WO2000002073A1 - Laser direct writing of planar lightwave circuits - Google Patents
Laser direct writing of planar lightwave circuits Download PDFInfo
- Publication number
- WO2000002073A1 WO2000002073A1 PCT/AU1999/000540 AU9900540W WO0002073A1 WO 2000002073 A1 WO2000002073 A1 WO 2000002073A1 AU 9900540 W AU9900540 W AU 9900540W WO 0002073 A1 WO0002073 A1 WO 0002073A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- tem
- laser beam
- film
- waveguide
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12107—Grating
Definitions
- This invention relates to the production of planar lightwave circuits (PLC's). More particularly, the invention relates to a method for defining the light wave circuit or components of the circuit by direct photoinduced changes in refractive index of a thin film forming the basis of the PLC.
- the basis of most PLC's is a trilayer of optically transparent thin films deposited on a substrate of generally silicon or silica as shown in Figure 1.
- the central, or core layer 1 of the sandwich structure normally has higher refractive index n co than the refractive index n cl of outer cladding layers 2, 3, and this simple system is known as a planar waveguide.
- Light injected into the core layer undergoes total internal reflection at both core/cladding boundaries 4, 5 and is confined in this transverse dimension, resulting in 1-dimensional light guidance.
- the constant refractive index in the plane of the film total internal reflection is not possible, and light spreads or diffracts laterally in the guiding layer.
- planar waveguide To impart useful functionality to a planar waveguide, 2-dimensional light guidance is required, and planar diffraction must be overcome by introducing local changes in the core layer refractive index.
- the light guides so formed are known as channel waveguides, the basic elements of PLC'S, and the final product is a planar lightwave circuit which can exhibit a wide range of optical functions.
- An example of a simple device is a concatenated Y-junction splitter where the signals from a single input channel are split evenly into a larger number of output channels independent of wavelength.
- silica glass using plasma enhanced chemical vapour deposition: PECVD, or flame hydrolysis: FHD
- FHD flame hydrolysis
- the waveguides in the PLC are defined by structuring or patterning of the refractive index in the plane of the film.
- the standard patterning technique is known as mask photolithography.
- the first step in this process is to deposit an additional thin film of photo resist onto the planar waveguide core, usually by spin coating.
- the photo resist film is then preferentially exposed to a broadband extended UV source through an amplitude mask such that a photochemical reaction is initiated below the high transmission areas of the mask.
- the photochemical reaction changes the solubility of the photo resist enabling it to be removed by agitation in a suitable solvent.
- the irradiated regions will remain or be removed respectively.
- the photo resist pattern may then be transferred to the waveguide core layer by removing core material from the unwanted regions by a process such as reactive ion etching. Removal of the remaining resist and over cladding with a low refractive index film completes the standard processing of the PLC. Two dimensional waveguiding is therefore achieved through selective removal of the high index core material.
- materials such as plastics, ormosils and some glasses can allow refractive index patterning to be achieved without the use of an additional photo resist layer.
- direct exposure generally to UV radiation initiates a photochemical reaction that raises the refractive index of the core material, enabling channel waveguides to be formed.
- the materials are generically described as photosensitive. The use of mask photolithography on these films therefore results in the production of PLC'S without the requirement for the deposition of an additional photo resist layer or any reactive ion etching or wet development.
- the LDW process is very versatile and permits a wider range of structures than is generally possible by exposure through a mask. For example, using a mask the exposure will be uniform across the whole wafer, and hence the refractive index change obtained cannot vary from one part of the waveguide structure to the next.
- LDW permits the exposure, and hence the induced change of the refractive index, to be adjusted even over short distances permitting a wider range of waveguide structures to be written.
- the LDW process permits the waveguide pattern to be changed from wafer to wafer because the generated pattern can be under direct software control.
- the laser induced photochemical reaction can either directly induce a refractive index change in the waveguiding material without further processing, the material system can be locally exposed and then subjected to wet development, or a secondary layer of photo resist may be used and the photo resist pattern transferred to the waveguiding core layer. Therefore depending on the laser source, the process is applicable to many different material systems e.g. glass, polymer, sol- gel, Ti:LiNbO 3 .
- the use of high power lasers and/or different laser wavelengths can access photosensitive mechanisms that cannot be attained with mask photolithography.
- n the refractive index, n, of a photosensitive material is dependent on it's exposure, F, to electromagnetic radiation, and as shown in Figure 2 the material response function, n(F), typically exhibits a saturation behaviour up to a maximum exposure, F s ⁇ .
- Figure 3 A plan view of the laser writing process is shown in Figure 3, where we consider delineation of a channel waveguide of width la in the z direction. For a laser irradiance distribution, I(y,z), the lateral exposure of the material in the y direction, F(y), is given by;
- this invention provides a method of directly producing photoinduced changes in refractive index in selected regions of a photosensitive thin film by selectively scanning a laser beam across the surface of the film, characterised in that the laser beam impinging the film has an annular substantially circularly symmetric irradiation intensity distribution.
- annular intensity distribution includes any transverse intensity distribution that has a very low or zero intensity in a central region and a surrounding region of higher intensity.
- the radial intensity distribution within the surrounding region can be substantially uniform or may vary. This type of intensity distribution is sometimes referred to as a "doughnut type" distribution.
- Such a distribution is achieved, for example, by a TEM 01 * laser beam although higher order modes can also produce an intensity distribution having similar characteristics.
- the TEM 01 * is a hybrid mode consisting of a superposition of TEM 01 and TEM 10 with a constant phase difference of ⁇ /2.
- the radial intensity distribution in a TEM 01 * beam is given by
- a TEM 0 ,* laser beam is used.
- the beam for example, can be generated from a Gaussian laser beam by a diffracting phase mask technique as described in N. R. Heckenberg, R. McDuff, C. P. Smith and A. G. White, 'Generation of optical phase singularities by computer-generated holograms', Optics Letters, Vol. 17, No. 3, pp. 221-223, 1992.
- a TEMQ,* beam can also be produced directly from a laser by suitable modification to the cavity optics.
- Figure 1 is a schematic illustration of a planar waveguide
- Figure 2 illustrates the typical refraction index response of a photosensitive medium as a function of exposure to electromagnetic radiation
- Figure 3 is a schematic planar view of a laser circuit writing process used in the method of this invention.
- Figure 4 illustrates the lateral exposure function of TEM 01 * (solid line) and TEM QQ
- Figure 5 illustrates the lateral refraction index distribution for TEM 01 * (solid line) and TEM QQ (dashed line) for equal maximum exposure writing scenarios
- Figure 6 illustrates bend loss for TEM 01 *(solid line) and TEM QQ (dashed line) written waveguides of equal spot size and maximum exposure.
- the method of this invention utilises a laser direct write (LDW) technique in which a focussed TEM 01 * laser beam is used.
- LDW laser direct write
- the LDW technique is known to those skilled in the art and will not be described in detail.
- the TEM 01 * 'doughnut mode' has an irradiance distribution which exhibits zero intensity at the beam centre.
- the maximum exposure is constrained to be equal to the material saturation exposure and results in the lateral refractive index distribution as shown in Figure 5.
- the laser writing with a TEM 0 ,* beam gives a larger photoinduced refractive index change in the outer regions of the beam than that obtained with a TEM QQ counterpart of equal F nm
- the change of index is more uniform over the waveguide region.
- the channel waveguides produced using either TEM QQ or TEM 01 * mode LDW must have mode sizes that are matched to those of a typical communications fibre, and the same maximum exposure of the photosensitive layer is used for both TEM QQ and TEM 01 * LDW, then a larger diameter writing beam is required in the TEMQQ case. This is because, as shown in Figure 5, the photoinduced refractive index changes are low in the outer regions of the beam for TEM QQ exposure. The waveguide must therefore be made physically wider to pull the optical field out to match the fibre mode field size.
- the mode effective index can be approximated as a weighted average of the refractive index distribution, n(x,y), seen by the mode, i.e.
- n co- n cl where n cl is the cladding refractive index and n co is the maximum photoinduced refractive index, gives a B value typically 20% higher in the TEM 01 * case.
- the stronger confinement imparts significant technical advantages for the TEM 01 * written waveguides.
- the minimum bend radius (for O.ldB/cm bend loss) permissible for a TEM 01 * written guide may be as small as —75% the value of that possible using waveguides written by TEM QQ mode beams. This significantly impacts the device density on the planar waveguide typically increasing by a factor of 1.8 the number of devices that can be written on a given area of the optical "chip".
- index profiles generated through TEM 01 * LDW result in channel waveguides with form birefringence reduced by typically a factor of 2 relative to TEM QQ written guides.
- wavelength division multiplexing as the method of choice for expanding the bandwidth of existing optical networks means that spectrally selective elements are often required in PLC's.
- the required PLC functionality is acquired by photo defining Bragg reflection phase gratings into the existing PLC channel waveguides.
- F max Q.lF sat for example.
- the photoinduced phase grating should be written uniformly across the waveguide, requiring a uniform index distribution, n(y), in the channel waveguide.
- n(y) uniform index distribution
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU45930/99A AU750878B2 (en) | 1998-07-03 | 1999-07-02 | Laser direct writing of planar lightwave circuits |
KR1020017000066A KR20010074638A (en) | 1998-07-03 | 1999-07-02 | Laser direct writing of planar lightwave circuits |
CA002336091A CA2336091A1 (en) | 1998-07-03 | 1999-07-02 | Laser direct writing of planar lightwave circuits |
JP2000558412A JP2002519745A (en) | 1998-07-03 | 1999-07-02 | Manufacturing method of planar lightwave circuit by direct laser writing |
EP99928912A EP1110112A1 (en) | 1998-07-03 | 1999-07-02 | Laser direct writing of planar lightwave circuits |
US09/720,802 US6577799B1 (en) | 1998-07-03 | 1999-07-02 | Laser direct writing of planar lightwave circuits |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPP4465A AUPP446598A0 (en) | 1998-07-03 | 1998-07-03 | Planar lightwave circuits |
AUPP4465 | 1998-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000002073A1 true WO2000002073A1 (en) | 2000-01-13 |
Family
ID=3808705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1999/000540 WO2000002073A1 (en) | 1998-07-03 | 1999-07-02 | Laser direct writing of planar lightwave circuits |
Country Status (7)
Country | Link |
---|---|
US (1) | US6577799B1 (en) |
EP (1) | EP1110112A1 (en) |
JP (1) | JP2002519745A (en) |
KR (1) | KR20010074638A (en) |
AU (1) | AUPP446598A0 (en) |
CA (1) | CA2336091A1 (en) |
WO (1) | WO2000002073A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067054A1 (en) * | 1999-04-30 | 2000-11-09 | The University Of Sydney | Method for creating an optical structure within a photosensitive light transmissive material and of enhancing the photosensitivity of the photosensitive light transmissive material |
JP2001311847A (en) * | 2000-02-22 | 2001-11-09 | Nec Corp | Method and device for correcting refractive index, and optical waveguide device |
US7031584B2 (en) | 2002-12-23 | 2006-04-18 | Electronics And Telecommunications Research Institute | Method for manufacturing optical waveguide using laser direct writing method and optical waveguide manufactured by using the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005313861A1 (en) * | 2004-12-09 | 2006-06-15 | Rpo Pty Limited | Optical power distribution devices |
TWI413801B (en) * | 2008-01-04 | 2013-11-01 | Ind Tech Res Inst | System for manufacturing micro-retarder and method for manufacturing the same |
US9864139B1 (en) | 2016-01-22 | 2018-01-09 | Seagate Technology Llc | Uniform laser direct writing for waveguides |
US10288808B1 (en) | 2016-01-22 | 2019-05-14 | Seagate Technology Llc | Laser direct writing for non-linear waveguides |
KR102302604B1 (en) | 2017-11-01 | 2021-09-16 | 한국전자통신연구원 | Spectroscopy Device |
CN113805433A (en) * | 2021-09-18 | 2021-12-17 | 西北大学 | Manufacturing method of three-dimensional nano through hole |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5629805A (en) * | 1993-11-15 | 1997-05-13 | Nec Corporation | Aligner equipped with annular illumination system for annular illumination light with large illuminance |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847132A (en) * | 1986-10-20 | 1989-07-11 | Matsushita Electric Industrial Co., Ltd. | Protective layer for optical information recording medium |
JPH0252724A (en) | 1988-08-18 | 1990-02-22 | Osaka Prefecture | Optical shaping method |
US5054872A (en) * | 1990-03-16 | 1991-10-08 | Ibm Corporation | Polymeric optical waveguides and methods of forming the same |
US5194349A (en) * | 1992-02-07 | 1993-03-16 | Midwest Research Institute | Erasable, multiple level logic optical memory disk |
US5315427A (en) * | 1992-12-14 | 1994-05-24 | Xerox Corporation | Pair of binary diffraction optics for use in overfilled raster output scanning systems |
-
1998
- 1998-07-03 AU AUPP4465A patent/AUPP446598A0/en not_active Abandoned
-
1999
- 1999-07-02 KR KR1020017000066A patent/KR20010074638A/en not_active Application Discontinuation
- 1999-07-02 WO PCT/AU1999/000540 patent/WO2000002073A1/en not_active Application Discontinuation
- 1999-07-02 US US09/720,802 patent/US6577799B1/en not_active Expired - Fee Related
- 1999-07-02 JP JP2000558412A patent/JP2002519745A/en active Pending
- 1999-07-02 CA CA002336091A patent/CA2336091A1/en not_active Abandoned
- 1999-07-02 EP EP99928912A patent/EP1110112A1/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5629805A (en) * | 1993-11-15 | 1997-05-13 | Nec Corporation | Aligner equipped with annular illumination system for annular illumination light with large illuminance |
Non-Patent Citations (2)
Title |
---|
ACOFT'98 PROCEEDINGS: 23rd AUSTRALIAN CONFERENCE ON OPTICAL FIBRE TECHNOLOGY, 5-8 July 1998, (IREE Society, Sydney), R. CHARTERS et al., "Laser Direct Writing of Polymeric PLC's Using a TEM01* Beam", pages 37-40. * |
PATENT ABSTRACTS OF JAPAN, (M-971), page 22; & JP 2052724 A (OSAKA PREFECTURE¬1¾) 22 February 1990. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000067054A1 (en) * | 1999-04-30 | 2000-11-09 | The University Of Sydney | Method for creating an optical structure within a photosensitive light transmissive material and of enhancing the photosensitivity of the photosensitive light transmissive material |
JP2001311847A (en) * | 2000-02-22 | 2001-11-09 | Nec Corp | Method and device for correcting refractive index, and optical waveguide device |
US7031584B2 (en) | 2002-12-23 | 2006-04-18 | Electronics And Telecommunications Research Institute | Method for manufacturing optical waveguide using laser direct writing method and optical waveguide manufactured by using the same |
Also Published As
Publication number | Publication date |
---|---|
AUPP446598A0 (en) | 1998-07-30 |
JP2002519745A (en) | 2002-07-02 |
EP1110112A1 (en) | 2001-06-27 |
CA2336091A1 (en) | 2000-01-13 |
KR20010074638A (en) | 2001-08-04 |
US6577799B1 (en) | 2003-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6256435B1 (en) | Polarization insensitive grating in a planar channel optical waveguide and method to achieve the same | |
EP1347317A1 (en) | Optical signal processing circuit and method of producing same | |
US20060120681A1 (en) | Process for producing filmy optical waveguide | |
US8175430B2 (en) | Optical multiplexer/demultiplexer systems configured with non-periodic gratings | |
US6915029B2 (en) | High density integrated optical chip with low index difference and high index difference waveguide functions | |
US5848207A (en) | Optical device formed with grating therein, add/drop filter using same, and method of fabricating same | |
US6577799B1 (en) | Laser direct writing of planar lightwave circuits | |
KR100471380B1 (en) | Method for Manufacturing Optical Waveguide Using Laser Direct Writing And Optical Waveguide Using the Same | |
US20090190195A1 (en) | Method of digitally processing optical waves and an integrated planar optical device based on digital planar holography | |
US6428944B1 (en) | Fabrication of gratings in planar waveguide devices | |
US7526151B1 (en) | Highly symmetric optical structures | |
AU750878B2 (en) | Laser direct writing of planar lightwave circuits | |
JP2004170627A (en) | Planar waveguide and array waveguide type grating | |
EP3872542B1 (en) | Device for the emission of arbitrary optical beam profiles from waveguides into two-dimensional space | |
US7181107B2 (en) | Integrated optics coupling element comprising a grating created in a cladding and its fabrication method | |
Charters et al. | Improved performance of laser written channel waveguides using a TEM/sub 01/* beam | |
Koster et al. | Passive polarization converter in SiON technology | |
Khan et al. | Long working distance apodized grating coupler | |
Samanta et al. | Design and Development of Some SU-8 Wire Waveguide Structures | |
de Cabo et al. | Extending the spectral operation of multimode and polarization-independent power splitters through subwavelength nanotechnology | |
Davis et al. | Distributed Bragg deflectors fabricated in sol-gel based waveguides | |
WO2000079320A1 (en) | Method of forming an optical waveguide device | |
Garner et al. | Three dimensional integrated optics using polymers | |
AU767821B2 (en) | Method of forming an optical waveguide device | |
Rafizadeh | Experimental realization of nanofabricated semiconductor waveguide-coupled microcavity ring and disk optical resonators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999928912 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 45930/99 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2336091 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 558412 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017000066 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09720802 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1999928912 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017000066 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWG | Wipo information: grant in national office |
Ref document number: 45930/99 Country of ref document: AU |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999928912 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1020017000066 Country of ref document: KR |