WO1999063641A1 - Detection de defauts sur les lignes de transmission d'un systeme cc haute tension bipolaire - Google Patents
Detection de defauts sur les lignes de transmission d'un systeme cc haute tension bipolaire Download PDFInfo
- Publication number
- WO1999063641A1 WO1999063641A1 PCT/SE1999/000900 SE9900900W WO9963641A1 WO 1999063641 A1 WO1999063641 A1 WO 1999063641A1 SE 9900900 W SE9900900 W SE 9900900W WO 9963641 A1 WO9963641 A1 WO 9963641A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- difference
- fault
- signal
- criterion
- wave signal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/36—Arrangements for transfer of electric power between ac networks via a high-tension dc link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/268—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Definitions
- An HVDC installation comprises a plurality of protective functions.
- One important such function is the line fault protection.
- a line fault normally entails loss of transmission capacity and therefore needs to be corrected as quickly as possible.
- the interruption interval comprises time for detection of the occurrence of a fault, time for determining whether the fault is a line fault or an external fault, time for discharge of the transmission line, time for deionization of the arc occurring, time for elimination of the fault and time for start-up of the transmission. To minimize the interruption interval, it is important that all sub-times be kept as low as possible.
- the present invention relates to a method for detecting when a fault has occurred on transmission lines of bipolar high-voltage direct-current systems, and a device for carrying out the method.
- HVDC transmissions Such transmissions will be referred to below as HVDC transmissions .
- An HVDC transmission is an electric power transmission using direct current and DC voltage. Since electric power generation takes place by means of alternating current/voltage (AC power) , current and voltage must be converted, for HVDC transmission, into direct current/voltage (DC power) at one end of the HVDC line and then be converted into alternating current/voltage at the other end of the line.
- AC power alternating current/voltage
- DC power direct current/voltage
- FIG 1 shows in simplified form a diagram for a mono- polar system, often referred to as a single-pole HVDC transmission.
- From AC switchgear 1 the voltage is stepped up to the desired values.
- two transformers 2 and 3 one of them Y-Y-connected and the other Y-D-connected, a so-called 12-pulse-directed current/voltage may be obtained via a converter 4.
- the harmonics of the direct current and the direct voltage are limited by reactances and capacitances present in the converter station, in Figure 1 symbolized by a smoothing reactor 5 and a filter 6.
- the HVDC power is transmitted via a transmission line 7 or a "pole" which may be an overhead line, a ground cable or a submarine cable.
- the transmitted HVDC power may then be converted into ordinary three-phase alternating voltage for feeding AC switchgear 13.
- the direct current is returned through ground or sea and is connected co the respective station via ground electrodes 14 and 15. Power transmission may take place in both directions .
- a bipolar transmission system is clear from Figure 2 and comprises substantially two balanced monopolar transmission systems. Such a system is used, inter alia, for increasing both the capacity and the availability and when the ground current must be limited or for various reasons is not allowed to occur.
- the same reference numerals as in Figure 1 are used in Figure 2 for the various parts, supplemented by an "a" for one of the two monopolar transmission systems and by a "b" for the other system.
- the transmission line of one of the systems is designated 7a and the transmission line of the other system is designated 7b. Both poles have the same rated voltage with opposite signs. This implies that zero potential occurs between the two converters 4a and 4b, respectively, and between the two inverters 10a and 10b, respectively.
- a difference current occurs in the case of unbalanced operation or when a fault has occurred on any of the transmission lines.
- the original technique comprised registering both current and voltage after the smoothing reactors in one of, or both of, the converter stations.
- a typical line fault for example a short circuit, implies that a voltage drop and an increase in current occur.
- Problems which arise when operating in this manner are difficulties in discrimi- nating between a line fault, an external fault or another disturbance and that the detection takes a relatively long time .
- travelling waves arise which propagate in both directions, as viewed from the location of the fault.
- travelling waves When these waves hit a station, the travelling waves are reflected and may in this way bounce back and forth.
- travelling waves arise both on AC and DC transmission lines and have been utilized for several decades for detection and fault location on power lines.
- An HVDC transmission line possesses both capacitive, inductive and resistive properties.
- the change in current and voltage will be dependent on the impedances of the line as well as on the travelling waves occurring.
- measurement with a sampling frequency of about 15-20 kHz is required. Measurement and registration of current and voltage characteristics, measured with a relatively long sampling frequency, will thus not correctly indicate the actual characteristics comprising the travelling waves which will occur.
- Figure 1 shows a simplified diagram for a monopolar HVDC installation.
- Figure 2 shows a simplified diagram for a bipolar HVDC installation.
- Figure 3 shows a block diagram for fault detection on a transmission line in a bipolar HVDC installation according to the prior art.
- Figure 4 shows a block diagram for fault detection on a transmission line in a bipolar HVDC installation according to the invention.
- Figure 5 shows a flow diagram for detection whether a fault has occurred on a transmission line in a bipolar HVDC installation according to the invention.
- a method for detecting a fault, according to the invention, on an HVDC transmission line in a bipolar HVDC installation will be described on the basis of a block diagram according to Figure 4.
- the block diagram represents an embodiment of a fault detector for faults on HVDC transmission lines.
- the block diagram is built up of logic components, comparison elements, summa- tor, multiplier, etc.
- the invention may also be in the form of a program implemented in a computer.
- the invention is based on such measurement of the current and voltage of the poles that the travelling waves which arise in connection with a fault on any of the transmission lines may be detected. An indication that a fault has been detected is dependent on a number or criteria being fulfilled.
- As input signals to the fault detector three so-called wave signals are formed, consisting of one positive pole- wave signal, one negative pole-wave signal and one ground- wave signal.
- the positive pole current I + and the positive pole voltage U + , the negative pole current I_ and the negative pole current U . are obtained.
- the positive pole-wave signal is formed as
- JV Z.(I t + I.)/2-(U ⁇ . + U.)/2
- the positive pole-wave signal is passed to a first input circuit 16 which consecutively forms a first difference signal d 1 by comparison between two consecutive samples .
- the negative pole-wave signal is passed in the same way to a second input circuit 17 which consecutively forms a second difference signal d 2 by comparison between two consecutive samples .
- a first criterion for being able to identify a fault on one of the transmission lines in a bipolar HVDC installation is that one or both of these difference signals is/are to have a value which exceeds a pre-set threshold value d 0 . Whether this is the case or not is determined by means of a first comparison circuit 18. If this is the case, the output signal of the first comparison circuit influences a closing element 19.
- a "MAX" value element 22 it is determined which of the two difference signals has the highest value.
- the highest value, ' dmax, ' is led to a multip- 1 -lier 23 where it is multi- plied by a pre-set factor f x .
- the product thus formed, p f ⁇ d max , is led to the above-mentioned second comparison element 21.
- a third criterion for being able to identify a fault on one of the transmission lines in a bipolar HVDC installation is that a ground-wave signal JV has been detected. If this is the case, a "one" is obtained via a logic converter 26 and is supplied to the above-mentioned "AND" element 25.
- the device Since the two inputs of the "AND" element are not set at “one” , the device will thus indicate a fault on one of the transmission lines in a bipolar HVDC installation. If the difference between the difference signals is greater than the above-mentioned product, that is, if d d >p, and if both the first and third criteria are fulfilled, this indicates that an external fault has occurred.
- a fault on a transmission line in a bipolar HVDC installation can be determined if
- any of the difference signal d 1 or d 2 is greater than an assumed threshold value d 0 , and if
- the difference d d between the difference signals is smaller than the product p of the greatest of the difference signals and an assumed factor f x , and if
- Figure 5 shows a program-related device in the form of a flow diagram for detection of a fault on a transmission line in a bipolar HVDC installation.
- the program is provided with information about the impedance of the two transmission lines and the ground line and is supplied with consecutively measured currents and voltages for the two lines.
- the numerical value of the difference between the two difference signals d d is formed, it is determined which of the two difference signals has the hig —'hest value dmax,'
- an output signal is formed which indicates that a fault on any of the transmission lines has occurred if both p>d d and if a ground-wave signal has been detected.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
- Locating Faults (AREA)
Abstract
L'invention concerne un procédé et un dispositif de détection d'un défaut sur une ligne de transmission d'une installation CCHT bipolaire. Un signal d'onde pôle positif, un signal d'onde pôle négatif et un signal d'onde terre sont formés sur la base du courant et de la tension de chaque pôle ainsi que de l'impédance des lignes de transmission et de la ligne terre. Un premier et deuxième signal de différence sont formés sous la forme d'une différence entre deux échantillons consécutifs des signaux d'onde pôle. Un défaut est détecté si un premier critère est satisfait, à savoir qu'un signal de différence quelconque est supérieur à une valeur de consigne ; si un deuxième critère est satisfait, à savoir que la valeur numérique de la différence entre les signaux de différence est inférieure au produit du plus grand des signaux de différence et d'un coefficient de consigne, et enfin si un troisième critère est satisfait, à savoir qu'un signal d'onde terre a été détecté.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99930026A EP1092256A1 (fr) | 1998-05-29 | 1999-05-27 | Detection de defauts sur les lignes de transmission d'un systeme cc haute tension bipolaire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9801906A SE512084C2 (sv) | 1998-05-29 | 1998-05-29 | Detektering av fel på överföringslinjer hos ett bipolärt högspänt likströmssystem |
SE9801906-0 | 1998-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999063641A1 true WO1999063641A1 (fr) | 1999-12-09 |
Family
ID=20411509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE1999/000900 WO1999063641A1 (fr) | 1998-05-29 | 1999-05-27 | Detection de defauts sur les lignes de transmission d'un systeme cc haute tension bipolaire |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1092256A1 (fr) |
SE (1) | SE512084C2 (fr) |
WO (1) | WO1999063641A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011157305A1 (fr) * | 2010-06-14 | 2011-12-22 | Abb Research Ltd | Protection contre les défaillances de lignes de transmission ccht |
CN102520317A (zh) * | 2011-12-15 | 2012-06-27 | 四川大学 | 基于小波香侬熵标准化特征矢量的换相失败故障检测方法 |
CN103050907A (zh) * | 2012-12-11 | 2013-04-17 | 湖北省电力公司检修分公司 | 一种直流输电系统共用接地极安全检修方法 |
WO2013086944A1 (fr) * | 2011-12-13 | 2013-06-20 | 西安交通大学 | Procédé de protection de la vitesse sur toute la ligne de la transmission de courant continu à haute tension au moyen d'un courant de filtre de courant continu |
WO2013127438A1 (fr) | 2012-02-28 | 2013-09-06 | Abb Technology Ltd | Procédé et appareil pour détecter un défaut dans un système de transmission d'énergie hvdc |
CN104332968A (zh) * | 2014-10-20 | 2015-02-04 | 国家电网公司 | 基于高压直流输电线路的电流差动保护方法 |
US20180301895A1 (en) * | 2015-10-06 | 2018-10-18 | General Electric Technology Gmbh | Improvements in or relating to direct current distance protection controllers |
WO2019219217A1 (fr) * | 2018-05-18 | 2019-11-21 | Siemens Aktiengesellschaft | Surveillance d'une transmission d'un courant continu à haute tension |
CN113945797A (zh) * | 2021-10-11 | 2022-01-18 | 华南理工大学 | 高压直流输电线路自适应单端量保护方法、系统及介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8970222B2 (en) * | 2009-12-10 | 2015-03-03 | Abb Technology Ag | Line fault detector |
US20130308235A1 (en) * | 2011-02-01 | 2013-11-21 | Siemens Aktiengesellschaft | Method for eliminating a fault on a high-voltage dc line, system for transmitting an electric current via a high-voltage dc line, and converter |
CN114465207B (zh) * | 2021-12-16 | 2024-04-12 | 许继电气股份有限公司 | 基于单端暂态能量的高压直流输电线路保护方法和装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3832620A (en) * | 1973-07-26 | 1974-08-27 | Gen Electric | Regulating mode selector scheme for an electric power converter |
EP0736949A1 (fr) * | 1995-04-07 | 1996-10-09 | Asea Brown Boveri Ab | Equipement de protection dans une station à courant continu à haute tension |
WO1997045905A1 (fr) * | 1996-05-29 | 1997-12-04 | Asea Brown Boveri Ab | Installation de transport d'energie a l'aide d'un courant continu a haute tension et son dispositif de detection de defaut a la terre permanent |
-
1998
- 1998-05-29 SE SE9801906A patent/SE512084C2/sv not_active IP Right Cessation
-
1999
- 1999-05-27 EP EP99930026A patent/EP1092256A1/fr not_active Withdrawn
- 1999-05-27 WO PCT/SE1999/000900 patent/WO1999063641A1/fr not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3832620A (en) * | 1973-07-26 | 1974-08-27 | Gen Electric | Regulating mode selector scheme for an electric power converter |
EP0736949A1 (fr) * | 1995-04-07 | 1996-10-09 | Asea Brown Boveri Ab | Equipement de protection dans une station à courant continu à haute tension |
WO1997045905A1 (fr) * | 1996-05-29 | 1997-12-04 | Asea Brown Boveri Ab | Installation de transport d'energie a l'aide d'un courant continu a haute tension et son dispositif de detection de defaut a la terre permanent |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011157305A1 (fr) * | 2010-06-14 | 2011-12-22 | Abb Research Ltd | Protection contre les défaillances de lignes de transmission ccht |
US8749933B2 (en) | 2010-06-14 | 2014-06-10 | Abb Research Ltd | Fault protection of HVDC transmission lines |
WO2013086944A1 (fr) * | 2011-12-13 | 2013-06-20 | 西安交通大学 | Procédé de protection de la vitesse sur toute la ligne de la transmission de courant continu à haute tension au moyen d'un courant de filtre de courant continu |
CN102520317A (zh) * | 2011-12-15 | 2012-06-27 | 四川大学 | 基于小波香侬熵标准化特征矢量的换相失败故障检测方法 |
WO2013127438A1 (fr) | 2012-02-28 | 2013-09-06 | Abb Technology Ltd | Procédé et appareil pour détecter un défaut dans un système de transmission d'énergie hvdc |
CN103050907A (zh) * | 2012-12-11 | 2013-04-17 | 湖北省电力公司检修分公司 | 一种直流输电系统共用接地极安全检修方法 |
CN104332968A (zh) * | 2014-10-20 | 2015-02-04 | 国家电网公司 | 基于高压直流输电线路的电流差动保护方法 |
US20180301895A1 (en) * | 2015-10-06 | 2018-10-18 | General Electric Technology Gmbh | Improvements in or relating to direct current distance protection controllers |
US11081879B2 (en) * | 2015-10-06 | 2021-08-03 | General Electric Technology Gmbh | Direct current distance protection controllers |
WO2019219217A1 (fr) * | 2018-05-18 | 2019-11-21 | Siemens Aktiengesellschaft | Surveillance d'une transmission d'un courant continu à haute tension |
CN112154588A (zh) * | 2018-05-18 | 2020-12-29 | 西门子股份公司 | 监视高压直流输电 |
US11177662B2 (en) | 2018-05-18 | 2021-11-16 | Siemens Energy Global GmbH & Co. KG | Monitoring of a high-voltage DC transmission |
CN112154588B (zh) * | 2018-05-18 | 2022-01-14 | 西门子能源全球有限公司 | 监视高压直流输电 |
CN113945797A (zh) * | 2021-10-11 | 2022-01-18 | 华南理工大学 | 高压直流输电线路自适应单端量保护方法、系统及介质 |
CN113945797B (zh) * | 2021-10-11 | 2022-07-26 | 华南理工大学 | 高压直流输电线路自适应单端量保护方法、系统及介质 |
Also Published As
Publication number | Publication date |
---|---|
SE9801906D0 (sv) | 1998-05-29 |
EP1092256A1 (fr) | 2001-04-18 |
SE9801906L (sv) | 1999-11-30 |
SE512084C2 (sv) | 2000-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A review of the protection for the multi-terminal VSC-HVDC grid | |
RU2358273C2 (ru) | Способ и устройство для определения неустойчивого замыкания на землю | |
US8680872B2 (en) | Identification of false positives in high impedance fault detection | |
CN103840437B (zh) | 配电网铁磁谐振与单相接地故障的快速诊断与处理方法 | |
Bhargav et al. | Algorithm for fault detection and localisation in a mesh‐type bipolar DC microgrid network | |
Ukil et al. | Smart distribution protection using current-only directional overcurrent relay | |
EP1195874B1 (fr) | Procédé d'identification d'un défaut du coté réception ou dans un coupleur de dérivation dans un système de distribution électrique | |
US11831146B2 (en) | Method and apparatus for use in earth-fault protection | |
CN103852691A (zh) | 在补偿或绝缘中性点的接地系统的网络中故障的定向检测 | |
WO1999063641A1 (fr) | Detection de defauts sur les lignes de transmission d'un systeme cc haute tension bipolaire | |
CN100405685C (zh) | 接地故障检测器件和方法以及包括这种器件的继电器 | |
Hossam-Eldin et al. | Combined traveling wave and fuzzy logic based fault location in multi-terminal HVDC systems | |
US4329638A (en) | Capacitive voltage transformers | |
Wakode et al. | Oscillation frequency component-based protection scheme for DC microgrid | |
Mitra et al. | Adaptive threshold-based zonal isolation of faults in a multiterminal DC using local measurements | |
Bo et al. | A new directional relay based on the measurement of fault generated current transients | |
Li et al. | Differential current integral based bipolar short-circuit protection method for DC distribution network with blocking converters | |
Leterme et al. | HVDC grid protection algorithm performance assessment | |
Tiwari et al. | Ground fault detection using pole differential current measurement for 2-terminal bipolar HVDC lines | |
JP3367412B2 (ja) | 分散型電源の単独運転防止装置 | |
Larruskain et al. | Protection systems for multi-terminal HVDC grids | |
CN112630599A (zh) | 一种不依赖电压极性的小电流接地故障定位方法及系统 | |
Perez Molina et al. | Evaluation of a local fault detection algorithm for HVDC systems | |
Li et al. | Fault detection method for energy routing nodes of smart grids oriented to electricity information security | |
Noori et al. | A new combined adaptive cumulative sum‐based fault detector for multi‐terminals high voltage direct current transmission lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999930026 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999930026 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999930026 Country of ref document: EP |