JPH05111632A - High pressure vessel - Google Patents

High pressure vessel

Info

Publication number
JPH05111632A
JPH05111632A JP30123491A JP30123491A JPH05111632A JP H05111632 A JPH05111632 A JP H05111632A JP 30123491 A JP30123491 A JP 30123491A JP 30123491 A JP30123491 A JP 30123491A JP H05111632 A JPH05111632 A JP H05111632A
Authority
JP
Japan
Prior art keywords
cylinder
inner cylinder
pressure
outer cylinder
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30123491A
Other languages
Japanese (ja)
Inventor
Makoto Akatsu
真 赤津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30123491A priority Critical patent/JPH05111632A/en
Publication of JPH05111632A publication Critical patent/JPH05111632A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PURPOSE:To prevent fatigue fracture of a high pressure vessel using for pressure disinfecting drinking liquid, etc. CONSTITUTION:Specified slopes are formed on an inside face of an outer cylinder 2 and on an outside face of an inner cylinder 1 along axis direction, and outer cylinder 2 is connected with the outer cylinder 1 closely and engaged sliding freely. An under part of hydraulic ram 5 is fixed to the outer cylinder with a connecting material 5a and a rod 4 which is formed to one body with ram 5 is engaged with a high pressure generating liquid room 13 of the inner cylinder. As the ram is descended, high pressure is generated in the liquid room 13 and, at the same time, an external pressure is generated at the inner cylinder 1 by the action of the outer cylinder 2. At that time, stress amplitude can be reduced by stress acting to the inside and outside face of the inner cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は飲料用液体などの加圧殺
菌、粉体の等方圧加圧(圧密)などに適用される高圧容
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-pressure container which is applied to pressure sterilization of liquids for beverages, isotropic pressurization (consolidation) of powders and the like.

【0002】[0002]

【従来の技術】図5は飲料用液体の加圧殺菌に適用され
る従来の高圧容器の1例を示したものである。図5にお
いて高圧容器は内部に液体を収容する液室13′を有す
る加圧筒1′と、加圧筒1′内に嵌挿可能に設けられた
ロッド部4′と、同ロッド部4′と一体に形成され、同
ロッド部4′を加圧筒1′内に摺動自在に挿入するピス
トン5′と、同ピストン5′を内蔵するシリンダ6′及
びヨークフレーム7′などで構成されている。前記装置
において液体の加圧処理は次のようにして行なわれる。
即ち、供給管10′cより送られた被処理液体は通路
9′c及び逆止弁12′を経由して加圧筒1′の液室1
3′内に充満される。その後油圧管10′aより通路
9′aを経由してシリンダ6′の加圧側に油圧を送る
と、ピストン5′と共にロッド4′が下降し液体を加圧
する。
2. Description of the Related Art FIG. 5 shows an example of a conventional high-pressure container applied to the pressure sterilization of a liquid for drinking. In FIG. 5, the high-pressure container has a pressurizing cylinder 1'having a liquid chamber 13 'for accommodating a liquid therein, a rod portion 4'providable to be inserted into the pressurizing cylinder 1', and the rod portion 4 '. And a piston 5'in which the rod portion 4'is slidably inserted into the pressurizing cylinder 1 ', a cylinder 6'having the piston 5'built therein and a yoke frame 7', and the like. There is. The liquid pressure treatment in the above apparatus is performed as follows.
That is, the liquid to be treated sent from the supply pipe 10'c passes through the passage 9'c and the check valve 12 'and the liquid chamber 1 of the pressurizing cylinder 1'.
Filled within 3 '. After that, when hydraulic pressure is sent from the hydraulic pipe 10'a to the pressurizing side of the cylinder 6'through the passage 9'a, the rod 4'is lowered together with the piston 5'and pressurizes the liquid.

【0003】液体が所定圧力(例えば5000〜600
0kg/cm2 )で所定時間(例えば20〜30分間)
加圧処理されると、シリンダ6′の加圧側油圧を開放
し、油圧管10′bよりシリンダ6′の排出側に油圧を
送り、ピストン5′を上昇させて加圧筒1′内液圧を下
げたのち、図示しない排出路より処理済の液体を外部に
排出する。
The liquid has a predetermined pressure (for example, 5000 to 600).
0 kg / cm 2 ) for a predetermined time (for example, 20 to 30 minutes)
When the pressure is applied, the hydraulic pressure on the pressurizing side of the cylinder 6'is released, the hydraulic pressure is sent from the hydraulic pipe 10'b to the discharge side of the cylinder 6 ', and the piston 5'is raised to raise the hydraulic pressure in the pressurizing cylinder 1'. After lowering, the processed liquid is discharged to the outside through a discharge path (not shown).

【0004】[0004]

【発明が解決しようとする課題】ところで前記した装置
を使用して液体の加圧処理を長期間繰り返し実施してい
ると、加圧筒には高圧力が繰り返し作用することにな
り、高圧容器には金属疲労等の重要な問題が発生するこ
とになる。しかし従来の金属疲労に対する対策は、専ら
加圧筒の肉厚を大きくして応力を下げることを目的に対
応していた。しかしこうした対策では装置の大型化は避
けられず、この結果設備コストが上昇するという欠点が
あった。また加圧筒を多層で構成し、外筒を焼ばめして
予め逆方向応力を与えておく方法があるが、この方法は
発生する平均応力値を下げることはできるものの、応力
振幅は変えることはできず、高圧域では疲労強度上余り
効果がなかった。
By the way, when the liquid pressure treatment is repeatedly carried out for a long period of time using the above-mentioned apparatus, high pressure is repeatedly applied to the pressure cylinder, so that the high pressure container is subjected to high pressure. Will cause important problems such as metal fatigue. However, the conventional measures against metal fatigue have dealt exclusively with the purpose of increasing the wall thickness of the pressurizing cylinder to reduce the stress. However, such measures inevitably increase the size of the device, resulting in an increase in equipment cost. There is also a method in which the pressurizing cylinder is composed of multiple layers and the outer cylinder is shrink-fitted to apply reverse stress in advance. Although this method can reduce the average stress value generated, the stress amplitude can be changed. However, the fatigue strength was not so effective in the high pressure region.

【0005】そこで本発明は前記従来の課題を解消する
ことを目的として構成した高圧容器を提供しようとする
ものである。
Therefore, the present invention is intended to provide a high-pressure container configured to solve the above-mentioned conventional problems.

【0006】[0006]

【課題を解決するための手段】このため本発明は、被加
圧流体を収容する内筒と、この内筒に密接して摺動自在
に嵌合された外筒と、同外筒が内筒に対して摺動移動す
る際に同内筒に外圧を発生させることができる外圧発生
手段と、同外筒に固定されると共に、同内筒の流体収容
室に嵌合するラムと、同ラムを昇降させる昇降手段とか
らなるもので、これを課題解決のための手段とするもの
である。
Therefore, according to the present invention, an inner cylinder for containing a fluid to be pressurized, an outer cylinder closely fitted to the inner cylinder so as to be slidable, and an outer cylinder are provided. An external pressure generating means capable of generating an external pressure in the inner cylinder when slidingly moving with respect to the cylinder; a ram fixed to the outer cylinder and fitted into a fluid storage chamber of the inner cylinder; It is composed of an elevating means for elevating and lowering the ram, which is a means for solving the problem.

【0007】[0007]

【作用】外筒内面及び内筒外面の両面に軸方向に所定の
勾配が形成されており、前記外筒は内筒と密接して摺動
自在に嵌合している。油圧ラムの下部は外筒に固定され
ており、同じく油圧ラムの下部に固定されたロッドは液
体を充満した内筒液室に嵌合されている。油圧ラムを駆
動して下降させると、ロッドと連動して外筒も下降する
ため、内筒にはロッドによって体積圧縮されて上昇する
液圧と外筒の嵌合移動に基づく締付けによる外圧(内外
筒の密接する面に形成した軸方向の勾配によって発生す
る外圧)とが同時に作用するようになり、この結果内筒
に発生する応力振幅が小さくなる。
A predetermined gradient is formed in the axial direction on both the inner surface of the outer cylinder and the outer surface of the inner cylinder, and the outer cylinder is slidably fitted in close contact with the inner cylinder. The lower part of the hydraulic ram is fixed to the outer cylinder, and the rod fixed to the lower part of the hydraulic ram is fitted into the inner cylinder liquid chamber filled with the liquid. When the hydraulic ram is driven and lowered, the outer cylinder also descends in conjunction with the rod, so the hydraulic pressure that is volume-compressed by the rod and rises in the inner cylinder and the external pressure (internal and external) due to the fitting movement of the outer cylinder. The external pressure generated by the gradient in the axial direction formed on the close contact surface of the cylinder) acts simultaneously, and as a result, the stress amplitude generated in the inner cylinder becomes small.

【0008】[0008]

【実施例】以下本発明を図面の実施例について説明する
と、図1は本発明に係る高圧容器の断面図である。図1
において内筒1の内部には液室13が形成されており、
この内筒1は下蓋11上に設置されている。また前記内
筒外面に摺動自在に密接して嵌合する外筒2の内面には
軸方向に所定の勾配が形成されており、更に内筒1の外
面にも同様に軸方向に所定の勾配が形成されている。こ
の勾配により内筒に外圧を発生する手段を構成してお
り、後述する如く高圧発生時に内筒1に外圧を発生させ
ることができる。また下部に前記内筒液室13内に摺動
自在に嵌合するロッド4を有し、シリンダ6内を昇降す
る油圧ラム5はその下部において連結材5aを介して外
筒2の上面と連結されている。更に軸方向荷重を受け持
つためにヨークフレーム7が配置されており、前記下蓋
11には内筒液室13に通ずる通路9cが形成され、供
給管10cより供給された被処理液体を前記液室13内
に供給するようになっている。なお、12は液室13内
液体の逆流を阻止するための逆止弁である。また前記ラ
ムの昇降手段としてのシリンダ6の加圧側及び排出側に
は、各々シリンダカバー8及びシリンダ6壁に形成され
た通路9a及び9bが連通されており、油圧管10a,
10bより供給された油圧を油圧ラム5の上下面に送
り、同油圧ラム5を昇降させるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments of the drawings. FIG. Figure 1
In, the liquid chamber 13 is formed inside the inner cylinder 1,
The inner cylinder 1 is installed on the lower lid 11. Further, a predetermined gradient is formed in the axial direction on the inner surface of the outer cylinder 2 which is slidably and closely fitted to the outer surface of the inner cylinder, and the outer surface of the inner cylinder 1 is also predetermined in the axial direction. A gradient is formed. This gradient constitutes means for generating external pressure in the inner cylinder, and as described later, external pressure can be generated in the inner cylinder 1 when high pressure is generated. Further, a rod 4 which is slidably fitted in the inner cylinder liquid chamber 13 is provided in the lower portion, and a hydraulic ram 5 which moves up and down in the cylinder 6 is connected to the upper surface of the outer cylinder 2 at a lower portion thereof via a connecting member 5a. Has been done. Further, a yoke frame 7 is arranged to bear an axial load, a passage 9c communicating with the inner cylinder liquid chamber 13 is formed in the lower lid 11, and the liquid to be treated supplied from a supply pipe 10c is stored in the liquid chamber. 13 is to be supplied. Reference numeral 12 is a check valve for preventing the backflow of the liquid in the liquid chamber 13. Also, passages 9a and 9b formed in the cylinder cover 8 and the wall of the cylinder 6 are connected to the pressurizing side and the discharge side of the cylinder 6 as the ram raising and lowering means, respectively.
The hydraulic pressure supplied from 10b is sent to the upper and lower surfaces of the hydraulic ram 5, and the hydraulic ram 5 is moved up and down.

【0009】本高圧容器はこのような構成になってお
り、供給管10cより供給された被処理液体を通路9
c、逆止弁12を経由して内筒液室13内に供給・充満
させた後、油圧管10aより通路9aを経由して油圧を
シリンダ6の加圧側に送り、油圧ラム5を下降させるこ
とにより、ロッド4により液室13内の液体を所定圧ま
で昇圧して加圧処理する。これと同時にロッド4と連動
して外筒2も押し込まれるため、内筒1に外圧が作用す
ることになる。
This high-pressure container has such a structure that the liquid to be treated supplied from the supply pipe 10c is passed through the passage 9.
c, after supplying and filling the inner cylinder liquid chamber 13 via the check valve 12, hydraulic pressure is sent from the hydraulic pipe 10a to the pressurizing side of the cylinder 6 via the passage 9a to lower the hydraulic ram 5. As a result, the liquid in the liquid chamber 13 is pressurized to a predetermined pressure by the rod 4 and pressure processing is performed. At the same time, since the outer cylinder 2 is also pushed in in conjunction with the rod 4, external pressure acts on the inner cylinder 1.

【0010】このように本高圧容器では、加圧処理時に
内筒1には図2に示すように液体による内圧Piと、外
筒2による外圧Poが同時に作用するが、その時内筒1
に発生する周方向応力σθ、半径方向応力σrは内筒1
内面では次式のように表わせる。
As described above, in this high-pressure container, the internal pressure Pi due to the liquid and the external pressure Po due to the outer cylinder 2 act on the inner cylinder 1 at the same time during the pressurization process, but at that time, the inner cylinder 1
The circumferential stress σθ and the radial stress σr generated at the inner cylinder 1 are
On the inside, it can be expressed as

【数1】 σθ=−2K2 /K2 −1・Po+K2 +1/K2 −1・PiΣθ = −2K 2 / K 2 −1 · Po + K 2 + 1 / K 2 −1 · Pi

【数2】 σr=−Pi ここでKは内筒1の外周半径rO と内周半径Viとの比
でK=rO /Viである。つまり内筒1には前記各応力
σθ、σrが加圧処理操作毎に発生し、これを長期間繰
り返すことにより内筒1に繰り返し荷重が作用し、これ
によって内筒1には同応力による疲労破壊が発生するこ
とになる。疲労は圧力がP=0から最高圧Piまで変化
したときに発生する応力変化により評価される。ここで
[Number 2] .sigma.r = -Pi where K is the ratio of the outer peripheral radius r O and inner radius Vi of the inner cylinder 1 K = r O / Vi. That is, the stresses σθ and σr are generated in the inner cylinder 1 for each pressurizing operation, and by repeating this for a long period of time, a load is repeatedly applied to the inner cylinder 1, which causes fatigue due to the stress. Destruction will occur. Fatigue is evaluated by the change in stress that occurs when the pressure changes from P = 0 to the maximum pressure Pi. here

【数3】 σθ−σr=2K2 /K2 −1・(Pi−Po)=S SをStress Intensityと称し、等価応
力振幅Saは
Σθ−σr = 2K 2 / K 2 −1 · (Pi−Po) = S S is referred to as Stress Intensity, and the equivalent stress amplitude Sa is

【数4】 Sa=1/2 ・S となる。## EQU00004 ## Sa = 1 / 2.multidot.S.

【0011】次に前記各式を用いて、本発明の実施例に
係る高圧容器の疲労強度の1例を試算してみる。 内筒の内外径比 K=1.8 内筒に加わる内圧 Pi=6000kg/cm2 内筒に加わる外圧 Po=3500kg/cm2 とすると、数1、数2より
Next, one example of the fatigue strength of the high-pressure container according to the embodiment of the present invention will be calculated by using the above equations. When external pressure Po = 3500 kg / cm 2 applied to the internal pressure Pi = 6000 kg / cm 2 inner cylinder acting on the diameter ratio K = 1.8 inner cylinder of the inner cylinder, number 1, than the number 2

【数5】 σθ={(1.82 +1)/(1.82 −1)・60}−{(2× 1.82 ) /(1.82 −1)・35} =12.3kg/mm2 [Formula 5] σθ = {(1.8 2 +1) / (1.8 2 −1) ・ 60} − {(2 × 1.8 2 ) / (1.8 2 −1) ・ 35} = 12.3 kg / mm 2

【数6】 σr=−60kg/mm2 これを数4に代入すると等価応力振幅Saは[Equation 6] σr = −60 kg / mm 2 Substituting this into Equation 4, the equivalent stress amplitude Sa is

【数7】 Sa=1/2{(12.3+60)}=36.2kg/mm2 この時の応力歪εa=Sa/E=36.2/2×104 =1.8×10-3 ここでE;内筒の弾性係数一方従来の高圧容器の場合に
ついて試算してみると、外筒を焼ばめして平均応力σm
{(最大応力−最小応力)×1/2}=0、K=∞のと
き、(但し、内径Viは本発明と同じ)
Equation 7] Sa = 1/2 {(12.3 + 60)} = 36.2kg / mm 2 stress-strain when the εa = Sa / E = 36.2 / 2 × 10 4 = 1.8 × 10 -3 Here, E is the elastic modulus of the inner cylinder. On the other hand, the trial calculation for the case of the conventional high-pressure container shows that the outer cylinder is shrink-fit and the average stress σm.
When {(maximum stress-minimum stress) × 1/2} = 0 and K = ∞ (however, the inner diameter Vi is the same as in the present invention).

【数8】 σa=Sa=60kg/mm2 Σa = Sa = 60 kg / mm 2

【数9】 εa=60/(2×104 )=3×10-3 となる。The Equation 9] εa = 60 / (2 × 10 4) = 3 × 10 -3.

【0012】前記試算値をもとに、図4に示す応力歪−
繰り返し回数特性曲線より、本発明に係る高圧容器と従
来の高圧容器との疲労強度の比較をしてみると、 本発明:εa=1.8×10-3 → 繰り返し回数 Nf=1.5×105 回 従 来:εa=3×10-3 → 繰り返し回数 Nf=3×103 回 となる。即ち、同じ液圧で加圧処理をする場合、従来の
ものに比べて本発明の高圧容器は実に50倍の長期間使
用に耐えることができるということになる。
Based on the above calculated values, the stress strain shown in FIG.
When the fatigue strength of the high-pressure container according to the present invention and the conventional high-pressure container is compared from the characteristic curve of the number of repetitions, the present invention: εa = 1.8 × 10 −3 → number of repetitions Nf = 1.5 × 10 5 times Conventional: εa = 3 × 10 −3 → number of repetitions Nf = 3 × 10 3 times. That is, when pressure treatment is performed with the same liquid pressure, the high-pressure container of the present invention can withstand 50 times longer use than the conventional one.

【0013】前記のように本発明の高圧容器において、
疲労強度を決定する応力振幅が小さくなるのは数3より
明らかなように、内筒1に外圧Poが作用することによ
り周方向応力σθが小さくなることによる。図3は本発
明に係る高圧容器と従来の高圧容器における周方向応力
σθの変化を示したもので、実線は内圧のみ作用する従
来の単肉容量の場合を、また2点鎖線は同じく多層容器
の場合を夫々示している。また点線は本発明に係る高圧
容器の場合を示している。このグラフより明らかなよう
に本発明に係る高圧容器は従来の容器の応力(実線)よ
り、1点鎖線で示す外圧による分を相殺した分だけσθ
が減少している様子がわかる。
As described above, in the high-pressure container of the present invention,
The stress amplitude that determines the fatigue strength becomes smaller because the external stress Po acts on the inner cylinder 1 so that the circumferential stress σθ becomes smaller, as is clear from Equation 3. FIG. 3 shows changes in the circumferential stress σθ in the high-pressure container according to the present invention and in the conventional high-pressure container. The solid line shows the case of the conventional single-wall capacity in which only the internal pressure acts, and the two-dot chain line shows the multilayer container. The respective cases are shown. The dotted line shows the case of the high-pressure container according to the present invention. As is clear from this graph, the high-pressure container according to the present invention has a stress (solid line) of the conventional container that is offset by the external pressure indicated by the alternate long and short dash line by σθ.
It can be seen that is decreasing.

【0014】[0014]

【発明の効果】以上詳細に説明した如く本発明による
と、外筒内面及び内筒外面の両面に軸方向に所定の勾配
を形成すると共に、内筒と密接して摺動自在に嵌合する
外筒に油圧ラムを固定し、更に油圧ラムの下部に液体を
充満した内筒液室に嵌合するロッドを固定して設けたた
め、油圧ラムを駆動して下降させる際、ロッドと連動し
て前記外筒も下降するので、内筒にはロッドによって液
体を体積圧縮して上昇する内圧と外筒の押込みに基づく
外圧とが同時に作用するようになり、これによって内筒
に発生する応力振幅を小さくできる。従って内筒、即ち
高圧容器の疲労強度が大幅に向上するという優れた効果
を奏するものである。
As described in detail above, according to the present invention, both the inner surface of the outer cylinder and the outer surface of the inner cylinder are formed with a predetermined gradient in the axial direction, and are fitted slidably in close contact with the inner cylinder. The hydraulic ram is fixed to the outer cylinder, and the rod that fits into the liquid chamber of the inner cylinder is fixed to the lower part of the hydraulic ram.Therefore, when driving and lowering the hydraulic ram, it is interlocked with the rod. Since the outer cylinder also descends, the inner pressure of the liquid that is volume-compressed and increased by the rod and the outer pressure based on the pushing of the outer cylinder act on the inner cylinder at the same time, and the stress amplitude generated in the inner cylinder is thereby reduced. Can be made smaller. Therefore, it has an excellent effect that the fatigue strength of the inner cylinder, that is, the high-pressure container is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る高圧容器の断面図であ
る。
FIG. 1 is a sectional view of a high-pressure container according to an embodiment of the present invention.

【図2】本発明の実施例の内筒に加わる内外圧の説明図
である。
FIG. 2 is an explanatory diagram of internal and external pressures applied to the inner cylinder of the embodiment of the present invention.

【図3】本発明の実施例の内筒の周方向応力の変化図で
ある。
FIG. 3 is a diagram showing a change in circumferential stress of the inner cylinder according to the embodiment of the present invention.

【図4】応力歪−繰り返し回数特性曲線図である。FIG. 4 is a stress-strain-repetition number characteristic curve diagram.

【図5】従来の高圧容器を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional high pressure container.

【符号の説明】[Explanation of symbols]

1 内筒 2 外筒 4 ロッド 5 油圧ラム 5a 連結材 6 シリンダ 7 ヨークフレーム 8 シリンダカバー 9a,9b,9c 通路 10a,10b 油圧管 10c 供給管 11 下蓋 12 逆止弁 1 Inner Cylinder 2 Outer Cylinder 4 Rod 5 Hydraulic Ram 5a Connecting Material 6 Cylinder 7 Yoke Frame 8 Cylinder Cover 9a, 9b, 9c Passage 10a, 10b Hydraulic Pipe 10c Supply Pipe 11 Lower Lid 12 Check Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被加圧流体を収容する内筒と、この内筒
に密接して摺動自在に嵌合された外筒と、同外筒が内筒
に対して摺動移動する際に同内筒に外圧を発生させるこ
とができる外圧発生手段と、同外筒に固定されると共
に、同内筒の流体収容室に嵌合するラムと、同ラムを昇
降させる昇降手段とからなることを特徴とする高圧容
器。
1. An inner cylinder containing a fluid to be pressurized, an outer cylinder closely fitted to the inner cylinder so as to be slidable, and when the outer cylinder slides with respect to the inner cylinder. An outer pressure generating means capable of generating an outer pressure in the inner cylinder, a ram fixed to the outer cylinder and fitted in a fluid storage chamber of the inner cylinder, and an elevating means for elevating the ram. High-pressure container characterized by.
JP30123491A 1991-10-22 1991-10-22 High pressure vessel Withdrawn JPH05111632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30123491A JPH05111632A (en) 1991-10-22 1991-10-22 High pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30123491A JPH05111632A (en) 1991-10-22 1991-10-22 High pressure vessel

Publications (1)

Publication Number Publication Date
JPH05111632A true JPH05111632A (en) 1993-05-07

Family

ID=17894396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30123491A Withdrawn JPH05111632A (en) 1991-10-22 1991-10-22 High pressure vessel

Country Status (1)

Country Link
JP (1) JPH05111632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009267C2 (en) * 1998-05-27 1999-11-30 Inst Voor Agrotech Onderzoek High pressure device.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009267C2 (en) * 1998-05-27 1999-11-30 Inst Voor Agrotech Onderzoek High pressure device.
WO1999061146A1 (en) * 1998-05-27 1999-12-02 Ato B.V. High-pressure apparatus

Similar Documents

Publication Publication Date Title
US4183124A (en) Method of and apparatus for fabricating spiral wrapped cartridge cases
WO1994021145A1 (en) Method and device in high-pressure treatment of liquid substances
US3830607A (en) Apparatus for compacting material
EP0602363A1 (en) High-pressure press
EP1089810B1 (en) High pressure apparatus
JPH05111632A (en) High pressure vessel
WO1999061146A9 (en) High-pressure apparatus
US7565802B2 (en) High pressure pressing device and a method
CN106142636B (en) Isostatic pressed pressue device and use its pressure treatment method
TWI644044B (en) Isotropic pressure pressurizing device and isotropic pressure pressurizing method using isotropic pressure pressurizing device
JP2655963B2 (en) High pressure processing method and processing equipment for food etc.
AU2020306889B2 (en) Isostatic pressing device, storage container for isostatic pressing device, and isostatic pressing treatment method
JP4394859B2 (en) Pressurizing device
JPH0562038B2 (en)
WO2024111479A1 (en) Isostatic pressurization device
US3566450A (en) High pressure cylinder and press structure for the cylinder
JPH0513736B2 (en)
US20050072319A1 (en) Pressurization device
JPH0496753A (en) High-pressure liquid processing device
JPH08870Y2 (en) Horizontal high-pressure processing equipment
JPH086123B2 (en) Cold isotropic press machine and pressure elastic membrane for pressure molding
JPS5978799A (en) High pressure vessel
JPH03236765A (en) Apparatus for high-pressure treatment of fluid
JPH08252695A (en) Wet cold hydrostatic pressing equipment
JPS62204840A (en) Method for increasing pressure of high pressure container

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107