WO1999064377A1 - Method for dehydrogenating an organic compound using a catalyst comprising a perovskite - Google Patents

Method for dehydrogenating an organic compound using a catalyst comprising a perovskite Download PDF

Info

Publication number
WO1999064377A1
WO1999064377A1 PCT/FR1999/001290 FR9901290W WO9964377A1 WO 1999064377 A1 WO1999064377 A1 WO 1999064377A1 FR 9901290 W FR9901290 W FR 9901290W WO 9964377 A1 WO9964377 A1 WO 9964377A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
catalyst
dehydrogenation
aforementioned
mixture
Prior art date
Application number
PCT/FR1999/001290
Other languages
French (fr)
Inventor
Jean-Pierre Cuif
Anne-Marie Le Govic
François Blaise
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Publication of WO1999064377A1 publication Critical patent/WO1999064377A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/04Dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt

Definitions

  • the present invention relates to a process for dehydrogenation of an organic compound using a catalyst comprising a perovskite.
  • Dehydrogenation processes are used in the preparation of several organic compounds. Mention may very particularly be made of the process for preparing styrene which uses the dehydrogenation of ethylbenzene in the presence of water. These dehydrogenation reactions must be catalyzed to obtain industrially acceptable yields and selectivities.
  • catalysts which can be used for this reaction systems based on iron oxide and potassium carbonate for example or mixed systems of oxides are known, these systems being able to be doped with elements such as molybdenum, vanadium, cerium or tungsten.
  • the object of the invention is to provide new catalysts for dehydrogenation.
  • the process according to the invention for the dehydrogenation of an organic compound is characterized in that a catalyst is used comprising a perovskite. While the catalysts of the prior art require a more or less complex formulation to obtain the catalytic composition based on the active elements concerned, the catalyst used in the present invention can be in the form of a single phase of simpler preparation. .
  • the dehydrogenation reactions are carried out in a known manner. In the case of the dehydrogenation of ethylbenzene for the preparation of styrene, the following operating conditions may be indicated, by way of nonlimiting example. The reaction is carried out at a temperature generally between about 500 and about 700 ° C.
  • the catalyst can operate at atmospheric pressure or at a lower pressure or even under pressure. It is preferred to carry out the process continuously. Water or steam can be used with the reagent to help remove carbonaceous residue from the catalyst.
  • the catalyst is preferably used in a fixed bed, in one or more reactors.
  • perovskite compounds having the clans ABO3 type structure wherein A represents a substituted or unsubstituted element coordinated to 12 oxygen atoms and B is a substituted or unsubstituted member 6 coordinated atoms oxygen.
  • ABO3 This structure of type ABO3 must be understood, here and for the whole of the description, in the broad sense, that is to say that it corresponds to the structure of the products in which the elements A and B can be partially substituted as well as 'to incomplete structures, structures which can be represented by the formula ⁇ . x A ' x B ⁇ .
  • v B'y ⁇ 3_ c in which A 'and B' represent the respective substituents of A and B, x and y verify the relations 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, d can be zero or verify the relation -0.15 ⁇ d ⁇ + 0.5, the lacunar structures corresponding to those in which d is different from 0.
  • the structure is generally of cubic type but the cubic mesh can be more or less deformed according to the quantity and the nature of the substituent. It is advantageous to use a perovskite of which a constituent element is capable of exhibiting, in part, at least two different oxidation states.
  • This constituent element may thus be present in the perovskite in a first oxidation state, for example in state II, and another part of this same element may be present or may be liable to appear in another state of oxidation for example in state III, the passage of a part of the element from one oxidation state to another taking place as a function of the operating conditions under which the catalyst is used.
  • a perovskite having several elements of this type.
  • a perovskite is used in which the aforementioned element, capable of exhibiting in part at least two different oxidation states, is mainly element B.
  • This element capable of partially presenting at least two different oxidation states can be more particularly chosen from the group comprising the manganese, iron, cobalt and chromium. More particularly, it is possible to use a perovskite in which the iron and the cobalt are present in combination, the iron possibly being in particular in majority atomic proportion relative to the cobalt.
  • a perovskite is used of which at least one constituent element is a rare earth.
  • Said element may be the aforementioned element A.
  • rare earth is meant the elements of the group constituted by yttrium and the elements of the periodic classification with atomic number included inclusively between 57 and 71.
  • the rare earth can be more particularly lanthanum or cerium.
  • the invention also relates to the combination of the embodiments and variants which have just been described above, that is to say the use of perovskites comprising a rare earth and an element capable of having at least two states at least of different oxidation, the rare earth and said element possibly being elements A and B respectively.
  • Perovskites in which a constituent element, more particularly element A, is substituted by an alkaline such as sodium or potassium, an alkaline earth such as magnesium, strontium, calcium, can be used within the framework of the present invention , barium or by tin, cadmium or lead.
  • perovskites can be mentioned: LaCn ⁇ 3,
  • LaMn ⁇ 3, La (Cr, Mn) ⁇ 3, Cr and Mn can be in any respective proportions, LaCo ⁇ 3, (Lai _ x , Sr x ) Mn ⁇ 3, (La-
  • a catalyst comprising a support and a supported phase.
  • the support is a perovskite as described above.
  • the supported phase is a phase capable of catalyzing the dehydrogenation reaction.
  • This supported phase can for example be based on an alkali compound and an iron compound.
  • the alkali can be potassium.
  • Such a phase is advantageous in the case of the dehydrogenation of ethylbenzene for the preparation of styrene.
  • the invention also relates to a catalytic composition comprising a perovskite for the implementation of a dehydrogenation process. What has been described above concerning perovskite applies here to the definition of the composition.
  • This composition can be in various forms such as granules, balls, cylinders or honeycomb of variable dimensions, this composition being in this case shaped by the known processes for shaping catalysts, for example extrusion, compaction, granulation in a bezel or in a rotary kiln.
  • the perovskites used in the context of the invention can be prepared by any known method.
  • Perovskites can thus be prepared by solid / solid reaction, that is to say by mixing powdered oxides and calcination at high temperature, or by co-precipitation from a salt solution with a precipitating agent (a base for example) in a discontinuous or continuous mode, followed by a heat treatment of the precipitate obtained at a temperature sufficient to obtain the desired phase, this temperature generally being at least 500 ° C.
  • a precipitating agent a base for example
  • This process uses as starting materials the salts or the soils of the constituent elements of perovskites.
  • constituent elements is meant the elements A, B and their possible substituents entering into the perovskite of the type described above.
  • salts of organic or inorganic acids can be used.
  • inorganic or organic acids are suitable for carrying out the process insofar as they form soluble salts in the reaction mixture, which may be an aqueous and organic medium, with the constituent elements of perovskite.
  • soluble salts in the reaction mixture which may be an aqueous and organic medium, with the constituent elements of perovskite.
  • nitrates, chlorides or sulfates are more particularly chosen as the salts of inorganic acids.
  • Nitrates are the preferred salts.
  • the salts of organic acids the salts of saturated aliphatic carboxylic acids or the salts of hydroxycarboxylic acids are generally chosen.
  • saturated aliphatic carboxylic acids mention may be made of formates, acetates, propionates.
  • citrates are usually used.
  • concentrations of the various salts of the elements in the reaction medium are adjusted according to the stoichiometry of the desired final perovskite and are generally between 0.05 and 5M.
  • the elements are brought together by mixing the soil (s) and / or the salt solutions.
  • the inlet temperature of the gases at the start of drying is usually between 200 and 300 ° C., for example close to 250 ° C., that of the outlet can vary between 120 and 200 ° C.
  • An air pressure of between 2 and 3 bars is used, for example.
  • said mixture is dried by injecting it into a gas having a speed sufficient to atomize it.
  • the drying is carried out in a "flash" reactor, for example of the type developed by the Applicant and described in particular in French patents n ° 2 257326, 2419754, 2 431 321.
  • the hot gases are driven in a helical movement and flow in a vortex well.
  • the suspension is injected along a trajectory coincident with the axis of symmetry of the helical trajectories of the gases, which allows the momentum of the gases to be transferred perfectly to the particles of this suspension.
  • the residence time of the particles in the reactor is extremely short, it is generally less than 1/10 of a second, which eliminates any risk of overheating as a result of too long contact with the gases.
  • the gas inlet temperature is between 400 and 900 ° C and more particularly 600-800 ° C, the temperature of the dried solid between 150 and 300 ° C.
  • the flash reactor mentioned above, reference may be made in particular to FIG. 1 of French patent application No. 2431 321.
  • Said reactor consists of a combustion chamber and a contact chamber composed of a bicone or a truncated cone, the upper part of which diverges.
  • the combustion chamber opens into the contact chamber through a reduced passage.
  • the upper part of the combustion chamber is provided with an opening allowing the introduction of the combustible phase.
  • the combustion chamber comprises an internal coaxial cylinder, thus defining inside thereof a central zone and an annular peripheral zone and having perforations lying for the most part towards the upper part of said chamber.
  • This preferably comprises at least six perforations distributed over at least one circle, but preferably over several circles spaced axially.
  • the total area of the perforations located in the part lower of the chamber can be very small, of the order of 1/10 to 1/100 of the total area of the perforations of said internal coaxial cylinder.
  • the perforations are usually circular and have a very small thickness.
  • the ratio of the diameter of these to the thickness of the wall is at least 5, the minimum thickness of the wall being only limited by mechanical requirements.
  • a bent pipe opens into the reduced passage, the end of which opens in the axis of the central zone.
  • the gas phase animated by a helical movement (hereinafter helical phase) is composed of a gas, generally air, introduced into an orifice made in the annular zone, preferably this orifice is located in the lower part of said area.
  • the gas phase is preferably introduced at low pressure into the aforementioned orifice, that is to say at a pressure less than 1 bar and more particularly at a pressure included between 0.2 and 0.5 bar above the pressure existing in the contact chamber.
  • the speed of this helical phase is generally between 10 and 100 m / s and preferably between 30 and 60 m / s.
  • a combustible phase which may in particular be methane or natural gas, is injected axially through the abovementioned opening into the central zone at a speed of approximately 100 to 150 m / s.
  • the combustible phase is ignited by any known means, in the region where the fuel and the helical phase are in contact.
  • the imposed passage of the gases in the reduced passage is done according to a set of trajectories confused with families of generators of a hyperboloid. These generators rest on a family of circles, small rings located near and below the reduced passage, before diverging in all directions.
  • the substance to be treated is then introduced in the form of a liquid through the aforementioned pipe.
  • the liquid is then divided into a multitude of drops, each of them being transported by a volume of gas and subjected to a movement creating a centrifugal effect.
  • the ratio between the natural momentum of the helical phase to that of the liquid must be high. In particular, it is at least 100 and preferably between 1000 and 10000.
  • the amounts of movement at the reduced passage are calculated according to the inlet flow rates of the gas and the substance to be treated, as well as the cross-section of said passage. An increase in flow rates leads to a magnification of the drop size.
  • the speed of the liquid is further reduced to the minimum necessary to obtain a continuous flow.
  • the ratio of the mass of the liquid to the gas is obviously chosen as a function of several factors such as the temperature of the fluid and the operation to be carried out, such as the vaporization of the liquid.
  • the recovered powder After drying of the mixture comprising the soils and / or the salts of constituent elements of the perovskite, the recovered powder is calcined.
  • the purpose of this calcination is to remove the anions, for example the nitrates present in the dried product. It also aims to form the desired phase.
  • the calcination is carried out at a temperature varying between approximately 450 ° C. and approximately 1200 ° C., preferably between approximately 570 ° C. and approximately 1200 ° C.
  • the calcination can be carried out in particular in air and / or in an air / oxygen mixture in a static atmosphere or under sweeping.
  • the duration of the calcination is usually between 15 minutes and 10 hours depending on the temperature and the type of oven used.
  • the deposition of the catalytic phase can be done for example by impregnation. Examples will now be given
  • This example concerns a perovskite of formula Solutions of lanthanum nitrate, strontium nitrate and cobalt nitrate are used as starting material in the stoichiometric proportions of the expected composition.
  • a portion (300g) of the obtained product is calcined in a static kiln at 1000 C C with a temperature rise of 5 ° C / min and a bearing 2:15 min.
  • the product is compacted by uniaxial pressing (30T) then crushed and sieved between 1, 6 and 2.4mm.
  • Perovskite is then used under the conditions which are given below for the dehydrogenation of ethylbenzene.
  • This example concerns a perovskite of formula
  • the same procedure is used as in Example 1, further using an iron nitrate solution.
  • This example relates to a perovskite of formula ar j ⁇ Sr Q ⁇ MnOs. The same procedure is used as in Example 1, using in a manganese nitrate solution.
  • Perovskite is used in the form of a powder obtained in Example 2.
  • the product is impregnated dry as follows. 70g of the product are placed in a 120mm diameter glass crystallizer. 21.8 ml of a solution of iron citrate and potassium acetate are added thereto (100 ml of this solution contain 35.42 g of iron citrate and 24.28 g of potassium acetate). The addition is done drop by drop, homogenizing with a spatula. The impregnated product is then dried for 16 hours at 110 ° C. and calcined for 1 hour at 800 ° C. The powder obtained is pelletized and crushed to 1.6-2.4mm.
  • a reactor which is a 316L stainless steel tube, with a total length of
  • the system is equipped with two chromatographs, one fitted with an FID detector (column filled with silocel + 10% FFAP), the other with a catharometer (column filled with HAYESEP A).
  • the reactor is heated by a fluidized sand bath oven.
  • the reactor is loaded with 27.3 g of catalyst, ie a volume of approximately 20 cm 3.
  • the temperature is adjusted to 580 ° C. and a mixture of water and ethylbenzene is sent to the reactor via a vaporizer with a respective flow rate of 27.2 cm3 / h for water and 15.63 cm3 / h for ethylbenzene.
  • the tracer gas is the nitrogen sent with a flow rate of 3.28 l / h.
  • the conversion and the selectivity are measured after 20 hours of testing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The invention concerns a method for dehydrogenating an organic compound characterised in that it consists in using a catalyst comprising an ABO3 type structure perovskite. It is particularly useful for dehydrogenating ethylbenzene for preparing styrene. Said method consists in using in particular perovskites wherein B represents at least an element selected from the group comprising manganese, iron, cobalt and chromium and A represents at least a rare earth.

Description

PROCEDE DE DESHYDROGENATION D UN COMPOSE ORGANIQUE UTILISANT UN CATALYSEUR COMPRENANT UNE PEROVSKITE PROCESS FOR DEHYDROGENATION OF AN ORGANIC COMPOUND USING A CATALYST COMPRISING A PEROVSKITE
RHODIA CHIMIERHODIA CHEMISTRY
La présente invention concerne un procédé de déshydrogénation d'un composé organique utilisant un catalyseur comprenant une pérovskite. Les procédés de déshydrogénation sont employés dans la préparation de plusieurs composés organiques. On peut citer tout particulièrement le procédé de préparation du styrène qui met en oeuvre la déshydrogénation de l'éthylbenzène en présence d'eau. Ces réactions de déshydrogénation doivent être catalysées pour obtenir des rendements et des sélectivités acceptables d'un point de vue industriel. On connaît comme catalyseurs utilisables pour cette réaction des systèmes à base d'oxyde de fer et de carbonate de potassium par exemple ou encore des systèmes mixtes d'oxydes, ces systèmes pouvant être dopés par des éléments comme le molybdène, le vanadium, le cérium ou le tungstène.The present invention relates to a process for dehydrogenation of an organic compound using a catalyst comprising a perovskite. Dehydrogenation processes are used in the preparation of several organic compounds. Mention may very particularly be made of the process for preparing styrene which uses the dehydrogenation of ethylbenzene in the presence of water. These dehydrogenation reactions must be catalyzed to obtain industrially acceptable yields and selectivities. As catalysts which can be used for this reaction, systems based on iron oxide and potassium carbonate for example or mixed systems of oxides are known, these systems being able to be doped with elements such as molybdenum, vanadium, cerium or tungsten.
L'objet de l'invention est de procurer de nouveaux catalyseurs pour la déshydrogénation.The object of the invention is to provide new catalysts for dehydrogenation.
Dans ce but, le procédé selon l'invention pour la déshydrogénation d'un composé organique est caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite. Alors que les catalyseurs de l'art antérieur nécessitent une formulation plus ou moins complexe pour obtenir la composition catalytique à base des éléments actifs concernés, le catalyseur utilisé dans la présente invention peut se présenter sous la forme d'une phase unique de préparation plus simple.For this purpose, the process according to the invention for the dehydrogenation of an organic compound is characterized in that a catalyst is used comprising a perovskite. While the catalysts of the prior art require a more or less complex formulation to obtain the catalytic composition based on the active elements concerned, the catalyst used in the present invention can be in the form of a single phase of simpler preparation. .
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer. Le procédé de l'invention s'applique notamment aux réactions de déshydrogénation dans lesquelles au moins une liaison simple C-C est transformée en une liaison double C=C. On peut mentionner notamment les réactions permettant la préparation de diènes à partir de carbures éthyléniques, par exemple la préparation du chloroprène à partir des chloro-2 butène- 1 et chloro-3 butène- 1 ou encore la déshydrogénation du butène- 1 pour obtenir le butadiène. On peut mentionner aussi la déshydrogénation des hydrocarbures aromatiques, comme la transformation par déshydrogénation de composés alkyl-aromatiques en composés alkylène-aromatiques, par exemple la déshydrogénation de l'alkylbenzène en allylbenzène. On peut citer tout particulièrement la déshydrogénation de l'éthylbenzène pour la préparation du styrène. Les réactions de déshydrogénation sont conduites d'une façon connue. Dans le cas de la déshydrogénation de l'éthylbenzène pour la préparation du styrène, on peut indiquer, à titre d'exemple non limitatif les conditions opératoires qui suivent. On réalise la réaction à une température généralement comprise entre environ 500 et environ 700°C. On peut opérer à la pression atmosphérique ou à une pression inférieure ou encore sous pression. On préfère mettre en oeuvre le procédé en continu. De l'eau ou de la vapeur d'eau peut être utilisée avec le réactif pour aider à l'élimination des résidus carbonés du catalyseur. On utilise de préférence le catalyseur en lit fixe, dans un ou plusieurs réacteurs.Other characteristics, details and advantages of the invention will appear even more completely on reading the description which follows, as well as various concrete but nonlimiting examples intended to illustrate it. The process of the invention applies in particular to dehydrogenation reactions in which at least one CC single bond is transformed into a C = C double bond. Mention may in particular be made of the reactions allowing the preparation of dienes from ethylenic carbides, for example the preparation of chloroprene from 2-chloro-butene-1 and 3-chloro-butene-1 or else the dehydrogenation of butene-1 to obtain the butadiene. Mention may also be made of the dehydrogenation of aromatic hydrocarbons, such as the transformation by dehydrogenation of alkyl-aromatic compounds into alkylene-aromatic compounds, for example the dehydrogenation of alkylbenzene to allylbenzene. Mention may very particularly be made of the dehydrogenation of ethylbenzene for the preparation of styrene. The dehydrogenation reactions are carried out in a known manner. In the case of the dehydrogenation of ethylbenzene for the preparation of styrene, the following operating conditions may be indicated, by way of nonlimiting example. The reaction is carried out at a temperature generally between about 500 and about 700 ° C. It can operate at atmospheric pressure or at a lower pressure or even under pressure. It is preferred to carry out the process continuously. Water or steam can be used with the reagent to help remove carbonaceous residue from the catalyst. The catalyst is preferably used in a fixed bed, in one or more reactors.
Au sens de la présente invention, on entend par pérovskite les composés présentant la structure de type ABO3 clans laquelle A représente un élément substitué ou non, coordonné à 12 atomes d'oxygène et B un élément substitué ou non, coordonné à 6 atomes d'oxygène. Cette structure de type ABO3 doit être comprise, ici et pour l'ensemble de la description, au sens large, c'est à dire qu'elle correspond à la structure des produits dans lesquels les éléments A et B peuvent être partiellement substitués ainsi qu'aux structures lacunaires, structures qui peuvent être représentées par la formule ι.xA'xBι.vB'yθ3_c| dans laquelle A' et B' représentent les substituants respectifs de A et B, x et y vérifient les relations 0<x<1 , 0<y<1, d peut être nul ou vérifier la relation -0,15<d<+0.5, les structures lacunaires correspondant à celles dans lesquelles d est différent de 0. La structure est généralement de type cubique mais la maille cubique peut être plus ou moins déformée en fonction de la quantité et de la nature du substituant. II est avantageux d'utiliser une pérovskite dont un élément constitutif est susceptible de présenter, en partie, au moins deux états d'oxydation différents. Cet élément constitutif peut être ainsi présent dans la pérovskite dans un premier état d'oxydation, par exemple à l'état II, et une autre partie de ce même élément peut être présent ou peut être susceptible de se présenter dans un autre état d'oxydation par exemple à l'état III, le passage d'une partie de l'élément d'un état d'oxydation à un autre se faisant en fonction des conditions opératoires dans lesquelles est utilisé le catalyseur. On peut bien entendu utiliser une pérovskite présentant plusieurs éléments de ce type.Within the meaning of the present invention, the term perovskite compounds having the clans ABO3 type structure wherein A represents a substituted or unsubstituted element coordinated to 12 oxygen atoms and B is a substituted or unsubstituted member 6 coordinated atoms oxygen. This structure of type ABO3 must be understood, here and for the whole of the description, in the broad sense, that is to say that it corresponds to the structure of the products in which the elements A and B can be partially substituted as well as 'to incomplete structures, structures which can be represented by the formula ι. x A ' x Bι. v B'yθ3_ c | in which A 'and B' represent the respective substituents of A and B, x and y verify the relations 0 <x <1, 0 <y <1, d can be zero or verify the relation -0.15 <d <+ 0.5, the lacunar structures corresponding to those in which d is different from 0. The structure is generally of cubic type but the cubic mesh can be more or less deformed according to the quantity and the nature of the substituent. It is advantageous to use a perovskite of which a constituent element is capable of exhibiting, in part, at least two different oxidation states. This constituent element may thus be present in the perovskite in a first oxidation state, for example in state II, and another part of this same element may be present or may be liable to appear in another state of oxidation for example in state III, the passage of a part of the element from one oxidation state to another taking place as a function of the operating conditions under which the catalyst is used. One can of course use a perovskite having several elements of this type.
Selon une variante particulière de l'invention, on utilise une pérovskite dans laquelle l'élément précité, susceptible de présenter en partie au moins deux états d'oxydation différents est majoritairement l'élément B.According to a particular variant of the invention, a perovskite is used in which the aforementioned element, capable of exhibiting in part at least two different oxidation states, is mainly element B.
Cet élément susceptible de présenter en partie au moins deux états d'oxydation différents, peut être plus particulièrement choisi dans le groupe comprenant le manganèse, le fer, le cobalt et le chrome. Plus particulièrement, on peut utiliser une pérovskite dans laquelle le fer et le cobalt sont présents en combinaison, le fer pouvant notamment être en proportion atomique majoritaire par rapport au cobalt.This element capable of partially presenting at least two different oxidation states, can be more particularly chosen from the group comprising the manganese, iron, cobalt and chromium. More particularly, it is possible to use a perovskite in which the iron and the cobalt are present in combination, the iron possibly being in particular in majority atomic proportion relative to the cobalt.
Selon une autre variante, on utilise une pérovskite dont au moins un élément constitutif est une terre rare. Ledit élément peut être l'élément A précité. Par terre rare on entend les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71. La terre rare peut être plus particulièrement le lanthane ou le cérium.According to another variant, a perovskite is used of which at least one constituent element is a rare earth. Said element may be the aforementioned element A. By rare earth is meant the elements of the group constituted by yttrium and the elements of the periodic classification with atomic number included inclusively between 57 and 71. The rare earth can be more particularly lanthanum or cerium.
L'invention concerne aussi la combinaison des modes de réalisation et des variantes qui viennent d'être décrits ci-dessus, c'est à dire l'utilisation des perovskites comprenant une terre rare et un élément susceptible de présenter en partie au moins deux états d'oxydation différents, la terre rare et ledit élément pouvant être les éléments A et B respectivement.The invention also relates to the combination of the embodiments and variants which have just been described above, that is to say the use of perovskites comprising a rare earth and an element capable of having at least two states at least of different oxidation, the rare earth and said element possibly being elements A and B respectively.
On peut utiliser dans le cadre de la présente invention des perovskites dans lesquelles un élément constitutif, plus particulièrement l'élément A, est substitué par un alcalin comme le sodium ou le potassium, un alcalino-terreux comme le magnésium, le strontium, le calcium, le baryum ou encore par l'étain, le cadmium ou le plomb.Perovskites in which a constituent element, more particularly element A, is substituted by an alkaline such as sodium or potassium, an alkaline earth such as magnesium, strontium, calcium, can be used within the framework of the present invention , barium or by tin, cadmium or lead.
A titre d'exemple, on peut mentionner les perovskites suivantes : LaCnθ3,By way of example, the following perovskites can be mentioned: LaCnθ3,
LaMnθ3 ,La(Cr,Mn)θ3, Cr et Mn pouvant être en proportions respectives quelconques, LaCoθ3, (Lai _x,Srx)Mnθ3, (La-| .x,Srx)Crθ3 avec 0<x< , La(Fe,Co)θ3, Fe et Co pouvant être en proportions respectives quelconques, (Laι_x,Srx)(Fe,Co)θ3 avecLaMnθ3, La (Cr, Mn) θ3, Cr and Mn can be in any respective proportions, LaCoθ3, (Lai _ x , Sr x ) Mnθ3, (La- |. X , Sr x ) Crθ3 with 0 <x <, La (Fe, Co) θ3, Fe and Co can be in any respective proportions, (Laι_ x , Sr x ) (Fe, Co) θ3 with
0<x<1 , ou encore les perovskites du type SrFeθ3_d,
Figure imgf000005_0001
0 <x <1, or also perovskites of the SrFeθ3_d type,
Figure imgf000005_0001
Selon une autre variante de l'invention, on utilise un catalyseur comprenant un support et une phase supportée. Le support est une pérovskite telle que décrite précédemment. La phase supportée est une phase susceptible de catalyser la réaction de déshydrogénation. Cette phase supportée peut être par exemple à base d'un composé d'un alcalin et d'un composé du fer. L'alcalin peut être le potassium. Une telle phase est avantageuse dans le cas de la déshydrogénation de l'éthylbenzène pour la préparation du styrène. L'invention concerne aussi une composition catalytique comprenant une pérovskite pour la mise en oeuvre d'un procédé de déshydrogénation. Ce qui a été décrit ci-dessus concernant la pérovskite s'applique ici à la définition de la composition.According to another variant of the invention, a catalyst is used comprising a support and a supported phase. The support is a perovskite as described above. The supported phase is a phase capable of catalyzing the dehydrogenation reaction. This supported phase can for example be based on an alkali compound and an iron compound. The alkali can be potassium. Such a phase is advantageous in the case of the dehydrogenation of ethylbenzene for the preparation of styrene. The invention also relates to a catalytic composition comprising a perovskite for the implementation of a dehydrogenation process. What has been described above concerning perovskite applies here to the definition of the composition.
Cette composition peut se présenter sous diverses formes telles que granulés, billes, cylindres ou nid d'abeille de dimensions variables, cette composition étant dans ce cas mise en forme par les procédés connus de mise en forme de catalyseurs, par exemple l'extrusion, le compactage, la granulation en drageoir ou en four tournant.This composition can be in various forms such as granules, balls, cylinders or honeycomb of variable dimensions, this composition being in this case shaped by the known processes for shaping catalysts, for example extrusion, compaction, granulation in a bezel or in a rotary kiln.
Les perovskites utilisées dans le cadre de l'invention peuvent être préparées par toute méthode connue. Les perovskites peuvent ainsi être préparées par réaction solide/solide, c'est à dire par mélange d'oxydes en poudre et calcination à haute température, ou encore par co-précipitation à partir d'une solution de sels par un agent précipitant (une base par exemple) selon un mode discontinu ou continu, suivi d'un traitement thermique du précipité obtenu à une température suffisante pour obtenir la phase recherchée, cette température étant généralement d'au moins 500°C. On peut aussi mentionner les méthodes sol-gel.The perovskites used in the context of the invention can be prepared by any known method. Perovskites can thus be prepared by solid / solid reaction, that is to say by mixing powdered oxides and calcination at high temperature, or by co-precipitation from a salt solution with a precipitating agent (a base for example) in a discontinuous or continuous mode, followed by a heat treatment of the precipitate obtained at a temperature sufficient to obtain the desired phase, this temperature generally being at least 500 ° C. We can also mention the sol-gel methods.
On peut cependant citer plus particulièrement le procédé de préparation qui suit. Ce procédé utilise comme produits de départ les sels ou les sols des éléments constitutifs des perovskites. On entend par éléments constitutifs, les éléments A, B et leurs éventuels substituants entrant dans la pérovskite du type décrit plus haut.Mention may however be made more particularly of the preparation process which follows. This process uses as starting materials the salts or the soils of the constituent elements of perovskites. By constituent elements is meant the elements A, B and their possible substituents entering into the perovskite of the type described above.
Le choix entre sel et sol pourra se faire en fonction de la disponibilité des produits, de leur stabilité et, pour ce qui concerne les sels, de leur température de fusion et de décomposition. On peut utiliser des sels d'acides organiques ou inorganiques.The choice between salt and soil may be made according to the availability of the products, their stability and, as regards the salts, their melting and decomposition temperature. Salts of organic or inorganic acids can be used.
Tous les acides inorganiques ou organiques conviennent à la mise en oeuvre du procédé dans la mesure où ils forment des sels solubles dans le mélange réactionnel, qui peut être un milieu aqueux et organique, avec les éléments constitutifs de la pérovskite. Toutefois, on choisit plus particulièrement les nitrates, les chlorures ou les sulfates, comme sels d'acides inorganiques. Les nitrates sont les sels préférés.All the inorganic or organic acids are suitable for carrying out the process insofar as they form soluble salts in the reaction mixture, which may be an aqueous and organic medium, with the constituent elements of perovskite. However, nitrates, chlorides or sulfates are more particularly chosen as the salts of inorganic acids. Nitrates are the preferred salts.
Concernant les sels d'acides organiques, on choisit généralement les sels d'acides carboxyliques aliphatiques saturés ou les sels d'acides hydroxycarboxyliques. Comme acides carboxyliques aliphatiques saturés, on peut citer les formiates, les acétates, les propionates.As regards the salts of organic acids, the salts of saturated aliphatic carboxylic acids or the salts of hydroxycarboxylic acids are generally chosen. As saturated aliphatic carboxylic acids, mention may be made of formates, acetates, propionates.
Quant aux acides hydroxycarboxyliques, on utilise habituellement les citrates. Les concentrations des divers sels des éléments dans le milieu réactionnel sont ajustées selon la stoechiométrie de la pérovskite finale désirée et sont en général comprises entre 0,05 et 5M. La mise en présence des éléments se fait par mélange du ou des sols et/ou des solutions de sel.As for hydroxycarboxylic acids, citrates are usually used. The concentrations of the various salts of the elements in the reaction medium are adjusted according to the stoichiometry of the desired final perovskite and are generally between 0.05 and 5M. The elements are brought together by mixing the soil (s) and / or the salt solutions.
On travaille dans des conditions telles que l'on évite la précipitation des sels, ce qui implique donc que l'on soit à un pH suffisamment acide.We work under conditions such that precipitation of the salts is avoided, which therefore implies that we are at a sufficiently acidic pH.
Par ailleurs, il faut se situer dans un domaine de concentration des éléments tel qu'il n'y ait pas apparition d'un gel, mais obtention d'un mélange des éléments dans une phase liquide ou d'une suspension homogène du ou des éléments du sol dans la solution des autres éléments. Ceci est obtenu en jouant sur la dilution desdits éléments. La suspension ou mélange ainsi obtenu est ensuite séché. On procède à ce séchage selon toute méthode connue. Cependant, de préférence, le mélange est séché par atomisation. Cette atomisation peut se faire en utilisant tout atomiseur classique, par exemple à turbine ou à buse.In addition, it is necessary to be in a field of concentration of the elements such that there is no appearance of a gel, but obtaining a mixture of the elements in a liquid phase or a homogeneous suspension of the soil elements in the solution of other elements. This is achieved by playing on the dilution of said elements. The suspension or mixture thus obtained is then dried. This drying is carried out according to any known method. Preferably, however, the mixture is spray dried. This atomization can be done using any conventional atomizer, for example with a turbine or a nozzle.
Dans ce cas, la température d'entrée des gaz en début de séchage est habituellement comprise entre 200 et 300°C, par exemple voisine de 250°C, celle de sortie peut varier entre 120 et 200°C. On utilise une pression d'air comprise par exemple entre 2 et 3 bars. Selon un mode de réalisation particulier, on sèche ledit mélange par injection de celui-ci dans un gaz ayant une vitesse suffisante pour l'atomiser.In this case, the inlet temperature of the gases at the start of drying is usually between 200 and 300 ° C., for example close to 250 ° C., that of the outlet can vary between 120 and 200 ° C. An air pressure of between 2 and 3 bars is used, for example. According to a particular embodiment, said mixture is dried by injecting it into a gas having a speed sufficient to atomize it.
Ainsi, selon un mode de réalisation particulier de l'invention, le séchage est effectué dans un réacteur "flash", par exemple du type mis au point par la Demanderesse et décrit notamment dans les brevets français n° 2 257326, 2419754, 2 431 321. Dans ce cas, les gaz chauds sont animés d'un mouvement hélicoïdal et s'écoulent dans un puits -tourbillon. La suspension est injectée suivant une trajectoire confondue avec l'axe de symétrie des trajectoires hélicoïdales des gaz, ce qui permet de transférer parfaitement la quantité de mouvement des gaz aux particules de cette suspension. Par ailleurs, le temps de séjour des particules dans le réacteur est extrêmement faible, il est en général inférieur à 1/10 de seconde, ce qui supprime tout risque de surchauffe par suite d'un contact trop long avec les gaz.Thus, according to a particular embodiment of the invention, the drying is carried out in a "flash" reactor, for example of the type developed by the Applicant and described in particular in French patents n ° 2 257326, 2419754, 2 431 321. In this case, the hot gases are driven in a helical movement and flow in a vortex well. The suspension is injected along a trajectory coincident with the axis of symmetry of the helical trajectories of the gases, which allows the momentum of the gases to be transferred perfectly to the particles of this suspension. Furthermore, the residence time of the particles in the reactor is extremely short, it is generally less than 1/10 of a second, which eliminates any risk of overheating as a result of too long contact with the gases.
Selon les débits respectifs des gaz et de la suspension, la température d'entrée des gaz est comprise entre 400 et 900°C et plus particulièrement 600-800°C, la température du solide séché entre 150 et 300°C. En ce qui concerne le réacteur flash mentionné plus haut, on pourra se référer notamment à la figure 1 de la demande de brevet français n° 2431 321.Depending on the respective flow rates of the gases and of the suspension, the gas inlet temperature is between 400 and 900 ° C and more particularly 600-800 ° C, the temperature of the dried solid between 150 and 300 ° C. With regard to the flash reactor mentioned above, reference may be made in particular to FIG. 1 of French patent application No. 2431 321.
Ledit réacteur est constitué d'une chambre de combustion et d'une chambre de contact composée d'un bicône ou d'un cône tronqué dont la partie supérieure diverge. La chambre de combustion débouche dans la chambre de contact par un passage réduit.Said reactor consists of a combustion chamber and a contact chamber composed of a bicone or a truncated cone, the upper part of which diverges. The combustion chamber opens into the contact chamber through a reduced passage.
La partie supérieure de la chambre de combustion est munie d'une ouverture permettant l'introduction de la phase combustible.The upper part of the combustion chamber is provided with an opening allowing the introduction of the combustible phase.
D'autre part, la chambre de combustion comprend un cylindre interne coaxial, définissant ainsi à l'intérieur de celle-ci une zone centrale et une zone périphérique annulaire et présentant des perforations se situant pour la plupart vers la partie supérieure de ladite chambre. Celle-ci comprend de préférence au minimum six perforations distribuées sur au moins un cercle, mais de préférence sur plusieurs cercles espacés axialement. La surface totale des perforations localisées dans la partie inférieure de la chambre peut être très faible, de l'ordre de 1/10 à 1/100 de la surface totale des perforations dudit cylindre interne coaxial.On the other hand, the combustion chamber comprises an internal coaxial cylinder, thus defining inside thereof a central zone and an annular peripheral zone and having perforations lying for the most part towards the upper part of said chamber. This preferably comprises at least six perforations distributed over at least one circle, but preferably over several circles spaced axially. The total area of the perforations located in the part lower of the chamber can be very small, of the order of 1/10 to 1/100 of the total area of the perforations of said internal coaxial cylinder.
Les perforations sont habituellement circulaires et présentent une épaisseur très faible. De préférence, le rapport du diamètre de celles-ci à l'épaisseur de la paroi est d'au moins 5, l'épaisseur minimale de la paroi étant seulement limitée par les impératifs mécaniques.The perforations are usually circular and have a very small thickness. Preferably, the ratio of the diameter of these to the thickness of the wall is at least 5, the minimum thickness of the wall being only limited by mechanical requirements.
Enfin, un tuyau coudé débouche dans le passage réduit, dont l'extrémité s'ouvre dans l'axe de la zone centrale.Finally, a bent pipe opens into the reduced passage, the end of which opens in the axis of the central zone.
La phase gazeuse animée d'un mouvement hélicoïdal (par la suite phase hélicoïdale) est composée d'un gaz, généralement de l'air, introduit dans un orifice pratiqué dans la zone annulaire, de préférence cet orifice est situé dans la partie inférieure de ladite zone.The gas phase animated by a helical movement (hereinafter helical phase) is composed of a gas, generally air, introduced into an orifice made in the annular zone, preferably this orifice is located in the lower part of said area.
Afin d'obtenir une phase hélicoïdale au niveau du passage réduit, la phase gazeuse est de préférence introduite à basse pression dans l'orifice précité, c'est-à-dire à une pression inférieure à 1 bar et plus particulièrement à une pression comprise entre 0,2 et 0,5 bar au-dessus de la pression existant dans la chambre de contact.In order to obtain a helical phase at the reduced passage, the gas phase is preferably introduced at low pressure into the aforementioned orifice, that is to say at a pressure less than 1 bar and more particularly at a pressure included between 0.2 and 0.5 bar above the pressure existing in the contact chamber.
La vitesse de cette phase hélicoïdale est généralement comprise entre 10 et 100 m/s et de préférence entre 30 et 60 m/s.The speed of this helical phase is generally between 10 and 100 m / s and preferably between 30 and 60 m / s.
Par ailleurs, une phase combustible qui peut être notamment du méthane ou du gaz naturel, est injectée axialement par l'ouverture précitée dans la zone centrale à une vitesse d'environ 100 à 150 m/s.Furthermore, a combustible phase which may in particular be methane or natural gas, is injected axially through the abovementioned opening into the central zone at a speed of approximately 100 to 150 m / s.
La phase combustible est enflammée par tout moyen connu, dans la région où le combustible et la phase hélicoïdale sont en contact.The combustible phase is ignited by any known means, in the region where the fuel and the helical phase are in contact.
Par la suite, le passage imposé des gaz dans le passage réduit se fait suivant un ensemble de trajectoires confondues avec des familles de génératrices d'un hyperboloïde. Ces génératrices reposent sur une famille de cercles, d'anneaux de petite taille localisées près et au-dessous du passage réduit, avant de diverger dans toutes les directions.Thereafter, the imposed passage of the gases in the reduced passage is done according to a set of trajectories confused with families of generators of a hyperboloid. These generators rest on a family of circles, small rings located near and below the reduced passage, before diverging in all directions.
On introduit ensuite la substance à traiter sous forme de liquide par le tuyau précité.The substance to be treated is then introduced in the form of a liquid through the aforementioned pipe.
Le liquide est alors fractionné en une multitude de gouttes, chacune d'elles étant transportée par un volume de gaz et soumise à un mouvement créant un effet centrifuge.The liquid is then divided into a multitude of drops, each of them being transported by a volume of gas and subjected to a movement creating a centrifugal effect.
Le rapport entre la quantité de mouvement propre de la phase hélicoïdale à celle du liquide doit être élevé. En particulier, il est d'au moins 100 et de préférence compris entre 1000 et 10000.The ratio between the natural momentum of the helical phase to that of the liquid must be high. In particular, it is at least 100 and preferably between 1000 and 10000.
Les quantités de mouvement au niveau du passage réduit sont calculées en fonction des débits d'entrée du gaz et de la substance à traiter, ainsi que de la section dudit passage. Une augmentation des débits entraîne un grossissement de la taille des gouttes.The amounts of movement at the reduced passage are calculated according to the inlet flow rates of the gas and the substance to be treated, as well as the cross-section of said passage. An increase in flow rates leads to a magnification of the drop size.
Dans ces conditions, le mouvement propre des gaz est imposé dans sa direction et son intensité aux gouttes de la substance à traiter, séparées les unes des autres dans la zone de convergence des deux courants.Under these conditions, the proper movement of the gases is imposed in its direction and its intensity on the drops of the substance to be treated, separated from each other in the zone of convergence of the two streams.
La vitesse du liquide est de plus réduite au minimum nécessaire pour obtenir un flot continu.The speed of the liquid is further reduced to the minimum necessary to obtain a continuous flow.
Le rapport de la masse du liquide et du gaz est bien évidemment choisi en fonction de plusieurs facteurs comme la température du fluide et l'opération à effectuer, comme la vaporisation du liquide.The ratio of the mass of the liquid to the gas is obviously chosen as a function of several factors such as the temperature of the fluid and the operation to be carried out, such as the vaporization of the liquid.
Il est à noter que cette représentation et ce fonctionnement du réacteur "flash" ne sont qu'un exemple et que d'autres réalisations et fonctionnement sont envisageables.It should be noted that this representation and this operation of the "flash" reactor are only an example and that other embodiments and operation are possible.
Après séchage du mélange comprenant les sols et/ou les sels d'éléments constitutifs de la pérovskite, la poudre récupérée est calcinée. Cette calcination a pour but d'éliminer les anions, par exemple les nitrates présents dans le produit séché. Elle a aussi pour but de former la phase recherchée.After drying of the mixture comprising the soils and / or the salts of constituent elements of the perovskite, the recovered powder is calcined. The purpose of this calcination is to remove the anions, for example the nitrates present in the dried product. It also aims to form the desired phase.
La calcination est effectuée à une température variant entre environ 450°C et environ 1200°C, de préférence entre environ 570°C et environ 1200°C. La calcination peut se faire en particulier sous air et/ou sous un mélange air/oxygène en atmosphère statique ou sous balayage.The calcination is carried out at a temperature varying between approximately 450 ° C. and approximately 1200 ° C., preferably between approximately 570 ° C. and approximately 1200 ° C. The calcination can be carried out in particular in air and / or in an air / oxygen mixture in a static atmosphere or under sweeping.
La durée de la calcination est habituellement comprise entre 15 minutes et 10 heures en fonction de la température et du type de four utilisé.The duration of the calcination is usually between 15 minutes and 10 hours depending on the temperature and the type of oven used.
Il est à noter qu'une étape de broyage préalable à la calcination n'est pas nécessaire. Toutefois, on ne sortirait pas du cadre de la présente invention en effectuant une telle opération.It should be noted that a grinding step prior to calcination is not necessary. However, it would not be departing from the scope of the present invention to carry out such an operation.
Dans le cas de la variante où la pérovskite est utilisée comme support d'une phase catalytique, le dépôt de la phase catalytique pourra se faire par exemple par imprégnation. Des exemples vont maintenant être donnésIn the case of the variant where perovskite is used as a support for a catalytic phase, the deposition of the catalytic phase can be done for example by impregnation. Examples will now be given
EXEMPLE 1EXAMPLE 1
Cet exemple concerne une pérovskite de formule
Figure imgf000009_0001
On utilise comme produit de départ des solutions de nitrate de lanthane, de nitrate de strontium et de nitrate de cobalt dans les proportions stoechiométriques de la composition attendue.
This example concerns a perovskite of formula
Figure imgf000009_0001
Solutions of lanthanum nitrate, strontium nitrate and cobalt nitrate are used as starting material in the stoichiometric proportions of the expected composition.
On forme un mélange de ces solutions et le mélange obtenu est séché dans un réacteur "flash" du type décrit plus haut dans les conditions suivantes : température d'entrée des gaz 750°C, température de sortie des gaz 230°C, température du solide séché 150°C.A mixture of these solutions is formed and the mixture obtained is dried in a "flash" reactor of the type described above under the following conditions: temperature gas inlet temperature 750 ° C, gas outlet temperature 230 ° C, dried solid temperature 150 ° C.
Une partie (300g) du produit obtenu est calcinée dans un four statique à 1000CC avec une montée en température de 5°C/mn et un palier de 2h15 mn. A l'issue de la calcination le produit est compacté par pressage uniaxial (30T) puis concassé et tamisé entre 1 ,6 et 2,4mm.A portion (300g) of the obtained product is calcined in a static kiln at 1000 C C with a temperature rise of 5 ° C / min and a bearing 2:15 min. At the end of the calcination, the product is compacted by uniaxial pressing (30T) then crushed and sieved between 1, 6 and 2.4mm.
La pérovskite est ensuite utilisée dans les conditions qui sont données ci- dessous pour la déshydrogénation de l'éthylbenzène.Perovskite is then used under the conditions which are given below for the dehydrogenation of ethylbenzene.
EXEMPLE 2EXAMPLE 2
Cet exemple concerne une pérovskite de formule
Figure imgf000010_0001
On utilise le même mode opératoire que dans l'exemple 1 en utilisant en outre une solution de nitrate de fer.
This example concerns a perovskite of formula
Figure imgf000010_0001
The same procedure is used as in Example 1, further using an iron nitrate solution.
EXEMPLE 3EXAMPLE 3
Cet exemple concerne une pérovskite de formule arj^SrQ^MnOs. On utilise le même mode opératoire que dans l'exemple 1 en utilisant en une solution de nitrate de manganèse.This example relates to a perovskite of formula ar j ^ Sr Q ^ MnOs. The same procedure is used as in Example 1, using in a manganese nitrate solution.
EXEMPLE 4EXAMPLE 4
On utilise la pérovskite sous forme d'une poudre obtenue dans l'exemple 2. Le produit est imprégné à sec de la manière suivante. 70g du produit sont mis dans un cristallisoir en verre de 120mm de diamètre. On y ajoute 21,8ml d'une solution de citrate de fer et d'acétate de potassium (100ml de cette solution contiennent 35,42g de citrate de fer et 24,28g d'acétate de potassium). L'addition se fait goutte à goutte en homogénéisant avec une spatule. Le produit imprégné est ensuite séché 16 heures à 110°C et calciné 1 heure à 800°C. La poudre obtenue est pastillée et concassée à 1 ,6- 2,4mm.Perovskite is used in the form of a powder obtained in Example 2. The product is impregnated dry as follows. 70g of the product are placed in a 120mm diameter glass crystallizer. 21.8 ml of a solution of iron citrate and potassium acetate are added thereto (100 ml of this solution contain 35.42 g of iron citrate and 24.28 g of potassium acetate). The addition is done drop by drop, homogenizing with a spatula. The impregnated product is then dried for 16 hours at 110 ° C. and calcined for 1 hour at 800 ° C. The powder obtained is pelletized and crushed to 1.6-2.4mm.
Les produits obtenus selon les exemples précédents sont mis en oeuvre de la manière suivante.The products obtained according to the preceding examples are used in the following manner.
On utilise un réacteur qui est un tube en inox de 316L, de longueur totale deA reactor is used which is a 316L stainless steel tube, with a total length of
240mm avec une entrée pour les réactifs et une sortie pour les produits formés. Le système est équipé de deux chromatographes, l'un muni d'un détecteur FID (colonne remplie silocel+10% FFAP), l'autre d'un catharomètre (colonne remplie HAYESEP A). Le chauffage du réacteur est assuré par un four à bain de sable fluidisé.240mm with an inlet for reagents and an outlet for formed products. The system is equipped with two chromatographs, one fitted with an FID detector (column filled with silocel + 10% FFAP), the other with a catharometer (column filled with HAYESEP A). The reactor is heated by a fluidized sand bath oven.
Le réacteur est chargé avec 27,3g de catalyseur soit un volume d'environ 20cm3. La température est ajustée à 580°C et un mélange d'eau et d'éthylbenzène est envoyé dans le réacteur par rintermédiaire d'un vaporisateur avec un débit respectif de 27,2cm3/h pour l'eau et de 15,63cm3/h pour l'éthylbenzène. Le gaz traceur est l'azote envoyé avec un débit de 3,28l/h. La conversion et la sélectivité sont mesurées après 20h de test.The reactor is loaded with 27.3 g of catalyst, ie a volume of approximately 20 cm 3. The temperature is adjusted to 580 ° C. and a mixture of water and ethylbenzene is sent to the reactor via a vaporizer with a respective flow rate of 27.2 cm3 / h for water and 15.63 cm3 / h for ethylbenzene. The tracer gas is the nitrogen sent with a flow rate of 3.28 l / h. The conversion and the selectivity are measured after 20 hours of testing.
Les résultats sont donnés dans le tableau ci-dessous. Sél. signifie sélectivité.The results are given in the table below. Salt. means selectivity.
Figure imgf000011_0001
Figure imgf000011_0001

Claims

REVENDICATIONS
1- Procédé de déshydrogénation d'un composé organique, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite.1- Process for dehydrogenation of an organic compound, characterized in that a catalyst is used comprising a perovskite.
2- Procédé selon la revendication 1 , caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite dont un élément constitutif est susceptible de présenter, en partie, au moins deux états d'oxydation différents.2- A method according to claim 1, characterized in that a catalyst is used comprising a perovskite of which a constituent element is capable of having, in part, at least two different oxidation states.
3- Procédé selon la revendication 2, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite de structure du type ABO3 dans laquelle A représente un élément substitué ou non, coordonné à 12 atomes d'oxygène et B un élément substitué ou non, coordonné à 6 atomes d'oxygène, l'élément précité, susceptible de présenter, en partie, au moins deux états d'oxydation différents, étant majoritairement l'élément B.3- A method according to claim 2, characterized in that a catalyst is used comprising a perovskite of ABO3 type structure in which A represents a substituted or unsubstituted element, coordinated with 12 oxygen atoms and B a substituted or unsubstituted element, coordinated with 6 oxygen atoms, the aforementioned element, likely to present, in part, at least two different oxidation states, being mainly element B.
4- Procédé selon la revendication 2 ou 3, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite dans laquelle l'élément précité, susceptible de présenter, en partie, au moins deux états d'oxydation différents, est choisi dans le groupe comprenant le manganèse, le fer, le cobalt et le chrome.4- A method according to claim 2 or 3, characterized in that a catalyst is used comprising a perovskite in which the aforementioned element, capable of having, in part, at least two different oxidation states, is chosen from the group including manganese, iron, cobalt and chromium.
5- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite dont au moins un élément constitutif est une terre rare, cet élément pouvant être l'élément A précité.5- Method according to one of the preceding claims, characterized in that a catalyst is used comprising a perovskite of which at least one constituent element is a rare earth, this element possibly being the aforementioned element A.
6- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite dans laquelle un élément constitutif, plus particulièrement l'élément A, est substitué par un alcalin, un alcalino-te eux, par rétain, le cadmium ou le plomb.6- Method according to one of the preceding claims, characterized in that a catalyst is used comprising a perovskite in which a constituent element, more particularly the element A, is substituted by an alkali, an alkaline-te them, by retain , cadmium or lead.
7- Procédé selon la revendication 5, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite dans laquelle la terre rare est choisie parmi le lanthane et le cérium.7- A method according to claim 5, characterized in that a catalyst is used comprising a perovskite in which the rare earth is chosen from lanthanum and cerium.
8- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite dont des éléments constitutifs sont le fer en combinaison avec le cobalt. 9- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite lacunaire.8- Method according to one of the preceding claims, characterized in that a catalyst is used comprising a perovskite whose constituent elements are iron in combination with cobalt. 9- Method according to one of the preceding claims, characterized in that a catalyst is used comprising a lacunar perovskite.
10- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur comprenant la pérovskite précitée comme support et une phase supportée susceptible de catalyser la réaction de déshydrogénation, plus particulièrement à base d'un alcalin et de fer.10- Method according to one of the preceding claims, characterized in that a catalyst is used comprising the aforementioned perovskite as support and a supported phase capable of catalyzing the dehydrogenation reaction, more particularly based on an alkali and iron.
11- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise un catalyseur comprenant la pérovskite précitée, cette pérovskite ayant été obtenue par un procédé de préparation dans lequel on forme un mélange comprenant des sels et ou des sols des éléments constitutifs de la pérovskite, on sèche ledit mélange et on calcine le produit séché, le séchage étant fait éventuellement par atomisation.11- Method according to one of the preceding claims, characterized in that a catalyst is used comprising the aforementioned perovskite, this perovskite having been obtained by a preparation process in which a mixture comprising salts and or soils of the elements is formed constitutive of perovskite, said mixture is dried and the dried product is calcined, the drying possibly being carried out by atomization.
12- Procédé selon la revendication 11 , caractérisé en ce qu'on utilise un catalyseur comprenant une pérovskite ayant été obtenue par un procédé de préparation dans lequel on sèche le mélange précité par injection de celui-ci suivant une trajectoire confondue avec l'axe de symétrie d'un écoulement hélicoïdal et puits tourbillon de gaz chauds assurant la pulvérisation, puis le séchage dudit mélange.12- A method according to claim 11, characterized in that a catalyst is used comprising a perovskite having been obtained by a preparation process in which the above-mentioned mixture is dried by injection of the latter along a path coincident with the axis of symmetry of a helical flow and hot gas vortex well ensuring the spraying, then the drying of said mixture.
13- Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'on utilise un catalyseur comprenant la pérovskite précitée, cette pérovskite ayant été obtenue par un procédé de préparation par co-précipitation à partir d'une solution de sels par un agent précipitant puis traitement thermique du précipité obtenu.13- Method according to one of claims 1 to 10, characterized in that a catalyst is used comprising the aforementioned perovskite, this perovskite having been obtained by a process of preparation by co-precipitation from a solution of salts by a precipitating agent then heat treatment of the precipitate obtained.
14- Procédé selon l'une des revendications précédentes pour la déshydrogénation de composés alkyl-aromatiques en composés alkylène-aromatiques.14- Method according to one of the preceding claims for the dehydrogenation of alkyl-aromatic compounds into alkylene-aromatic compounds.
15- Procédé selon l'une des revendications précédentes de déshydrogénation de l'éthylbenzène pour la préparation du styrène.15- Method according to one of the preceding claims of dehydrogenation of ethylbenzene for the preparation of styrene.
16- Composition catalytique comprenant une pérovskite, pour la mise en oeuvre du procédé selon l'une des revendications précédentes. 16- Catalytic composition comprising a perovskite, for implementing the method according to one of the preceding claims.
PCT/FR1999/001290 1998-06-05 1999-06-02 Method for dehydrogenating an organic compound using a catalyst comprising a perovskite WO1999064377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/07098 1998-06-05
FR9807098A FR2779427A1 (en) 1998-06-05 1998-06-05 METHOD FOR DEHYDROGENATING AN ORGANIC COMPOUND USING A CATALYST COMPRISING A PEROVSKITE

Publications (1)

Publication Number Publication Date
WO1999064377A1 true WO1999064377A1 (en) 1999-12-16

Family

ID=9527064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001290 WO1999064377A1 (en) 1998-06-05 1999-06-02 Method for dehydrogenating an organic compound using a catalyst comprising a perovskite

Country Status (2)

Country Link
FR (1) FR2779427A1 (en)
WO (1) WO1999064377A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032338A1 (en) 2008-09-22 2010-03-25 学校法人早稲田大学 Dehydrogenation catalyst for alkyl aromatic compounds having high redox catalysis, process for preparation of the catalyst and process of dehydrogenation with the same
CN107456973A (en) * 2017-08-02 2017-12-12 上海纳米技术及应用国家工程研究中心有限公司 Hierarchical self-assembly perovskite micro-sphere structure preparation method and products thereof and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644549A (en) * 1970-09-09 1972-02-22 Gulf Research Development Co Dehydrogenation of ethylbenzene to styrene using so2 and ferrite catalysis in the form of spinels or perovskites
US4055513A (en) * 1976-04-13 1977-10-25 Exxon Research & Engineering Co. Perovskite catalysts and process for their preparation
EP0112240A1 (en) * 1982-12-14 1984-06-27 Institut Français du Pétrole Preparation process for a catalyst comprising oxides of iron, chromium, potassium and a rare earth metal, useful in dehydrogenation reactions
US4737355A (en) * 1986-12-15 1988-04-12 The Standard Oil Company Preparation of vanadium III oxidic compounds, and dehydrogenation of paraffins
EP0558148A1 (en) * 1992-02-26 1993-09-01 Shell Internationale Researchmaatschappij B.V. Process for the dehydrogenation of organic compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644549A (en) * 1970-09-09 1972-02-22 Gulf Research Development Co Dehydrogenation of ethylbenzene to styrene using so2 and ferrite catalysis in the form of spinels or perovskites
US4055513A (en) * 1976-04-13 1977-10-25 Exxon Research & Engineering Co. Perovskite catalysts and process for their preparation
EP0112240A1 (en) * 1982-12-14 1984-06-27 Institut Français du Pétrole Preparation process for a catalyst comprising oxides of iron, chromium, potassium and a rare earth metal, useful in dehydrogenation reactions
US4737355A (en) * 1986-12-15 1988-04-12 The Standard Oil Company Preparation of vanadium III oxidic compounds, and dehydrogenation of paraffins
EP0558148A1 (en) * 1992-02-26 1993-09-01 Shell Internationale Researchmaatschappij B.V. Process for the dehydrogenation of organic compounds

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032338A1 (en) 2008-09-22 2010-03-25 学校法人早稲田大学 Dehydrogenation catalyst for alkyl aromatic compounds having high redox catalysis, process for preparation of the catalyst and process of dehydrogenation with the same
EP2329878A1 (en) * 2008-09-22 2011-06-08 Waseda University Dehydrogenation catalyst for alkyl aromatic compounds having high redox catalysis, process for preparation of the catalyst and process of dehydrogenation with the same
CN102159312A (en) * 2008-09-22 2011-08-17 学校法人早稻田大学 Dehydrogenation catalyst for alkyl aromatic compounds having high redox catalysis, process for preparation of catalyst and process of dehydrogenation with same
EP2329878A4 (en) * 2008-09-22 2013-08-21 Univ Waseda Dehydrogenation catalyst for alkyl aromatic compounds having high redox catalysis, process for preparation of the catalyst and process of dehydrogenation with the same
CN102159312B (en) * 2008-09-22 2015-05-06 学校法人早稻田大学 Dehydrogenation catalyst for alkyl aromatic compounds having high redox catalysis, process for preparation of catalyst and process of dehydrogenation with same
CN107456973A (en) * 2017-08-02 2017-12-12 上海纳米技术及应用国家工程研究中心有限公司 Hierarchical self-assembly perovskite micro-sphere structure preparation method and products thereof and application

Also Published As

Publication number Publication date
FR2779427A1 (en) 1999-12-03

Similar Documents

Publication Publication Date Title
CA2146601C (en) Catalysts for reducing spinel-containing nitrogen oxide emissions
EP0545775A1 (en) Perovskites on the basis of tantalum or niobium and process for its preparation
CA2150296C (en) Highly reducible alumina, cerium oxide and zirconium oxide compounds; process for preparing the same and their use for producing catalysts
FR2696109A1 (en) Catalyst for partial oxidn. of methane to hydrogen or synthesis gas - composed mixed oxide of rare earth, strontium or bismuth and one or two elements from Gp=IVB, Gp=VB, Gp=VIB, Gp=VIIb and Gp=VIII
FR2515984A1 (en) PROCESS FOR PREPARING CATALYST FOR EXHAUST GAS PURIFICATION
CA2310123C (en) Support composition based on a cerium oxide, a zirconium oxide and a scandium or rare earth oxide and use for treating exhaust gas
EP0684072B1 (en) Rare earth-based dispersible compound, process for its preparation and for the preparation of a colloidal suspension obtained from it.
EP3137417A1 (en) Method for dry reforming of at least one alkane
CA2209606A1 (en) Catalytic composition based on cerium oxide and manganese, iron or praseodymium oxide, method for preparing same and use thereof in motor vehicle post-combustion catalysis
CA2230714C (en) Method for catalytically processing gases with a high oxygen content to reduce nitrogen oxide emissions
FR2855516A1 (en) OXIDATION OF ACRYLIC ACID PROPANE BY USING CATALYSTS MIXED WITH CRYSTALLINE PHASES
FR2891163A1 (en) Preparing chromium oxide catalyst, useful to prepare pentafluoroethane, comprises heating powders of chromium hydroxide and another metal hydroxide to form their oxides, mixing oxides, granulating and calcining and fluorinating granules
EP1539669A1 (en) Method for producing acrylic acid from propane
FR2687670A1 (en) PROCESS FOR AMMOXYDATING SATURATED HYDROCARBONS
WO2006058998A2 (en) Preparing tantalum-based catalysts for selective oxidation of propane into acrylic acid
WO1999064377A1 (en) Method for dehydrogenating an organic compound using a catalyst comprising a perovskite
CA2073073C (en) Process for the ammoxydation of saturated hydrocarbons
CA2202185A1 (en) Nitrogen oxide reducing catalyst compositions based on tantalum, vanadium, niobium, copper or antimony
EP0852569B1 (en) Method for preparing ammoxidation catalysts
SG193512A1 (en) Steam re-calcination of mixed metal oxide catalysts
FR2687144A1 (en) PROCESS FOR AMMOXYDATING SATURATED HYDROCARBONS
CA2085451C (en) Process for the ammoxidation of saturated hydrocarbons
WO2006077316A1 (en) Method for preparing acrylic acid involving a partial oxidation of propane into propylene
EP0545757A1 (en) Process for the preparation of perovskites on the basis of manganese or chromium and perovskites so obtained
WO2023170562A1 (en) Process and catalyst for the production of hydrogen by decomposition of ammonia by plasma catalysis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN HU IN JP KR MX NO RU US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase