WO1999066070A9 - A dna biometric process used for identification - Google Patents

A dna biometric process used for identification

Info

Publication number
WO1999066070A9
WO1999066070A9 PCT/AU1999/000496 AU9900496W WO9966070A9 WO 1999066070 A9 WO1999066070 A9 WO 1999066070A9 AU 9900496 W AU9900496 W AU 9900496W WO 9966070 A9 WO9966070 A9 WO 9966070A9
Authority
WO
Grant status
Application
Patent type
Prior art keywords
nucleic
acid
device
unique
authentication
Prior art date
Application number
PCT/AU1999/000496
Other languages
French (fr)
Other versions
WO1999066070A1 (en )
Inventor
Tomaras Constantine
Kazamias Christian
Original Assignee
Tomaras Constantine
Kazamias Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual entry or exit registers
    • G07C9/00007Access-control involving the use of a pass
    • G07C9/00031Access-control involving the use of a pass in combination with an identity-check of the pass-holder
    • G07C9/00071Access-control involving the use of a pass in combination with an identity-check of the pass-holder by means of personal physical data, e.g. characteristic facial curves, hand geometry, voice spectrum, fingerprints
    • G07C9/00087Access-control involving the use of a pass in combination with an identity-check of the pass-holder by means of personal physical data, e.g. characteristic facial curves, hand geometry, voice spectrum, fingerprints electronically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Abstract

The present invention relates to the use of unique sequences of hypervariable regions and other sets of DNA regions for the biometric identification and authentication of an individual. Also disclosed is a DNA delivery device to assist in delivering a unique sequence of a hypervariable region of an individual to a device such as a hybridisation detector.

Description

A DNA BIOMETRIC PROCESS USED FOR IDENTIFICATION

Background Art

At the same time as the information revolution, there were also massive advances in the field of molecular biology. One of these breakthroughs centred around the realization of the hypervariable nature of discrete regions of nucleic acid within the genome. Furthermore it has been shown that variability is not limited to hypervariable regions, but may also encompass groups of nucleic regions and order of nucleic regions to differentiate one individual from another. When comparing the DNA biometric process to other commonly used biometric identification process' , photographs fade and must be updated, voice patterns change and fingerprints can smear or be difficult to qualify and acquire (getting a fingerprint can be very difficult ie. warts, cuts etc. can deceive some systems), but an individual's DNA is constant through out it's entire life and non-life.

When comparing the DNA biometric process to other commonly used biometric identification process' , photographs fade and must be updated, voice patterns change and fingerprints can smear or be difficult to qualify and acquire (getting a fingerprint can be very difficult ie. warts, cuts etc. can deceive some systems), but an individual's DNA is constant through out it's entire life and non-life.

Therefore, the present invention relates to processes for the amplification of hypervariable regions which are unique to an individual, and the use of these unique hypervariable regions in the biometric identification and authentication of an individual, wherein this process for DNA biometric identification has utility in the fields of security and electronic commerce.

Substitute Sheet Disclosure of the Invention

According to a first embodiment of the invention there is provided a process for detecting a unique sequence of hypervariable region from nucleic acid of an individual, wherein said process comprises: a) sequencing a hypervariable region from the nucleic acid of an individual; b) designing at least one polynucleotide capable of hybridizing to the unique sequence The following features relate to the first embodiment of the invention Typically, one can test whether a candidate corresponds to the individual by conducting hybridisation of the polynucleotide to the nucleic acid of the candidate, and determining whether hybridisation has occurred, wherein hybridisation is indicative that the candidate is the individual.

Typically, when designing the polynucleotide, one determines a unique sequence within the hypervariable region of the individual.

Furthermore, in step (b) two polynucleotides may be optionally designed, wherein at least one of the polynucleotides is capable of hybridising to the unique sequence of the hypervariable region.

Consequently, where two polynucleotides are available, the region that lies between the sequences complementary to the first and second polynucleotides may be optionally amplified.

According to a second embodiment of the invention there is provided a process for identifying and authenticating a candidate, said process comprising: a) conducting hybridisation of at least one polynucleotide of a nucleic reference sample of an individual, to a unique sequence of a hypervariable region of nucleic acid of the candidate; and

Substitute Sheet b) determining whether hybridisation has occurred, wherein successful hybridisation is indicative that the candidate corresponds to the individual, whilst an unsuccessful hybridisation is indicative that the candidate and the individual are different. The following features relate to the second embodiment of the invention.

Generally, the polynucleotide(s) is designed in a manner to ensure it is capable of hybridising to a unique sequence of a hypervariable region of a nucleic acid reference sample of an individual.

Typically, one can determine whether hybridisation has occurred by detecting the presence or absence of a hybridised duplex, wherein at least one of the strands of the duplex is labelled.

Furthermore, prior to step (a), two polynucleotides may be optionally designed, wherein at least one of the polynucleotides is capable of hybridising to the unique sequence of the hypervariable region of the nucleic acid reference sample.

Typically, where two polynucleotides are used, one can determine whether hybridisation has occurred through the presence or absence of a hybridised duplex, as obtained by amplifying the segment of the hypervariable region of the candidate that lies between the sequences complementary to the unique first and second polynucleotides. If discrete amplification occurs, this is indicative of a successful hybridisation.

Typically, the present invention also provides a device for identifying and authenticating a candidate, said device comprising: a) means for conducting hybridisation of at least one polynucleotide unique to an individual, to a unique sequence of a hypervariable region of nucleic acid of the candidate; and

Substitute Sheet b) means for determining whether hybridisation has occurred, wherein successful hybridisation is indicative that the candidate corresponds to the individual, whilst an unsuccessful hybridisation is indicative that the candidate and the individual are different. Typically, hybridisation is determined by virtue of a hybridisation detector.

Typically, wherein hybridisation, and therefore identification of the candidate is determined to be successful or unsuccessful, an optionally encrypted electromagnetic signal is transmitted from the hybridisation detector. Typically, the signal of successful or unsuccessful identification of the candidate, may be sent via electromagnetic transmission from a transmitter within the hybridisation detector, to a receiving device, wherein the receiving device may be operatively associated with an apparatus, for which identification was initially required, such an apparatus may be one involved in electronic commerce or secure electronic access systems.

In relation to electromagnetic transmission we refer to United States Patent No. 558330, the disclosure of which is incorporated herein by reference.

According to a third embodiment of the invention there is provided a delivery device to assist in delivering a unique sequence of a hypervariable region of an individual, wherein said delivery device comprises: a) a chamber for holding a solution of nucleic acid duplex comprising the unique sequence of the hypervariable region, in solution with a nucleic acid buffer; b) means for denaturing the nucleic acid duplex, the means for denaturing being operatively associated with the chamber;

Substitute Sheet c) means for retaining within the chamber, a nucleic acid strand (sense or anti-sense) of the denatured nucleic acid duplex, the means for retaining being operatively associated with the chamber; and d) the chamber having a closable opening through which the nucleic acid strand (sense or anti-sense) in the nucleic acid buffer, can be delivered.

The following features relate to the third embodiment of the invention.

Typically, the unique sequence, may be the unique sequence of a hypervariable region of a nucleic acid reference sample of an individual.

Similarly, the unique sequence, may be the unique sequence of a hypervariable region of a candidate.

Typically, the delivery device may be configured in the form of a pen, watch, key, key ring, ring, necklace, brooch, pin, hair clip, pendant, or any item of personal jewellery.

Typically, the delivery device may contain a security mechanism operatively associated with the delivery device.

Typically, the security mechanism is present in the form of a mechanical or electrical lock, or other secure locking mechanisms, wherein the lock can be unlocked by means of a key or a personal identification number (PIN). Alternatively, or in addition, the security mechanism may comprise a biometric device which requires biometric authentication of the user of the delivery device. Examples of such biometric devices are described below. Optionally the delivery device may include an electromagnetic transmitter (and optionally an electromagnetic receiver) which can transmit an optionally encrypted light signal (eg IR signal) to an electromagnetic detector/transmitter associated with the hybridisation detector. The electromagnetic transmitter (and optionally an electromagnetic receiver) may be in association with the security mechanism (for example the security mechanism may have to be successfully negotiated

Substitute Sheet by a user before the electromagnetic transmitter (and optionally an electromagnetic receiver) operates) or may be independent of it. For instance, if the optionally encrypted signal from the delivery device is recognised by the electromagnetic detector/transmitter a recognition signal could be transmitted to the delivery device to enable it to operate or alternatively to an device which enables the hybridisation detector. Alternatively, if the optionally encrypted signal from the delivery device is not recognised by the electromagnetic detector/transmitter a non-recognition signal could be transmitted to the delivery device to disable it or alternatively to an device which disables the hybridisation detector.

Typically, the nucleic acid buffer in which the nucleic acid duplex is in solution, does not degrade the nucleic acid duplex.

Typically, the nucleic acid buffer contains inhibitors of nucleic acid degrading enzymes. Even more typically, the nucleic acid buffer contains substantially 50mM

Tris-HCl , I mM EDTA.

Typically, wherein the delivery device is configured as pen, the nucleic acid buffer in which the nucleic acid duplex is in solution, may, by virtue of the chamber in which it is held, be kept separate from the permanent or non- permanent marker material held within the pen.

Typically, wherein the delivery device is configured as pen, the nucleic acid buffer in which the nucleic acid duplex is in solution, may be present as a mixture with any permanent or non-permanent marker material. Typically, the marker material may be a suitable dye. Even more typically, the marker material may be an ink.

Furthermore, the marker material may be filtered though a 0.1 μm to 0.22 μm filter.

Substitute Sheet Typically, the means for denaturing the nucleic acid duplex may include a heating element designed to heat the nucleic acid buffer to a temperature capable of denaturing nucleic acid duplex which is present in solution therein. A further example of a suitable denaturing means, may include a source of a denaturing solution, such as an alkaline solution, which is delivered into the chamber of the delivery device in an amount capable of denaturing the nucleic acid duplex present in solution therein.

Thermal and alkaline nucleic acid denaturation is described in Sambrook, Fritsch & Maniatis (1989). Molecular Cloning: a laboratory manual, Hames & Heggins (ed). Nucleic acid hybridisation: a practical approach (1985) IRL Press, Oxford, England.

Typically, the means for retaining a nucleic acid strand (sense or anti- sense) of the denatured nucleic acid duplex within the chamber may include antigen-antibody reactions. For example, the nucleic acid strand (sense or anti-sense) of the nucleic acid duplex can be attached to the retaining device operatively associated with the chamber via an antibody system.

Similarly, the retaining means may comprise the nucleic acid strand (sense or anti-sense) of the denatured nucleic acid duplex having an inert ferrous metal label, and the labelled strand being retained within the chamber by virtue of an electromagnet, wherein the electromagnet and the chamber are operatively associated.

Typically, the inert ferrous metal label is the so-called "Dyna-Bead" (Dynal Pty Ltd NSW, Australia) or equivalent products.

Typically, the delivery device may deliver the nucleic acid strand (sense or anti- sense) to a medium such as agarose and polyacrylamide gels, and even solid supports such as paper.

Substitute Sheet The delivery device may deliver the nucleic acid strand (sense or anti- sense) to a hybridisation detector.

Typically, the hybridisation detector may comprise a so-called "DNA- chip". In regard to the "DNA chip", we refer to United States Patent No. 5,445,934, the disclosure of which is incorporated herein by reference.

Typically, the delivery device may also comprise a mechanism to prevent reverse engineering of the nucleic acid duplex.

The mechanism to prevent reverse engineering of the nucleic acid duplex may comprise a reservoir of nucleic acid degrading enzymes, which upon any attempts to deconstruct the delivery device results in release of the nucleic acid degrading enzymes and degradation of the nucleic acid duplex.

Typically, the nucleic acid degrading enzymes may be selected from the group consisting of: exonucleases, endonucleases, single and double stranded nucleic acid nucleases. The mechanism to prevent reverse engineering of the nucleic acid duplex may also comprise a reservoir of alkaline solution which upon any attempts to deconstruct the delivery device results in release of the alkaline solution and denaturation of the nucleic acid duplex.

Even more typically, the mechanism to prevent reverse engineering of the nucleic acid duplex may comprise a reservoir of 0.4M to 15M sodium hydroxide.

Yet even more typically, the mechanism to prevent reverse engineering of the nucleic acid duplex may comprise a reservoir of 0.5M to 5M sodium hydroxide. Generally, the reservoir of nucleic acid degrading enzymes or alkaline solution is associated with a means for releasing these substances into the chamber of the delivery device.

Substitute Sheet Typically, the means for releasing the nucleic acid degrading enzymes or alkaline solution involves a serrated plug or insertable hook, which, upon any attempts to deconstruct the delivery device results in the insertion of the plug or hook into the reservoir, and the subsequent release of the nucleic acid degrading enzymes or alkaline solution into the chamber of the delivery device, resulting in degradation or denaturation of the nucleic acid duplex.

Typically, the chamber has a closable opening by virtue of a one-way valve.

Typically, the delivery device may also comprise a electromagnetic receiver/transmitter, plus the capability of encrypting or de-encrypting an electromagnetic transmission.

In relation to electromagnetic transmission we refer to United States Patent No. 558330, the disclosure of which is incorporated herein by reference.

According to a fourth embodiment of the invention there is provided a process for identifying and authenticating a candidate, wherein the process comprises: a) contacting a strand (sense or anti-sense) of a unique sequence of a nucleic acid reference sample of an individual, with a strand (sense or anti- sense) of a unique sequence of the candidate; b) conducting hybridisation of the strand of the unique sequence of the nucleic acid reference sample, with the strand of the unique sequence of the candidate; c) optionally removing any unhybridised strands of the unique sequence of the candidate; and d) detecting the presence or absence of a hybridised duplex, wherein the presence of a hybridised duplex is indicative that the candidate

Substitute Sheet corresponds to the individual, whilst the absence of a hybridised duplex is indicative that the candidate and the individual are different.

The following features relate to the fourth embodiment of the invention.

Typically, the hybridised duplex is labelled. Typically, the sense or anti-sense strands of the unique sequence of the candidate and/or nucleic acid reference sample of an individual are labelled, wherein the label is detectable due to its inherent detectable properties, or is detectable as a result of a reaction which occurs when the labelled strands of the unique sequence of the candidate and nucleic acid reference sample of an individual come together in the hybridisation process.

Typically, hybridisation occurs within a hybridisation detector.

Typically, step (b) of the fourth embodiment of the invention may involve the delivery device described in accordance with the third embodiment of the invention, or any another nucleic acid delivery device, delivering at least one of the strands of the unique sequence of the candidate or the nucleic acid reference sample of an individual to a hybridisation detector.

Typically, the unhybridised strands of the unique sequence of the candidate may be removed by high stringency washing, as described in Sambrook, Fritsch & Maniatis (1989). Molecular Cloning: a laboratory manual and/or, Hames & Heggins (ed). Nucleic acid hybridisation: a practical approach (1985) IRL Press, Oxford, England.

Alternatively, in step (a) of the fourth embodiment of the invention, two polynucleotides may be optionally used, the sequences of which are based on the unique sequence of the nucleic acid reference sample of the individual, wherein at least one of the polynucleotides is capable of hybridising to the unique sequence of the hypervariable region of the candidate.

Substitute Sheet Typically, where two such polynucleotides are used, one can determine whether the candidate and individual are different entities by attempting to anneal the two polynucleotides to the unique sequence of the hypervariable region of the candidate, and amplifying the segment of the hypervariable region that lies between the sequences complementary to the polynucleotides. If discrete amplification occurs, this is indicative the that the candidate corresponds to the individual, whilst the absence of discrete amplification is indicative that the candidate and the individual are different.

Typically, the present invention provides a device for identifying and authenticating a candidate, said device comprising: a) means for contacting a strand (sense or anti-sense) of a unique sequence of a nucleic acid reference sample of an individual, with a strand (sense or anti-sense) of a unique sequence of the candidate; b) means for conducting hybridisation of the strand of the unique sequence of the nucleic acid reference sample, with the strand of the unique sequence of the candidate; and c) hybridisation detector for detecting the presence or absence of a hybridised duplex, wherein the presence of a hybridised duplex is indicative that the candidate corresponds to the individual, whilst the absence of a hybridised duplex is indicative that the candidate and the individual are different.

Typically, the invention also provides a means for removing any unhybridised strands of the unique sequence of the candidate.

The invention may also provide a two tier process for identifying and authenticating a candidate, comprising an identification and authentication tier. The first tier is an identification tier and is as described in accordance with the fourth embodiment of the invention.

Substitute Sheet Typically, upon completion of the identification tier of the process for identifying and authenticating a candidate, a hybridised duplex is present, this is indicative that the nucleic acid of the candidate and the nucleic acid reference sample are the same. As a result of this a signal is transmitted from the hybridisation detector or an associated device to an appropriate device (e.g. an additional authentication device that may require a PIN, for instance) which permits the process to proceed to the additional authentication tier. However, if a hybridised duplex is absent, this is indicative that the nucleic acid of the candidate and the nucleic acid reference sample are different, and as a consequence a signal is transmitted which stops the process at the identification tier.

The second tier of the process for identifying and authenticating a candidate utilizes an authentication device which provides an authentication tier and if satisfied, a signal is transmitted therefrom indicating that identification and authentication of the candidate has been successful, and if not satisfied, a signal is transmitted therefrom which stops the process at the authentication tier.

The latter authentication device may involve satisfying a mechanical or electrical lock, that can be unlocked by means of a key or a personal identification number (PIN), or other secure locking mechanisms, and/or a biometric device which requires biometric authentication.

Typically, the additional authentication level may involve a biometric procedure as described below.

Typically, the signals of successful identification and authentication of the candidate, may be sent via electromagnetic transmission from a transmitter to a receiving device, wherein the receiving device may be operatively associated with an apparatus, for which identification was initially required,

Substitute Sheet such an apparatus may be one involved in electronic commerce or secure electronic access systems.

Typically, the electromagnetic transmission may be encrypted.

Typically, the signals are transmitted via electromagnetic waves, as described in US 558330, the disclosure of which is incorporated herein by reference.

Therefore, the present invention also provides a device for authenticating a candidate, said device comprising: a) means for authenticating a candidate; and b) means for transmitting a signal indicating that authentication of the candidate has been successful or unsuccessful.

Typically, prior to initiating the process for identifying and authenticating a candidate, there may be preliminary authentication process, comprising: a) sending a signal from a transmitter to a receiving device; and b) receiving the signal, wherein receipt initiates an identification tier of the process by activating a delivery device which delivers a strand (sense or anti-sense) of a unique sequence of the candidate to a hybridisation detector.

Therefore, the present invention also provides a device for providing preliminary authentication of a candidate, said device comprising: a) means for sending a signal from a transmitter to a receiving device; and b') means for receiving the signal, wherein receipt initiates an identification tier of the process by activating a delivery device which delivers a strand (sense or anti-sense) of a unique sequence of the candidate to a hybridisation detector.

Typically, the transmitted signal in relation to the preliminary authentication may be encrypted.

Substitute Sheet Typically, the receiving device is operatively associated with the delivery device.

Typically, the transmitter may be remotely associated with the delivery device. Typically, the delivery device may be the delivery device described in accordance with the third embodiment of the invention.

Typically, the receiving device may be operatively associated with the delivery device described in accordance with the third embodiment of the invention. Both the signal from the transmitter and the signal of successful identification and authentication of the candidate, may be sent via electromagnetic transmission from a transmitter to a receiving device.

Typically, the mode of electromagnetic transmission may be chosen from: microwaves, radio waves, or light waves including waves of the infra-red spectrum. The waves may be coherent such as laser, or non-coherent such as a non-laser LED.

The following features relate to the second and fourth embodiments in general.

Generally, prior to undertaking step (a) in the second and fourth embodiments of the present invention, the operator may obtain a sample of the polynucleotide of a nucleic reference sample of an individual from a stored source of nucleic acid;

Typically, the source is stored in a tamper-proof container.

Typically, in order to access the container, the operator must satisfy the requirements of a security mechanism operatively associated with the container.

Substitute Sheet Typically, the security mechanism is present in the form of a mechanical or electrical lock, that can be unlocked by means of a key or a personal identification number (PIN), or other secure locking mechanisms, and/or methods of biometric authentication as described below. Typically, the container may also comprise a protection mechanism to prevent unauthorised entry into the container, and retrieval of contents therein. More typically, the protection mechanism comprises a separate reservoir of nucleic acid degrading component(s), such as an oxidising agent(s) or enzyme(s), which upon any attempts to deconstruct the container results in release of the nucleic acid degrading component(s) and degradation of the nucleic acid duplex.

Typically, the nucleic acid degrading enzymes may be selected from the group consisting of: exonucleases, endonucleases, single and double stranded nucleic acid nucleases. Therefore, the present invention also provides a device for ensuring secure storage of a polynucleotide of a nucleic reference sample, said device comprising: a) means for securing a stored source of nucleic acid within a container; and b) means for preventing unauthorised entry into the container.

The following features relate to the first through to fourth embodiments in general.

Generally, the first to fourth embodiments of the invention also comprise the preliminary step of extracting a nucleic acid sample from the candidate, and from the individual representing the nucleic acid reference sample.

Typically, the extracted nucleic acid is stored in a secure, tamper-proof container.

Substitute Sheet Typically, the extraction occurs within a hybridisation detector.

Typically, the nucleic acid is extracted from a source of biological material. Generally, such a source includes any source of nucleated cells. For example, nucleated cells derived from blood, tissue, saliva, semen, urine, hair or hair follicles.

The nucleic acid may be DNA or RNA.

Typically, the nucleic acid is mitochondrial DNA.

Typically, the hypervariable region is 100 to 5000 base pairs long.

More typically, the hypervariable region is 100 to 2000 base pairs long. Even more typically, the hypervariable region is 100 to 500 base pairs long.

Furthermore, the hypervariable region may be exist within an expressed or non-expressed region of the genome.

Generally, the hypervariable region exists within a non-expressed region of the genome.

Typically, the individual may be a vertebrate, mammal, reptile, or bird.

More typically, the vertebrate or mammal is a bovine, human, ovine, equine, caprine, leporine, feline or canine.

Typically, wherein amplification is used, the polynucleotides used in this amplification process are approximately 15-50 nucleotides long.

More typically, the polynucleotides are approximately 15-35 nucleotides long.

Even more typically, the polynucleotides are approximately 20-30 nucleotides long. Yet even more typically, the polynucleotides are approximately 20-25 nucleotides long.

Substitute Sheet Typically, amplification may be carried out using the klenow polymerase reaction.

More typically, amplification may be carried out using the ligase chain reaction (LCR). Even more typically, amplification may be carried out using the polymerase chain reaction (PCR).

Typically, the unique sequence may be determined by comparative population studies, and in relation to this we refer to: Jeffreys et al. (1985). Nature 316:76-79; Weber et al. (1989). Am. J. Hum. Genet. 44:388-396; Litt et al. (1989). Am. J. Hum. Genet. 44: 397-401 ; Tautz, D. (1989). Nucl. Acids Res. 17:6463-6471 ; Nakamura et al. (1987) Science 235: 1616-1622; Melton, T.C. (1997) J. Forensic Sci. 42(3):437-446 and United States Patent Numbers 5576180, 5599674, 5097024, 5364759, 5077400 and 5437975, the disclosures of which are incorporated herein by reference. Generally, hybridisation and/or annealing is performed at high stringency.

Typically, high stringency hybridisation and/or annealing is carried out at a hybridisation and/or annealing temperature which only permits minor mismatching between the nucleic acid strand of a candidate and the unique sequence of the hypervariable region of the nucleic acid of the individual.

More typically, high stringency hybridisation and/or annealing is carried out at a hybridisation and/or annealing temperature which permits no mismatching between the nucleic acid strand of a candidate and the unique sequence of the hypervariable region of the nucleic acid of the individual. Methods of hybridisation and/or annealing are well known in the art and in this regard we refer to: Sambrook, Fritsch & Maniatis (1989). Molecular Cloning: a laboratory manual, Hames & Heggins (ed). Nucleic acid

Substitute Sheet hybridisation: a practical approach (1985) IRL Press, Oxford, England, and Erlich, HA. (ed) PCR Technology- principles and applications for DNA amplification (1989). Stockton Press NY USA, the disclosures of which are incorporated herein by reference. Nucleic acid may be rendered detectable by an attached tag, label or marker. A tag or marker linked to a nucleic acid may include a fluorescent or luminescent tag, an isotopic (eg. radioisotope or magnetic resonance) label, a dye marker, a magnetically detectable metal complex, an enzyme marker, an antigenic determinant detectable by an antibody, or a binding moiety such as biotin enabling yet another indicator moiety such as a streptavidin coated bead to specifically attach to at least one strand of the labelled nucleic acid duplex. Typically, hybridisation occurs within a hybridisation detector. Typically, the hybridisation detector may comprise a detection device or detection medium. The detection medium may comprise any medium comprising a strand

(sense or anti-sense) of the unique sequence of the nucleic acid reference sample of an individual or the unique sequence of a candidate.

Typically, such a detection medium may comprise a solid support such as a hybridisation membrane, or hybridisation vessel containing a (sense or anti-sense) of the unique sequence of the nucleic acid reference sample or candidate.

The detection device may comprise any device to which (sense or anti- sense) of the unique sequence of the nucleic acid reference sample or candidate is affixed or in solution therein. Typically, the hybridisation detection device may include the so-called

"DNA-chip", to which a putatively complementary strand (sense or anti-sense) of the unique sequence of the nucleic acid reference sample or candidate is

Substitute Sheet affixed. In regard to the "DNA chip", we refer to United States Patent No. 5,445,934, the disclosure of which is incorporated herein by reference.

An example of a means for detecting the presence or absence of a labelled hybridised duplex includes the use of a laser to activate a fluorescently labelled hybridised duplex, wherein the presence of said activated fluorescent label is read by a standard reader device such as the Applied Biosystems (ABI) (eg ABI 320, ABI 7700 or ABI 373 USA) or Corbett Research (GS 20000 Corbett Pty Ltd, Australia) automatic sequence analysers.

Generally, the PIN of the delivery device described in accordance with the third embodiment of the invention, or the additional biometric authentication tier described in accordance with the fourth embodiment of the invention, or the tamper proof nucleic acid storage container, is derived using a biometric procedure.

The biometric procedure to produce the PIN may simply involve such standard techniques as the use of a random number generator to produce a PIN, which is confirmed as unique to the individual whose unique sequence of a hypervariable region is present within the delivery device.

Further, in generating an individual's PIN unique biological identifiers may be used. For instance the sequence of the unique sequence of a hypervariable region is known to be unique to an individual, and therefore a unique PIN may be derived biometrically through the use of a simple algorithm to convert the unique sequence of the hypervariable region into a PIN.

Such a biological-biometric procedure for generating a unique PIN to be used in conjunction with the delivery device can be extended to include other sources of unique biological data which can be algorithmicaliy converted into a unique PIN. The following provides examples of such sources:

Substitute Sheet 1. NICHISCAN: scan the vertical grooves in the fingernails of an individual, wherein the scan produces a unique series of identifiers. In addition a secondary scanning device identifies horizontal dimensions of fingernail.

2. TRICHISCAN: isolate and sequence the mitochondrial D-loop from hair follicles, to produce a unique sequence, which is itself a unique identifier.

3. ECHOSCAN: scan an individual's earlobes, thereby producing a unique series of identifiers based on the unique grooves surrounding the ear.

4. PRESURSCAN: scan an individual's pressure against a device, and in doing so identify both the fingerprint and pressure on the device. 5. AROMASCAN: scans an individual's aroma.

6. AEROSCAN: scan individual's breath. By providing a clear liquid in water, an individual creates a bacteria in their throat that when breathed into a breath scanning device the microbial population therein produces a unique series of identifiers. 7. NEURO-REACTION: isolate individual's neuro-responses and related body changes to stimuli, and on that basis generate a unique profile of identifying responses.

8. RETINAL-SCAN: scans the retina of an individual to generate a unique retinal profile. The above biological parameters can be biometrically converted into a unique series of identifiers which can be algorithmicaliy used in the generation of a unique PIN. As described above, the unique PIN can then be used in conjunction with the nucleic acid delivery device.

Definitions

In order to more clearly understand the invention, certain terms are defined as follows.

Substitute Sheet A "nucleotide" is one of four bases: adenine, cytosine, guanine, and thymine (DNA) or uracil (RNA), plus a sugar (deoxyribose for DNA, ribose for RNA), plus a phosphate. A nucleotide may also include such modified bases used to improve the action of polymerase on template, and these include bases such as 5-methyl-dCTP and 7-deaza-dGTP.

An "oligonucleotide" is a sequence comprising at least two nucleotides, and may be either RNA or DNA.

A "polynucleotide" is a long oligonucleotide and may also be either RNA or DNA. While the term oligonucleotide is generally used in the art to denote smaller nucleic acid chains, and "polynucleotide" is generally used in the art to denote larger nucleic acid chains, the use of one or the other term herein is not a limitation or description of size.

It is also well known to the art that the term "nucleic acid" refers to a polynucleotide of any length, including DNA (genomic or complementary), or RNA, or fragments thereof, with or without modified bases as described above.

A "sequence" refers to the actual enumerated bases (ribose or deoxyribose) present in a polynucleotide strand, when read from the 5' to 3' direction. The "complement" to a first nucleotide sequence is well known to be a second sequence comprising those bases which will pair by Watson-Crick hybridisation with the first sequence. For double stranded DNA (duplex DNA), each of the two strands may be often described as complementary to the other or as a complementary pair. "Homology" between polynucleotide sequences refers to the degree of sequence similarity between the respective sequences.

Substitute Sheet "Hypervariable region" refers to a region of nucleic acid which exhibits extremely high levels of sequence polymorphism within the population, creating a myriad of rare alleles, which are therefore useful tools in the identification of individuals. In relation to this, we refer to: Jeffreys et al. (1985). Nature 316:76- 79; Weber et al. (1989). Am. J. Hum. Genet. 44:388-396; Litt et al. (1989). Am. J. Hum. Genet. 44: 397401 ; Tautz, D. (1989). Nucl. Acids Res. 17:6463-6471 ; Nakamura et al. (1987) Science 235: 1616-1622; Melton, T.C. (1997) J. Forensic Sci. 42(3):437-446 and United States Patent Numbers 5576180, 5599674, 5097024, 5364759, 5077400 and 5437975, the disclosures of which are incorporated herein by reference. Importantly, in the present invention, one or more hypervariable regions may be used to provide a nucleic acid identifier which is specific to an individual.

"Unique sequence of a hypervariable region" refers to a sub-region within a nucleic acid hypervariable region which exhibits such extreme variability as to alone discriminate between individuals within a population. In the present invention, the "unique sequence of a hypervariable region" is obtained by designing first and second polynucleotides based on the most variable sequence of a hypervariable region, which upon amplification using these first and second polynucleotides as primers, the unique sequence of a hypervariable nucleic acid region so amplified represents a unique identifier specific to an individual.

The term "label" or "labelled" when applied to a nucleic acid means that the nucleic acid in question is linked to a moiety detectable by its properties which may include: luminescence, catalysis of an identifying chemical substrate, radioactivity, or specific binding properties. Therefore, the term "label" includes ligand moieties.

Substitute Sheet A "template" is a sequence of nucleic acid upon which a complementary copy is synthesised. This may include DNA to DNA replication, DNA to RNA transcription, or RNA to DNA reverse transcription.

A "primer" is a relatively short segment of polynucleotide which is complementary to a portion of the sequence of interest. It is well known that the length of the primer will depend upon the particular application. As is also well known, a primer need not be a perfect complement for successful hybridisation to take place. The primer may incorporate any known nucleic acid bases, including any known modified or labelled bases as defined above so that the primer extension product will incorporate these features to permit separation and detection of the primer extension product. A tag, label or marker linked to a primer may include a fluorescent or luminescent tag, an isotopic label, a dye marker, an enzyme marker, an antigenic determinant detectable by an antibody, or a binding moiety such as biotin enabling yet another indicator moiety such as a streptavidin coated bead to specifically attach to the primer or any nucleic acid sequence incorporating that primer. The term "primer extension product" describes the primer sequence together with the complement to the template produced during extension of the primer. A "strand" is a single nucleic acid sequence. Thus, a duplex or double stranded or other nucleic acid sequence may be separated into complementary single strands.

"Hybridisation" describes the formation of double stranded or duplex nucleic acid from complementary single stranded nucleic acids. Hybridisation may take place between sufficiently complementary single stranded DNA and/or RNA to form: DNA-DNA, DNA-RNA, or RNA-RNA.

Substitute Sheet "Annealing" refers to hybridisation between complementary single chain nucleic acids when the temperature of a solution comprising the single chain nucleic acids is lowered below the denaturing temperature.

The in vitro amplification of DNA is catalysed by "DNA polymerase". A number of types of DNA polymerase are known to the art and they generally share the common property of catalysing the synthesis of a double stranded DNA sequence utilising a single stranded template to which a primer is annealed. The DNA polymerases which are preferred for in vitro PCR are derived from organisms which thrive at high temperatures. The "DNA polymerase reaction" requires a buffer solution as known in the art, a supply of DNA template, some or all (depending on template sequence composition) of the four deoxyribonucleotide triphosphates (which may include modified bases as described above), a pair of specific primers designed to hybridise to or near the 5' and 3' terminals of the template, and a means for cyclic strand separation.

"Chemiluminescent labels" are those which become luminescent species when acted on chemically or electrochemically and provide a sensitive and precise measurement of the presence and concentration of an analyte of interest. The light produced by the label is measured and indicates the presence or quantity of the analyte.

"Nucleic acid reference sample" refers to a previously sequenced and characterised nucleic acid sample which has been verified as originating from a known individual.

"Candidate" refers to an individual submitted for identification and authentication.

The term "Electronic Commerce" should be read generally as the use of computer based technology to access, store and distribute information

Substitute Sheet pertaining to financial transactions via electronic information that is exchanged over some form of telecommunication medium (wired or wireless) and/or other electronic payment systems ie. Digital Cheques, debit cards, credit cards and stored value cards or "Electronic Cash". The term "Secure Electronic Access System" should be read generally as the use of computer based technology to access, store and distribute information pertaining to Security Access via electronic information that is exchanged over some form of telecommunication medium (wired or wireless) and/or other remote or local electronic security systems and/or mediums ie. Biometric or Genetic systems, smart card, magnetic card, optical card, and Photo ID card mediums.

In relation to the so-called "smart card we refer to United States patent numbers: 5594233, 5563948, 5534857, 5533126, 5461217, 5438184, 5307411 , 5241161 , 4874935, 5552897, 5530232, the disclosure of which is incorporated herein by reference.

"Privacy" refers to protection from eavesdropping through conventional and/or biological encryptions.

"Non-Repudiation" refers to prevention of later denying having performed a transaction or identified for secure access due to genetic and/or biometric authentication.

Brief Description of the Drawings

Figure 1 is a plan view of a device to assist in delivering a hypervariable region of a nucleic acid reference sample of an individual to a detector. Figure 2 is a schematic representation of the delivery of a labelled strand of a unique sequence of a hypervariable region of a candidate to a

Substitute Sheet hybridisation detection device, to which a strand of putatively complementary DNA of an individual's nucleic acid reference sample is affixed.

Figure 3 is a schematic representation of a remote process for identifying and authenticating a candidate by verifying hybridisation between at least one unique sequence of a hypervariable region of a nucleic acid reference sample and a unique sequence of a hypervariable region from the nucleic acid of a candidate, together with satisfying an additional biometric authentication level.

Figure 4 - Examples of hyperariable regions.

Best Mode or Modes of Performing the Invention The first step in performing the invention is the extraction of nucleic acid from a source of biological material which can be traced to an individual. This acts as the nucleic acid reference sample for that individual. Suitable sources of biological material from which nucleic acid can be extracted include any sources of nucleated cells, for example nucleated cells derived from: blood, tissue, saliva, skin scrapings, semen, urine, hair, hair follicles, or nucleated cells from ear wax.

Furthermore, the nucleic acid can take the form of: genomic DNA (gDNA), complementary DNA (cDNA), mitochondrial DNA (mtDNA), messenger RNA (mRNA) or transfer RNA (tRNA). The nucleic acid, and the biological source of the nucleic acid is placed in long-term storage under stable conditions. For example, such long-term storage could be in a suitable buffer at low temperatures, such as those provided in liquid nitrogen. The next step in performing the invention is the amplification of a region of a nucleic acid reference sample, which is hypervariable in its nature. This step involves hybridising a pair of known primers to conserved template

Substitute Sheet sequences which flank a hypervariable region within the reference sample genome, see Figure 4.

This step is outlined below, wherein two primers are hybridised to a pair of conserved regions flanking the hypervariable region. The conserved sequences outlined below are merely hypothetical, and for illustration purposes only, see Figure 4. 5 ' Primer A Primer B

GATCTCGAT I I I I I I I I I I I I I I I I I I I I I TTTACTTA 3'

CTAGATCTA N N N N N N N N N N N N N N N N N NNNN AAATGAAT

5 ' -conserved variable region 3 '-conserved region region

I

"PRODUCT 1" 1

The amplified nucleic acid hypervariable region, to which conserved primer A and conserved primer B bind, can be referred to as "PRODUCT 1 ". "PRODUCT 1 " is purified, and is also placed in long-term storage under stable conditions.

"PRODUCT 1 " is sequenced, and the most polymorphic region (as determined by population comparative studies) internal to the conserved sequences to which primers A and B bind is selected, and is referred to as the "unique sequence of a hypervariable region". Subsequently, first and second polynucleotides are synthesised based on this sequence, see Figure 4.

These first and second polynucleotides are hybridised to the nucleic acid reference sample, and subsequently amplified to produce the unique sequence of the hypervariable region described above, and is referred to as

Substitute Sheet "PRODUCT 2". "PRODUCT 2" is also purified and placed in long-term storage under stable conditions.

Similarly, this step is outlined below, wherein the first and second polynucleotides, are hybridised to a hypervariable region within "PRODUCT 1 ", and upon hybridisation and amplification produces "PRODUCT 2", see Figure 4.

First Second

5' Polynucleotide Polynucleotide

GATCTCGAT I I I I I I I I I I I I I I I I I M I I TTTACTTA CTAGATCTA N N N N N N N N N N N N N N N N N NNNN AAATGAAT

'PRODUCT 2".

Once "PRODUCT 2" has been obtained, there are several alternatives for it's use. For example, "PRODUCT 2" can be affixed to a solid substrate within a detector mechanism, and in this regard we refer to United States Patent No. 5,445,934. the disclosure of which is incorporated herein by reference. In relation to this, the substrate to which "PRODUCT 2" is attached may be incorporated within any standard hybridisation and/or amplification device. These hybridisation devices may themselves be adapted to be useful within the fields of commerce or security, and would also have utility within many other fields where individual verification is of importance.

A simple identification procedure involving the present invention may comprise candidates for verification and identification lodging their own strand (sense or anti-sense) of nucleic acid (candidates own "PRODUCT 2") within the hybridisation and/or amplification device, wherein said device includes a substrate to which a strand (sense or anti-sense) of a previously verified

Substitute Sheet nucleic acid "PRODUCT 2" of a known individual, acting as a nucleic acid reference sample has been previously attached. A hybridisation and/or amplification procedure is conducted under conditions of high stringency, and if successful, then this provides verification that candidate and the individual from which the reference sample "PRODUCT 2" is derived are one and the same. It is foreseeable that these hybridisation and/or amplification devices may be adapted to include within their scope, data storage mediums, such as optical or magnetic storage mediums, which include within their scope the so- called "smart card", or other storage mediums well known in the field of information technology. For example, there a family of "smart card" devices, which may be used. The basis of the GeneSmart Card Family is its unique etching of an individual's coded DNA on a smart card. This etching is used and compared with a range of compatible GENAR and compliant smart card readers and devices including GenePens, GeneWatches and GeneJewellery for identification, authentication and non-repudiation.

The smart card products are available in a range of formats and functions/capabilities, including:

1. GeneSmartCard - used with a base station identifying unique DNA GeneCode etching. A correct passcode is required to activate authentication. The device can be linked with a range of Genetic Authentication (GENAR) devices including smart magnetic card readers, other biometric devices or electronic mediums

2. GeneSmartPin - same as GeneSmart Card but has on-board LCD and PIN authentication 3. BioCheckGenePen - same as GeneSmart Card but has on-board LCD, PIN, Biometric authentication

Substitute Sheet 4. GeneSmartCard IR (PIN/BIO) - same as GeneSmart Card but has onboard Infra Red Reader and/or PIN/biometric authentication

5. GeneSmartCard Personal - customable range with once only write. This smart card can also be activated by GENAR devices for secure authentication. 6. GeneSmartCardClassic - range of Write Once Personal Smart Cards. 7. GeneSIMSmartCard - range of customable Smart Card mediums for transactional and security authentication. These devices can work with GENAR devices and may include PIN, Biometric check and IR functions and GE-Cash in Genetic Electronic Wallet services. As described above, the "smart card" detection device can be combined with Genetic Authentication Reader (Genar) Mediums. An example of such a medium is the GenePen, as described in relation to the third embodiment of the invention. The basis of the GenePen Family is the uniquely charged marker material (eg ink) ink/charge released by the pen, which acts in identity, authentication and non-repudiation. The pen products are available in a range of sizes, formats and functions/capabilities :

1. GenePen - used with base station to charge pen with unique DNA GeneCode. A passcode is required to activate the ink before it is removed. The device can be linked with a range of Genetic Authentication (GENAR) devices including smart, magnetic or magnetic card readers, other biometric devices or electronic mediums

2. GenePin Pen - similar to the GenePen but pen has on-board PIN authentication

3. BioCheck GenePen - similar to the GenePen but pen has on-board Biometric authentication

4. GenePen IR (PIN/BIO) - similar to the GenePen but pen has on-board Infra Red Reader and/or PIN/ Biometric authentication

Substitute Sheet 5. GenePenPersonal - customable pen range with once only chargeable ink. This ink can also be activated by GENAR Devices for secure authentication ink charging.

6. GenePenClassic - range of Write Once Personal Ink pens. 7. GeneSIMPen - range of customable Pen mediums for transactional and security authentication. These devices can work with GENAR devices and may include PIN, biometric check and IR functions and electronic wallet services.

Similarly, the "smart card" detection device can be combined with other GENAR mediums. A further example of such a medium is the GeneWatch.

The basis of the GeneWatch Family is the unique method a watch gets a DNA sample from an individual, processes this data for a positive identification and transmits this data through a terminal display on a watch. This data can then be transmitted wirelessly (IR) , wired or a combination of wired through a pen input device released via IR to a GENAR device for identification, authentication and non-repudiation. The watch products are available in a range of sizes, formats and functions/capabilities, including :

1. GeneWatch - used with base station to transmit wirelessly a unique DNA GeneCode. A passcode is required to activate via a charge before it is removed. The device can be linked with a range of Genetic Authentication (GENAR) devices including smart, magnetic or magnetic card readers, other biometric devices or electronic mediums

2. GenePinWatch - similar to the GeneWatch but watch has on-board PIN authentication 3. BioCheckGeneWatch - similar to GeneWatch but pen has on-board Biometric authentication

Substitute Sheet 4. GeneWatch IR (PIN/BIO) - similar to GeneWatch but pen has on-board Infra Red Reader and PIN &/or Biometric authentication

5. GeneWatchPersonal - customable watch range with IR and DNA Reader. This watch can also link to GENAR devices for secure authentication and/or ink charging.

6. GenePenClassic - range of Write Once Personal Watches. These fashionable watches include IR for compatibility with GENAR devices.

7. GeneSIMWatch - range of customable watch mediums for transactional and security authentication. These devices can work with GENAR devices and may include PIN, Biometric check and IR functions and services.

A further GENAR medium may be jewellery. The basis of the GeneRing Jewellery Family is a unique method wherein jewellery may be used to obtain a DNA sample from an individual, process this data for a positive identification and transmits this data through a terminal display on a watch. This data can then be transmitted wirelessly (IR) , wired or a combination of wired through a pen input device released via IR to a GENAR device for identification, authentication and non-repudiation. The jewellery products are available in a range of sizes, formats and functions/capabilities, including :

1. GeneRing/Necklace - used with base station to transmit wirelessly a unique DNA GeneCode. A passcode is required to activate via a charge before it is removed. The device can be linked with a range of Genetic Authentication (GENAR) devices including smart, magnetic or magnetic card readers, other biometric devices or electronic mediums

2. GenePinRing/Necklace - similar to GeneRing/Necklace but jewellery has on-board PIN authentication

3. BioCheckGeneRing/Necklace - similar to GeneRing/Necklace but jewellery has on-board Biometric authentication

Substitute Sheet 4. GeneRing/Necklace IR (PIN/BIO) - similar to GeneRing/Necklace but jewellery has on-board Infra Red Reader and PIN &/or Biometric authentication

5. GeneRing/Necklace Personal - Customable jewellery range with IR and DNA Reader. This watch can also link to GENAR Devices for secure authentication and/or ink charging.

6. GeneRing/Necklace Classic - range of Write Once Personal Jewellery. These fashionable pieces of jewellery include IR for compatibility with GENAR devices.

7. GeneSIMJewellery - range of customable jewellery mediums for transactional and security authentication. These devices can work with

GENAR devices and may include PIN, Biometric check and IR functions and services.

8. GeneSIM Key/Key Ring - range of customable key/key ring mediums for transactional and security authentication. These devices can work with GENAR devices and may include PIN, Biometric check and IR functions and services.

Furthermore, examples of jewellery that GENAR products can be integrated into include: rings, necklaces, earings, chains, pins, brooches, hair clips, keys and key rings. A further GENAR medium may be clothing. The basis of the

GeneClothing Family is the unique method incorporated in clothing, such as shoes, socks, shirts and undergarments to get a DNA sample from an individual, processes this data for a positive identification and transmits this data through a GENAR compliant terminal display. This data can then be transmitted wirelessly (IR) , wired or a combination of wired through a pen input device released via IR to a GENAR device for identification, authentication and

Substitute Sheet non-repudiation. The GeneClothing Accessory products are available in a range of sizes, formats and functions/capabilities, including:

1. GeneSole/Shoe - used with base station to transmit wirelessly a unique DNA GeneCode. A passcode is required to activate via a charge before it is removed. The device can be linked with a range of Genetic Authentication (GENAR) devices including smart, magnetic or magnetic card readers, other biometric devices or electronic mediums

2. GeneSox/undergarments - used with base station to transmit wirelessly a unique DNA GeneCode. A passcode is required to activate via a charge before it is removed. The device can be linked with a range of Genetic

Authentication (GENAR) devices including smart, magnetic or magnetic card readers, other biometric devices or electronic mediums

3. Genshirt/Skirts/pants - used with base station to transmit wirelessly a unique DNA GeneCode. A passcode is required to activate via a charge before it is removed. The device can be linked with a range of Genetic

Authentication (GENAR) devices including smart, magnetic or magnetic card readers, other biometric devices or electronic mediums

4. GenePin Clothing Accessories - Same as GeneClothing Accessories but devices have on-board PIN authentication 5. BioCheck Clothing Accessories - Same as GeneClothing Accessories but devices have on-board Biometric authentication. 6. GeneClothing Accessories IR (PIN/BIO) - Same as GeneClothing Accessories but devices have on-board Infra Red Reader and PIN &/or Biometric authentication 7. GeneClothing Accessories Personal - Customable GeneClothing

Accessories range with IR and DNA Reader. These accessories can also link to GENAR Devices for secure authentication and/or ink charging.

Substitute Sheet 8. GeneClothing Accessories Classic - Range of Write Once Personal Clothing. These fashionable pieces of clothes include IR for compatibility with GENAR devices.

9. GeneSIM Clothing - Range of customable clothing mediums for transactional and security authentication. These devices can work with

GENAR devices and may include PIN, Biometric check and IR functions and services.

Clothing that GENAR products can be integrated into include: shirts, singlets, blouses, shoes, socks, thongs, sandals, underwear, swimwear, bras, petticoats, trousers, shorts, skirts, jackets, coats, sloppy joes, jumpers, sports gear and track suits

A further GENAR medium may be a so-called "GeneWallet". The basis of the GeneWallet Family is to provide a Genetic Electronic Wallet that is compliant with the GeneCode solutions and GENAR devices. GeneWallets have a stored medium referred to as Genetic Electronic Cash (GE-Cash). This GE-Cash is compatible with a range of GENAR and compliant smart card readers and devices including GenePens, GeneWatches and GeneJewellery for performing transactions after successful identification, authentication and non-repudiation. The GeneWallet products are available in a range of formats and functions/capabilities, including:

1. SmartGenePurse - a computerised electronic purse designed for females, and may include:

1.1 a smart card reader/writer

1.2 A DNA GeneCode etching reader 1.3 A PIN keypad

1.4 An LCD screen

1.5 A GenePen reader

Substitute Sheet The device can be linked with a range of Genetic Authentication (GENAR) devices including smart magnetic card readers, GenePens, other biometric devices or electronic mediums, as described above and including:

2. SmartGenePin - similar to SmartGenePurse but has on-board LCD and PIN authentication

3. BioCheckSmartGenePen - similar to SmartGenePurse but has on-board LCD, PIN, Biometric authentication

4. SmartGenePurseSmartCard IR (PIN/BIO) - similar to SmartGenePurse but has on-board Infra Red Reader and/or PIN/biometric authentication In order for the Genetic Authentication Process (GENAR) to successfully conduct an authentication challenge and match for security and transactions, the following is required :

1. Customer that has a genetic DNA test and supplied a sample to our Secure DNA Bank and Secure Computerised GeneCode DNA Database 2. A listing of customer's GeneCode in our Global GeneCode DNA Database

3. Customer issued with a genetic authentication device and/or medium

4. Customer's selection and inclusion of a PIN

By integrating our security solution into existing and future transactional and security systems, the GeneCode Process allows any customer to conduct an authentication challenge as follows :

1. Conduct computerised system's transaction or security challenge

2. Customer provides GENAR compliant device for authentication challenge test 3. Customer enters PIN and/or DNA test

4. System does GENAR device test with data on PIN, if match occurs transmits positive authentication

Substitute Sheet Typical Input Genar Device characteristics include: 1. A medium with memory - may include PIN details and/or account or security access details. This may also include: 1.1 A built-in PIN input device 1.2 A built-in LCD display

1.3 A wireless/IR amplification transceiver/receiver

1.4 Biometric reader

1.5 GenePen

1.6 DNA reader 1.7 Computer chip

1.7 Nanorobotic mechanism

1.8 Transactional, health and electronic wallet with personal information and other data

The GENAR Process can be integrated into any transactional or security solution. The diverse range of Genar Devices are designed to meet the various needs and applications. These devices include:

2.1 GeneSmart Cards

2.2 GenePens 2.3 GeneWatches

2.4 GeneRing and Jewellery

2.5 GeneClothing

2.6 GeneWallet

Typical Output GENAR Device characteristics include : 3. A base station that can read data from a medium with or without memory. The base station may include : 3.1 A Numeric Input PIN keypad

Substitute Sheet 3.2 A Smart Card reader

3.3 A Smart Card etching reader

3.4 An LCD output display

3.5 A wireless/IR amplification transceiver/receiver 3.6 A Biometric reader

3.7 ADNA reader

3.8 A GenePen reader

3.9 A data Memory card

3.10 A data hardisk The GENAR Process can be integrated into any transactional or security solution. The diverse range of Genar Devices are designed to meet the various needs and applications. These Output devices can be included in :

4.1 GeneSmart Cards

4.2 GenePens 4.3 GeneWatches

4.4 GeneRing and Jewellery

4.5 GeneClothing

4.6 GeneWallet

Substitute Sheet

Claims

CLAIMS:
1. A process that uses unique sequences derived from hypervariable regions and or other sets of unique DNA regions for the biometric identification and authentication of an individual or nominated individual.
2. The DNA sequences used in claim 1 wherein each may be derived from homosapien individuals, human animals, plants, multicellular microorganisms, unicellular micro-organisms, viral, living and non-living organisms or manually chemically derived bioengineered hypervariable DNA sequences.
3. The nominated individual of claims 1 -2 wherein may be a virtual individual whose unique DNA sequence has been nominated and assigned once it has been derived and tested for hypervarbility > 99% non-homology with any known DNA sequence in all fields using world wide DNA banks such as Genbank.
4. Hybridisation and/or amplification procedure is conducted under conditions of high stringency, and if successful, then this provides verification that candidate and the individual from which the reference sample ("PRODUCT 2") (we refer to Figure 4) is derived are one and the same, wherein these hybridisation and / or amplification devices may be adapted to include within their scope, data storage mediums, such as optical or magnetic storage mediums, which include within their scope the so-called "smart card".
Substitute Sheet
5. Another example may be to provide a delivery device to assist in delivering "PRODUCT 2" of a verified nucleic reference sample from a known individual to a suitable hybridisation detection device, and in relation to this we refer to Figure 1 Delivery device 1 may consist of a chamber 2 comprising a reservoir of nucleic acid duplex3 ("PRODUCT 2"), in a solution with a suitable nucleic acid buffer.
6. Delivery device 1 of claim 5 also contains a denaturing means 4 within chamber 2. A typical example of a denaturing means 4 include a heating element designed to heat the nucleic acid buffer to a temperature capable of denaturing nucleic acid duplex 3 ("PRODUCT 2") present in solution therein. Where denaturing means 4 is a heating element, a power source 5 is also present within delivery device 1 .
7. Another example of a denaturing means 4, may include a source of a denaturing solution, such as an alkaline solution, which is delivered into chamber 2 of delivery device 1 , in an amount capable of denaturing nucleic acid duplex 3 ("PRODUCT 2") in solution therein.
8. Delivery device 1 of any one claims 5 to 7 further comprises a retaining means 6 within chamber 2, which retains a nucleic acid strand (sense or anti-sense) of denatured nucleic acid duplex 3 ("PRODUCT 2"). The retaining means 6 may include an antigen-antibody reaction, wherein the nucleic acid strand (sense or anti-sense) is bound to label 7, and the labelled nucleic acid strand is retained within chamber 2 via an antibody system. An example of such a label 7 is the non-radioactive label biotin. Biotin can be incorporated within a strand of nucleic acid duplex 3
Substitute Sheet ("PRODUCT 2"), and will strongly react with the enzyme streptavidin, wherein streptavidin can itself be bound to an antibody which is attached to retaining means 6 within chamber 2.
9. Similarly, retaining means 6 may also involve a nucleic acid strand (sense or anti-sense) of nucleic acid duplex 3 ("PRODUCT 2") bound to a label 7, but in this instance the labelled strand of nucleic acid duplex 3 ("PRODUCT 2") can be retained within chamber 2 via an electromagnet acting as retaining means 6. In this instance, label 7may be an inert ferrous metal, such as the so-called "Dyna-Bead" (Dynal Pty Ltd NSW, Australia) or equivalent products. Once the electromagnet is activated by the power source 5, it traps within chamber 2 all those nucleic acid strands having a "Dyna-Bead" attached thereto.
10. Regardless of which retaining means 6 is used, once the nucleic acid duplex 3 ("PRODUCT 2") is denatured, the nucleic strand to which label 7 is attached will be held by retaining means 6 within chamber 2. The remaining complementary strand of nucleic acid duplex 3 ("PRODUCT 2") may also comprise a label 8. Preferably, label 8 may be fluorescent, such as labels: "FAM", "HEX" and "TAMRA" (Perkin Elmer Corporation, USA) but may also comprise radioactive or other non-radioactive and chemiluminescent labels.
1 1 . Therefore, once nucleic acid duplex 3 ("PRODUCT 2") is denatured, the nucleic acid strand to which the label 8 is bound, is free to move in the nucleic acid buffer solution present in chamber 2, through gate 9, wherein
Substitute Sheet gate 9 may be a one-way valve, toward point of delivery 10 within delivery device 1 .
1 2. Delivery device 1 of any one claims 5-1 1 also comprises a trigger mechanism 1 1 which acts to initialise the device I prior to use.
1 3. Delivery device 1 of any one claims 5-1 2 may also involve a security mechanism 1 2 wherein prior to initialising delivery device 1 through trigger mechanism 1 1 , the operator must satisfy the requirements of this mechanism. Security mechanism 1 2 is a biometric device may include the use of a personal identification number (PIN), wherein the PIN is derived using a biometric procedure.
14. Delivery device 1 of any one claims 5-13 may also comprise a mechanism 1 3 to prevent reverse engineering of nucleic acid duplex 3. Any attempts to deconstruct delivery device 1 will result in the activation of mechanism 1 3, which may involve the release of nucleic acid degrading enzyme or a nucleic acid denaturing solution. The means for releasing the reservoir of nucleic acid degrading enzymes or alkaline solution (mechanism 13) may involve a serrated plug or insertable hook, which, upon any attempts to deconstruct delivery device 1 results in the insertion of a plug or hook into the reservoir , and the subsequent release of nucleic acid degrading enzymes or alkaline solution into chamber 2 of delivery device 1 , resulting in degradation or denaturation of nucleic acid duplex 3.
1 5. Delivery device 1 of any one claims 5-14 may also comprise an electromagnetic transmitter 13" (and optionally an electromagnetic
Substitute Sheet receiver) which can transmit an optionally encrypted light signal (eg. IR signal) to an electromagnetic detector/transmitter associated with a hybridisation detection device 1 6.
1 6. In use, the delivery device 1 of any one claims 5- 1 5 may be used to assist in identifying and authenticating an individual, by verifying whether or not hybridisation occurs within between a fluorescently labelled strand 1 4 of "PRODUCT 2" of nucleic acid reference sample and a strand 1 5 of putatively complementary nucleic acid "PRODUCT 2" of candidate, as outlined schematically in Figure 2.
1 7. In order to do so, operator must first satisfy security mechanism 1 2, prior to initialising delivery device 1 through depressing trigger 1 1 . Once Activated delivery device 1 of any one claims 5-1 6 delivers a fluorescently labelled strand of denatured nucleic acid duplex ("PRODUCT 2") of candidate 1 5 to hybridisation detection device 1 6, to which strand of putatively compiementary nucleic acid 1 4 (:PRODUCT 2") of a nucleic acid reference sample is affixed.
18. Nucleic acid strands 1 4 and 1 5 are hybridised and/ or amplified within hybridisation detection device 1 6 of claims 1 7 under conditions of high stringency. Once hybridisation and/ or amplification is complete, any unhybridised fluorescently labelled nucleic acid strand 1 4 is removed from hybridisation detection device 1 6 by high stringency washing. Alternatively, where the Tallon probe (Perkin Elmer Corporation, USA) or anti-Tallon probe (Promega, Madison Wl USA) is used to label nucleic acid
Substitute Sheet strands 1 4 and 15, there is no washing requirement since a signal is only produced where hybridisation has been successful.
1 9. The success of the hybridisation reaction is judged by passing a laser 1 7 through hybridisation detection device 1 6 of any one claims 1 7-18.
20. If hybridisation has been successful, the fluorescently labelled nucleic acid strand 1 4 of hybridised duplex 1 8 will undergo an excitation reaction which can be measured by reading device 1 9.
21 . The absence of an excitation reaction indicates that there has been no hybridisation between strand 1 4 of'PRODUCT 2" of nucleic acid reference sample and strand 1 5 of nucleic acid "PRODUCT 2" of candidate, therefore demonstrating that the candidate and individual are different.
22 As schematically illustrated in Figure 3, delivery device 1 may also be used in an alternative manner to remotely authenticate and verify a candidate.
23. This process involves sending an encrypted message 20 from a transmitter 21 to a receiving device 22, and de-encrypting message 20. Message 20 is usually transmitted via an electromagnetic transmission medium, such as an encrypted infra-red signal.
24. Receipt and de-encryption of message 20 activates via transmission of an electromagnetic signal 23 delivery device 1 , which delivers 24 a
Substitute Sheet labelled strand of denatured mucleic acid duplex ("PRODUCT 2") of candidate 1 5 to hybridisation detection device 1 6.
25. Labelled strand 1 5 of "PRODUCT 2" of a nucleic acid of candidate is hybridised at high stringency within hybridisation detection device 1 6, with an unlabelled putatively complementary nucleic acid strand 1 4 ('PRODUCT 2") of a nucleic acid reference sample, wherein unlabelled strand 14 is affixed to hybridisation detection device 16.
26. A successful hybridisation 25 allows the process to proceed to the additional authentication level, wherein unsuccessful hybridisation stops the authentication process altogether. Authentication comprises correct use of a PIN, or a biometric equivalent into a key pad or associated PIN recognition device 26.
27. Upon successfully satisfying authentication level, a signal 27 is transmitted from PIN recognition device 26 to a receiver 28 which relays signal 29 that identification and authentication of the candidate has been successful to the appropriate apparatus 30, for which identification and authentication was initially required.
28. If authentication is unsuccessful, no signal 29 is transmitted from PIN recognition device 26, and the authentication process shuts down.
29. As described above, relayed signal 29 indicating successful identification and authentication of the candidate may be sent via a form of electromagnetic waves, such as an encrypted infra-red signal.
Substitute Sheet Furthermore, the apparatus 30 for which identification and authentication was initially required, may be an apparatus involved in electronic commerce or secure electronic access systems.
30. The DNA biometric process used for identification and relevant devices as herein described with reference to the accompanying drawings.
Substitute Sheet
PCT/AU1999/000496 1998-06-18 1999-06-18 A dna biometric process used for identification WO1999066070A9 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AUPP421798 1998-06-18
AUPP4217 1998-06-18

Publications (2)

Publication Number Publication Date
WO1999066070A1 true WO1999066070A1 (en) 1999-12-23
WO1999066070A9 true true WO1999066070A9 (en) 2000-04-06

Family

ID=3808463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1999/000496 WO1999066070A9 (en) 1998-06-18 1999-06-18 A dna biometric process used for identification

Country Status (1)

Country Link
WO (1) WO1999066070A9 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911204B2 (en) 2000-08-11 2005-06-28 Favrille, Inc. Method and composition for altering a B cell mediated pathology
WO2002014553A3 (en) * 2000-08-11 2003-02-27 Favrille Inc A molecular vector identification system
DE10065089A1 (en) * 2000-12-21 2002-07-18 Olek Alexander An ornament with genetic fingerprint
EP1237327A3 (en) * 2001-03-01 2003-07-02 ID Technica Co., Ltd. Method and system for individual authentication and digital signature utilizing article having DNA based ID information mark
WO2009143212A1 (en) * 2008-05-21 2009-11-26 Mito Tech Llc Computer system and computer-facilitated method for nucleic acid sequence alignment and analysis

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593832A (en) * 1983-02-28 1997-01-14 Lifecodes Corporation Method for forensic analysis
GB8425059D0 (en) * 1984-10-04 1984-11-07 Biotechnica Ltd Identification technique
EP0186271B1 (en) * 1984-11-12 1991-12-18 THE LISTER INSTITUTE OF PREVENTIVE MEDICINE Royal National Orthopaedic Hospital Method of characterising a test sample of genomic dna
GB8606719D0 (en) * 1986-03-19 1986-04-23 Lister Preventive Med Genetic probes
US5026837A (en) * 1987-05-04 1991-06-25 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon Health Sciences University DNA probe which reveals a hypervariable region on human chromosome 16
US5084566A (en) * 1987-05-04 1992-01-28 Michael Litt DNA probe which reveals a hypervariable region on human chromosone 1
FR2649518B1 (en) * 1989-07-07 1991-10-18 Bioprobe Systems Sa Method and high safety crypt marking device for the protection of valuables
GB9108354D0 (en) * 1991-04-18 1991-06-05 Solicitor For The Affairs Of H Nucleotide probes
DE69230736T2 (en) * 1991-08-27 2000-06-21 Zeneca Ltd A method of characterizing genomic DNA
GB9314394D0 (en) * 1993-07-12 1993-08-25 Minton John E A security device using an ultrasensitive microtrace for protecting materials,articles and items
EP0758405B1 (en) * 1994-05-06 2001-07-18 APBiotech Aktiebolag Method of nucleic acid transfer
US5576180A (en) * 1995-05-01 1996-11-19 Centre De Recherche De L'hopital Ste-Justine Primers and methods for simultaneous amplification of multiple markers for DNA fingerprinting

Also Published As

Publication number Publication date Type
WO1999066070A1 (en) 1999-12-23 application

Similar Documents

Publication Publication Date Title
Silva et al. Detection of epithelial tumour RNA in the plasma of colon cancer patients is associated with advanced stages and circulating tumour cells
US4999290A (en) Detection of genomic abnormalities with unique aberrant gene transcripts
US5897989A (en) Method, apparatus and system for verification of infectious status of humans
Kawasaki et al. Detection of gene expression
US5550039A (en) Oligonucleotide primers for HLA class I B locus DNA typing
Geiduschek et al. The secondary structure of complementary RNA
Slattery et al. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation
US8304183B2 (en) Selective terminal tagging of nucleic acids
Pertl et al. Rapid detection of chromosome aneuploidies by quantitative fluorescence PCR: first application on 247 chorionic villus samples
US5736332A (en) Method of determining the sequence of nucleic acids employing solid-phase particles carrying transponders
Brandstätter et al. Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups
Martin et al. A brief history of the formation of DNA databases in forensic science within Europe
US20030013091A1 (en) Methods for detection and quantification of analytes in complex mixtures
Abbondanzieri et al. Dynamic binding orientations direct activity of HIV reverse transcriptase
Nakao et al. Rapid and reliable quantification of minimal residual disease in acute lymphoblastic leukemia using rearranged immunoglobulin and T-cell receptor loci by LightCycler technology
US6503718B2 (en) Methods for detecting mutations using primer extension for detecting disease
US20060211000A1 (en) Methods, compositions, and kits for detection of microRNA
EP0870842A2 (en) Adaptor-tagged competitive PCR
Thomas et al. Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes
Che et al. Amplification of RNA transcripts using terminal continuation
US6232067B1 (en) Adapter directed expression analysis
Saiki et al. Polymerase chain reaction
Diachenko et al. Combining the technique of RNA fingerprinting and differential display to obtain differentially expressed mRNA
US6664064B1 (en) Method for melting curve analysis of repetitive PCR products
WO2007010263A2 (en) Methods for sequencing a polynucleotide template

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A1

Designated state(s): IL JP US

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1-23, DESCRIPTION, REPLACED BY NEW PAGES 1-38; PAGES 24-28, CLAIMS, REPLACED BY NEW PAGES 39-46; PAGES 1/4-4/4, DRAWINGS, REPLACED BY NEW PAGES 1/4-4/4; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

AK Designated states

Kind code of ref document: C2

Designated state(s): IL JP US

122 Ep: pct application non-entry in european phase