additional gas-liquid interfacial area by affording a spray umbrella, thereby entraining additional air back into the surface liquid which is recirculated down the angular region between the draft mbe 220 and the sidewalls of the tank 222. The surface aerator 202 also provides additional upward liquid pumping action through the draft tube 220. Where a surface aerator is used, the upper end 224 of the draft mbe may be coincident with the surface 226 of the liquid(the static liquid level in the tank). In the system shown in FIG. 8. separate sparge pipes 228 are provided which extend downwardly along the side wall of the tank to the lowermost set 230 of baffles. The sparge pipes hook upwardly into the draft mbe so as to facilitate introduction of the gas directly into the draft tube. It is a feature of the invention to provide sparging either into the draft tube or into the overhead gas space or both. When substantially pure oxygen is used, it is introduced into the overhead space, into the sparge pipes, such as the array of pipes 228. or both into the overhead and into the array of pipes.
Referring to FIGS. 9, 10 and 11, there is shown an impeller system 300 having, in addition to an arrangement of impellers and baffles in a draft mbe 302, similar to the arrangement of impellers 208, 210. 212 and 214 and their associated baffles, a shroud 304 to facilitate the diversion of the upward flow of liquid out of the draft mbe into the annular region between the draft mbe 302 and the sidewalls of the tank 306. This shroud may be a hemi-toroidal shell which has radial baffles at least one and preferably two pairs of baffles 310, 180° apart are used to inhibit radial flow and short circuiting of the flow back into the draft mbe. These baffles extend radially inwardly from approximately the draft mbe to the inner periphery of the shroud 304. The shroud 304 may be stiffened by a rod or angle iron 312. The connection to the draft mbe may be by welds along the lower edges of the baffles 310 and the upper edge of the draft tube.
Extending through the static surface level 316 of the liquid in the tank 306. is an improved surface aeration impeller. This impeller has a plurality of vertically extending blades 320. Each blade is disposed at an angle (alpha - X of approximately 30° to a successive, circumferentially spaced radial line around the axis of the impeller (the axis of the common shaft 322). These blades have vertical portions 324 at the upward ends thereof. The blades 320 also have, preferably extending below the liquid surface 316. portions 326 which are bent outwardly and define obtuse angles of approximately 120 to 135 degrees with respect to the vertical portions 324 thereof. The blades act as scoops to provide ample flow to the spray umbrella liquid from the surface aerator. The spray falls back over the shroud 304 into the annular region between the sidewalls of the tank 306 and the draft mbe 302. thereby further facilitating the entrainment of gas from the head space above the liquid and providing a larger mass transfer coefficient, kLa. The embodiment shown in FIGS. 9-1 1 may be preferable when high purity oxygen is used as the gas in the process carried out in the tank 306.
Referring to FIG. 12. there is shown a curve of dissolved oxygen. D.O.. concentration measurements with time which is useful in determining the overall liquid phase mass transfer coefficient. kLa. This mass transfer coefficient may be determined by means of an unsteady state reaeration test which uses dissolved oxygen concentration measurements with time from dissolved oxygen probes in the solution or by direct liquid sample titration. However, accurately determining the D.O. concentration measurements with time for high viscosity, opaque media such as xanthan gum solutions is extremely difficult. The accurate use of the unsteady state reaeration test procedure also requires good liquid mixing in the overall bulk liquid phase with no dead zones. Also regions of high flow are required where accurate calibration and use of D.O. probes can be achieved. The present invention provides an effective liquid mixing and circulation system which satisfies all of these requirements for accurate use of the unsteady state reaeration test procedure. Conventional liquid mixing systems cannot be effectively evaluated using the unsteady state test procedure for high viscosity, shear thinning fluids because of the poor level of bulk liquid mixing and turnover in the tank.
The unsteady state reaeration test is carried out by first making up a batch of the xanthan gum solution by mixing and aerating in the actual mixing and aeration system under test. This may be done for several hours so that there is assurance that the equilibrium dissolved oxygen level has been reached. Then, a test sample is extracted from the batch and the equilibrium dissolved oxygen content is measured using a modified Winkler dissolved oxygen titration procedure specifically adapted for high viscosity opaque solutions. The dissolved oxygen content at samration is then used to calibrate the dissolved oxygen probes for the equilibrium-dissolved oxygen level (milligrams per liter of dissolved oxygen) in solution.
After the above D.O. probe calibration procedure is completed, the tank liquid is stripped of dissolved oxygen by bubbling a non-reacting gas. for example, nitrogen, through the batch in the tank. This may be done in the mixing system by replacing air or oxygen as the aerating gas with nitrogen. Measurements were made with the dissolved oxygen probe to show that the dissolved oxygen has been stripped from the liquid solution. This stripping may take 10 to 15 minutes. Then, reaeration with air or other oxygen containing gas is carried out until oxygen saturation is reached in the bulk liquid phase. Measurements are made of D.O. concentration, during reaeration. at successive periods of time. Then the curve. FIG. 12 is plotted. t0 is the start of reaeration and C0 is the initial D.O. concentration. The oxygen transfer rate (OTR) at any point in time is the slope of the curve in FIG. 12 or dC/dt. The slope of the curve is also defined as being equal to kLa (C* - C), where C* is equal to the equilibrium D.O. level, for example, from a sample taken from the middle of the tank. The solution of the resulting differential equation is equal to C = C*-(C*-C0) exp [-(kLa)]. A statistical solution of the equation for the D.O. concentration versus time profile provides an overall lumped parameter kLa for the oxygen mass transfer process. This mass transfer coefficient. kLa. is a measure of the effectiveness of the aeration in the mixing process and is used in the examples presented below to demonstrate the effectiveness of the process for different process conditions and parameters. In examples 1 through 5, a system such as shown in FIGS. 1 and 2 is used where the impellers are 17 inch diameter PBT's. A four pipe gas sparge system such as shown in FIG. 8. rather than a single pipe sparge 50, was used. The liquid which was tested in the examples was a solution simulating a xanthan gum fermentation broth containing three to four percent by weight xanthan gum. The simulating solution was a solution of two percent by weight xanthan gum and 0.5M(molar) sodium sulfate, in water. The mass transfer coefficients given in the examples as the overall tank volume liquid phase mass transfer coefficient were measured using the unsteady state reaeration technique as specifically developed for directly and accurately measuring the liquid phase mass transfer coefficient for xanthan gum solutions as discussed above.
Example 1
Draft Tube Diameter 18" Tank Diameter 36" Liquid Level 72" Tank Height 84"
Power Input 23.6 HP/kgal Gas sparge rate 0.5vvm
Liquid flow rate up through 3/2 liters/sec. draft tube and down through annular region.
Overall tank liquid turnover time 3.9 sec
Overall tank volume liquid phase 18.9 sec-1 mass transfer coefficient (kLa)
Example 2
Draft Tube Diameter 24" Tank Diameter 36" Liquid Level 72" Tank Height 84" Power Input 23.6 HP/kgal Gas sparge rate 0.5 vvm
Liquid flow rate up through 5/6 liters/sec. draft mbe and down through annular region.
Overall tank liquid turnover time 2.3 sec
Overall tank volume liquid phase 16.5 hr mass transfer coefficient (kLa)
Example 3
Draft Tube Diameter 18"
Tank Diameter 36"
Liquid Level 72"
Tank Height 84"
Power Input 23.6 HP/kgal
Gas sparge rate 0.1 vvm
Liquid flow rate up through 444 liters/sec draft tube and down through annular region.
Overall tank liquid turnover time 2.7 sec
Overall tank volume liquid phase 10.3 hr 1 mass transfer coefficient (kLa)
Example 4
Draft Tube Diameter 24" Tank Diameter 36" Liquid Level 72" Tank Height 84"
Power Input 23.6 HP/kgal Gas sparge rate 0.1 vvm Liquid flow rate up through 456 liters/sec. draft tube and down through annular region.
Overall tank liquid turnover time 2.3 sec
Overall tank volume liquid phase 9.2 hr ' mass transfer coefficient (kLa)
Example 5 Draft Tube Diameter 18" Tank Diameter 36" Liquid Level 72" Tank Height 84"
Power Input 15.75 HP/kgal Gas sparge rate 0.5 vvm
Liquid flow rate up through 240 liters/sec. draft mbe and down through annular region.
Overall tank liquid turnover time 5.1 sec
Overall tank volume liquid phase 16.5 hr mass transfer coefficient (kLa)
Example 6
Draft Tube Diameter 24" Tank Diameter 36" Liquid Level 72"
Power Input 15.75 HP/kgal Gas sparge rate 0.5 vvm Liquid flow rate up through 276 liters/sec. draft mbe and down through annular region.
Overall tank liquid turnover time 4.4 sec
Overall mass transfer coefficient (kLa) 12.5 hr'1
In addition to the performance data included in the above examples, the new mixer system designs have no dead zones anywhere within the entire tank system bulk liquid phase and also achieve very effective gas dispersion throughout the tank. The average bubble size escaping from the liquid surface is in the range of '/," to '/:" in diameter as compared to 8" to 12" for conventional design systems. Also the mechanical stability of the entire mixer and tank system is greath improved with essentially no violation or erratic movement of the mixer and tank system.
From the foregoing description, it will be apparent that there has been provided improved mixer systems which are especially adapted for providing effective liquid mixing and gas-liquid contacting and improved mass transfer for non-Newtonian, shear thinning solutions. Variations and modifications in the herein described systems, within the scope of the invention, will undoubtedly suggest themselves to those skilled in the art. Accordingly, the foregoing description should be taken as illustrative and not in a limiting sense.

Claims

1. A system for circulating a liquid medium in a tank which facilitates transfer of a gaseous element to said liquid medium, said system comprising a plurality of impellers which establish flow of said medium in opposite directions in said tank between regions where reversal of said flow occurs, a mbe in said tank, a tube having an axis and opposite ends, each of said opposite ends being in proximity with a different one of said regions, said impellers being disposed in said mbe and being rotatable about said axis, said impellers each producing a field or pattern of agitation which shears said liquid medium, said impellers being in sufficiently closely spaced relationship along said axis and extending radially of said axis across said mbe such that said agitation is established substantially throughout the entire volume of said mbe. means for inhibiting flow due to said agitation which swirls around said axis, and flow of said liquid medium in one of said opposite directions being inside said mbe and flow in the other of said opposite directions being outside said mbe. 2. The system according to Claim 1 wherein said tank is disposed vertically and said flow in said tube is in an upward direction.
3. The system according to Claim 2 wherein said mbe is a draft tube having a wall and said tank also having a wall, said mbe wall and said tank wall defining an annulus extending along said axis, said flow being in said downward direction in said annulus. 4. The system according to Claim 1 wherein said tank has a bottom, one of said regions is disposed between said draft mbe and said bottom of said tank, another impeller which produces radially directed flow being rotatable about said axis and being disposed in said bottom region and having a field or pattern of agitation which extends into said draft mbe.
5. The system according to Claim 4 wherein said tank has a wall and said tube has a wall which define an annulus extending radially of said axis through which said liquid flows in one of said opposite directions which is the downward direction, and second means for inhibiting flow which swirls around said axis in said tank between said annulus and the bottom of said tank.
6. The system according to Claim 4 further comprising means for sparging gas in a direction toward said radial flow impeller.
7. The system according to Claim 6 wherein said sparging means comprises a pipe which discharges said gas towards said radial flow impeller at the periphery thereof or between the bottom of said tank and said radial flow impeller.
8. The system according to Claim 2 wherein at least alternate ones of said impellers in said tube are axial flow impellers.
9. The system according to Claim 8 wherein all of said impellers in said mbe are axial flow impellers on a common shaft.
1 1. The system according to Claim 2 wherein one of said regions is between the surface of said liquid medium in said tank and the one of said opposite ends of said tube which is the upper end thereof, the other of said regions being between the bottom end of said mbe and the bottom of said tank, said upper and lower regions, respectively, having axial lengths of up to 0.3 of the diameter of said mbe and from about 0.3 to 1.0 of the diameter of said mbe.
12. The system according to Claim 1 wherein the rate of flow within the tube and the volume of said mbe is sufficient to establish a significant axial flow rate between said mbe and said tank wall over a broad range of viscosity of said liquid medium up to and including viscosities of the order of 104 cp at low shear rates of about 4 sec ' (Brookfield).
13. The system according to Claim 12 wherein said flow inside and outside said tube is facilitated by said mbe having a ratio of the diameter thereof to the diameter of said tank of between about 0.3 and 0.8.
14. The system according to Claim 1 wherein said agitation pattern is facilitated by at least said impellers in said mbe, which principally produce flow in the axial direction therein. having a diameter, the ratio of which to the diameter of said draft mbe is in the range of about 0.4 to about 0.98.
15. The system according to Claim 2 wherein said means for inhibiting flow which swirls around said axis within said the is provided by a plurality of baffles extending radially of said axis within said mbe and being disposed between said impellers.
16. The system according to Claim 15 wherein said baffles are also provided between the impellers at the upper end and the impellers at the lower end of said mbe. which respectively extend upwardly and downwardly.
17. The system according to Claim 16 wherein said baffles below the lower most of said impellers extend to or beyond the lower end of said draft mbe.
18. The system according to Claim 15 wherein said baffles are disposed symmetrically about said axis.
19. The system according to Claim 18 wherein said baffles comprise at least one pair of baffles which are disposed 180° with respect to each other about said axis.
20. The system according to Claim 1 wherein adjacent ones of said impellers in said tube are spaced from each other along said axis from about 0.60 to 1.40 of the diameter of the one of said impellers having the largest diameter so as to provide said sufficiently close spacing to produce said field of agitation.
21. The system according to Claim 20 wherein said impellers in said draft tube comprise axial flow impellers having the same diameter and having a ratio of the diameter thereof to the diameter of said draft mbe between approximately 0.4 and approximately 0.98. 22. The system according to Claim 15 wherein said baffles have a radial width extending from said draft mbe toward said axis, which said radial width is such that the width thereof with respect to the diameter of said draft mbe is in a ratio in the range approximately from 0.1 to 0.4.
23. The system according to Claim 22 wherein the length of said baffles along said axis provides minimum clearance distances to said impellers in proximity to said baffles.
24. The system according to Claim 2 further comprising means for sparging said gas at a plurality of locations selected from locations in the vicinity of the lower most end of said draft tube, radially inwardly of and axially upward into, said lower most of said impellers near the periphery thereof.
25. The system according to Claim 2 wherein one of said regions is in the proximity of the surface of said medium in said tank and said system further comprises a surface aeration impeller in said one region and coupled to a shaft which extends along said axis and is coupled to each of the other of said plurality of impellers.
26. The system according to Claim 25 wherein said surface aeration impeller has a plurality of blades extending vertically along said axis and radially outward from said axis, said blades being angularly displaced from each other about said axis. 27. The system according to Claim 25 wherein said one of said regions is at the upper end of said tank between the upper end of said mbe and the surface of said liquid in said tank, and a shroud disposed in said one region and extending around the wall of said mbe for diverting flow upwardly into said upper most region, downwardly along an annulus defined between said tank and said draft mbe. 28. The system according to Claim 27 wherein said shroud is a generally hemispherical toroidal shell.
29. The system according to Claim 27 further comprising a plurality of baffles in said shroud extending radially outward over said mbe from a wall defining said shroud to a location at least coincident with said mbe. 30. The system according to Claim 27 further comprising a surface aeration impeller connected to a shaft extending along said axis which is also connected to said impellers in said draft mbe for rotating said impellers about said axis, said surface aeration impeller having blades extending above and below said liquid surface.
31. The system according to Claim 30 wherein said blades are inclined at acute angles with respect to radial lines spaced from each other about said axis so as to scoop liquid at said surface and spray said liquid outwardly .
32. The system according to Claim 31 wherein said blades have portions extending below said surface which are bent upwardly to define angles between the surface thereof and the surface of said vertical portions of said blades which are greater than 90° thereby to further enhance the scooping and spraying action of said surface aeration impeller.
33. The system according to Claim 2 wherein one of said regions is disposed between the upper end of said draft mbe and the surface of said liquid medium in said tank, and a surface aeration impeller on a shaft common to the impellers in said draft mbe, said surface aeration impeller comprising a plurality of blades successively spaced circumferentially from each other about said axis, each of said blades having a vertical portion disposed with respect to a radial line extending from said axis to define an acute angle therebetween, and having a portion which is tilted upwardly away from said axis and defines an angle of greater than 90° with respect to said vertical portion.
34. A system for mixing and aerating a high viscosity, shear thinning liquid comprising an upright vessel having a longitudinally extending upright axis and including a bottom wall and a side wall upstanding from said bottom wall and extending to an upper rim, said vessel being adapted to be filled with the liquid up to a level defining a static liquid surface; a generally cylindrical upright draft mbe having an upright axis mounted within said vessel having a lower end spaced from said bottom wall and an upper end spaced below the static liquid surface; a plurality of mixing impellers mounted for rotation about said axis within said draft tube at longitudinally spaced locations for drawing liquid from and through said lower end, providing upflow inside such mbe and inducing shear in said liquid substantially throughout said draft mbe. thereby thinning said liquid and causing flow of said liquid through said upper end and turbulence at said surface: drive means for rotating said mixing impellers about said upright axis: and a plurality of radially inwardly projecting circumferentially spaced baffles proximate said mixing impellers and extending radially inward from the location of said draft mbe for preventing swirling of the liquid within said draft mbe and providing a substantially axial flow of the liquid from said lower end to said upper end of the draft mbe; and means for sparging gas into said liquid whereby circulating flow of gas and liquid co-currently is induced up through said draft tube, out said upper end of said draft mbe producing surface turbulence, mixing with gas above said liquid surface and enabling entrainment of the gas, then turning down through the annular region between said side wall and said draft mbe for recirculation resulting in gas holdup and gas- liquid interfacial area for gas transfer in the downflow annular region and in the upflow draft tube zone.
35. The system of Claim 34 wherein said gas is selected from the group consisting of air and oxygen enriched air and up to substantially pure oxygen gas.
36. The system of Claim 34 wherein, a head space is provided in said vessel above said surface level, and said head space is closed when said gas is said oxygen gas.
37. The system as set forth in Claim 34 wherein, the diameter of said draft tube is within a range, approximately, of 0.35 the diameter of said vessel and approximately 0.75 the diameter of said vessel: wherein said upper end of said draft mbe is spaced from the static liquid surface when said vessel is filled with the liquid by a distance within a range, approximately, up to about 0.30 of the diameter of said draft mbe; and, said lower end of said draft mbe is spaced from said bottom wall by a distance which is within a range, approximately of 0.3 to 0.7 the maximum diameter of said upflow axial flow impellers. 38. The system as set forth in Claim 34, wherein said baffles are provided by sets of two to four upright, equally spaced circumferentially from each other, and longitudinally extending and adjoining said mixing impellers, each said set of said baffles being located above and below each of the said adjoining mixing impellers.
39. The system as set forth in Claim 38 wherein said baffles project radially inwardly a distance of approximately 0.1 to 0.4 of the diameter of said draft tube.
40. The system of Claim 39 wherein said baffles are longitudinally spaced from said adjoining mixing impellers by a distance providing minimum clearance sufficient to avoid interference with the rotation of their said adjoining impellers.
41. The system as set forth in Claim 34 wherein said plurality of impellers in said draft tube are axial flow impellers of substantially the same diameter separated along said axis from each other by about 0.75 to about 1.25 of the diameter of the impellers.
42. The system as set forth in Claim 34 wherein said drive means includes a longitudinally extending drive shaft aligned along a longitudinally extending upright axis of said vessel.
43. The system as set forth in Claim 34 wherein said side and bottom walls of said vessel meet along a surface which is inclined to said axis by being contoured or filleted.
44. The method of providing bio-reaction in a tank which comprises the steps of introducing a slurry of a bacteria containing liquid and a growth medium into the tank, which slurry increases in viscosity as the bio-reaction proceeds, circulating said slurry upwardly and downwardly in inner and outer coaxial regions of said tank, said inner region occupying at least about twenty-five percent of the volume of said tank which contains said slurry, with the aide of a draft mbe which separates said regions, said circulating step including the step of shearing said liquid throughout said inner region, and said shearing step comprising producing axial flow in said inner region while inhibiting swirl therein.
45. The method according to Claim 44 further comprising the step of introducing gas selected from the group consisting of air. oxygen enriched air and substantially pure oxygen into said tank, said introducing step being carried out by self gasification, sparging of said gas into said inner region or both by sparging and self gasification.
46. The method according to Claim 44 further comprising the step of spraying said liquid at said surface between said inner and outer regions with the aide of a surface aeration impeller located at the surface above said inner region.
47. The method according to Claim 44 further comprising the step of producing radial flow of said liquid between the bottom of said draft mbe and the bottom of said tank and sparging said gas into said radial flow.
49. The method of circulating a non-Newtonian liquid in a tank which comprises the steps of circulating said liquid upwardly and downwardly in inner and outer coaxial regions of said tank below the surface thereof, said inner region occupying at least twenty-five percent of the volume of said tank which contains said non-Newtonian liquid, said circulating step including the steps of shearing said liquid throughout said inner region, and said shearing step further comprises producing axial flow in said inner region while inhibiting swirl therein.
50. The method according to Claim 49 further comprising the step of transferring gas into said liquid by self gasification above the surface of said liquid, sparging said gas into said inner region or both by said surface gasification and sparging. 51. The method according to Claim 49 wherein said liquid which is introduced into said tank contains greater than two percent by weight solution in water of xanthan gum.
52. The method of determining the overall liquid phase mass transfer coefficient. kLa. in a high viscosity, opaque liquid medium which comprises the steps of first calibrating the D.O. probes in a fully aerated equilibrium solution of the liquid medium by employing a specific modification of the Winkler D.O. titration procedure for accurately measuring the D.O. level in a high viscosity, opaque solution, (2) then stripping the solution of dissolved oxygen by aerating with a non-oxygen containing gas such as nitrogen, (3) then reaerating the solution with air or other oxygen containing gas back to samration while measuring the dissolved oxygen content of the liquid medium over time with the calibrated D.O. probes, and (4) then calculating the value of kLa by statistically fitting the measured D.O. concentrations versus time data to the equation C=C*-(C*-C0) exp (-(l a).) where C is the dissolved oxygen concentration at any time t. C" is the equilibrium dissolved oxygen concentration in the liquid medium at the test conditions, and C0 is the initial D.O. concentration of the test liquid at time t<, during the unsteady state reaeration test.
53. A surface aeration impeller rotatable about an axis comprising blades extending above and below a surface of a body of liquid medium to be aerated, said blades being inclined at acute angles with respect to radial lines spaced from each other at successive angular increments about said axis so as to scoop liquid at said surface and spray said liquid outwardly away from said axis.
54. The impeller according to Claim 55 wherein said blades have vertical portions and portions extending from said vertical portions which are bent upwardly to define angles between the surfaces thereof facing outwardly from said axis and the outwardly facing surfaces of said vertical portions of said blades which are greater than 90° thereby to further enhance the scooping and spraying action of said surface aeration impeller.
55. The impeller according to Claim 55 wherein said a plurality of blades are spaced at successive angles about said axis, each of said blades having a vertical portion disposed with respect to a different one of said radial lines to define an acute angle there between, and said blades each having a portion which is tilted upwardly away from said axis and defines an angle of greater than 90° with respect to said vertical portion.
56. The system according to Claim 1 wherein said tank has a wall and said mbe has a wall which define an annulus extending radially of said axis through which said liquid flows in one of said opposite directions which is the downward direction, and means for inhibiting the formation of a stagnant zone in said flow between said annulus and the bottom of said tank.
PCT/US1999/015407 1998-07-10 1999-07-09 Mixer systems WO2000002652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU50929/99A AU5092999A (en) 1998-07-10 1999-07-09 Mixer systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9243198P 1998-07-10 1998-07-10
US60/092,431 1998-07-10

Publications (1)

Publication Number Publication Date
WO2000002652A1 true WO2000002652A1 (en) 2000-01-20

Family

ID=22233184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/015407 WO2000002652A1 (en) 1998-07-10 1999-07-09 Mixer systems

Country Status (2)

Country Link
AU (1) AU5092999A (en)
WO (1) WO2000002652A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1117821A1 (en) * 1998-09-28 2001-07-25 The Penn State Research Foundation Mixer systems
JP2012115808A (en) * 2010-12-03 2012-06-21 Heungbo Tech Co Ltd Homogeneously kneading apparatus
CN106186288A (en) * 2016-08-10 2016-12-07 南京宇行环保科技有限公司 Black and odorous water dissolved oxygen Enhancement Method and oxygen dissolving method and equipment
US9713799B2 (en) 2013-12-17 2017-07-25 Bayer Cropscience Lp Mixing systems, methods, and devices with extendible impellers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092678A (en) * 1958-04-29 1963-06-04 Vogelbusch Gmbh Apparatus for gasifying liquids
US3572661A (en) * 1968-04-04 1971-03-30 Mueller Hans Admixing of gaseous and liquid phases
US3865721A (en) * 1971-09-02 1975-02-11 Kaelin J R Method for introduction and circulation of oxygen or oxygenous gas in a liquid which is to be clarified, and apparatus for carrying out the method
US4519959A (en) * 1982-04-14 1985-05-28 Tatsuro Takeuchi Gas-liquid contacting apparatus
US5009816A (en) * 1990-04-26 1991-04-23 Union Carbide Industrial Gases Technology Corporation Broad liquid level gas-liquid mixing operations
US5314076A (en) * 1991-02-04 1994-05-24 Gie Anjou-Recherche Installation for the mixing of two fluid phases by mechanical stirring, notably for the treatment of water by transfer of oxidizing gas, and use of such an installation
US5451348A (en) * 1994-04-18 1995-09-19 Praxair Technology, Inc. Variable liquid level eductor/impeller gas-liquid mixing apparatus and process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092678A (en) * 1958-04-29 1963-06-04 Vogelbusch Gmbh Apparatus for gasifying liquids
US3572661A (en) * 1968-04-04 1971-03-30 Mueller Hans Admixing of gaseous and liquid phases
US3865721A (en) * 1971-09-02 1975-02-11 Kaelin J R Method for introduction and circulation of oxygen or oxygenous gas in a liquid which is to be clarified, and apparatus for carrying out the method
US4519959A (en) * 1982-04-14 1985-05-28 Tatsuro Takeuchi Gas-liquid contacting apparatus
US5009816A (en) * 1990-04-26 1991-04-23 Union Carbide Industrial Gases Technology Corporation Broad liquid level gas-liquid mixing operations
US5314076A (en) * 1991-02-04 1994-05-24 Gie Anjou-Recherche Installation for the mixing of two fluid phases by mechanical stirring, notably for the treatment of water by transfer of oxidizing gas, and use of such an installation
US5451348A (en) * 1994-04-18 1995-09-19 Praxair Technology, Inc. Variable liquid level eductor/impeller gas-liquid mixing apparatus and process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1117821A1 (en) * 1998-09-28 2001-07-25 The Penn State Research Foundation Mixer systems
EP1117821A4 (en) * 1998-09-28 2003-01-02 Penn State Res Found Mixer systems
EP1393796A1 (en) * 1998-09-28 2004-03-03 The Penn State Research Foundation Mixer systems
JP2012115808A (en) * 2010-12-03 2012-06-21 Heungbo Tech Co Ltd Homogeneously kneading apparatus
US9713799B2 (en) 2013-12-17 2017-07-25 Bayer Cropscience Lp Mixing systems, methods, and devices with extendible impellers
US10350557B2 (en) 2013-12-17 2019-07-16 Bayer Cropscience Lp Mixing systems, methods, and devices with extendible impellers
CN106186288A (en) * 2016-08-10 2016-12-07 南京宇行环保科技有限公司 Black and odorous water dissolved oxygen Enhancement Method and oxygen dissolving method and equipment

Also Published As

Publication number Publication date
AU5092999A (en) 2000-02-01

Similar Documents

Publication Publication Date Title
US6464384B2 (en) Mixer systems
Kasat et al. Review on mixing characteristics in solid‐liquid and solid‐liquid‐gas reactor vessels
CA2006590C (en) Gas-liquid mixer
US4256839A (en) Reactor system such as a fermentation system
CA2345039C (en) Mixing system for introducing and dispersing gas into liquids
JP2507839B2 (en) Stirrer
IE64111B1 (en) Mixing apparatus
JPS63317074A (en) Fermentation apparatus
Poncin et al. Hydrodynamics and volumetric gas–liquid mass transfer coefficient of a stirred vessel equipped with a gas-inducing impeller
WO2000002652A1 (en) Mixer systems
WO2001041919A1 (en) Impeller draft tube agitation system for gas-liquid mixing in a stirred tank reactor
Bombač et al. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers
US5454986A (en) Down-flow batch mixing system
CN107435085A (en) The efficient mixing agitator of desulfurizing iron
JPH0248027A (en) Agitating pot with radially fed agtator and at least one buffer and method for mixing liquid by using agtating pot
US6467947B1 (en) Method and apparatus for mixing
JPS59147630A (en) Stirring device with air injection
JPH07124456A (en) Agitating device
SK285574B6 (en) Agitation blade unit
JP2776723B2 (en) Stirred fermenter
Bakker et al. The use of profiled axial flow impellers in gas-liquid reactors
Xu et al. Critical rotational speed for a floating particle suspension in an aerated vessel
JPH0629997Y2 (en) Fermenter
McFarlane et al. Studies of high solidity ratio hydrofoil impellers for aerated bioreactors. 3. Fluids of enhanced viscosity and exhibiting coalescence repression
Sardeing et al. Aeration of large size tanks by a surface agitator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase