WO2000001848A1 - Polynucleotide assay apparatus and polynucleotide assay method - Google Patents

Polynucleotide assay apparatus and polynucleotide assay method Download PDF

Info

Publication number
WO2000001848A1
WO2000001848A1 PCT/JP1998/002963 JP9802963W WO0001848A1 WO 2000001848 A1 WO2000001848 A1 WO 2000001848A1 JP 9802963 W JP9802963 W JP 9802963W WO 0001848 A1 WO0001848 A1 WO 0001848A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
electrochemiluminescence
polynucleotide
dna
Prior art date
Application number
PCT/JP1998/002963
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoharu Kajiyama
Yuji Miyahara
Hiroyuki Tomita
Kazunori Okano
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1998/002963 priority Critical patent/WO2000001848A1/en
Publication of WO2000001848A1 publication Critical patent/WO2000001848A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Definitions

  • the present invention relates to a polynucleotide detection cell for detecting DNA, mRNA, and the like for testing, a detection apparatus using the cell, and a detection method.
  • a hybrid of the probe and the fluorescently labeled target DNA is formed.
  • the entire area of the DNA detection cell is scanned with laser light in less than 15 minutes.
  • a technique for detecting a hybrid by exciting a fluorescent label and detecting the resulting fluorescence is known (Nature Biotec hnology 14, 1675-1680 (1996)).
  • the sample DNA is modified with a biotin group, and the sample DNA is captured by beads using a biotin-avidin bond.
  • the complementary DNA strand is bound to the sample probe by electrochemiluminescence-labeled DNA probe with a known base sequence.
  • a probe method using an electrochemiluminescent-labeled DNA probe, which detects the presence or absence of complementary strand binding by detecting the electrochemical emission of DNA, has been reported (Clinical Chemistry 37, No. 9, 1626). — 1632 (1991).
  • Electrochemical luminescence (ECL) -labeled nucleotides and oligos labeled with electrochemical luminescence (ECL) label are known (Japanese Patent Application Laid-Open No. Hei 9-1505464).
  • Various complexes used in the electrochemiluminescence reaction are widely known (C 1 inical Chemistry 37, No. 9, 1534-1539 (1991)), J. Electrochem em. Soc., Vol. 132, No. 4, 842-849 (1995), JP-A-7-173185, JP-A-7-309836). Disclosure of the invention
  • An object of the present invention is to provide a polynucleotide detection cell for performing high-speed detection of a hybrid between a target polynucleotide and a probe, a polynucleotide detection device using the cell, and a test method.
  • a substrate under the DNA detection cell in which different DNA probes are immobilized in a plurality of compartments is formed, and a transparent DNA in which a predetermined counter electrode is formed.
  • a space is formed between the substrate on the detection cell and the reagent solution involved in the siege reaction and the electrochemiluminescence reaction.
  • the extension of the hybrid DNA probe between the target DNA fragment (target polynucleotide) and the DNA probe fixed in each section is performed, and the detection of the extended strand is performed. This is performed using an electrochemiluminescence reaction.
  • the progress and stop of the electrochemiluminescence reaction are controlled at high speed by high-speed control of the voltage applied between the working electrode and the counter electrode. Presence can be detected at high speed. In other words, a large number of probe tests can be performed in a short time with a simple device configuration.
  • a DNA fragment group obtained from a DNA sample and a DNA probe immobilized in each compartment are subjected to a complementary strand reaction to capture a DNA fragment in each compartment.
  • an extension reaction is performed using Taq DNA polymerase and adenine, thymine, guacin, and cytosine to which the electrochemiluminescent label is bound, and the DNA probe complementary to the DNA fragment captured in each compartment is extended.
  • a reducing agent is introduced into the DNA detection cell, and a voltage is applied between the working electrode and the counter electrode to measure the electrochemiluminescence generated on and near the working electrode. Detection of the position of the compartment where the electrochemiluminescence occurs and the intensity of the electrochemiluminescence is determined by combining a light transmission means such as an optical fiber with a solid-state photodetector, a microchannel plate for performing optical amplification, and a TV camera. This is done separately for each working electrode section.
  • a light transmission means such as an optical fiber with a solid-state photodetector, a microchannel plate for performing optical amplification, and a TV camera. This is done separately for each working electrode section.
  • a polynucleotide detection cell for applying a voltage to a local portion between a selected section of the working electrode and the counter electrode is integrated and configured, and an electrochemical cell generated at each local portion is formed. By measuring the luminescence, the presence or absence of the target DNA fragment that complementarily binds to the DNA probe immobilized in the selected compartment can be quickly detected.
  • a DNA fragment group obtained by amplifying a target DNA fragment by PCR using a primer to which an electrochemiluminescent label is bound, and an oligomer to which the electrochemiluminescent label is bound are ligated by a ligation reaction.
  • a DNA fragment group obtained by binding to each DNA fragment can be used.
  • an extension reaction of a DNA probe complementary to the DNA fragment is performed.
  • a polynucleotide comprising a first electrode in which different DNA probes are fixed to different sections for each type, and a second electrode opposed to the first electrode
  • Performing a reaction to extend the complementary DNA probe applying a voltage between the first electrode and the second electrode, and detecting the presence or absence of electrochemiluminescence generated by the application of the voltage. And detecting the presence or absence of an extended chain generated by the elongation reaction.
  • a DNA probe immobilized in a compartment of a polynucleotide detection cell comprising a first electrode fixed in a compartment, and a second electrode facing the first electrode, and an oligonucleotide labeled with electrochemiluminescence.
  • a poly-electrode comprising a first electrode in which different DNA probes are fixed to different sections for each type, and a second electrode opposed to the first electrode.
  • the method is characterized in that a voltage is applied in between and a step of detecting the electrochemiluminescence generated by the application of the voltage.
  • electrochemiluminescence is used, so that the optical system and the photodetector are simpler in configuration than the conventional configuration in which a fluorescent label is used to excite the fluorescent label with excitation light. It can be close to the detection cell, and the efficiency of electrochemiluminescence can be maximized.
  • the DNA detection cell and the inspection apparatus of the present invention even if a very large number of types of DNA probes are used, the time required for the inspection is short, and the inspection can be sped up. Since no mechanical or optical moving elements are required for the electrochemiluminescence measurement system, handling and adjustment can be simplified.
  • FIG. 1 is a diagram showing a configuration of a DNA detection cell according to a first embodiment of the present invention.
  • FIG. 2 shows a hybrid formed by complementary strand binding between a DNA probe fixed to a compartment of a DNA detection cell and a partial base sequence of a target DNA fragment in the first embodiment of the present invention.
  • FIG. 3 shows the ruthenium used in the extension reaction in the first embodiment of the present invention.
  • FIG. 3 is a view showing dATP to which a complex is bound.
  • FIG. 4 is a diagram showing a dCTP to which a ruthenium complex used in an elongation reaction is bound in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a dGTP to which a ruthenium complex used in an extension reaction is bound in a first embodiment of the present invention.
  • FIG. 6 is a diagram showing a dTTP to which a ruthenium complex used in an elongation reaction is bound in the first embodiment of the present invention.
  • FIG. 7 is a diagram for explaining an extension reaction of a DNA probe bound to a target DNA fragment in a complementary manner in the first example of the present invention.
  • FIG. 8 is a diagram showing an example of an electrochemiluminescence detection system in the first embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of a display screen showing a detection result in the first embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of the configuration of an inspection apparatus for measuring electrochemiluminescence near a working electrode of a DNA detection cell using a TV camera in the second embodiment of the present invention.
  • FIG. 11 is a diagram showing a configuration of a DNA detection cell in which a working electrode and a counter electrode are formed on the same plane in a third embodiment of the present invention.
  • FIG. 12 is a view showing a configuration of a DNA detection cell in which a working electrode and a plurality of independent force counter electrodes are formed on the same plane in a fourth embodiment of the present invention.
  • FIG. 13 is a view for explaining an optical system for collecting and detecting electrochemical light emission from a plurality of sections in the fourth embodiment of the present invention.
  • FIG. 14 shows the size of the section observed on the imaging surface of the TV camera and the image pickup device when the electrochemical camera emits the electrochemiluminescence from the section of the DNA detection cell in the fifth embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the relationship between the sizes of.
  • FIG. 15 is a view showing a configuration of a DNA detection cell formed on a DNA cell lower substrate by connecting counter electrodes by matrix wiring in the fifth embodiment of the present invention.
  • FIG. 16 is a view for explaining selection of a section in which electrochemiluminescence is induced by selection of a gate and a conductor in the fifth embodiment of the present invention.
  • FIG. 17 is a diagram for explaining an example of voltage application for repeatedly generating electrochemiluminescence in a selected section in the sixth embodiment of the present invention.
  • FIG. 18 shows a DNA probe used as a DNA probe in the seventh embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an oligonucleotide having a phosphorothioate (phosphotrothiothiate) bond between 2′-deoxyoligonucleosides.
  • FIG. 19 is an eighth embodiment of the present invention, and is a view showing a configuration of an inspection apparatus using a DNA detection cell.
  • FIG. 20 is a plan view of a DNA detection cell used in the eighth embodiment of the present invention.
  • FIG. 21 is a view for explaining an example of voltage application for repeatedly generating electrochemiluminescence in the eighth embodiment of the present invention.
  • FIG. 22 is a view showing a DNA probe that is complementary to a target polynucleotide to which an electrochemiluminescence-labeled oligonucleotide is bound in the ninth embodiment of the present invention and that is bound to a complementary strand.
  • FIG. 23 is a view showing a DNA probe which is complementary to a target polynucleotide labeled with electrochemiluminescence in the tenth embodiment of the present invention.
  • FIG. 24 is an eleventh embodiment of the present invention, and is a view for explaining the procedure of an inspection using the inspection apparatus of the present invention.
  • FIG. 25 and FIG. 26 are diagrams showing the structure of an electrochemiluminescent label usable in each embodiment of the present invention and an example of an electrochemiluminescent reaction.
  • Figures 25 and 26 show examples of the structure of the electrochemiluminescent label that can be used in each embodiment of the present invention described below, and an example of the use of a ruthenium complex (two types) as an example of the electrochemiluminescent reaction.
  • Fig. 25 shows a ruthenium-tribibiridyl complex (ruthenium (ID trisb ipyri dy l) (hereinafter abbreviated as Ru (bpy) 3 )) and tripropyl amine (TPA) as a reducing agent.
  • Ru (bpy) 3 ruthenium-tribibiridyl complex
  • TPA tripropyl amine
  • TPA20 2 also It is oxidized on and near the surface of the test electrode to form a TPA in the +1 monovalent excited state (reference number 205.)
  • the asterisk in Fig. 25 and Fig. 26 indicates the excited state.
  • the excited state of TPA (Ref. 205) becomes a neutral excited state of TPA (Ref. 206) by deprotonation in the excited state, and the +3 valence state (Ref. 204, Ru (bpy) 3 ) Acts as a reducing agent for 3 + ).
  • Trivalent state (Ref. 204, Ru (bp y) 3 3 + ) is reduced by the excited state of TPA (Ref. 206) to become + divalent excited state (Ref. 207), and electrochemiluminescence (emission center wavelength of distribution of about 62 O nm is) Ru back to the Te Bantsu +2 state (the ground state) (reference number 20 1, Ru (bpy) 3 2 +).
  • the electrochemiluminescence reaction shown in Fig. 25 the ruthenium-tribibiridyl complex is not consumed and participates in luminescence repeatedly.
  • FIG. 5 is a diagram illustrating an example of an electrochemiluminescent reaction (Clinical Chemistry 37, No. 9, 1534-1539 (1991)). Electrochemiluminescence (the center wavelength of the luminescence distribution is about 590 nm) is generated by the same electrochemiluminescence reaction pathway.
  • JP-A-7-173185, JP-A-7-309836, and J. E1 ectroch em. Soc , Vol. 132, No. 4, 842-849 (1989) can be used in the detection device of the present invention.
  • FIG. 1 is a diagram showing a configuration of a DNA detection cell according to a first embodiment of the present invention.
  • the DNA detection cell of the first embodiment is constructed by laminating a substrate 11 below the DNA detection cell and a substrate 12 above the DNA detection cell via the gasket 112 in the z direction shown in Fig. 1. Is done.
  • the space between the substrate 11 below the DNA detection cell and the substrate 12 above the DNA detection cell constitutes the DNA detection cell used to hold the reagent solution involved in the chemical and electrochemiluminescence reactions used in the following description.
  • a working electrode 111 of a predetermined shape made of Au is formed on the upper surface of the lower substrate 11 of the DNA detection cell.
  • the upper substrate 12 of the DNA detection cell is made of a light-transmitting material, and has a counter-electrode 1 13-1, 1 13-2 with a slender shape on the lower surface. .
  • the counter electrode 1 1 13-1 faces sections 4 and 6, and the counter electrode 113 2 faces counter sections 3 and 5.
  • the external shape of the DNA detection cell lower substrate 11 and the DNA detection cell upper substrate 12 shown in FIG. 1 is circular, the external shape is not limited to a circle, but may be any shape such as a square, a rectangle, or a polygon.
  • the shape of the working electrode 111 shown in Fig. 1 is square, but any shape is acceptable.
  • DNA probes Pre-fixed to the surface of the working electrode 11i.
  • the surface of the working electrode 111 is divided into a plurality of compartments, and the compartment a has a DNA probe b, the compartment a has a DNA probe b, and so on. In each compartment, different types of DNA probes are fixed.
  • the shape of the section of the working electrode 111 shown in Fig. 1 is square. Is optional.
  • Counter electrode 113-1-1 faces sections 3 and 5 of working electrode 111, and counter electrode 113-2-2 faces sections 4 and 6 of working electrode 111. In Fig. 1, the working electrode 1 1 1 and the counter electrode 1 1 1 1
  • the voltage application lines 3-1 and 1 1 3-2 are omitted.
  • the counter electrodes 1 13-1 and 1 13-2 be transparent electrodes.
  • a transparent counter electrode 113 with the same area as the working electrode 111 is replaced by a counter electrode 113-1-1, 1
  • the first DNA probe 13 having the nucleotide sequence of SEQ ID NO: 1 and the second DNA probe 14 having the nucleotide sequence of SEQ ID NO: 2 are used as the first and second DNA probes.
  • An example in which a DNA fragment that binds to a complementary strand is detected will be described below.
  • the first DNA probe (SEQ ID NO: 1)
  • the second DNA probe (SEQ ID NO: 2)
  • the first DNA probe is composed of the nucleotide sequence between bases 1383 and 1927 of the sample DNA described above.
  • the probe that complementarily binds to the DNA fragment (first target DNA fragment) having the same base sequence and the second DNA probe are the same as the base sequence between 199 bases and 558 bases of the above sample DNA. It is a probe that complementarily binds to a DNA fragment (second target DNA fragment) having the same base sequence.
  • the third DNA probe 15 and the fourth DNA probe 16 are examples of a DNA probe that does not complementarily bind to any site in the nucleotide sequence of the sample DNA.
  • the first thiol group introduced at the 5 'end of each DNA probe allows the first probe to be used according to the method described in the literature (Biophysical Journal 171, 1079-106 (1996)).
  • the second DNA probe 14 is in section 4 of the working electrode 111
  • the third DNA probe 15 is in section 11 of the working electrode 11
  • the fourth DNA probe 16 is in section 4. Fix each to section 6 of the working electrode.
  • a sample solution containing a DNA fragment group to be measured is placed between the lower substrate 11 of the DNA detection cell and the upper substrate 12 of the DNA detection cell (DNA detection cell) shown in FIG. Are bound by complementary strands.
  • Figure 2 shows the hybrid due to complementary strand binding between the first DNA probe 13 immobilized in section 3 of the DNA detection cell and a partial base sequence of the first target DNA fragment 21. It is.
  • a hybrid is formed by complementary strand binding between the second DNA probe 14 fixed to the section 4 of the DNA detection cell not shown in FIG. 2 and a partial base sequence of the second target DNA fragment 22. After formation of the hybrid, the unbound DNA fragments are washed out of the DNA detection cell using a washing solution.
  • dNTP dNTP
  • a ruthenium complex is bonded to the nitrogen atom at position 7 of adenine via a linker and a peptide bond.
  • Ru: dCTP a ruthenium complex is bonded to the 5-position carbon atom of cytosine via a linker and a peptide bond.
  • a ruthenium complex is bonded to the nitrogen atom at position 7 of guanine via a linker and a peptide bond.
  • a ruthenium complex is bonded to the 5-position carbon atom of thymine via a linker and a peptide bond.
  • the above composition (4) was used, and 2 L (microliter) of a substrate mixture containing 2.5 mM dATP, dCTP, dGTP, and Ru: dTTP was added to the DNA detection cell. Then, the denaturation reaction at 94 ° C (for 10 sec) and the anneal reaction at 66 ° C (for 20 sec) are repeated once to several times, and then the extension reaction is performed at 72 ° C.
  • FIG. 7 is a diagram for explaining the extension reaction of the first DNA probe 13 that has been complementarily bound to the first target DNA fragment 21.
  • the extension reaction of the second DNA probe 14 complementary to the second target DNA fragment 22 similarly occurs.
  • 24 is unreacted Ru: dTTP
  • 25 is unreacted dATP, dCTP or dGTP.
  • Ru: dTTP was not incorporated in the extended strand
  • dNTP was incorporated in the extended strand.
  • An extended chain consisting of portion 27 and extended portion 26 in which Ru: dTTP is incorporated into the extended chain is formed.
  • a target DNA fragment having a specific base sequence binds to a DNA probe immobilized on a DNA detection cell in a complementary manner, and a riltenium complex is formed by a DNA probe elongation reaction.
  • the bound dNTP is incorporated into the extended chain, and the ruthenium complex is indirectly captured in a specific compartment.
  • the amount of the ruthenium complex 23 indirectly captured in the compartments 3 and 4 is measured to detect the presence or absence of the target DNA fragment 21 in the solution containing the DNA fragment group.
  • the method for measuring the amount of ruthenium complex 23 indirectly captured in compartments 3 and 4 is described.
  • the DNA detection cell was replaced with a buffer solution containing an amine-based reducing agent, and the working electrode 1 1 1 and the counter 1 electrode (1 13-1, 1 13-2; or 1 13) were formed. Wash the inner surface of the detection cell.
  • a 0.3 Omo 1 ZL phosphate buffer ( ⁇ 6.8) containing 0.18 mol 1 / L (liter) of tripropylamine (TPA) was used as the reducing agent, and the temperature was 28 ° C. ° C.
  • a voltage is applied between the working electrode 1 1 1 and the counter electrode (1 1 1 3-1, 1 1 3-2; or 1 1 3) so that the working electrode 1 1 1 side is positive.
  • the optimum value of the applied voltage differs depending on the type of reducing agent used, the type of buffer solution, and the like. In the first embodiment, voltage was applied so that the potential difference was 1.35 V.
  • the electrochemiluminescence according to the electrochemiluminescence reaction by applying voltage (the electrochemiluminescence reaction involving the ruthenium complex used in the first embodiment (Ru: the part of the ruthenium complex of dTTP
  • the emission wavelength at which the intensity of the electrochemiluminescence generated by) is maximized is 620 nm.
  • the intensity of electrochemiluminescence is proportional to the amount of ruthenium complex present near the working electrode.
  • the presence or absence of a hybrid between the DNA probe and the target DNA fragment can be determined by measuring the intensity of the electrochemiluminescence.
  • the amount of the hybrid between the DNA probe and the target DNA fragment can be quantitatively determined by measuring the intensity of the electrochemiluminescence.
  • a photodetection system having a spatial resolution capable of detecting the electrochemiluminescence intensity separately for each section of the working electrode 111 is used.
  • FIG. 8 is a diagram showing an example of an electrochemiluminescence detection system in the first embodiment.
  • One end of each of the optical fibers 3a, 3b, 3c, 3d is arranged in one-to-one correspondence with each of the sections 3, 4, 5, and 6, and the optical fibers 3a, 3b, 3c are arranged.
  • the other end can be connected to a high-sensitivity solid-state detector 33, 34, 35, 36 such as an avalanche photodiode (APD).
  • APD avalanche photodiode
  • the output of the APD is converted to a digital signal by the A / D converter 38, processed by the data processing device 39, and present in the DNA fragment group based on the above-described principle based on the detected intensity of electrochemiluminescence in each section.
  • the type of the target DNA fragment can be determined.
  • the determined result is displayed on the display unit (display) of the data processing device 39.
  • Fig. 9 shows an example of the display screen displayed on the display. The screen shows the number of the used DNA detection cells and the number of types of DNA probes fixed to the DNA detection cells. Number) and the arrangement of DNA probes fixed in each compartment. Column No. and test result of the reaction between the DNA probe and the DNA in the sample ⁇ + (Positive: DNA that forms a complementary strand with the DNA probe exists in the sample),-
  • Fig. 9 shows that DNA having a base sequence complementary to the DNA probes of SEQ ID NO: 1 and SEQ ID NO: 2 was detected in the sample.
  • a DNA detection cell having four sections is taken as an example.
  • ruthenium complex label it is also possible to use a label used for other electrochemiluminescence reactions, such as an osmium complex.
  • Os: dTTP and 0s: ddTTP are used instead of Ru: dTTP and Ru: ddTTP.
  • electrochemiluminescence can be performed using a high-sensitivity TV camera.
  • a method of detecting with a two-dimensional imaging device is effective. The distribution of electrochemiluminescence near the working electrode of the DNA detection cell
  • a large amount of data can be processed at once by capturing as a two-dimensional image and performing image processing.
  • FIG. 10 shows an explanation of an inspection device that measures the electrochemical luminescence in the vicinity of the working electrode 111 of the DNA detection cell 41 using an optical system 42 and a TV camera 43 having a plurality of imaging devices 40.
  • the optical system 42 a normal optical lens may be used. It is effective to increase the photodetection sensitivity using a sifier (I.I.) or a microchannel plate (MCP). If a higher spatial resolution is required as the DNA detection cell becomes more integrated, an optical system that directly connects a bundle of optical fibers to the imaging surface of the TV camera 43 is used.
  • the detection limit is 200 fmo 1 ZL. Therefore, in the second embodiment, the detection limit is about 1650 times the detection limit (200 fmo 1 / L) described in the literature.
  • the apparatus used in the experiment did not use an optical system for focusing electrochemical luminescence,
  • the light utilization efficiency is the ratio of the solid angle formed by the area of each section to the area of the light-receiving surface of the PMT, which is the photodetector, and 2 ⁇ (str), and the quantum efficiency of the PMT (here, 5%). And about 0.6%.
  • Electrode S becomes about 50 photons (400 000 / ⁇ (100 000 fim) 2 x (10 mn o 1 / L)) x ⁇ (( ⁇ 200, ⁇ ) 2 X (3.3 nm o
  • the SZN in the measurement in the second embodiment is approximately It becomes 7.
  • the configuration of the DNA detection cell used in the experiment was as follows: the working electrode area was 1 Ommx10 mm, and the area was 200 ⁇ 111 ⁇ 200 ⁇ 111 with 250 sections.
  • the collection efficiency of electrochemiluminescence doubles, and the number of photons (electrochemiluminescence S) detected within 0.4 sec per section is:
  • the number of photons becomes about 100, and the S / N ratio is improved to about 10.
  • the S / N for the case where a molecule of dNTP or ddNTP to which the electrochemiluminescent label is bound is incorporated into the extension chain of one molecule of DNA probe is used. If n molecules of the bound dNTP are incorporated into the extended strand of one DNA probe, SZN will be ri times the above value.
  • the MCP is used for the optical system 42, and the distribution of light emission at the working electrode is photographed using a cooled CCD camera with 100,000 pixels as a two-dimensional detector.
  • the signal charge stored in the element 40 is converted into a current or a voltage, and is digitized by the AZD converter 38 to obtain a two-dimensional digital image.
  • the obtained two-dimensional digital image is binarized by a data processor 39, and light emission occurs.
  • a distinction is made between a section and a section where no light emission occurs.
  • the probe information for each section which kind of DNA probe is fixed in which section, and the luminescence information (presence / absence of luminescence, intensity of luminescence) obtained as a result of the measurement are compared in the sample.
  • the type of existing DNA fragments can be identified.
  • the presence or absence of binding of the complementary strand between 10,000 types of DNA probes and the target DNA fragment in the sample was measured for a measurement time of 0. It can be detected in 4 sec. From the intensity of electrochemiluminescence detected in each compartment, the type and amount of the target DNA fragment present in the DNA fragment group can be determined based on the principle described in the first embodiment.
  • Fig. 11 is a diagram showing the configuration of a DNA detection cell in which a comb-shaped working electrode and a comb-shaped counter electrode are formed on the same plane.
  • Fig. 11 is a diagram of the working electrode viewed from the side of the light detection means.
  • the working electrode 52 and the counter electrode 53 are formed on the same plane to increase the use efficiency of electrochemiluminescence.
  • the comb-shaped working electrode 52 is provided with a plurality of partitions separated by broken lines 51-1-1 to 51-7.
  • the total number of blocks (size 200 ⁇ 200 ⁇ ) is 10,000 as in the second embodiment.
  • the comb-shaped working electrode 52 and the comb-shaped counter electrode 53 are connected to the substrate under the DN cell so that each tooth of the comb-shaped working electrode 52 and each tooth of the comb-shaped force center electrode 53 are alternately opposed in one direction. Formed on the surface.
  • the working electrode 52 in each section is arranged with the counter electrode 53 (width 5 ⁇ ) in one direction with a gap of 5 ⁇ .
  • a substantially equal voltage can be applied to each section, so that there is no difference in the total intensity of electrochemiluminescence generated from each section.
  • the propagation of the electrochemiluminescence is not interrupted, so that the utilization efficiency of the electrochemiluminescence can be improved. .
  • a voltage is applied between the working electrode 52 and the force counter electrode 53 under the same conditions as in the second embodiment.
  • the interval is 0.4 sec.
  • Fig. 12 is a diagram showing the configuration of a DNA detection cell in which the working electrode and a plurality of independent counter electrodes are formed on the same plane.
  • the configuration of a DNA detection cell in which sections are integrated beyond the spatial resolution of the light detection means will be described.
  • the configuration of the electrodes of the DNA detection cell of the fourth embodiment is similar to that of the third embodiment.
  • the total number of sections (size 200 ⁇ 200 ⁇ ) separated by force dashed lines is the same as in the second embodiment.
  • the working electrode 60 of 10000 is shown in Fig.
  • the counter electrode (width: 5 m) 62-1, 62-2, 62-3 in one direction
  • the configuration in which a gap of 5 ⁇ is interposed and the voltage can be applied to each of the counter electrodes 62-1, 62-2 and 62-3 independently of each other is different from the configuration of the third embodiment.
  • the working electrode 60 is always at the ground potential, and the power is supplied independently to the counter electrodes 62-1, 62-2, and 62-3 using the switch 62-1S, 62-2S, 62-3S. Voltage can be applied by the controller 45 and the power supply 44.
  • the working electrode 60 is provided with sections 6 1-1-6 1-1 6 separated by broken lines.
  • the potential of all counter electrodes is 0 V
  • the potential of the solution in the DN ⁇ detection cell is uniformly 0 V.
  • the potential of the counter electrode 62-2 is changed from 0 V potential to 11.4 V potential, the uniformity of the solution potential is lost, and the solution potential near the counter electrode 62-2 changes from 0 V to a negative potential.
  • the negative potential of this solution spreads radially from the counter electrode 62-2 with time.
  • the solution potential on the working electrode surface becomes negative, the potential distribution of the electric double layer formed near the working electrode surface changes to reflect the potential difference between the solution and the working electrode.
  • This change propagates in the direction of arrows 63 and 64 at the velocity V T with the spread of the negative potential of the solution.
  • the propagation velocity V T depends on the ionic concentration of the solution, the temperature of the solution, the potential difference between the solution and the working electrode, etc., for example, including 0.1 I Smol ZL tripropylamine (TPA) as a reducing agent.
  • TPA tripropylamine
  • the value was about 15 mm / sec in a phosphate buffer (pH 6.8) of 30 m 01 ZL.
  • the distance between the center of the counter electrode and the boundary of the section is d.
  • FIG. 13 is a diagram illustrating an optical system that collects and detects electrochemiluminescence from a plurality of sections.
  • the total number of partitions is 10,000 as in the second embodiment, and Fig. 13 shows only six partitions.
  • the electric light emitted from the sections 6 1-1, 6 1-3, 6 1-5 is collected on the APD 7-1 by the optical fiber 7-1-1, and the section 6 1- Electrochemiluminescence from 2, 6 1 -4, 6 1-6 is condensed on APD 72-2 by optical fiber 1 7-2. (To detect electrochemiluminescence from 100 000 sections, , 100 APDs are required).
  • a switch selects one electrode of the counter one by one to apply a negative potential, and reads out the photodetection signal from the two APDs in synchronization with the selection of the one electrode of the counter. Measurement of electrochemiluminescence from the compartment is possible.
  • the light receiving surfaces of the optical fibers 71-1 and 72-2 are selected by a force counter electrode which is larger than the area of each section. The advantage is that it is possible to measure the electrochemiluminescence from each compartment sequentially with one photodetection system, and to evaluate DNA detection cells with more types of probes than the total number of photodetection systems. There is.
  • a voltage for example, 1 1 1
  • V T propagation velocity
  • Fig. 14 shows the relationship between the size of the compartment observed on the imaging surface of the TV camera and the size of the image sensor when the electrochemiluminescence from the compartment of the integrated DNA detection cell is collected and detected by the TV camera.
  • FIG. 14 Using a TV camera as the light detection means is effective when using a DNA detection cell with many fractions that uses many types of DNA probes at once.
  • a working electrode 111 formed on the substrate 11 below the DNA cell, which is indicated by oblique lines, has a plurality of sections (200 ⁇ 111X200 m) defined by broken lines in the X and y directions.
  • a counter electrode (having a square outer shape with a side of 5 ⁇ m to 10 im) with a power of several ⁇ m at the center of each section. It is surrounded by 1 (shaded area) and arranged opposite the working electrode. That is, the counter electrode is separated from the working electrode 1 1 1 (shaded area) and formed on the substrate 12 below the DNA cell.
  • the total number of sections is 10,000 and the outer dimensions of the working electrode are 2 Omm x 2 Omm, and Fig. 14 shows only 16 sections.
  • the light-receiving area of the first detection (imaging) element (specifying the spatial resolution) is defined as the light detection means, for example, the image observed on the imaging surface of the TV camera.
  • the light detection means for example, the image observed on the imaging surface of the TV camera.
  • FIG. 15 is a diagram showing a configuration of a DNA detection cell in which counter electrodes are connected by matrix wiring and formed on a substrate under the DNA cell.
  • the wiring and gate shown in Fig. 15 are formed on the surface of the substrate (electrically insulating material) under the DNA cell, and then the working electrode and the power electrode shown in Fig. 14 are formed via the insulating layer.
  • the gate is electrically connected to the electrode.
  • the total number of counter electrodes is 10000.
  • the matrix wiring consists of TFT gates 91-1 to 91-4 corresponding to each counter electrode 83-1 to 83-4, gates 91-1 and 91, respectively.
  • Fig. 16 is a diagram illustrating the selection of the counter electrode, that is, the section that induces electrochemiluminescence, by selecting the gate line (93-1, 93-2) and the conductor (92-1, 92-12). is there.
  • the conductors except for conductor 92-1 were set to 0 potential, and a negative potential was applied to conductor 92-1.
  • Gate 911 turns on, and conductor 92-1 and counter electrode 83-1 conduct.
  • the electric double layer can be formed so that the counter electrode 83-1 has a negative potential only for the time T and the potential difference between the solution and the electrode is 11.4 V only in the section 82-1. If an electrochemiluminescent label is captured in Section 82-1, an electrochemical emission reaction will occur.
  • the upper left section of the light-receiving areas 81-1-1 to 81-4 of the first to fourth imaging elements (in Fig. 14, only reference numerals 82-11 are assigned for simplicity).
  • a negative potential is applied to all conductors connected to the counter electrode
  • electrochemiluminescence can be induced selectively only in the upper left section in the light receiving area 81-1-1 to 81-4. it can.
  • the selected counter electrode that is, the surface (section) that induces electrochemiluminescence is selected, and the light receiving area 8 1-1 to 8 1- Electrochemiluminescence from each section belonging to each of 4 can be sequentially detected for each section.
  • the electrochemiluminescence from the four sections 82-1 to 82-4 belonging to the light receiving area 81-1 of the first image sensor can be separated for each section and detected sequentially.
  • the number of sections that can be detected by one detection element is larger than the area of one section of the DNA detection cell, even though the light receiving area of one detection element of the light detection means is larger than the area of one section of the DNA detection cell. Becomes 4.
  • one detection (imaging) element of a TV camera detects the electrochemiluminescence from four different sections by changing the time. That is, the electrochemiluminescence from the 10,000 sections is detected in four times. Apply a voltage (for example, 1.1 V) between the working electrode 1 1 1 and the counter electrode 83-1 to 83-2,.
  • the size of the compartment is SOO mx SOO / ⁇ m, as in the second embodiment, and the propagation velocity V T is about 15 mmZs ec, as in the fourth embodiment,
  • a cooled CCD camera is used as a TV camera
  • a one-inch cooled CCD camera consisting of one million elements is used (the size of the CCD element on the light-receiving surface of the CCD camera is 18 m square).
  • the reduction ratio of the optical system placed between the CCD camera and the DNA detection cell is about 1-11.
  • the spatial resolution is about 2 L when the size of the photodetector on the light receiving surface is L, from a practical point of view.
  • the electrochemiluminescence from the four compartments is separated and detected by the same method as described above.
  • the four elements of the CCD element form the first light detection aperture (used to mean that four elements form an effective one element; corresponding to 81-1 shown in Fig. 14).
  • the second to fourth light detection apertures 81-2 to 81-4 are formed by the other four elements. Since the light detection aperture is formed by four CCD elements, if a 1-inch CCD camera with 100,000 elements is used, a total of 250,000 light detection apertures will be formed.
  • the size of the working electrode of the DNA detection cell described above was increased from 20 mm to 200 mm, and the number of compartments was formed to 1,000,000, and different probes were fixed in each compartment.
  • the time required to detect electrochemical emission emitted from a DNA detection cell having 1 million sections using a 1-inch CCD camera consisting of 100,000 elements is the same as in the case described above. 8ms ec.
  • measurement can be performed in a short time of 26.8 ms ec, independently of the other sections, regardless of the number of sections formed in the DNA detection cell.
  • one light detection aperture with multiple CCD elements, it is possible to independently detect, with high spatial resolution, electrochemiluminescence from a plurality of sections that one light detection opening expects.
  • FIG. 17 is a diagram illustrating an example of voltage application for repeatedly generating electrochemiluminescence in one selected section.
  • a negative potential is repeatedly applied to one electrode of the counter, and the electrochemiluminescence reaction is restarted. Induce. If the intensity of the electrochemiluminescence is not sufficient due to the time T during which the negative potential is applied to the counter electrode and only one cycle of the period t and the detection sensitivity of the detection element of the light detection means is not reached, the specified relaxation time is set. After that, a negative potential is repeatedly applied to the counter electrode to re-induce the electrochemiluminescence reaction. For example, as shown in Fig. 17, a voltage is applied to one counter electrode multiple times at period t. Repeatedly applying the detection element The light is stored in the cell to detect the electrochemiluminescence. The voltage application is controlled by controlling the power supply 44 by the power supply control device 45.
  • the applied voltage can be controlled by a 75 Hz rectangular wave (the above relaxation time is 6.7 msec).
  • the integrated intensity of electrochemiluminescence obtained by repeating the electrochemiluminescence reaction is obtained, and the problem of insufficient intensity of electrochemiluminescence in only one cycle (low detection sensitivity, low SZN) can be solved.
  • the signal detected by the light detecting means is converted into a current or a voltage, is converted into a digital signal by the A / D converter 38, and is processed by the data processing device 39.
  • the DNA probes 13, 14, 15, and 16 immobilized on the DNA detection cell are phosphates between the 2, -deoxy oligonucleosides. Oligonucleotides having diester bonds.
  • a phosphorothioate bond is formed between 2'-deoxyoligonucleosides. Oligonucleotides (reference number 231) are used as DNA probes 13, 14, 15, 15 and 16 and fixed to DNA detection cells.
  • B in FIG. 18 represents a nucleic acid base (A, T, G, or C). DNA probes with phosphoroate bonds are degraded by S1 nuclease. Absent.
  • FIG. 19 is a diagram showing a configuration of an inspection device using a DNA detection cell.
  • the DNA detection cell has a lower substrate 241 having a concave portion and a transparent upper substrate 243, and the bottom surface 242 of the concave portion of the lower substrate 241 is described in the third embodiment (FIG. 11).
  • the working electrode and the counter electrode are arranged on the same plane.
  • the DNA detection cell is inserted and fixed in an optically opaque cell holder 244.
  • An imaging lens 245 and a cooled CCD camera 246 are arranged at an imaging position of the imaging lens 245 so as to face the upper substrate 243.
  • the camera head 247 that fixes the CCD camera 246 is optically opaque and is connected to the cell holder 24 to block external light from entering the DNA detection cell and the optical system.
  • a power supply 44 is connected to the working electrode and the counter electrode of the DNA detection cell.
  • the application of a voltage by the power supply 44 and the reading of signals stored in the CCD camera 246 are controlled by a controller 248.
  • the read signal is digitally converted by the AZD converter 38, processed by the data processing device 39, and stored as a two-dimensional digital image in the memory.
  • FIG. 19 as the configuration of the counter electrode, FIG. 1 (first embodiment), FIG. 10 (second embodiment), and FIG. 12 (fourth embodiment)
  • FIGS. 14 and 14 for example, the configurations shown in FIGS. 14 and 14 (fifth embodiment) may be used.
  • FIG. 20 is a plan view of the DNA detection cell shown in FIG. 19 as viewed from the imaging lens 245 side.
  • the DNA detection cell according to the eighth embodiment has the same configuration as the DNA detection cell according to the second embodiment.
  • the surface of the working electrode of 20 mm ⁇ 20 mm has an area of 200 mx 200 ⁇ .
  • the time required for the measurement of electrochemical luminescence is 0.4 sec, as in the second embodiment.
  • DNA detection is performed. If the degree of integration of the cell exceeds the spatial resolution of the photodetector, the arrangement of the sections of the DNA detection cell and the arrangement of the detector elements of the photodetector should be matched accurately, or each of the light emitted after the measurement of electrochemical luminescence. There is a need to accurately determine the position of the section.
  • a plurality of markers are provided in the DNA detection cell, and the position of the marker is used to identify the DNA detection cell. Adjust the position of the photodetector. Alternatively, the position of the optical marker is measured at the same time as the measurement of the electric light, and the positional relationship between the DNA detection cell and the photodetector is detected during data processing, so that the position of each light-emitting section can be accurately determined. Ask for.
  • a section at a specific position of the DNA detection cell can also be used as a marker.
  • the four compartments 251, 252, 253, and 254 shown in Fig. 20 are specially prepared compartments that are used as markers for DNA detection cells.
  • the amount of the DNA probe immobilized in one compartment is 0.027 fmo1, 0.0270 fmol in compartment 25 1 and 0.002 03 fm in compartment 252. 0 1, 0.135 fmo in section 253 and 0.0 068 fm 0 1, Ru complex in section 254 with known concentration.
  • Electrochemiluminescence from a compartment in which a known concentration of Ru complex is immobilized can be used as a scale of emission intensity.
  • a probe having a base sequence different from that of all other DNA probes (referred to as a marker probe) is fixed in advance at sections 251, 252, 253, and 254 at the above known concentration, and the target DNA fragment
  • a marker probe that complements only the marker-probe is added, and the marker probe and the marker DNA are complementarily bound to each other, and the DNA described in the first embodiment is added.
  • the position of the luminescent compartment in the DNA detection cell is determined by the following method. Electrochemical luminescence is always detected from the four sections 25 1, 252, 253, and 254 shown in FIG. The method of analyzing the detected two-dimensional emission image will be described below.
  • the section 256 that emits light is a section of the J row and column I of the DNA detection cell.
  • the electrochemiluminescence is measured for 0.4 sec, but in the eighth embodiment, the electrochemiluminescence from the same section is repeatedly measured.
  • FIG. 21 is a diagram illustrating an example of voltage application for generating electrochemiluminescence repeatedly.
  • the horizontal axis represents time
  • reference numeral 261 is the voltage applied between the working electrode and the counter electrode of the DNA detection cell
  • reference numeral 262 is the amount of luminescence from the electrochemiluminescent label. Is shown.
  • the voltage application method shown in FIG. 21 is not limited to the second embodiment, but can be applied to each of the first to seventh embodiments, and a similar effect is obtained. Can be
  • Ru: dNTP or Ru: d dNTP is used to carry out the extension reaction of a DNA probe complementary to the target DNA fragment.
  • the extension reaction is carried out. Use a method that does not execute.
  • An electrochemiluminescent-labeled oligonucleotide 28 is bound to the target polynucleotide (target DNA fragment) 21 in advance.
  • FIG. 22 shows a DNA probe complementarily bound to a target polynucleotide bound to an electrochemiluminescent labeled oligonucleotide. Electrochemiluminescence is detected by the method described in each of the first to sixth embodiments.
  • an electrochemiluminescent label may be bound to the 5 ′ end of the target polynucleotide (target DNA fragment) 21 using an oligonucleotide labeled with an electrochemiluminescent label.
  • Fig. 23 shows a DNA probe that is complementary to the target polynucleotide labeled with electrochemiluminescence. Electrochemiluminescence is detected by the method described in each of the first to sixth embodiments.
  • FIG. 24 is a diagram for explaining the inspection procedure of the polynucleotide inspection device.
  • the DNA detection cell described in each embodiment contains the DNA fragment group to be measured. Add sample solution. Next, the temperature of the solution is set to a temperature suitable for hybridization, and the DNA probe and the DNA fragment are combined with each other by complementary strand binding. Best binding efficiency between DNA probe and DNA fragment and non-specific A temperature condition that does not cause strong binding is determined experimentally in advance within the range of 55 to 65 ° C, and the temperature of the solution is set.
  • the DNA probe immobilized in each compartment of the DNA detection cell is released and completely removed, and a new DNA probe is immobilized.
  • false positives are unlikely to occur because there is almost no residual sample.
  • the DNA detection cell is washed with pure water at 95 ° C to release the target DNA fragment from the DNA probe, and only the target DNA fragment is removed from the detection cell.
  • the second method can easily regenerate the DNA detection cell in a short time and is effective in the ninth and tenth embodiments.
  • the third reproduction method is effective in the seventh embodiment.
  • the DNA detection cell is washed with pure water at 95 ° C to release the target DNA fragment from the DNA probe and removed from the DNA detection cell.
  • a DNA probe (15 shown in Fig. 7) and a single-stranded DNA probe having an extended portion (26 and 27 shown in Fig. 7) by complementary strand synthesis were found in the DNA detection cell. Remains.
  • S1 nuclease is injected into the DNA detection cell, the extended portions 26 and 27 are decomposed into mononucleotides by S1 nuclease.
  • the DNA probe remains immobilized on the DNA detection cell without being degraded by S1 nuclease, and the DNA detection cell is regenerated to the state before use.
  • the DNA probe can be reused and may remain in the DNA detection cell.
  • the characteristic feature is that even target DNA fragments that have no residue can be degraded by S1 nuclease, and no sample remains.
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A polynucleotide assay method with the use of a polynucleotide detection cell provided with a first electrode (111) containing DNA probes (13, 14, 15, 16) fixed to respective different compartments (3, 4, 5, 6) and second electrodes (113-1, 113-2) opposite to the first electrode. The method comprises capturing a target polynucleotide by complementary strand binding between each DNA probe fixed to each compartment and the target polynucleotide, conducting an elongation reaction by using a base (dNTP) labeled with electrochemiluminescence to elongate the DNA probe bonded by complementary strand binding, and detecting electrochemiluminescence created by applying a voltage across the first electrode and the second electrodes to detect whether or not an elongated chain produced by the elongation reaction is present. The DNA detection cell having a simple constitution and an assay apparatus using the same serve to quickly detect a hybrid of a target DNA fragment with a DNA probe and to assay a large amount of probes in a short time.

Description

明 細 書 ポリヌクレオチド検査装置及びポリヌクレオチド検査方法 技術分野  Description Polynucleotide testing device and polynucleotide testing method
本発明は, DNA, mRNA等を検出して検査を行なうためのポリヌクレ ォチド検出セル及びこれを用いる検查装置, 及び検出方法に関する。 背景技術  The present invention relates to a polynucleotide detection cell for detecting DNA, mRNA, and the like for testing, a detection apparatus using the cell, and a detection method. Background art
1 6000プローブを固定した DNA検出セルを用いて, 蛍光標識された 標的 D N Aとプローブとのハイブリッドを形成し, 共焦点顕微鏡を使用して DN A検出セルの全域を 1 5分以下でレーザ光走査して蛍光標識を励起し, 生じる蛍光を検出することにより, ハイプリッドを検出する技術が知られて いる (Na t u r e B i o t e c hn o l o gy 14, 1675 - 16 80 ( 1 996 ) ) 。  Using a DNA detection cell on which 16000 probes are immobilized, a hybrid of the probe and the fluorescently labeled target DNA is formed. Using a confocal microscope, the entire area of the DNA detection cell is scanned with laser light in less than 15 minutes. A technique for detecting a hybrid by exciting a fluorescent label and detecting the resulting fluorescence is known (Nature Biotec hnology 14, 1675-1680 (1996)).
試料 DNAをピオチン基で修飾しピオチン—アビジン結合によリ, 試料 D N Aをビーズに捕捉し, 電気化学発光標識した既知の塩基配列を持つ D N A プローブと試料 DNAとの相補鎖結合を行ない, ビーズ表面での電気化学発 光を検出して相補鎖結合の有無を検出する, 電気化学発光標識した D N Aプ ローブを使用するプローブ法が報告されている (C l i n i c a l Ch e m i s t r y 37, No. 9, 1 626— 1632 ( 1 99 1 ) ) 。  The sample DNA is modified with a biotin group, and the sample DNA is captured by beads using a biotin-avidin bond. The complementary DNA strand is bound to the sample probe by electrochemiluminescence-labeled DNA probe with a known base sequence. A probe method using an electrochemiluminescent-labeled DNA probe, which detects the presence or absence of complementary strand binding by detecting the electrochemical emission of DNA, has been reported (Clinical Chemistry 37, No. 9, 1626). — 1632 (1991).
電気化学的発光 (ECL) 標識ヌクレオチド, 電気化学的発光 (ECL) 標識で標識されたオリゴが知られている (特表平 9一 505464号公報) 。 なお, 電気化学発光反応に使用される各種の錯体が広く知られている (C 1 i n i c a l Ch em i s t r y 37, No. 9, 1 534- 1 539 ( 1 99 1 ) ) , J. E l e c t r o c h em. S o c. , Vo l . 1 32, No . 4, 842 - 849 ( 1 985 ) , 特開平 7 - 1 73 185号公報, 特開平 7— 309836号公報) 。 発明の開示 Electrochemical luminescence (ECL) -labeled nucleotides and oligos labeled with electrochemical luminescence (ECL) label are known (Japanese Patent Application Laid-Open No. Hei 9-1505464). Various complexes used in the electrochemiluminescence reaction are widely known (C 1 inical Chemistry 37, No. 9, 1534-1539 (1991)), J. Electrochem em. Soc., Vol. 132, No. 4, 842-849 (1995), JP-A-7-173185, JP-A-7-309836). Disclosure of the invention
上記の従来技術では, D N A検出セルのプローブが固定された 1 6 0 0 0 にも及ぶ多数の部位をレ一ザ光走査するために, 上記の従来技術を臨床分野 での診断技術として日常的に適用するには, ハイプリッドの検出のスループ ットが十分でないという問題があつた。  In the above conventional technology, laser light scanning is performed on a large number of sites, up to 160,000, on which the probes of the DNA detection cell are fixed, so that the above conventional technology is routinely used as a diagnostic technology in the clinical field. There was a problem that the throughput for detecting hybrids was not sufficient to apply the method.
本発明の目的は, 標的ポリヌクレオチドとプローブとのハイプリッドの高 速な検出を行なうポリヌクレオチド検出セル及びこれを用いるポリヌクレオ チド検出装置, 及び検査方法を提供することにある。  An object of the present invention is to provide a polynucleotide detection cell for performing high-speed detection of a hybrid between a target polynucleotide and a probe, a polynucleotide detection device using the cell, and a test method.
本発明のポリヌクレオチド検出セルでは, 複数の区画に異なる D N Aプロ —ブが固定された作用電極カ形成された D N A検出セル下基板と, 所定の形 状のカウンタ一電極が形成された透明な D N A検出セル上基板との間に, ィ匕 学反応 , 電気化学発光反応に関与する試薬溶液が保持される空間が構成され る。  In the polynucleotide detection cell of the present invention, a substrate under the DNA detection cell in which different DNA probes are immobilized in a plurality of compartments is formed, and a transparent DNA in which a predetermined counter electrode is formed. A space is formed between the substrate on the detection cell and the reagent solution involved in the siege reaction and the electrochemiluminescence reaction.
本発明のポリヌクレオチド検出セルを用いる検査装置では, 標的 D N A断 片 (標的ポリヌクレオチド) と各区画に固定された D N Aプローブとの間の ハイプリッドの D N Aプローブの伸張反応を行ない, 伸長鎖の検出を電気化 学発光反応を用いて行なう。  In the test device using the polynucleotide detection cell of the present invention, the extension of the hybrid DNA probe between the target DNA fragment (target polynucleotide) and the DNA probe fixed in each section is performed, and the detection of the extended strand is performed. This is performed using an electrochemiluminescence reaction.
本発明の検査装置では, 作用電極とカウンター電極との間に印加する電圧 の高速な制御により, 電気化学発光反応の進行及び停止を高速に制御するの で, 各区画で形成される伸張鎖の有無を高速に検出できる。 即ち, 単純な装 置構成で多量のプロ一ブ検定を短時間にできる。  In the inspection device of the present invention, the progress and stop of the electrochemiluminescence reaction are controlled at high speed by high-speed control of the voltage applied between the working electrode and the counter electrode. Presence can be detected at high speed. In other words, a large number of probe tests can be performed in a short time with a simple device configuration.
本発明の検査装置では, 先ず, D N A試料から得る D N A断片群と各区画 に固定された D N Aプローブとを相補鎖反応させて, 各区画に D N A断片を 捕捉する。 次いで, 電気化学発光標識を結合したアデニン, チミン, グァシ ン, シトシンと T a q D N Aポリメラ一ゼを用いて伸張反応を行ない, 各 区画に捕捉された D N A断片に相補鎖結合した D N Aプローブを伸張させて, 電気化学発光標識を結合した d N T P ( N = A , T, G, C ) を伸張鎖に取 り込む。 DNA検出セルに還元剤を導入して, 作用電極とカウンタ一電極と の間に電圧を印加して, 作用電極の表面及びその近傍で生じる電気化学発光 を測定する。 電気化学発光の生じる区画の位置と電気化学発光の強度の検出 は, 光ファイバ一等の光伝達手段と固体光検出器との組合せ, 光増幅を行な うマイクロチャンネルプレートと TVカメラ等の組合せ等により, 作用電極 の区画毎に分離して行なう。 In the test device of the present invention, first, a DNA fragment group obtained from a DNA sample and a DNA probe immobilized in each compartment are subjected to a complementary strand reaction to capture a DNA fragment in each compartment. Next, an extension reaction is performed using Taq DNA polymerase and adenine, thymine, guacin, and cytosine to which the electrochemiluminescent label is bound, and the DNA probe complementary to the DNA fragment captured in each compartment is extended. Then, d NTP (N = A, T, G, C) to which the electrochemiluminescent label is bound is added to the extended strand. Embed. A reducing agent is introduced into the DNA detection cell, and a voltage is applied between the working electrode and the counter electrode to measure the electrochemiluminescence generated on and near the working electrode. Detection of the position of the compartment where the electrochemiluminescence occurs and the intensity of the electrochemiluminescence is determined by combining a light transmission means such as an optical fiber with a solid-state photodetector, a microchannel plate for performing optical amplification, and a TV camera. This is done separately for each working electrode section.
また, 本発明の検査装置では, 作用電極の選択された区画とカウンター電 極との間の局所部位に電圧を印加するポリヌクレオチド検出セルを集積化し て構成して, 各局所部位で生じる電気化学発光を測定することにより, 選択 された区画に固定された DN Aプローブと相補鎖結合する標的 DN A断片の 有無を迅速に検出できる。  Further, in the inspection apparatus of the present invention, a polynucleotide detection cell for applying a voltage to a local portion between a selected section of the working electrode and the counter electrode is integrated and configured, and an electrochemical cell generated at each local portion is formed. By measuring the luminescence, the presence or absence of the target DNA fragment that complementarily binds to the DNA probe immobilized in the selected compartment can be quickly detected.
本発明の検査装置では, 電気化学発光標識を結合したプライマを使用して, 標的 DNA断片を PCRにより増幅して得た DNA断片群, 電気化学発光標 識を結合したオリゴマーをライゲーシヨン反応によリ各 DNA断片に結合し て得る DNA断片群を使用できる。 この場合, 電気化学発光標識を結合して いないアデニン, チミン, グァシン, シトシンと T a q DNAポリメラー ゼを用いて, DN A断片に相補鎖結合する DN Aプローブの伸張反応を行な Ό。  In the test apparatus of the present invention, a DNA fragment group obtained by amplifying a target DNA fragment by PCR using a primer to which an electrochemiluminescent label is bound, and an oligomer to which the electrochemiluminescent label is bound are ligated by a ligation reaction. A DNA fragment group obtained by binding to each DNA fragment can be used. In this case, using an adenine, thymine, guasine, or cytosine not bound to an electrochemiluminescent label and Taq DNA polymerase, an extension reaction of a DNA probe complementary to the DNA fragment is performed.
本発明の検査方法の第 1の構成では, 異なる DN Aプローブが種類毎に異 なる区画に固定された第 1の電極と, 第 1の電極に対向する第 2の電極とを 具備するポリヌクレオチド検出セルの区画に固定された DNAプローブと標 的ポリヌクレオチドとを相補鎖結合させて, 標的ポリヌクレオチドを捕捉す る工程と, 相補鎖結合した D N Aプローブを電気化学発光標識した塩基を用 いて伸張反応を行ない相補鎖結合した D N Aプローブを伸張する工程と, 第 1の電極と第 2の電極との間に電圧を印加する工程と, 電圧の印加により生 じる電気化学発光の有無を検出して伸張反応により生成した伸張鎖の有無を 検出する工程とを有することに特徴がある。  In the first configuration of the test method of the present invention, a polynucleotide comprising a first electrode in which different DNA probes are fixed to different sections for each type, and a second electrode opposed to the first electrode A step of capturing the target polynucleotide by complementarily binding the DNA probe immobilized in the detection cell compartment to the target polynucleotide, and extending the complementary strand-bound DNA probe using an electrochemiluminescent-labeled base. Performing a reaction to extend the complementary DNA probe, applying a voltage between the first electrode and the second electrode, and detecting the presence or absence of electrochemiluminescence generated by the application of the voltage. And detecting the presence or absence of an extended chain generated by the elongation reaction.
本発明の検査方法の第 2の構成では, 異なる D N Aプローブが種類毎に異 なる区画に固定された第 1の電極と, 第 1の電極に対向する第 2の電極とを 具備するポリヌクレオチド検出セルの区画に固定された D N Aプローブと, 電気化学発光標識されたオリゴヌクレオチドを結合した標的ポリヌクレオチ ドとを相補鎖結合させて, 標的ポリヌクレオチドを捕捉する工程と, 第 1の 電極と第 2の電極との間に電圧を印加して, 電圧の印加により生じる電気化 学発光を検出する工程とを有することに特徴がある。 In the second configuration of the test method of the present invention, different DNA probes are different for each type. A DNA probe immobilized in a compartment of a polynucleotide detection cell comprising a first electrode fixed in a compartment, and a second electrode facing the first electrode, and an oligonucleotide labeled with electrochemiluminescence. Capturing the target polynucleotide by binding the bound target polynucleotide to the complementary strand, and applying a voltage between the first electrode and the second electrode to generate an electrochemical signal generated by applying the voltage. And a step of detecting light emission.
本発明の検査方法の第 3の構成では, 異なる D N Aプロ一ブが種類毎に異 なる区画に固定された第 1の電極と, 第 1の電極に対向する第 2の電極とを 具備するポリヌクレオチド検出セルの区画に固定された D N Aプローブと, 電気化学発光標識された標的ポリヌクレオチドとを相補鎖結合させて, 標的 ポリヌクレオチドを捕捉する工程と, 第 1の電極と第 2の電極との間に電圧 を印加して, 電圧の印加により生じる電気化学発光を検出する工程とを有す ることに特徴がある。  In the third configuration of the inspection method of the present invention, a poly-electrode comprising a first electrode in which different DNA probes are fixed to different sections for each type, and a second electrode opposed to the first electrode. A step of binding the DNA probe immobilized in the compartment of the nucleotide detection cell and the target polynucleotide labeled with electrochemiluminescence to capture the target polynucleotide; The method is characterized in that a voltage is applied in between and a step of detecting the electrochemiluminescence generated by the application of the voltage.
本発明の構成では, 電気化学発光を利用するので, 蛍光標識を用い励起光 により蛍光標識を励起する従来技術の構成に比較して, 光学系, 光検出器を 単純な構成によリ D NA検出セルに近接させることができ, 電気化学発光の 利用効率を最大限に高めることが可能となる。  In the configuration of the present invention, electrochemiluminescence is used, so that the optical system and the photodetector are simpler in configuration than the conventional configuration in which a fluorescent label is used to excite the fluorescent label with excitation light. It can be close to the detection cell, and the efficiency of electrochemiluminescence can be maximized.
本発明の D N A検出セル, 及び検査装置によれば, 非常に多種類の D N A プローブを使用しても, 検査に要する時間は短時間で済み, 検査の高速化で きる。 電気化学発光の測定系に機械的, 光学的な可動要素を必要としないた め, 取り扱いや調整が簡単化できる。 図面の簡単な説明  According to the DNA detection cell and the inspection apparatus of the present invention, even if a very large number of types of DNA probes are used, the time required for the inspection is short, and the inspection can be sped up. Since no mechanical or optical moving elements are required for the electrochemiluminescence measurement system, handling and adjustment can be simplified. BRIEF DESCRIPTION OF THE FIGURES
第 1図は, 本発明の第 1の実施例の D N A検出セルの構成を示す図である。 第 2図は, 本発明の第 1の実施例に於いて, D N A検出セルの区画に固定さ れた D N Aプローブと標的 D N A断片の一部の塩基配列との相補鎖結合によ るハイブリッドを示す図である。  FIG. 1 is a diagram showing a configuration of a DNA detection cell according to a first embodiment of the present invention. FIG. 2 shows a hybrid formed by complementary strand binding between a DNA probe fixed to a compartment of a DNA detection cell and a partial base sequence of a target DNA fragment in the first embodiment of the present invention. FIG.
第 3図は, 本発明の第 1の実施例に於いて, 伸長反応で使用するルテニウム 錯体を結合した d ATPを示す図である。 FIG. 3 shows the ruthenium used in the extension reaction in the first embodiment of the present invention. FIG. 3 is a view showing dATP to which a complex is bound.
第 4図は, 本発明の第 1の実施例に於いて, 伸長反応で使用するルテニウム 錯体を結合した dCTPを示す図である。 FIG. 4 is a diagram showing a dCTP to which a ruthenium complex used in an elongation reaction is bound in the first embodiment of the present invention.
第 5図は, 本発明の第 1の実施例に於いて, 伸長反応で使用するルテニウム 錯体を結合した dGTPを示す図である。 FIG. 5 is a diagram showing a dGTP to which a ruthenium complex used in an extension reaction is bound in a first embodiment of the present invention.
第 6図は, 本発明の第 1の実施例に於いて, 伸長反応で使用するルテニウム 錯体を結合した dTTPを示す図である。 FIG. 6 is a diagram showing a dTTP to which a ruthenium complex used in an elongation reaction is bound in the first embodiment of the present invention.
第 7図は, 本発明の第 1の実施例に於いて, 標的 DNA断片に相補鎖結合し た DN Aプローブの伸長反応を説明する図である。 FIG. 7 is a diagram for explaining an extension reaction of a DNA probe bound to a target DNA fragment in a complementary manner in the first example of the present invention.
第 8図は, 本発明の第 1の実施例に於いて, 電気化学発光の検出系の例を示 す図である。 FIG. 8 is a diagram showing an example of an electrochemiluminescence detection system in the first embodiment of the present invention.
第 9図は, 本発明の第 1の実施例に於いて, 検出結果を示す表示画面の例を 示す図である。 FIG. 9 is a diagram showing an example of a display screen showing a detection result in the first embodiment of the present invention.
第 1 0図は, 本発明の第 2の実施例に於いて, DNA検出セル作用電極の近 傍での電気化学発光を TVカメラを用いて測定する検査装置の構成例を示す 図である。 FIG. 10 is a diagram showing an example of the configuration of an inspection apparatus for measuring electrochemiluminescence near a working electrode of a DNA detection cell using a TV camera in the second embodiment of the present invention.
第 1 1図は, 本発明の第 3の実施例に於いて, 作用電極とカウンター電極と を同一平面に形成した DN A検出セルの構成を示す図である。 FIG. 11 is a diagram showing a configuration of a DNA detection cell in which a working electrode and a counter electrode are formed on the same plane in a third embodiment of the present invention.
第 1 2図は, 本発明の第 4の実施例に於いて, 作用電極と複数の独立した力 ゥンタ一電極とを同一平面に形成した DN A検出セルの構成を示す図である。 第 1 3図は, 本発明の第 4の実施例に於いて, 複数の区画からの電気化学発 光を集光して検出する光学系を説明する図である。 FIG. 12 is a view showing a configuration of a DNA detection cell in which a working electrode and a plurality of independent force counter electrodes are formed on the same plane in a fourth embodiment of the present invention. FIG. 13 is a view for explaining an optical system for collecting and detecting electrochemical light emission from a plurality of sections in the fourth embodiment of the present invention.
第 14図は, 本発明の第 5の実施例に於いて, DNA検出セルの区画からの 電気化学発光を TVカメラにより検出する場合の T Vカメラの撮像面で観察 される区画の大きさと撮像素子の大きさの関係を説明する図である。 FIG. 14 shows the size of the section observed on the imaging surface of the TV camera and the image pickup device when the electrochemical camera emits the electrochemiluminescence from the section of the DNA detection cell in the fifth embodiment of the present invention. FIG. 4 is a diagram for explaining the relationship between the sizes of.
第 1 5図は, 本発明の第 5の実施例に於いて, カウンター電極がマトリック ス状の配線により接続され D N Aセル下基板に形成される D N A検出セルの 構成を示す図である。 第 1 6図は, 本発明の第 5の実施例に於いて, ゲート及び導線の選択により 電気化学発光を誘起させる区画の選択を説明する図。 FIG. 15 is a view showing a configuration of a DNA detection cell formed on a DNA cell lower substrate by connecting counter electrodes by matrix wiring in the fifth embodiment of the present invention. FIG. 16 is a view for explaining selection of a section in which electrochemiluminescence is induced by selection of a gate and a conductor in the fifth embodiment of the present invention.
第 1 7図は, 本発明の第 6の実施例に於いて, 選択された区画で繰り返し電 気化学発光を生じさせる電圧印加の例を説明する図である。 FIG. 17 is a diagram for explaining an example of voltage application for repeatedly generating electrochemiluminescence in a selected section in the sixth embodiment of the present invention.
第 1 8図は, 本発明の第 7の実施例に於いて DNAプローブとして使用する,FIG. 18 shows a DNA probe used as a DNA probe in the seventh embodiment of the present invention.
2' —デォキシオリゴヌクレオシドの間にホスホロチォェ一ト (p h o s p h o r o t h i o a t e )結合を持つオリゴヌクレオチドを説明する図であ る。 FIG. 3 is a diagram illustrating an oligonucleotide having a phosphorothioate (phosphotrothiothiate) bond between 2′-deoxyoligonucleosides.
第 1 9図は, 本発明の第 8の実施例であり, DNA検出セルを用いた検査装 置の構成を示す図である。 FIG. 19 is an eighth embodiment of the present invention, and is a view showing a configuration of an inspection apparatus using a DNA detection cell.
第 20図は, 本発明の第 8の実施例で使用する DN A検出セルの平面図であ る。 FIG. 20 is a plan view of a DNA detection cell used in the eighth embodiment of the present invention.
第 2 1図は, 本発明の第 8の実施例に於いて, 繰り返し電気化学発光を生成 する電圧印加の例を説明する図である。 FIG. 21 is a view for explaining an example of voltage application for repeatedly generating electrochemiluminescence in the eighth embodiment of the present invention.
第 22図は, 本発明の第 9の実施例に於いて, 電気化学発光標識されたオリ ゴヌクレオチドを結合した標的ポリヌクレオチドと相補鎖結合した D N Aプ ローブを示す図である。 FIG. 22 is a view showing a DNA probe that is complementary to a target polynucleotide to which an electrochemiluminescence-labeled oligonucleotide is bound in the ninth embodiment of the present invention and that is bound to a complementary strand.
第 23図は, 本発明の第 10の実施例に於いて, 電気化学発光標識された標 的ポリヌクレオチドと相補鎖結合した DNAプローブを示す図である。 FIG. 23 is a view showing a DNA probe which is complementary to a target polynucleotide labeled with electrochemiluminescence in the tenth embodiment of the present invention.
第 24図は, 本発明の第 1 1の実施例であり, 本発明の検査装置を用いた検 査の手順を説明する図である。 FIG. 24 is an eleventh embodiment of the present invention, and is a view for explaining the procedure of an inspection using the inspection apparatus of the present invention.
第 25図, 第 26図は, 本発明の各実施例に使用可能な電気化学発光標識の 構造, 及び電気化学発光反応の例を示す図である。 発明を実施するための最良の形態 FIG. 25 and FIG. 26 are diagrams showing the structure of an electrochemiluminescent label usable in each embodiment of the present invention and an example of an electrochemiluminescent reaction. BEST MODE FOR CARRYING OUT THE INVENTION
第 25図, 第 26図は, 以下で説明する本発明の各実施例に使用可能な電 気化学発光標識の構造, 及び電気化学発光反応の例として, ルテニウム錯体 (2種類) を使用する例を示す。 第 25図は, ルテニウム一トリビビリジル錯体 ( r u t h e n i um ( I D t r i s-b i p y r i dy l ) (以下, Ru (b p y ) 3と略記する) と, 還元剤としてトリプロピルァミン (t r i p r o p y l am i n e, T PA) を使用する電気化学発光反応の例を説明する図である (C l i n i c a 1 Ch em i s t r y 37, No. 9, 1 534- 1 539 ( 1 99 1 ) を参照) 。 ルテニウム—トリビビリジル錯体 (Ru (b py ) 3) は, 中性溶液では+ 2価の状態 (基底状態) (参照番号 20 1 , Ru (b p y ) 3 2 + ) で安定して存在する。 TPA202は, 中性溶液ではほぼ安定して存 在する。 作用電極 203の溶液に対する電位が約 + 1.. 1 V以上になるよう に, 作用電極とカウンタ一電極との間に電圧を印加すると, +2価の状態の ルテニウム一トリビビリジル錯体は作用電極の表面及びその近傍で酸化され, + 3価の状態 (参照番号 204, Ru (b p y ) 3 3 + ) となる。 TPA20 2も作用電極の表面及びその近傍で酸化され, + 1価の励起状態の TP A (参照番号 205 ) となる。 第 25図, 第 26図に示す★印は, 励起状態を 示す。 + 1価の励起状態の TPA (参照番号 205 ) は, 励起状態のまま脱 プロトン化により中性の励起状態の TP A (参照番号 206 ) となり, +3 価の状態 (参照番号 204, Ru (b py) 3 3 + ) に対し還元剤として働く。 Figures 25 and 26 show examples of the structure of the electrochemiluminescent label that can be used in each embodiment of the present invention described below, and an example of the use of a ruthenium complex (two types) as an example of the electrochemiluminescent reaction. Is shown. Fig. 25 shows a ruthenium-tribibiridyl complex (ruthenium (ID trisb ipyri dy l) (hereinafter abbreviated as Ru (bpy) 3 )) and tripropyl amine (TPA) as a reducing agent. It is a figure explaining the example of the electrochemiluminescence reaction used (refer to Clinica 1 Chemistry 37, No. 9, 1534-1539 (1991).) Ruthenium-tribibiridyl complex (Ru (b py ) 3), in neutral solution stably exist in the +2 state (the ground state) (reference number 20 1, Ru (bpy) 3 2 +). TPA202 is almost stable in neutral solution When a voltage is applied between the working electrode and one of the counter electrodes so that the potential of the working electrode 203 with respect to the solution is about +1.1.1 V or more, the ruthenium-tribibiridyl complex in the +2 valence state is obtained. is oxidized at the surface and in the vicinity of the working electrode, a + 3 valence state (reference numeral 204, Ru (bpy) 3 3 +). TPA20 2 also It is oxidized on and near the surface of the test electrode to form a TPA in the +1 monovalent excited state (reference number 205.) The asterisk in Fig. 25 and Fig. 26 indicates the excited state. The excited state of TPA (Ref. 205) becomes a neutral excited state of TPA (Ref. 206) by deprotonation in the excited state, and the +3 valence state (Ref. 204, Ru (bpy) 3 ) Acts as a reducing agent for 3 + ).
+ 3価の状態 (参照番号 204, Ru (bp y) 3 3 + ) は, 励起状態の T P A (参照番号 206 ) により還元され, +2価の励起状態 (参照番号 207 ) となり, 電気化学発光 (発光分布の中心波長は約 62 O nmである) を伴つ て + 2価の状態 (基底状態) (参照番号 20 1, Ru (b p y ) 3 2 + ) に戻 る。 第 25図に示す電気化学発光反応では, ルテニウム一トリビビリジル錯 体は消費されずに繰り返し発光に関与する。 + Trivalent state (Ref. 204, Ru (bp y) 3 3 + ) is reduced by the excited state of TPA (Ref. 206) to become + divalent excited state (Ref. 207), and electrochemiluminescence (emission center wavelength of distribution of about 62 O nm is) Ru back to the Te Bantsu +2 state (the ground state) (reference number 20 1, Ru (bpy) 3 2 +). In the electrochemiluminescence reaction shown in Fig. 25, the ruthenium-tribibiridyl complex is not consumed and participates in luminescence repeatedly.
第 26図は, ルテニウム一トリフエナントロリン錯体 ( r u t h e n i u m I I ) t r i s— p h e n an t h r o 1 i n e) Ru ( p h e n ) 3 2 +と略記する) (参照番号 2 1 1 ) と, 還元剤として TP Aを使用する電 気化学発光反応の例を説明する図である (C l i n i c a l Ch em i s t r y 37, No. 9, 1 534— 1 539 ( 1 99 1 ) 。 第 25図と同 様の電気化学発光反応の経路により, 電気化学発光 (発光分布の中心波長は 約 590 nmである) を生じる。 Figure 26, uses a ruthenium one triflumizole Henin Toro phosphorus complex (ruthenium II) tris- phen an thro 1 ine) Ru (phen) 3 2 + abbreviated) (reference number 2 1 1), the TP A as a reducing agent FIG. 5 is a diagram illustrating an example of an electrochemiluminescent reaction (Clinical Chemistry 37, No. 9, 1534-1539 (1991)). Electrochemiluminescence (the center wavelength of the luminescence distribution is about 590 nm) is generated by the same electrochemiluminescence reaction pathway.
なお, 第 25図, 第 26図に示す電気化学発光標識の例の他に, 特開平 7 - 1 73 1 85号公報, 特開平 7— 309836号公報, J . E 1 e c t r o c h em. S o c. , Vo l . 1 32, No. 4, 842 -849 ( 1 9 85 ) に記載の各種の発光性金属錯体標識が, 本発明の検出装置に使用でき る。  In addition to the examples of the electrochemiluminescent labels shown in FIGS. 25 and 26, JP-A-7-173185, JP-A-7-309836, and J. E1 ectroch em. Soc , Vol. 132, No. 4, 842-849 (1989) can be used in the detection device of the present invention.
(第 1の実施例)  (First embodiment)
第 1図は, 本発明の第 1の実施例の DNA検出セルの構成を示す図である。 第 1の実施例の DN A検出セルは, 第 1図に示す z方向に DN A検出セル下 基板 1 1と DNA検出セル上基板 1 2とをガスケッ卜 1 1 2を介して積層し て構成される。 DNA検出セル下基板 1 1と DNA検出セル上基板 1 2との 間が, 以下の説明で使用する, 化学反応, 電気化学発光反応に関与する試薬 溶液が保持される DN A検出セルを構成する。 DNA検出セル下基板1 1の 上面に A u製の所定の形状の作用電極 1 1 1力形成されている。 DNA検出 セル上基板 1 2は光透過性材料から構成され, 下面に細長い形状を持つ平行 に形成されたカウンタ一電極 1 1 3— 1, 1 13— 2力所定の形状で形成さ れている。 カウンタ一電極 1 1 3— 1は区画 4, 6に対向し, カウンター電 極 1 13— 2は区画 3, 5に対向している。  FIG. 1 is a diagram showing a configuration of a DNA detection cell according to a first embodiment of the present invention. The DNA detection cell of the first embodiment is constructed by laminating a substrate 11 below the DNA detection cell and a substrate 12 above the DNA detection cell via the gasket 112 in the z direction shown in Fig. 1. Is done. The space between the substrate 11 below the DNA detection cell and the substrate 12 above the DNA detection cell constitutes the DNA detection cell used to hold the reagent solution involved in the chemical and electrochemiluminescence reactions used in the following description. . A working electrode 111 of a predetermined shape made of Au is formed on the upper surface of the lower substrate 11 of the DNA detection cell. The upper substrate 12 of the DNA detection cell is made of a light-transmitting material, and has a counter-electrode 1 13-1, 1 13-2 with a slender shape on the lower surface. . The counter electrode 1 1 13-1 faces sections 4 and 6, and the counter electrode 113 2 faces counter sections 3 and 5.
第 1図に示す, DNA検出セル下基板 1 1, DNA検出セル上基板 1 2の 外形は円形であるが, 円形に限らず, 正方形, 長方形, 多角形等の任意の形 状でも良い。 第 1図に示す, 作用電極 1 1 1の形状は正方形であるが, 形状 は任意で良い。  Although the outer shape of the DNA detection cell lower substrate 11 and the DNA detection cell upper substrate 12 shown in FIG. 1 is circular, the external shape is not limited to a circle, but may be any shape such as a square, a rectangle, or a polygon. The shape of the working electrode 111 shown in Fig. 1 is square, but any shape is acceptable.
複数種類の DN Aプローブ (オリゴマー) 力作用電極 1 1 iの表面に予め 固定しておく。 第 1図で鎖線で示すように, 作用電極 1 1 1の面は複数の区 画に分けられており, 区画 aには DNAプローブ b, 区画 aには DNAプロ —ブ b, …のように, 各区画には異なる種類の DN Aプローブが固定されて いる。 第 1図に示す作用電極 1 1 1の区画の形状は, 正方形であるが, 形状 は任意で良い。 カウンター電極 1 1 3— 1は, 作用電極 1 1 1の区画 3, 5 に対向し, カウンター電極 1 1 3— 2は, 作用電極 1 1 1の区画 4, 6に対 向している。 なお, 第 1図では, 作用電極 1 1 1 , 及びカウンタ一電極 1 1Multiple types of DNA probes (oligomers) Pre-fixed to the surface of the working electrode 11i. As shown by the dashed line in FIG. 1, the surface of the working electrode 111 is divided into a plurality of compartments, and the compartment a has a DNA probe b, the compartment a has a DNA probe b, and so on. In each compartment, different types of DNA probes are fixed. The shape of the section of the working electrode 111 shown in Fig. 1 is square. Is optional. Counter electrode 113-1-1 faces sections 3 and 5 of working electrode 111, and counter electrode 113-2-2 faces sections 4 and 6 of working electrode 111. In Fig. 1, the working electrode 1 1 1 and the counter electrode 1 1 1
3— 1, 1 1 3— 2の電圧印加線は省略している。 なお, 電気化学発光を効 率良く検出するためには, カウンタ一電極 1 1 3— 1, 1 1 3— 2は, 透明 電極とすることが望ましい。 また, 第 1図に於いて, 作用電極 1 1 1と同じ 面積を持つ透明なカウンタ一電極 1 1 3を, カウンタ一電極 1 1 3— 1, 1The voltage application lines 3-1 and 1 1 3-2 are omitted. In order to detect electrochemiluminescence efficiently, it is desirable that the counter electrodes 1 13-1 and 1 13-2 be transparent electrodes. In Fig. 1, a transparent counter electrode 113 with the same area as the working electrode 111 is replaced by a counter electrode 113-1-1, 1
1 3— 2の代りに使用して, 作用電極 1 1 1に対向させて配置してもよい。 第 1の実施例では, ヒト由来 DNAライブラリから選んだ 8. 7 の0 NAを, 制限酵素 N 1 a I I Iで切断した D N A断片群を試料とし, 各 DN A断片を DNAプローブにより識別して検出する。 以下では, 配列番号 1の 塩基配列を持つ第 1の DN Aプローブ 1 3, 及び配列番号 2の塩基配列を持 つ第 2の DNAプローブ 1 4を使用して, 第 1, 第 2の DNAプローブにそ れぞれ相補鎖結合する DN A断片を検出する例をとつて説明する。 It may be used in place of 13-2 and placed opposite the working electrode 1 1 1. In the first example, 8.7 0 NA selected from a human-derived DNA library was used as a sample, and DNA fragments were cut with the restriction enzyme N1aIII. I do. In the following, the first DNA probe 13 having the nucleotide sequence of SEQ ID NO: 1 and the second DNA probe 14 having the nucleotide sequence of SEQ ID NO: 2 are used as the first and second DNA probes. An example in which a DNA fragment that binds to a complementary strand is detected will be described below.
第 1の DNAプローブ (配列番号 1 ) 第 2の D N Aプローブ (配列番号 2 ) 第 1の DNAプローブは, 上記の試料 DN Aの 1 3 8 3塩基から 1 9 2 7 塩基の間の塩基配列と同じ塩基配列を持つ DN A断片 (第 1の標的 DNA断 片) に相補結合するプローブ, 第 2の DNAプローブは, 上記の試料 DNA の 1 9 9塩基から 5 5 8塩基の間の塩基配列と同じ塩基配列を持つ DN A断 片 (第 2の標的 DNA断片) に相補結合するプローブである。 第 3の DNA プロ一ブ 1 5, 第 4の DNAプローブ 1 6は上記の試料 DN Aの塩基配列の 何れの部位にも相補結合しない D N Aプロ一ブの例である。 The first DNA probe (SEQ ID NO: 1) The second DNA probe (SEQ ID NO: 2) The first DNA probe is composed of the nucleotide sequence between bases 1383 and 1927 of the sample DNA described above. The probe that complementarily binds to the DNA fragment (first target DNA fragment) having the same base sequence and the second DNA probe are the same as the base sequence between 199 bases and 558 bases of the above sample DNA. It is a probe that complementarily binds to a DNA fragment (second target DNA fragment) having the same base sequence. The third DNA probe 15 and the fourth DNA probe 16 are examples of a DNA probe that does not complementarily bind to any site in the nucleotide sequence of the sample DNA.
各 DN Aプローブの 5 ' 末端に導入されたチオール基により, 文献 (B i o p h y s i c a l J o u n a 1 7 1, 1 0 7 9 - 1 0 8 6 ( 1 9 9 6 ) ) に記載の方法により, 第 1の DNAプローブ 1 3は作用電極の 1 1 1の区 画 3に, 第 2の DN Aプローブ 14は作用電極の 1 1 1の区画 4に, 第 3の DNAプローブ1 5は作用電極の 1 1 1の区画 5に, 第 4の DN Aプローブ 16は作用電極の 1 1 1の区画 6に, 各々固定する。 The first thiol group introduced at the 5 'end of each DNA probe allows the first probe to be used according to the method described in the literature (Biophysical Journal 171, 1079-106 (1996)). Of DNA probe 13 In Figure 3, the second DNA probe 14 is in section 4 of the working electrode 111, the third DNA probe 15 is in section 11 of the working electrode 11, and the fourth DNA probe 16 is in section 4. Fix each to section 6 of the working electrode.
第 1図に示す DNA検出セル下基板 1 1と DNA検出セル上基板 1 2との 間 (DNA検出セル) に, 測定対象の DNA断片群を含む試料溶液を入れ, DN Aプローブと DN A断片を相補鎖結合させる。  A sample solution containing a DNA fragment group to be measured is placed between the lower substrate 11 of the DNA detection cell and the upper substrate 12 of the DNA detection cell (DNA detection cell) shown in FIG. Are bound by complementary strands.
第 2図は, DN A検出セルの区画 3に固定された第 1の DN Aプローブ 1 3と第 1の標的 D N A断片 2 1の一部の塩基配列との相補鎖結合によるハイ プリッドを示す図である。 第 2図に図示しない DNA検出セルの区画 4に固 定された第 2の DNAプローブ 14と第 2の標的 DNA断片 22の一部の塩 基配列との相補鎖結合によるハイプリッドが形成される。 ハイプリッドの形 成後, 洗浄液を用いて結合していない DN A断片を DN A検出セルの外部に 排出する。  Figure 2 shows the hybrid due to complementary strand binding between the first DNA probe 13 immobilized in section 3 of the DNA detection cell and a partial base sequence of the first target DNA fragment 21. It is. A hybrid is formed by complementary strand binding between the second DNA probe 14 fixed to the section 4 of the DNA detection cell not shown in FIG. 2 and a partial base sequence of the second target DNA fragment 22. After formation of the hybrid, the unbound DNA fragments are washed out of the DNA detection cell using a washing solution.
次に, 標的 DN A断片 2 1に相補鎖結合した第 1の DN Aプローブ 1 3の 伸長反応を行なう。 伸長反応では, リンカ一を介してルテニウム錯体を結合 した dNTP (N = A, C, G, T) (Ru : dNTPと略記) の少なくと も 1つ含む基質混合液を使用する。 第 3図に示すように, Ru : dATPで は, リンカーとペプチド結合を介してアデニンの 7位の窒素原子にルテニゥ ム錯体が結合している。 第 4図に示すように, Ru : dCTPでは, リンカ 一とべプチド結合を介してシトシンの 5位の炭素原子にルテニウム錯体が結 合している。 第 5図に示すように, Ru : dGTPでは, リンカ一とべプチ ド結合を介してグァニンの 7位の窒素原子にルテニウム錯体力結合している。 第 6図に示すように, Ru : dTTPでは, リンカ一とペプチド結合を介し てチミンの 5位の炭素原子にルテニウム錯体が結合している。 なお, リンカ 一は, 一 (CH2) n—であり, n = 2〜20である。 伸長反応に使用する基 質混合液の組成の例として以下の組成の何れかが可能である。 Next, an extension reaction of the first DNA probe 13 that is complementary to the target DNA fragment 21 is performed. In the elongation reaction, a substrate mixture containing at least one dNTP (N = A, C, G, T) (Ru: abbreviated as dNTP) to which a ruthenium complex is bound via a linker is used. As shown in Fig. 3, in Ru: dATP, a ruthenium complex is bonded to the nitrogen atom at position 7 of adenine via a linker and a peptide bond. As shown in Fig. 4, in Ru: dCTP, a ruthenium complex is bonded to the 5-position carbon atom of cytosine via a linker and a peptide bond. As shown in Fig. 5, in Ru: dGTP, a ruthenium complex is bonded to the nitrogen atom at position 7 of guanine via a linker and a peptide bond. As shown in Fig. 6, in Ru : dTTP, a ruthenium complex is bonded to the 5-position carbon atom of thymine via a linker and a peptide bond. The linker is 1 (CH 2 ) n —, where n = 2 to 20. As an example of the composition of the substrate mixture used for the extension reaction, any of the following compositions is possible.
( 1 ) Ru : dATP+ dCTP+dGTP十 dTTP  (1) Ru: dATP + dCTP + dGTP dTTP
(2 ) dATP+Ru : dCT+dGTP+P dTTP 3 ) dATP+dCTP+Ru : dGTP+dTTP (2) dATP + Ru: dCT + dGTP + P dTTP 3) dATP + dCTP + Ru: dGTP + dTTP
) dATP+dCTP+dGTP+Ru : dTTP  ) dATP + dCTP + dGTP + Ru: dTTP
5 ) Ru : dATP+Ru : dCTP+ dGTP+dTTP  5) Ru: dATP + Ru: dCTP + dGTP + dTTP
6 ) Ru : dATP+ dCTP+Ru : dGTP+dTTP  6) Ru: dATP + dCTP + Ru: dGTP + dTTP
7 ) Ru : dATP十 dCTP+dGTP+Ru : dTTP  7) Ru: dATP, dCTP + dGTP + Ru: dTTP
8 ) dATP+Ru : dCTP+Ru : dGTP+dTTP  8) dATP + Ru: dCTP + Ru: dGTP + dTTP
9 ) dATP+Ru : dCTP+dGTP+Ru : dTTP  9) dATP + Ru: dCTP + dGTP + Ru: dTTP
1 0) d ATP+ dCTP + Ru : dGTP + Ru : dTTP  10) d ATP + dCTP + Ru: dGTP + Ru: dTTP
1 1 ) dATP + Ru : dCTP + Ru : dGTP + Ru : dTTP 1 1) dATP + Ru: dCTP + Ru: dGTP + Ru: dTTP
1 2 ) Ru : dATP + dCTP + Ru : dGTP + Ru : dTTP1 2) Ru: dATP + dCTP + Ru: dGTP + Ru: dTTP
1 3 ) Ru : dATP + Ru : dCTP+ dGTP + Ru : dTTP1 3) Ru: dATP + Ru: dCTP + dGTP + Ru: dTTP
14) Ru : dATP+Ru : dCTP+Ru : dGTP+dTTP14) Ru: dATP + Ru: dCTP + Ru: dGTP + dTTP
1 5) Ru : dATP+Ru : dTTP + Ru : dGTP 1 5) Ru: dATP + Ru: dTTP + Ru: dGTP
+Ru : dCTP  + Ru: dCTP
第 1の実施例では上記の組成 (4) を使用し, 2. 5 mMの dATP, d CT P, dGTP, Ru : dTTPを各々含む基質混合液 2 L (マイクロ リットル) を DNA検出セルに添加して, 94°Cでの変成反応 ( 10 s e c 間) と 66°Cでのァニール反応 ( 20 s e c間) を, 1回から数回繰り返し た後, 72°Cで伸長反応を行なう。  In the first example, the above composition (4) was used, and 2 L (microliter) of a substrate mixture containing 2.5 mM dATP, dCTP, dGTP, and Ru: dTTP was added to the DNA detection cell. Then, the denaturation reaction at 94 ° C (for 10 sec) and the anneal reaction at 66 ° C (for 20 sec) are repeated once to several times, and then the extension reaction is performed at 72 ° C.
第 7図は, 第 1の標的 DNA断片 2 1に相補鎖結合した第 1の DNAプロ ーブ 1 3の伸長反応を説明する図である。 第 7図に図示しないが, 第 2の標 的 DNA断片 22に相補鎖結合した第 2の DN Aプローブ 14の伸長反応が, 同様に起こる。 24は未反応の Ru : dTTPであり, 25は未反応の dA TP, dCTP, dGT Pの何れかである。 伸長反応により, 第 1の標的 D NA断片 2 1に相補鎖結合した第 1の DNAプローブ 1 3が伸長する結果, Ru : dTTPが伸長鎖に取り込まれず, 伸長鎖に dNT Pが取り込まれた 伸長部分 27と, Ru : dTT Pが伸長鎖に取り込まれた伸長部分 26とか らなる伸張鎖が形成される。 従って, 伸長反応により, 少なくとも 1分子の Ru : dTTP力 第 1, 第 2の DNAプローブの伸長鎖に取り込まれ, 少 なくとも 1つのルテニウム錯体 23が区画 3, 4に捕捉される。 伸長反応の 後, 洗浄液を用いて洗浄し未反応の基質を除去する。 FIG. 7 is a diagram for explaining the extension reaction of the first DNA probe 13 that has been complementarily bound to the first target DNA fragment 21. Although not shown in FIG. 7, the extension reaction of the second DNA probe 14 complementary to the second target DNA fragment 22 similarly occurs. 24 is unreacted Ru: dTTP, and 25 is unreacted dATP, dCTP or dGTP. As a result of extension of the first DNA probe 13 complementary to the first target DNA fragment 21 by the extension reaction, Ru: dTTP was not incorporated in the extended strand, and dNTP was incorporated in the extended strand. An extended chain consisting of portion 27 and extended portion 26 in which Ru: dTTP is incorporated into the extended chain is formed. Therefore, by extension reaction, at least one molecule Ru: dTTP force Incorporated into the extended strands of the first and second DNA probes, and at least one ruthenium complex 23 is captured in compartments 3 and 4. After the extension reaction, wash with a washing solution to remove unreacted substrate.
R u : dTTPは dNTP (N = A, C, G, T) と比較して巨大分子で あり, dTTPに比較して伸張鎖への取り込みの反応率が低いが, 少なくと も最初の 1分子の Ru : dTTPが伸張鎖に取り込まれるまでは伸長反応が 起きる。 第 3 , 第 4の DNAプローブ 1 5, 16には標的 DN A断片 2 1, 22力相補鎖結合していないので伸長反応は起こらず, Ru : dTTPの伸 張鎖への取り込みも生じない。 従って, ルテニウム錯体 23が区画 5, 6に 捕捉されることはない。 即ち, 第 1の実施例では, 特定の塩基配列を持つ標 的 DNA断片が, DN A検出セルに固定された DN Aプローブに相補鎖結合 し, D N Aプロ一ブの伸長反応によリルテニゥム錯体が結合した d N T Pが 伸長鎖に取り込まれ, 特定の区画にルテニウム錯体が間接的に捕捉される。 第 1の実施例では, 区画 3, 4に間接的に捕捉されたルテニウム錯体 23の 量を測定して, DNA断片群を含む溶液中の標的 DNA断片 21の有無を検 出する。  Ru: dTTP is a macromolecule compared to dNTP (N = A, C, G, T), and the reaction rate of incorporation into extended chains is lower than that of dTTP, but at least the first one molecule An elongation reaction occurs until the Ru: dTTP is incorporated into the extended strand. Since the third and fourth DNA probes 15 and 16 do not bind to the target DNA fragments 21 and 22, the elongation reaction does not occur, and the incorporation of Ru: dTTP into the elongate strand does not occur. Therefore, ruthenium complex 23 is not trapped in compartments 5 and 6. That is, in the first embodiment, a target DNA fragment having a specific base sequence binds to a DNA probe immobilized on a DNA detection cell in a complementary manner, and a riltenium complex is formed by a DNA probe elongation reaction. The bound dNTP is incorporated into the extended chain, and the ruthenium complex is indirectly captured in a specific compartment. In the first embodiment, the amount of the ruthenium complex 23 indirectly captured in the compartments 3 and 4 is measured to detect the presence or absence of the target DNA fragment 21 in the solution containing the DNA fragment group.
ルテニウム錯体で標識した DNAプローブを用いる通常の DNAプローブ 法では, 標識化 D N Aプロ一ブが D N A検出セル内部に特異的に吸着する問 題があるが, 本発明で用いる Ru : dTTPは, ルテニウム錯体で標識した DN Aプローブと比較し分子量が小さく, 非特異的な吸着が少なく非特異的 な吸着に由来するバックグランドを小さくできる利点がある。  In the conventional DNA probe method using a DNA probe labeled with a ruthenium complex, there is a problem that the labeled DNA probe is specifically adsorbed inside the DNA detection cell, but the Ru: dTTP used in the present invention is a ruthenium complex. Compared with DNA probes labeled with, they have the advantage of having a smaller molecular weight, less nonspecific adsorption, and a smaller background derived from nonspecific adsorption.
次に, 区画 3, 4に間接的に捕捉されたルテニウム錯体 23の量の測定方 法について説明する。 先ず, DNA検出セルをァミン系還元剤を含む緩衝液 で置換して, 作用電極 1 1 1, カウンタ一電極 ( 1 1 3— 1 , 1 13-2 ; 又は 1 1 3 ) が形成された DNA検出セルの内面を洗浄する。 第 1の実施例 では, 還元剤として 0. 18mo 1 /L (リツトル) のトリプロピルアミン (TPA) を含む 0. 3 Omo 1 ZLのリン酸緩衝液 (ρΗ6· 8) を用い, 温度は 28° Cとした。 次に, 作用電極 1 1 1とカウンター電極 ( 1 1 3— 1 , 1 13— 2 ;又は 1 1 3) の間に, 作用電極 1 1 1の側が正となるように電圧を印加する。 印 加電圧の最適値は, 用いる還元剤の種類や緩衝溶液の種類等によリ異なる。 第 1の実施例では, 電位差が 1. 35 Vとなる様に印加した。 電圧印加によ り電気化学発光反応に従って電気化学発光 (第 1の実施例で使用するルテニ ゥム錯体が関与する電気化学発光反応 (Ru : dTTPのルテニウム錯体の 部分が, 第 25図の反応を起こす) により生じる電気化学発光の強度が最大 となる発光波長は 620 nmである) が生じる。 Next, the method for measuring the amount of ruthenium complex 23 indirectly captured in compartments 3 and 4 is described. First, the DNA detection cell was replaced with a buffer solution containing an amine-based reducing agent, and the working electrode 1 1 1 and the counter 1 electrode (1 13-1, 1 13-2; or 1 13) were formed. Wash the inner surface of the detection cell. In the first embodiment, a 0.3 Omo 1 ZL phosphate buffer (ρΗ6.8) containing 0.18 mol 1 / L (liter) of tripropylamine (TPA) was used as the reducing agent, and the temperature was 28 ° C. ° C. Next, a voltage is applied between the working electrode 1 1 1 and the counter electrode (1 1 1 3-1, 1 1 3-2; or 1 1 3) so that the working electrode 1 1 1 side is positive. The optimum value of the applied voltage differs depending on the type of reducing agent used, the type of buffer solution, and the like. In the first embodiment, voltage was applied so that the potential difference was 1.35 V. The electrochemiluminescence according to the electrochemiluminescence reaction by applying voltage (the electrochemiluminescence reaction involving the ruthenium complex used in the first embodiment (Ru: the part of the ruthenium complex of dTTP The emission wavelength at which the intensity of the electrochemiluminescence generated by) is maximized is 620 nm.
電気化学発光の強度は, 作用電極 1 1 1の近傍に存在するルテニウム錯体 の量に比例する。 電気化学発光の強度の測定により, DNAプローブと標的 DN A断片とのハイプリッドの有無を決定できる。  The intensity of electrochemiluminescence is proportional to the amount of ruthenium complex present near the working electrode. The presence or absence of a hybrid between the DNA probe and the target DNA fragment can be determined by measuring the intensity of the electrochemiluminescence.
先に説明した, 伸長反応に使用する基質混合液の組成の例 ( 1 ) 〜 ( 1 5) に於いて, Ru : dNT P (N = A, T, G, C) の代わりに, リンカ一を 介してルテニウム錯体を結合した d dNTP (N = A, T, G, C) (Ru : d dNT Pと略記) を用いた基質混合液の組成の例 ( Γ ) 〜 ( 1 5' ) の 何れかを使用しても良い。  In the above-mentioned examples of the composition of the substrate mixture used for the extension reaction (1) to (15), instead of Ru: dNTP (N = A, T, G, C), the linker Example of the composition of a substrate mixture using d dNTP (N = A, T, G, C) (Ru: abbreviated as d dNT P) to which a ruthenium complex is bound via () to (15 ′) Either one may be used.
( 1 ' ) R u : d dATP+dCTP + dGTP+dTTP  (1 ') Ru: d dATP + dCTP + dGTP + dTTP
(2' ) dATP + Ru : d dCT+dGTP + P dTTP  (2 ') dATP + Ru: d dCT + dGTP + P dTTP
( 3 ' ) dATP + dCTP + Ru : d dGTP+dTTP  (3 ') dATP + dCTP + Ru: d dGTP + dTTP
(4' ) dATP + dCTP+dGTP + Ru : d dTTP  (4 ') dATP + dCTP + dGTP + Ru: d dTTP
( 5 ' ) Ru : d d AT P + Ru : d d C T P + d G T P + d T T P  (5 ') Ru: d d ATP + Ru: d d C T P + d G T P + d T T P
( 6 ' ) Ru : d dATP+dCTP + Ru : d dGTP + dTTP  (6 ') Ru: d dATP + dCTP + Ru: d dGTP + dTTP
( 7 ' ) R u : d dATP+dCTP + d dGTP + Ru : dTTP  (7 ') Ru: d dATP + dCTP + d dGTP + Ru: dTTP
( 8 ' ) dATP + Ru : d dCTP + Ru : d dGTP + dTTP  (8 ') dATP + Ru: d dCTP + Ru: d dGTP + dTTP
( 9 ' ) dATP + Ru : d dCTP + dGTP + Ru : d dTTP  (9 ') dATP + Ru: d dCTP + dGTP + Ru: d dTTP
( 1 0' ) dATP + dCTP + Ru : d dGTP + Ru : d dTTP ( 1 1 ' ) dATP + Ru : d dCTP + Ru : d dGTP  (10 ') dATP + dCTP + Ru: d dGTP + Ru: d dTTP (11') dATP + Ru: d dCTP + Ru: d dGTP
+Ru : d dTTP ( 1 2' ) Ru d dATP+dCTP + Ru : d dGTP + Ru: d dTTP (1 2 ') Ru d dATP + dCTP + Ru: d dGTP
+ Ru d dTTP  + Ru d dTTP
( 1 3' ) Ru d d ATP + Ru : d dCTP+dGTP  (1 3 ') Ru d d ATP + Ru: d dCTP + dGTP
+ Ru d dTTP  + Ru d dTTP
( 14' ) Ru d dATP+Ru d dCTP+Ru : d dGTP  (14 ') Ru d dATP + Ru d dCTP + Ru: d dGTP
+ dTT P  + dTT P
( 1 5' ) Ru : d dATP + Ru : d dTTP + Ru : d dGTP  (1 5 ') Ru: d dATP + Ru: d dTTP + Ru: d dGTP
+ Ru : d dCTP  + Ru: d dCTP
基質混合液の組成 ( 1 ' ;) 〜 ( 1 5' ) を使用する場合, DNAプローブ の伸張反応では 1分子の Ru : d dNTPのみが伸張鎖に取り込まれる。 従 つて, 電気化学発光の強度の測定により, DNAプローブと標的DNA断片 とのハイプリッドの量を定量的に決定できる。  When the composition of the substrate mixture (1 ';) to (15') is used, only one molecule of Ru: d dNTP is incorporated into the extended strand in the extension reaction of the DNA probe. Therefore, the amount of the hybrid between the DNA probe and the target DNA fragment can be quantitatively determined by measuring the intensity of the electrochemiluminescence.
上記の電気化学発光の検出には, 作用電極 1 1 1の各区画毎に分離して電 気化学発光の強度を検出できる空間分解能を持つ光検出系を用いる。  For the detection of the above-mentioned electrochemiluminescence, a photodetection system having a spatial resolution capable of detecting the electrochemiluminescence intensity separately for each section of the working electrode 111 is used.
第 8図は, 第 1の実施例に於ける電気化学発光の検出系の例を示す図であ る。 光ファイバ一 3 a, 3 b, 3 c , 3 dの一端を区画 3 , 4, 5, 6の各 区画に 1対 1対応して配置して, 光ファイバ一 3 a, 3 b, 3 c , 3 dの他 端にアバランシェフォトダイォード (APD) 等の高感度固体検出器 33 , 34, 35, 36を接続した光検出系を使用できる。 区画 3, 4, 5, 6に 於いて生じる電気化学発光は光ファイバ一 3 a, 3 b, 3 c , 3 dを通り A PD 33 , 34, 35, 36に於いて光電変換され検出される。 A P Dの出 力は A/D変換器 38によりデジタル変換され, データ処理装置 39で処理 され, 検出された各区画での電気化学発光の強度から上記した原理に基づい て, DNA断片群に存在する標的 DNA断片の種類を決定できる。 決定され た結果は, データ処理装置 39の表示部 (ディスプレイ) に表示される。 第 9図は, ディスプレイに表示される表示の画面例を示し, 画面には, 使 用した DN A検出セルの番号と, DN A検出セルに固定されている DN Aプ ローブの種類数 (区画数) と, 各区画に固定されている DNAプローブの配 列 No. と, DNAプローブと試料中の DNAとの反応の検査結果 {+ (陽 性:試料中に DNAプローブと相補鎖を形成する DNAが存在する) , ―FIG. 8 is a diagram showing an example of an electrochemiluminescence detection system in the first embodiment. One end of each of the optical fibers 3a, 3b, 3c, 3d is arranged in one-to-one correspondence with each of the sections 3, 4, 5, and 6, and the optical fibers 3a, 3b, 3c are arranged. , 3d, the other end can be connected to a high-sensitivity solid-state detector 33, 34, 35, 36 such as an avalanche photodiode (APD). The electrochemiluminescence generated in sections 3, 4, 5, and 6 passes through optical fibers 3a, 3b, 3c, and 3d, and is photoelectrically converted and detected in APDs 33, 34, 35, and 36. . The output of the APD is converted to a digital signal by the A / D converter 38, processed by the data processing device 39, and present in the DNA fragment group based on the above-described principle based on the detected intensity of electrochemiluminescence in each section. The type of the target DNA fragment can be determined. The determined result is displayed on the display unit (display) of the data processing device 39. Fig. 9 shows an example of the display screen displayed on the display. The screen shows the number of the used DNA detection cells and the number of types of DNA probes fixed to the DNA detection cells. Number) and the arrangement of DNA probes fixed in each compartment. Column No. and test result of the reaction between the DNA probe and the DNA in the sample {+ (Positive: DNA that forms a complementary strand with the DNA probe exists in the sample),-
(陰性:試料中に DNAプローブと相補鎖を形成する DNAが存在しない) } とを表示し, 検査結果が陽性の場合には, DN Aプローブの塩基配列を表示 する。 第 9図に示す例では, 試料中に配列番号 1, 及び配列番号 2の DNA プローブと相補結合する塩基配列を持つ DN Aが検出されたことを示す。 第 1の実施例の説明では, 簡単のために 4つの区画を持つ DN A検出セル を例にとったが, 実際の検査装置で使用される DN A検出セルの区画の数は, 例えば, 第 2の実施例で説明するように, 100 x 100= 10000個と する。 区画の数は検査の目的に応じて適宜選ばれる。 (Negative: DNA that forms a complementary strand with the DNA probe does not exist in the sample.)} Is displayed. If the test result is positive, the nucleotide sequence of the DNA probe is displayed. The example shown in Fig. 9 shows that DNA having a base sequence complementary to the DNA probes of SEQ ID NO: 1 and SEQ ID NO: 2 was detected in the sample. In the description of the first embodiment, for simplicity, a DNA detection cell having four sections is taken as an example. However, the number of sections of the DNA detection cell used in an actual inspection device is, for example, As described in the second embodiment, 100 × 100 = 10000. The number of sections is appropriately selected according to the purpose of the inspection.
なお, ルテニウム錯体標識の代わりに, オスミウム錯体等の他の電気化学 発光反応に使用される標識を用いることも可能である。 例えば, 第 1の実施 例に於いて, Ru : dTTP, Ru : d dTTPに代えて, O s : d T T P , 0 s : d dTTPを使用する。  Instead of the ruthenium complex label, it is also possible to use a label used for other electrochemiluminescence reactions, such as an osmium complex. For example, in the first embodiment, Os: dTTP and 0s: ddTTP are used instead of Ru: dTTP and Ru: ddTTP.
(第 2の実施例)  (Second embodiment)
D N A検出セルを高集積化して作成し, 1度に取り扱う D N Aプローブの 種類を増加した場合 (即ち, DNA検出セルの区画数を増加した場合) , 電 気化学発光を高感度 T Vカメラ等の 2次元撮像装置により検出する方法が有 効である。 DN A検出セルの作用電極の近傍に於ける電気化学発光の分布を If the DNA detection cell is made highly integrated and the number of DNA probes handled at one time is increased (that is, if the number of sections of the DNA detection cell is increased), electrochemiluminescence can be performed using a high-sensitivity TV camera. A method of detecting with a two-dimensional imaging device is effective. The distribution of electrochemiluminescence near the working electrode of the DNA detection cell
2次元画像として取り込み, 画像処理により 1度に多量のデータを処理でき る。 A large amount of data can be processed at once by capturing as a two-dimensional image and performing image processing.
第 10図は, DNA検出セル 41の作用電極 1 1 1の近傍に於ける電気化 学発光を, 光学系 42, 及び複数の撮像素子 40を持つ TVカメラ 43を用 いて測定する検査装置の説明図である。 作用電極 1 1 1に対向して配置され, 作用電極 1 1 1と同じ面積を持つ透明なカウンタ一電極 1 1 3と, 作用電極 1 1 1との間に電源 44により印加される電圧と, 電圧の印加の継続時間 (第 2の実施例では, 0. 4 s e c ) は, 電源制御装置 45により制御され る。 光学系 42は, 通常の光学レンズを用いても良いが, イメージインテン シファイア ( I . I . ) 又はマイクロチャンネルプレート (MC P) を用い て光検出感度を増加させることが有効である。 また, DNA検出セルの高集 積化に伴ない, より高い空間解像度が必要となる場合には, 光ファイバ一束 を TVカメラ 43の撮像面に直結する光学系を用いる。 Fig. 10 shows an explanation of an inspection device that measures the electrochemical luminescence in the vicinity of the working electrode 111 of the DNA detection cell 41 using an optical system 42 and a TV camera 43 having a plurality of imaging devices 40. FIG. A voltage applied by the power supply 44 between the working electrode 1 1 1 and a transparent counter electrode 1 1 3 disposed opposite the working electrode 1 1 1 and having the same area as the working electrode 1 1 1; The duration of the voltage application (0.4 sec in the second embodiment) is controlled by the power supply controller 45. As the optical system 42, a normal optical lens may be used. It is effective to increase the photodetection sensitivity using a sifier (I.I.) or a microchannel plate (MCP). If a higher spatial resolution is required as the DNA detection cell becomes more integrated, an optical system that directly connects a bundle of optical fibers to the imaging surface of the TV camera 43 is used.
第 2の実施例の DN A検出セルでは, 20 mm X 2 0mmの作用電極の面 を, 2 0 0 μπιχ 2 00 mの面積を持つ, x, y方向に配置される 1 0 0 X 1 00 = 1 0 0 0 0個の区画に分けて, 各区画に異なる DNAプローブを 固定している。 約 5 0 nmx 5 0 n mの面積に D N Aプローブの 1分子を固 定するものとして, 20 0 ^mX 2 0 0 μπιの面積を持つ各区画に約 1 6 0 0万分子 ( 0. 0 2 7 f mo 1 ) の D N Aプローブが固定される。  In the DNA detection cell of the second embodiment, the surface of the working electrode of 20 mm × 20 mm is arranged in the x and y directions with an area of 200 μπππ200 m. = 100 000 sections, and different DNA probes are fixed in each section. Assuming that one molecule of the DNA probe is fixed to an area of about 50 nm x 50 nm, each section having an area of 200 ^ mX 200 μπι has about 1,600,000 molecules (0.027 The DNA probe of f mo 1) is fixed.
ここで, 標的 DN A断片とハイプリット形成した DN Aプローブの伸長反 応により, D N Aプローブの 1分子当たリ電気化学発光標識を結合した d N T P又は d d N T Pが 1分子だけ伸張鎖に取リ込まれた場合を例にとる。 作 用電極と DN Aセル上基板の距離を 2 0 0 μπιとした場合, 1区画 ( 2 0 0 μπι立方) に約 3. 3 n mo 1ノ Lの濃度の電気化学発光標識が間接的に捕 捉される ( 0. 0 2 7 X 1 0— 15mo 1 ( 2 0 0 X 1 0— 4 cm) 3= 3. 3 n m 0 I /L ) 。 Here, by extension reaction of the DNA probe hybridized with the target DNA fragment, only one molecule of the dNTP or ddNTP bound to one molecule of the DNA probe to the electrochemiluminescent label is incorporated into the extended strand. Let's take an example. Assuming that the distance between the working electrode and the substrate on the DNA cell is 200 μπι, an electrochemiluminescent label with a concentration of about 3.3 nmol / L is indirectly in one section (200 μππ cubic). is capturing捉(0. 0 2 7 X 1 0- 15 mo 1 (2 0 0 X 1 0- 4 cm) 3 = 3. 3 nm 0 I / L).
文献 (C l i n i c a l C h em i s t r y 3 7 , N o . 9 , 1 5 3 4- 1 5 3 9 ( 1 9 9 1 ) ) の記載によれば, ルテニウムトリビビリジル錯 体, TP Aを使用する電気化学発光では, 検出限界は 2 0 0 f m o 1 ZLで あるので, 第 2の実施例では, 文献に記載の検出限界 ( 2 0 0 f mo 1 /L) の約 1 6 5 0 0倍の電気化学発光標識が 1区画に存在することになる ( 3. 3 x 1 0 -9 + ( 2 0 0 X 1 0 "15) = 1 6 5 0 0 ) 。 According to the literature (Clinical Chemistry 37, No. 9, 1534-1539 (1991)), a ruthenium tribibiridyl complex and TPA are used. In the case of electrochemiluminescence, the detection limit is 200 fmo 1 ZL. Therefore, in the second embodiment, the detection limit is about 1650 times the detection limit (200 fmo 1 / L) described in the literature. The electrochemiluminescent label will be present in one compartment (3.3 x 10-9 + (200 x 10 " 15 ) = 16500).
作用電極の面積が 4mm X 5 mmである時, ルテニウム卜リビビリジル錯 体の濃度が 1 0 nmo 1 Lの溶液に於ける電気化学発光を 0. 4 s e c間 測定した場合に実験で実際に検出されたフォトン数は, 作用電極 1 mm2当 たり約 40 0 0フオ トン (CV= 0. 5%) であった。 但し, 実験で使用し た装置では, 電気化学発光を集光する光学系は使用しておらず, 電気化学発 光の利用効率は, 各区画の面積が光検出器である PMTの受光面の面積に対 してなす立体角と 2 π ( s t r ) との比と, PMTの量子効率 (ここでは 5 %) との積で表わされ, 約 0. 6 %である。 When the working electrode area is 4 mm X 5 mm, the electrochemiluminescence in a solution with a ruthenium tribibiridyl complex concentration of 10 nmo and 1 L was measured for 0.4 sec. number of photons is about 40 0 0 Huo tons have enough those working electrode 1 mm 2 (CV = 0. 5 %). However, the apparatus used in the experiment did not use an optical system for focusing electrochemical luminescence, The light utilization efficiency is the ratio of the solid angle formed by the area of each section to the area of the light-receiving surface of the PMT, which is the photodetector, and 2π (str), and the quantum efficiency of the PMT (here, 5%). And about 0.6%.
従って, 第 2の本実施例に於ける, 作用電極の面積 2 Ommx 20 mmを, 面積 2 O O ^ mX S O O ^mの 1 0 0 00個の区画に分けた DN A検出セル を使用して, 電気化学発光を集光するレンズの F値を 0. 6 5として, 冷却 型 CCDカメラの量子効率を 1 0 %とすると, 電気化学発光の利用効率は約 0. 7%であり, 1区画当たりで 0. 4 s e c間に検出されるフオトン数 Therefore, in the second embodiment, using a DNA detection cell in which the working electrode area 2 Ommx 20 mm is divided into 100000 sections having an area of 2 OO ^ mX SOO ^ m, Assuming that the F value of the lens that collects the electrochemiluminescence is 0.65 and the quantum efficiency of the cooled CCD camera is 10%, the utilization efficiency of the electrochemiluminescence is about 0.7%. Photons detected in 0.4 sec
(電気化学発光量 S) は, 約 5 0フオ トンとなる (40 0 0/ { ( 1 0 0 0 fim) 2x ( 1 0 nm o 1 /L) } x { ( { 2 0 0 , πι) 2X ( 3. 3 nm o(Electrochemiluminescence S) becomes about 50 photons (400 000 / {(100 000 fim) 2 x (10 mn o 1 / L)) x {(({200, πι ) 2 X (3.3 nm o
1 ZL) } ½ 5 2. 8) 。 電気化学発光量が電気化学発光標識 (錯体) 濃度 に比例し, S/Nが電気化学発光量 ( S) の平方根に比例すると仮定すると, 第 2の実施例に於ける測定での SZNは約 7となる。 なお, 実験で使用する DN A検出セルの構成を, 作用電極の面積を 1 Ommx 1 0mmとして, 面 積 2 00 ^111X 2 0 0 ^111の 2 5 0 0個の区画をもつ構成として, 上述のレ ンズ, 冷却型 CCDカメラを使用する時, 電気化学発光の集光効率が約 2倍 となり, 1区画当たりで 0. 4 s e c間に検出されるフオトン数 (電気化学 発光量 S) は, 約 I 0 0フォトンとなり, S/Nは約 1 0と改善される。 以 上の説明では, 電気化学発光標識を結合した d N T P又は d d N T Pの 1分 子が 1分子の DN Aプローブの伸張鎖に取り込まれる場合についての S/N であるが, 電気化学発光標識を結合した d N T Pの n分子が 1分子の D N A プローブの伸張鎖に取り込まれる場合には, SZNは上記の値の ri倍とな る。 1 ZL)} ½5 2. 8). Assuming that the amount of electrochemiluminescence is proportional to the concentration of the electrochemiluminescence label (complex) and that the S / N is proportional to the square root of the amount of electrochemiluminescence (S), the SZN in the measurement in the second embodiment is approximately It becomes 7. The configuration of the DNA detection cell used in the experiment was as follows: the working electrode area was 1 Ommx10 mm, and the area was 200 × 111 × 200 × 111 with 250 sections. When using a lens and a cooled CCD camera, the collection efficiency of electrochemiluminescence doubles, and the number of photons (electrochemiluminescence S) detected within 0.4 sec per section is: The number of photons becomes about 100, and the S / N ratio is improved to about 10. In the above explanation, the S / N for the case where a molecule of dNTP or ddNTP to which the electrochemiluminescent label is bound is incorporated into the extension chain of one molecule of DNA probe is used. If n molecules of the bound dNTP are incorporated into the extended strand of one DNA probe, SZN will be ri times the above value.
光学系 4 2に MC Pを用い, 2次元検出器として 1 0 0万画素の冷却型 C CDカメラを用いて, 作用電極に於ける発光分布を撮影する。 素子 40に蓄 積された信号電荷は電流又は電圧に変換され, AZD変換器 3 8によリディ ジタル変化され, 2次元ディジタル画像を得る。 得られた 2次元ディジタル 画像は, データ処理装置 3 9により 2値化処理を行ない, 発光の生じている 区画と発光の生じていない区画に区別する。 どの位置の区画にどの種類の D N Aプローブが固定されているかの区画毎のプロ一ブ情報と, 測定の結果得 られた発光情報 (発光の有無, 発光の強度) を対比して, 試料中に存在して いる DN A断片の種類を特定できる。 The MCP is used for the optical system 42, and the distribution of light emission at the working electrode is photographed using a cooled CCD camera with 100,000 pixels as a two-dimensional detector. The signal charge stored in the element 40 is converted into a current or a voltage, and is digitized by the AZD converter 38 to obtain a two-dimensional digital image. The obtained two-dimensional digital image is binarized by a data processor 39, and light emission occurs. A distinction is made between a section and a section where no light emission occurs. The probe information for each section, which kind of DNA probe is fixed in which section, and the luminescence information (presence / absence of luminescence, intensity of luminescence) obtained as a result of the measurement are compared in the sample. The type of existing DNA fragments can be identified.
以上説明したように, 1◦ 0万画素の冷却型 CCDカメラを使用して, 1 0000種類の DN Aプローブのと試料中の標的 DN A断片との相補鎖結合 の有無を, 測定時間 0. 4 s e cで検出できる。 各区画で検出された電気化 学発光の強度から第 1の実施例で説明した原理に基づいて, DNA断片群に 存在する標的 DN A断片の種類と量を決定できる。  As described above, using a cooled CCD camera with 10000 pixels, the presence or absence of binding of the complementary strand between 10,000 types of DNA probes and the target DNA fragment in the sample was measured for a measurement time of 0. It can be detected in 4 sec. From the intensity of electrochemiluminescence detected in each compartment, the type and amount of the target DNA fragment present in the DNA fragment group can be determined based on the principle described in the first embodiment.
(第 3の実施例)  (Third embodiment)
第 1 1図は, 櫛形の作用電極と櫛形のカウンター電極とを同一平面に形成 した DNA検出セルの構成を示す図である。 第 1 1図は, 作用電極を光検出 手段の側より見た図である。 第 3の実施例では, 作用電極 52とカウンタ一 電極 53を同一平面に作成して, 電気化学発光の利用効率を増加させる。 櫛 形の作用電極 52には, 破線 5 1— 1〜5 1— 7により複数に仕切られる区 画が設けられる。 区画 (大きさ 200 μπιΧ 200 μιη) の総数は第 2の実 施例と同様に, 10000個である。 櫛形の作用電極 52の各歯と櫛形の力 ゥンター電極 53の各歯とが, 一方向で交互に対向するように, 櫛形の作用 電極 52と櫛形のカウンター電極 53とが DN Αセル下基板の面に形成され る。  Fig. 11 is a diagram showing the configuration of a DNA detection cell in which a comb-shaped working electrode and a comb-shaped counter electrode are formed on the same plane. Fig. 11 is a diagram of the working electrode viewed from the side of the light detection means. In the third embodiment, the working electrode 52 and the counter electrode 53 are formed on the same plane to increase the use efficiency of electrochemiluminescence. The comb-shaped working electrode 52 is provided with a plurality of partitions separated by broken lines 51-1-1 to 51-7. The total number of blocks (size 200 μπιΧ 200 μιη) is 10,000 as in the second embodiment. The comb-shaped working electrode 52 and the comb-shaped counter electrode 53 are connected to the substrate under the DN cell so that each tooth of the comb-shaped working electrode 52 and each tooth of the comb-shaped force center electrode 53 are alternately opposed in one direction. Formed on the surface.
即ち, 各区画の作用電極 52は, 一方向でカウンター電極 53 (幅 5 μπι) を 5 μιηの間隙を挾んで配置されている。 この配置により, 各区画にほぼ均 等の電圧が印加できるので, 各区画から発生する電気化学発光の強度の総計 には差が出ない。 第 3実施例では, D N Aセル下基板に対応する DN Aセル 上基板に, カウンター電極を設ける必要が無いため, 電気化学発光の伝搬を 遮断しないので, 電気化学発光の利用効率向上が可能となる。  That is, the working electrode 52 in each section is arranged with the counter electrode 53 (width 5 μπι) in one direction with a gap of 5 μιη. With this arrangement, a substantially equal voltage can be applied to each section, so that there is no difference in the total intensity of electrochemiluminescence generated from each section. In the third embodiment, since it is not necessary to provide a counter electrode on the upper substrate of the DNA cell corresponding to the lower substrate of the DNA cell, the propagation of the electrochemiluminescence is not interrupted, so that the utilization efficiency of the electrochemiluminescence can be improved. .
なお, 第 3の実施例では, 第 2の実施例と同様の条件で作用電極 52と力 ゥンター電極 53との間に電圧を印加する。 電気化学発光の計測に要する時 間は 0. 4 s e cである。 In the third embodiment, a voltage is applied between the working electrode 52 and the force counter electrode 53 under the same conditions as in the second embodiment. When it takes to measure electrochemiluminescence The interval is 0.4 sec.
(第 4の実施例)  (Fourth embodiment)
第 1 2図は, 作用電極と複数の独立したカウンタ一電極とを同一平面に形 成した DN A検出セルの構成を示す図である。 第 4の実施例では, 光検出手 段の空間分解能を越えて区画を集積化した DN A検出セルの構成を説明する。 第 4の実施例の DN A検出セルの電極の配置構成は第 3の実施例に類似する 力 破線で仕切られる各区画 (大きさ 200 μπιΧ 200 μιη) の総数は, 第 2の実施例と同様に, 10000個であり, 第 1 2図では 6区画のみを示 す) の作用電極 60は, 一方向でカウンタ一電極 (幅 5 m) 6 2- 1 , 6 2- 2, 62— 3を 5 μπιの間隙を挾んで配置されており, カウンタ一電極 62 - 1 , 62 - 2, 62— 3に各々独立して電圧を印加できる構成が, 実 施例 3の構成とは異なる。 作用電極 60は常に接地電位とし, 切り換え器 6 2- 1 S, 62- 2 S, 62— 3 Sを使用して, カウンター電極 62— 1, 62 - 2, 62— 3に独立して, 電源制御装置 45と電源 44により電圧を 印加できる。  Fig. 12 is a diagram showing the configuration of a DNA detection cell in which the working electrode and a plurality of independent counter electrodes are formed on the same plane. In the fourth embodiment, the configuration of a DNA detection cell in which sections are integrated beyond the spatial resolution of the light detection means will be described. The configuration of the electrodes of the DNA detection cell of the fourth embodiment is similar to that of the third embodiment. The total number of sections (size 200 μπιΧ 200 μιη) separated by force dashed lines is the same as in the second embodiment. The working electrode 60 of 10000 is shown in Fig. 12 and only 6 sections are shown.) The counter electrode (width: 5 m) 62-1, 62-2, 62-3 in one direction The configuration in which a gap of 5 μπι is interposed and the voltage can be applied to each of the counter electrodes 62-1, 62-2 and 62-3 independently of each other is different from the configuration of the third embodiment. The working electrode 60 is always at the ground potential, and the power is supplied independently to the counter electrodes 62-1, 62-2, and 62-3 using the switch 62-1S, 62-2S, 62-3S. Voltage can be applied by the controller 45 and the power supply 44.
作用電極 60には, 破線で仕切られる区画 6 1 - 1-6 1一 6が設けられ る。 全てのカウンタ一電極の電位が 0 Vの場合, DN Α検出セル内の溶液の 電位は一様に 0Vである。 カウンター電極 62— 2を, 0Vの電位から一 1. 4 Vの電位に変化させると, 溶液の電位の一様性が崩れ, カウンター電極 6 2- 2の近傍では溶液電位は 0 Vから負電位に引き下げられる。 この溶液の 負電位化は, 時間と共にカウンター電極 62— 2から放射状に広がって行く。 作用電極表面の溶液電位が負電位になると, 溶液と作用電極間の電位差を反 映するように作用電極面近傍に形成される電気二重層の電位分布が変化する カ , 電気二重層の電位分布の変化は溶液の負電位化の広がりとともに, 矢印 63, 64の方向に速度 VTで伝搬する。 伝搬速度 VTは, 溶液のイオン濃度, 溶液温度, 溶液と作用電極間の電位差等により異なるが, 例えば, 還元剤と して 0. I Smo l ZLのトリプロピルアミン (TPA) を含む 0. 30m 0 1 ZLのリン酸緩衝液 (p H 6. 8 ) では約 1 5 mm/ s e cであった。 溶液と作用電極間の電位が一 1. 1 V以上と成るように電気二重層の電位分 布が形成されると, Ru錯体と TPAとの間で電気化学発光反応が発生する。 カウンター電極 6 2— 2より約 1 5mm/s e cの速度で矢印 6 3及び 64 の方向に発光領域が拡大して行く。 The working electrode 60 is provided with sections 6 1-1-6 1-1 6 separated by broken lines. When the potential of all counter electrodes is 0 V, the potential of the solution in the DNΑ detection cell is uniformly 0 V. When the potential of the counter electrode 62-2 is changed from 0 V potential to 11.4 V potential, the uniformity of the solution potential is lost, and the solution potential near the counter electrode 62-2 changes from 0 V to a negative potential. To be reduced to The negative potential of this solution spreads radially from the counter electrode 62-2 with time. When the solution potential on the working electrode surface becomes negative, the potential distribution of the electric double layer formed near the working electrode surface changes to reflect the potential difference between the solution and the working electrode. This change propagates in the direction of arrows 63 and 64 at the velocity V T with the spread of the negative potential of the solution. The propagation velocity V T depends on the ionic concentration of the solution, the temperature of the solution, the potential difference between the solution and the working electrode, etc., for example, including 0.1 I Smol ZL tripropylamine (TPA) as a reducing agent. The value was about 15 mm / sec in a phosphate buffer (pH 6.8) of 30 m 01 ZL. When the potential distribution of the electric double layer is formed so that the potential between the solution and the working electrode is 11.1 V or higher, an electrochemiluminescent reaction occurs between the Ru complex and TPA. The light emitting region expands in the directions of arrows 63 and 64 at a speed of about 15 mm / sec from the counter electrode 62-2.
カウンター電極の中心部と区画の境界との距離を dとする。 カウンタ一電 極 6 2_ 2を負電位に設定した後, 時間 T= dZVTが経過した時, カウン ター電極 6 2— 2の電位の変化による作用電極面近傍に形成される電気二重 層の電位分布の変化は, 区画の境界まで達する。 その結果, 区画 6 1— 3と 区画 6 1— 4のうち, 電気化学発光標識が捕捉された区画では電気化学反応 力起こり, 電気化学発光が生じる。 カウンタ一電極 62— 2を負電位に設定 した後, 時間 T = d V τが経過した時に, カウンタ一電極 62— 2の電位 を接地に戻すと, 溶液一電極間の電位差の伝搬は消滅し, 他の区画がカウン ター電極 6 2— 2の影響で電気化学発光を生じることはない。 同様に, 他の 何れかのカウンター電極を選択し, 時間 Τだけ電位を与えた場合, 選択され たカウンタ電極を含む区画でのみ電気化学発光反応を励起できる。 第 4の実 施例では, 3つの区画を 1つの光検出単位とする光検出系を用いる。 The distance between the center of the counter electrode and the boundary of the section is d. After the time T = dZV T elapses after setting the counter one electrode 62_2 to the negative potential, the electric double layer formed near the working electrode surface due to the change in the potential of the counter electrode 62-2 when the time T = dZV T elapses. The change in the potential distribution reaches the boundaries of the compartments. As a result, of the compartments 6 1–3 and 6 1–4, in the compartment where the electrochemiluminescent label is captured, an electrochemical reaction occurs and electrochemiluminescence occurs. When the potential of the counter electrode 62-2 is returned to ground when the time T = dV τ has elapsed after the counter electrode 62-2 is set to a negative potential, the propagation of the potential difference between the solution and the electrode disappears. However, no electrochemiluminescence occurs in the other compartments under the influence of the counter electrode 62-2. Similarly, if any other counter electrode is selected and a potential is applied for a time Τ, the electrochemiluminescence reaction can be excited only in the section containing the selected counter electrode. In the fourth embodiment, a light detection system using three sections as one light detection unit is used.
第 1 3図は, 複数の区画からの電気化学発光を集光して検出する光学系を 説明する図である。 区画の総数は, 第 2の実施例と同様に, 1 0000個で あり, 第 1 3図では 6区画のみを示す。 第 1 3図では, 区画 6 1— 1, 6 1 -3 , 6 1— 5からの電気ィ匕学発光は光ファイバ一 7 1— 1により APD 7 一 1に集光され, 区画 6 1— 2, 6 1 -4, 6 1— 6からの電気化学発光 は光ファイバ一 7 1— 2により APD 72— 2に集光され構成とする ( 1 0 000区画からの電気化学発光の検出には, 1 00個の A PDを必要とする) 。 切り換え器により, カウンタ一電極を 1つずつ選択して負電位を与え, 力 ゥンタ一電極の選択に同期して, 2つの A PDから光検出信号を読み出すこ とにより, 2つの APDにより 6つの区画からの電気化学発光の測定が可能 である。 光ファイバ一 7 1— 1, 72— 2の受光面は, 各区画の面積よリ大 である力 カウンター電極の選択動作により, 第 4の実施例によれば, 複数 の区画からの電気化学発光を 1つの光検出系により, 順次に測定することが 可能であり, 光検出系の総数よリ多い種類のプローブを有する DN A検出セ ルの評価が可能となる利点がある。 FIG. 13 is a diagram illustrating an optical system that collects and detects electrochemiluminescence from a plurality of sections. The total number of partitions is 10,000 as in the second embodiment, and Fig. 13 shows only six partitions. In Fig. 13, the electric light emitted from the sections 6 1-1, 6 1-3, 6 1-5 is collected on the APD 7-1 by the optical fiber 7-1-1, and the section 6 1- Electrochemiluminescence from 2, 6 1 -4, 6 1-6 is condensed on APD 72-2 by optical fiber 1 7-2. (To detect electrochemiluminescence from 100 000 sections, , 100 APDs are required). A switch selects one electrode of the counter one by one to apply a negative potential, and reads out the photodetection signal from the two APDs in synchronization with the selection of the one electrode of the counter. Measurement of electrochemiluminescence from the compartment is possible. According to the fourth embodiment, according to the fourth embodiment, the light receiving surfaces of the optical fibers 71-1 and 72-2 are selected by a force counter electrode which is larger than the area of each section. The advantage is that it is possible to measure the electrochemiluminescence from each compartment sequentially with one photodetection system, and to evaluate DNA detection cells with more types of probes than the total number of photodetection systems. There is.
なお, 第 4の実施例では, カウンター電極を順次選択して切り換えた後に, 作用電極 60とカウンタ一電極 62— 1〜62— 3 , ···, との間に電圧 (例 えば, 一 1. 4V) を印加する。 区画の大きさが, 第 2の実施例と同様に, 200 ^111X 2 0 0 ^ 111であり, 伝搬速度 VTが約 1 5mm/s e cである とする時, 上記の電圧の印加の継続時間 Tは, (0. 2mmノ 2 ) 1 5 = 0. 0067 s e c = 6. 7ms e c以下であり, 1 0000区画からの電 気化学発光の検出に要する時間は, 6. 7m s e c X l 00 = 0. 67 s e cとなる。 In the fourth embodiment, after the counter electrodes are sequentially selected and switched, a voltage (for example, 1 1 1) is applied between the working electrode 60 and the counter electrodes 62-1 to 62-3,. Apply 4V). Assuming that the size of the section is 200 ^ 111X200 ^ 111 and the propagation velocity V T is about 15 mm / sec, as in the second embodiment, the duration of the above voltage application T is (0.2 mm 2) 15 = 0.0067 sec = 6.7 ms ec or less, and the time required to detect electrochemiluminescence from 10,000 sections is 6.7 msec X 100 = 0.67 sec.
(第 5の実施例)  (Fifth embodiment)
第 14図は, 集積化した DNA検出セルの区画からの電気化学発光を集光 して TVカメラにより検出する場合の TVカメラの撮像面で観察される区画 の大きさと撮像素子の大きさの関係を説明する図である。 光検出手段として TVカメラを用いることは, 1度に多くの種類の DNAプローブを使用する 多くの分画を持つ DNA検出セルを使用する場合に有効である。 第 14図で 斜線で示す作用電極 1 1 1 (DNAセル下基板 1 1に形成される) には X方 向, 及び y方向の破線により複数の区画 ( 2 0 0 ^111X 2 0 0 mの外形状 を持つ) に分けられており, 各区画の中央部にカウンター電極 (一辺が 5 μ m〜 l 0 imの正方形の外形状を持つ) 力 数 μ mの間隙をおいて作用電極 1 1 1 (斜線部) に囲まれ作用電極に対向して配置される。 即ち, カウンタ —電極が, 作用電極 1 1 1 (斜線部) と分離して, DNAセル下基板 1 2に 形成される。 各カウンター電極の中心と各区画の境界との距離を h (= 10 0 ^m) とする。 区画の総数は, 第 2の実施例と同様に, 10000個であ り作用電極の外寸法は 2 Ommx 2 Ommであり, 第 14図では 1 6区画の みを示す。 以下では, 光検出手段, 例えば, TVカメラの撮像面で観察され る画像に於いて, 第 1の検出 (撮像) 素子の受光面積 (空間分解能を規定す る 1因子) 8 1— 1に合計 4つの区画 82— 1〜8 2— 4からの電気化学発 光が入射する場合を考える。 Fig. 14 shows the relationship between the size of the compartment observed on the imaging surface of the TV camera and the size of the image sensor when the electrochemiluminescence from the compartment of the integrated DNA detection cell is collected and detected by the TV camera. FIG. Using a TV camera as the light detection means is effective when using a DNA detection cell with many fractions that uses many types of DNA probes at once. In FIG. 14, a working electrode 111 (formed on the substrate 11 below the DNA cell), which is indicated by oblique lines, has a plurality of sections (200 ^ 111X200 m) defined by broken lines in the X and y directions. With a counter electrode (having a square outer shape with a side of 5 μm to 10 im) with a power of several μm at the center of each section. It is surrounded by 1 (shaded area) and arranged opposite the working electrode. That is, the counter electrode is separated from the working electrode 1 1 1 (shaded area) and formed on the substrate 12 below the DNA cell. The distance between the center of each counter electrode and the boundary of each section is defined as h (= 100 ^ m). As in the second embodiment, the total number of sections is 10,000 and the outer dimensions of the working electrode are 2 Omm x 2 Omm, and Fig. 14 shows only 16 sections. In the following, the light-receiving area of the first detection (imaging) element (specifying the spatial resolution) is defined as the light detection means, for example, the image observed on the imaging surface of the TV camera. 8 1—1 Consider the case where the electrochemical emission from the four sections 82—1 to 82-4—total enters.
第 1 5図は, カウンター電極がマトリックス状の配線により接続され DN Aセル下基板に形成される DN A検出セルの構成を示す図である。 DNAセ ル下基板 (電気絶縁材料) の面に第 1 5図に示す配線及びゲートカ形成され, 次に絶縁層を介して第 1 4図に示す作用電極及び力ゥンタ一電極が形成され, カウンター電極とゲート力電気的に接続される。 カウンター電極の総数は 1 0000個である力, 第 14図と同様に, 第 1 5図では 1 6個のカウンター 電極のみを示す。 第 1 5図に示すように, マトリクス配線は, 各カウンター 電極 83— 1〜83— 4に対応する T FTゲート 9 1一 1〜9 1—4と, ゲ —卜 9 1— 1と 9 1— 3に接続する導線 92— 1, ゲ一卜 9 1一 2と 9 1— 4に接続する導線 92 - 2 , ゲート 9 1一 1と 9 1一 2の ONZOF Fを制 御するゲート線 93— 1, ゲート 9 1一 3と 9 1— 4の ONZOFFを制御 するゲート線 93一 2で構成される。  FIG. 15 is a diagram showing a configuration of a DNA detection cell in which counter electrodes are connected by matrix wiring and formed on a substrate under the DNA cell. The wiring and gate shown in Fig. 15 are formed on the surface of the substrate (electrically insulating material) under the DNA cell, and then the working electrode and the power electrode shown in Fig. 14 are formed via the insulating layer. The gate is electrically connected to the electrode. The total number of counter electrodes is 10000. As in Fig. 14, only 16 counter electrodes are shown in Fig. 15. As shown in Fig. 15, the matrix wiring consists of TFT gates 91-1 to 91-4 corresponding to each counter electrode 83-1 to 83-4, gates 91-1 and 91, respectively. — Conductor connected to 3 92 — 1, Conductor 92-1 connected to gates 9 11 and 9 1 — 4, Gate wire that controls ONZOF F of gates 9 11 1 and 9 1 1 2 93 — 1, Gates 91 and 3 and 9 1 and 4 are used to control the ONZOFF of the gate lines.
第 1 6図は, ゲート線 ( 93— 1, 93- 2) 及び導線 ( 92— 1, 92 一 2 ) の選択により, カウンター電極, 即ち電気化学発光を誘起させる区画 の選択を説明する図である。 第 14図, 第 1 5図に示す DNA検出セルでは, 導線 92- 1を除く導線を 0電位とし, 導線 92— 1に負電位を印加した状 態で, ゲート線 93— 1以外のゲート線を OFF電位 (例えば, 0電位) と し, ゲート線 93 _ 1を時間 T==h VTの間隔だけ ON電位 (例えば, 1 0 V以上) とすると, ゲ一ト線 93一 1に接続するゲート 9 1一 1が ON状 態となり, 導線 92— 1とカウンタ一電極 83— 1が導通する。 その結果, カウンター電極 83 - 1が時間 Tの間だけ負電位になり, 区画 82- 1だけ で溶液一電極間の電位差が一 1. 4 Vとなる様に電気二重層を形成できるた め, 区画 8 2- 1に電気化学発光標識が捕捉されている場合には電気化学発 光反応がおきる。 なお, 第 1〜第 4の撮像素子の受光面積 8 1— 1〜8 1— 4に於ける左上の区画 (第 1 4図では, 簡単のために 82一 1のみに参照番 号を付している) のカウンター電極に接続する全ての導線に負電位を印加し, 左上の区画のゲートに接続する全てのゲート線の ON電位を印加すると, 受 光面積 8 1— 1〜8 1— 4に於ける左上の区画だけで選択的に電気化学発光 を誘起させることができる。 Fig. 16 is a diagram illustrating the selection of the counter electrode, that is, the section that induces electrochemiluminescence, by selecting the gate line (93-1, 93-2) and the conductor (92-1, 92-12). is there. In the DNA detection cell shown in Figs. 14 and 15, the conductors except for conductor 92-1 were set to 0 potential, and a negative potential was applied to conductor 92-1. Is set to the OFF potential (for example, 0 potential) and the gate line 93_1 is set to the ON potential (for example, 10 V or more) for the interval of time T == hV T. Gate 911 turns on, and conductor 92-1 and counter electrode 83-1 conduct. As a result, the electric double layer can be formed so that the counter electrode 83-1 has a negative potential only for the time T and the potential difference between the solution and the electrode is 11.4 V only in the section 82-1. If an electrochemiluminescent label is captured in Section 82-1, an electrochemical emission reaction will occur. Note that the upper left section of the light-receiving areas 81-1-1 to 81-4 of the first to fourth imaging elements (in Fig. 14, only reference numerals 82-11 are assigned for simplicity). A negative potential is applied to all conductors connected to the counter electrode When the ON potentials of all the gate lines connected to the gates in the upper left section are applied, electrochemiluminescence can be induced selectively only in the upper left section in the light receiving area 81-1-1 to 81-4. it can.
以下, 第 16図に示すような, ゲート線及び導線の選択により, 選択され るカウンター電極, 即ち電気化学発光を誘起させる面 (区画) を選択して, 受光面積 8 1— 1〜8 1— 4の各々に属する各区画からの電気化学発光を 1 区画毎に順次検出できる。 例えば, 第 1の撮像素子の受光面積 8 1— 1に属 する 4つの区画 82— 1〜82— 4からの電気化学発光を 1区画毎に分離し て順次検出できる。 この結果, 第 5の実施例では, 光検出手段の 1検出素子 の受光面積が DN A検出セルの 1区画の面積よリも大であるにもかかわらず, 1検出素子で検出できる区画の数が 4となる。  In the following, as shown in Fig. 16, by selecting the gate line and the conductor, the selected counter electrode, that is, the surface (section) that induces electrochemiluminescence is selected, and the light receiving area 8 1-1 to 8 1- Electrochemiluminescence from each section belonging to each of 4 can be sequentially detected for each section. For example, the electrochemiluminescence from the four sections 82-1 to 82-4 belonging to the light receiving area 81-1 of the first image sensor can be separated for each section and detected sequentially. As a result, in the fifth embodiment, the number of sections that can be detected by one detection element is larger than the area of one section of the DNA detection cell, even though the light receiving area of one detection element of the light detection means is larger than the area of one section of the DNA detection cell. Becomes 4.
なお, 第 5の実施例では, TVカメラの 1検出 (撮像) 素子で, 時間を切 り換えて異なる 4区画からの電気化学発光を検出する。 即ち, 1 0000区 画からの電気化学発光を 4回に分けて検出する。 作用電極 1 1 1とカウンタ —電極 83— 1〜83— 2, ···, との間に電圧 (例えば, 一 1. 4V) を印 加する。 区画の大きさ力 , 第 2の実施例と同様に, S O O mx S O O /^m であり, 伝搬速度 VTが約 1 5mmZs e cであるとする時, 第 4の実施例 と同様に, 上記の電圧の印加の継続時間 Tは, 6. 7ms e c以下であり, 10000区画からの電気化学発光の検出に要する時間は, 6. 7ms e c X 4 = 26. 8ms e cとなる。 In the fifth embodiment, one detection (imaging) element of a TV camera detects the electrochemiluminescence from four different sections by changing the time. That is, the electrochemiluminescence from the 10,000 sections is detected in four times. Apply a voltage (for example, 1.1 V) between the working electrode 1 1 1 and the counter electrode 83-1 to 83-2,. Assuming that the size of the compartment is SOO mx SOO / ^ m, as in the second embodiment, and the propagation velocity V T is about 15 mmZs ec, as in the fourth embodiment, The duration T of the voltage application is less than 6.7 ms ec, and the time required to detect electrochemiluminescence from the 10,000 compartments is 6.7 ms ec X 4 = 26.8 ms ec.
第 5の実施例の以上の説明に於いて, TVカメラとして冷却型 CCDカメ ラを使用する例について以下説明する。 ここでは, 100万素子からなる 1 ィンチ冷却型 CCDカメラを使用する (CCDカメラの受光面での CCD素 子のサイズは 18 m角である) 。 CCDカメラと DNA検出セルの間に配 置される光学系の縮小率を約 1ノ 1 1とする。 CCDカメラ等の TVカメラ を使用する場合の空間分解能は, 実際的見地から簡単に言うと, 受光面での 光検出素子の大きさを Lとする時, 約 2 Lとなる。 L = 1 8 μπιの場合には, C C D素子の 4素子が, D Α検出セルの 4区画からの電気化学発光を検出 する構成となる力 ここでは, 上記で説明した方法と同様の方法により, 4 区画からの電気化学発光を分離して検出する構成とする。 CCD素子の 4素 子は, 第 1の光検出開口 (4素子で実効的な 1素子を形成するという意味で 使用する。 第 14図に示す 8 1— 1に対応する) を形成し, 以下同様にして, その他の 4素子により第 2〜第 4の光検出開口 8 1— 2〜8 1—4を形成す る。 CCD素子の 4素子で光検出開口を形成するので, 1 00万素子からな る 1インチ CCDカメラを使用する場合には, 合計 25万からなる光検出開 口が形成される。 先に説明した DNA検出セルの作用電極の大きさ 20mm を 200mmと大きく して, 区画の数を 100万個を形成して各区画に異な るプローブを固定しておく。 1 00万素子からなる 1インチ CCDカメラを 使用して, 100万個の区画を持つ DNA検出セルから発光する電気化学発 光を検出するに要する時間は, 先に説明した場合と同様に, 26. 8ms e cである。 In the above description of the fifth embodiment, an example in which a cooled CCD camera is used as a TV camera will be described below. Here, a one-inch cooled CCD camera consisting of one million elements is used (the size of the CCD element on the light-receiving surface of the CCD camera is 18 m square). The reduction ratio of the optical system placed between the CCD camera and the DNA detection cell is about 1-11. When a TV camera such as a CCD camera is used, the spatial resolution is about 2 L when the size of the photodetector on the light receiving surface is L, from a practical point of view. When L = 18 μπι, four CCD elements detect electrochemiluminescence from four sections of the DΑ detection cell In this case, the electrochemiluminescence from the four compartments is separated and detected by the same method as described above. The four elements of the CCD element form the first light detection aperture (used to mean that four elements form an effective one element; corresponding to 81-1 shown in Fig. 14). Similarly, the second to fourth light detection apertures 81-2 to 81-4 are formed by the other four elements. Since the light detection aperture is formed by four CCD elements, if a 1-inch CCD camera with 100,000 elements is used, a total of 250,000 light detection apertures will be formed. The size of the working electrode of the DNA detection cell described above was increased from 20 mm to 200 mm, and the number of compartments was formed to 1,000,000, and different probes were fixed in each compartment. The time required to detect electrochemical emission emitted from a DNA detection cell having 1 million sections using a 1-inch CCD camera consisting of 100,000 elements is the same as in the case described above. 8ms ec.
第 5の実施例の構成によれば, DN A検出セルに形成する区画の数によら ず, 他の区画とは独立して, 26. 8ms e cという短時間で計測が可能と なる。 また, CCD素子の複数素子で 1光検出開口を形成して, 1光検出開 口が見込む複数の区画からの電気化学発光を, 各区画毎に独立に高空間分解 能で検出できる。  According to the configuration of the fifth embodiment, measurement can be performed in a short time of 26.8 ms ec, independently of the other sections, regardless of the number of sections formed in the DNA detection cell. In addition, by forming one light detection aperture with multiple CCD elements, it is possible to independently detect, with high spatial resolution, electrochemiluminescence from a plurality of sections that one light detection opening expects.
(第 6の実施例)  (Sixth embodiment)
第 17図は, 1つの選択された区画で繰り返し電気化学発光を生じさせる 電圧印加の例を説明する図である。 第 6の実施例では, 第 4, 及び第 5の実 施例に於いて, 所定の緩和時間をおいた後に, カウンタ一電極に負電位を繰 り返し印加して, 再び電気化学発光反応を誘導する。 カウンター電極に負電 位を印加する時間 T, 及び周期 tの 1サイクルだけでは電気化学発光の強度 カ不十分で光検出手段の検出素子の検出感度に達しない場合には, 所定の緩 和時間をおいた後に, カウンター電極に負電位を繰り返し印加して電気化学 発光反応を再誘導し, 例えば, 第 1 7図に示すように, 1つのカウンター電 極に対して, 周期 tで電圧を複数回繰り返し印加して, 光検出手段の検出素 子に蓄光して電気化学発光を検出する。 電圧印加の制御は, 電源制御装置 4 5により電源 44を制御して行なう。 FIG. 17 is a diagram illustrating an example of voltage application for repeatedly generating electrochemiluminescence in one selected section. In the sixth embodiment, in the fourth and fifth embodiments, after a predetermined relaxation time, a negative potential is repeatedly applied to one electrode of the counter, and the electrochemiluminescence reaction is restarted. Induce. If the intensity of the electrochemiluminescence is not sufficient due to the time T during which the negative potential is applied to the counter electrode and only one cycle of the period t and the detection sensitivity of the detection element of the light detection means is not reached, the specified relaxation time is set. After that, a negative potential is repeatedly applied to the counter electrode to re-induce the electrochemiluminescence reaction. For example, as shown in Fig. 17, a voltage is applied to one counter electrode multiple times at period t. Repeatedly applying the detection element The light is stored in the cell to detect the electrochemiluminescence. The voltage application is controlled by controlling the power supply 44 by the power supply control device 45.
例えば, 第 5の実施例に於いて, h^ l O O m, VT= 1 5 mm/s e cとする場合, 電圧印加時間を T= 6. 7m s e cとなる。 周期を t == 2 Τ = 1 3. 4ms e cとすると, 印加電圧は 7 5 H zの矩形波で制御すれば良 レ、 (上記の緩和時間は 6. 7m s e cとなる) 。 この結果, 電気化学発光反 応の繰り返しによる電気化学発光の積分強度が得られ, 1サイクルだけでの 電気化学発光の強度不足の問題 (低検出感度, 低 SZN) は解決できる。 1 0000個の区画を持つ DNA検出セルを用いて, 第 1 7図に示す電圧の繰 リ返しを, nサイクルだけ行なう場合, 電気化学発光の検出に要する計測時 間は, 第 4の実施例では 0. 67 X ( 2 n) s e c , 第 5の実施例では 26. 8 X ( 2 n ) m s e cとなり, 1サイクルだけでの電気化学発光の強度の n 倍の強度が得られ, SZNは^ n倍向上する。 例えば, n = 60とすると, 計測時間は, 80. 4 s e c (第 4の実施例) , 3. 2 s e c (第 5の実施 例) となる。 For example, in the fifth embodiment, if h ^ OO m, V T = 15 mm / sec, the voltage application time is T = 6.7 m sec. Assuming that the period is t == 2 3. = 13.4 ms ec, the applied voltage can be controlled by a 75 Hz rectangular wave (the above relaxation time is 6.7 msec). As a result, the integrated intensity of electrochemiluminescence obtained by repeating the electrochemiluminescence reaction is obtained, and the problem of insufficient intensity of electrochemiluminescence in only one cycle (low detection sensitivity, low SZN) can be solved. When the voltage detection shown in Fig. 17 is repeated n cycles using a DNA detection cell with 10,000 compartments, the measurement time required for the detection of electrochemiluminescence is as shown in the fourth embodiment. Is 0.67 X (2 n) sec, and in the fifth embodiment it is 26.8 X (2 n) msec, which is n times the intensity of electrochemiluminescence in only one cycle. n times better. For example, if n = 60, the measurement time is 80.4 sec (fourth embodiment) and 3.2 sec (fifth embodiment).
第 3から第 6の実施例に於いて, 光検出手段により検出された信号は電流 又は電圧に変換され, A/D変換器 38によりデジタル変換され, データ処 理装置 39で処理されることは, 第 1 , 及び第 2の実施例と同様である。 (第 7の実施例)  In the third to sixth embodiments, the signal detected by the light detecting means is converted into a current or a voltage, is converted into a digital signal by the A / D converter 38, and is processed by the data processing device 39. , The first and the second embodiments. (Seventh embodiment)
第 1の実施例〜第 6の実施例では, D N A検出セルに固定する DN Aプロ ーブ 1 3, 1 4, 1 5, 1 6は, 2, ーデォキシオリゴヌクレオシドの間に リン酸ジエステル結合を持つォリゴヌクレオチドである。 第 9の実施例では 第 1の実施例〜第 6の実施例に於いて, 第 1 8図に示すように, 2' —デォ キシオリゴヌクレオシドの間にホスホロチォェ一卜 (p h o s p h o r o t h i 0 a t e ) 結合 (参照番号 23 1 ) を持つオリゴヌクレオチドを DNA プロ一ブ 1 3, 1 4, 1 5, 1 6として使用し DN A検出セルに固定する。 第 1 8図に示す Bは核酸塩基 (A, T, G, Cの何れか) を表わす。 ホスホ ロチォェ一ト結合を持つ DNAプロ一ブは, S 1ヌクレアーゼでは分解され ない。 In the first to sixth embodiments, the DNA probes 13, 14, 15, and 16 immobilized on the DNA detection cell are phosphates between the 2, -deoxy oligonucleosides. Oligonucleotides having diester bonds. In the ninth embodiment, as shown in FIG. 18, in the first to sixth embodiments, a phosphorothioate bond is formed between 2'-deoxyoligonucleosides. Oligonucleotides (reference number 231) are used as DNA probes 13, 14, 15, 15 and 16 and fixed to DNA detection cells. B in FIG. 18 represents a nucleic acid base (A, T, G, or C). DNA probes with phosphoroate bonds are degraded by S1 nuclease. Absent.
(第 8の実施例)  (Eighth embodiment)
第 1 9図は, DNA検出セルを用いた検査装置の構成を示す図である。 D NA検出セルは, 凹部を持つ下基板 24 1と, 透明な上基板 243とを持ち, 下基板 24 1の凹部の底面 242には, 第 3の実施例 (第 1 1図) で説明し たように, 同一平面に作用電極とカウンタ一電極とが配置されている。 DN A検出セルは, 光学的に不透明なセルホルダー 244に揷入され固定されて る。 上基板 243に対向して, 結像レンズ 245と, 結像レンズ 245の結 像位置に冷却型 CCDカメラ 246とが配置されている。 CCDカメラ 24 6を固定するカメラヘッド 247は, 光学的に不透明であり, セルホルダー 2 4と接続して, DN A検出セル及び光学系への外光の入射を遮断してい る。 DNA検出セルの作用電極とカウンター電極には, 電源 44が接続され, 電源 44による電圧印加と, CCDカメラ 246に蓄積された信号の読み出 しは, 制御装置 248により制御される。 読み出された信号は, AZD変換 器 3 8によりディジタル変換され, データ処理装置 39で処理され 2次元デ イジタル画像としてメモリに保存される。 なお, 第 1 9図の構成に於いて, カウンター電極の構成として, 第 1図 (第 1の実施例) , 第 1 0図 (第 2の 実施例) , 第 1 2図 (第 4の実施例) , 第 1 4図 (第 5の実施例) の各図に 示す構成を使用しても良い。  FIG. 19 is a diagram showing a configuration of an inspection device using a DNA detection cell. The DNA detection cell has a lower substrate 241 having a concave portion and a transparent upper substrate 243, and the bottom surface 242 of the concave portion of the lower substrate 241 is described in the third embodiment (FIG. 11). As described above, the working electrode and the counter electrode are arranged on the same plane. The DNA detection cell is inserted and fixed in an optically opaque cell holder 244. An imaging lens 245 and a cooled CCD camera 246 are arranged at an imaging position of the imaging lens 245 so as to face the upper substrate 243. The camera head 247 that fixes the CCD camera 246 is optically opaque and is connected to the cell holder 24 to block external light from entering the DNA detection cell and the optical system. A power supply 44 is connected to the working electrode and the counter electrode of the DNA detection cell. The application of a voltage by the power supply 44 and the reading of signals stored in the CCD camera 246 are controlled by a controller 248. The read signal is digitally converted by the AZD converter 38, processed by the data processing device 39, and stored as a two-dimensional digital image in the memory. In the configuration of FIG. 19, as the configuration of the counter electrode, FIG. 1 (first embodiment), FIG. 10 (second embodiment), and FIG. 12 (fourth embodiment) For example, the configurations shown in FIGS. 14 and 14 (fifth embodiment) may be used.
第 20図は, 結像レンズ 245の側から見た第 1 9図に示す DN A検出セ ルの平面図である。 第 8の実施例の DNA検出セルは, 第 2の実施例の DN A検出セルと同じ構成であり, 20 mmx 20mmの作用電極の面を, 20 0 mx 200 μπιの面積を持つ, 1 00 X 1 00= 1 0000個の区画に 分けて, 各区画に異なる DN Αプローブが固定されている。  FIG. 20 is a plan view of the DNA detection cell shown in FIG. 19 as viewed from the imaging lens 245 side. The DNA detection cell according to the eighth embodiment has the same configuration as the DNA detection cell according to the second embodiment. The surface of the working electrode of 20 mm × 20 mm has an area of 200 mx 200 μπι. Each DN is divided into 100 = 10000 sections, and a different DN II probe is fixed in each section.
なお, 以上の構成による第 8の実施例では, 第 2の実施例と同様に電気化 学発光の計測に要する時間は 0. 4 s e cである。  Note that, in the eighth embodiment having the above configuration, the time required for the measurement of electrochemical luminescence is 0.4 sec, as in the second embodiment.
第 2の実施例で説明したように電気化学発光を 2次元ディジタル画像とし て得る場合, 又は第 4, 第 5, 第 6の各実施例で説明したように DNA検出 セルの集積度が光検出器の空間分解能を上回る場合には, DN A検出セルの 区画の配列と光検出器の検出素子の配列とを精度良く合せる, 又は電気化学 発光の測定後に発光した各区画の位置を正確に求める等の必要が生じる。 When electrochemiluminescence is obtained as a two-dimensional digital image as described in the second embodiment, or as described in the fourth, fifth, and sixth embodiments, DNA detection is performed. If the degree of integration of the cell exceeds the spatial resolution of the photodetector, the arrangement of the sections of the DNA detection cell and the arrangement of the detector elements of the photodetector should be matched accurately, or each of the light emitted after the measurement of electrochemical luminescence. There is a need to accurately determine the position of the section.
DN A検出セルの区画の配列と光検出器の検出素子の配列との位置あわせ を容易にするために, DNA検出セルに複数のマーカ一を設け, マーカーの 位置を利用して DNA検出セルと光検出器の位置関係を調整する。 又は, 電 気ィ匕学発光を測定する際に同時に光マーカーの位置を測定し, データ処理時 に DN A検出セルと光検出器の位置関係を検出して, 発光した各区画の位置 を正確に求める。 発光ダイォード等の微小面積の発光源を DN A検出セルに 配置してマーカ一とするか, 又は DNA検出セルにピンホールを設け, ピン ホールを通過した光をマーカーとする。 DN A検出セルの特定の位置の区画 をマーカ一に利用することもできる。  In order to facilitate alignment between the arrangement of the sections of the DNA detection cell and the arrangement of the detection elements of the photodetector, a plurality of markers are provided in the DNA detection cell, and the position of the marker is used to identify the DNA detection cell. Adjust the position of the photodetector. Alternatively, the position of the optical marker is measured at the same time as the measurement of the electric light, and the positional relationship between the DNA detection cell and the photodetector is detected during data processing, so that the position of each light-emitting section can be accurately determined. Ask for. Either place a light emitting diode with a small area such as a light emitting diode in the DNA detection cell and use it as a marker, or place a pinhole in the DNA detection cell and use the light passing through the pinhole as a marker. A section at a specific position of the DNA detection cell can also be used as a marker.
第 20図に示す 4つの区画 25 1, 252, 253 , 254は, DNA検 出セルのマーカ一として使用され, 特別に作製された区画である。 第 2の実 施例と同様に, 1区画に固定される DNAプローブの量が 0. 027 f mo 1である場合, 区画 25 1に 0. 0270 f mo l, 区画 252に 0. 02 03 f m 0 1 , 区画 253に 0. 0 1 35 f mo し 区画 254にに 0. 0 068 f m 0 1 , の既知の濃度の Ru錯体を各々固定する。 既知の濃度の R u錯体が固定された区画からの電気化学発光は, 発光強度のスケールとして 利用できる。  The four compartments 251, 252, 253, and 254 shown in Fig. 20 are specially prepared compartments that are used as markers for DNA detection cells. As in the second embodiment, when the amount of the DNA probe immobilized in one compartment is 0.027 fmo1, 0.0270 fmol in compartment 25 1 and 0.002 03 fm in compartment 252. 0 1, 0.135 fmo in section 253 and 0.0 068 fm 0 1, Ru complex in section 254 with known concentration. Electrochemiluminescence from a compartment in which a known concentration of Ru complex is immobilized can be used as a scale of emission intensity.
既知の濃度の Ru錯体の固定を行なうには, DN A検出セルの作製時に予 め固定する方法と, 以下に説明する方法がある。 例えば, 予め区画 25 1, 252, 253, 254に, 他の全ての DN Aプロ一ブと異なる塩基配列を 持つプローブ (マーカープローブと呼ぶ) を上記既知の濃度で固定しておき, 標的 DNA断片と各区画の DNAプローブとを相補結合させる時に, マーカ —プローブとのみ相補結合するマーカー DN Aを添加し, マーカープローブ とマ一カー DNAを相補結合させて, 第 1の実施例で説明した DNAプロ一 ブの伸張反応と同時に, マ一カープローブの伸張反応を行なう。 この方法で は, マーカープロ一ブの伸張鎖に取り込まれた Ru : dNT P, 又は Ru : d dNTPに基づく発光を測定することにより, 相補結合, 伸長反応が順調 に行われたことを確認できる。 . To fix a known concentration of Ru complex, there are two methods: first, fix it when preparing a DNA detection cell, and the other method is described below. For example, a probe having a base sequence different from that of all other DNA probes (referred to as a marker probe) is fixed in advance at sections 251, 252, 253, and 254 at the above known concentration, and the target DNA fragment When complementarily binding to the DNA probe of each compartment, a marker DNA that complements only the marker-probe is added, and the marker probe and the marker DNA are complementarily bound to each other, and the DNA described in the first embodiment is added. Perform the marker probe extension reaction simultaneously with the probe extension reaction. using this method By measuring the luminescence based on Ru: dNTP or Ru: d dNTP incorporated in the extended chain of the marker probe, it can be confirmed that the complementary binding and extension reactions were performed smoothly. .
発光した区画の DNA検出セルに於ける位置は, 以下の方法で求める。 第 20図に示す 4つの区画 25 1 , 252, 253, 254からは常に電気化 学発光が検出される。 検出された 2次元発光像の解析方法を以下に説明する。 区画 25 1 , 252, 253, 254からの発光を含む 2次元発光像が, 参 照番号 255を原点とする xy座標により表わし, 2次元発光像を形成する, X方向の Px個の画素数, y方向の P y個の画素数を求める。 DNA検出セ ルは, 100 X 1 0◦の区画から構成されているので, 1区画当たりの画素 数は, Px/100=Qx, Py/100 = Qyとなる。 発光した区画 25 6の原点に近い角点 257の座標を (Mx, My ) を求め (画素数 Mx, M yは画素数である) , I = [MxZQx十 1 ] , J = [MyZQy+ l ] を 計算する ( [ ] は, [ ] 内の値の小数第 1位を四捨五入することを意味 し, 得られる I , Jは整数である) 。 この結果, 発光した区画 256は, D N A検出セルの J行 I列の区画であることがわかる。  The position of the luminescent compartment in the DNA detection cell is determined by the following method. Electrochemical luminescence is always detected from the four sections 25 1, 252, 253, and 254 shown in FIG. The method of analyzing the detected two-dimensional emission image will be described below. The two-dimensional luminescence image including the luminescence from the sections 25 1, 252, 253, 254 is represented by the xy coordinates with the reference number 255 as the origin, forming a two-dimensional luminescence image. Find the number of P y pixels in the y direction. Since the DNA detection cell is composed of 100 x 10 ° sections, the number of pixels per section is Px / 100 = Qx and Py / 100 = Qy. The coordinates of the corner point 257 close to the origin of the light-emitting section 256 are determined as (Mx, My) (the number of pixels Mx, My is the number of pixels), and I = [MxZQx10 1], J = [MyZQy + l] ([] Means round the first decimal place of the value in [], and the resulting I and J are integers). As a result, it can be seen that the section 256 that emits light is a section of the J row and column I of the DNA detection cell.
第 2の実施例では, 電気化学発光を 0. 4 s e c間測定するが, 第 8の実 施例では, 同一区画からの電気化学発光を繰り返し測定する。  In the second embodiment, the electrochemiluminescence is measured for 0.4 sec, but in the eighth embodiment, the electrochemiluminescence from the same section is repeatedly measured.
第 21図は, 繰り返し電気化学発光を生成する電圧印加の例を説明する図 である。 第 2 1図に於いて, 横軸は時間を示し, 参照番号 26 1は DNA検 出セルの作用電極とカウンター電極との間に印加する電圧, 参照番号 262 は電気化学発光標識からの発光量を示す。 電圧を 0. 4 s e c間印加すると, 電圧の印加と同時に電気化学発光が生じるが, 使用する還元剤 (第 8の実施 例では TP A) が作用電極の表面及びその近傍で急激に消費され, 発光量は 急激に減少する。 従って, 電圧の印加時間を長く しても発光量の増加は期待 できない。 しかし, 電圧の印加を停止して 9. 6 s e cの緩和時間を設定す ると, 溶液中の還元剤が拡散により作用電極の表面及びその近傍に供給され る。 再び, 電圧を 0. 4 s e c間印加すると, 電気化学発光が生じる。 0. 4 s e c間の電圧の印加と, 9. 6 s e c間の電圧の印加の停止とを繰り返 すことにより (周期 10 s e c) , 電気化学発光の総量を増加させることが でき, 検出感度の向上に有効である。 なお, 第 2 1図に示す電圧の印加方法 は, 第 2の実施例に限定されることなく, 第 1の実施例から第 7の実施例の 各実施例に適用でき, 同様の効果が得られる。 FIG. 21 is a diagram illustrating an example of voltage application for generating electrochemiluminescence repeatedly. In Fig. 21, the horizontal axis represents time, reference numeral 261 is the voltage applied between the working electrode and the counter electrode of the DNA detection cell, and reference numeral 262 is the amount of luminescence from the electrochemiluminescent label. Is shown. When a voltage is applied for 0.4 sec, electrochemiluminescence occurs at the same time as the voltage is applied. However, the reducing agent (TPA in the eighth embodiment) is rapidly consumed on and near the working electrode surface. The light emission decreases rapidly. Therefore, even if the voltage application time is prolonged, an increase in light emission cannot be expected. However, if the application of voltage is stopped and a relaxation time of 9.6 sec is set, the reducing agent in the solution is supplied to the surface of the working electrode and its vicinity by diffusion. When voltage is applied again for 0.4 sec, electrochemiluminescence occurs. 0. By repeating the application of the voltage for 4 sec and the stop of the application of the voltage for 9.6 sec (period 10 sec), the total amount of electrochemiluminescence can be increased and the detection sensitivity can be improved. It is valid. Note that the voltage application method shown in FIG. 21 is not limited to the second embodiment, but can be applied to each of the first to seventh embodiments, and a similar effect is obtained. Can be
(第 9の実施例)  (Ninth embodiment)
第 1の実施例では, Ru : dNTP, 又は Ru : d dNTPを使用し, 標 的 D N A断片に相補鎖結合した D N Aプロ一ブの伸長反応を行なう力, 第 7 の実施例では, 伸長反応を実行しない方法を採用する。 予め, 標的ポリヌク レオチド (標的 DNA断片) 2 1に電気化学発光標識されたオリゴヌクレオ チド 28を結合しておく。  In the first embodiment, Ru: dNTP or Ru: d dNTP is used to carry out the extension reaction of a DNA probe complementary to the target DNA fragment. In the seventh embodiment, the extension reaction is carried out. Use a method that does not execute. An electrochemiluminescent-labeled oligonucleotide 28 is bound to the target polynucleotide (target DNA fragment) 21 in advance.
第 22図は, 電気化学発光標識されたオリゴヌクレオチドを結合した標的 ポリヌクレオチドと相補鎖結合した D N Aプローブを示す。 電気化学発光の 検出は第 1から第 6の各実施例で説明した方法による。  FIG. 22 shows a DNA probe complementarily bound to a target polynucleotide bound to an electrochemiluminescent labeled oligonucleotide. Electrochemiluminescence is detected by the method described in each of the first to sixth embodiments.
(第 10の実施例)  (Tenth embodiment)
第 9の実施例では, 電気化学発光標識されたォリゴヌクレオチドを使用し たカ , 標的ポリヌクレオチド (標的 D N A断片) 2 1の 5 ' 末端側に電気化 学発光標識を結合しても良い。  In the ninth embodiment, an electrochemiluminescent label may be bound to the 5 ′ end of the target polynucleotide (target DNA fragment) 21 using an oligonucleotide labeled with an electrochemiluminescent label.
第 23図は, 電気化学発光標識された標的ポリヌクレオチドと相補鎖結合 した DNAプローブを示す。 電気化学発光の検出は第 1から第 6の各実施例 で説明した方法による。  Fig. 23 shows a DNA probe that is complementary to the target polynucleotide labeled with electrochemiluminescence. Electrochemiluminescence is detected by the method described in each of the first to sixth embodiments.
(第 1 1の実施例)  (First Embodiment)
第 24図は, ポリヌクレオチド検査装置の検査手順を説明する図である。 各実施例で説明した DN A検出セル (例えば, 第 1図に示す DN Aセル下基 板 1 1と DNAセル上基板 1 2により形成されるセル) に, 測定対象の DN A断片群を含む試料溶液を入れる。 次に, 溶液の温度をハイブリダィゼーシ ヨンに適する温度に設定し, DN Aプローブと DN A断片とを相補鎖結合さ せる。 DN Aプローブと DN A断片との結合効率が最も良く, 且つ非特異的 な結合を生じにくい温度条件を 55〜65° Cの範囲で予め実験的に求めて おき, 設定する溶液の温度とする。 相補鎖結合反応の後, 0. 05%Twe e n 20を添加した 2 OmMリン酸緩衝液 (PH 7. 0 ) を洗浄液として用 レ、, 常温で結合していない DN A断片を DN A検出セルの外部に排出する。 次に, 標的 D N A断片に相補鎖結合した D N Aプロ一ブの伸長反応を行な う。 伸長反応の後, 洗浄液を用いてセルを洗浄し未反応の基質を除去し, 電 気化学発光試薬をセルに注入し, 作用電極とカウンタ電極との間に電圧を印 加して生じる電気化学発光を検出する。 電気化学発光の検出の終了後, DN A検出セルの各区画に固定された DN Aプローブを遊離させ, DNA検出セ ルを再生する。 DN A検出セルは, 以下に説明する代表的な 3つの方法で再 生できる。 FIG. 24 is a diagram for explaining the inspection procedure of the polynucleotide inspection device. The DNA detection cell described in each embodiment (for example, the cell formed by the DNA lower substrate 11 and the DNA cell substrate 12 shown in Fig. 1) contains the DNA fragment group to be measured. Add sample solution. Next, the temperature of the solution is set to a temperature suitable for hybridization, and the DNA probe and the DNA fragment are combined with each other by complementary strand binding. Best binding efficiency between DNA probe and DNA fragment and non-specific A temperature condition that does not cause strong binding is determined experimentally in advance within the range of 55 to 65 ° C, and the temperature of the solution is set. After the complementary strand binding reaction, use 2 OmM phosphate buffer (pH 7.0) supplemented with 0.05% Tween 20 as a washing solution, and remove unbound DNA fragments at normal temperature from the DNA detection cell. To the outside of the Next, an extension reaction is performed on the DNA probe complementary to the target DNA fragment. After the extension reaction, the cell is washed with a washing solution to remove unreacted substrate, an electrochemiluminescent reagent is injected into the cell, and a voltage is applied between the working electrode and the counter electrode to generate the electrochemical reaction. Light emission is detected. After completion of the electrochemiluminescence detection, the DNA probe fixed in each compartment of the DNA detection cell is released, and the DNA detection cell is regenerated. The DNA detection cell can be played back in the following three typical methods.
第 1の再生方法では, DN A検出セルの各区画に固定された DNAプロ一 ブを遊離させて完全に除去し, 新たな DN Aプローブを固定する。 第 1の方 法では, 試料の残留が殆ど無いため偽陽性が起こりにくい。  In the first regeneration method, the DNA probe immobilized in each compartment of the DNA detection cell is released and completely removed, and a new DNA probe is immobilized. In the first method, false positives are unlikely to occur because there is almost no residual sample.
第 2の再生方法では, 95° Cの純水で DNA検出セルを洗浄して標的 D N A断片を DN Aプローブから遊離させ, 標的 DN A断片のみを検出セルか ら除去する。 第 2の方法では, 短時間で簡単に DN A検出セルを再生でき, 第 9の実施例, 第 10の実施例に於いて有効である  In the second regeneration method, the DNA detection cell is washed with pure water at 95 ° C to release the target DNA fragment from the DNA probe, and only the target DNA fragment is removed from the detection cell. The second method can easily regenerate the DNA detection cell in a short time and is effective in the ninth and tenth embodiments.
第 3の再生方法は, 第 7の実施例に於いて有効である。 第 3の再生方法で は, 先ず, 95° Cの純水で DNA検出セルを洗浄して, 標的 DNA断片を DNAプローブから遊離させ, DNA検出セルから除去する。 この結果, D NA検出セルには, DNAプローブ (第 7図に示す 1 5) と, 相補鎖合成に よる伸長部分 (第 7図に示す 26, 27 ) を持つ 1本鎖の DN Aプローブが 残る。 次に, DNA検出セルに S 1ヌクレアーゼを注入すると, S 1ヌクレ ァーゼにより伸長部分 26, 27はモノヌクレオチドに分解される。 DNA プローブはは, S 1ヌクレア一ゼにより分解されずに DNA検出セルに固定 されまま残り, DNA検出セルは使用前の状態に再生される。 第 3の再生方 法では, DNAプローブが再利用でき, DNA検出セル内に残留する可能性 のある標的 DNA断片も S 1ヌクレアーゼで分解でき, 試料の残留が無いと いう特徴がある。 The third reproduction method is effective in the seventh embodiment. In the third regeneration method, first, the DNA detection cell is washed with pure water at 95 ° C to release the target DNA fragment from the DNA probe and removed from the DNA detection cell. As a result, a DNA probe (15 shown in Fig. 7) and a single-stranded DNA probe having an extended portion (26 and 27 shown in Fig. 7) by complementary strand synthesis were found in the DNA detection cell. Remains. Next, when S1 nuclease is injected into the DNA detection cell, the extended portions 26 and 27 are decomposed into mononucleotides by S1 nuclease. The DNA probe remains immobilized on the DNA detection cell without being degraded by S1 nuclease, and the DNA detection cell is regenerated to the state before use. In the third regeneration method, the DNA probe can be reused and may remain in the DNA detection cell. The characteristic feature is that even target DNA fragments that have no residue can be degraded by S1 nuclease, and no sample remains.
(配列表)  (Sequence listing)
配列番号: 1 SEQ ID NO: 1
配列の長さ : 30 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数: 1本鎖 Number of chains: 1 strand
トポロジー:直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A Sequence type: Other nucleic acids Synthetic DNA
配列: Array:
TC TC
配列番号: 2 SEQ ID NO: 2
配列の長さ : 30 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数: 1本鎖 Number of chains: 1 strand
トポロジー:直鎖状  Topology: linear
配列の種類:合成 DNA Sequence type: synthetic DNA
配列: Array:

Claims

請 求 の 範 囲 The scope of the claims
1. 異なる DNAプローブ ( 1 3, 1 4, 1 5, 1 6 ) が種類毎に異なる区 画 ( 3, 4, 5, 6 , 6 1— 1〜6 1—6, 82— 1〜8 2— 4 ) に固定さ れた第 1の電極 ( 1 1 1, 52, 60 ) と前記第 1の電極に対向する第 2の 電極 ( 1 1 3— 1 , 1 1 3— 2 , 53, 62— 1〜62— 3, 8 3— 1〜8 3-4) とを具備するポリヌクレオチド検出セルと, 前記第 1の電極と前記 第 2の電極との間に電圧を印加する電圧印加手段 (44) と, 前記区画に固 定された前記 DNAプローブと標的ポリヌクレオチド ( 2 1 ) との相補鎖結 合により前記標的ポリヌクレオチドを捕捉し, 電気化学発光標識した塩基1. Different DNA probes (13,14,15,16) have different types (3,4,5,6,61-1-6-1-6,82-1-8-2). — The first electrode (111, 52, 60) fixed to (4) and the second electrode (113-1-1, 113-2-2, 53, 62) facing the first electrode. And a voltage detection means for applying a voltage between the first electrode and the second electrode. 44), the target polynucleotide is captured by complementary strand binding between the DNA probe fixed to the compartment and the target polynucleotide (21), and the electrochemiluminescent labeled base is captured.
( 24) を用いて伸張反応を行ない相補鎖結合した前記 DNAプローブを伸 張し, 前記電圧の印加により生じる電気化学発光を検出する光検出手段 ( 3 3, 34, 35, 36, 43, 72 - 1 , 7 2 - 2, 246 ) とを有し, 前 記伸張反応により生成した伸張鎖 ( 26 ) の有無を検出することを特徴とす るポリヌクレオチド検査装置。 A photodetection means (33, 34, 35, 36, 43, 72) for performing an extension reaction using (24) to extend the DNA probe with the complementary strand bound, and detecting the electrochemiluminescence generated by the application of the voltage. -1, 7, 2-2, 246), and detecting the presence or absence of an extended chain (26) generated by the extension reaction.
2. 前記電気化学発光標識が, ルテニウム錯体, 又はオスミウム錯体である ことを特徴とする請求の範囲第 1項記載のポリヌクレオチド検査装置。 2. The polynucleotide testing device according to claim 1, wherein the electrochemiluminescent label is a ruthenium complex or an osmium complex.
3. 前記光検出手段は, 複数の前記区画からの前記電気化学発光を 2次元像 として検出する撮像手段 (43, 266 ) であることを特徴とする請求の範 囲第 1項記載のポリヌクレオチド検査装置。 3. The polynucleotide according to claim 1, wherein the light detection means is an imaging means (43, 266) for detecting the electrochemiluminescence from the plurality of sections as a two-dimensional image. Inspection equipment.
4. 前記第 2の電極は複数の電極から構成され, 前記複数の電極から所定の 電極を選択する電極選択手段 ( 6 2— 1 S〜3 S, 9 1ー 1〜9 1ー4) を 具備し, 前記電極選択手段によリ選択された前記電極と前記第 1の電極との 間に前記電圧を印加して, 複数の前記区画から選択された所定の前記区画か らの電気化学発光を検出することを特徴とする請求の範囲第 1項記載のポリ ヌクレオチド検査装置。  4. The second electrode is composed of a plurality of electrodes, and an electrode selecting means (62-1S to 3S, 91-1 to 91-4) for selecting a predetermined electrode from the plurality of electrodes is provided. And applying the voltage between the electrode selected by the electrode selecting means and the first electrode, and performing electrochemiluminescence from a predetermined section selected from a plurality of the sections. 2. The polynucleotide testing device according to claim 1, wherein the polynucleotide is detected.
5. 前記電極選択手段は, 前記複数の電極の各電極に接続される T FTゲー 卜 ( 9 1ー 1〜9 1一 4 ) を具備することを特徴とする請求の範囲第 4項記 載のポリヌクレオチド検査装置。 5. The electrode selecting means according to claim 4, wherein said electrode selecting means comprises a TFT gate (91-1 to 91-14) connected to each of said plurality of electrodes. Polynucleotide testing device.
6. 前記第 1の電極と前記第 2の電極とが交互に繰り返して一方向に平行に 同一の面に配置され, 前記電気化学発光が生じる領域の拡大する速度と, 交 互に繰り返し配置される前記第 1の電極の前記一方向に於ける中心線と前記 第 2の電極の前記一方向に於ける中心線との間の距離とに基づいて, 前記電 圧を印加する時間を制御する手段 (45 ) を有することを特徴とする請求の 範囲第 1項記載のポリヌクレオチド検査装置。  6. The first electrode and the second electrode are alternately and repeatedly arranged on the same surface in parallel in one direction, and alternately and alternately arranged with the expanding speed of the region where the electrochemiluminescence occurs. Controlling the voltage application time based on the distance between the center line of the first electrode in the one direction and the center line of the second electrode in the one direction. The polynucleotide testing device according to claim 1, further comprising means (45).
7. 前記電圧を繰リ返し印加することを特徴とする請求の範囲第 6項記載の ポリヌクレオチド検査装置。  7. The polynucleotide testing apparatus according to claim 6, wherein the voltage is repeatedly applied.
8. 異なる DNAプローブ ( 1 3 , 1 4, 1 5, 1 6 ) が種類毎に異なる区 画 ( 3, 4, 5, 6, 6 1— 1〜 6 1— 6 , 82— 1〜 82— 4 ) に固定さ れた第 1の電極 ( 1 1 1, 52, 60 ) と前記第 1の電極に対向する第 2の 電極 ( 1 1 3— 1 , 1 1 3— 2, 53, 62— 1〜62— 3, 83 - 1〜8 3-4) とを具備するポリヌクレオチド検出セルと, 前記第 1の電極と前記 第 2の電極との間に電圧を印加する電圧印加手段 (44) と, 前記区画に固 定された前記 DN Aプローブと電気化学発光標識されたオリゴヌクレオチド 8. Different DNA probes (13, 14, 15, 15 and 16) have different types (3, 4, 5, 6, 61-1 to 61-6, 82-1 to 82- The first electrode (111, 52, 60) fixed to 4) and the second electrode (113-1, 1, 113, 2, 53, 62) opposed to the first electrode are fixed. A polynucleotide detection cell comprising: 1 to 62-3, 83-1 to 83-3-4), and voltage applying means for applying a voltage between the first electrode and the second electrode. And the DNA probe fixed to the compartment and an oligonucleotide labeled with electrochemiluminescence.
( 28) を結合した標的ポリヌクレオチド ( 2 1 ) との相補鎖結合により前 記標的ポリヌクレオチドを捕捉し, 前記電圧の印加により生じる電気化学発 光を検出する光検出手段 ( 33, 34, 35, 36, 43, 72 - 1 , 72 一 2, 246 ) とを有することを特徴とするポリヌクレオチド検査装置。A light detection means (33, 34, 35) for capturing the target polynucleotide by complementary strand binding with the target polynucleotide (21) to which (28) is bound, and detecting the electrochemical emission generated by the application of the voltage. , 36, 43, 72-1, 72-1, 246).
9. 異なる DNAプローブ ( 1 3 , 1 4, 1 5, 1 6 ) が種類毎に異なる区 画 ( 3, 4, 5 , 6, 6 1— 1〜6 1— 6, 82— 1〜 82— 4 ) に固定さ れた第 1の電極 ( 1 1 1, 52 , 60 ) と前記第 1の電極に対向する第 2の 電極 ( 1 1 3— 1 , 1 1 3 - 2, 5 3, 62 - 1〜62— 3, 8 3— 1〜89. Different DNA probes (13,14,15,16) have different types (3,4,5,6,61-1-6-1-6,82-1-82- 4) A first electrode (111, 52, 60) fixed to the first electrode and a second electrode (113-13-1, 11, 13-2, 53, 62) opposed to the first electrode. -1 to 62—3, 8 3—1 to 8
3 -4) とを具備するポリヌクレオチド検出セルと, 前記第 1の電極と前記 第 2の電極との間に電圧を印加する電圧印加手段 ( 44) と, 前記区画に固 定された前記 D N Aプローブと電気化学発光標識された標的ポリヌクレオチ ド ( 2 1 ) との相補鎖結合により前記標的ポリヌクレオチドを捕捉し, 前記 電圧の印加により生じる電気化学発光を検出する光検出手段 ( 3 3, 34, 3 5, 36, 43 , 72— 1 , 72 - 2, 246 ) とを有することを特徴と するポリヌクレオチド検査装置。 3-4); a voltage application means (44) for applying a voltage between the first electrode and the second electrode; and the DNA fixed to the compartment. Capturing the target polynucleotide by complementary strand binding between the probe and an electrochemiluminescent-labeled target polynucleotide (21); A polynucleotide inspection device comprising: light detection means (33, 34, 35, 36, 43, 72-1, 72-2, 246) for detecting electrochemiluminescence generated by application of a voltage.
1 0. 異なる DNAプローブ ( 1 3, 14, 1 5, 1 6 ) の種類毎に異なる 区画 (3, 4, 5 , 6, 6 1— 1〜6 1—6, 82— 1〜82— 4) に固定 された第 1の電極 ( 1 1 1, 52, 60) と, 前記第 1の電極に対向する複 数の第 2の電極 ( 1 1 3— 1, 1 1 3 - 2, 53, 62— 1〜6 2— 3, 8 3— 1〜83—4) とを具備するポリヌクレオチド検出セルと, 前記複数の 第 2の電極から電極を選択する電極選択手段 (62— 1 S〜3 S, 9 1 - 1 〜9 1 _4) と, 前記第 1の電極と前記選択された電極との間に電圧を印加 する電圧印加手段 (44) と具備し, 電気化学発光標識が修飾された標的ポ リヌクレオチドと前記 DN Aプローブとの相補鎖結合によリ捕捉された前記 標的ポリヌクレオチドを, 前記電気化学発光標識から電気化学発光を前記電 圧の印加により生じさせて, 前記複数の区画から選択された区画毎に検出す ることを特徴とするポリヌクレオチド検査装置。  10. Different compartments (3, 4, 5, 6, 6, 6 1—1 to 6 1—6, 82—1 to 82—4 for different types of different DNA probes (13, 14, 15 and 16) )) And a plurality of second electrodes (113-1, 2, 113-3, 53, 53) opposed to the first electrode. 62-1 to 62-3, 83-1 to 83-4), and an electrode selecting means (62-1S-3) for selecting an electrode from the plurality of second electrodes. S, 91-1 to 91_4) and voltage applying means (44) for applying a voltage between the first electrode and the selected electrode, wherein the electrochemiluminescent label is modified. The plurality of compartments are generated by causing the target polynucleotide captured by complementary strand binding between the target polynucleotide and the DNA probe to generate electrochemiluminescence from the electrochemiluminescence label by applying the voltage. Selected from Polynucleotide inspection apparatus characterized that you detected for each zone.
1 1. 異なる DNAプローブ ( 1 3 , 14, 1 5, 1 6 ) の種類毎に異なる 区画 ( 3, 4, 5, 6, 6 1— 1〜 6 1—6, 82— 1〜 8 2— 4) に固定 された第 1の電極 ( 1 1 1, 52, 60 ) と, 前記第 1の電極と同じ面に配 置され前記第 1の電極と分離され, 前記区画毎の中心部に配置された複数の 第 2の電極 (83— 1〜83— 4) とを具備するポリヌクレオチド検出セル と, 前記複数の第 2の電極から電極を選択する電極選択手段 (9 1 - 1 -9 1 1. Different compartments (3, 4, 5, 6, 6 1—1 to 6 1—6, 82—1 to 8 2— for different types of different DNA probes (13, 14, 15 and 16) 4) a first electrode (111, 52, 60) fixed to the first electrode and arranged on the same surface as the first electrode, separated from the first electrode, and arranged at the center of each section. A polynucleotide detection cell comprising a plurality of second electrodes (83-1 to 83-4) thus selected; and an electrode selecting means (91-1-9) for selecting an electrode from the plurality of second electrodes.
1 - 4) と, 前記第 1の電極と前記選択された電極との間に電圧を印加する 電圧印加手段 (44) と, 前記電圧の印加により電気化学発光標識から生じ る電気化学発光を検出する光検出手段 ( 33, 34, 35 , 36 , 43, 71-4), voltage applying means (44) for applying a voltage between the first electrode and the selected electrode, and detecting electrochemiluminescence generated from the electrochemiluminescence label by the application of the voltage. Light detection means (33, 34, 35, 36, 43, 7
2— 1, 7 2 - 2, 246 ) とを具備し, 前記選択された第 2の電極の中心 部と, 前記選択された第 2の電極が配置された前記区画に隣接する前記区画 と境界との距離と, 前記電気化学発光が生じる領域の拡大する速度とに基づ いて, 前記電圧を印加する時間を制御する手段 (45 ) を有し, 前記区画毎 に捕捉された前記標的ポリヌクレオチドを検出することを特徴とするポリヌ 2-1, 7 2 -2, 246), a center of the selected second electrode, and a boundary with the section adjacent to the section in which the selected second electrode is arranged. And means for controlling the time for applying the voltage based on the distance between the section and the area in which the electrochemiluminescence occurs. Detecting the target polynucleotide captured by the polynucleotide
1 2. 前記複数の第 2の電極は 2方向に於いて等間隔に配置されることを特 徴とする請求の範囲第 1 1項記載のポリヌクレオチド検査装置。 12. The polynucleotide testing apparatus according to claim 11, wherein the plurality of second electrodes are arranged at equal intervals in two directions.
1 3. 異なる DNAプロ一ブ ( 1 3, 14, 1 5, 1 6 ) が種類毎に異なる 区画 (3, 4, 5, 6, 6 1— 1〜6 1— 6, 82 _ 1〜 82— 4 ) に固定 された第 1の電極 ( 1 1 1, 52, 60 ) と, 前記第 1の電極と同一の面に 配置される複数の第 2の電極 ( 53 , 6 2— 1〜 62— 3, 83— 1〜83 一 4) とを具備するポリヌクレオチド検出セルと, 前記複数の第 2の電極か ら電極を選択する電極選択手段 ( 6 2— 1 S〜, 62— 3 S, 9 1— 1〜9 1 3. Different DNA probes (13,14,15,16) have different compartments for each type (3,4,5,6,61-1-1 to 61--6,82_1-82 — 4) fixed to the first electrode (111, 52, 60) and a plurality of second electrodes (53, 62−1 to 62) arranged on the same surface as the first electrode. —3, 83—1 to 83—4), and a polynucleotide detection cell, and an electrode selection means (62−1S ,, 62—3S, for selecting an electrode from the plurality of second electrodes). 9 1— 1 to 9
1— 4) と, 前記第 1の電極と前記選択された電極との間に電圧を印加する 電圧印加手段 (44) と, 前記電圧の印加により電気化学発光標識から生じ る電気ィヒ学発光を検出する光検出手段 ( 33, 34, 3 5, 36 , 43 , 71-4), voltage applying means (44) for applying a voltage between the first electrode and the selected electrode, and electrodynamic emission generated from the electrochemiluminescence label by the application of the voltage. Detection means (33, 34, 35, 36, 43, 7)
2— 1, 72 - 2, 246 ) と, 前記電気化学発光が生じる領域の拡大する 速度に基づいて前記電圧を印加する時間を制御する手段 (45) を有し, 前 記区画毎に捕捉された前記標的ポリヌクレオチドを検出することを特徴とす るポリヌクレオチド検査装置。 2-1, 72-2, 246) and means (45) for controlling the time for applying the voltage based on the expanding speed of the region where the electrochemiluminescence occurs. A polynucleotide testing device for detecting the target polynucleotide.
14. 異なる DNAプロ一ブ ( 1 3, 14, 1 5, 1 6 ) が種類毎に異なる 区画 ( 3, 4, 5 , 6, 6 1— 1〜6 1— 6 , 82— 1〜 82— 4 ) に固定 された第 1の電極 ( 1 1 1, 52, 60 ) と, 前記第 1の電極に対向する複 数の第 2の電極 ( 1 1 3— 1 , 1 1 3 - 2, 53, 6 2— 1〜 6 2— 3, 8 14. Different DNA probes (13,14,15,16) have different sections for each type (3,4,5,6,61-1 to 61-6, 82-1 to 82- The first electrode (111, 52, 60) fixed to 4) and a plurality of second electrodes (113-1-1, 113-2-2, 53) facing the first electrode. , 6 2—1 to 6 2—3, 8
3— 1〜83— 4) とを具備するポリヌクレオチド検出セルと, 前記複数の 第 2の電極から電極を選択する電極選択手段 ( 62— 1 S〜, 6 2— 3 S,3-1 to 83-4), and an electrode selection means (62-1S ~, 62-3S,) for selecting an electrode from the plurality of second electrodes.
9 1一 1〜9 1一 4) と, 前記第 1の電極と前記選択された電極との間に電 圧を印加する電圧印加手段 (44) と具備し, 前記電圧の印加により電気化 学発光標識から生じる電気化学発光を前記複数の区画から選択された区画毎 に検出して, 前記区画毎に捕捉された前記標的ポリヌクレオチドを検出する ことを特徴とするポリヌクレオチド検査装置。 9 11-1 to 9 11 4), and voltage applying means (44) for applying a voltage between the first electrode and the selected electrode, wherein the application of the voltage causes an electrochemical reaction. A polynucleotide testing apparatus, comprising: detecting electrochemiluminescence generated from a luminescent label for each of the sections selected from the plurality of sections to detect the target polynucleotide captured for each of the sections.
1 5. 異なる DNAプローブ ( 1 3, 14, 1 5, 1 6 ) 力種類毎に異なる 区画 (3, 4, 5 , 6, 6 1— 1〜6 1— 6, 82— 1〜82— 4) に固定 された第 1の電極 ( 1 1 1, 52, 60 ) と前記第 1の電極に対向する第 2 の電極 ( 1 1 3— 1 , 1 1 3— 2, 53, 6 2- 1 -62 - 3, 83— 1〜 83 -4) とを具備するポリヌクレオチド検出セルの前記区画に固定された 前記 DNAプローブと, 標的ポリヌクレオチド ( 2 1 ) とを相補鎖結合させ て, 前記標的ポリヌクレオチドを捕捉する工程と, 電気化学発光標識した塩 基 ( 24) を用いて伸張反応を行ない相補鎖結合した前記 DN Aプロ一ブを 伸張する工程と, 前記第 1の電極と前記第 2の電極との間に電圧を印加する 工程と, 前記電圧の印加により生じる電気化学発光の有無を検出して前記伸 張反応により生成した伸張鎖 ( 26 ) の有無を検出する工程とを有すること を特徴とするポリヌクレオチド検査方法。 1 5. Different DNA probes (13, 14, 15 and 16) Different compartments for each force type (3, 4, 5, 6, 6 1—1 to 6 1—6, 82—1 to 82—4 ) Is fixed to the first electrode (111, 52, 60) and the second electrode (113-1-1, 113--2, 53, 62-1) facing the first electrode. -62-3, 83-1 to 83-4), the DNA probe immobilized in the compartment of the polynucleotide detection cell comprising the target polynucleotide (21) and the target polynucleotide (21) in a complementary strand bond. A step of capturing a polynucleotide, a step of performing an extension reaction using an electrochemiluminescent-labeled base (24) to extend the DNA probe having a complementary strand bound thereto, and a step of: Applying a voltage between the electrodes, and detecting the presence or absence of electrochemiluminescence caused by the application of the voltage to detect the presence or absence of an extended chain (26) generated by the extension reaction A method for testing a polynucleotide.
1 6. 異なる DNAプローブ ( 1 3 , 14, 1 5, 1 6 ) 力種類毎に異なる 区画 (3, 4 , 5 , 6, 6 1— 1〜6 1— 6, 82— 1〜 82— 4 ) に固定 された第 1の電極 ( 1 1 1, 52, 60 ) と前記第 1の電極に対向する第 2 の電極 ( 1 1 3— 1 , 1 1 3 - 2, 53, 6 2— 1〜62— 3, 83— 1〜 1 6. Different DNA probes (13, 14, 15 and 16) Different compartments for each type of force (3, 4, 5, 6, 6 1—1 to 6 1—6, 82—1 to 82—4 ) And a second electrode (113-1-1, 113--2, 53, 62-1) facing the first electrode (111, 52, 60) fixed to the first electrode. ~ 62- 3, 83- 1 ~
83 -4) とを具備するポリヌクレオチド検出セルの前記区画に固定された 前記 DNAプローブと, 電気化学発光標識されたオリゴヌクレオチド ( 28) を結合した標的ポリヌクレオチド ( 2 1 ) とを相補鎖結合させて, 前記標的 ポリヌクレオチドを捕捉する工程と, 前記第 1の電極と前記第 2の電極との 間に電圧を印加して, 前記電圧の印加により生じる電気化学発光を検出する 工程とを有することを特徴とするポリヌクレオチド検査方法。 83-4) complementary strand binding between the DNA probe immobilized in the compartment of the polynucleotide detection cell comprising: and the target polynucleotide (21) to which the oligonucleotide (28) labeled with electrochemiluminescence is bound. And capturing a target polynucleotide; and applying a voltage between the first electrode and the second electrode to detect electrochemiluminescence generated by the application of the voltage. A method for testing a polynucleotide, comprising:
1 7. 異なる DNAプローブ ( 1 3, 14, 1 5, 1 6 ) 力種類毎に異なる 区画 ( 3, 4, 5 , 6 , 6 1— 1〜6 1— 6, 8 2— 1〜 82— 4 ) に固定 された第 1の電極 ( 1 1 1 , 52, 60 ) と前記第 1の電極に対向する第 2 の電極 ( 1 1 3— 1 , 1 1 3— 2, 53, 6 2— 1〜 6 2— 3, 83— 1〜 83 -4) とを具備するポリヌクレオチド検出セルの前記区画に固定された 前記 DNAプローブと, 電気化学発光標識された標的ポリヌクレオチド ( 2 1 ) とを相補鎖結合させて, 前記標的ポリヌクレオチドを捕捉する工程と, 前記第 1の電極と前記第 2の電極との間に電圧を印加して, 前記電圧の印加 によリ生じる電気化学発光を検出する工程とを有することを特徴とするポリ ヌクレオチド検査方法。 1 7. Different DNA probes (13,14,15,16) Different compartments for each type of force (3,4,5,6,61-1-1 to 6 1-6,82-1-1 to 82- 4) A first electrode (111, 52, 60) fixed to the first electrode and a second electrode (113--1, 1, 113-3, 53, 62) opposite to the first electrode. 1 to 62-3, 83-1 to 83-4), the DNA probe immobilized in the compartment of the polynucleotide detection cell, and an electrochemiluminescent-labeled target polynucleotide (2 1) capturing the target polynucleotide by complementary strand bonding, and applying a voltage between the first electrode and the second electrode to generate electricity generated by the application of the voltage. A step of detecting chemiluminescence.
1 8. 異なる DNAプローブ ( 1 3, 14, 1 5, 1 6 ) 力種類毎に異なる 区画 (3, 4, 5, 6, 6 1— 1〜6 1— 6, 82— 1〜 82— 4) に固定 された第 1の電極 ( 1 1 1, 52, 60 ) と, 前記第 1の電極と同一の面に 配置される複数の第 2の電極 ( 53, 62— 1〜6 2— 3, 83— 1〜83 —4) とを具備するポリヌクレオチド検出セルの, 前記複数の第 2の電極か ら電極を選択する工程と, 前記第 1の電極と前記選択された電極との間に電 圧を印加する工程と, 前記電圧の印加によリ電気化学発光標識から生じる電 気化学発光を検出する工程と, 前記電気化学発光が生じる領域の拡大する速 度に基づいて前記電圧を印加して保持する時間長を制御する工程とを有し, 前記区画毎に捕捉された前記標的ポリヌクレオチドを検出することを特徴と するポリヌクレオチド検査方法。  1 8. Different DNA probes (13, 14, 15 and 16) Different compartments for each force type (3, 4, 5, 6, 61-1 to 61 to 6, 82 to 1 to 82-4) ) And a plurality of second electrodes (53, 62-1 to 62-3) arranged on the same surface as the first electrode. , 83-1 to 83-4), wherein a step of selecting an electrode from the plurality of second electrodes is performed between the first electrode and the selected electrode. Applying a voltage, detecting electrochemiluminescence generated from the electrochemiluminescence label by applying the voltage, and applying the voltage based on a speed at which the region where the electrochemiluminescence occurs expands. Controlling the length of time for which the target polynucleotide is retained as a target, and detecting the target polynucleotide captured in each of the compartments. Method.
1 9. 前記電気化学発光が生じる領域が拡大して, 前記複数の第 2の電極か ら選択された電極が配置された前記区画に隣接する前記区画に到達する迄に 要する時間にほぼ等し ヽ時間長にわたり, 前記電圧が印加され保持されるこ とを特徴とする請求の範囲第 1 8項記載のポリヌクレオチド検査方法。  1 9. The area where the electrochemiluminescence occurs is enlarged to be approximately equal to the time required to reach the section adjacent to the section where the electrode selected from the plurality of second electrodes is located. 19. The method for testing a polynucleotide according to claim 18, wherein the voltage is applied and held for a length of time.
PCT/JP1998/002963 1998-07-01 1998-07-01 Polynucleotide assay apparatus and polynucleotide assay method WO2000001848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/002963 WO2000001848A1 (en) 1998-07-01 1998-07-01 Polynucleotide assay apparatus and polynucleotide assay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/002963 WO2000001848A1 (en) 1998-07-01 1998-07-01 Polynucleotide assay apparatus and polynucleotide assay method

Publications (1)

Publication Number Publication Date
WO2000001848A1 true WO2000001848A1 (en) 2000-01-13

Family

ID=14208531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002963 WO2000001848A1 (en) 1998-07-01 1998-07-01 Polynucleotide assay apparatus and polynucleotide assay method

Country Status (1)

Country Link
WO (1) WO2000001848A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121966A (en) * 2007-11-15 2009-06-04 National Institute Of Advanced Industrial & Technology Immunoassay method using electrochemical luminescence, and kit used in the same for measuring amount of electrochemical luminescence
WO2012032891A1 (en) * 2010-09-08 2012-03-15 株式会社日立製作所 Measurement apparatus and measurement method both utilizing biological substance detection element
CN102749322A (en) * 2012-07-04 2012-10-24 浙江大学 Bipolar electrode electrochemiluminescent detection method for microfluidic droplet array
JP2013529772A (en) * 2010-06-11 2013-07-22 クルマラ,サカリ References based on low-cost electrode tip variations, multi-analyte analysis techniques, and cathodic electroluminescence
CN104076025A (en) * 2014-06-18 2014-10-01 深圳职业技术学院 Antimicrobial peptide electrochemiluminescence sensor and preparation method and detection method thereof
JPWO2016104517A1 (en) * 2014-12-26 2017-08-10 株式会社東芝 Biosensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500663A (en) * 1984-10-31 1987-03-19 イゲン,インコーポレーテッド Luminescent metal chelate label and detection means
WO1998012539A1 (en) * 1996-09-17 1998-03-26 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500663A (en) * 1984-10-31 1987-03-19 イゲン,インコーポレーテッド Luminescent metal chelate label and detection means
WO1998012539A1 (en) * 1996-09-17 1998-03-26 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"THE FRONTIERS OF PCR PROCESS-FROM FUNDAMENTAL TECHNIQUES TO APPLICATION", PROTEIN, NUCLEIC ACID AND ENZYME, XX, XX, vol. 41, no. 05, 1 April 1996 (1996-04-01), XX, pages 494 - 502, XP002927431 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121966A (en) * 2007-11-15 2009-06-04 National Institute Of Advanced Industrial & Technology Immunoassay method using electrochemical luminescence, and kit used in the same for measuring amount of electrochemical luminescence
JP2013529772A (en) * 2010-06-11 2013-07-22 クルマラ,サカリ References based on low-cost electrode tip variations, multi-analyte analysis techniques, and cathodic electroluminescence
WO2012032891A1 (en) * 2010-09-08 2012-03-15 株式会社日立製作所 Measurement apparatus and measurement method both utilizing biological substance detection element
JP2012058042A (en) * 2010-09-08 2012-03-22 Hitachi Ltd Measurement device using element for detecting biological material and measurement method
CN102749322A (en) * 2012-07-04 2012-10-24 浙江大学 Bipolar electrode electrochemiluminescent detection method for microfluidic droplet array
CN104076025A (en) * 2014-06-18 2014-10-01 深圳职业技术学院 Antimicrobial peptide electrochemiluminescence sensor and preparation method and detection method thereof
JPWO2016104517A1 (en) * 2014-12-26 2017-08-10 株式会社東芝 Biosensor

Similar Documents

Publication Publication Date Title
US11175258B2 (en) Systems and methods for electronic detection with nanoFETs
JP3641619B2 (en) Biological sample inspection equipment
CN1121614C (en) Automated molecular biological diagnostic system
JP3829491B2 (en) Probe tip, probe tip creation method, sample detection method, and sample detection device
JP6408552B2 (en) Improved assay method
US6245508B1 (en) Method for fingerprinting utilizing an electronically addressable array
US11360029B2 (en) Methods and systems for time-gated fluorescent-based detection
US20020004204A1 (en) Microarray substrate with integrated photodetector and methods of use thereof
WO1998033939A1 (en) Method for determining nucleic acid base sequence and apparatus therefor
US20070054299A1 (en) Apparatus for active programmable matrix devices
US11932906B2 (en) System and methods for electrokinetic loading of sub-micron-scale reaction chambers
JP2006528485A (en) Determination of polynucleotide sequence
WO2000001848A1 (en) Polynucleotide assay apparatus and polynucleotide assay method
JP4179169B2 (en) Analysis equipment
KR100459394B1 (en) Electrochemiluminescence detection method for a nucleic acid using an intercalator
KR20120101396A (en) Device for monitoring a plurality of discrete fluorescence signals
US20020137066A1 (en) Polynucleotide assay apparatus and polynucleotide assay method
JP2005114427A (en) Method for manufacturing substrate for bioassay by superposing two substrates one upon another and substrate for bioassay
JP2012023988A (en) Method for nucleic acid analysis, apparatus for implementing the method, and reagent set for nucleic acid analysis
JP2006258723A (en) Biopolymer analysis support device, and biopolymer analysis method
JP4576557B2 (en) Biopolymer analysis chip and analysis support device
US6030781A (en) Electric field amplified oligonucleotide ligase analysis
CN115279921A (en) Method and apparatus for detecting SARS-COV-2
JP2005345353A (en) Substrate for bioassay provided with light shielding layer of fluorescence excitation light
AU752151B2 (en) Methods for fingerprinting utilizing an electronically addressable array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09720522

Country of ref document: US

122 Ep: pct application non-entry in european phase