WO1999061146A1 - High-pressure apparatus - Google Patents
High-pressure apparatus Download PDFInfo
- Publication number
- WO1999061146A1 WO1999061146A1 PCT/NL1999/000329 NL9900329W WO9961146A1 WO 1999061146 A1 WO1999061146 A1 WO 1999061146A1 NL 9900329 W NL9900329 W NL 9900329W WO 9961146 A1 WO9961146 A1 WO 9961146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- vessel
- pressure vessel
- ring
- pressure device
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/04—Pressure vessels, e.g. autoclaves
- B01J3/048—Multiwall, strip or filament wound vessels
Definitions
- the invention relates to a high-pressure device comprising an essentially cylindrical high-pressure vessel and external prestressing means for exerting an external pressure on the vessel.
- WO 95/21690 discloses a high-pressure vessel having a cylindrical liner which is open at two ends and has been placed under radial prestress with the aid of a steel wire winding. With said high-pressure vessel the prestressing as a consequence of the steel winding is equal to the tangential stress that is generated when the high-pressure vessel is pressurised.
- Pressures of between 1,000 and 15,000 bar can be generated in the known high- pressure vessel.
- the cylindrical pressure vessel can be filled with a fluid in order to exert an isostatic pressure on, for example, foodstuffs, pharmaceuticals, cosmetic preparations and the like.
- harmful microorganisms and enzymes can be killed without vitamins being damaged or the taste impaired.
- the known pressure vessels are of relatively heavyweight construction with multiple concentric steel walls.
- the removal of the relatively heavyweight pressure vessel from the hydraulic press, emptying thereof and loading with new material to be treated takes a relatively long time, with the result that the throughput of the known device is limited.
- Making the high-pressure vessel according to the prior art of more lightweight construction in order to be able to fill and empty this more rapidly and more easily would, in turn, lead to the use of lower pressures, as a result of which the residence time of the product in the high-pressure vessel increases.
- a further aim of the present invention is to provide a high-pressure device with which the residence time of the products can be shortened, with which the high-pressure vessel can relatively simply and easily be placed outside the high-pressure device and can be filled and emptied easily and gemakkelfjk buiten de hogedrukinrichting kan employment geplaatst en gemakkelijk kan exercise gevuld en geleegd en waarbij een lange levensduur gedurende een groot aantal drukbelastingscycli mogelijk is.
- Hiertoe is de hogedrukinrichting volgens de onderhavige uitvinding enex
- doordat het vat is versterkt met vezels
- waarbij de voorspanmiddelen eerr compressie-inrichting omvatten voor het uitoefenen van een axiale druk op het hogedrukvat.
- Gebleken is dat door het aanbrengen van een axiale voorspanning op het hogedrukvat door compressie in axiale richting, het spanningsverloop over de wand van het vat gelijkmatiger wordt.
- Verder wordt de gehele wanddikte nuttiger gebruikt voor het verkrijgen van de gewenste sterkte, zodat de wand dunner kan exercise uitgevoerd of, bij een gelijkblijvende wanddikte, de druk kan audience verhoogd.
- Bij voorkeur is het vat gevormd uit een composietmateriaal omvattende in ubenstof ingebedde vezels.
- a high-pressure device is characterised in that the high-pressure vessel is provided close to at least one of the end faces with a reinforcing ring that thickens radially towards the outside in the axial direction.
- the pressure ring is shaped such that the shear stress is reduced close to the interior of the high-pressure vessel and is increased for wall sections close to the outside of the wall. Furthermore, as a result of the use of the reinforcing ring the radial stretch close to the end faces (at the location of a possible seal) is minimised.
- An advantageous embodiment of a high-pressure device comprises a housing having a longitudinal axis and a first and a second pressure chamber located along said axis.
- a top end face of the high-pressure vessel is located in or close to the second pressure chamber.
- a piston having a piston head located in the first pressure chamber and a piston rod connected to said piston head, is movable in the longitudinal direction via the second pressure chamber as far as into the high-pressure vessel.
- a pressure ring is movably accommodated around the piston rod, which pressure ring is able to engage on the top end face of the high-pressure vessel. Feeding a hydraulic fluid to the second pressure chamber causes the pressure ring to bear on the wall of the cylindrical high-pressure vessel so as to apply the axial prestressing thereto.
- the fluid pressure in the second pressure chamber is dependent on the fluid pressure which is exerted on the piston, so that the prestressing is proportional to the pressure on the piston and thus to the pressure in the interior of the high-pressure vessel.
- the wall of the high-pressure vessel can have been built up from several layers, for example six layers, of high-tensile fibres, the liner of the vessel being made of a superelastic material.
- the superelastic material separates the composite jacket from the hydraulic medium and does not itself have to cope with any stresses.
- the liner must be able to withstand stretching of the order of magnitude of 2 %.
- Nickel-titanium alloys or polymers such as ABS, PE, PP or polycarbonates are suitable for this purpose.
- Figure 1 shows a perspective view of a high-pressure device according to the present invention
- Figure 2 shows a longitudinal section through the device according to Figure 1
- Figure 3 shows, on an enlarged scale, a detail of the end of the piston rod
- Figure 4 shows a longitudinal section through a high-pressure vessel suitable for use in the device according to Figures 1 and 2
- Figures 5 a and 5b show the plot of the tangential stress in the wall of the high- pressure vessel made of composite material, without and with axial prestressing, respectively.
- Figure 1 shows a high-pressure device 1 according to the present invention, comprising a housing 2 with a piston and a pressure ring movable to and fro therein. Prestressing means for exerting an axial pressure on the wall of a high-pressure vessel 3 are also accommodated in said housing 2.
- the cylindrical high-pressure vessel 3 abuts the housing 2 and, via, for example, a rail system, which is not shown in the figure, can be placed under the housing 2 and removed again from the side.
- the device 1 further comprises a yoke 4, made up of a number of parallel reinforcing plates, to hold the high- pressure vessel 3 and the housing 2 together in the axial direction during operation under operating pressures of 10,000 bar and higher.
- the high-pressure vessel 3 comprises a cylinder which is open at both ends and by means of a bottom end face 6 bears on a foot piece 5 of the pressure device 1.
- a piston rod 8 of a piston or "intensifier" 9 passes through the opening in the top end face 7 of the high-pressure vessel 3.
- the top of the piston 9 comprises a piston head 10 that is accommodated in a first pressure chamber 11 of the housing 2.
- the first pressure chamber 11 is closed off at the bottom by a wall 12 through which the piston rod 8 is fed with sealing.
- the wall 12 delimits a second pressure chamber 13, with a pressure ring 14 slidable to and fro therein.
- feed lines 16, 17 open into the pressure chamber 11 for moving the piston 9 to and fro.
- a feed line 18 opens into the second pressure chamber 13, between the pressure ring 14 and the wall 12.
- a fourth feed line 19 opens via the bottom end face 6 into the pressure chamber 20 of the high-pressure vessel 3.
- a hydraulic medium such as, for example, water
- a pre-pressure of, for example, 2,000 bar can be generated.
- An operating pressure can then be applied to the piston head 10 by connecting the feed line 16 to the top section of the first pressure chamber 11. Said pressure will be transmitted proportionally to the ratio between the surface area of the piston head 10 and the surface area of the piston rod 8 to the pressure chamber 20 of the high-pressure vessel 3, so that the total internal pressure in this location is, for example, 10 kbar or higher.
- the second pressure chamber 13 is pressurised, so that the pressure ring 14 applies an axial prestress to the wall of the high-pressure vessel 3.
- the pressure in the line 16 can be reduced so that the piston 9 is pushed upwards.
- the end of the piston 9 is provided with a collar 21 which engages on a ring 24 provided with two seals. Said ring 24 engages on a bottom edge of the pressure ring 14.
- the pressure ring 14 is lifted free of the top end face 7 of the high-pressure vessel 3 by the collar 21 and ring 24. The high-pressure vessel 3 can then be removed from the high-pressure device 1 from the side.
- Ring 24 is characterised by the presence of two seals 33 and 34.
- the outer seal 33 is a static high-pressure seal between the liner 25 and the ring 24.
- the inner seal 34 is a dynamic high-pressure seal between the piston rod 8 and ring 24.
- the seal 33 can be constructed such that no extrusion of the liner 25 can occur. Secondly, there is no frictional contact between the seal 33 and the liner 25. Finally, if there were to be a dynamic seal on the liner, the seal would have to seal a gap of a few millimetres because of the high elastic stretch of the composite. As a result of splitting the seal, the radial expansion that has to be filled by the set of seals is minimal.
- Steel reinforcing rings 22, 23 are fitted to the top and bottom end faces 7, 6 in order to ensure correct distribution of the tangential prestress generated by the pressure ring 14 on the walls of the vessel 3.
- the thickness of said reinforcing rings decreases in the direction of the axis of the high-pressure vessel 3.
- the radial stretch at the top and bottom of the pressure vessel 3 is also minimised by means of these rings.
- FIG. 4 shows the high-pressure vessel 3 according to the present invention on an enlarged scale.
- the high-pressure vessel 3 comprises an open cylinder, the liner 25 of the pressure chamber 20 being made of a superelastic material. Said liner 25 does not have to cope with any stresses and is not replaced during the life of the high-pressure vessel 3.
- the liner 25 is able to withstand stretching of the order of magnitude of 2 %.
- the liner 25 can be made of superelastic materials such as nickel-titanium alloys. Polymers such as APS, PE, PP or polycarbonates can also be used.
- the wall 32 of the high- pressure vessel 3 can have been formed from various layers of composite material as described in European Patent Application no. 96203187.8.
- the reinforcing rings 22, 23 are provided with a chamfered edge 28, 29, against which the sealing ring 24 is able to bear, which ring is in sliding contact around the piston rod 8 at the top of the high-pressure vessel 3, as shown in Figure 3, and forms part of the foot piece 5 at the bottom of the high-pressure vessel 3.
- the pressure ring 14 which during operation is in contact with the top end face 7, an axial seal 30 can be used in order to achieve a good seal over the end face 7, even under the very high operating pressures.
- the height H of the high-pressure vessel 3 can be, for example, 27 cm.
- External diameter D2 of the high-pressure vessel 3 is, for example, 30 cm, whilst the diameter Dl of the pressure chamber 20 is 10 cm.
- the thickness of the reinforcing rings 22, 23 is, for example, 4.5 cm at the outer periphery 31 of the high-pressure vessel 3.
- the abovementioned dimensions are illustrative only and can be varied within a wide range, depending on the size and quantity of the material to be treated in the pressure chamber 20.
- Figure 5a shows a plot of the tangential stress over the width, D, of the wall 32 of the high-pressure vessel 3, on applying a pressure in pressure chamber 20, without an axially directed prestress being exerted on the wall.
- the tangential stress ⁇ is highest at the location of the liner 25 and decreases very rapidly towards the outer periphery 31 of the wall 32.
- Figure 5b as a result of applying an axial prestress to the wall 32 via the reinforcing rings 22, 23, the tangential stress at the location of the liner 25 (on the left in Figure 5b) is appreciably reduced and the tangential stress at the location of the outer periphery 31 (on the right in Figure 5b) is increased, so that a more uniform stress pattern is obtained.
- the prestressing on the pressure vessel 31 is such that an axial compression of 0.5 % to 2 % is obtained.
- the pressure vessel 3 is provided with an acoustic emission device for detecting microdefects which develop during pressurising the pressure vessel and reducing the pressure. If the pressure vessel is nearing its critical life, the intensity of the number of microdefects will increase sharply but the vessel will still appear to be completely intact from the outside. By measuring the acoustic emission, the safety of the high-pressure vessel 3 can be guaranteed and a high- pressure process can be terminated in time if the number of microdefects exceeds a critical upper limit.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT99925465T ATE251494T1 (en) | 1998-05-27 | 1999-05-27 | HIGH PRESSURE DEVICE |
JP2000550593A JP3542966B2 (en) | 1998-05-27 | 1999-05-27 | High pressure device |
AU41732/99A AU4173299A (en) | 1998-05-27 | 1999-05-27 | High-pressure apparatus |
US09/701,199 US6491882B1 (en) | 1998-05-27 | 1999-05-27 | High-pressure device |
DE69911962T DE69911962T2 (en) | 1998-05-27 | 1999-05-27 | HIGH PRESSURE DEVICE |
EP99925465A EP1089810B1 (en) | 1998-05-27 | 1999-05-27 | High pressure apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1009267A NL1009267C2 (en) | 1998-05-27 | 1998-05-27 | High pressure device. |
NL1009267 | 1998-05-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO1999061146A1 true WO1999061146A1 (en) | 1999-12-02 |
WO1999061146A8 WO1999061146A8 (en) | 2001-03-08 |
WO1999061146A9 WO1999061146A9 (en) | 2002-04-25 |
Family
ID=19767211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL1999/000329 WO1999061146A1 (en) | 1998-05-27 | 1999-05-27 | High-pressure apparatus |
Country Status (8)
Country | Link |
---|---|
US (1) | US6491882B1 (en) |
EP (1) | EP1089810B1 (en) |
JP (1) | JP3542966B2 (en) |
AT (1) | ATE251494T1 (en) |
AU (1) | AU4173299A (en) |
DE (1) | DE69911962T2 (en) |
NL (1) | NL1009267C2 (en) |
WO (1) | WO1999061146A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002045528A1 (en) * | 2000-12-04 | 2002-06-13 | Ato B.V. | Method for high-pressure preservation |
NL1017640C2 (en) * | 2001-03-19 | 2002-09-20 | Steon Holding B V | Piston cylinder device, has plastic cylinder comprising thermoplastic inner mantle and thermoset outer mantle |
US8617467B2 (en) | 2003-09-22 | 2013-12-31 | Baxter International Inc. | High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6886832B2 (en) * | 2000-12-22 | 2005-05-03 | Nlb Corp. | High pressure fluid cylinder system |
NL1021142C2 (en) * | 2002-07-24 | 2004-01-27 | Stork Prints Bv | Device and method for piece-by-piece or batch-wise finishing of pieces of substrate, in particular textile substrate. |
US20050161934A1 (en) | 2003-10-22 | 2005-07-28 | Rife Isaac E. | Vehicle frame with integrated high pressure fuel tank |
ITTO20040169A1 (en) * | 2004-03-15 | 2004-06-15 | Teksid Aluminum S R L | SEALING SYSTEM FOR HIGH PRESSURE AND HIGH TEMPERATURE CONTAINERS |
US7523694B2 (en) * | 2004-12-13 | 2009-04-28 | National-Oilwell, L.P. | Cylinder liner preload system |
JP4821235B2 (en) * | 2005-09-29 | 2011-11-24 | カシオ計算機株式会社 | Reactor |
US8459101B2 (en) | 2005-09-29 | 2013-06-11 | Alltech Associates, Inc. | Composite chromatography column |
DE102012023186A1 (en) * | 2012-11-28 | 2014-05-28 | Uhde High Pressure Technologies Gmbh | Container closure device for high pressure chamber |
US9097602B2 (en) | 2013-01-23 | 2015-08-04 | Lawrence Livermore National Security, Llc | Systems and methods for determining strength of cylindrical structures by internal pressure loading |
US9844918B2 (en) * | 2014-11-10 | 2017-12-19 | Ilc Dover, Lp | Inflatable pressure intensifier |
SE543244C2 (en) | 2019-03-06 | 2020-10-27 | 3Nine Ab | Method and installation for reduction of sulphur dioxides in exhaust gases from a marine diesel engine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3775043A (en) * | 1971-03-15 | 1973-11-27 | Asea Ab | Means in furnaces for vacuum-pressure-sintering |
US4152111A (en) * | 1976-12-20 | 1979-05-01 | Asea Aktiebolag | Furnace for treatment of material at high temperature and pressure |
EP0117148A2 (en) * | 1983-02-22 | 1984-08-29 | Kabushiki Kaisha Kobe Seiko Sho | High pressure apparatus |
JPH05111632A (en) * | 1991-10-22 | 1993-05-07 | Mitsubishi Heavy Ind Ltd | High pressure vessel |
WO1995021690A1 (en) * | 1994-02-14 | 1995-08-17 | Asea Brown Boveri Ab | High pressure press and method for high pressure treatment of substances |
US5631029A (en) * | 1994-06-30 | 1997-05-20 | General Electric Company | Mould for isostatic pressing |
EP0842696A1 (en) * | 1996-11-14 | 1998-05-20 | Instituut Voor Agrotechnologisch Onderzoek (Ato-Dlo) | High pressure reactor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02114743A (en) | 1988-10-25 | 1990-04-26 | Nec Corp | Method and device for revising time slot assignment |
US5288462A (en) * | 1992-05-18 | 1994-02-22 | Stephen D. Carter | Sterilization apparatus and method |
-
1998
- 1998-05-27 NL NL1009267A patent/NL1009267C2/en not_active IP Right Cessation
-
1999
- 1999-05-27 JP JP2000550593A patent/JP3542966B2/en not_active Expired - Fee Related
- 1999-05-27 US US09/701,199 patent/US6491882B1/en not_active Expired - Fee Related
- 1999-05-27 DE DE69911962T patent/DE69911962T2/en not_active Expired - Fee Related
- 1999-05-27 EP EP99925465A patent/EP1089810B1/en not_active Expired - Lifetime
- 1999-05-27 AU AU41732/99A patent/AU4173299A/en not_active Abandoned
- 1999-05-27 AT AT99925465T patent/ATE251494T1/en not_active IP Right Cessation
- 1999-05-27 WO PCT/NL1999/000329 patent/WO1999061146A1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3775043A (en) * | 1971-03-15 | 1973-11-27 | Asea Ab | Means in furnaces for vacuum-pressure-sintering |
US4152111A (en) * | 1976-12-20 | 1979-05-01 | Asea Aktiebolag | Furnace for treatment of material at high temperature and pressure |
EP0117148A2 (en) * | 1983-02-22 | 1984-08-29 | Kabushiki Kaisha Kobe Seiko Sho | High pressure apparatus |
JPH05111632A (en) * | 1991-10-22 | 1993-05-07 | Mitsubishi Heavy Ind Ltd | High pressure vessel |
WO1995021690A1 (en) * | 1994-02-14 | 1995-08-17 | Asea Brown Boveri Ab | High pressure press and method for high pressure treatment of substances |
US5631029A (en) * | 1994-06-30 | 1997-05-20 | General Electric Company | Mould for isostatic pressing |
EP0842696A1 (en) * | 1996-11-14 | 1998-05-20 | Instituut Voor Agrotechnologisch Onderzoek (Ato-Dlo) | High pressure reactor |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Section Ch Week 9323, Derwent World Patents Index; Class D22, AN 93-184890, XP002114743 * |
PATENT ABSTRACTS OF JAPAN vol. 017, no. 462 (C - 1101) 24 August 1993 (1993-08-24) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002045528A1 (en) * | 2000-12-04 | 2002-06-13 | Ato B.V. | Method for high-pressure preservation |
NL1017640C2 (en) * | 2001-03-19 | 2002-09-20 | Steon Holding B V | Piston cylinder device, has plastic cylinder comprising thermoplastic inner mantle and thermoset outer mantle |
US8617467B2 (en) | 2003-09-22 | 2013-12-31 | Baxter International Inc. | High-pressure sterilization to terminally sterilize pharmaceutical preparations and medical products |
Also Published As
Publication number | Publication date |
---|---|
DE69911962T2 (en) | 2004-08-12 |
WO1999061146A8 (en) | 2001-03-08 |
JP3542966B2 (en) | 2004-07-14 |
US6491882B1 (en) | 2002-12-10 |
AU4173299A (en) | 1999-12-13 |
NL1009267C2 (en) | 1999-11-30 |
EP1089810B1 (en) | 2003-10-08 |
JP2002516172A (en) | 2002-06-04 |
ATE251494T1 (en) | 2003-10-15 |
EP1089810A1 (en) | 2001-04-11 |
DE69911962D1 (en) | 2003-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1089810B1 (en) | High pressure apparatus | |
WO1999061146A9 (en) | High-pressure apparatus | |
AU692844B2 (en) | High pressure press and method for high pressure treatment of substances | |
US10426187B2 (en) | Container sealing device for high-pressure chamber | |
EP0602363B1 (en) | High-pressure press | |
EP2406536B1 (en) | Pressure vessel for a high pressure press | |
US2376351A (en) | Banded pressure vessel and method of making the same | |
JPH0751345A (en) | High-pressure sterilizer | |
CA2201312A1 (en) | Backward extrusion method and product | |
EP2045469B1 (en) | Method and apparatus for sealing an ultrahigh-pressure fluid system | |
CA2508528C (en) | Powder press | |
US5622105A (en) | High-pressure press | |
EP1115477B1 (en) | Device and method for a high pressure press | |
FR2792570B1 (en) | PRESS FOR THE TREATMENT OF PARTS, IN PARTICULAR WASTE OR GARBAGE, COMPRISING A FRACTION OF MATERIAL LIKELY TO FLUUE UNDER PRESSURE | |
JP3001854B2 (en) | Deformed piston seal structure and device using this | |
JPH086123B2 (en) | Cold isotropic press machine and pressure elastic membrane for pressure molding | |
JPH037106Y2 (en) | ||
JPH05111632A (en) | High pressure vessel | |
JPS61165297A (en) | High-pressure vessel device | |
Fang et al. | The effect of the surface deformation and the cycle loading on micro-yield stress of surface | |
JPS624999A (en) | Pressure vessel of multi-layer construction | |
JPH07236997A (en) | Cold isotropic pressure pressing device | |
JPH0335036B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999925465 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09701199 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: C1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
CFP | Corrected version of a pamphlet front page | ||
CR1 | Correction of entry in section i | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1999925465 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1999925465 Country of ref document: EP |