WO1999059767A1 - Method and arrangement for improving quality in fusion welding operations - Google Patents

Method and arrangement for improving quality in fusion welding operations Download PDF

Info

Publication number
WO1999059767A1
WO1999059767A1 PCT/SE1999/000793 SE9900793W WO9959767A1 WO 1999059767 A1 WO1999059767 A1 WO 1999059767A1 SE 9900793 W SE9900793 W SE 9900793W WO 9959767 A1 WO9959767 A1 WO 9959767A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
protective
gas flow
hose
flush
Prior art date
Application number
PCT/SE1999/000793
Other languages
French (fr)
Inventor
Fred Galesloot
Original Assignee
Aga Aktiebolag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20411344&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999059767(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aga Aktiebolag filed Critical Aga Aktiebolag
Priority to AU46606/99A priority Critical patent/AU4660699A/en
Priority to US09/700,152 priority patent/US6634544B1/en
Priority to AT99929980T priority patent/ATE254979T1/en
Priority to HU0102069A priority patent/HUP0102069A3/en
Priority to DE69913141T priority patent/DE69913141T2/en
Priority to EP99929980A priority patent/EP1089847B1/en
Priority to BR9910487-3A priority patent/BR9910487A/en
Publication of WO1999059767A1 publication Critical patent/WO1999059767A1/en
Priority to NO20005674A priority patent/NO318082B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1494Maintenance of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a method for improving quality in fusion welding operations where protective gas is supplied to the welding point via a hose line.
  • the invention also relates to an arrangement for use in implementing the method.
  • the present invention is based on the knowledge that a contributory cause of such porosity resulting from moisture may be condensate which for various reasons is formed on the inside of protective-gas hoses and welding guns. This moisture is then conveyed forward by the protective gas to the pool at the welding point. Tests performed have also confirmed that this is the case. In other welding operations, such as welding stainless steel, titanium, high-alloy stainless steel, nickel-based steel and magnesium, problems associated with inter alia oxidation which is difficult to explain arise. With the knowledge that has been gained in the development of the present invention, it has emerged that these problems also may be due to impurities which originate from the inside of the protective-gas hose and are supplied to the pool by the gas flow. Such impurities may consist of oxygen and also moisture which diffuse in through the walls of the hoses used for the protective-gas flow. Other impurities present in the hoses can also influence the weld quality.
  • the main object of the present invention is to produce a technique which considerably reduces the quality impairments which occur in fusion welding using protective gas as a consequence of impurities brought along by the protective gas from the inside of the protective-gas hoses.
  • this is achieved by virtue of the fact that a small flush-gas flow is made to flow through the protective-gas hoses even when the normal protective-gas flow is shut off. In this way, moisture is prevented from condensing on the inside of the hose, and other impurities are prevented from accumulating there when the protective-gas flow is shut off.
  • Fig. 1, 1 designates a gas bottle containing a gas or gas mixture which is to be used as a protective gas in a welding operation.
  • the gas may be, for example, an inert gas or gas mixture or comprise nitrogen.
  • it is important that the gas or gas mixture has a low moisture content.
  • Reference number 2 designates a pressure-reducing valve which is connected via a protective-gas hose 3 to a solenoid valve 4 which is usually controlled by a welding gun connected to the valve.
  • the solenoid valve is usually combined with a wire-feeding unit.
  • the welding gun is actuated, the solenoid valve 4 then being opened so that protective gas can flow forward to the pool.
  • the protective-gas flow is therefore shut off.
  • Moisture and gases, such as oxygen may also diffuse in through the hose wall and accumulate on its inside.
  • moisture and other impurities on the inside of the protective-gas hose will then be conveyed to the pool by the protective-gas flow.
  • moisture constitutes a source of porosity in the weld joint, in particular in the case of aluminium welding, and oxygen gives rise to undesirable oxidation of the weld metal.
  • a bypass line 5 with a valve arrangement 6 has been connected in so as to be parallel to the solenoid valve 4.
  • the valve 6 can be adjusted so that a small flow of protective gas always passes through the bypass line 5, which means that a continuous flow through the protective-gas hose 3 and the welding gun is obtained, even when protective gas is not flowing through the solenoid valve 4.
  • This flush-gas flow prevents moisture or other impurities accumulating on the inner surface of the protective-gas hose 3 during the time when the equipment is inactive. Such impurities would otherwise be supplied to the pool in the next welding operation.
  • the valve arrangement 6 may consist of a fixed throttle or a regulating valve which, if so desired, can be controlled depending on the opening and closing of the solenoid valve 4.
  • the flush-gas flow may be of the order of, for example, 1 1/min and flow through both the protective-gas hose and the welding gun. When what is known as root protection is used for the weld, a flush- gas flow can also flow through the associated hose line.
  • the solenoid valve 4 can itself be made with a passage for a flush-gas flow which flows even when the main passage of the solenoid valve is shut.
  • the principle according to the invention can be used in all types of fusion welding operations irrespective of the material combinations to be welded.
  • the flush-gas flow suitably consists of the same gas or gas mixture as the protective-gas flow. However, it is of course possible to use a separate source of flush gas, if desired.
  • the flush gas should preferably be of the inert type but may also consist of nitrogen for certain applications. In the case of aluminium welding in particular, it is important that the gas or gas mixture has a low moisture content. In other applications, such as, for example, welding stainless steel and the like, it may be a requirement for the flush gas to have a low oxygen content.
  • the gas may be ready-mixed or be mixed by means of a mixer. It can be kept in a pressure container, such as a gas bottle, or in liquid form in a pressure tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

Arrangement for improving quality in fusion welding operations where protective gas is supplied to the welding point via a hose line. The arrangement comprises means (5, 6), such as a bypass line connected parallel to the solenoid valve (4) which is usually connected into the protective-gas hose (3), in order to make a small flush-gas flow pass through the protective-gas hose (3) or a considerable part of its length, when the normal protective-gas flow is shut off. In this way, the quantity of impurities brought along by the protective-gas flow from the inside of the protective-gas hose (3) and supplied to the pool is reduced.

Description

Method and arrangement for improving quality in fusion welding operations
The present invention relates to a method for improving quality in fusion welding operations where protective gas is supplied to the welding point via a hose line.
The invention also relates to an arrangement for use in implementing the method.
In the fusion welding of aluminium, a number of material- specific quality problems arise, which lead to high repair costs. The major and most extensive problem arises as a consequence of the presence of porosity in the weld joint. The main cause of the porosity is that hydrogen, H2 , is readily dissolved in liquid aluminium. The dissolved hydrogen accumulates and forms gas bubbles in the solidified metal, which give rise to a strength- reducing porosity in the weld joint. It is therefore desirable to achieve as little porosity as possible in the weld metal.
The most common sources of the hydrogen are moisture, dirt, oil and fat which come into contact with the fused metal during welding. The welding should therefore take place under clean and dry conditions. In spite of the fact that attempts have been made to achieve conditions which are as dry as possible, it has not been possible to overcome porosity in the weld joint caused by moisture.
The present invention is based on the knowledge that a contributory cause of such porosity resulting from moisture may be condensate which for various reasons is formed on the inside of protective-gas hoses and welding guns. This moisture is then conveyed forward by the protective gas to the pool at the welding point. Tests performed have also confirmed that this is the case. In other welding operations, such as welding stainless steel, titanium, high-alloy stainless steel, nickel-based steel and magnesium, problems associated with inter alia oxidation which is difficult to explain arise. With the knowledge that has been gained in the development of the present invention, it has emerged that these problems also may be due to impurities which originate from the inside of the protective-gas hose and are supplied to the pool by the gas flow. Such impurities may consist of oxygen and also moisture which diffuse in through the walls of the hoses used for the protective-gas flow. Other impurities present in the hoses can also influence the weld quality.
The main object of the present invention is to produce a technique which considerably reduces the quality impairments which occur in fusion welding using protective gas as a consequence of impurities brought along by the protective gas from the inside of the protective-gas hoses.
According to the present invention, this is achieved by virtue of the fact that a small flush-gas flow is made to flow through the protective-gas hoses even when the normal protective-gas flow is shut off. In this way, moisture is prevented from condensing on the inside of the hose, and other impurities are prevented from accumulating there when the protective-gas flow is shut off.
The particularly characteristic features of a method and an arrangement according to the present invention emerge from Patent Claims 1 and 6 respectively. Further features of the invention are indicated in the associated subclaims.
The invention will be described in greater detail below with reference to the embodiment of an arrangement according to the invention, which is shown diagrammatically in the appended drawings.
In Fig. 1, 1 designates a gas bottle containing a gas or gas mixture which is to be used as a protective gas in a welding operation. The gas may be, for example, an inert gas or gas mixture or comprise nitrogen. In the case of aluminium welding in particular, it is important that the gas or gas mixture has a low moisture content.
Reference number 2 designates a pressure-reducing valve which is connected via a protective-gas hose 3 to a solenoid valve 4 which is usually controlled by a welding gun connected to the valve. The solenoid valve is usually combined with a wire-feeding unit.
At the start of a welding operation, the welding gun is actuated, the solenoid valve 4 then being opened so that protective gas can flow forward to the pool. This means that protective gas flows only during and in connection with the welding itself. When no welding is taking place, the protective-gas flow is therefore shut off. The result of this is that, depending on the ambient and temperature conditions prevailing where the equipment is stored between welding operations, it will be possible for condensation to take place to a greater or lesser extent on the inside of the protective-gas hose and in the welding gun. Moisture and gases, such as oxygen, may also diffuse in through the hose wall and accumulate on its inside. When welding is recommenced, moisture and other impurities on the inside of the protective-gas hose will then be conveyed to the pool by the protective-gas flow. As mentioned above, moisture constitutes a source of porosity in the weld joint, in particular in the case of aluminium welding, and oxygen gives rise to undesirable oxidation of the weld metal.
In the embodiment shown, a bypass line 5 with a valve arrangement 6 has been connected in so as to be parallel to the solenoid valve 4. The valve 6 can be adjusted so that a small flow of protective gas always passes through the bypass line 5, which means that a continuous flow through the protective-gas hose 3 and the welding gun is obtained, even when protective gas is not flowing through the solenoid valve 4. This flush-gas flow prevents moisture or other impurities accumulating on the inner surface of the protective-gas hose 3 during the time when the equipment is inactive. Such impurities would otherwise be supplied to the pool in the next welding operation.
The valve arrangement 6 may consist of a fixed throttle or a regulating valve which, if so desired, can be controlled depending on the opening and closing of the solenoid valve 4. The flush-gas flow may be of the order of, for example, 1 1/min and flow through both the protective-gas hose and the welding gun. When what is known as root protection is used for the weld, a flush- gas flow can also flow through the associated hose line.
Instead of using a bypass line 5, the solenoid valve 4 can itself be made with a passage for a flush-gas flow which flows even when the main passage of the solenoid valve is shut.
The principle according to the invention can be used in all types of fusion welding operations irrespective of the material combinations to be welded.
The flush-gas flow suitably consists of the same gas or gas mixture as the protective-gas flow. However, it is of course possible to use a separate source of flush gas, if desired. The flush gas should preferably be of the inert type but may also consist of nitrogen for certain applications. In the case of aluminium welding in particular, it is important that the gas or gas mixture has a low moisture content. In other applications, such as, for example, welding stainless steel and the like, it may be a requirement for the flush gas to have a low oxygen content.
The gas may be ready-mixed or be mixed by means of a mixer. It can be kept in a pressure container, such as a gas bottle, or in liquid form in a pressure tank.

Claims

PATENT CLAIMS
1. Method of improving quality in fusion welding operations where protective gas is supplied to the welding point via a hose line, characterized in that the quantity of impurities brought along by the protective- gas flow from the inside of the protective-gas hose and supplied to the welding point is reduced by virtue of the fact that a small flush-gas flow is made to pass through the protective-gas hose or a considerable part of its length when the normal protective-gas flow is shut off.
2. Method according to Claim 1, characterized in that the protective-gas flow also passes through a welding gun connected to the protective-gas hose.
3. Method according to Claim 1 or 2 , characterized in that the same gas or gas mixture is used for said flush-gas flow as for the protective-gas flow.
4. Method according to any one of Claims 1-3 , characterized in that an inert gas or gas mixture and/or nitrogen is/are used for the flush-gas flow.
5. Method according to any one of Claims 1-4 implemented in the fusion welding of aluminium, characterized in that a gas or gas mixture with a low moisture content is used for the flush-gas flow.
6. Arrangement for improving quality in fusion welding operations where protective gas is supplied to the welding point via a hose line, characterized by means (5, 6) for causing a small flush-gas flow to pass through the protective-gas hose (3) or a considerable part of its length, when the normal protective-gas flow is shut off, in order to reduce the quantity of impurities brought along by the protective-gas flow from the inside of the protective-gas hose (3) and supplied to the pool.
7. Arrangement according to Claim 6, implemented in welding equipment with a solenoid valve (4) connected into the protective-gas hose, characterized in that it comprises a bypass line (5) which is connected in parallel to the solenoid valve (4) and has a regulating arrangement (6) for the flush-gas flow.
8. Arrangement according to Claim 7, characterized in that said regulating arrangement (6) comprises a regulating valve or throttle.
9. Arrangement according to any one of Claims 6-8 , characterized in that the flush-gas flow consists of the same gas or gas mixture as the protective-gas flow.
10. Arrangement according to any one of Claims 6-9 , characterized in that it comprises a separate source of flush gas.
PCT/SE1999/000793 1998-05-15 1999-05-11 Method and arrangement for improving quality in fusion welding operations WO1999059767A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU46606/99A AU4660699A (en) 1998-05-15 1999-05-11 Method and arrangement for improving quality in fusion welding operations
US09/700,152 US6634544B1 (en) 1998-05-15 1999-05-11 Method and arrangement for improving quality in fusion welding operations
AT99929980T ATE254979T1 (en) 1998-05-15 1999-05-11 METHOD AND DEVICE FOR IMPROVING QUALITY IN FUSION WELDING OPERATIONS
HU0102069A HUP0102069A3 (en) 1998-05-15 1999-05-11 Method and arrangement for improving quality in fusion welding operations
DE69913141T DE69913141T2 (en) 1998-05-15 1999-05-11 METHOD AND DEVICE FOR IMPROVING THE QUALITY IN FUSION WELDING PROCESSES
EP99929980A EP1089847B1 (en) 1998-05-15 1999-05-11 Method and arrangement for improving quality in fusion welding operations
BR9910487-3A BR9910487A (en) 1998-05-15 1999-05-11 Method and disposition for improving quality in fusion welding operations
NO20005674A NO318082B1 (en) 1998-05-15 2000-11-10 Method and arrangement for quality improvement in melt welding operations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9801730-4 1998-05-15
SE9801730A SE9801730L (en) 1998-05-15 1998-05-15 Methods and apparatus for improving the quality of melt welding operations

Publications (1)

Publication Number Publication Date
WO1999059767A1 true WO1999059767A1 (en) 1999-11-25

Family

ID=20411344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1999/000793 WO1999059767A1 (en) 1998-05-15 1999-05-11 Method and arrangement for improving quality in fusion welding operations

Country Status (11)

Country Link
US (1) US6634544B1 (en)
EP (1) EP1089847B1 (en)
AT (1) ATE254979T1 (en)
AU (1) AU4660699A (en)
BR (1) BR9910487A (en)
CZ (1) CZ296354B6 (en)
DE (1) DE69913141T2 (en)
HU (1) HUP0102069A3 (en)
NO (1) NO318082B1 (en)
SE (1) SE9801730L (en)
WO (1) WO1999059767A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124227C5 (en) * 2001-05-18 2007-08-30 Air Liquide Deutschland Gmbh Apparatus for cooling by means of adiabatic expansion of a gas or gas mixture
TWI511829B (en) * 2010-03-15 2015-12-11 Daihen Corp Arc welding apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170032B2 (en) 2003-11-20 2007-01-30 Tri Tool Inc. Process for welding
EP4052833A1 (en) * 2021-03-03 2022-09-07 FRONIUS INTERNATIONAL GmbH Inert gas hose for guiding an inert gas for a welding process and method for flushing such an inert gas hose

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2135545A1 (en) * 1971-07-16 1973-01-25 Claus Dammers Cleaning welding burners - using blasts of air and parting agent-air mixt
EP0074106A1 (en) * 1981-09-09 1983-03-16 Alexander Binzel GmbH & Co. KG Water-cooled protective gas welding torch for automatic welding appliances with a gas nozzle with internal blow-out facilities

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1325116A (en) * 1919-12-16 Island
US2504867A (en) * 1948-06-22 1950-04-18 Air Reduction Method of arc welding
US2788429A (en) * 1954-03-22 1957-04-09 Gen Motors Corp Process and gas for inert gas shielded arc welding
US3089944A (en) * 1962-01-19 1963-05-14 Air Reduction Arc welding
DK149741C (en) * 1983-02-16 1987-12-28 Christian Chemnitz ELECTRIC WELDING APPLIANCE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2135545A1 (en) * 1971-07-16 1973-01-25 Claus Dammers Cleaning welding burners - using blasts of air and parting agent-air mixt
EP0074106A1 (en) * 1981-09-09 1983-03-16 Alexander Binzel GmbH & Co. KG Water-cooled protective gas welding torch for automatic welding appliances with a gas nozzle with internal blow-out facilities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124227C5 (en) * 2001-05-18 2007-08-30 Air Liquide Deutschland Gmbh Apparatus for cooling by means of adiabatic expansion of a gas or gas mixture
TWI511829B (en) * 2010-03-15 2015-12-11 Daihen Corp Arc welding apparatus

Also Published As

Publication number Publication date
AU4660699A (en) 1999-12-06
US6634544B1 (en) 2003-10-21
SE9801730D0 (en) 1998-05-15
DE69913141T2 (en) 2004-09-16
SE9801730L (en) 1999-11-16
ATE254979T1 (en) 2003-12-15
NO318082B1 (en) 2005-01-31
NO20005674L (en) 2000-11-10
EP1089847B1 (en) 2003-11-26
HUP0102069A3 (en) 2001-11-28
CZ20004253A3 (en) 2001-07-11
BR9910487A (en) 2001-01-09
NO20005674D0 (en) 2000-11-10
DE69913141D1 (en) 2004-01-08
EP1089847A1 (en) 2001-04-11
HUP0102069A2 (en) 2001-10-28
CZ296354B6 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
KR101161885B1 (en) Process for welding
US4916281A (en) Gas back-purging during welding of pipe
EP0494521B1 (en) Shielding gas mixture for welding superalloys
US6634544B1 (en) Method and arrangement for improving quality in fusion welding operations
Boniszewski Self-shielded arc welding
JPH0557468A (en) Laser beam welding method for rust preventive steel sheets
US20070045238A1 (en) Method of welding material with reduced porosity
Faerber Gases for increased productivity of laser processing
JPH11170050A (en) Welding defect prevention method in on-site welding of piping
JPS5545555A (en) Welding method of austenitic stainless steel
Demenin Root Welding Using the Regulated Metal Deposition Technology
JP2000190076A (en) Tig welding method for pipe
KR950002905A (en) Welding method of ultra high purity gas supply pipe
Mukai et al. CO2 welding of galvanized steel
Dos Santos et al. Properties of a ferritic metal cored wire weld metal deposited in the pressure range from 51bar to 110bar
CA3093865A1 (en) Forming device and method for supplying at least one root protection gas
Singh Arc Welding Processes
Jiang Double-sided arc welding process
Hoske Quality Assurance in Submerged-Arc and Gas Metal-Arc Welding in Structural Engineering
Cook Decoupling of weld variables for improved automatic control
Liu et al. Hydrogen Management Strategies in Flux-Related Arc Welding
Hewitt Purging before welding stainless steel pipes
Habrekke et al. The Behaviour Of C-Mn And Stainless Steels When Weldingunder Hyperbaric Conditions
Edwards Employing purging systems in tube and pipe welding
Gretskii Technological processes of underwater welding and cutting of steels with flux-cored wires

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU AZ BA BG BR BY CA CN CU CZ EE GE HR HU ID IL IN IS JP KR KZ LT LV MD MK MX NO NZ PL RO RU SG SI SK TR UA US YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999929980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: PV2000-4253

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 09700152

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999929980

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2000-4253

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1999929980

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV2000-4253

Country of ref document: CZ