WO1999062838A1 - Cement admixture, cement compositions and cement structures - Google Patents

Cement admixture, cement compositions and cement structures Download PDF

Info

Publication number
WO1999062838A1
WO1999062838A1 PCT/JP1999/002435 JP9902435W WO9962838A1 WO 1999062838 A1 WO1999062838 A1 WO 1999062838A1 JP 9902435 W JP9902435 W JP 9902435W WO 9962838 A1 WO9962838 A1 WO 9962838A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
weight
parts
meth
acrylic acid
Prior art date
Application number
PCT/JP1999/002435
Other languages
French (fr)
Japanese (ja)
Inventor
Kyouichi Tanaka
Yasuhiko Fujita
Tutomu Saitou
Takeru Sakamoto
Original Assignee
Fpk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fpk Co., Ltd. filed Critical Fpk Co., Ltd.
Publication of WO1999062838A1 publication Critical patent/WO1999062838A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Definitions

  • the present invention relates to an admixture for a cement composition such as cement, mortar, and concrete, and to a cement composition comprising the same.
  • a cement admixture that can enhance the flowability and flow retention (generally referred to as slanproth control) during the construction of cement, as well as increase the strength of the cement cured product.
  • the present invention relates to a cement composition modified by the addition of the admixture, and further to a cement structure comprising a cured product having an increased strength.
  • BACKGROUND ART Reforming admixtures are blended in cement for various purposes. In recent years, cement compositions with even higher performance have been developed to be able to cope sufficiently with the increase in the height of buildings and the durability life, etc., and also to cope with changes in aggregate conditions. There is a need for a reforming admixture.
  • This type of admixture ensures excellent water reduction in order to provide a stable air entrainment to the cement composition and increase the strength and durability life of the cured product. It is important to improve the fluidity and slan process suppression in order to enhance the stability during construction It is said to be performance, and the demands of consumers for those performances have become more severe recently.
  • the cement admixtures currently in practical use include lignin sulfonate, naphtholensulfonate / formalin condensate, and melamin sulfonate.
  • lignin sulfonate naphtholensulfonate / formalin condensate
  • melamin sulfonate Known are salt-formalin condensate, aminosulfonate, polycarbonate, etc., each of which has advantages and disadvantages and is satisfactory. No.
  • JP-A-62-212252 discloses that a monomer having a sulfonic acid group and a monomer having a carboxylic acid group are used as hydrophilic structural units, and further a hydrophobic structural unit is used. It is described that when a specific amount of a hydrophobic monomer is used, the time-dependent change in dispersibility is suppressed, and the slanproth-inhibiting property of the cement composition is improved.
  • Japanese Unexamined Patent Publication (Kokai) No. 59-162161 discloses hydroxyl groups such as monoesters of unsaturated monocarboxylic acid and glycol.
  • a copolymer comprising a monomer having a carboxyl group and a monomer having a carboxyl group or a salt thereof does not delay the curing of cement and can be added in a small amount. It has been clarified that the fluidity during cement composition application can be increased.
  • Japanese Unexamined Patent Publication (Kokai) No. 63-166253 discloses a (meth) a of unsaturated carboxylic acid and / or its salt and an alkyl alcohol having 1 to 4 carbon atoms.
  • a cement dispersant containing a copolymer with a acrylate or, if necessary, a copolymer obtained by copolymerizing another copolymerizable monomer as an essential component is used. It has been disclosed that this dispersant also enhances the flowability and slam loss control of the cement composition.
  • a cement dispersant containing a specific ratio of and is disclosed, and this dispersant is effective for improving the water reduction of the cement composition, suppressing slanpros and reducing the viscosity. It has been clarified that this is the case.
  • the present invention has been made in view of the above-mentioned problems, and its object is to provide an excellent fluidity improving effect and slanting effect which are superior to the conventional cement admixture as described above.
  • a cement admixture having a process-suppressing property, and further provides a high-performance cement composition containing the admixture, and further uses the composition.
  • the purpose of the present invention is to provide a high-performance cement structure.
  • Particularly preferred as the (meth) hydroxyalkyl ester of (meth) acrylic acid constituting the copolymer of the present invention is an alkyl moiety having 2 to 4 carbon atoms.
  • Hydroxyalkyl esters and (b) particularly preferred as the (meth) acrylic acid ester are those having 1 to 4 carbon atoms in the form of allyl alcohol.
  • E It is an acrylate ester.
  • the cement composition containing the above-mentioned cement admixture has a remarkably improved fluidity and slanproth-inhibiting property, and has a remarkable improvement in the present invention.
  • the present invention is also applicable to a cement structure, which is a cured product thereof.
  • BEST MODE FOR CARRYING OUT THE INVENTION Under the above-mentioned problems, the present inventors have earnestly aimed at further improving the fluidity and the slanth process inhibiting property of a cement composition.
  • the use of a cement admixture containing a lignin sulfonate and a copolymer of a specific composition can achieve the above-mentioned tasks brilliantly.
  • the present invention has been completed.
  • lignin sulfonate is commonly found in natural pulp raw materials.
  • Lignin sulfonate which is classified as general lignin, is obtained by desugaring the digested effluent from sulphite pulp production, and has an average molecular weight (Mw). ) Is said to be 10,000 or less (usually about 6,000 to 8,000). Lignin sulfonate, which is classified as a high-performance lignin, can be used for the above-mentioned digestion eluate or its desaccharified solution by converting it into a high-molecular fraction and a low-molecular fraction. It is a high-molecular fraction portion of fractionated fractions and has an average molecular weight (M w) of 10,000 or more (usually about 10,000 to 20,000). In fact, these lignin sulfonates are desugared. They are roughly classified into Mg'Na salt, Na salt, and Ca salt according to the difference in the treatment method.
  • the metal salt can be effectively used irrespective of the type of the metal salt, general lignin, and high-performance lignin. Especially preferred are high performance lignins.
  • the copolymer used in combination with the ligninsulfonate may be, as described above, a polyunsaturated carboxylic acid and / or a salt thereof (a) and (meta) acrylic acid. It is a copolymer containing an acid ester (b) and a hydroxyalkyl ester of (meth) acrylic acid (c) as an essential monomer component.
  • Examples of the unsaturated carboxylic acid component (a) include (mono) unsaturated monocarboxylic acids such as acrylic acid and crotonic acid; itaconic acid and fumaric acid. And unsaturated dicarboxylic acids such as maleic acid and citraconic acid, and their semi-esters, and the salts thereof include alkali metal salts and alkaline earth metals. Examples include metal salts, ammonium salts, and organic amine salts.
  • the use ratio is the ratio occupying in 100 parts by weight of all monomers constituting the copolymer and should be in the range of 40 to 83 parts by weight in terms of ⁇ , ⁇ -unsaturated carboxylic acid. It is. If the amount is less than 40 parts by weight, a sufficient slanpros inhibitory effect cannot be obtained, and if it exceeds 83 parts by weight, the air entrainment of the cement composition becomes poor.
  • the preferred lower limit of the 5-unsaturated carboxylic acid and / or its salt (a) is 60% in order to achieve both the slumping property and the effect of suppressing slanpros and air entrainment.
  • the (meth) acrylic acid ester (b) is preferably an ester of an alkanol having 1 to 4 carbon atoms, specifically,-(meth) acrylic acid Methyl, (meth) ethyl acrylate, (meth) acrylic acid n_butyl, (meth) acrylic acid i-butyl, (meta) t-butyl acrylate These can be used alone, or two or more of them can be used in combination as needed.
  • the compounding amount of the (meth) acrylic acid ester (b) is in the range of 1 ° to 30 parts by weight based on 100 parts by weight of all monomer components constituting the copolymer.
  • the amount is less than 10 parts by weight, the ability to inhibit flowability and slanpros becomes poor, and if the amount exceeds 30 parts by weight, the hydrophilicity of the admixture decreases, and the admixture with cement becomes poor. It lacks gender.
  • a more preferred lower limit of the amount of the (meth) acrylic acid ester (b) is 10 parts by weight, and a more preferred upper limit is 25 parts by weight.
  • the (alkyl) hydroxyalkyl ester (c) of (meth) acrylic acid is preferably an alkyl ester having 2 to 4 carbon atoms, for example, 2-hydroxy. Kishetil (meta) acrylate, 2—hydroxypropyl (meta) acrylate, 3—hydroxypropyl (meta) acrylate, 2—hid Roxybutyl (meta) acrylate, 3—Hydroxybutyl (meta) acrylate, 4-Hydroxybutyl (meta) acrylate, 3—Cross mouth 1-2—Hydroxypropyl (meta) acrylate. These can be used alone, or two or more can be used in combination.
  • the blending amount in terms of the proportion occupied in 100 parts by weight of all monomer components constituting the copolymer It is in the range of 50 to 50 parts by weight. If the amount is less than 7 parts by weight, wettability with cement becomes poor and dispersibility is poor. On the other hand, if the amount exceeds 50 parts by weight, the slam prosthesis suppressing effect is not only deteriorated, but also the air entrainment becomes too high, which is not preferable.
  • the lower limit of the more preferred amount of the hydroxyalkyl ester (c) of (meth) acrylic acid is 7 parts by weight, and the more preferable upper limit is 30 parts by weight.
  • the method for producing a copolymer using these monomers is not particularly limited, but the most common method is a radial polymerization method, and among them, a solution polymerization method is preferable.
  • a reaction solvent it is preferable to use water from the viewpoint of safety and harmlessness.
  • radical polymerization initiator examples include peroxides such as benzoyl peroxide and t-butyl benzoyl benzoyl, and azo compounds represented by azobisisobutyronitrile. Further, it can be appropriately selected and used depending on the type of the monomer, such as ammonium persulfate, potassium persulfate, and persulfate such as sodium persulfate.
  • the polymerization reaction is carried out at normal pressure or under pressure, usually in the range of 50 to 150 ° C, preferably at 50 to 100 ° C under normal pressure.
  • the obtained copolymer alone exhibits excellent fluidity and slanpros-suppressing properties as a cement admixture, but it has been confirmed by the present inventors. It was also found that when the copolymer is used in combination with an appropriate amount of lignin sulfonate, the modifying effect as a cement admixture is further enhanced.
  • the copolymer and lignin sulfonate are preferably in a weight ratio of 50 to 20: 50 to 80, more preferably 50 to 80. It must be used together at a ratio of 35 to 20:65 to 8 °, and even if the ratio is too large or too small, the excellent modification effect intended by the present invention can be obtained.
  • the present invention is characterized in that the copolymer having a specified monomer composition and ligninsulfonate are blended at a specific ratio.
  • the cement dispersant disclosed in JP-A-7-267705 was used in place of the above-mentioned copolymer. Even when oxyorganic acid salts such as gluconate are used in place of ligninsulfonate, it can be a very good cement admixture. Since they were confirmed, they will be explained below.
  • oxyorganic acid salts such as gluconate, which can be used in place of lignin sulfonate, can themselves effectively act as a cement reducer.
  • the use of the oxyorganic acid salt in combination with the above-mentioned copolymer in place of lignin sulfonate is also excellent as a cement admixture. Performance is demonstrated.
  • a preferable blending ratio is in a weight ratio, preferably 20 to 75 parts by weight of the copolymer.
  • Gluconate 80 to 25 parts by weight, more preferably 50 to 25 parts by weight, and it can be used in place of the copolymer.
  • the cement dispersant disclosed in Kaihei 7-2670705 discloses a polyalkylene glycol mono (meth) acryl as a component (I). Copolymer of acid ester compound and (meth) acrylic acid compound and / or salt thereof, (II) Polyalkylene glycol mono (meta) As a copolymer of an aryl ether compound and anhydrous maleic acid and its salt or hydrolyzate (C), polyalkyl Preferable is a copolymer of a glycol alcohol (meta) alcohol compound and a maleic acid ester of a polyalkylene glycol compound.
  • the preferred component (ii) is a polyalkylene glycol mono (meth) acrylic acid ester compound represented by the following general formula [1]: ] Or a salt thereof with a (meth) acrylic acid-based compound or a salt thereof.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents carbon
  • R 3 represents hydrogen or an alkyl group of 1 to 5 carbon atoms
  • n represents an integer of 1 to L 0.
  • R 4 represents hydrogen or a methyl group
  • X represents hydrogen, a monovalent metal, a divalent metal, an ammonium group, or an organic amine group
  • the alkylene group represented by R 2 in the above general formula [1] is an ethylene group, a propylene group, a butylene group, or the like, and is preferably an ethylene group, a propylene group, or the like.
  • a pyrene group is particularly preferred, and an ethylene group is particularly preferred.
  • the number n of added moles of R 20 may be any integer as long as it is in the range of 1 to 100, preferably 1 to 50, and more preferably 1 to 30.
  • R 3 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • Preferred as the alkyl group are hydrogen, a methyl group, and an ethyl group, and particularly preferred are a hydrogen and a methyl group.
  • the copolymerization ratio of the component represented by the general formula [1] and the component represented by the general formula [2] constituting the component (A) is as follows: the component represented by the general formula [1]: 10 to 95 wt. % Of the component represented by the general formula [2]: 90 to 5% by weight, and more preferably the former: 50 to 90% by weight to the latter 50 to 10% by weight. % By weight, and more preferably the former: 60 to 90% by weight, and the latter 40 to 10% by weight (the total of both is 100% by weight).
  • the preferred molecular weight of the component (A) is 2,000 in weight average molecular weight. ⁇ 100,000, more preferably 5,000-70,000, and even more preferably 10,000-50,000.
  • the component (B) is a copolymer of a polyalkylene glycol mono (meth) aryl ether compound represented by the following general formula [3] and a water-free maleic acid. Coalesce and its salts or hydrolysates,
  • R 5 represents hydrogen or a methyl group
  • R 6 represents an alkylene group having 2 to 4 carbon atoms
  • R 7 represents a hydrogen or methyl group having 1 to 5 carbon atoms.
  • m represents an integer of 1 to 100
  • the alkylene group represented by R 6 in the above general formula [3] is an ethylene group, a propylene group, a butylene group, and the like, but preferred are an ethylene group and a propylene group.
  • a pyrene group is particularly preferred, among which an ethylene group is preferred.
  • the number m of added moles of R 60 may be any integer as long as it is in the range of 1 to 100, preferably in the range of 2 to 50, and more preferably in the range of 5 to 50.
  • R 7 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • Preferred as the alkyl group are hydrogen, a methyl group, and an ethyl group, and particularly preferred is a methyl group.
  • the copolymerization ratio of the component represented by the general formula [3] to maleic anhydride is 30 to 99% by weight of the former to 70 to 1% by weight of the latter, more preferably 50 to 100% by weight of the former.
  • the preferred molecular weight of the component (B) is from 2,000 to 100,000, more preferably from 3,000 to 60,000, and even more preferably from 5,000 to 40,000 in terms of weight average molecular weight. .
  • the component (C) is composed of a poly (ethylene glycol) copolymer (meta) aryliether ether compound represented by the same general formula as the above general formula [3], and the following general formula [4] A copolymer of a polyalkylene glycol compound represented by the following formula with maleic acid ester or a salt thereof.
  • R 8 represents hydrogen or an alkyl group having 1 to 5 carbon atoms
  • R 9 represents an alkylene group having 2 to 4 carbon atoms
  • p is an integer of 1 to 100.
  • the substituent R 6 is, for example, an ethylene group, a propylene group, or a butylene group, and the preferred one is an ethylene group, a propylene group, and among them. Particularly preferred is an ethylene group.
  • 1 6 0 additional molar number 111 may be a that of how integer in the range of 1 to 100. However, preferred and rather 2-5 0, rather then favored further the area by der of 5-5 0 .
  • R 7 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. Hydrogen, a methyl group, and an ethyl group are particularly preferable, and a methyl group is particularly preferable.
  • the substituent R 8 in the polyalkylene glycol-based compound represented by the general formula [4] is hydrogen or an alkyl having 1 to 5 carbon atoms.
  • the alkyl group includes a methyl group, an ethyl group, a propyl group, and the like, and is preferably hydrogen, a methyl group, and an ethyl group, and particularly preferably. What is new is hydrogen and a methyl group.
  • the alkylene group represented by R 9 is an ethylene group, a propylene group, a butylene group, or the like, preferably an ethylene group, a propylene group, or the like. Particularly preferred is an ethylene group.
  • Addition molar number p of R 9 ⁇ may be in a how that integer in the range of 1 to 100. However, preferred and rather 1-5 0, rather further favored Ru der range of 1-3 0.
  • the copolymerization ratio of the component represented by the general formula [3] and the component represented by the general formula [4] constituting the component (C) is as follows: the component represented by the general formula [3]: 1 to 99% by weight
  • the component represented by the general formula [4] may be in the range of 99 to 1% by weight, more preferably the former is 3 to 97% by weight and the latter is 97 to 3% by weight. More preferably, the former is in the range of 40 to 95% by weight, and the latter is in the range of 60 to 5% by weight (the total of both is 100% by weight).
  • the preferred molecular weight of the component (C) is from 2,000 to 100,000, more preferably from 5,000 to 70,000, and even more preferably from 10,000 to 50,000 in weight average molecular weight.
  • salts of the above polymers include ammonium salts, alkali metal salts (such as sodium salts and potassium salts), and alkaline earth metal salts (calcium salts and magnesium salts). Gnesium salt, etc.).
  • these components may be blended into the cement composition in a preferred blending ratio, or may be prepared by adding three components in advance. Is prepared as a mixture, and this can be mixed with a cement composition in an appropriate amount. The preferred mixing ratio of these three components depends on the distribution of the cement composition used.
  • component (A) 5 to 40% by weight, more preferably 3 to 30% by weight
  • component (B) 30 to 70% by weight, more preferably 40 to 65% by weight
  • component (C) It is in the range of 5 to 40% by weight, more preferably 5 to 30% by weight (the sum of the three components is 100% by weight).
  • the mixing ratio of the component (A) and the component (B) is preferably in the range of 2: 8 to 4: 6 in terms of solid content weight ratio.
  • the above-mentioned component (A) is extremely excellent in dispersibility in cement, and has a function of increasing the initial fluidity of the cement composition, but has a poor slanprose inhibitory property. In addition, it tends to markedly increase the viscosity of the cement composition and imparts thixotropy, so that it can be used alone as a cement admixture. Lack of aptitude. Further, the dispersibility of the component (B) in the cement is not as excellent as that of the component (A), and it takes time to increase the initial fluidity. Therefore, if the initial amount of fluidity is increased by increasing the amount of addition, the fluidity further increases over time thereafter, and problems such as separation of the cement composition may occur. In particular, since this phenomenon appears remarkably in a cement composition having a small water / cement ratio, the component (B) alone can be used as a cement admixture again. Lack of aptitude.
  • the component (C) has a lower cement dispersibility than the component (B), and the addition amount is increased especially for a cement composition having a small water / cement ratio. Even at the beginning, the required fluidity cannot be obtained in the early stage, and (B) the fluidity increases over time as in the case of the component, causing problems such as separation of the cement composition. .
  • the lower viscosity of the cement composition when using the components (B) and (C) than when using the component (A) is due to the polyoxyalkyl in the molecules of the components (B) and (C). Since the len group has a very high affinity, the water molecules have an affinity for the admixture adsorbed between the cement particles, and as a result, the distance between the cement particles is widened. It is also expected that the dynamic friction of cement particles is reduced.
  • the viscosity of the cement composition to which an appropriate amount of each of the components (A), (B), and (C) is added is generally sufficient when the water / cement ratio is large.
  • the ratio is small, the spacing between cement particles is small due to the large amount of unit cement, and the effect on viscosity is remarkably exhibited for the above-mentioned reason. Seem .
  • the mixture can be more effective when applied to cement compositions with a low water / cement ratio. Wear .
  • the present invention provides It is possible to obtain a cement admixture with both improved flowability and improved slanproth control.
  • the present invention is characterized in that the above-described copolymer and lignin sulfonate are used in combination, and the above-mentioned ( Alternatively, a mixture of components (A), (B) and (C) may be used, or by using an oxyorganic acid such as gluconate instead of ligninsulfonate. It is possible to obtain a cement admixture having a high reforming effect.
  • a part of ligninsulfonate is used by replacing it with an oxyorganic acid salt such as gluconate, or is used in addition to ligninsulfonate. It is also effective to additionally add a oxyorganic acid salt.
  • a part of the copolymer [II] may be replaced with a mixture of the above components (A), (B) and (C), or the copolymer [II] may be used. It is also effective to additionally add a mixture of the above-mentioned components (A), (B) and (C) in addition to the amount of the cement admixture according to the present invention based on the cement.
  • the cement admixture of the present invention may be added to the cement paste, mortar concrete, etc. simultaneously with water injection, or may be kneaded immediately after water injection. It may be added until immediately after, or may be added to the cement composition once kneaded.
  • each component may be added in a mixed state or may be added individually to uniformly disperse and mix when kneading the cement composition.
  • the cement admixture of the present invention may be used in combination with other known modifying additives.
  • it can be used in combination with, for example, blast furnace slag, silica fume, fly ash, and expansive agent.
  • the cement admixture of the present invention thus obtained has a superior water reducing (dispersing) effect, a fluidity improving effect, and a slanpros inhibitory effect as compared with the conventional cement admixture.
  • the cement composition containing this cement admixture has a low viscosity and excellent separation stability, and is suitable for workability including pumping property. Is also excellent.
  • the cement structure obtained by curing the composition has excellent strength and durability, which are also included in the technical scope of the present invention.
  • the copolymer of No. 6 (as a sodium salt) shown in Table 1 above was used, and the following six kinds of lignin sulfonates were used. The two were blended in the ratio shown in Table 2 to obtain a cement admixture. Using each cement admixture, concretes were prepared according to the formulation shown in Table 3, and the change over time in fluidity was measured. The kneading method, the kneading procedure and the method for measuring the change over time were as follows. Table 2 summarizes the results. [Lignin sulfonate used]
  • Fine aggregate Kisarazu mountain sand (specific gravity 2.36, water absorption 1.57, coarse grain ratio
  • Coarse aggregate Ome crushed stone Gmax20mm (specific gravity 2.67, water absorption 0.51, coarse particle ratio 6.73, actual rate 58.1%)
  • a E agent Product name “Norrick A E” manufactured by FPC
  • Kneading Use of 100 liter forced pan mixer, kneading amount
  • Kneading procedure (coarse aggregate + 1/2 fine aggregate + cement + 1/2 fine bone) Is kneaded for 10 seconds, and a predetermined amount of cement admixture and water are added thereto, and the mixture is kneaded for 90 seconds to obtain a concrete. Adjust the air volume to about 4 to 5% immediately after kneading with the AE agent and antifoaming agent.
  • Temporal change A spiral mixer simulating an agitated mixer is used. Mixer rotation speed lrpm, sample volume 40 liters. The fluidity is measured 30 minutes and 60 minutes after the kneading. The amount of air after 60 minutes from the kneading is in the range of about 11 to 11% with respect to immediately after the kneading.
  • the present invention is constituted as described above, and comprises a copolymer having a characteristic monomer composition in which the components (a), (b) and (c) are copolymerizable monomer components, and a resin.
  • a superior flowability improving effect cement dispersibility
  • a slumping performance over conventional cement admixtures are achieved.
  • the present invention can provide a cement admixture having a cement-suppressing property (cement dispersion retention property), and can use the cement admixture in cement, mortar, and concrete.
  • cement compositions as admixtures for cement compositions such as these, the flowability and flow retention of these cement compositions at the time of construction can be enhanced and the workability is excellent. A ment composition can be obtained. Also, since the cement admixture has a small adverse effect on the cement hydraulic property, it gives a cement structure having excellent compressive strength and durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A cement admixture which comprises, in terms of solid matter, 50 to 80 parts by weight of a lignosulfonate salt [I] and 20 to 50 parts by weight of a copolymer prepared from the monomer components: (a) 40 to 83 parts by weight of an α,β-unsaturated carboxylic acid and/or a salt thereof, (b) 10 to 30 parts by weight of a (meth)acrylate ester (except hydroxyalkyl (meth)acrylates) and (c) 7 to 50 parts by weight of a hydroxyalkyl (meth)acrylate [provided the sum total of the components (a), (b) and (c) is 100 parts by weight] and which is superior to the ones of the prior art in slump improving effect and slump loss inhibiting performance; and cement compositions and cement structures made by using the same.

Description

明 細 書 ― セ メ ン ト 混和剤およびセ メ ン ト 組成物、  SPECIFICATIONS-Cement admixtures and compositions,
並びにセ メ ン ト構造物 技術分野 本発明は、 セ メ ン ト 、 モルタル、 コ ンク リ ー ト 等のセ メ ン ト 組成物用の混和剤に関 し、 こ れ ら セ メ ン ト 組成物の施工時 における流動性や流動保持性 (一般にス ラ ン プロ ス抑制性 と い う ) を高める と共に、 セ メ ン ト硬化物の強度を高める こ と ので き る セ メ ン ト混和剤、 および該混和剤の配合に よ り 改質 されたセ メ ン ト 組成物、 更には、 その硬化物か ら な る強度の 高め ら れたセ メ ン ト構造物に関する も のであ る。 背景技術 セ メ ン 卜 には様々の 目的で改質用の混和剤が配合される 。 最近では、 構築物の高層化や耐久寿命の向上等に も十分対応 で き る様、 また骨材事情の変化に も対応で き る様、 一段と高 度の性能を備え たセ メ ン ト 組成物改質用混和剤が求め ら れて い る 。  TECHNICAL FIELD The present invention relates to an admixture for a cement composition such as cement, mortar, and concrete, and to a cement composition comprising the same. A cement admixture that can enhance the flowability and flow retention (generally referred to as slanproth control) during the construction of cement, as well as increase the strength of the cement cured product. The present invention relates to a cement composition modified by the addition of the admixture, and further to a cement structure comprising a cured product having an increased strength. BACKGROUND ART Reforming admixtures are blended in cement for various purposes. In recent years, cement compositions with even higher performance have been developed to be able to cope sufficiently with the increase in the height of buildings and the durability life, etc., and also to cope with changes in aggregate conditions. There is a need for a reforming admixture.
こ の種の混和剤には、 セ メ ン ト 組成物に安定 した空気連行 性を与えて硬化物の強度と耐久寿命を高める ため、 優れた減 水率を確保する と共に、 セ メ ン ト組成物施工時の安定性を高 める ための流動性やス ラ ン プロ ス抑制性の向上が重要な要求 性能と されてお り 、 最近それ ら の性能に対す る需要者の要求 は一段と厳 し く なっ て きて い る 。 ― 現在実用化されて い る セ メ ン ト 混和剤 と しては、 リ グニ ン スルホン酸塩系、 ナ フ 夕 レ ンスルホ ン酸塩 · ホルマ リ ン縮合 物系、 メ ラ ミ ンスルホ ン酸塩 · ホルマ リ ン縮合物系、 ァ ミ ノ スルホ ン酸塩系およびポ リ カルボ ン酸塩系等が知 ら れて い る が、 これ ら には夫々一長一短があ り 、 満足 し得る も の と はい えない。 This type of admixture ensures excellent water reduction in order to provide a stable air entrainment to the cement composition and increase the strength and durability life of the cured product. It is important to improve the fluidity and slan process suppression in order to enhance the stability during construction It is said to be performance, and the demands of consumers for those performances have become more severe recently. -The cement admixtures currently in practical use include lignin sulfonate, naphtholensulfonate / formalin condensate, and melamin sulfonate. Known are salt-formalin condensate, aminosulfonate, polycarbonate, etc., each of which has advantages and disadvantages and is satisfactory. No.
こ う した状況の中で最近、 高い減水性と ス ラ ン プロ ス抑制 性を有 して い る ポ リ カルボン酸系混和剤への期待が高ま り 、 中で も カルボン酸基ゃスルホン酸基ま たはエーテル結合を有 する ァク リ ル系あ る いは ビニル系の (共) 重合体が注 目 され てい る。  Under these circumstances, there has recently been an increasing expectation for polycarboxylic acid-based admixtures, which have high water-reducing properties and slanpros-suppressing properties. Attention has been paid to acryl-based or vinyl-based (co) polymers having a base or ether bond.
例えば特開昭 6 2 - 2 1 2 2 5 2 号公報には、 親水性構造 単位と してスルホン酸基含有モ ノ マー と カルボン酸基含有モ ノ マ一を使用 し、 更に疎水性構造単位 と して疎水性モ ノ マー を特定量使用すれば、 分散性の経時変化が抑え ら れてセ メ ン ト 組成物のス ラ ンプロ ス抑制性が改善される と記載されてい る。  For example, JP-A-62-212252 discloses that a monomer having a sulfonic acid group and a monomer having a carboxylic acid group are used as hydrophilic structural units, and further a hydrophobic structural unit is used. It is described that when a specific amount of a hydrophobic monomer is used, the time-dependent change in dispersibility is suppressed, and the slanproth-inhibiting property of the cement composition is improved.
ま た特開平 5 - 2 1 3 5 4 4 号公報には、 アルキ レ ンォキ シ ド付加単量体と カルボン酸系単量体を使用 し、 流動性 とス ラ ン プロ ス抑制性を高めたセ メ ン ト混和剤が開示されてお り このセメ ン ト混和剤は、 セ メ ン ト 組成物の施工性を高める と 共にセメ ン ト硬化物の耐久性向上に も 有用であ る と記載され て い る。  In Japanese Patent Application Laid-Open No. 5-213354, the use of an alkylenoxyside-added monomer and a carboxylic acid-based monomer is used to improve the flowability and the slanpros inhibitory property. A cement admixture is disclosed, which states that this cement admixture is useful not only for improving the workability of the cement composition, but also for improving the durability of the cement cement cured product. It has been done.
更に特開昭 5 9 - 1 6 2 1 6 1 号公報には、 不飽和モ ノ 力 ルボ ン酸と グ リ コール とのモノ エステル類の如 き水酸基を有 する単量体と、 カルボキシル基を有す る単量体と か ら な る共 重合体あ る いはその塩は、 セメ ン ト の硬化を遅 ら せる こ とな— く 、 少量の添加でセ メ ン ト 組成物施工時の流動性を高め得る こ と が明 ら かにされて い る 。 Further, Japanese Unexamined Patent Publication (Kokai) No. 59-162161 discloses hydroxyl groups such as monoesters of unsaturated monocarboxylic acid and glycol. A copolymer comprising a monomer having a carboxyl group and a monomer having a carboxyl group or a salt thereof does not delay the curing of cement and can be added in a small amount. It has been clarified that the fluidity during cement composition application can be increased.
ま た特開昭 6 3 _ 1 6 2 5 6 3 号公報には、 ひ, 不飽 和カルボン酸お よび ま たはその塩類 と、 炭素数 1 〜 4 のァ ルキルアルコールの (メ タ ) ァク リ ル酸エステル との共重合 体、 あ る いは、 更に必要に応 じて その他の共重合性単量体を 共重合させた共重合体を必須成分 と するセ メ ン ト 分散剤が開 示さ れ、 こ の分散剤も 、 セ メ ン ト 組成物の流動性 とス ラ ンプ ロ ス抑制性を高める こ とが明 ら かに さ れて い る 。  Japanese Unexamined Patent Publication (Kokai) No. 63-166253 discloses a (meth) a of unsaturated carboxylic acid and / or its salt and an alkyl alcohol having 1 to 4 carbon atoms. A cement dispersant containing a copolymer with a acrylate or, if necessary, a copolymer obtained by copolymerizing another copolymerizable monomer as an essential component is used. It has been disclosed that this dispersant also enhances the flowability and slam loss control of the cement composition.
更に特開平 7 — 2 6 7 7 0 5 号公報には、  Furthermore, Japanese Patent Application Laid-Open No. 7-2670705 discloses that
( A )ポ リ アルキ レ ン グ リ コ - -ルモ ノ (メ タ ) アク リ ル酸ェ ステル系化合物 と (メ タ ) アク リ ル酸系化合物の共重合 体ま たはその塩と、  (A) a copolymer of a polyalkylene-glycol- (mono) acrylic acid ester compound and a (meth) acrylic acid compound or a salt thereof;
( B )ポ リ アルキ レ ン グ リ コ -ールモ ノ (メ タ ) ァ リ ルェ一テ ル系化合物 と無水マ レ イ ン酸との共重合体ま たはその塩 若 し く は加水分解物、 お よび  (B) A copolymer of a polyalkylene glycol mono (meth) aryl ester compound and maleic anhydride, or a salt or hydrolyzate thereof , and
( C )ポ リ アルキ レ ン グ リ コ - —ルモ ノ (メ タ ) ァ リ ルェ一テ ル系化合物 と ポ リ アルキ レ ン グ リ コール系化合物のマ レ ィ ン酸エス テル との共重合体ま たはその塩  (C) Polyalkyleneglycol -—Lumono (meta) arylester compound and polyalkyleneglycol compound with maleic ester Coalescence or its salt
と を特定比率で含有するセ メ ン ト 分散剤が開示さ れてお り 、 この分散剤は、 セ メ ン ト組成物の減水性改善 とス ラ ン プロ ス 抑制性お よび粘性低減に有効であ る こ とが明 ら かにされてい る。 A cement dispersant containing a specific ratio of and is disclosed, and this dispersant is effective for improving the water reduction of the cement composition, suppressing slanpros and reducing the viscosity. It has been clarified that this is the case.
しか しなが ら 本発明者 ら が確認 した と こ ろ では、 これ ら公 知のセ メ ン ト混和剤は、 流動性お よびス ラ ン プロ ス抑制性に おいて必ず し も 満足 し得る ものではな く 、 特に最近における 需要者の要求を満たすには、 更な る高性能化が求め ら れる。 However, it has been confirmed by the present inventors that these known cement admixtures have poor fluidity and slanpros inhibitory properties. However, it is not always satisfactory, and in order to meet the recent demands of consumers, further higher performance is required.
本発明は上記の様な事倩に着 目 して なされた も のであ って その 目的は、 前述した様な従来のセ メ ン ト 混和剤を凌駕する 優れた流動性改善効果 とス ラ ン プロ ス抑制性を備えたセ メ ン ト 混和剤を提供 し、 ひいて は、 該混和剤が配合さ れた高性能 のセ メ ン ト 組成物を提供 し、 更には、 該組成物を用いた高性 能のセ メ ン ト構造物を提供する こ と にある 。 発明の開示 本発明のセメ ン ト混和剤は、 固形分換算で、  The present invention has been made in view of the above-mentioned problems, and its object is to provide an excellent fluidity improving effect and slanting effect which are superior to the conventional cement admixture as described above. Provided is a cement admixture having a process-suppressing property, and further provides a high-performance cement composition containing the admixture, and further uses the composition. The purpose of the present invention is to provide a high-performance cement structure. DISCLOSURE OF THE INVENTION The cement admixture of the present invention has a solid content equivalent of:
リ グニ ンスルホン酸塩 [ I ] : 5 0 - 8 0 重量部 と、  Lignin sulfonate [I]: 50-80 parts by weight,
(a)ひ, 不飽和カルボン酸及び/又はその塩類 : 4 0 〜 8 3 重量部、  (a) H, unsaturated carboxylic acid and / or salts thereof: 40 to 83 parts by weight,
( b ) (メ タ ) アク リ ル酸エステル (但 し、 ヒ ド ロ キシアル キルエステルを除 く ) : 1 0 〜 3 0 重量部、 および (b) (meta) acrylic acid ester (excluding hydroxyalkyl ester): 10 to 30 parts by weight, and
( c ) (メ タ ) アク リ ル酸の ヒ ド ロ キシアルキルエステル : 7〜 5 0 重量部 (c) (Meth) hydroxyalkyl ester of acrylic acid: 7 to 50 parts by weight
[但 し、 (a),(b), (c)の合計は 1 0 0 重量部 ]  [However, the sum of (a), (b) and (c) is 100 parts by weight]
を単量体成分とする共重合体 [II] : 5 0〜 2 0 重量部 と を含有する と こ ろ に要旨があ る 。  There is a gist in that the copolymer [II] containing 50 to 20 parts by weight of is a monomer component.
本発明の上記共重合体を構成する (c)の (メ タ ) アク リ ル 酸の ヒ ド ロ キシアルキルエステル と して特に好ま しいのは、 アルキル部分の炭素数が 2 〜 4 であ る ヒ ド ロ キシアルキルェ ステルであ り 、 ま た( b )の (メ タ ) アク リ ル酸エステル と し て特に好ま しいのは、 炭素数 1 〜 4 のアル力 ノ ールの (メ 夕 ) アク リ ル酸エステルであ る 。 Particularly preferred as the (meth) hydroxyalkyl ester of (meth) acrylic acid constituting the copolymer of the present invention is an alkyl moiety having 2 to 4 carbon atoms. Hydroxyalkyl esters and (b) particularly preferred as the (meth) acrylic acid ester are those having 1 to 4 carbon atoms in the form of allyl alcohol. E: It is an acrylate ester.
そ して、 上記セ メ ン ト 混和剤の配合されたセ メ ン ト組成物— は、 流動性やス ラ ン プロ ス抑制性の著 し く 改善さ れた も の と して 本発明の対象と な り 、 更にその硬化物であ る セ メ ン ト構 造物も 本発明の対象と なる 。 発明を実施する ための最良の形態 本発明者 ら は前述 した様な課題の下で、 特にセ メ ン ト 組成 物の流動性およびス ラ ン プロ ス抑制性の一層の改善を期 して 鋭意研究を重ねた結果、 リ グニ ンス ルホ ン酸塩と特定組成の 共重合体を含むセ メ ン ト混和剤を使用 すれば、 上記課題が見 事に達成で き る こ と を見出 し、 本発明を完成 した。  The cement composition containing the above-mentioned cement admixture has a remarkably improved fluidity and slanproth-inhibiting property, and has a remarkable improvement in the present invention. The present invention is also applicable to a cement structure, which is a cured product thereof. BEST MODE FOR CARRYING OUT THE INVENTION Under the above-mentioned problems, the present inventors have earnestly aimed at further improving the fluidity and the slanth process inhibiting property of a cement composition. As a result of repeated research, it was found that the use of a cement admixture containing a lignin sulfonate and a copolymer of a specific composition can achieve the above-mentioned tasks brilliantly. Thus, the present invention has been completed.
こ こで リ グニ ンスルホン酸塩は、 天然パルプ原料中に通常 Here, lignin sulfonate is commonly found in natural pulp raw materials.
5 0〜 6 0 %程度含ま れる天然高分子 (分子量は数百か ら数 百万に分布する と いわれて い る ) であ り 、 その種類は、 処理 法の違い に よ っ て一般 リ グニ ン と 高性能 リ グニ ン に分類され て い る。 It is a natural macromolecule (molecular weight is said to be distributed from hundreds to millions) contained in about 50 to 60%, and its type depends on the treatment method. Nin and high performance lignin.
一般 リ グニ ン に分類される リ グニ ンスルホ ン酸塩は、 亜硫 酸パルプ製造時の蒸解溶出液を脱糖処理する こ と に よ っ て得 ら れる も ので、 平均分子量 ( M w ) は 10,000 以下 (通常は 6, 000〜8, 000程度) と いわれてい る 。 ま た高性能 リ グニ ン に分類される リ グニ ンスルホ ン酸塩は、 上記蒸解溶出液あ る いはその脱糖処理液を、 高分子フ ラ ク シ ョ ン と低分子フ ラ ク シ ヨ ン に分画 し た中の高分子フ ラ ク シ ョ ン部分であ り 、 平均 分子量 ( M w ) は 10, 000 以上 (通常は 10, 000〜 20, 000程 度) と いわれてお り 、 これ ら リ グニ ンスルホ ン酸塩は、 脱糖 処理法の違いに よ っ て M g ' N a塩、 N a塩、 C a塩に大別 される。 Lignin sulfonate, which is classified as general lignin, is obtained by desugaring the digested effluent from sulphite pulp production, and has an average molecular weight (Mw). ) Is said to be 10,000 or less (usually about 6,000 to 8,000). Lignin sulfonate, which is classified as a high-performance lignin, can be used for the above-mentioned digestion eluate or its desaccharified solution by converting it into a high-molecular fraction and a low-molecular fraction. It is a high-molecular fraction portion of fractionated fractions and has an average molecular weight (M w) of 10,000 or more (usually about 10,000 to 20,000). In fact, these lignin sulfonates are desugared. They are roughly classified into Mg'Na salt, Na salt, and Ca salt according to the difference in the treatment method.
本発明では、 上記金属塩の種類や一般 リ グニ ンお よび高性 能 リ グニ ン の如何を問わず有効に利用で き る が、 流動性ゃス ラ ン プロ ス抑制性を高める う えで特に好ま しいのは高性能 リ グニ ンであ る。  In the present invention, the metal salt can be effectively used irrespective of the type of the metal salt, general lignin, and high-performance lignin. Especially preferred are high performance lignins.
次に、 上記 リ グニ ンスルホ ン酸塩と併用 さ れる共重合体は 前述の如 く 、 ひ, ?—不飽和カルボン酸および/ま たはその 塩類( a )と (メ タ ) アク リ ル酸エステル( b )お よび (メ タ ) ァ ク リ ル酸の ヒ ド ロ キシアルキルエステル( c )を必須のモ ノ マ 一成分と して含む共重合体であ る 。  Next, as described above, the copolymer used in combination with the ligninsulfonate may be, as described above, a polyunsaturated carboxylic acid and / or a salt thereof (a) and (meta) acrylic acid. It is a copolymer containing an acid ester (b) and a hydroxyalkyl ester of (meth) acrylic acid (c) as an essential monomer component.
ひ, ? _不飽和カルボン酸成分( a )と しては、 例えば (メ 夕 ) アク リ ル酸、 ク ロ ト ン酸な どの不飽和モ ノ カルボン酸 ; ィ タ コ ン酸、 フ マル酸、 マ レ イ ン酸、 シ ト ラ コ ン酸な どの不 飽和ジカルボン酸、 お よびそれ ら の半エス テル等が挙げ られ ま たその塩類と して は、 アルカ リ 金属塩、 アルカ リ 土類金属 塩、 ア ンモニゥ ム塩、 有機ア ミ ン塩な どが例示さ れる 。  Examples of the unsaturated carboxylic acid component (a) include (mono) unsaturated monocarboxylic acids such as acrylic acid and crotonic acid; itaconic acid and fumaric acid. And unsaturated dicarboxylic acids such as maleic acid and citraconic acid, and their semi-esters, and the salts thereof include alkali metal salts and alkaline earth metals. Examples include metal salts, ammonium salts, and organic amine salts.
こ れら は単独で使用 し得る ほか、 必要に よ り 2 種以上を適 宜併用する こ と がで き る 。 その使用比率は、 共重合体を構成 する全モ ノ マ一成分 1 0 0 重量部中に 占める比率で、 ひ, β 一不飽和カルボン酸換算で 4 0 〜 8 3 重量部の範囲 とすべき であ る。 4 0 重量部未満では十分なス ラ ン プロ ス抑制効果が 得 ら れず、 ま た 8 3 重量部を超え る とセ メ ン ト組成物の空気 連行性が乏 し く な る 。 ス ラ ン プ性やス ラ ン プロ ス抑制効果 と 空気連行性を両立させる う えで、 該 ひ, 5—不飽和カルボン 酸及び/又はその塩類( a )の よ り 好ま しい下限は 6 0 重量部、 よ り 好ま しい上限は 7 5 重量部であ る 。 次に (メ タ ) アク リ ル酸エステル(b )と しては、 好ま し く は炭素数が 1 〜 4 のアルカ ノ 一ルのエステル、 具体的には ― (メ タ ) アク リ ル酸メ チル、 (メ タ ) アク リ ル酸ェチル、 (メ タ ) ァク リ ノレ酸 n _ プチル、 (メ タ ) アク リ ル酸 i — ブ チル、 (メ タ ) アク リ ル酸 t 一 ブチル等が挙げら れ、 こ れら も 単独で使用 し得る他、 必要に よ り 2 種以上を併用で き る。 該 (メ タ ) アク リ ル酸エステル( b )の配合量は、 共重合体 を構成する全モ ノ マー成分 1 00 重量部中に 占める比率で 1 ◦ 〜 3 0 重量部の範囲であ り 、 1 0 重量部未満では流動性ゃス ラ ン プロ ス抑制性が乏 し く な り 、 ま た 3 0 重量部を超え る と 混和剤の親水性が低下 してセ メ ン ト と の混和性に欠け る も の と な る 。 該 (メ タ ) アク リ ル酸エステル(b )の配合量の よ り 好ま しい下限は 1 0 重量部、 よ り 好ま しい上限は 2 5 重量部 であ る。 These can be used alone or, if necessary, in combination of two or more. The use ratio is the ratio occupying in 100 parts by weight of all monomers constituting the copolymer and should be in the range of 40 to 83 parts by weight in terms of β, β-unsaturated carboxylic acid. It is. If the amount is less than 40 parts by weight, a sufficient slanpros inhibitory effect cannot be obtained, and if it exceeds 83 parts by weight, the air entrainment of the cement composition becomes poor. The preferred lower limit of the 5-unsaturated carboxylic acid and / or its salt (a) is 60% in order to achieve both the slumping property and the effect of suppressing slanpros and air entrainment. Parts by weight, a more preferred upper limit is 75 parts by weight. Next, the (meth) acrylic acid ester (b) is preferably an ester of an alkanol having 1 to 4 carbon atoms, specifically,-(meth) acrylic acid Methyl, (meth) ethyl acrylate, (meth) acrylic acid n_butyl, (meth) acrylic acid i-butyl, (meta) t-butyl acrylate These can be used alone, or two or more of them can be used in combination as needed. The compounding amount of the (meth) acrylic acid ester (b) is in the range of 1 ° to 30 parts by weight based on 100 parts by weight of all monomer components constituting the copolymer. If the amount is less than 10 parts by weight, the ability to inhibit flowability and slanpros becomes poor, and if the amount exceeds 30 parts by weight, the hydrophilicity of the admixture decreases, and the admixture with cement becomes poor. It lacks gender. A more preferred lower limit of the amount of the (meth) acrylic acid ester (b) is 10 parts by weight, and a more preferred upper limit is 25 parts by weight.
ま た (メ タ ) アク リ ル酸の ヒ ド ロ キシアルキルエステル ( c )と して は、 好ま し く は炭素数 2 〜 4 のアルキルエステル か ら な る も ので、 例えば 2 — ヒ ド ロ キシェチル (メ タ ) ァク リ レー ト 、 2 — ヒ ド ロ キシプロ ビル (メ タ ) ァク リ レー ト、 3 — ヒ ド ロ キシ プロ ピル (メ タ ) ァク リ レー ト 、 2 — ヒ ド ロ キシ ブチル (メ タ ) ァク リ レー ト 、 3 — ヒ ド ロ キシブチル (メ タ ) ァク リ レー ト 、 4 ー ヒ ド ロ キシブチル (メ タ ) ァク リ レー ト 、 3 — ク ロ 口 一 2 — ヒ ド ロ キシプロ ピル (メ タ ) ァ ク リ レー ト 等が挙げ ら れる 。 こ れ ら も 単独で使用 し得る他、 2 種以上を併用する こ とがで き る 。  The (alkyl) hydroxyalkyl ester (c) of (meth) acrylic acid is preferably an alkyl ester having 2 to 4 carbon atoms, for example, 2-hydroxy. Kishetil (meta) acrylate, 2—hydroxypropyl (meta) acrylate, 3—hydroxypropyl (meta) acrylate, 2—hid Roxybutyl (meta) acrylate, 3—Hydroxybutyl (meta) acrylate, 4-Hydroxybutyl (meta) acrylate, 3—Cross mouth 1-2—Hydroxypropyl (meta) acrylate. These can be used alone, or two or more can be used in combination.
その配合量は、 共重合体を構成する全モ ノ マー成分 1 00 重 量部中に 占める比率で ? 〜 5 0 重量部の範囲であ り 、 7 重量 部未満ではセ メ ン ト との濡れ性が乏 し く な っ て分散性が悪 く な り 、 ま た 5 0 重量部を超え る と ス ラ ン プロ ス抑制効果が悪 化する ばか り でな く 、 空気連行性が高 く な り 過ぎ るので好ま— し く ない。 (メ タ ) アク リ ル酸の ヒ ド ロ キシアルキルエステ ル(c )のよ り 好ま しい配合量の下限は 7 重量部、 よ り 好ま し い上限は 3 0 重量部であ る 。 What is the blending amount in terms of the proportion occupied in 100 parts by weight of all monomer components constituting the copolymer? It is in the range of 50 to 50 parts by weight. If the amount is less than 7 parts by weight, wettability with cement becomes poor and dispersibility is poor. On the other hand, if the amount exceeds 50 parts by weight, the slam prosthesis suppressing effect is not only deteriorated, but also the air entrainment becomes too high, which is not preferable. The lower limit of the more preferred amount of the hydroxyalkyl ester (c) of (meth) acrylic acid is 7 parts by weight, and the more preferable upper limit is 30 parts by weight.
こ れら の単量体を用いて共重合体を製造する方法は特に制 限さ れないが、 最も 一般的なのはラ ジカル重合法であ り 、 中 で も 溶液重合法が好ま しい。 反応溶剤 と して は安全性や無害 性の観点か ら水を使用する のが よ い。  The method for producing a copolymer using these monomers is not particularly limited, but the most common method is a radial polymerization method, and among them, a solution polymerization method is preferable. As a reaction solvent, it is preferable to use water from the viewpoint of safety and harmlessness.
ラ ジカル重合開始剤 と して は、 例えば過酸化ベ ンゾィ ル、 t ー ブチルバ一ォキシベンゾィ ル等の過酸化物、 あ る いはァ ゾ ビスィ ソ ブチ ロ ニ ト リ ルに代表される ァゾ化合物、 更には 過硫酸ア ンモニ ゥム、 過硫酸カ リ ウ ム、 過硫酸ソーダ等の過 硫酸塩な ど、 モ ノ マーの種類に応 じて適宜選択 して使用する こ と がで き る。 重合反応は、 常圧 も し く は加圧下に通常 5 0 〜 1 5 0 °Cの範囲、 好ま し く は常圧下に 5 0 〜 1 0 0 °Cで行なわれ る 。  Examples of the radical polymerization initiator include peroxides such as benzoyl peroxide and t-butyl benzoyl benzoyl, and azo compounds represented by azobisisobutyronitrile. Further, it can be appropriately selected and used depending on the type of the monomer, such as ammonium persulfate, potassium persulfate, and persulfate such as sodium persulfate. The polymerization reaction is carried out at normal pressure or under pressure, usually in the range of 50 to 150 ° C, preferably at 50 to 100 ° C under normal pressure.
得 ら れる共重合体は、 それ単独で も セ メ ン ト混和剤 と して 優れた流動性と ス ラ ン プロ ス抑制性を示すが、 本発明者 ら が 確認 した と こ ろ に よ る と、 該共重合体を適量の リ グニ ンスル ホ ン酸塩と併用する と、 セ メ ン ト 混和剤 と しての改質効果が 一段と高め ら れる こ と を知 っ た。 そ して こ う した併用効果を 有効に発揮させる には、 前記共重合体と リ グニ ンスルホ ン酸 塩を重量比率で 5 0 〜 2 0 : 5 0 〜 8 0 、 よ り 好ま し く は 3 5 〜 2 0 : 6 5 〜 8 ◦ の比率で併用 しなければな ら ず、 一 方が多過ぎて も 又少な過ぎて も、 本発明で意図す る優れた改 質効果を得る こ と がで きない。 ち なみに、 上記共重合体の配合比率が多過ぎる ( リ グニ ン スルホ ン酸塩の配合比率が不足する ) 場合は、 ス ラ ン プロ ス— 抑制効果の持続性が悪 く な り 、 後記実施例で も 明 ら かにする 様に、 練 り 上が り か ら 3 0 分程度経過する ま では優れたス ラ ン プロ ス抑制効果を発揮するが、 6 0 分程度以上経過する と ス ラ ンプロ ス抑制効果が低下 して く る 。 The obtained copolymer alone exhibits excellent fluidity and slanpros-suppressing properties as a cement admixture, but it has been confirmed by the present inventors. It was also found that when the copolymer is used in combination with an appropriate amount of lignin sulfonate, the modifying effect as a cement admixture is further enhanced. In order to effectively exert such a combined effect, the copolymer and lignin sulfonate are preferably in a weight ratio of 50 to 20: 50 to 80, more preferably 50 to 80. It must be used together at a ratio of 35 to 20:65 to 8 °, and even if the ratio is too large or too small, the excellent modification effect intended by the present invention can be obtained. I can't do it. By the way, if the blending ratio of the above copolymer is too large (the blending ratio of lignin sulfonate is insufficient), the slanpros-suppressive effect becomes less persistent, As will be apparent from the examples described later, an excellent slanpros inhibitory effect is exhibited until about 30 minutes elapse from the kneading, but after about 60 minutes elapses. The effect of suppressing slanpros decreases.
一方、 リ グニ ンスルホン酸塩の配合比率が多過ぎ る (上記 共重合体の配合比率が不足する ) 場合も、 同様にス ラ ン プ口 ス抑制性の持続効果が低下 し、 一般 リ グニ ン では練 り 上が り か ら 3 0 分程度の経過でス ラ ン プロ ス抑制性が低下 し、 高性 能 リ グニ ン を併用 した場合で も、 6 0 分程度以上経過する と ス ラ ンプロ ス抑制効果が低下 して く る 。  On the other hand, if the blending ratio of the lignin sulfonate is too large (the blending ratio of the above copolymer is insufficient), the sustaining effect of the suppression of the slump is similarly reduced, and the general rig is not used. In garlic, slanproth inhibitory properties decrease about 30 minutes after kneading, and even when high-performance lignin is used together, it takes about 60 minutes or more. The effect of suppressing slanpros decreases.
上記の様に本発明では、 モ ノ マー組成の特定された前記共 重合体と リ グニ ンスルホン酸塩を特定比率で配合 した と こ ろ に特徴を有 して いる が、 本発明者 ら が更に検討を行なっ た と こ ろ に よ る と、 上記共重合体に代えて、 前記特開平 7 — 2 6 7 7 0 5 号公報に開示されたセ メ ン ト 分散剤を使用 し、 あ る いは リ グニ ンスルホ ン酸塩に代えて グルコ ン酸塩な どのォキ シ有機酸塩を使用 した場合で も、 かな り優れた性能のセ メ ン ト混和剤 とな り 得る こ とが確認されたので、 以下、 それら に ついて も説明を加え る。  As described above, the present invention is characterized in that the copolymer having a specified monomer composition and ligninsulfonate are blended at a specific ratio. According to further studies, the cement dispersant disclosed in JP-A-7-267705 was used in place of the above-mentioned copolymer. Even when oxyorganic acid salts such as gluconate are used in place of ligninsulfonate, it can be a very good cement admixture. Since they were confirmed, they will be explained below.
ま ず、 リ グニ ンスルホン酸塩に代えて使用する こ とので き る グルコ ン酸塩な どのォキシ有機酸塩は、 それ自身セ メ ン ト 用減水剤 と して有効に作用する こ と が公知であ る が、 該ォキ シ有機酸塩を リ グニ ンスルホ ン酸塩に代えて前述 した共重合 体と併用する こ と に よ つて も、 セ メ ン ト混和剤 と して優れた 性能が発揮される。 該ォキシ有機酸、 特に グルコ ン酸塩を前記共重合体と併用 する と きの好ま しい配合比率は、 重量比で好ま し く は前記共— 重合体 : 2 0 〜 7 5 重量部に対 し、 グルコ ン酸塩 : 8 0 〜 2 5 重量部、 よ り 好ま し く は 5 0 〜 2 5 重量部の範囲であ る ま た、 前記共重合体に代えて使用する こ とので き る特開平 7 - 2 6 7 7 0 5 号公報に開示されたセ メ ン ト分散剤は、 (Α)成分と して、 ポ リ アルキ レ ン グ リ コ一ルモ ノ (メ 夕 ) ァ ク リ ル酸エステル系化合物 と (メ タ ) アク リ ル酸系化合物 と の共重合体お よび/ま たはその塩、 (Β)成分 と して ポ リ アル キ レ ン グ リ コールモ ノ (メ タ ) ァ リ ルエーテル系化合物 と無 水マ レ イ ン酸と の共重合体およびその塩も し く は加水分解物 (C)成分と して、 ポ リ アルキ レ ン グ リ コ ールモ ノ (メ タ ) ァ リ ルェ一テル系化合物 と、 ポ リ アルキ レ ン グ リ コ ール系化合 物のマ レ イ ン酸エステルとの共重合体を、 好ま し く は(Α), (Β), ( C) 成分を 5 〜 4 0 : 3 0 〜 7 0 : 5 ~ 4 0 (重 量% ) の比率で配合 し た も のであ り 、 こ のセ メ ン ト 分散剤と リ グニ ンスルホ ン酸塩を 5 0 〜 2 0 : 5 0 〜 8 0 の重量比率 で併用する こ と に よ つ て も、 流動性 とス ラ ン プロ ス抑制性に 優れたセ メ ン ト 混和剤を得る こ と がで き る 。 First, oxyorganic acid salts such as gluconate, which can be used in place of lignin sulfonate, can themselves effectively act as a cement reducer. Although it is known, the use of the oxyorganic acid salt in combination with the above-mentioned copolymer in place of lignin sulfonate is also excellent as a cement admixture. Performance is demonstrated. When the oxyorganic acid, particularly gluconate, is used in combination with the copolymer, a preferable blending ratio is in a weight ratio, preferably 20 to 75 parts by weight of the copolymer. Gluconate: 80 to 25 parts by weight, more preferably 50 to 25 parts by weight, and it can be used in place of the copolymer. The cement dispersant disclosed in Kaihei 7-2670705 discloses a polyalkylene glycol mono (meth) acryl as a component (I). Copolymer of acid ester compound and (meth) acrylic acid compound and / or salt thereof, (II) Polyalkylene glycol mono (meta) As a copolymer of an aryl ether compound and anhydrous maleic acid and its salt or hydrolyzate (C), polyalkyl Preferable is a copolymer of a glycol alcohol (meta) alcohol compound and a maleic acid ester of a polyalkylene glycol compound. (Α), (Β), (C) The components were blended at a ratio of 5 to 40: 30 to 70: 5 to 40 (% by weight). The combination of a dispersant and lignin sulfonate in a weight ratio of 50 to 20: 50 to 80 also provides a fluid with excellent fluidity and slanpros inhibitory properties. A ment admixture can be obtained.
上記 (Α)成分と して好ま しいのは、 下記一般式 [1]で示さ れる ポ リ アルキ レ ン グ リ コールモ ノ (メ タ ) アク リ ル酸エス テル系化合物と、 下記一般式 [2]で示さ れる (メ タ ) ァク リ ル酸系化合物と の共重合体ま たはその塩であ る。  The preferred component (ii) is a polyalkylene glycol mono (meth) acrylic acid ester compound represented by the following general formula [1]: ] Or a salt thereof with a (meth) acrylic acid-based compound or a salt thereof.
R1 R 1
CH2 =C-C-0- 0) n -R3 …… [1] 0 CH 2 = CC-0- 0) n -R 3 …… [1] 0
(式中、 R 1 は水素 ま たはメ チル基を表わ し、 R 2 は炭素 数 2 〜 4 のアルキ レ ン基を表わ し、 R 3 は水素ま たは炭 素数 1 〜 5 のアルキル基を表わ し、 nは 1 〜 ; L 0 0 の整 数を表わす) (Wherein, R 1 represents hydrogen or a methyl group, and R 2 represents carbon Represents an alkylene group of the formulas 2 to 4, R 3 represents hydrogen or an alkyl group of 1 to 5 carbon atoms, and n represents an integer of 1 to L 0.
,4  ,Four
CH 二 C一 COOX [2] CH 2 C-1 COOX [2]
(式中、 R 4 は水素ま たはメ チル基を表わ し、 Xは水素、 一価金属、 二価金属、 アンモニゥ ム基ま たは有機ア ミ ン 基を表わす) (Wherein, R 4 represents hydrogen or a methyl group, and X represents hydrogen, a monovalent metal, a divalent metal, an ammonium group, or an organic amine group)
上記一般式 [ 1 ]における R 2で示される アルキ レ ン基は、 エチ レ ン基、 プロ ピ レ ン基、 プチ レ ン基等であ る が、 好ま し いのはエチ レ ン基、 プロ ピ レ ン基であ り 、 中で も 特に好ま し いのはエチ レ ン基であ る。 R 2 0の付加モル数 nは 1 〜 100 の範囲であれば如何な る整数で も よいが、 好ま し く は 1 ~ 5 0 、 更に好ま し く は 1 〜 3 0 の範囲であ る 。 ま た: R 3 は水 素 ま たは炭素数 1 〜 5 のアルキル基であ り 、 アルキル基と し てはメ チル基、 ェチル基、 プロ ピル基な どが挙げ られる 。 該 アルキル基と して好ま しいのは水素、 メ チル基、 ェチル基で あ り 、 中で も特に好ま しいのは水素、 メ チル基である 。 The alkylene group represented by R 2 in the above general formula [1] is an ethylene group, a propylene group, a butylene group, or the like, and is preferably an ethylene group, a propylene group, or the like. A pyrene group is particularly preferred, and an ethylene group is particularly preferred. The number n of added moles of R 20 may be any integer as long as it is in the range of 1 to 100, preferably 1 to 50, and more preferably 1 to 30. R 3 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. Preferred as the alkyl group are hydrogen, a methyl group, and an ethyl group, and particularly preferred are a hydrogen and a methyl group.
(A)成分を構成する上記一般式 [1]で示さ れる成分と一般式 [2]で示される成分の共重合比率は、 一般式 [1]で示される成 分 : 1 0 〜 9 5 重量% に対 して一般式 [2]で示される成分 : 9 0 〜 5 重量%の範囲であ り、 よ り 好ま し いのは前者 : 5 0 〜 9 0 重量%対後者 5 0 〜 1 0 重量%、 更に好ま し く は前 者 : 6 0 〜 9 0 重量%対後者 4 0 〜 1 0 重量% (但 し、 両者 の合計は 100重量%であ る ) の範囲であ る 。  The copolymerization ratio of the component represented by the general formula [1] and the component represented by the general formula [2] constituting the component (A) is as follows: the component represented by the general formula [1]: 10 to 95 wt. % Of the component represented by the general formula [2]: 90 to 5% by weight, and more preferably the former: 50 to 90% by weight to the latter 50 to 10% by weight. % By weight, and more preferably the former: 60 to 90% by weight, and the latter 40 to 10% by weight (the total of both is 100% by weight).
該(A)成分の好ま しい分子量は、 重量平均分子量で 2, 000 〜 1 0 万、 よ り 好ま し く は 5,000〜 7 万、 更に好ま し く は 1 万〜 5 万であ る 。 ― 次に前記( B )成分は、 下記一般式 [ 3 ]で示される ポ リ アルキ レ ン グ リ コールモ ノ (メ タ ) ァ リ ルエーテル系化合物 と、 無 水マ レ イ ン酸との共重合体およびその塩も し く は加水分解物 であ り 、 The preferred molecular weight of the component (A) is 2,000 in weight average molecular weight. ~ 100,000, more preferably 5,000-70,000, and even more preferably 10,000-50,000. -Next, the component (B) is a copolymer of a polyalkylene glycol mono (meth) aryl ether compound represented by the following general formula [3] and a water-free maleic acid. Coalesce and its salts or hydrolysates,
R5 R 5
CH2 =C-CH2 0- (R6 0) m -R7 …… [3] 0 CH 2 = C-CH 2 0- (R 6 0) m -R 7 …… [3] 0
(式中、 R 5 は水素 ま たはメ チル基を表わ し、 R 6 は炭素 数 2 〜 4 のアルキ レ ン基を表わ し、 R 7 は水素ま たは炭 素数 1 〜 5 のアルキル基を表わ し、 mは 1 〜 100 の整数 を表わす) (Wherein, R 5 represents hydrogen or a methyl group, R 6 represents an alkylene group having 2 to 4 carbon atoms, and R 7 represents a hydrogen or methyl group having 1 to 5 carbon atoms. Represents an alkyl group, and m represents an integer of 1 to 100)
上記一般式 [ 3 ]における R 6で示される アルキ レ ン基はェ チ レ ン基、 プロ ピ レ ン基、 ブチ レ ン基などであ る が、 好ま し いのはエチ レ ン基、 プロ ピ レ ン基であ り 、 中で も特に好ま し いのはエチ レ ン基であ る。 R 6 0 の付加モル数 mは 1 〜 100 の範囲であれば如何な る整数で も よいが、 好ま し く は 2 〜 5 0 、 更に好ま し く は 5 〜 5 0 の範囲である 。 ま た R 7 は水素 ま たは炭素数 1 〜 5 のアルキル基であ り 、 アルキル基 と して はメ チル基、 ェチル基、 プロ ピル基な どが挙げら れる 。 該ァ ルキル基と して好ま しいのは水素、 メ チル基、 ェチル基であ り 、 中で も特に好ま しいのはメ チル基であ る 。 The alkylene group represented by R 6 in the above general formula [3] is an ethylene group, a propylene group, a butylene group, and the like, but preferred are an ethylene group and a propylene group. A pyrene group is particularly preferred, among which an ethylene group is preferred. The number m of added moles of R 60 may be any integer as long as it is in the range of 1 to 100, preferably in the range of 2 to 50, and more preferably in the range of 5 to 50. R 7 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. Preferred as the alkyl group are hydrogen, a methyl group, and an ethyl group, and particularly preferred is a methyl group.
該一般式 [3]で示さ れる成分と無水マ レ イ ン酸 との共重合 比率は、 前者 3 0 〜 9 9 重量%対後者 7 0 〜 1 重量%、 よ り 好ま し く は前者 5 0 〜 9 8 重量%対後者 5 0 〜 2 重量%、 更 に好ま し く は前者 8 0 〜 9 8 重量%対後者 2 0 〜 2 重量% (但 し、 両者の合計は 100 重量%であ る ) の範囲であ る 。 該(B)成分の好ま しい分子量は、 重量平均分子量で 2,000 〜 1 0 万、 よ り 好ま し く は 3,000〜 6 万、 更に好ま し く は 5 , 000〜 4 万であ る。 The copolymerization ratio of the component represented by the general formula [3] to maleic anhydride is 30 to 99% by weight of the former to 70 to 1% by weight of the latter, more preferably 50 to 100% by weight of the former. ~ 98 wt% vs. the latter 50 ~ 2 wt%, more preferably the former 80 ~ 98 wt% vs. the latter 20 ~ 2 wt% (However, the total of both is 100% by weight). The preferred molecular weight of the component (B) is from 2,000 to 100,000, more preferably from 3,000 to 60,000, and even more preferably from 5,000 to 40,000 in terms of weight average molecular weight. .
前記(C)成分は、 上記一般式 [3]と 同 じ一般式で示される ポ リ アリレキ レ ン グ リ コーリレモ ノ (メ タ ) ァ リ リレエ一テル系化合 物と、 下記一般式 [4]で示される ポ リ アルキ レ ン グ リ コール 系化合物のマ レ イ ン酸エス テル と の共重合体ま たはその塩で め る 。  The component (C) is composed of a poly (ethylene glycol) copolymer (meta) aryliether ether compound represented by the same general formula as the above general formula [3], and the following general formula [4] A copolymer of a polyalkylene glycol compound represented by the following formula with maleic acid ester or a salt thereof.
R 8 0 - ( R 9 0 ) P- H…… [4] R 8 0-(R 9 0) P-H …… [4]
(式中、 R 8 は水素 ま たは炭素数 1 〜 5 のアルキル基を表 わ し、 R 9 は炭素数 2 〜 4 のアルキ レ ン基を表わ し、 p は 1 〜 100 の整数を表わす) (In the formula, R 8 represents hydrogen or an alkyl group having 1 to 5 carbon atoms, R 9 represents an alkylene group having 2 to 4 carbon atoms, and p is an integer of 1 to 100. Express)
該(C)成分を製造する際に使用さ れる前記一般式 [3]で示さ れる ポ リ アリレキ レ ン グ リ コ ール(メ タ )ァ リ ソレエーテル系化合 物において、 置換基 R 6で示される アルキ レ ン基はエチ レ ン 基、 プロ ピ レ ン基、 プチ レ ン基な どであ る が、 好ま しいのは エチ レ ン基、 プロ ピ レ ン基であ り 、 中で も 特に好ま しいのは エチ レ ン基であ る 。 1 6 0 の付加モル数 111は 1 〜 100 の範囲 であれば如何な る整数で も よいが、 好ま し く は 2 〜 5 0 、 更 に好ま し く は 5 〜 5 0 の範囲であ る 。 ま た R 7 は水素ま たは 炭素数 1 〜 5 のアルキル基であ り 、 アルキル基と して はメ チ ル基、 ェチル基、 プロ ピル基な どが挙げら れる が、 好ま しい のは水素、 メ チル基、 ェチル基であ り 、 中で も特に好ま しい のはメ チル基であ る 。 In the poly (ethylene glycol) (meta) aryl sole ether compound represented by the general formula [3] and used for producing the component (C), the substituent R 6 The alkylene group shown is, for example, an ethylene group, a propylene group, or a butylene group, and the preferred one is an ethylene group, a propylene group, and among them. Particularly preferred is an ethylene group. 1 6 0 additional molar number 111 may be a that of how integer in the range of 1 to 100. However, preferred and rather 2-5 0, rather then favored further the area by der of 5-5 0 . R 7 is hydrogen or an alkyl group having 1 to 5 carbon atoms, and examples of the alkyl group include a methyl group, an ethyl group, and a propyl group. Hydrogen, a methyl group, and an ethyl group are particularly preferable, and a methyl group is particularly preferable.
前記一般式 [4]で示される ポ リ アルキ レ ン グ リ コ ール系化 合物における置換基 R 8は、 水素 ま たは炭素数 1 〜 5 のアル キル基であ り 、 アルキル基と して はメ チル基、 ェチル基、 プ 口 ピルキ基などが挙げ ら れるが、 好ま し く は水素、 メ チル基 ェチル基であ り 、 中で も特に好ま しいのは水素、 メ チル基で あ る 。 R 9 で示さ れる アルキ レ ン基は、 エチ レ ン基、 プロ ピ レ ン基、 ブチ レ ン基な どであ り 、 好ま し く はエチ レ ン基、 プ ロ ビ レ ン基、 中で も特に好ま しいのはエチ レ ン基であ る 。 R 9 〇 の付加モル数 p は 1 〜 100 の範囲であれば如何な る整数 で も よいが、 好ま し く は 1 〜 5 0 、 更に好ま し く は 1 〜 3 0 の範囲であ る。 The substituent R 8 in the polyalkylene glycol-based compound represented by the general formula [4] is hydrogen or an alkyl having 1 to 5 carbon atoms. The alkyl group includes a methyl group, an ethyl group, a propyl group, and the like, and is preferably hydrogen, a methyl group, and an ethyl group, and particularly preferably. What is new is hydrogen and a methyl group. The alkylene group represented by R 9 is an ethylene group, a propylene group, a butylene group, or the like, preferably an ethylene group, a propylene group, or the like. Particularly preferred is an ethylene group. Addition molar number p of R 9 〇 may be in a how that integer in the range of 1 to 100. However, preferred and rather 1-5 0, rather further favored Ru der range of 1-3 0.
(C)成分を構成する上記一般式 [3]で示さ れる成分と一般式 [4]で示さ れる成分の共重合比率は、 一般式 [3]で示される成 分 : 1 〜 9 9 重量% に対して一般式 [4]で示される成分 : 9 9 ~ 1 重量%の範囲であればよいが、 よ り 好ま しいのは前 者 : 3 〜 9 7 重量%対後者 9 7 〜 3 重量%、 更に好ま し く は 前者 : 4 0 ~ 9 5 重量%対後者 6 0 〜 5 重量% (但 し、 両者 の合計は 100 重量%であ る ) の範囲であ る 。  The copolymerization ratio of the component represented by the general formula [3] and the component represented by the general formula [4] constituting the component (C) is as follows: the component represented by the general formula [3]: 1 to 99% by weight In contrast, the component represented by the general formula [4] may be in the range of 99 to 1% by weight, more preferably the former is 3 to 97% by weight and the latter is 97 to 3% by weight. More preferably, the former is in the range of 40 to 95% by weight, and the latter is in the range of 60 to 5% by weight (the total of both is 100% by weight).
該(C)成分の好ま しい分子量は、 重量平均分子量で 2,000 〜 1 0 万、 よ り 好ま し く は 5,000〜 7 万、 更に好ま し く は 1 万〜 5 万である 。  The preferred molecular weight of the component (C) is from 2,000 to 100,000, more preferably from 5,000 to 70,000, and even more preferably from 10,000 to 50,000 in weight average molecular weight.
上記各重合体の塩と して は、 ア ンモニ ゥ ム塩、 アルカ リ 金 属塩 (ナ ト リ ウ ム塩、 カ リ ウム塩な ど) 、 アルカ リ 土類金属 塩 (カルシ ウム塩、 マ グネ シ ウ ム塩な ど) が挙げ ら れる 。  Examples of the salts of the above polymers include ammonium salts, alkali metal salts (such as sodium salts and potassium salts), and alkaline earth metal salts (calcium salts and magnesium salts). Gnesium salt, etc.).
これら (A)〜(C)成分をセ メ ン ト 混和剤 と して使用する際は それら各成分を好ま しい配合比率でセ メ ン ト 組成物中へ配合 した り 、 あ るいは予め 3 成分を混合物 と して調製 してお き、 これをセメ ン ト 組成物に適量混合する こ と がで き る。 それら 3 成分の好ま しい配合比率は、 使用するセ メ ン ト組成物の配 合、 混和材料、 使用時の温度な どの条件に よ って異な るので 一律に規定する こ と はで き ないが、 好ま し く は各成分の固形 分比率で、 (A)成分 : 5 〜 4 0 重量%、 よ り 好ま し く は 3 〜 3 0 重量%、 (B)成分 : 3 0 〜 7 0 重量%、 よ り 好ま し く は 4 0 〜 6 5 重量%、 (C)成分 : 5 〜 4 0 重量%、 よ り 好ま し く は 5 〜 3 0 重量% ( 3 成分の合計は 100 重量% ) の範囲で あ る 。 更に、 ( A )成分 と ( B )成分の配合比率は固形分重量比で 2 : 8 〜 4 : 6 の範囲が好ま しい。 When these components (A) to (C) are used as a cement admixture, these components may be blended into the cement composition in a preferred blending ratio, or may be prepared by adding three components in advance. Is prepared as a mixture, and this can be mixed with a cement composition in an appropriate amount. The preferred mixing ratio of these three components depends on the distribution of the cement composition used. Since it depends on conditions such as the admixture material and the temperature at the time of use, it cannot be specified uniformly, but is preferably the solid content ratio of each component, and the component (A): 5 to 40% by weight, more preferably 3 to 30% by weight, component (B): 30 to 70% by weight, more preferably 40 to 65% by weight, component (C): It is in the range of 5 to 40% by weight, more preferably 5 to 30% by weight (the sum of the three components is 100% by weight). Further, the mixing ratio of the component (A) and the component (B) is preferably in the range of 2: 8 to 4: 6 in terms of solid content weight ratio.
上記(A)成分はセメ ン ト への分散性に非常に優れてお り 、 セ メ ン ト組成物の初期の流動性を高める機能を有 して い る が ス ラ ンプロ ス抑制性が乏 し く 、 ま たセ メ ン ト 組成物の粘性を 著 し く 高める傾向があ る ほか、 チ ク ソ ト ロ ピー性を与え るの で、 単独使用ではセ メ ン ト 混和剤 と しての適性を欠 く 。 ま た 上記(B)成分のセ メ ン 卜 への分散性は(A)成分ほど優れてお ら ず、 特に初期の流動性を高める の に時間がかかる 。 従っ て、 添加量を増加 して初期の流動性を高める と、 その後で経時的 に更に流動性が増 し、 セ メ ン ト 組成物が分離する などの問題 が生 じ る 。 特に水/セ メ ン ト 比率の小さ いセ メ ン ト組成物に 対 してはこ の現象が顕著に現われるので、 ( B )成分単独では やは り セ メ ン ト 混和剤 と しての適性を欠 く 。  The above-mentioned component (A) is extremely excellent in dispersibility in cement, and has a function of increasing the initial fluidity of the cement composition, but has a poor slanprose inhibitory property. In addition, it tends to markedly increase the viscosity of the cement composition and imparts thixotropy, so that it can be used alone as a cement admixture. Lack of aptitude. Further, the dispersibility of the component (B) in the cement is not as excellent as that of the component (A), and it takes time to increase the initial fluidity. Therefore, if the initial amount of fluidity is increased by increasing the amount of addition, the fluidity further increases over time thereafter, and problems such as separation of the cement composition may occur. In particular, since this phenomenon appears remarkably in a cement composition having a small water / cement ratio, the component (B) alone can be used as a cement admixture again. Lack of aptitude.
更に ( C )成分は、 ( B )成分よ り も 更にセ メ ン ト 分散性が劣 り 特に水/セ メ ン ト 比率の小さいセ メ ン ト 組成物に対して は、 添加量を増大 して も 初期に所要の流動性が得 られず、 ( B )成 分の場合と 同様経時的に流動性が増 し、 セ メ ン ト 組成物が分 離を起こ すな どの問題を生 じる 。  Further, the component (C) has a lower cement dispersibility than the component (B), and the addition amount is increased especially for a cement composition having a small water / cement ratio. Even at the beginning, the required fluidity cannot be obtained in the early stage, and (B) the fluidity increases over time as in the case of the component, causing problems such as separation of the cement composition. .
こ れ ら各成分がセ メ ン ト 組成物に与え る影響が異な る理由 は、 各成分の分子構造に起因する も の と推察される。 即ち初 期流動性を高める作用が異な る のは、 ( A )成分の様な ( メ 夕 ) アク リ ル酸系官能基を有する高分子の方が、 ( B ) , ( C )成— 分の様なマ レイ ン酸系の官能基を有する高分子よ り も セ メ ン ト粒子への吸着速度が速いため と考え ら れる 。 逆に吸着速度 が速い も のは、 その後の流動性保持能力が乏 し く 、 (B ) , ( C ) 成分の方が経時的な流動性保持能力を有 して い る 。 It is presumed that the reason why these components have different effects on the cement composition is due to the molecular structure of each component. That is the first The effect of increasing the initial fluidity is different in the case of a polymer having a (meth) acrylic acid functional group such as the component (A), as in the case of the components (B) and (C). This is probably because the adsorption rate to cement particles is higher than that of a polymer having a maleic acid functional group. Conversely, those having a high adsorption rate have poor fluidity retention ability thereafter, and the components (B) and (C) have fluidity retention ability over time.
上記混和剤の配合に よ っ てセ メ ン ト 組成物に粘性が与え ら れるのは、 混和剤がセ メ ン ト粒子へ吸着 して立体的結合を生 じ る ため と推察される が、 詳細は明 ら かでない。  It is presumed that the reason why the viscosity of the cement composition is given by the blending of the admixture is that the admixture adsorbs to the cement particles to form a steric bond. Details are not clear.
( A )成分使用 に比べて (B ), (C )成分使用でセ メ ン ト組成物 の粘性が低 く な るのは、 ( B ), ( C )成分の分子中のポ リ オキシ アルキ レ ン基が非常に親和性に優れて い る ため、 セ メ ン ト粒 子間に吸着 した混和剤に水分子が親和 し、 結果的にセ メ ン ト 粒子間の間隔が広げ ら れ、 セメ ン ト粒子の動的摩擦を低減 し て い る こ と も予測される。  The lower viscosity of the cement composition when using the components (B) and (C) than when using the component (A) is due to the polyoxyalkyl in the molecules of the components (B) and (C). Since the len group has a very high affinity, the water molecules have an affinity for the admixture adsorbed between the cement particles, and as a result, the distance between the cement particles is widened. It is also expected that the dynamic friction of cement particles is reduced.
何れに して も、 (A ), (B ) , ( C )成分を 夫々適量添加 したセ メ ン ト組成物の粘性は、 通常の水/セ メ ン ト 比率が大きい場 合にはあ ま り 変わ ら ないが、 該比率が小さ い場合は、 単位セ メ ン ト 量が多いためセ メ ン ト粒子の間隔が小さ く 、 上記理由 か ら粘性に与え る影響が顕著に現われる も の と思われる 。 こ の様な理由か ら 、 こ の混合物は、 水/セメ ン ト 比の小さ いセ メ ン ト組成物に適用する こ と に よ って その効果を一層効果的 に発揮させる こ とがで き る 。  In any case, the viscosity of the cement composition to which an appropriate amount of each of the components (A), (B), and (C) is added is generally sufficient when the water / cement ratio is large. However, when the ratio is small, the spacing between cement particles is small due to the large amount of unit cement, and the effect on viscosity is remarkably exhibited for the above-mentioned reason. Seem . For this reason, the mixture can be more effective when applied to cement compositions with a low water / cement ratio. Wear .
そ して、 上記(A ), (B ), (C )成分か ら な る混合物を、 前述 した共重合体 [ I I ]に代えて リ グニ ンスルホ ン酸塩 と併用する と、 本発明の 目 的であ る流動性 と ス ラ ン プロ ス抑制性の共に 改善されたセ メ ン ト 混和剤を得る こ と がで き る。 上記の様に本発明では、 前述 し た共重合体と リ グニ ンス ル ホン酸塩を併用する と こ ろ に特徴を有 して い る が、 更に該 ^ 重合体に代えて、 上記(A), (B), (C)成分の混合物を代用 し、 あ る いは リ グニ ンスルホ ン酸塩に代えて グルコ ン酸塩な どの ォキシ有機酸を使用する こ と に よ つて も、 改質効果の高いセ メ ン ト混和剤を得る こ とがで き る 。 When a mixture comprising the above components (A), (B) and (C) is used in combination with lignin sulfonate instead of the above-mentioned copolymer [II], the present invention provides It is possible to obtain a cement admixture with both improved flowability and improved slanproth control. As described above, the present invention is characterized in that the above-described copolymer and lignin sulfonate are used in combination, and the above-mentioned ( Alternatively, a mixture of components (A), (B) and (C) may be used, or by using an oxyorganic acid such as gluconate instead of ligninsulfonate. It is possible to obtain a cement admixture having a high reforming effect.
ま た本発明において は、 リ グニ ンスルホ ン酸塩の一部を グ ルコ ン酸塩等のォキシ有機酸塩に置き換えて使用 した り 、 あ る いは リ グニ ンスルホ ン酸塩に加えて更にォキシ有機酸塩を 付加的に添加する こ と も有効であ る。 同様に上記共重合体 [ I I]の一部を上記(A), (B), (C)成分の混合物に置 き換えて使 用 した り 、 あ る いは、 上記共重合体 [I I]に加えて上記(A), ( B ) , ( C )成分の混合物を付加的に添加する こ と も有効であ る 本発明に係る上記セ メ ン ト混和剤のセ メ ン ト に対する配合 量は、 セ メ ン ト 重量に対 して固形分比率の合計で 0.1〜 1.0 の範囲が好ま し く 、 よ り 好ま し く は 0.2〜 0.6 重量%の範囲 であ る 。 0.1 重量%未満ではセ メ ン ト 混和剤 と しての改質効 果が十分に発揮されず、 1.0重量%を超え る と、 骨材が分離 を起こ した り 或は硬化不良を起こ す原因にな る こ とがあ る 。  In the present invention, a part of ligninsulfonate is used by replacing it with an oxyorganic acid salt such as gluconate, or is used in addition to ligninsulfonate. It is also effective to additionally add a oxyorganic acid salt. Similarly, a part of the copolymer [II] may be replaced with a mixture of the above components (A), (B) and (C), or the copolymer [II] may be used. It is also effective to additionally add a mixture of the above-mentioned components (A), (B) and (C) in addition to the amount of the cement admixture according to the present invention based on the cement. Is preferably in the range of 0.1 to 1.0, more preferably in the range of 0.2 to 0.6% by weight of the total solid content relative to the cement weight. If the amount is less than 0.1% by weight, the modifying effect as a cement admixture is not sufficiently exhibited, and if the amount exceeds 1.0% by weight, the aggregate may cause separation or poor curing. It may be.
本発明のセメ ン ト 混和剤は、 セ メ ン ト ぺ一ス ト 、 モルタル コ ン ク リ ー ト 等に注水 と同時に添力 D して も よ く 、 あ る いは注 水直後か ら混練直後までの間に添加する こ と も で き、 ま たは 一旦練 り 上がっ たセ メ ン ト 組成物に添加 して も よ い。 ま た各 成分は混合状態で添加 して も よ く あ る いは個別に添加 してセ メ ン ト 組成物を混練する際に均一に分散 · 混合さ せる こ と も 可能であ る。  The cement admixture of the present invention may be added to the cement paste, mortar concrete, etc. simultaneously with water injection, or may be kneaded immediately after water injection. It may be added until immediately after, or may be added to the cement composition once kneaded. In addition, each component may be added in a mixed state or may be added individually to uniformly disperse and mix when kneading the cement composition.
更に本発明のセ メ ン ト混和剤は、 他の公知の改質用添加剤 例えば A E剤、 気泡剤、 消泡剤、 硬化遅延剤、 早強剤、 硬化 促進剤、 増粘剤、 保水剤、 防水剤、 防鯖剤、 乾燥収縮低減剤— 着色剤、 防腐剤な どと併用する こ と も 可能であ る 。 更に、 例 え ば高炉ス ラ グ、 シ リ カ ヒ ュ ーム、 フ ラ イ ア ッ シ ュ、 膨張剤 な どとの併用 も 可能であ る 。 Further, the cement admixture of the present invention may be used in combination with other known modifying additives. For example, AE agents, foaming agents, antifoaming agents, curing retarders, fast-strength agents, curing accelerators, thickeners, water retention agents, waterproofing agents, antibacterial agents, drying shrinkage reducing agents-coloring agents, preservatives, etc. It is also possible to use them together. Furthermore, it can be used in combination with, for example, blast furnace slag, silica fume, fly ash, and expansive agent.
か く して得 ら れる本発明のセ メ ン ト 混和剤は、 従来のセメ ン ト 混和剤に比べて優れた減水 (分散) 効果 と流動性改善効 果お よびス ラ ン プロ ス抑制性能を備えてい る 。 ま た、 こ のセ メ ン ト混和剤が配合さ れたセ メ ン ト 組成物は、 低粘性で分離 安定性に も優れてお り 、 ポ ン プ圧送性等を含めた施工作業性 に も優れて い る 。 更に、 該組成物が硬化 したセ メ ン ト構造物 は優れた強度と耐久性を有 してお り 、 それ ら も本発明の技術 的範囲に包含さ れる 。 実施例 以下、 実施例を挙げて本発明を よ り 具体的に説明する が、 本発明はも と よ り 下記実施例に よ って制限を受け る も のでは な く 、 前 · 後記の趣旨に適合し得る範囲で適当 に変更を加え て実施する こ と も可能であ り 、 それ ら はいずれも 本発明の技 術的範囲に含まれる 。 参考例  The cement admixture of the present invention thus obtained has a superior water reducing (dispersing) effect, a fluidity improving effect, and a slanpros inhibitory effect as compared with the conventional cement admixture. Is provided. In addition, the cement composition containing this cement admixture has a low viscosity and excellent separation stability, and is suitable for workability including pumping property. Is also excellent. Further, the cement structure obtained by curing the composition has excellent strength and durability, which are also included in the technical scope of the present invention. EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and has the purport of the preceding and the following. It is also possible to carry out the present invention with appropriate modifications within a range that can be adapted to the above, all of which are included in the technical scope of the present invention. Reference example
温度計、 撹拌機、 滴下ロ ー ト 、 窒素ガス導入管および還流 冷却器を備えたス テ ン レ ス製反応容器中で、 水を重合反応溶 剤 と して使用 し、 ラ ジカル重合開始剤を用いて、 各種ひ, β ー ス テ ン —不飽和カルボン酸お よび/ま たはその塩類 と各種 (メ 夕 ) アク リ ル酸エステル、 更に (メ 夕 ) アク リ ル酸の ヒ ド ロ キシアルキルエステルを、 表 1 に示す比率で使用 して共 重合を行な っ た。 なお表 1 において、 M A A と はメ 夕 ク リ ル 酸、 M M A とはメ チルメ タ ク リ レー ト 、 H E M A と は 2 — ヒ ド ロ キシェチルメ 夕 ク リ レー ト を表わす。 なお表 1 には、 得 ら れた各共重合体の不揮発分濃度お よび粘度を併記 し た。 In a stainless steel reaction vessel equipped with a thermometer, stirrer, dropping funnel, nitrogen gas inlet tube and reflux condenser, water is used as a polymerization reaction solvent, and a radical polymerization initiator is used. And β-stain-unsaturated carboxylic acid and / or its salts and various Copolymerization was carried out using (meth) acrylic acid ester and (medium) hydroxyalkyl ester of acrylic acid in the ratios shown in Table 1. In Table 1, MAA represents methyl acrylate, MMA represents methyl methacrylate, and HEMA represents 2-hydroxyhexyl methacrylate. Table 1 also shows the nonvolatile content concentration and the viscosity of each of the obtained copolymers.
表 1  table 1
Figure imgf000021_0001
Figure imgf000021_0001
実施例  Example
上記表 1 に示 した N o . 6 の共重合体 (ナ ト リ ウ ム塩 と し た も の) を使用 し、 ま た リ グニ ンスルホ ン酸塩と して は下記 6 種類の も のを用いて、 両者を表 2 に示す比率で配合 し、 セ メ ン ト混和剤を得た。 各セ メ ン ト 混和剤を使用 し、 表 3 に示 す配合でコ ン ク リ ー ト を調製 し、 流動性の経時変化を測定 し た。 なお、 混練法 と混練手順お よび経時変化の測定法は下記 の通 り と した。 結果を表 2 に一括 して示す。 [用いた リ グニ ンスルホ ン酸塩 ] The copolymer of No. 6 (as a sodium salt) shown in Table 1 above was used, and the following six kinds of lignin sulfonates were used. The two were blended in the ratio shown in Table 2 to obtain a cement admixture. Using each cement admixture, concretes were prepared according to the formulation shown in Table 3, and the change over time in fluidity was measured. The kneading method, the kneading procedure and the method for measuring the change over time were as follows. Table 2 summarizes the results. [Lignin sulfonate used]
A : 一般 リ グニ ンの M g , N a塩タ イ プ ( 日本製紙社製商 品名 「サ ンエキス F D L」 )  A: Mg, Na salt type of general lignin (trade name “San extract FDL” manufactured by Nippon Paper Industries)
B : 一般 リ グニ ンの N a塩タ イ プ (ボ レ ガー ド社製商品名B: General lignin Na salt type (Bolegard product name)
「ボ レスノ ス」 ) "Boresnosu")
C : 一般 リ グニ ンの C a塩タ イ プ ( N M B社製商品名 「 PC: General lignin Ca salt type (NMB product name “P
N 6 4 5 」 ) N 6 4 5)
D : 高性能 リ グニ ンの M g , N a塩タ イ プ (興人パルプ社 製商品名 「 U L — P A R」 )  D: High performance lignin Mg, Na salt type (“UL — PAR” manufactured by Kojin Pulp)
E : 高性能 リ グニ ンの N a塩タ イ プ ( 日 本製紙社製商品名 「 ノ、 '一ル レ ッ ク ス」) E: High-performance lignin Na salt type (Nippon Paper Industries brand name "No, 'One Lex")
[使用材料 ] [Materials used]
セ メ ン ト : アサノ * 秩父小野田 · 住友大阪普通ポル ト ラ ン ド セ メ ン ト (比重 : 3.16 ) Cement: Asano * Chichibu Onoda · Sumitomo Osaka ordinary Portland Cement (specific gravity: 3.16)
細骨材 : 木更津産山砂 (比重 2.36, 吸水率 1.57, 粗粒率 Fine aggregate: Kisarazu mountain sand (specific gravity 2.36, water absorption 1.57, coarse grain ratio
2.77)  2.77)
粗骨材 : 青梅産碎石 Gmax20mm (比重 2.67, 吸水率 0.51, 粗粒率 6.73, 実績率 58.1% ) Coarse aggregate: Ome crushed stone Gmax20mm (specific gravity 2.67, water absorption 0.51, coarse particle ratio 6.73, actual rate 58.1%)
A E剤 : エ フ · ピー ' ケ一社製商品名 「 ノ リ ッ ク A E A E agent: Product name “Norrick A E” manufactured by FPC
100」  100 "
消泡剤 : 東邦化学社製商品名 「プロ ナール 7 5 3 」 [試験法 ] Defoaming agent: Toho Chemical Co., Ltd. product name "Pronal 753" [Test method]
混 練 : 1 0 0 リ ッ ト ル強制パ ン型 ミ キサ使用、 練 り 量 Kneading: Use of 100 liter forced pan mixer, kneading amount
4 0 リ ツ 卜ル  40 liters
混練手順 : (粗骨材 + 1/2細骨材 +セ メ ン ト + 1/2細骨) を 1 0 秒間空練 り し、 こ れに所定量のセ メ ン ト 混和剤 と水を加えて 9 0 秒間混練 して コ ン ク I — ト と する。 なお空気量は、 A E剤および消泡 剤に よ っ て練 り 上が り 直後で約 4 〜 5 % に調整 する。 Kneading procedure: (coarse aggregate + 1/2 fine aggregate + cement + 1/2 fine bone) Is kneaded for 10 seconds, and a predetermined amount of cement admixture and water are added thereto, and the mixture is kneaded for 90 seconds to obtain a concrete. Adjust the air volume to about 4 to 5% immediately after kneading with the AE agent and antifoaming agent.
経時変化 : アジテー ト ミ キサを模擬 したスパイ ラル ミ キサ を使用。 ミ キザの回転数 l r p m、 試料量 4 0 リ ッ ト ル。 練 り 上 り 直後か ら 3 0 分および 6 0 分経過後の流動性を測定する 。 なお練 り 上が り 6 0 分経過後の空気量は、 何れも練 り 上が り 直 後に対 して約一 1 〜十 1 %の範囲であ る 。 Temporal change: A spiral mixer simulating an agitated mixer is used. Mixer rotation speed lrpm, sample volume 40 liters. The fluidity is measured 30 minutes and 60 minutes after the kneading. The amount of air after 60 minutes from the kneading is in the range of about 11 to 11% with respect to immediately after the kneading.
表 2 Table 2
Figure imgf000024_0001
Figure imgf000024_0001
注) 効果の有無は、 共重合体単独添加 (実験 No. 1) の 60分後の流動性低下量である 5. 8c m以内かどうかによつて評価した Note) The effect was evaluated based on whether the fluidity decreased within 5.8 cm, which is the decrease in fluidity 60 minutes after the copolymer alone was added (Experiment No. 1).
表 3 コンクリート配合 (調合) Table 3 Concrete mix (mix)
Figure imgf000025_0001
Figure imgf000025_0001
注) 上記配合は、 プレーンコンクリート (無 から単位水』 を 1 6 %減水 (単位水量で 3 l kg/m3減少) したものである。 Note) In the above formula, plain concrete (from nothing to unit water) is reduced by 16% (3 lkg / m 3 per unit water).
発明の効果 本発明は以上の様に構成されてお り 、 前記成分(a ), ( b ) , ( c )を共重合性モ ノ マー成分とする特性モ ノ マー組成の共重 合体と リ グニ ンス ルホ ン酸塩を特定比率で併用する こ と に よ つて、 従来のセ メ ン ト 混和剤を凌駕する優れた流動性改善効 果 ( セ メ ン ト分散性) とス ラ ン プロ ス抑制性 ( セ メ ン ト分散 保持性) を備えたセ メ ン ト 混和剤を提供する こ と がで き、 該 セメ ン ト 混和剤をセ メ ン ト 、 モルタル、 コ ン ク リ ー ト 等のセ メ ン ト組成物用の混和剤と して使用する こ と に よ り 、 こ れら セメ ン ト 組成物の施工時における流動性や流動保持性を高め 施工作業性の優れたセ メ ン ト組成物を得る こ とがで き る 。 ま た こ のセ メ ン ト混和剤はセ メ ン ト 水硬性に与え る悪影響も 少 ないので、 圧縮強度や耐久性に優れたセ メ ン ト構造物を与え る。 Effects of the Invention The present invention is constituted as described above, and comprises a copolymer having a characteristic monomer composition in which the components (a), (b) and (c) are copolymerizable monomer components, and a resin. By using gninsulfonate in a specific ratio, a superior flowability improving effect (cement dispersibility) and a slumping performance over conventional cement admixtures are achieved. The present invention can provide a cement admixture having a cement-suppressing property (cement dispersion retention property), and can use the cement admixture in cement, mortar, and concrete. By using these cement compositions as admixtures for cement compositions such as these, the flowability and flow retention of these cement compositions at the time of construction can be enhanced and the workability is excellent. A ment composition can be obtained. Also, since the cement admixture has a small adverse effect on the cement hydraulic property, it gives a cement structure having excellent compressive strength and durability.

Claims

請求の範囲 The scope of the claims
1 . 固形分換算で、 1. In terms of solid content,
リ グニ ンスルホ ン酸塩 [ I] : 5 0 〜 8 0 重量部 と、 Lignin sulfonate [I]: 50 to 80 parts by weight;
( a) a , ?—不飽和カルボン酸及び/又はその塩類 : 4 0 〜 8 3 重量部、  (a) a,? —unsaturated carboxylic acid and / or salts thereof: 40 to 83 parts by weight,
( b ) (メ タ ) アク リ ル酸エステル (但 し、 ヒ ド ロ キシアル キルエステルを除 く ) : 1 0 〜 3 0 重量部、 および (b) (meta) acrylic acid ester (excluding hydroxyalkyl ester): 10 to 30 parts by weight, and
( c ) (メ タ) ァク リ ル酸の ヒ ド ロ キシアルキルエステル :(c) Hydroxyalkyl esters of (meth) acrylic acid:
7 〜 5 0 重量部 7 to 50 parts by weight
[但 し、 (a) , (b),(c)の合計は 1 0 0 重量部 ]  [However, the sum of (a), (b) and (c) is 100 parts by weight]
を単量体成分と する共重合体 [Π] : 2 0 〜 5 0 重量部 と を含有する こ と を特徴とする セ メ ン ト 混和剤。 A copolymer containing as a monomer component [Π]: 20 to 50 parts by weight.
2 . 前記(a)で規定する ひ, ?—不飽和カルボン酸が、 不 飽和モ ノ カルボン酸である請求の範囲第 1 項に記載のセ メ ン ト混和剤。  2. The cement admixture according to claim 1, wherein the? -Unsaturated carboxylic acid defined in (a) is an unsaturated monocarboxylic acid.
3 . 前記不飽和モ ノ カルボン酸が、 メ 夕 ク リ ル酸であ る請 求の範囲第 2 項に記載のセ メ ン ト 混和剤。  3. The cement admixture according to claim 2, wherein said unsaturated monocarboxylic acid is mecryacrylic acid.
4 . 前記( b )で規定する (メ タ ) アク リ ル酸エステルが、 炭素数 1 〜 4 のアル力 ノ ールの (メ タ ) アク リ ル酸エステル であ る請求の範囲第 1 〜 3 項のいずれかに記載のセメ ン ト混 和剤。  4. The (meth) acrylic acid ester defined in the above (b) is a (meth) acrylic acid ester of a C1-C4 alkanol. 4. The cement admixture according to any one of items 3 to 7.
5 . 前記 (メ タ ) アク リ ル酸エス テルが、 メ 夕 ク リ ル酸メ チルであ る請求の範囲第 4 項に記載のセメ ン ト 混和剤。  5. The cement admixture according to claim 4, wherein the (meth) ester acrylate is methyl methacrylate.
6 . 前記( c )で規定する (メ タ ) アク リ ル酸の ヒ ド ロ キシ アルキルエステルにおける アルキル部分の炭素数が 2 〜 4 で あ る請求の範囲第 1〜 5 項のいずれかに記載のセメ ン ト混和 剤。 6. In the hydroxyalkyl ester of (meth) acrylic acid defined in (c) above, the alkyl moiety has 2 to 4 carbon atoms. The cement admixture according to any one of claims 1 to 5.
7 . 前記 (メ タ ) アク リ ル酸の ヒ ド ロ キシアルキルエステ ルが、 2 — ヒ ド ロ キシェチルメ 夕 ク リ レー ト であ る請求の範 囲第 6 項に記載のセ メ ン ト 混和剤。  7. The cement admixture according to claim 6, wherein the hydroxyalkyl ester of the (meta) acrylic acid is 2-hydroxyhexyl methacrylate. Agent.
8 . 共重合体 [ 11 ]が  8. Copolymer [11]
( a )ひ, ? _不飽和カルボ ン酸及び/又はその塩類 : 6 0 ~ 7 5 重量部、  (a) ,, _ unsaturated carboxylic acid and / or its salts: 60 to 75 parts by weight,
( b ) (メ タ ) アク リ ル酸エステル (但 し、 ヒ ド ロ キシアル キルエステルを除 く ) : 1 0 〜 2 5 重量部、 および (b) (meta) acrylic acid ester (excluding hydroxyalkyl ester): 10 to 25 parts by weight, and
( c ) (メ タ ) アク リ ル酸の ヒ ド ロ キシアルキルエステル :(c) (Meth) hydroxyalkyl ester of acrylic acid:
7 〜 3 0 重量部 7 to 30 parts by weight
[但し、 (a), (b), (c)の合計は 1 0 0 重量部 ]  [However, the total of (a), (b) and (c) is 100 parts by weight]
を単量体成分と する も のであ る請求の範囲第 1 〜 7項のいず れかに記載のセ メ ン ト 混和剤。 The cement admixture according to any one of claims 1 to 7, wherein the cement admixture is a monomer component.
9 . 前記請求の範囲第 1 〜 8 項のいずれかに記載されたセ メ ン ト混和剤を含有する こ と を特徴と する セ メ ン ト組成物。  9. A cement composition comprising the cement admixture according to any one of claims 1 to 8.
1 0 . 前記請求の範囲第 9 項に記載されたセ メ ン ト 組成物 の硬化物か ら な る こ と を特徴と す るセ メ ン ト構造物。  10. A cement structure comprising a cured product of the cement composition according to claim 9.
PCT/JP1999/002435 1998-06-04 1999-05-11 Cement admixture, cement compositions and cement structures WO1999062838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/155634 1998-06-04
JP15563498 1998-06-04

Publications (1)

Publication Number Publication Date
WO1999062838A1 true WO1999062838A1 (en) 1999-12-09

Family

ID=15610277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002435 WO1999062838A1 (en) 1998-06-04 1999-05-11 Cement admixture, cement compositions and cement structures

Country Status (1)

Country Link
WO (1) WO1999062838A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122629C1 (en) * 2001-05-10 2002-10-02 Wacker Chemie Gmbh Powder composition used as rheological additive in building material, e.g. mortar, filler or plaster, contains (meth)acrylic acid/(meth)acrylic ester copolymer, dispersant and re-dispersible polymer powder
JP2007092062A (en) * 2005-09-05 2007-04-12 Kao Corp Method for producing phosphate polymer
JP2010235361A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Self-flowing hydraulic composition
RU2501758C2 (en) * 2012-03-26 2013-12-20 Евгений Сергеевич Шитиков Mortar
JP2020158317A (en) * 2019-03-25 2020-10-01 日本製紙株式会社 Solid cement dispersant, method of producing the same, and cement composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161365A (en) * 1984-01-26 1985-08-23 花王株式会社 Cement dispersant
JPS6131333A (en) * 1984-07-20 1986-02-13 花王株式会社 Cement admixing agent
JPH05213644A (en) * 1992-09-30 1993-08-24 Nippon Shokubai Co Ltd Method for preventing slump loss of cement mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161365A (en) * 1984-01-26 1985-08-23 花王株式会社 Cement dispersant
JPS6131333A (en) * 1984-07-20 1986-02-13 花王株式会社 Cement admixing agent
JPH05213644A (en) * 1992-09-30 1993-08-24 Nippon Shokubai Co Ltd Method for preventing slump loss of cement mixture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122629C1 (en) * 2001-05-10 2002-10-02 Wacker Chemie Gmbh Powder composition used as rheological additive in building material, e.g. mortar, filler or plaster, contains (meth)acrylic acid/(meth)acrylic ester copolymer, dispersant and re-dispersible polymer powder
EP1258464A1 (en) * 2001-05-10 2002-11-20 Wacker-Chemie GmbH Use of a powder composition as rheologic additive
JP2007092062A (en) * 2005-09-05 2007-04-12 Kao Corp Method for producing phosphate polymer
JP2010235361A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Self-flowing hydraulic composition
RU2501758C2 (en) * 2012-03-26 2013-12-20 Евгений Сергеевич Шитиков Mortar
JP2020158317A (en) * 2019-03-25 2020-10-01 日本製紙株式会社 Solid cement dispersant, method of producing the same, and cement composition

Similar Documents

Publication Publication Date Title
US8344085B2 (en) Polymer and cement admixture using the same
KR100804099B1 (en) Cement admixture
JP3285526B2 (en) Concrete admixture
JPS5918338B2 (en) cement dispersant
CN1137263A (en) Admixture for concrete
JP2006522734A (en) Cement admixture and cement composition
JP2018528908A (en) Synthetic water retention agents and rheology modifiers for use in cement admixtures
JP2010018456A (en) Cement admixture
JP2008133176A (en) Cement admixture
KR100860470B1 (en) Cement admixture and cement composition comprising the same
JP2009242197A (en) Cement dispersing agent, concrete admixture and cement composition
JP2007112703A (en) Polycarboxylic acid polymer for cement admixture and cement admixture
WO1999062838A1 (en) Cement admixture, cement compositions and cement structures
JP2011102221A (en) Copolymer as cement dispersant, mixing agent for concrete including the same, and cement composition
JP5401402B2 (en) Copolymer composition for cement admixture and cement admixture
JP2003286058A (en) Cement dispersing agent and cement composition
JP5305746B2 (en) Hydraulic composition
JP2003286057A (en) Auxiliary agent for dispersing cement, cement dispersing agent and cement composition containing them
JP4494143B2 (en) Admixture for hydraulic composition
JP4562953B2 (en) Dispersant for poorly formulated hydraulic composition
JP2011116587A (en) Early strengthening agent for hydraulic composition
JP2009155173A (en) Admixing agent for hydraulic composition
JPH11322389A (en) Dispersant for cement
WO2022085754A1 (en) Concrete admixture
JPS641425B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase