WO1999058289A1 - Laser beam machine - Google Patents

Laser beam machine Download PDF

Info

Publication number
WO1999058289A1
WO1999058289A1 PCT/JP1998/002102 JP9802102W WO9958289A1 WO 1999058289 A1 WO1999058289 A1 WO 1999058289A1 JP 9802102 W JP9802102 W JP 9802102W WO 9958289 A1 WO9958289 A1 WO 9958289A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
beam diameter
adjusting means
reflection
Prior art date
Application number
PCT/JP1998/002102
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Kanaoka
Tohru Murai
Yasuyuki Miyamoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to TW087107380A priority Critical patent/TW425322B/en
Priority to PCT/JP1998/002102 priority patent/WO1999058289A1/en
Publication of WO1999058289A1 publication Critical patent/WO1999058289A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing

Definitions

  • the present invention relates to a laser beam machine, and more particularly, to a laser beam machine capable of reducing a positional deviation between a focal position of a laser beam and a surface of a workpiece.
  • FIG. 9 is a perspective view showing a schematic configuration of a conventional laser beam machine.
  • the laser beam machine 500 includes a rail 1 provided on both sides of the workpiece W, a traveling frame 2 traveling on the rail 1, and a transverse frame 3 provided between the traveling frames 2 on both sides.
  • the traversing carriage 4 that moves along the traversing frame 3, the processing head 5 attached to the traversing carriage 4, the condenser lens 6 provided inside the processing head 5, and the processing head 5.
  • FIG. 10 is a perspective view showing the reflective laser beam diameter adjuster shown in FIG.
  • the reflection laser beam diameter adjuster 9 has a reflection surface 92 on one surface of a cylindrical air jacket 91.
  • the reflection surface 92 is made of an elastically deformable material.
  • the air jacket 91 has an air inlet 93 and an air outlet 94.
  • the air inlet 93 is connected to the pump 95.
  • the air in the air jacket 91 is sucked by the pump 95.
  • the air outlet 94 is provided with a valve (not shown) that regulates air flow.
  • Laser oscillator 1 1 When the propagation distance from becomes large, take the beam waist in the optical path. This is to prevent the beam diameter from expanding.
  • the laser beam R output from the laser oscillator 11 is collimated by the reflection type laser beam diameter adjuster 9.
  • the collimated laser light R passes through the laser light path 7.
  • the laser beam R is bent by the bend mirror 18 in the laser beam path 7.
  • the laser beam R is condensed by the condenser lens 6 and is irradiated on the surface of the workpiece W. Thereby, the workpiece W is cut.
  • a reflection type laser beam diameter adjuster 9 is arranged near the laser oscillator 11, and the laser beam R is collimated by using the reflection type laser beam diameter adjuster 9. I have.
  • the laser beam R cannot be completely parallelized by the reflection type laser beam diameter adjuster 9, there is a small beam divergence angle. This beam divergence angle changes with the propagation distance of the laser light R.
  • the processing head 5 moves on the X and Y coordinates, the propagation distance of the laser beam R changes, so that the beam divergence angle changes and the beam incident angle on the condenser lens 6 changes. For this reason, there was a problem that the focus position was shifted and the cutting quality was lowered.
  • a laser beam machine includes a laser oscillator that outputs laser light, and reflects and propagates laser light output from the laser oscillator, and changes a reflection surface curvature of an optical component.
  • Laser type laser beam diameter adjusting means that adjusts the laser beam diameter by means of a laser beam, and the laser beam that has been adjusted is condensed by a condensing lens, and the condensed laser beam is irradiated onto the surface of the workpiece.
  • a reflection type laser beam diameter adjusting means is arranged near a processing head.
  • the reflection type laser beam diameter adjusting means is used for machining. It was provided near the head. For this reason, the displacement between the focal position and the surface of the workpiece is reduced.
  • a laser processing machine comprises a laser oscillator for outputting a laser beam, and a reflection device for reflecting and propagating the laser beam output from the laser oscillator and adjusting a laser beam diameter by changing a reflection surface curvature of an optical component.
  • a laser beam machine having a die laser beam diameter adjusting means and a machining head for focusing the adjusted laser beam by a condenser lens and irradiating the focused laser beam to the surface of the workpiece.
  • the reflection type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece falls within the processing limit.
  • the reflection-type beam diameter adjusting means is far from the processing head, the positional deviation between the focal position and the surface of the workpiece increases. Therefore, the reflection-type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece falls within the processing limit. In this way, the cutting quality is improved.
  • a laser processing machine comprises a laser oscillator for outputting a laser beam, and a reflection device for reflecting and propagating the laser beam output from the laser oscillator and adjusting a laser beam diameter by changing a reflection surface curvature of an optical component.
  • a laser having a mold laser beam diameter adjusting means, and a processing head for condensing the adjusted laser beam with a condenser lens and irradiating the converged laser beam to the surface of the workpiece.
  • the reflection type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece is 0.6 mm or less.
  • a laser processing machine comprises a laser oscillator for outputting a laser beam, and a reflection device for reflecting and propagating the laser beam output from the laser oscillator and adjusting the laser beam diameter by changing a reflection surface curvature of an optical component.
  • Mold laser beam diameter adjusting means and this adjustment Laser beam machine that has a processing head that collects laser light collected by a condenser lens and irradiates the collected laser light to the surface of the workpiece.
  • the distance to the beam diameter adjusting means is set within 8 m.
  • the reflection type laser beam diameter adjusting means is provided within 8 m from the processing head. For this reason, the positional deviation between the focal position and the workpiece surface is reduced.
  • the laser beam machine according to the next invention is the above-mentioned laser beam machine, wherein the laser beam output from the laser oscillator is transmitted and propagated and the curvature of the optical component is changed, instead of the reflection type laser beam diameter adjusting means.
  • the transmission laser beam diameter adjusting means for adjusting the laser beam diameter is provided.
  • FIG. 1 is a perspective view showing a laser processing machine according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a shift of a focal position with respect to a workpiece surface.
  • Fig. 4 is a graph showing the relationship between the range of processing conditions for obtaining good cutting quality of mild steel material and the amount of deviation of the focal position.
  • Fig. 4 shows the processing conditions for obtaining good cutting quality of stainless steel.
  • FIG. 5 is a graph showing the relationship between the range and the amount of deviation of the focal position.
  • FIG. 5 is an explanatory diagram showing an optical path from a laser oscillator to a processing head; and
  • FIG. 6 is a reflection type from a processing head.
  • FIG. 7 is a graph showing a relationship between a distance to a laser beam diameter adjuster and an amount of deviation of a focal position.
  • FIG. 7 is a flowchart showing a process of adjusting a laser beam diameter.
  • FIG. FIG. 3 is a schematic configuration diagram showing a laser processing machine according to Embodiment 2.
  • Figure 9 is a perspective view showing a schematic configuration of a conventional laser beam machine, the FIG. 10 is a perspective view showing the reflection-type laser beam diameter adjuster shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view showing a laser beam machine according to a first embodiment of the present invention.
  • the laser beam machine 100 is provided with rails 1 provided on both sides of a workpiece W, and runs on the rails 1. Traveling frame 2, a traversing frame 3 provided between the traveling frames 2 on both sides, a traversing carriage 4 moving along the traversing frame 3, and a machining head attached to the traversing carriage 4. 5, a condenser lens 6 provided inside the processing head 5, a laser path 7 connected to the processing head 5, a plurality of bend mirrors 8 provided in the laser path 7, and a middle of the laser path 7.
  • the reflection type laser beam diameter adjuster 9 provided on the traversing frame 3, the bend mirror 10 provided at the entrance of the laser path 7, the laser oscillator 11 for emitting the laser light R, and the processing. Controls the position of the laser beam 5 and the reflective laser beam diameter adjuster 9 and And a control unit 1 2 for controlling the operation of the laser oscillator 1 1.
  • the condenser lens 6 has a focal length of 7.5 in.
  • the reflection type laser beam diameter adjuster 9 has the same embodiment as that shown in the conventional example (see FIG. 10).
  • FIG. 2 is an explanatory diagram showing a deviation of a focal position F with respect to a workpiece surface S.
  • the laser beam R that has entered the processing head 5 is condensed by the condenser lens 6.
  • the focal position F of the laser light R coincides with the workpiece surface S
  • the displacement ⁇ becomes zero.
  • the processing conditions include the cutting speed (mm / min) and the laser output (W).
  • As the workpiece W 3340: 00 having a thickness of 91: 1: 111 was used. Oxygen was used as the assist gas.
  • the cut surface roughness is 100 / m or less and the dross height is 0.5
  • the processing condition range of not more than mm was experimentally determined. As a result, it was found that the smaller the amount of deviation of the focal position F, the wider the range of processing conditions.
  • FIG. 4 is a graph showing the relationship between the range of processing conditions at which good cutting quality of stainless steel can be obtained and the amount of deviation of the focal position.
  • the horizontal axis indicates the assist gas pressure.
  • the vertical axis indicates the dross height.
  • 0.3 mm.
  • 0.6 mm.
  • 0.7 mm.
  • SUS304 having a thickness of 12 mm was used. Nitrogen was used as the assist gas.
  • the deviation of the focal position F was 0.6 mm or less, the dross height was within 0.2 mm. From this, it was found that good cutting quality was obtained when the deviation of the focal position F was 0.6 mm or less.
  • the deviation amount of the focal position F be 0.6 mm or less in order to improve the cutting quality.
  • FIG. 5 is an explanatory diagram showing an optical path from the laser oscillator 11 to the processing head 5.
  • the reflection type laser beam diameter adjuster 9 is located near the processing head 5.
  • the sum of the optical path a, the optical path b, and the optical path c is the optical path length from the reflective laser beam diameter adjuster 9 to the processing head 5.
  • FIG. 6 is a graph showing a relationship between a distance from a processing head to a reflective laser beam diameter adjuster and a shift amount of a focal position.
  • the position of the reflection type laser beam diameter adjuster 9 was changed with reference to the position of the head 5, and the amount of deviation of the focal position F was measured.
  • a laser beam machine with a PR mirror curvature of 10 m at the exit of the laser oscillator 11 was used.
  • the laser beam diameter was 20 mm, 30 mm, and 4 Omm.
  • the deviation of the focal position F is 0.6 mm. It was about.
  • the distance between the reflective laser beam diameter adjuster 9 and the processing head 5 should be at least 8 m, and preferably, the reflective laser beam diameter adjuster 9 should be mounted on the processing head 5. It was found that it was better to approach the vicinity of. Furthermore, as a result of experiments, if the distance from the reflective laser beam diameter adjuster 9 to the processing head 5 is within 8 m, mild steel material with a maximum thickness of 3 O mm, stainless steel with a maximum thickness of 18 mm, It was found that good cutting quality was obtained with an aluminum material with a maximum thickness of 16 mm.
  • the distance from the processing head 5 to the reflection type laser beam diameter adjuster 9 was set within 8 m.
  • the reflection type laser beam diameter adjuster 9 was provided on the traversing frame 3 so as to be located near the processing head 5. It should be noted that depending on the design of the laser beam machine 100, it is not always appropriate to set the length within 8 m. Therefore, the distance is set so that the deviation amount of the focal position F is within 0.6 mm. In this way, good processing quality can be obtained. Further, as a precondition for regulating the distance from the processing head 5 to the reflective laser beam diameter adjuster 9, the laser beam diameter is adjusted by the reflective laser beam diameter adjuster 9. Needs to be adjusted. FIG.
  • step S701 information on a material and a thickness to be processed is input from outside.
  • step S702 the optimum beam diameter information is selected from the database of the controller 12 based on the input material and plate thickness. Alternatively, the beam diameter may be calculated.
  • step S703 the curvature of the reflective laser beam diameter adjuster 9 is calculated based on the information on the optimum beam diameter.
  • step S704 the reflecting surface 92 of the reflecting laser beam diameter adjuster 9 is changed to the calculated curvature.
  • the workpiece W is processed. First, select the piercing condition and execute piercing under this condition. Next, the cutting conditions are selected. When selecting the optimum beam diameter, the beam diameter should be used properly depending on whether cutting is performed by pulse or CW. The optimum beam diameter is feedback-controlled by the controller 12. Then, the laser beam machine 100 starts cutting the workpiece W under these cutting conditions. When piercing, select a beam diameter suitable for piercing, and when cutting, select a beam diameter suitable for cutting. You may do it.
  • FIG. 8 is an explanatory diagram showing an optical path of the laser beam machine according to the second embodiment of the present invention.
  • the laser processing machine 200 according to the second embodiment is characterized in that a transmission type laser beam diameter adjuster 201 is used instead of the reflection type laser beam diameter adjuster.
  • Other configurations are substantially the same as those of the laser beam machine 100 of the first embodiment.
  • the same elements are denoted by the same reference numerals.
  • the beam is made substantially parallel by installing a transmission type laser beam diameter adjuster 201 in the optical path. Also in this case, the distance from the processing head 5 to the transmission laser beam diameter adjuster 201 (the sum of the optical path d to the optical path f in the figure) is set within 8 m.
  • the reflection type laser beam diameter adjuster 201 is provided on the traversing frame 3 and is positioned near the processing head 5 (not shown). It should be noted that depending on the design of the laser beam machine 200, it is not always appropriate to be within 8 m. Therefore, the distance is set so that the deviation amount of the focal position F falls within 0.6 mm.
  • the operation of the laser beam machine 200 is the same as that of the laser beam machine 100 of the first embodiment, and therefore the description is omitted. In this way, good processing quality can be obtained.
  • the reflection type laser beam diameter adjusting means is provided near the processing head. Therefore, the displacement between the focal position and the surface of the workpiece is reduced, and the cutting quality is improved.
  • the reflection-type laser beam diameter adjusting means is arranged near the processing head until the positional deviation of the focal position with respect to the workpiece falls within the processing limit. . In this way, the cutting quality is improved.
  • the reflection type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece becomes 0.6 mm or less. In this way, the cutting quality is improved.
  • the reflection type laser beam diameter adjusting means is provided within 8 m from the processing head. For this reason, the positional deviation between the focal position and the surface of the workpiece is reduced, and the cutting quality is improved.
  • the reflection type laser beam diameter adjusting means is replaced.
  • the transmission type laser beam diameter adjusting means having the same function is used, the cutting quality can be improved as described above.
  • the laser beam machine As described above, according to the laser beam machine according to the present invention, it is useful for cutting a workpiece to improve the cutting quality, and the larger the size, the more effective.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A reflection laser beam diameter adjuster (9) is provided above a lateral frame (3) so that the distance from a machining head (5) to the adjuster (9) is shorter than 8 m. Thus, even when the beam is diverged after it passes the adjuster (9), the deviation of the focal position can be kept within 0.6 mm, whereby high quality machining can be achieved.

Description

明 細 書 レーザ加工機 技術分野  Description Laser processing machine Technical field
この発明は、 レーザ加工機に関し、 さらに詳しくは、 レーザ光の焦点位置と被 加工物表面との位置ズレを少なくできるレーザ加工機に関する。 背景技術  The present invention relates to a laser beam machine, and more particularly, to a laser beam machine capable of reducing a positional deviation between a focal position of a laser beam and a surface of a workpiece. Background art
第 9図は、 従来のレーザ加工機の概略構成を示す斜視図である。 このレーザ加 ェ機 5 0 0は、 被加工物 Wの両側に設けたレール 1と、 レール 1上を走行する走 行フレーム 2と、 両側の走行フレーム 2間に渡って設けた横行フレーム 3と、 横 行フレーム 3に沿って移動する横行キヤリッジ 4と、 横行キヤリッジ 4に取付け た加工へッド 5と、 加工へッド 5の内部に設けた集光レンズ 6と、 加工へッド 5 に接続したレーザ通路 7と、 レーザ通路内に設けた複数のベンドミラー 8と、 レ 一ザ通路の入口に配置した反射型レーザ光径調整器 9と、 レーザ光を出射するレ 一ザ発振器 1 1と、 加工へッド 5の位置決め制御を行うと共に反 It レーザ光径 調整器 9およびレーザ発振器 1 1の動作を制御する制御装置 1 2とを有する。 第 1 0図は、 第 9図に示した反射型レーザ光径調整器を示す斜視図である。 こ の反† レ一ザ光径調整器 9は、 円筒形のエアジャケット 9 1の一面に反射面 9 2を有する。 反射面 9 2は、 弾性変形可能な材質からなる。 エアジャケット 9 1 には、 エア入口 9 3とエア出口 9 4とが設けてある。 エア入口 9 3は、 ポンプ 9 5に接続してある。 ポンプ 9 5によりエアジャケット 9 1内のエアを吸引する。 エア出口 9 4には、 エア流入を規制する弁(図示省略) を設ける。 エアジャケッ ト 9 1内が減圧すると、 反射面 9 2力、'球面になる。 エア出口 9 4からエアを出す と、 反射面 9 2が平面に戻る。  FIG. 9 is a perspective view showing a schematic configuration of a conventional laser beam machine. The laser beam machine 500 includes a rail 1 provided on both sides of the workpiece W, a traveling frame 2 traveling on the rail 1, and a transverse frame 3 provided between the traveling frames 2 on both sides. The traversing carriage 4 that moves along the traversing frame 3, the processing head 5 attached to the traversing carriage 4, the condenser lens 6 provided inside the processing head 5, and the processing head 5. Connected laser path 7, a plurality of bend mirrors 8 provided in the laser path, a reflective laser beam diameter adjuster 9 disposed at the entrance of the laser path, and a laser oscillator 11 for emitting laser light. And a control device 12 for controlling the positioning of the processing head 5 and controlling the operations of the anti-It laser beam diameter adjuster 9 and the laser oscillator 11. FIG. 10 is a perspective view showing the reflective laser beam diameter adjuster shown in FIG. The reflection laser beam diameter adjuster 9 has a reflection surface 92 on one surface of a cylindrical air jacket 91. The reflection surface 92 is made of an elastically deformable material. The air jacket 91 has an air inlet 93 and an air outlet 94. The air inlet 93 is connected to the pump 95. The air in the air jacket 91 is sucked by the pump 95. The air outlet 94 is provided with a valve (not shown) that regulates air flow. When the pressure inside the air jacket 91 is reduced, the reflecting surface 92 becomes a spherical surface. When air is released from the air outlet 94, the reflecting surface 92 returns to a flat surface.
つぎに、 このレーザ加工機 5 0 0の動作について説明する。 レーザ発振器 1 1 からの伝播距離が大きくなるときは、 光路中にビームウェストをとる。 ビ一厶径 の拡大を防止するためである。 レーザ発振器 1 1から出力したレーザ光 Rは、 反 射型レーザ光径調整器 9により平行化される。 平行化されたレーザ光 Rは、 レー ザ光通路 7を通過する。 また、 レーザ光 Rは、 レーザ光通路 7中でベンドミラ一 8により曲げられる。 つぎに、 レーザ光 Rは、 集光レンズ 6により集光され、 被 加工物 Wの表面に照射される。 これにより、 被加工物 Wが切断される。 Next, the operation of the laser beam machine 500 will be described. Laser oscillator 1 1 When the propagation distance from becomes large, take the beam waist in the optical path. This is to prevent the beam diameter from expanding. The laser beam R output from the laser oscillator 11 is collimated by the reflection type laser beam diameter adjuster 9. The collimated laser light R passes through the laser light path 7. The laser beam R is bent by the bend mirror 18 in the laser beam path 7. Next, the laser beam R is condensed by the condenser lens 6 and is irradiated on the surface of the workpiece W. Thereby, the workpiece W is cut.
上記従来のレーザ加工機 5 0 0では、 レーザ発振器 1 1の近傍に反射型レーザ 光径調整器 9を配置し、 この反射型レーザ光径調整器 9を用いて、 レーザ光 Rを 平行化している。 しかしながら、 反射型レーザ光径調整器 9ではレーザ光 Rを完 全に平行化できないため、 微小なビーム発散角が存在する。 このビーム発散角は 、 レーザ光 Rの伝播距離に伴って変化する。 加工ヘッド 5が X Y座標上を移動す るとレーザ光 Rの伝播距離が変化するため、 ビーム発散角が変化して集光レンズ 6へのビーム入射角が変わることになる。 このため、 焦点位置がずれて切断品質 が落ちるという問題点があつた。  In the conventional laser beam machine 500 described above, a reflection type laser beam diameter adjuster 9 is arranged near the laser oscillator 11, and the laser beam R is collimated by using the reflection type laser beam diameter adjuster 9. I have. However, since the laser beam R cannot be completely parallelized by the reflection type laser beam diameter adjuster 9, there is a small beam divergence angle. This beam divergence angle changes with the propagation distance of the laser light R. When the processing head 5 moves on the X and Y coordinates, the propagation distance of the laser beam R changes, so that the beam divergence angle changes and the beam incident angle on the condenser lens 6 changes. For this reason, there was a problem that the focus position was shifted and the cutting quality was lowered.
従って、 この発明は、 レーザ光の焦点位置と被加工物表面との位置ズレを少な くできるレーザ加工機を提供することを目的としている。 発明の開示  Accordingly, it is an object of the present invention to provide a laser beam machine capable of reducing a positional deviation between a focal position of a laser beam and a surface of a workpiece. Disclosure of the invention
上述の目的を達成するために、 この発明によるレーザ加工機は、 レーザ光を出 力するレーザ発振器と、 レーザ発振器から出力したレーザ光を反射かつ伝播させ ると共に光学部品の反射面曲率を変化させてレーザ光径を調整する反射型レ一ザ 光径調整手段と、 この調整したレーザ光を集光レンズにより集光し、 集光したレ —ザ光を被加工物の表面に照射する加工へッドとを有するレーザ加工機において 、 反射型レーザ光径調整手段を、 加工ヘッドの近傍に配置したものである。 発明者らの研究の結果、 加工へッドからレーザ光径調整手段までの距離が大き くなると、 レーザ光の焦点位置と被加工物表面との位置ズレが大きくなることが 判明した。 そこで、 このレーザ加工機では、 反射型レーザ光径調整手段を加工へ ッ ドの近傍に設けた。 このため、 焦点位置と被加工物表面との位置ズレが少なく なる。 In order to achieve the above object, a laser beam machine according to the present invention includes a laser oscillator that outputs laser light, and reflects and propagates laser light output from the laser oscillator, and changes a reflection surface curvature of an optical component. Laser type laser beam diameter adjusting means that adjusts the laser beam diameter by means of a laser beam, and the laser beam that has been adjusted is condensed by a condensing lens, and the condensed laser beam is irradiated onto the surface of the workpiece. In a laser processing machine having a head, a reflection type laser beam diameter adjusting means is arranged near a processing head. As a result of the research by the inventors, it has been found that when the distance from the processing head to the laser beam diameter adjusting means increases, the positional deviation between the focal position of the laser beam and the surface of the workpiece increases. Therefore, in this laser beam machine, the reflection type laser beam diameter adjusting means is used for machining. It was provided near the head. For this reason, the displacement between the focal position and the surface of the workpiece is reduced.
つぎの発明によるレーザ加工機は、 レーザ光を出力するレーザ発振器と、 レー ザ発振器から出力したレーザ光を反射かつ伝播させると共に光学部品の反射面曲 率を変化させてレーザ光径を調整する反射型レーザ光径調整手段と、 この調整し たレーザ光を集光レンズにより集光し、 集光したレーザ光を被加工物の表面に照 射する加工へッドとを有するレーザ加工機において、 焦点位置の被加工物に対す る位置ズレが加工限界内に収まるように、 反射型レーザ光径調整手段を、 加工へ ッ ドの近傍に配置したものである。  A laser processing machine according to the next invention comprises a laser oscillator for outputting a laser beam, and a reflection device for reflecting and propagating the laser beam output from the laser oscillator and adjusting a laser beam diameter by changing a reflection surface curvature of an optical component. A laser beam machine having a die laser beam diameter adjusting means and a machining head for focusing the adjusted laser beam by a condenser lens and irradiating the focused laser beam to the surface of the workpiece. The reflection type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece falls within the processing limit.
反射型ビーム光径調整手段と加工ヘッドとが離れていると、 焦点位置と被加工 物表面との位置ズレが大きくなる。 そこで、 焦点位置の被加工物に対する位置ズ レが加工限界内に収まる程度までに、 反射型レーザ光径調整手段を、 加工へッド の近傍に配置した。 このようにすれば、 切断品質が向上する。  If the reflection-type beam diameter adjusting means is far from the processing head, the positional deviation between the focal position and the surface of the workpiece increases. Therefore, the reflection-type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece falls within the processing limit. In this way, the cutting quality is improved.
つぎの発明によるレーザ加工機は、 レーザ光を出力するレーザ発振器と、 レー ザ発振器から出力したレーザ光を反射かつ伝播させると共に光学部品の反射面曲 率を変化させてレーザ光径を調整する反射型レ一ザ光径調整手段と、 この調整し たレーザ光を集光レンズにより集光し、 集光したレ一ザ光を被加工物の表面に照 射する加工へッドとを有するレーザ加工機において、 焦点位置の被加工物に対す る位置ズレが 0 . 6 mm以下になるように、 反射型レーザ光径調整手段を、 加工 へッドの近傍に配置したものである。  A laser processing machine according to the next invention comprises a laser oscillator for outputting a laser beam, and a reflection device for reflecting and propagating the laser beam output from the laser oscillator and adjusting a laser beam diameter by changing a reflection surface curvature of an optical component. A laser having a mold laser beam diameter adjusting means, and a processing head for condensing the adjusted laser beam with a condenser lens and irradiating the converged laser beam to the surface of the workpiece. In the processing machine, the reflection type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece is 0.6 mm or less.
発明者らの研究の結果、 焦点位置の被加工物に対する位置ズレが 0 . 6 mm以 下のときに、 良好な切断品質が得られることが判った。 そこで、 焦点位置の被加 ェ物に対する位置ズレが 0 . 6 mm以下になるように、 反射型レーザ光径調整手 段を加工へッ ドの近傍に配置した。 このようにすれば、 切断品質が向上する。 つぎの発明によるレーザ加工機は、 レーザ光を出力するレーザ発振器と、 レー ザ発振器から出力したレーザ光を反射かつ伝播させると共に光学部品の反射面曲 率を変化させてレーザ光径を調整する反射型レ―ザ光径調整手段と、 この調整し たレ一ザ光を集光レンズにより集光し、 集光したレーザ光を被加工物の表面に照 射する加工へッドとを有するレーザ加工機において、 加工へッドから反射型レー ザ光径調整手段までの距離を 8 m以内に設定したものである。 As a result of the study by the inventors, it has been found that when the displacement of the focal position with respect to the workpiece is 0.6 mm or less, good cutting quality can be obtained. Therefore, a reflection-type laser beam diameter adjusting means is arranged near the processing head so that the positional shift of the focal position with respect to the workpiece is 0.6 mm or less. In this way, the cutting quality is improved. A laser processing machine according to the next invention comprises a laser oscillator for outputting a laser beam, and a reflection device for reflecting and propagating the laser beam output from the laser oscillator and adjusting the laser beam diameter by changing a reflection surface curvature of an optical component. Mold laser beam diameter adjusting means and this adjustment Laser beam machine that has a processing head that collects laser light collected by a condenser lens and irradiates the collected laser light to the surface of the workpiece. The distance to the beam diameter adjusting means is set within 8 m.
発明者らの研究の結果、 加工へッ ドからレーザ光径調整手段までの距離が 8 m より大きくなると、 レーザ光の焦点位置と被加工物表面との位置ズレが大きくな つて切断品質が悪化することが判った。 そこで、 このレーザ加工機では、 反射型 レーザ光径調整手段を加工ヘッ ドから 8 m以内に設けた。 このため、 焦点位置と 被加工物表面との位置ズレが少なくなる。  As a result of the inventors' research, if the distance from the processing head to the laser beam diameter adjusting means is larger than 8 m, the displacement between the focal position of the laser beam and the surface of the workpiece becomes large, and the cutting quality deteriorates I found out. Therefore, in this laser processing machine, the reflection type laser beam diameter adjusting means is provided within 8 m from the processing head. For this reason, the positional deviation between the focal position and the workpiece surface is reduced.
つぎの発明によるレーザ加工機は、 上記レーザ加工機において、 前記反射型レ —ザ光径調整手段に代えて、 レーザ発振器から出力したレーザ光を透過かつ伝播 させると共に光学部品の曲率を変化させてレーザ光径を調整する透過型レーザ光 径調整手段を設けたものである。  The laser beam machine according to the next invention is the above-mentioned laser beam machine, wherein the laser beam output from the laser oscillator is transmitted and propagated and the curvature of the optical component is changed, instead of the reflection type laser beam diameter adjusting means. The transmission laser beam diameter adjusting means for adjusting the laser beam diameter is provided.
反射型レーザ光径調整手段の代わりに、 これと同様の機能を持つ透過型レーザ 光径調整手段を用いても、 上記同様の効果が得られる。 図面の簡単な説明  The same effect as described above can be obtained by using a transmission type laser beam diameter adjusting unit having the same function instead of the reflection type laser beam diameter adjusting unit. BRIEF DESCRIPTION OF THE FIGURES
【図面の簡単な説明】  [Brief description of the drawings]
第 1図は、 この発明の実施の形態 1にかかるレ一ザ加工機を示す斜視図であり 、 第 2図は、 被加工物表面に対する焦点位置のズレを示す説明図であり、 第 3図 は、 軟鋼材料の良好な切断品質が得られる加工条件の範囲と焦点位置のズレ量と の関係を示したグラフ図であり、 第 4図は、 ステンレス鋼の良好な切断品質が得 られる加工条件範囲と焦点位置のズレ量との関係を示したグラフ図であり、 第 5 図は、 レーザ発振器から加工ヘッドまでの光路を表す説明図であり、 第 6図は、 加工へッドから反射型レーザ光径調整器までの距離と、 焦点位置ズレ量との関係 を示すグラフ図であり、 第 7図は、 レーザ光径の調整過程を示すフローチャート であり、 第 8図は、 この発明の実施の形態 2にかかるレーザ加工機を示す概略構 成図であり、 第 9図は、 従来のレーザ加工機の概略構成を示す斜視図であり、 第 1 0図は、 第 9図に示した反射型レーザ光径調整器を示す斜視図である。 発明を実施するための最良の形態 FIG. 1 is a perspective view showing a laser processing machine according to a first embodiment of the present invention. FIG. 2 is an explanatory diagram showing a shift of a focal position with respect to a workpiece surface. Fig. 4 is a graph showing the relationship between the range of processing conditions for obtaining good cutting quality of mild steel material and the amount of deviation of the focal position.Fig. 4 shows the processing conditions for obtaining good cutting quality of stainless steel. FIG. 5 is a graph showing the relationship between the range and the amount of deviation of the focal position. FIG. 5 is an explanatory diagram showing an optical path from a laser oscillator to a processing head; and FIG. 6 is a reflection type from a processing head. FIG. 7 is a graph showing a relationship between a distance to a laser beam diameter adjuster and an amount of deviation of a focal position. FIG. 7 is a flowchart showing a process of adjusting a laser beam diameter. FIG. FIG. 3 is a schematic configuration diagram showing a laser processing machine according to Embodiment 2. Figure 9 is a perspective view showing a schematic configuration of a conventional laser beam machine, the FIG. 10 is a perspective view showing the reflection-type laser beam diameter adjuster shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付に図面に従ってこれを説明する。 第 1図は、 この発明の実施の形態 1にかかるレーザ加工機を示す斜視図である このレーザ加工機 1 0 0は、 被加工物 Wの両側に設けたレール 1と、 レール 1 上を走行する走行フレーム 2と、 両側の走行フレーム 2間に渡って設けた横行フ レ一厶 3と、 横行フレーム 3に沿って移動する横行キャリッジ 4と、 横行キヤリ ッジ 4に取付けた加工へッド 5と、 加工へッド 5の内部に設けた集光レンズ 6と 、 加工ヘッド 5に接続したレーザ通路 7と、 レーザ通路 7内に設けた複数のベン ドミラ一 8と、 レーザ通路 7の途中であつて横行フレーム 3上に設けた反射型レ —ザ光径調整器 9と、 レーザ通路 7の入口に設けたベンドミラ一 1 0と、 レーザ 光 Rを出射するレーザ発振器 1 1と、 加工へッド 5の位置決め制御を行うと共に 反射型レーザ光径調整器 9およびレーザ発振器 1 1の動作を制御する制御装置 1 2とを有する。 集光レンズ 6には、 焦点距離が 7 . 5 i nのものを用いる。 また 、 反射型レーザ光径調整器 9は、 従来例において示したものと同実施の形態であ る (第 1 0図参照) 。  The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing a laser beam machine according to a first embodiment of the present invention. The laser beam machine 100 is provided with rails 1 provided on both sides of a workpiece W, and runs on the rails 1. Traveling frame 2, a traversing frame 3 provided between the traveling frames 2 on both sides, a traversing carriage 4 moving along the traversing frame 3, and a machining head attached to the traversing carriage 4. 5, a condenser lens 6 provided inside the processing head 5, a laser path 7 connected to the processing head 5, a plurality of bend mirrors 8 provided in the laser path 7, and a middle of the laser path 7. Then, the reflection type laser beam diameter adjuster 9 provided on the traversing frame 3, the bend mirror 10 provided at the entrance of the laser path 7, the laser oscillator 11 for emitting the laser light R, and the processing. Controls the position of the laser beam 5 and the reflective laser beam diameter adjuster 9 and And a control unit 1 2 for controlling the operation of the laser oscillator 1 1. The condenser lens 6 has a focal length of 7.5 in. The reflection type laser beam diameter adjuster 9 has the same embodiment as that shown in the conventional example (see FIG. 10).
被加工物 Wの表面に対する焦点位置のズレが少なレ、ほど、 切断品質が良 、。 第 2図は、 被加工物表面 Sに対する焦点位置 Fのズレを示す説明図である。 加工へ ッド 5内に入射したレーザ光 Rは、 集光レンズ 6により集光される。 レーザ光 R の焦点位置 Fが被加工物表面 Sと一致するときに、 ズレ量 Δ Ζが 0となる。 第 3図は、 軟鋼材料の良好な切断品質が得られる加工条件の範囲と焦点位置の ズレ量との関係を示したグラフ図である。 焦点位置 Fのズレ量として、 Δ Ζ = 0 mm、 厶 Z = 0 . 3 mm、 Δ Ζ = 0 . 6 mmの場合を挙げた。 加工条件には、 切 断速度 (mm/m i n ) とレーザ出力 (W) とを挙げた。 なお、 被加工物 Wには 、 板厚 1 9 1: 111の3 3 4 0 0を用いた。 また、 アシストガスには、 酸素を用いた 。 そして、 各ズレ量において、 切断面粗さ 1 0 0 / m以下、 ドロス高さが 0 . 5 mm以下となる加工条件範囲を実験的に求めた。 この結果、 焦点位置 Fのズレ量 が小さいほど、 加工条件範囲が広くなることが判つた。 The smaller the deviation of the focal position with respect to the surface of the workpiece W, the better the cutting quality. FIG. 2 is an explanatory diagram showing a deviation of a focal position F with respect to a workpiece surface S. The laser beam R that has entered the processing head 5 is condensed by the condenser lens 6. When the focal position F of the laser light R coincides with the workpiece surface S, the displacement ΔΖ becomes zero. FIG. 3 is a graph showing a relationship between a range of processing conditions for obtaining a good cutting quality of a mild steel material and a shift amount of a focal position. The case where ΔΖ = 0 mm, Z = 0.3 mm, and ΔΖ = 0.6 mm are described as the shift amount of the focal position F. The processing conditions include the cutting speed (mm / min) and the laser output (W). As the workpiece W, 3340: 00 having a thickness of 91: 1: 111 was used. Oxygen was used as the assist gas. For each displacement, the cut surface roughness is 100 / m or less and the dross height is 0.5 The processing condition range of not more than mm was experimentally determined. As a result, it was found that the smaller the amount of deviation of the focal position F, the wider the range of processing conditions.
第 4図は、 ステンレス鋼の良好な切断品質が得られる加工条件範囲と焦点位置 のズレ量との関係を示したグラフ図である。 横軸は、 アシストガス圧を示す。 縦 軸は、 ドロス高さを示す。 焦点位置のズレ量として、
Figure imgf000008_0001
ΔΖ= 0. 3mm. ΔΖ= 0. 6mm. ΔΖ= 0. 7 mmの場合を挙げた。 なお、 被加工物 Wには、 板厚 1 2 mmの S US 304を用いた。 また、 アシストガスには、 窒素 を用いた。 この条件下で実験した結果、 焦点位置 Fのズレ量が 0. 6 mm以下の 場合、 ドロス高さが 0. 2 mm以内となった。 これより、 焦点位置 Fのズレ量が 0. 6 mm以下の場合に、 良好な切断品質が得られるごとが判った。
FIG. 4 is a graph showing the relationship between the range of processing conditions at which good cutting quality of stainless steel can be obtained and the amount of deviation of the focal position. The horizontal axis indicates the assist gas pressure. The vertical axis indicates the dross height. As the shift amount of the focal position,
Figure imgf000008_0001
ΔΖ = 0.3 mm. ΔΖ = 0.6 mm. ΔΖ = 0.7 mm. As the workpiece W, SUS304 having a thickness of 12 mm was used. Nitrogen was used as the assist gas. As a result of the experiment under these conditions, when the deviation of the focal position F was 0.6 mm or less, the dross height was within 0.2 mm. From this, it was found that good cutting quality was obtained when the deviation of the focal position F was 0.6 mm or less.
上記結果から、 焦点位置 Fのズレ量が 0. 6 mm以下であることが切断品質の 向上を図る上で好ましいことが判つた。  From the above results, it was found that it is preferable that the deviation amount of the focal position F be 0.6 mm or less in order to improve the cutting quality.
第 5図は、 レーザ発振器 1 1から加工へッド 5までの光路を表す説明図である 。 反射型レ一ザ光径調整器 9は、 加工へッド 5の近傍に位置する。 光路 a、 光路 bおよび光路 cの和が、 反射型レ一ザ光径調整器 9から加工へッド 5までの光路 長となる。  FIG. 5 is an explanatory diagram showing an optical path from the laser oscillator 11 to the processing head 5. The reflection type laser beam diameter adjuster 9 is located near the processing head 5. The sum of the optical path a, the optical path b, and the optical path c is the optical path length from the reflective laser beam diameter adjuster 9 to the processing head 5.
第 6図は、 加工へッドから反射型レーザ光径調整器までの距離と、 焦点位置の ズレ量との関係を示すグラフ図である。 反射型レーザ光径調整器 9の位置を、 加 ェへッド 5の位置を基準にして変化させ、 焦点位置 Fのズレ量を測定した。 実験 には、 レーザ発振器 1 1出口の PRミラー曲率が 1 0 mのレーザ加工機を用いた o また、 レーザ光径は、 直径 20mm、 30mm、 4 Ommとした。 この結果、 レーザ光径が 4 0 mmであつて、 反射型レーザ光径調整器 9から加工へッド 5ま での距離が 8 m以内のとき、 焦点位置 Fのズレ量が 0. 6 mm程度となった。 レ —ザ光径が 20mm、 3 Ommの場合には、 焦点位置 Fのズレ量が 0. 6以内に なった。 これより、 良好な切断品質を得るためには、 反射型レーザ光径調整器 9 から加工ヘッド 5までの距離を少なくとも 8mとし、 好ましくは、 反射型レーザ 光径調整器 9を加工へッド 5の近傍に近づけるのがよいことが判つた。 さらに、 実験の結果、 反射型レーザ光径調整器 9から加工ヘッド 5までの距離 が 8 m以内であれば、 最大板厚 3 O mmの軟鋼材料、 最大板厚 1 8 mmのステン レス鋼、 最大板厚 1 6 mmのアルミニウム材料で良好な切断品質が得られること が判った。 FIG. 6 is a graph showing a relationship between a distance from a processing head to a reflective laser beam diameter adjuster and a shift amount of a focal position. The position of the reflection type laser beam diameter adjuster 9 was changed with reference to the position of the head 5, and the amount of deviation of the focal position F was measured. In the experiment, a laser beam machine with a PR mirror curvature of 10 m at the exit of the laser oscillator 11 was used. O The laser beam diameter was 20 mm, 30 mm, and 4 Omm. As a result, when the laser beam diameter is 40 mm and the distance from the reflective laser beam diameter adjuster 9 to the processing head 5 is within 8 m, the deviation of the focal position F is 0.6 mm. It was about. When the laser beam diameter was 20 mm and 3 Omm, the deviation of the focal position F was within 0.6. Thus, in order to obtain good cutting quality, the distance between the reflective laser beam diameter adjuster 9 and the processing head 5 should be at least 8 m, and preferably, the reflective laser beam diameter adjuster 9 should be mounted on the processing head 5. It was found that it was better to approach the vicinity of. Furthermore, as a result of experiments, if the distance from the reflective laser beam diameter adjuster 9 to the processing head 5 is within 8 m, mild steel material with a maximum thickness of 3 O mm, stainless steel with a maximum thickness of 18 mm, It was found that good cutting quality was obtained with an aluminum material with a maximum thickness of 16 mm.
以上の結果から、 この発明のレーザ加工機 1 0 0では、 加工へッド 5から反射 型レーザ光径調整器 9までの距離を 8 m以内に設定した。 具体的には、 反射型レ 一ザ光径調整器 9を横行フレーム 3の上に設け、 加工へッド 5の近傍に位置する ようにした。 なお、 レーザ加工機 1 0 0の設計によっては、 必ずしも 8 m以内が 適当というわけではない。 従って、 焦点位置 Fのズレ量が 0 . 6 mm以内に収ま るように、 当該距離を設定する。 このようにすれば、 良好な加工品質が得られる また、 加工へッド 5から反射型レーザ光径調整器 9までの距離を規制する前提 として、 反射型レーザ光径調整器 9によりレーザ光径の調整を行う必要がある。 第 7図は、 レーザ光径の調整過程を示すフローチャートである。 ステップ S 7 0 1では、 加工したい材質や板厚の情報を外部から入力する。 ステップ S 7 0 2で は、 入力した材質や板厚に基づき最適なビー厶径の情報を制御装置 1 2のデータ ベースから選択する。 または、 ビーム径を演算するようにしてもよい。 ステップ S 7 0 3では、 最適ビーム径の情報に基づき、 反射型レーザ光径調整器 9の曲率 を演算する。 ステップ S 7 0 4では、 反射型レーザ光径調整器 9の反射面 9 2を 、 演算した曲率に変更する。  From the above results, in the laser beam machine 100 of the present invention, the distance from the processing head 5 to the reflection type laser beam diameter adjuster 9 was set within 8 m. Specifically, the reflection type laser beam diameter adjuster 9 was provided on the traversing frame 3 so as to be located near the processing head 5. It should be noted that depending on the design of the laser beam machine 100, it is not always appropriate to set the length within 8 m. Therefore, the distance is set so that the deviation amount of the focal position F is within 0.6 mm. In this way, good processing quality can be obtained. Further, as a precondition for regulating the distance from the processing head 5 to the reflective laser beam diameter adjuster 9, the laser beam diameter is adjusted by the reflective laser beam diameter adjuster 9. Needs to be adjusted. FIG. 7 is a flowchart showing a process of adjusting the laser beam diameter. In step S701, information on a material and a thickness to be processed is input from outside. In step S702, the optimum beam diameter information is selected from the database of the controller 12 based on the input material and plate thickness. Alternatively, the beam diameter may be calculated. In step S703, the curvature of the reflective laser beam diameter adjuster 9 is calculated based on the information on the optimum beam diameter. In step S704, the reflecting surface 92 of the reflecting laser beam diameter adjuster 9 is changed to the calculated curvature.
ビーム径を最適にした後、 被加工物 Wの加工を行う。 まず、 ピアシング条件を 選択して、 この条件のもとピアシングを実行する。 つぎに、 切断条件を選択する 。 なお、 最適なビーム径を選択する際、 切断をパルスにより行うか CWにより行 うかによっても、 当該ビーム径を使い分けるようにする。 最適ビー厶径は、 制御 装置 1 2によりフィードバック制御される。 そして、 レーザ加工機 1 0 0は、 こ の切断条件のもと被加工物 Wの切断を開始する。 また、 ピアシング時にはピアシ ングに適したビーム径を選択し、 切断時には切断に適したビーム径を選択するよ うにしてもよい。 After optimizing the beam diameter, the workpiece W is processed. First, select the piercing condition and execute piercing under this condition. Next, the cutting conditions are selected. When selecting the optimum beam diameter, the beam diameter should be used properly depending on whether cutting is performed by pulse or CW. The optimum beam diameter is feedback-controlled by the controller 12. Then, the laser beam machine 100 starts cutting the workpiece W under these cutting conditions. When piercing, select a beam diameter suitable for piercing, and when cutting, select a beam diameter suitable for cutting. You may do it.
第 8図は、 この発明の実施の形態 2にかかるレーザ加工機の光路を示す説明図 である。 この実施の形態 2にかかるレ一ザ加工機 2 0 0は、 反射型レ一ザ光径調 整器の代わりに、 透過型レーザ光径調整器 2 0 1を用いた点に特徴がある。 その 他の構成は、 実施の形態 1のレーザ加工機 1 0 0と略同様である。 同一要素につ いては同一符号を付した。 光路中に透過型レーザ光径調整器 2 0 1を設置するこ とで、 ビームを略平行にする。 この場合も、 加工ヘッド 5から透過型レーザ光径 調整器 2 0 1までの距離 (図中、 光路 d〜光路 f の和) を 8 m以内に設定する。 具体的には、 反射型レーザ光径調整器 2 0 1を横行フレーム 3の上に設け、 加工 へッド 5の近傍に位置させる (図示省略) 。 なお、 レーザ加工機 2 0 0の設計に よっては、 必ずしも 8 m以内が適当というわけではない。 従って、 焦点位置 Fの ズレ量が 0 . 6 mm以内に収まるように、 当該距離を設定する。 このレーザ加工 機 2 0 0の動作は、 上記実施の形態 1のレーザ加工機 1 0 0と同様であるから、 説明を省略する。 このようにすれば、 良好な加工品質が得られる。  FIG. 8 is an explanatory diagram showing an optical path of the laser beam machine according to the second embodiment of the present invention. The laser processing machine 200 according to the second embodiment is characterized in that a transmission type laser beam diameter adjuster 201 is used instead of the reflection type laser beam diameter adjuster. Other configurations are substantially the same as those of the laser beam machine 100 of the first embodiment. The same elements are denoted by the same reference numerals. The beam is made substantially parallel by installing a transmission type laser beam diameter adjuster 201 in the optical path. Also in this case, the distance from the processing head 5 to the transmission laser beam diameter adjuster 201 (the sum of the optical path d to the optical path f in the figure) is set within 8 m. Specifically, the reflection type laser beam diameter adjuster 201 is provided on the traversing frame 3 and is positioned near the processing head 5 (not shown). It should be noted that depending on the design of the laser beam machine 200, it is not always appropriate to be within 8 m. Therefore, the distance is set so that the deviation amount of the focal position F falls within 0.6 mm. The operation of the laser beam machine 200 is the same as that of the laser beam machine 100 of the first embodiment, and therefore the description is omitted. In this way, good processing quality can be obtained.
以上説明したように、 この発明のレーザ加工機によれば、 反射型レーザ光径調 整手段を加工へッドの近傍に設けた。 このため、 焦点位置と被加工物表面との位 置ズレが少なくなるので、 切断品質が向上する。  As described above, according to the laser beam machine of the present invention, the reflection type laser beam diameter adjusting means is provided near the processing head. Therefore, the displacement between the focal position and the surface of the workpiece is reduced, and the cutting quality is improved.
つぎに、 この発明のレーザ加工機によれば、 焦点位置の被加工物に対する位置 ズレが加工限界内に収まる程度までに、 反射型レーザ光径調整手段を、 加工へッ ドの近傍に配置した。 このようにすれば、 切断品質が向上する。  Next, according to the laser beam machine of the present invention, the reflection-type laser beam diameter adjusting means is arranged near the processing head until the positional deviation of the focal position with respect to the workpiece falls within the processing limit. . In this way, the cutting quality is improved.
つぎに、 この発明のレーザ加工機によれば、 焦点位置の被加工物に対する位置 ズレが 0 . 6 mm以下になるように、 反射型レーザ光径調整手段を加工ヘッドの 近傍に配置した。 このようにすれば、 切断品質が向上する。  Next, according to the laser beam machine of the present invention, the reflection type laser beam diameter adjusting means is arranged near the processing head so that the positional deviation of the focal position with respect to the workpiece becomes 0.6 mm or less. In this way, the cutting quality is improved.
つぎに、 この発明のレーザ加工機によれば、 反射型レーザ光径調整手段を加工 へッドから 8 m以内に設けた。 このため、 焦点位置と被加工物表面との位置ズレ が少なくなるので、 切断品質がよくなる。  Next, according to the laser beam machine of the present invention, the reflection type laser beam diameter adjusting means is provided within 8 m from the processing head. For this reason, the positional deviation between the focal position and the surface of the workpiece is reduced, and the cutting quality is improved.
つぎに、 この発明のレーザ加工機によれば、 反射型レーザ光径調整手段の代わ りに、 これと同様の機能を持つ透過型レーザ光径調整手段を用いたので、 上記同 様に、 切断品質をよくすることができる。 産業上の利用分野 Next, according to the laser beam machine of the present invention, the reflection type laser beam diameter adjusting means is replaced. In addition, since the transmission type laser beam diameter adjusting means having the same function is used, the cutting quality can be improved as described above. Industrial applications
以上のように、 本発明にかかるレーザ加工機によれば、 被加工物を切断するに あたり、 その切断品質の向上を図るうえで有用であり、 特に大型になるほど効果 がある。  As described above, according to the laser beam machine according to the present invention, it is useful for cutting a workpiece to improve the cutting quality, and the larger the size, the more effective.

Claims

請 求 の 範 囲 The scope of the claims
1 . レーザ光を出力するレーザ発振器と、 1. A laser oscillator that outputs laser light,
レーザ発振器から出力したレーザ光を反射かつ伝播させると共に光学部品の反 射面曲率を変化させてレーザ光径を調整する反射型レ一ザ光径調整手段と、 この調整したレーザ光を集光レンズにより集光し、 集光したレ一ザ光を被加工 物の表面に照射する加工へッドと、  A reflection type laser beam diameter adjusting means for reflecting and propagating the laser beam output from the laser oscillator and changing the reflection surface curvature of the optical component to adjust the laser beam diameter; and a condenser lens for collecting the adjusted laser beam. A processing head that irradiates the surface of the workpiece with the collected laser light.
を有するレーザ加工機において、  In a laser processing machine having
反射型レーザ光径調整手段を、 加工へッドの近傍に配置したことを特徴とする レーザ加工機。  A laser processing machine characterized in that a reflection type laser beam diameter adjusting means is arranged near a processing head.
2 . 前記反射型レーザ光径調整手段に代えて、 レーザ発振器から出力したレーザ 光を透過かつ伝播させると共に光学部品の曲率を変化させてレーザ光径を調整す る透過型レーザ光径調整手段を設けたことを特徴とする請求の範囲第 1項記載の レーザ加工機。 2. In place of the reflection-type laser beam diameter adjusting unit, a transmission-type laser beam diameter adjusting unit that transmits and propagates a laser beam output from a laser oscillator and changes the curvature of an optical component to adjust the laser beam diameter is used. 2. The laser beam machine according to claim 1, wherein the laser beam machine is provided.
3 . レーザ光を出力するレーザ発振器と、 3. A laser oscillator for outputting a laser beam;
レーザ発振器から出力したレーザ光を反射かつ伝播させると共に光学部品の反 射面曲率を変化させてレ一ザ光径を調整する反射型レーザ光径調整手段と、 この調整したレ一ザ光を集光レンズにより集光し、 集光したレーザ光を被加工 物の表面に照射する加工へッドと、  A reflection type laser beam diameter adjusting means for reflecting and propagating the laser beam output from the laser oscillator and adjusting the laser beam diameter by changing the reflection surface curvature of the optical component; and collecting the adjusted laser beam. A processing head that condenses the light with an optical lens and irradiates the condensed laser light onto the surface of the workpiece,
を有するレ一ザ加工機にぉレ、て、  Laser processing machine with
焦点位置の被加工物に対する位置ズレが加工限界内に収まるように、 反射型レ 一ザ光径調整手段を、 加工へッドの近傍に配置したことを特徴とするレーザ加工 機。  A laser processing machine characterized in that a reflection type laser beam diameter adjusting means is arranged near a processing head so that a positional shift of a focal position with respect to a workpiece falls within a processing limit.
4 . 前記反射型レーザ光径調整手段に代えて、 レーザ発振器から出力したレーザ 光を透過かつ伝播させると共に光学部品の曲率を変化させてレーザ光径を調整す る透過型レーザ光径調整手段を設けたことを特徵とする請求の範囲第 3項記載の レーザ加工機。 4. A laser output from a laser oscillator in place of the reflection type laser beam diameter adjusting means 4. The laser beam machine according to claim 3, further comprising a transmission type laser beam diameter adjusting means for transmitting and propagating light and changing the curvature of the optical component to adjust the laser beam diameter.
5 . レーザ光を出力するレーザ発振器と、 5. A laser oscillator that outputs laser light,
レーザ発振器から出力したレーザ光を反射かつ伝播させると共に光学部品の反 射面曲率を変化させてレーザ光径を調整する反射型レーザ光径調整手段と、 この調整したレーザ光を集光レンズにより集光し、 集光したレーザ光を被加工 物の表面に照射する加工へッドとを有するレーザ加工機において、  A reflection type laser beam diameter adjusting means for reflecting and propagating the laser beam output from the laser oscillator and changing the reflection surface curvature of the optical component to adjust the laser beam diameter; and collecting the adjusted laser beam by a condenser lens. In a laser processing machine having a processing head for irradiating a condensed laser beam onto the surface of a workpiece,
焦点位置の被加工物に対する位置ズレが 0 . 6 mm以下になるように、 反射型 レーザ光径調整手段を、 加工へッドの近傍に配置したことを特徴とするレーザ加 丄機。  A laser processing machine characterized in that a reflection type laser beam diameter adjusting means is arranged near a processing head so that a deviation of a focal position from a workpiece is 0.6 mm or less.
6 . 前記反射型レーザ光径調整手段に代えて、 レーザ発振器から出力したレ一ザ 光を透過かつ伝播させると共に光学部品の曲率を変化させてレーザ光径を調整す る透過型レーザ光径調整手段を設けたことを特徵とする請求の範囲第 5項記載の レーザ加工機。 6. In place of the reflection-type laser beam diameter adjustment means, a transmission-type laser beam diameter adjustment system that transmits and propagates laser light output from a laser oscillator and changes the curvature of optical components to adjust the laser beam diameter. 6. The laser beam machine according to claim 5, wherein a means is provided.
7 . レーザ光を出力するレーザ発振器と、 7. A laser oscillator for outputting laser light,
レーザ発振器から出力したレーザ光を反射かつ伝播させると共に光学部品の反 射面曲率を変化させてレーザ光径を調整する反射型レ一ザ光径調整手段と、 この調整したレ一ザ光を集光レンズにより集光し、 集光したレ一ザ光を被加工 物の表面に照射する加工へッドと、  A reflection type laser beam diameter adjusting means for reflecting and propagating the laser beam output from the laser oscillator and changing the reflection surface curvature of the optical component to adjust the laser beam diameter; and collecting the adjusted laser beam. A processing head that condenses the light with an optical lens and irradiates the condensed laser light onto the surface of the workpiece,
を有するレーザ加工機において、  In a laser processing machine having
加工へッドから反射型レーザ光径調整手段までの距離を 8 m以内に設定したこ とを特徴とするレーザ加工機。 A laser processing machine characterized in that the distance from the processing head to the reflection type laser beam diameter adjusting means is set within 8 m.
8 . 前記反射型レーザ光径調整手段に代えて、 レーザ発振器から出力したレーザ 光を透過かつ伝播させると共に光学部品の曲率を変化させてレーザ光径を調整す る透過型レ一ザ光径調整手段を設けたことを特徵とする請求の範囲第 1項記載の レーザ加工機。 8. In place of the reflection type laser beam diameter adjusting means, a transmission type laser beam diameter adjustment which transmits and propagates a laser beam output from a laser oscillator and adjusts a laser beam diameter by changing a curvature of an optical component. 2. The laser beam machine according to claim 1, wherein means is provided.
PCT/JP1998/002102 1998-05-13 1998-05-13 Laser beam machine WO1999058289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW087107380A TW425322B (en) 1998-05-13 1998-05-13 Laser processing machine
PCT/JP1998/002102 WO1999058289A1 (en) 1998-05-13 1998-05-13 Laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/002102 WO1999058289A1 (en) 1998-05-13 1998-05-13 Laser beam machine

Publications (1)

Publication Number Publication Date
WO1999058289A1 true WO1999058289A1 (en) 1999-11-18

Family

ID=14208201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002102 WO1999058289A1 (en) 1998-05-13 1998-05-13 Laser beam machine

Country Status (2)

Country Link
TW (1) TW425322B (en)
WO (1) WO1999058289A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905377A (en) * 2009-06-03 2010-12-08 鸿富锦精密工业(深圳)有限公司 Laser cutting machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160288A (en) * 1984-08-31 1986-03-27 Shimada Phys & Chem Ind Co Ltd Laser beam machine
JPH01166894A (en) * 1987-12-21 1989-06-30 Mitsubishi Electric Corp Laser beam machine
JPH07185861A (en) * 1993-12-27 1995-07-25 Matsushita Electric Ind Co Ltd Laser beam machining device
JPH08318383A (en) * 1995-05-24 1996-12-03 Mitsubishi Electric Corp Laser beam machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160288A (en) * 1984-08-31 1986-03-27 Shimada Phys & Chem Ind Co Ltd Laser beam machine
JPH01166894A (en) * 1987-12-21 1989-06-30 Mitsubishi Electric Corp Laser beam machine
JPH07185861A (en) * 1993-12-27 1995-07-25 Matsushita Electric Ind Co Ltd Laser beam machining device
JPH08318383A (en) * 1995-05-24 1996-12-03 Mitsubishi Electric Corp Laser beam machine

Also Published As

Publication number Publication date
TW425322B (en) 2001-03-11

Similar Documents

Publication Publication Date Title
JP3844848B2 (en) Laser processing machine
US6392192B1 (en) Real time control of laser beam characteristics in a laser-equipped machine tool
JP5033693B2 (en) Condensing diameter conversion control method and apparatus in fiber laser processing machine
JP3644145B2 (en) Laser equipment
US11623301B2 (en) Laser machining apparatus and laser machining method
EP1700665B1 (en) Laser apparatus
JP2008055436A (en) Laser beam irradiation device
WO1999058289A1 (en) Laser beam machine
JP2000084689A (en) Laser beam machining device
CN112823075B (en) Laser processing machine and laser processing method
JPS60199585A (en) Laser welding machine
JP5021258B2 (en) Laser groove processing method
CN115351439B (en) Laser cutting device based on laser angle control and rapid cutting method
JP2005334925A (en) Controller for driving shaft of reflection mirror in laser beam machine
JP6592564B1 (en) Laser processing machine and laser processing method
JP3392225B2 (en) Laser processing method and apparatus
JP2020082149A (en) Laser irradiation system
JPH07185860A (en) Laser beam machining device
JPH04253584A (en) Laser beam cutting method and laser beam machining apparatus
JP3139932B2 (en) Laser processing equipment
JP3825683B2 (en) Laser processing method and laser processing apparatus
JPS6116941Y2 (en)
JPH1085979A (en) Laser beam machine
JPH1158059A (en) Beam collimation method for laser beam machine with variable optical path length and laser machining device using the method
JP4251132B2 (en) Laser equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000548119

Format of ref document f/p: F