WO1999058202A2 - Ammonia fluidjet cutting processes - Google Patents

Ammonia fluidjet cutting processes Download PDF

Info

Publication number
WO1999058202A2
WO1999058202A2 PCT/US1999/009066 US9909066W WO9958202A2 WO 1999058202 A2 WO1999058202 A2 WO 1999058202A2 US 9909066 W US9909066 W US 9909066W WO 9958202 A2 WO9958202 A2 WO 9958202A2
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
ammonia
high pressure
ammoniajet
abrasive
Prior art date
Application number
PCT/US1999/009066
Other languages
French (fr)
Other versions
WO1999058202A3 (en
Inventor
Paul L. Miller
Original Assignee
Teledyne Commodore, L.L.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA200000429A priority Critical patent/EA200000429A1/en
Application filed by Teledyne Commodore, L.L.C. filed Critical Teledyne Commodore, L.L.C.
Priority to AU57697/99A priority patent/AU5769799A/en
Priority to EP99944988A priority patent/EP1034013A2/en
Priority to IL13574699A priority patent/IL135746A0/en
Priority to CA002307722A priority patent/CA2307722A1/en
Publication of WO1999058202A2 publication Critical patent/WO1999058202A2/en
Publication of WO1999058202A3 publication Critical patent/WO1999058202A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/06Dismantling fuzes, cartridges, projectiles, missiles, rockets or bombs
    • F42B33/062Dismantling fuzes, cartridges, projectiles, missiles, rockets or bombs by high-pressure water jet means

Definitions

  • the present invention relates to the discovery that anhydrous liquid ammonia provides a more efficient fluid for high pressure fluidjet cutting operations making it especially advantageous in breaching and vacating closed containments, and in particular, as an initial step in accessing hazardous or toxic substances, such as chemical warfare agents and energetic materials encased in closed vessels.
  • the propellant composition is removed by mean of a spinning spray type nozzle which discharges pressurized anhydrous ammonia directly into the interior of open rocket motor cases to erode or reduce the propellant to small particles.
  • a slurry mixture accumulates in the rocket motor casing consisting of dissolved oxidizer and other residual propellant ingredients as insolubles.
  • the slurry is further treated, e.g., by filtration. Recovery of the oxidizer occurs when the ammonia is allowed to gasify causing the ammonium perchlorate to drop out of solution.
  • the ammonia used in the wash out process is dried and recompressed for reuse in the process.
  • Melvin et al (II) as in the case of Melvin et al (I) , also employs a pressurized spray of anhydrous liquid ammonia, but they use it to extract and recover nitramine type oxidizers from solid rocket propellants, in particular, those known as "HMX” and “RDX”, or cyclotetramethylenetetranitra ine and cyclotri ethylene- trinitramine, respectively.
  • Melvin et al (II) employs a sequence of steps for rocket motor demilitarization by propellant extraction, separation and recovery. They begin with the direct removal of the solid propellant.
  • One method used is mechanical cutting and comminution and/or liquid jet ablation with pressurized ammonia spray nozzles.
  • a comminution fixture may be used with pressurized liquid ammonia spray.
  • the spray nozzle or comminution fixture is placed in the interior of an open rocket motor and pressurized ammonia discharged against the propellant.
  • the solid propellant is fractured or comminuted, reduced to smaller particles and removed from the motor in the form of a slurry for further treatment.
  • Melvin et al (II) also disclose bulk propellant from sources other than rocket motors macerated in a dedicated pressure vessel.
  • chips of propellant can be further treated by spraying the interior of the pressure vessel with a high pressure ammonia jet pre-treatment before introducing the material into an extractor/separator system.
  • the methods should include the preliminary step of accessing interiors of closed containments for the above substances and substrates by means of high pressure fluidjet cutting or penetration with a high velocity fluid capable of providing improved cutting efficiency, and which is fully compatible with other processing steps, as may be needed, in demilitarization and chemical decontamination protocols.
  • anhydrous liquid ammonia is a highly satisfactory solvent for a great many hazardous chemical substances.
  • anhydrous ammonia is an effective solvent for practically all of the nitro- aromatics, the principal structure of military explosives. It is also compatible with many propellants, flammables and combustibles, i.e., energetic materials.
  • ammonia is an excellent solvent for many chemical agents used by the military.
  • many solutions of energetics and ammonia are non- propagating and very stable. Such properties allow many energetics, and other hazardous chemical substances to be safely transported without coating piping systems, thereby avoiding the propagation of an explosive event through the system.
  • This invention is based on the surprising discovery that a high pressure fluidjet cutting system employing anhydrous ammonia as an alternative cutting fluid is capable of providing up to about a 25 percent increase in cutting efficiency over that of a high pressure waterjet operating at the same conditions. This may possibly be due in part to its very low boiling point (-33°C) . It was found that a high pressure fluidjet of anhydrous ammonia rapidly chills down the metal of a containment vessel, for example, causing embrittle ent, and more rapid erosion of the target at the cutting site for enhanced cutting rates.
  • shield protection chamber or variations thereof appearing herein and in the claims are intended to include hoods, encasements, pressure vessels and other enclosures and devices, which may optionally have suction and venting means, all for capturing, withdrawing and/or treating any fugitive ammonia fumes and reaction by-products from the methods disclosed herein which might otherwise enter the environment of the work area.
  • the high pressure cutting liquid is more than an ammoniajet, but comprises a jet stream in the form of a composition comprising at least anhydrous liquid ammonia and an abrasive.
  • the ammonia performs as a carrier for the abrasive.
  • the anhydrous ammonia-abrasive mixtures may also contain other additives, e.g., surfactants, familiar to those skilled in the art.
  • the ammoniajet used during cutting phase (iv) for penetrating the outer containment or casing of the target substrate performs the further step of eroding, slurrying and/or dissolving the casing contents for extracting or washing out hazardous substance(s) therefrom without a hiatus.
  • This is achieved by the formation of a dispersion or slurry, and/or solution of the hazardous substance(s) from the ammonia delivered by the high pressure cutting jet, depending on the degree of solubility of the hazardous substance in anhydrous ammonia.
  • Solvation of the hazardous substance occurs in situ in the containment through turbulence generated by the high power jet of ammonia entering the containment after the initial breakthrough of the jet stream during the cutting phase, first by fracturing or eroding any composite materials therein into smaller particulates, or simply mixing/blending the hazardous material by churning the contents typically into a flowable slurry, dispersion, solution, and mixtures thereof.
  • the flowable slurry/dispersion or solution exits the containment usually at the location where the cutting(s) occurred.
  • t e high pressure ammonia fluidjet is not only a highly efficient means for breaching, i.e., penetrating and/or cutting a closed containment for accessing their interiors, but the energy of the fluidjet also performs as a "pump" in a highly efficient continuous sequence of steps whereby the ammoniajet stream utilized for initially penetrating/cutting the containment, also fractures, mixes and solubilizes the containerized contents, and pressurizes the mixture to thoroughly vacate the interior and clean out the containment of all hazardous/toxic material(s) . In so doing, all or virtually all hazardous material is recovered in a flowable dispersion, usually a slurry, or solution which can be readily and safely transported to subsequent processing stations at reduced risk.
  • the invention also includes embodiments wherein the target substrate comprises a containment vessel, housing or casing with a hazardous or toxic substance confined in an interior compartment thereof, and the method includes process steps i-iv discussed above, plus the additional step of:
  • step (v) vacating the penetrated, cut or severed casing by washing the hazardous or toxic substance from the interior compartment with the assistance of the same high pressure ammoniajet cutting fluid or the abrasive-ammoniajet cutting fluid mixture entering the compartment after break through of the containment vessel, housing or casing by the cutting jet during step (iv) to form ammonia- containing washings in the form of a transportable, less hazardous slurry.
  • FIG. 1 is " a graph representing the horsepower requirements of an ammoniajet pump relative to orifice size of a cutting head for the cutting system of this invention operating at a preferred pressure.
  • FIG. 2 is a sectional diagrammatic view illustrating the positioning of a fluidjet cutting head and ammoniajet stream relative to a closed military projectile in demilitarization thereof for optimizing use of the energy of the jet stream for both penetrating the casing, dispersing energetic material, and for vacating the contents therefrom;
  • FIG. 3 is an enlarged partial view of the metallic casing taken along line 3-3 of Fig. 2, illustrating the breadth of the erosion of the target produced by the high pressure, high velocity ammoniajet stream during the cutting phase;
  • FIG. 4 is an enlarged partial view of the ammoniajet stream s 1 - ->wn by Fig. 3 after penetration of the casing generates interior turbulence producing erosion, slurrying, and pressurized back-flow for collecting the ammonia-containing energetic slurry from the same opening thereby facilitating rctal clean out of the casing during the washing phase.
  • the invention encompasses at least two fundamental concepts: (I) Cutting structural shapes by impinging a high pressure jet of anhydrous liquid ammonia or anhydrous ammonia-abrasive mixture at high impact velocity at a closed containment or target substrate for faster, more efficient cutting rates i.e., up to 25 percent improvement over high pressure jet cutting methods conducted under equivalent conditions with water as the cutting fluid, and (II) Recovering a substance, substrate or article of manufacture from a target substrate by means of a high pressure anhydrous ammoniajet or anhydrous ammonia-abrasive jet as the cutting fluid for the target substrate while also utilizing the energy of the fluidjet for dispersing/dissolving and extracting the contents from the target substrate by power jet washing with the same high pressure ammoniajet.
  • the target substrate is a containment vessel, housing or casing for a chemical substance or article of manufacture, e.g., a munition, such as a high explosive projectile containing an energetic material where destroying, or alternatively recovering and salvaging the contents from its closed casing is economically desirable, but potentially hazardous.
  • Penetrating and/or sectioning the target substrate with a power jet comprising anhydrous ammonia for accessing the contents of the casing and extracting the energetic material and/or salvaging valuable components therefrom can be performed not only at a faster, more efficient rate, relative to water as a cutting fluid, but also with greater safety because of reduced risk of explosion occurring when using anhydrous ammonia as the solvating agent.
  • target substrate * as appearing in the specification and claims is intended as a shorthand expression for any closed or unopened, insufficiently opened (for accessing interior contents) , assembled or non-disassembled or partially disassembled containment structure, enclosure or vessel having a wall(s) defining one or more interior chambers or compartments therein, in combination with contents, potentially hazardous or otherwise, in the interior chamber or compartments.
  • a partially disassembled "target substrate” may comprise a warhead removed from a booster rocket.
  • this partially disassembled munition may according to the above stated object gain access to the interior quickly and efficiently by impinging a high pressure ammoniajet to cut or penetrate the outer casing of the warhead for accessing a compartment in the interior holding a nerve agent or other hazardous substance, such as an energetic material.
  • a nerve agent or other hazardous substance such as an energetic material.
  • this initial step of cutting or penetrating the casing of a target substrate may be required either because a manufactured opening or access port is insufficient for performing a particular task, or possibly due to the absence of any port or opening allowing access to the interior contents.
  • containments, enclosures or vessels are intended to include a broad range of structures, and include, but are not limited to such categories generally recognized as housings, receptacles, cases or casings br encasements, shells, magazines, cartridges, canisters, cans, drums, barrels, pails, bottles, and so on.
  • these containments, enclosures or vessels are fabricated from a broad range of materials which are generally solid, rigid or semi-rigid, and are comprised of a metal or metal alloys, such as aluminum and steel; polymers and plastics, including reinforced plastics and composite structures comprising, for instance, reinforcements like fibers, filaments or whiskers of glass, metal; thermosetting or thermoplastic resins and plastics.
  • Other materials of construction for containments, enclosures and vessels can include concrete, glass, ceramics, wood or so called man-made compositions, composite materials, and so on.
  • Target substrate includes more than containments, but also comprise specific articles of manufacture and devices, such as munitions and ordnance (e.g., rockets, land mines, mortar and -r illsry shells, cartridges, and missiles, and other projectiles which may comprise chemical warfare agents and/or energetic materials, chemical propellant, and so on). Further representative examples would include canisters or other container formats holding energetics, chemical warfare agents, and other miscellaneous ordnance.
  • munitions and ordnance e.g., rockets, land mines, mortar and -r illsry shells, cartridges, and missiles, and other projectiles which may comprise chemical warfare agents and/or energetic materials, chemical propellant, and so on.
  • canisters or other container formats holding energetics, chemical warfare agents, and other miscellaneous ordnance.
  • closed containment vessels such as plastic or steel drums filled with military waste and hazardous byproducts from manufacturing processes, as well as substrates, such as contaminated or used oils, dielectric fluids, hydraulic fluids, solvents, inert adsorbent materials, e.g., wood chips and other miscellaneous cellulosic materials, including ground corn cobs, saw dust.
  • Solid substrates may have sorbed (adsorbed or absorbed) thereon hazardous chemicals, or other potentially toxic substances, such as radionuclides and other nuclear waste materials and byproducts, dangerous heavy metals, hazardous organics, such as PCBs, as well as dioxins, various pesticides, to name but a few.
  • Hazardous radioactive and non-radioactive metals include such representative examples as selenium, cobalt, mercury, cadmium, chromium (VI) , lead, uranium, plutonium, thorium, • and so on.
  • Liquids, such as oils and solvents may also be contaminated with the foregoing hazardous/toxic substances.
  • Target substrates are also intended to include containments holding equipment, tools and textiles, such as articles of protective clothing, including gloves, shoes, and the like, which have been exposed to toxic substances, but must be decontaminated as part of a disposal or recycling process.
  • target substrate is not limited to munitions, and other manufactured articles and materials, but also contemplates bulk containerized hazardous substances used by industry or the military, e.g., including hazardous chemicals, chemical warfare agents and energetics.
  • Energetic materials or “EM” for purposes of this invention are intended to relate to substances in three classes of products, namely, explosives, propellants, and pyrotechnics; see, for example, Department of the Army Technical Manual TM 9-1300-214, "Military Explosives, “ Headquarters, Dept. of the Army, 1984 and the manual provided at "An Introduction to Explosives, " presented at the FAA's Energetic Materials Workshop, Avalon, New Jersey, April 14-17, 1992.
  • the EM's in explosives and propellants when chemical reaction is properly initiated, generate large volumes of hot gases in a short time, the primary difference between propellants and explosives being the rate at which the reaction proceeds.
  • Explosive and especially propellant compositions can comprise complex mixtures of various inorganic and organic chemical compounds, as well as discrete, physically separate components in an explosive or propellant train.
  • Various additives may be incorporated into the composition along with the EM's, for example, to control shock- sensitivity or, especially in the case of propellants, to maintain the flame temperature within a certain range and to achieve the maximum energy output given that temperature limitation.
  • EMs for purposes of this invention include, materials from the classes of primary explosives, boosters and secondary explosives.
  • Primary explosives are highly sensitive and are used as initiators to trigger the redox train of events leading to detonation.
  • Booster charges are less sensitive and are employed in larger quantity to carry on the redox initiation and cause detonation of the secondary explosive, which is the main or bursting charge. The latter charge is the least sensitive material in the train.
  • the EM's used in primary explosives tend to be somewhat different chemically than the booster and secondary explosives, but the booster and secondary explosives are conveniently treated together, since the same EM's can be employed in both.
  • the EM's in primary explosives include, but are not limited to lead azide, Pb(N 3 ) 2 ; mercury fulminate, Hg(0NC) 2 ;4,5-dinitrobenzene- 2-diazo-l-oxide,"DDNP"; lead styphnate, which is a lead salt of 1, 3-dihydroxy-2 , 4 , 6-trinitrobenzene; tetracene, also known as guanyldiazoguanyltstracene cr 4-guanyl-l-(r.itosoaainoguanyl) -1- tetracene; potassium dinitrobenzofuroxane, "KDNBF"; lead mononitroresorcinate, "UlNR”; and combinations thereof. These EM's all include either metal in a positive valence state, or at least one nitro or diazo group.
  • the EM's in booster and secondary explosives include several classes, i.e., aliphatic nitrate esters, nitra ines, nitroaromatics, ammonium nitrate, and mixtures of the immediately preceding.
  • Industrial explosives may contain at least some of the same EM's used in weapons, as well as some other closely related compounds of similar structure.
  • Aliphatic nitrate ester EM's are characterized by containing C-0-N0 2 groups and include, but are not necessarily limited to, for example, 1,2,4-butanetriol trinitrate, "BTTN”; diethyleneglycol dinitrate, “DEGN”; nitrocellulose, "NC,” of which there are several types depending upon the nitrogen content; nitroglycerin, “NG” or glycerol trinitrate; nitrostarch, "NS,” which is similar to nitrocellulose; pentaerythritol tetranitrate, "PETN”; triethylene- glycol dinitrate, “TEGN” or TEGDN”; and 1,1,1-trimethylolethane trinitrate, "TMETN” or “MTN.”
  • Nitramine EM's are characterized by containing N-N0 2 or N + -N0 3 " groups and include, but are not necessarily limited to, for example, cyclotetra ethylenetetranitramine, "HMX”; cyclotri- methylenetrinitramine, “RDX M ; ethyl enediamine dinitrate, "EDDN”; ethylenedinitramine, "Haleite”; nitroguanine, "NQ”; and 2,4,6- trinitrophenylmethylnitramine, "Tetryl", which could also be classified as a nitroaromatic; see below.
  • Nitroaromatic EM's are characterized by containing one or more
  • C-N0 2 structural units include, but are not necessarily limited to, for example, ammonium pi ⁇ rate, "Dunnite” or ammonium 2,4,6,- trinitrophenolate; l,3-diamino-2,4, ⁇ -trinitrobenzene, "DATB”; 2,2 ',4,4' ,6,6'-hexanitroazobenzene, "HNAB”; hexanitrostilbene, "HNS”; l,3,5,-triamino-2,4,6-trinitrobenzene, "TATB”; and 2,4,6- trinitrotoluen , M TNT .
  • Ammonium nitrate NH 4 N0 3
  • Ammonium nitrate is in a class by itself and is the least sensitive of the military explosives.
  • a number o f other named explosives are obtained by mixing various EM's, and a myriad of combinations are possible, only a representative number of which are described here; others are described in various literature citations.
  • Some of these include binary mixtures, for example, the "Amatols,” which are mixtures of ammonium nitrate and TNT; "Composition A, n a mixture of RDX and a desensitizer such as wax; "Composition B,” “cyclotols,” which are RDX plus TNT; “Composition C,” RDX plus plasticizer; “Ednatols,” Haleite and TNT; “Octols,” mixtures of HMX and TNT; and “Pentolite,” which is PETN/TNT; and so forth.
  • the "Amatols” which are mixtures of ammonium nitrate and TNT
  • Composition A, n a mixture of RDX and a desensitizer such as wax
  • Composition B “cyclotols” which are RDX plus TNT
  • Composition C RDX plus plasticizer
  • Ednatols Haleite and TNT
  • Oleite and TNT
  • Ternary mixtures include "A atex 20, which contains RDX, TNT, and ammonium nitrate; and the “Ammonals,” which are mixtures of ammonium nitrate and aluminum, together with high explosives, such as TNT, DNT and RDX.
  • Other named mixtures include “HBX,” “H-6,” “HTA,” “Minol-2,” “Torpex,” and so forth.
  • a quaternary explosive is exemplified by "BBX” which includes TNT, RDX, ammonium nitrate and aluminum metal.
  • PBX plastic-bonded explosives
  • PBX plastic-bonded explosives
  • high explosives for example, RDX, HMX, HNS, and/or PETN
  • a polymeric binder rubber, plasticizer, and a fuel, such as powdered aluminum or iron.
  • Explosives classed as industrial explosives includes dynamite, which comprises mixtures of nitroglycerin and clay, such as Kieselguhr. Another widely used industrial explosive is the combination of ammonium nitrate and fuel oil, "ANFO.” Water gel and slurry explosives are also used industrially and can include ammonium nitrate, Pentolite, TNT, etc. as the EM's.
  • the EM's contained in propellants are some of the same EM's employed in explosives and described herein.
  • the principle EM's used in propellants include nitrocellulose, nitroglycerine and nitroguanidine.
  • Chemical warfare agents (sometimes abbreviated "CWA") as appearing in the specification and claims is intended to include a very broad range of substances from poison gases, incendiary materials, and biological microorganisms employed to disable personnel, as well as pesticides, herbicides, and similar substances which can be employed to interfere with the growth of plants, insects, and other non-mammalian species.
  • CWA is intended to also include agents which are effective in relatively small dosages to substantially disable or kill mammals within a relatively short time period. They may also include agricultural chemicals used primarily to control plants, Hexapoda, Arachnida, and certain fungi.
  • the expression "chemical warfare agent” also is intended to include those replicating microorganisms commonly known as biological warfare agents, including viruses, such as equine encephalomyelitis; bacteria, such as those which cause plague, anthrax and tularemia; and fungi, such as coccidioidomycosis; as well as toxic products expressed by such, microorganisms; for example, the botulism toxin expressed by the common Clostridium botulinum bacterium.
  • viruses such as equine encephalomyelitis
  • bacteria such as those which cause plague, anthrax and tularemia
  • fungi such as coccidioidomycosis
  • toxic products expressed by such, microorganisms for example, the botulism toxin expressed by the common Clostridium botulinum bacterium.
  • chemical warfare agent those naturally occurring poisons, such as capisin (an extract of cayenne pepper and paprika) , ricin (a toxic substance found in the castor bean) , saxitoxin (a toxic substance secreted by certain shellfish) , cyanide salts, strychnine (a plant-derived alkaloid) , and the like.
  • CWA includes substantially pure chemical compounds, but also contemplates mixtures of the aforesaid agents in any proportions, as well as those agents in impure states in which the other components in the mixture are not simply other CWA's.
  • Chemical warfare agents as used herein, also includes partially or completely degraded CWA's, e.g., the gelled, polymerized, or otherwise partially or totally decomposed chemical warfare agents commonly found to be present in old munitions.
  • this invention is applicable to the treatment of weapons containing a wide range of CWA's.
  • the method is especially effective when the CWA is selected from the group consisting of vesicants, nerve agents, and mixtures thereof, the formula of the vesicants contains at least one group of the formula:
  • the nerve agents are represented by the formula: o
  • R x is alkyl
  • R 2 s selected from alkyl and amino
  • Y is a leaving group
  • X in the aforesaid formula (I) be selected from fluorine, chlorine and bromine.
  • x is chlorine, and it is especially preferred that X in formula (I) be chlorine for that reason.
  • Two of the most widely available, and thus important vesicants to which the processes of this invention are applicable are mustard gas, also called "HD,” or l,l'-thiobis[2- chlo oethane) , or di(2-chloroethyl) sulfide and "Lewisite” or dichloro(2-chlorovinyl) arsine.
  • Y is a leaving group; that is, Y is an atomic grouping which is energetically stable as an anion, the more preferred leaving groups being those which are most readily displaced from carbon in nucleophilic substitutions and, as anions, have the greatest stability.
  • the leaving group Y be selected from halogen, nitrile (-CN) , and sulfide (-S-) , since these are the groups Y, present in the nerve agents distributed most widely throughout the world.
  • R t in formula (II) can be alkyl, preferably lower alkyl, i.e., C j -Cg, straight chain or branched or cyclic, e.g., methyl, ethyl, propyl, iso-propyl, iso-butyl, tert-butyl, cyclohexyl, or trimethylpropyl.
  • x in the most widely distributed nerve agents is methyl, ethyl or 1,2, 2-trimethylpropyl and so these alkyl groups are preferred for that reason.
  • R 2 in formula (II) can be alkyl or amino.
  • R 2 in the case that R 2 is alkyl, it is preferred that alkyl be as defined above for R l f alkyl R 2 in the most widely distributed nerve agents being methyl, the most preferred alkyl R 2 being methyl for that reason.
  • R 2 in the case that R 2 is amino, R 2 can be primary, secondary or tertiary alkylamino, or dialkylamino, or trialkylamino, alkyl being as defined above for R lf dialkylamino being preferred, with dimethylamino being especially preferred for the reason that R 2 is dimethylamino in the most widely distributed nerve agent in which R 2 is amino.
  • Specific representative nerve agents which are widely distributed around the world, and hence are among the most important nerve agents to which the processes of this invention can be applied, are: "Tabun,” or “GA,” or dimethylphosphoramidocyanidic acid, or ethyl N,N-dimethyl phosphoroamidocyanidate; "Sarin,” or “GB,” or methylphosphono-fluoridic acid 1-methyl ethyl ester, or isopropyl methyl phosphonofluoridate; "So an,” or “GD,” or methylphosphono-fluoric acid 1,2,2-trimethylpropyl ester, or pinacolyl methyl phosphonofluoridate; and "VX,” or ethylphosphonothioic acid S-[2-[bis(l-methyl ethyl) amino] ethyl] ethyl ester, or ethyl S-2-diisopropyl aminoethyl methyl- phosphorothioate.
  • the invention disclosed and claimed herein also addresses the problem of providing a method for demilitarization of the energetic materials incorporated into the explosives and/or propellants used as delivery means for the CWAs. It was found that the methods disclosed can be used to access and remove CWA's can also be employed to access and remove the EM's contained in the delivery means which accompany the CWA's. This greatly simplifies the demilitarization of the complete package of hazardous substances accompanying and including the CWA's, but also provides an attractive method for demilitarizing EM's outside the CWA context as well. This would include, for example, the access and removal of unwanted reserves of containerized chemical warfare agents alone, or which might also contain energetic materials. An example of this combination would be the U.S.
  • the "M28" propellant in the M55 rocket is known to comprise a mixture of nitrocellulose, trinitroglycerin, binders and stabilizers.
  • the burster charge, which disperses the nerve agent upon rocket impact is an explosive mixture comprising trinitrotoluene (TNT) and cyclo ethylenetrinitramine (RDX) , or otherwise known as "Composition B.”
  • TNT trinitrotoluene
  • RDX cyclo ethylenetrinitramine
  • the invention herein described also includes the demilitarization of such weapons wherein it is desirable to access the interior and remove the hazardous contents.
  • the ammoniajet cutting system used in practicing this invention may be comprised of any standard 50 hp, 40,000 psi (nominal) commercial waterjet system capable of delivering about 4.0 liters/minute of anhydrous ammonia at rated pressures.
  • any standard 50 hp, 40,000 psi (nominal) commercial waterjet system capable of delivering about 4.0 liters/minute of anhydrous ammonia at rated pressures.
  • all metal alloys comprising such metals should be removed from the system, and replaced with stainless steel components.
  • the elastomeric seals and gasketing materials of the system pumps should be replaced with neoprene or other anhydrous ammonia resistant materials.
  • tubing and valves When plumbing the system, only high quality tubing and valves should be used, such as those available from Harwood Engineering, Walpole, MA; High Pressure Equipment of Erie, PA and Autoclave Engineers of Erie, PA.
  • the tubing should be autofrettaged to about three times the working pressure for safety and hydrostated.
  • the rating on the tubing and valves should exceed the maximum pressure that the pumps can achieve irrespective of no plans to operate them at maximum pressure. Typical ratings for such valves and tubing are 30,000 psi, 60,000 psi or 100,000 psi.
  • the system should be equipped with an approved safety relief valve or burst diaphragm to protect the system in the event of an accidental overpressure.
  • Anhydrous liquid ammonia can be used alone as the cutting fluid, i.e., "ammoniajet.”
  • anhydrous liquid ammonia-abrasive composition i.e., "abrasive ammoniajet” can be used as a mixture wherein the ammonia is the carrier for an abrasive.
  • "Anhydrous ammonia” or 'anhydrous liquid ammonia” as used herein is intended to have its ordinary understood meaning, NH 3 , preferably not less than a commercial grade material comprising at least about 99.5 percent ammonia. Refrigerant grade material comprising at least about 99.7 percent ammonia is most preferred.
  • anhydrous liquid ammonia should be as clean and uncontaminated as possible.
  • fluids should be filtered down to 5 microns by either reverse osmosis or mechanical filters, of conventional design- Newly installed systems should run their pumps for several hours with the fluidjet orifices removed to flush out any debris which may have entered the tubing or system during assembly.
  • the orifice of the cutting head is also an important component of the fluid cutting system.
  • the useful orifices are adapted from precision watch jewels and are typically manufactured from synthetic sapphire, synthetic ruby or diamond. Jeweled orifices are available in sizes ranging from 0.001 inches up to about 0.050 inches. The size of the jewel is dependent on the horsepower of the pump and the pressure the system can operate at.
  • Fig. 1 illustrates the horsepower requirements for the ammoniajet cutting system operating at the approximate pressure of 50 kpsi, a preferred operating range for this invention. As a general rule of thumb, to maintain a 50,000 psi pressure at the orifice of the cutting head, 250,000 hp/in 2 of orifice area is needed.
  • a 25 hp pump can run one 0.011 inch or smaller orifice at 50,000 psi.
  • the area of a 0.011 inch orifice is about 0.00009 in 2 .
  • a 50 hp pump With a 50 hp pump, one cannot double the diameter of the orifice and maintain pressure. One can only double the area of the orifice. This would result in a 0.016 in. orifice.
  • orifice size is: wherein is mass flow rate; p is fluid density; A, is the orifice area and V Jec cutting jet velocity in meters/seconds.
  • the fluidjet machining system employed in the cutting and washing steps of the methods of the invention discharges at high pr ⁇ ssu a anhydrous ammonia, as previously discussed. As it passes through the orifice the pressure of the fluid is transformed into velocity. Since the mass of the fluid is constant, the velocity increases the fluidjet* s kinetic energy dramatically according to the equation
  • K ⁇ l/2m*v 2
  • k,, is kinetic energy
  • m is the fluid mass
  • v fluid velocity.
  • the kinetic energy is utilized to directly erode the target substrate, or in the case of abrasive-ammoniajet accelerate the particles of abrasive to abrade and erode the target.
  • the velocity the fluidjet can reach is based on the formula:
  • V Jtt jet velocity in meters/second
  • p fluid pressure in kilopascals
  • p fluid density in gm/cm 3 .
  • V jet the velocity of a cutting jet according to the equation (V jet )
  • V jet the velocity of a cutting jet according to the equation (V jet )
  • anhydrous liquid ammonia this enables forming a cutting jet which is approximately 25% faster than that of water.
  • the particles of the cutting jet of this invention are thought to possess increased kinetic energy and enhanced cutting ability over water because they are acc ⁇ lerated at significantly greater velocities.
  • the pressure of the cutting fluid is an important parameter because pressure has a direct relationship to fluid velocity and for every target material there is a minimum impact velocity required to cut the material in a reasonable time interval.
  • the fluidjet pressure i.e., pump pressure of the fluidjet upstream to the orifice of the cutting head should be sufficiently greater than the yield strength of the target substrate being cut in order to complete the cutting process within a shortest time interval, but preferably not in excess of those operating pressures which otherwise are likely to substantially increase the potential for fluidjet cutting equipment failure or substantially shorten equipment life expectancy.
  • the pressures employed are greater than those utilized by Melvin et al (I) and (II) which are intended for eroding, or alternatively, fracturing solid chemical propellants in rocket motor casings for removal and recovery.
  • Melvin et al (I) and (II) are concerned with treating frangible materials which are subject to erosion or which can be fractured into smaller particles. Accordingly, the present invention utilizes pressures which are sufficient to penetrate and/or cut solid containments, such as steel containments or casings for accessing interior chamber(s) or compartment (s) , such as rocket motor casings, or other containments as previously discussed.
  • the anhydrous ammonia of the ammoniajet (without abrasive) can be in the range from about 30,000 psi to as high as 150,000 psi, but more preferably, from about 40,000 to below about 100,000 psi.
  • an abrasive ammoniajet cutting fluid mixture be used rather than ammonia without abrasive. Operating pressures in excess of 60,000 psi can cause premature wear on pump systems and other components of fluidjet cutting devices, which in turn can lower reliability factors, cause premature equipment failure, and result in costly down time.
  • abrasive ammoniajet cutting is preferred over an ammoniajet.
  • Abrasive ammoniajet cutting fluid allows lower operating pressures than ammonia alone.
  • abrasive ammoniajet cutting can be performed at operating pressures in a range of between about 20,000 and 75,000 psi, and efficiently cut metals having high yield strengths. More preferably, abrasive ammoniajet cutting is performed in the range of between about 20,000 and about 60,000 psi for most metallic targets.
  • fluidjet cutting for example, an aluminum target having a yield strength of 20,000 psi, it is more efficient to employ an abrasive ammoniajet in place of anhydrous ammonia alone.
  • the ammoniajet is capable of directly cutting many low yield-strength materials without the use of abrasives.
  • abrasive ammoniajet cutting is usually preferred.
  • the abrasive ammoniajet comprises a mixture of abrasives commonly employed in high pressure waterjet cutting, but dispersed in the anhydrous liqui d ammonia. Practically any abrasive can be used which is soft enough to minimize wear on components, sufficiently friable to readily form new cutting edges, economical in cost, and graded with sufficient accuracy to prevent plugging the fluidjet cutting system with particles which are either too large or small.
  • abrasive typically, the coarser the abrasive, the faster and more aggressive the cutting action. For most cutting applications with a surface finish of about 125 micro inches, an 80 mesh abrasive may be used. For finer finishes, an abrasive down to 1000 mesh can be employed. A preferred range of abrasive sizes for most ammoniajet cutting applications is generally from about 80 mesh to about 150 mesh.
  • abrasive mass flow rate used is 85 percent of the maximum cutting quantity. More specifically, the abrasive is used at the rate of about one pound per gallon of liquid ammonia typically at a pressure of 50,000 psi. This provides a highly efficient cutting rate for most metallic substrates. This is about a 13 percent on a mass ratio to the ammonia to provide economical operation. Maximum cutting rates can be achieved with additional abrasive in the 17 to 20 percent range. With more than 20 percent on mass ratio to ammonia, cutting efficiency diminishes rapidly as the system becomes clogged on the excess abrasive material in the focusing tube.
  • Al ondine garnet having a Knoop hardness of 1350 is the abrasive of choice for many abrasive ammoniajet cutting operations. It has been found that garnet abrasive of 100 mesh particle size is efficient and economical for cutting various metals, such as titanium, steel and aluminum. As a general rule, the abrasive grains should be harder than the target materials. Materials like steel shot, for example, may be used to cut steel, but at a speed penalty. Steel shot can still be used efficiently to cut steel if the shot is hardened by quenching from a high heat (known as chilled shot) , and is capable of performing just as a hardened steel file can cut most steels.
  • a high heat known as chilled shot
  • Glass and silica are substantially harder than steels, so they can be readily used to cut steels or materials that are softer than steels, e.g., brasses, bronzes, copper, aluminum, nickel, lithium, sodium, potassium, calcium, magnesium, wrought iron, cast iron, uranium, graphite, composites, plastics, marble, limestone, common ceramics, zirconium, and so on.
  • Glass can be cut with silica abrasive, but not with softer abrasives. With softer abrasives there are corresponding slower cutting speeds compared to garnet; higher material costs and potential health consequences.
  • Silica for example, is low in cost, but is a U.S.
  • Abrasive ammoniajet cutting procedures may employ either of two delivery methods commonly used in the high pressure abrasive jet cutting art: (i) cutting wherein the anhydrous ammonia passing through the cutting head entrains abrasive particles by aspiration and mixes them by mechanical action into a high-velocity stream of anhydrous ammonia inside a focusing tube for discharge onto the work piece. Alternatively, (ii) a mixture of anhydrous ammonia and abrasive particulates is premixed into a slurry which is then pressurized and forced through a discharge nozzle onto the work piece.
  • FIG. 2 illustrates a closed protective chamber 10 which is a sealed enclosure either a protective hood or other suitable housing for ammonia jet cutting assembly 12 and work piece 1 4.
  • work piece 14 may be a closed high explosive projectile, e.g., M5 5 rocket consisting of aluminum and steel casing sections with wall thicknesses varying from 0.125 to 0.375 inches, containing an energetic material 16, the objective being demilitarization of the projectile by accessing the interior of the closed steel casing for extraction and recycling energetic material 16 .
  • Protective chamber 10 should be capable of safely operating at a minimum of 250 psig, and be constructed to ASME pressure vessel codes ( Section VIII Boiler and Pressure Vessel Standards by the American Society of Mechanical Engineers, NY, NY).
  • Chamber 10 should be fitted with pressure release safety valves (not shown ) capable of protecting the chamber in the event of a pressure excursion.
  • the closed explosive projectile 14 can be secured in chamber 10, for example, by fitting with a drive collar (not s h own) to the aft end of the rocket and the unit loaded tail en d first into the chamber.
  • projectile 14 is secured to motorized rotating means for rotation during cutting and washout phases.
  • the cutting head of the ammoniajet system is preferably e l ectrically bonded (not shown) to a wall of the protective cham b er to prevent the generation of static electricity.
  • Ammoniajet cutter assembly 12 includes a spray containment shield and suction pickup 18 for collecting and transporting discharged slurry or solution of ammonia and energetics from the interior of the projectile to other work station(s) 20 for further processing, e.g., ammonia evaporation,, and recovery station for recompression of the ammonia and recycling the energetic material.
  • Shield 18 may also include means for sealing ammoniajet cutter assembly 12 to the exterior surface of projectile 14 by means of an elastomeric seal or boot (not shown) .
  • Such a sealed shield and suction pickup when used can prevent the escape of fugitive ammonia fumes into the work area, and possibly eliminate the need for protective chamber 10.
  • ammoniajet cutting assembly 12 and its ammoniajet stream 22 are positioned relative to work piece 14 as to optimize efficient utilization cf the energy forces from the high velocity stream to penetrate or cut/sever the outer casing and then erode, fracture and dissolve any solid or composite substances, e.g., energetics, adhering to the interior surfaces of the work piece.
  • the ammoniajet stream is preferably positioned to generate turbulent forces 24 in the interior compartment causing rapid circulation of the liquid ammonia to facilitate the rate of contact of fresh incoming ammonia for dissolution of all solids.
  • the incoming ammoniajet also provides the energy for pressurizing the circulating liquid in the casing for rapid discharge of interior contents for collection by pickup 18 for further processing.
  • ammoniajet stream 22 should be positioned off center of the central axis of the projectile, so the jet stream enters the interior of the casing towards the sidewall more tangentially than centrally. From this representative example, it will be readily apparent to those skilled in the art how to position the cutting head of the ammoniajet on targets having diverse geometrical configurations for optimizing the washout rate.
  • Fig. 3 illustrates the impingement of high pressure ammoniajet 22 at the surface of the steel casing of projectile 14 during the cutting phase. Jet stream 22 is shown having diameter (d) eroding the surface of the casing.
  • ammoniajet produces a kerf 26 which is disproportionate to the diameter (d) of jet stream 22 due to a "mushrooming" effect of the particles of liquefied ammonia impacting the surface under extreme pressure and velocity.
  • ammoniajet produces a broaden kerf, and ultimately a breakthrough orifice in the outer casing of the projectile or other work piece for washout which is approximately 3 to about 5 times (3-5d) the diameter (d) of jet stream 22.
  • Fig. 4 shows continuous operation of the high pressure ammoniajet stream 22 after completion of the cutting phase wherein ammoniajet 22 continues to operate substantially as it did during the cutting phase, except that the liquid ammonia enters the interior of the work piece.
  • the energy of the jet stream operates to erode the chemical contents under turbulent conditions mixing and slurrying the contents, dissolving the contents to the extent of their solubility in ammonia.
  • the present invention contemplates utilizing simultaneously the same orifice 28 as both entry port and exit port for delivering fresh ammonia as high pressure jet stream 22, and discharging the slurried contents also through orifice 28 coaxially to the incoming ammoniajet.
  • Figs. 2-4 dwell upon cutting a single access port into the casing of a munition, for example, it is to be understood the invention contemplates alternative cutting strategies Inter alia multiple ports, e.g., inlet and outlet ports, as well as sectioning the entire casing with one or more cross or transverse cuts and/or longitudinal or ripping cuts for salvaging rocket motors, for instance.
  • the ammonia should be maintained in a liquid state during the cutting and washing phases. If, however, the ammonia is allowed to undergo a phase change to a gaseous state it will become less effective in both the cutting and washing phases, previously discussed.
  • Handling systems for anhydrous liquid ammonia comprising storage and supply capabilities, recovery, treatment and recompression for recycling, including means for monitoring and regulating pressures and temperatures are well known in the art.
  • U.S. Pat. 4,854,982 (Melvin et al) which employs an ammonia handling system in connection with the demilitarization of open rocket motors.
  • Melvin et al are not concerned with the problem of accessing the interiors of sealed rocket motors, or high pressure fluidjet cutting as a preliminary step to demilitarization, they do disclose supply systems for anhydrous ammonia, means for extracting a chemical from open rocket motors utilizing pressurized spraying of anhydrous ammonia as the solvating medium, means for recovering chemicals from liquid ammonia, and a system for ammonia recovery.
  • the supply and high pressure ammonia spray system comprises a liquid ammonia supply vessel, means for monitoring liquid ammonia reserves, and various accessories, e.g., in-line filter and pump for the anhydrous ammonia, flow meter, flow totalizer, back pressure regulator, preheater, check valves, pressure gauges, and so on.
  • the system for recovering extracted oxidizer from the liquid ammonia comprises first a filtration chamber for initially separating insoluble components from the liquid ammonia-containing washings exiting the treated casings.
  • the amraonia-oxidizer filtrate is received in an expansion vessel where it undergoes pressure reduction and conversion of the liquid ammonia to a gaseous phase whereupon the dissolved oxidizer automatically precipitates out as a solid material.
  • the gaseous ammonia is then treated in an ammonia recovery station (ARS) where it is dried in an appropriate column to remove any residual moisture and filtered.
  • ARS ammonia recovery station
  • the anhydrous gaseous ammonia is then reco pressed in an appropriate ammonia recompression pump and returned to the supply tank for reuse.
  • the munition may be demilitarized through a base catalyzed reaction, or some other mechanism in which the nitroglycerin is converted to a less hazardous substance.
  • Liquid ammonia has also been used to extract, recover and/or chemically degrade the so class 1.1 propellants containing nitramine oxidizers HMX and/or RDX. This is disclosed for example in U.S. pat. 5,284,995, the contents of which are incorporated herein by reference. While the invention has- been described in conjunction with various embodiments, they are illustrative only. Accordingly, many alternatives, modifications and variations will be apparent to persons skilled in the art in light of the foregoing detailed description, and it is therefore intended to embrace all such alternatives and variations as to fall within the spirit and broad scope of the appended claims.

Abstract

Methods of cutting structural shapes by impinging a high pressure jet of anhydrous liquid ammonia or anhydrous ammonia-abrasive mixture at high impact velocity at a target substrate for faster, more efficient penetration/cutting rates i.e., up to 25 percent improvement over high pressure jet cutting methods with water as the cutting fluid, greater safety and flexibility, particularly in demilitarizing munitions comprising energetic materials and/or chemical warfare agents. The energy from the cutting jet comprising anhydrous ammonia may also be utilized in a continuous, uninterrupted sequence of processing steps after penetrating a closed casing for dispersing/dissolving and washing the contents from the penetrated containment.

Description

AMMONIA FLUTDJET CUTTING PROCESSES
TECHNICAL FIELD
The present invention relates to the discovery that anhydrous liquid ammonia provides a more efficient fluid for high pressure fluidjet cutting operations making it especially advantageous in breaching and vacating closed containments, and in particular, as an initial step in accessing hazardous or toxic substances, such as chemical warfare agents and energetic materials encased in closed vessels.
BACKGROUND OF TEE INVENTION The world's stockpile of munitions have several driving reasons for their safe and efficient destruction. These reasons vary from the obvious need for arms reduction since the end of the Cold War, to treaty obligations., the high cost of secure storage, to public risk near the storage locations, and to the fact that chemical munitions are slowly degrading. The degradation problem has become so bad that almost 6% of the items processed at the Army's destruction facility can not be processed with existing technologies. In addition, these munitions are potentially dangerous as the toxic nerve agents have corroded their containers and infiltrated the enclosed explosive bursters assembled within the weapons. This problem has become serious enough that the US Army's studies on chemical agent rockets have predicted that within the next few decades the units may auto-ignite due to degradation of internal stabilizers.
The conventional methods of accessing the munitions in this condition are inefficient at best, and dangerous at worst. Besides the previously mentioned β%+ or more failure rate experienced by the Army using existing technology, more than three of the limited number of chemical munitions demilitarized have exploded during disassembly. Clearly the use of the current mechanical disassembly processes are both dangerous and inefficient.
An alternative munition accessing method that has had much publicity is the use of liquid nitrogen to chill the munitions below their brittle transition temperature and then to fracture the components into small pieces. Unfortunately, the massive volumes of liquefied nitrogen required and the length of time necessary to adequately chill the munitions preclude the process from being efficient. In addition, this process has also experienced an explosion during operation leaving some serious doubt about the process' safety.
One might conclude that use of high pressure waterjets would be the safest system for cutting casings of munitions. Unfortunately however, the chemical agents and explosives used by the militaries of the world are typically hydrophobic materials, like oils, that do not mix appreciably with water. Experience has shown that when a waterjet is used on explosives, a thick emulsion is formed that severely complicates further processing. An example of emulsions formed by water and hydrophobic oils is common mayonnaise, which accurately resembles the explosive/water or chemical agent/water emulsions.
Besides being almost impossible to pump efficiently, such emulsions have other severe disadvantages. Many of the military energetics are still dangerous in their water emulsion form. This characteristic is heavily exploited by the commercial explosive industry where emulsion explosives are commonly used materials for rock blasting. The pumping of explosive emulsions increases the danger to plant operations because the emulsions plug piping, deposit explosives throughout the plant piping, and can easily propagate an explosion from one part of the plant throughout the rest of the facility. Finally, the use of water to form explosive or chemical agent emulsions reduces the effectiveness of the decontamination materials as the emulsions form stable droplets that restrict the diffusion of the decontamination chemistries to their targets.
Alternative fluids to water have been suggested in connection with specialty fluidjet cutting operations. in this regard, hydrocarbon solvents may be used when highly reactive alkali metals, like lithium or sodium are being processed. U.S. Pats. 4,854,982 (Melvin et al I) and 5,284,995 (Melvin et al II) disclose pressurized anhydrous liquid ammonia in demilitarization procedures. More specifically, Melvin et al (I) disclose methods for demilitarization of rocket motors containing solid and ground composite propellant comprising ammonium perchlorate σxidizer and other miscellaneous ingredients. The propellant composition is removed by mean of a spinning spray type nozzle which discharges pressurized anhydrous ammonia directly into the interior of open rocket motor cases to erode or reduce the propellant to small particles. A slurry mixture accumulates in the rocket motor casing consisting of dissolved oxidizer and other residual propellant ingredients as insolubles. The slurry is further treated, e.g., by filtration. Recovery of the oxidizer occurs when the ammonia is allowed to gasify causing the ammonium perchlorate to drop out of solution. The ammonia used in the wash out process is dried and recompressed for reuse in the process. Melvin et al (II) , as in the case of Melvin et al (I) , also employs a pressurized spray of anhydrous liquid ammonia, but they use it to extract and recover nitramine type oxidizers from solid rocket propellants, in particular, those known as "HMX" and "RDX", or cyclotetramethylenetetranitra ine and cyclotri ethylene- trinitramine, respectively. Melvin et al (II) employs a sequence of steps for rocket motor demilitarization by propellant extraction, separation and recovery. They begin with the direct removal of the solid propellant. One method used is mechanical cutting and comminution and/or liquid jet ablation with pressurized ammonia spray nozzles. Alternatively, a comminution fixture may be used with pressurized liquid ammonia spray. In either embodiment, the spray nozzle or comminution fixture is placed in the interior of an open rocket motor and pressurized ammonia discharged against the propellant. The solid propellant is fractured or comminuted, reduced to smaller particles and removed from the motor in the form of a slurry for further treatment. Melvin et al (II) also disclose bulk propellant from sources other than rocket motors macerated in a dedicated pressure vessel. In this embodiment, chips of propellant can be further treated by spraying the interior of the pressure vessel with a high pressure ammonia jet pre-treatment before introducing the material into an extractor/separator system.
While the methods of Melvin et al (I) and (II) are useful in the removal and recovery of chemical propellant from rocket motors, their methods have limited applications because they are dependent on a suitable access opening in the munition, such as a rocket nozzle or port, or at least partial disassembly of the munition in order to introduce the required ammonia spray nozzle or modified fixture for direct spraying of the propellant. The disadvantage of such methods is that to access an otherwise closed casing or containment for demilitarization by interior spraying, disassembly or other processing of the munition is required. However, disassembly is a slow, inefficient process, and therefore, non- economic. More importantly, mechanical disassembly of munitions is hazardous. For example, an M55 rocket is a chemical warfare munition containing approximately 10 pounds of highly toxic nerve agent, more than 2 pounds of dangerous explosives and about 19 pounds of reactive rocket propellant.
Various systems for cutting casings of munitions have been tested including the use of commercial water ets. In addition to the reasons outlined above concerning the potential hazards associated with aqueous emulsions of chemical agents and energetics, their extraction, recovery and recycling from aqueous effluents has also proven to be economically unattractive.
Accordingly, there is a need for more efficient cost effective methods with an improved margin of safety for cutting and vacating closed vessels holding hazardous substances, such as munitions and ordnance, and in particular weapon devices containing chemical warfare agents, energetic materials, and combinations thereof, as well as other containerized hazardous and toxic chemical substances, and substrates contaminated with such substances. The methods should include the preliminary step of accessing interiors of closed containments for the above substances and substrates by means of high pressure fluidjet cutting or penetration with a high velocity fluid capable of providing improved cutting efficiency, and which is fully compatible with other processing steps, as may be needed, in demilitarization and chemical decontamination protocols.
SUMMARY OP THE INVENTION
The present invention is based on the recognition that anhydrous liquid ammonia is a highly satisfactory solvent for a great many hazardous chemical substances. For example, anhydrous ammonia is an effective solvent for practically all of the nitro- aromatics, the principal structure of military explosives. It is also compatible with many propellants, flammables and combustibles, i.e., energetic materials. In addition, ammonia is an excellent solvent for many chemical agents used by the military. Importantly, many solutions of energetics and ammonia are non- propagating and very stable. Such properties allow many energetics, and other hazardous chemical substances to be safely transported without coating piping systems, thereby avoiding the propagation of an explosive event through the system.
This invention is based on the surprising discovery that a high pressure fluidjet cutting system employing anhydrous ammonia as an alternative cutting fluid is capable of providing up to about a 25 percent increase in cutting efficiency over that of a high pressure waterjet operating at the same conditions. This may possibly be due in part to its very low boiling point (-33°C) . It was found that a high pressure fluidjet of anhydrous ammonia rapidly chills down the metal of a containment vessel, for example, causing embrittle ent, and more rapid erosion of the target at the cutting site for enhanced cutting rates.
It is therefore one object of the invention to provide a method for penetrating and/or cutting a target substrate, which comprises the steps of:
(i) providing a system suitable for impinging a high pressure jet of a liquid from a cutting head onto a target substrate having an interior compartment at sufficient velocity to penetrate or cut the substrate;
(ii) positioning in a work area the target substrate adjacent to the cutting head of the system; (iii) shielding the target substrate and cutting head from the work area, and (iv) impinging a high pressure jet comprising anhydrous liquid ammonia against the target substrate to penetrate and/or cut the substrate for accessing the interior compartment.
The expressions "shield", "protective chamber" or variations thereof appearing herein and in the claims are intended to include hoods, encasements, pressure vessels and other enclosures and devices, which may optionally have suction and venting means, all for capturing, withdrawing and/or treating any fugitive ammonia fumes and reaction by-products from the methods disclosed herein which might otherwise enter the environment of the work area.
The expression "destroying", "destruction" or the like as appearing in the specification and claims herein is intended to mean any target substrate, which is transformed into a less hazardous substance, product or article of manufacture.
It is still a further object to provide an additional embo iment of the above stated invention wherein the high pressure cutting liquid is more than an ammoniajet, but comprises a jet stream in the form of a composition comprising at least anhydrous liquid ammonia and an abrasive. The ammonia performs as a carrier for the abrasive. The anhydrous ammonia-abrasive mixtures may also contain other additives, e.g., surfactants, familiar to those skilled in the art.
Conveniently, the ammoniajet used during cutting phase (iv) for penetrating the outer containment or casing of the target substrate performs the further step of eroding, slurrying and/or dissolving the casing contents for extracting or washing out hazardous substance(s) therefrom without a hiatus. This is achieved by the formation of a dispersion or slurry, and/or solution of the hazardous substance(s) from the ammonia delivered by the high pressure cutting jet, depending on the degree of solubility of the hazardous substance in anhydrous ammonia. Solvation of the hazardous substance occurs in situ in the containment through turbulence generated by the high power jet of ammonia entering the containment after the initial breakthrough of the jet stream during the cutting phase, first by fracturing or eroding any composite materials therein into smaller particulates, or simply mixing/blending the hazardous material by churning the contents typically into a flowable slurry, dispersion, solution, and mixtures thereof. The flowable slurry/dispersion or solution exits the containment usually at the location where the cutting(s) occurred. Hence, t e high pressure ammonia fluidjet is not only a highly efficient means for breaching, i.e., penetrating and/or cutting a closed containment for accessing their interiors, but the energy of the fluidjet also performs as a "pump" in a highly efficient continuous sequence of steps whereby the ammoniajet stream utilized for initially penetrating/cutting the containment, also fractures, mixes and solubilizes the containerized contents, and pressurizes the mixture to thoroughly vacate the interior and clean out the containment of all hazardous/toxic material(s) . In so doing, all or virtually all hazardous material is recovered in a flowable dispersion, usually a slurry, or solution which can be readily and safely transported to subsequent processing stations at reduced risk.
Accordingly, the invention also includes embodiments wherein the target substrate comprises a containment vessel, housing or casing with a hazardous or toxic substance confined in an interior compartment thereof, and the method includes process steps i-iv discussed above, plus the additional step of:
(v) vacating the penetrated, cut or severed casing by washing the hazardous or toxic substance from the interior compartment with the assistance of the same high pressure ammoniajet cutting fluid or the abrasive-ammoniajet cutting fluid mixture entering the compartment after break through of the containment vessel, housing or casing by the cutting jet during step (iv) to form ammonia- containing washings in the form of a transportable, less hazardous slurry.
While the recovered ammoniated slurries comprising the hazardous substance(s) are in a more suitable format for safer transporting to other work stations for further treatment, such as recycling or for chemical destruction, it is to be understood that such additional method steps or processes are not intended as part of this invention. Methods for recycling, etc., are known among persons skilled in the art, as represented by Melvin et al (I) and (II) supra .
BRIEF DESCRIPTION OF DRAWINGS For a better understanding of the invention reference is now made to the drawings wherein:
FIG. 1 is" a graph representing the horsepower requirements of an ammoniajet pump relative to orifice size of a cutting head for the cutting system of this invention operating at a preferred pressure.
FIG. 2 is a sectional diagrammatic view illustrating the positioning of a fluidjet cutting head and ammoniajet stream relative to a closed military projectile in demilitarization thereof for optimizing use of the energy of the jet stream for both penetrating the casing, dispersing energetic material, and for vacating the contents therefrom;
FIG. 3 is an enlarged partial view of the metallic casing taken along line 3-3 of Fig. 2, illustrating the breadth of the erosion of the target produced by the high pressure, high velocity ammoniajet stream during the cutting phase;
FIG. 4 is an enlarged partial view of the ammoniajet stream s1- ->wn by Fig. 3 after penetration of the casing generates interior turbulence producing erosion, slurrying, and pressurized back-flow for collecting the ammonia-containing energetic slurry from the same opening thereby facilitating rctal clean out of the casing during the washing phase.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention encompasses at least two fundamental concepts: (I) Cutting structural shapes by impinging a high pressure jet of anhydrous liquid ammonia or anhydrous ammonia-abrasive mixture at high impact velocity at a closed containment or target substrate for faster, more efficient cutting rates i.e., up to 25 percent improvement over high pressure jet cutting methods conducted under equivalent conditions with water as the cutting fluid, and (II) Recovering a substance, substrate or article of manufacture from a target substrate by means of a high pressure anhydrous ammoniajet or anhydrous ammonia-abrasive jet as the cutting fluid for the target substrate while also utilizing the energy of the fluidjet for dispersing/dissolving and extracting the contents from the target substrate by power jet washing with the same high pressure ammoniajet. This concept is especially useful where the target substrate is a containment vessel, housing or casing for a chemical substance or article of manufacture, e.g., a munition, such as a high explosive projectile containing an energetic material where destroying, or alternatively recovering and salvaging the contents from its closed casing is economically desirable, but potentially hazardous. Penetrating and/or sectioning the target substrate with a power jet comprising anhydrous ammonia for accessing the contents of the casing and extracting the energetic material and/or salvaging valuable components therefrom can be performed not only at a faster, more efficient rate, relative to water as a cutting fluid, but also with greater safety because of reduced risk of explosion occurring when using anhydrous ammonia as the solvating agent. The more efficient cutting phase is coupled with a washing phase so both utilize the energy from the ammonia power jet in a continuous, uninterrupted sequence of processing steps making it a more efficient, safer and economically attractive system for demilitarization, and the like. For purposes of this invention the expression "target substrate* as appearing in the specification and claims is intended as a shorthand expression for any closed or unopened, insufficiently opened (for accessing interior contents) , assembled or non-disassembled or partially disassembled containment structure, enclosure or vessel having a wall(s) defining one or more interior chambers or compartments therein, in combination with contents, potentially hazardous or otherwise, in the interior chamber or compartments. For example, a partially disassembled "target substrate" may comprise a warhead removed from a booster rocket. One wishing to demilitarize this partially disassembled munition may according to the above stated object gain access to the interior quickly and efficiently by impinging a high pressure ammoniajet to cut or penetrate the outer casing of the warhead for accessing a compartment in the interior holding a nerve agent or other hazardous substance, such as an energetic material. One may also wish to gain access to the interior of a rocket for purposes of recovering a component therein for reuse, such as a rocket motor which is not per se hazardous or toxic. Similarly, this initial step of cutting or penetrating the casing of a target substrate may be required either because a manufactured opening or access port is insufficient for performing a particular task, or possibly due to the absence of any port or opening allowing access to the interior contents. The above containments, enclosures or vessels are intended to include a broad range of structures, and include, but are not limited to such categories generally recognized as housings, receptacles, cases or casings br encasements, shells, magazines, cartridges, canisters, cans, drums, barrels, pails, bottles, and so on. Typically, these containments, enclosures or vessels are fabricated from a broad range of materials which are generally solid, rigid or semi-rigid, and are comprised of a metal or metal alloys, such as aluminum and steel; polymers and plastics, including reinforced plastics and composite structures comprising, for instance, reinforcements like fibers, filaments or whiskers of glass, metal; thermosetting or thermoplastic resins and plastics. Other materials of construction for containments, enclosures and vessels can include concrete, glass, ceramics, wood or so called man-made compositions, composite materials, and so on.
"Target substrate" includes more than containments, but also comprise specific articles of manufacture and devices, such as munitions and ordnance (e.g., rockets, land mines, mortar and -r illsry shells, cartridges, and missiles, and other projectiles which may comprise chemical warfare agents and/or energetic materials, chemical propellant, and so on). Further representative examples would include canisters or other container formats holding energetics, chemical warfare agents, and other miscellaneous ordnance. Also included are closed containment vessels, such as plastic or steel drums filled with military waste and hazardous byproducts from manufacturing processes, as well as substrates, such as contaminated or used oils, dielectric fluids, hydraulic fluids, solvents, inert adsorbent materials, e.g., wood chips and other miscellaneous cellulosic materials, including ground corn cobs, saw dust. Solid substrates may have sorbed (adsorbed or absorbed) thereon hazardous chemicals, or other potentially toxic substances, such as radionuclides and other nuclear waste materials and byproducts, dangerous heavy metals, hazardous organics, such as PCBs, as well as dioxins, various pesticides, to name but a few. Hazardous radioactive and non-radioactive metals include such representative examples as selenium, cobalt, mercury, cadmium, chromium (VI) , lead, uranium, plutonium, thorium, and so on. Liquids, such as oils and solvents may also be contaminated with the foregoing hazardous/toxic substances.
"Target substrates" are also intended to include containments holding equipment, tools and textiles, such as articles of protective clothing, including gloves, shoes, and the like, which have been exposed to toxic substances, but must be decontaminated as part of a disposal or recycling process.
Importantly, the expression "target substrate" is not limited to munitions, and other manufactured articles and materials, but also contemplates bulk containerized hazardous substances used by industry or the military, e.g., including hazardous chemicals, chemical warfare agents and energetics.
"Energetic materials" or "EM" for purposes of this invention are intended to relate to substances in three classes of products, namely, explosives, propellants, and pyrotechnics; see, for example, Department of the Army Technical Manual TM 9-1300-214, "Military Explosives, " Headquarters, Dept. of the Army, 1984 and the manual provided at "An Introduction to Explosives, " presented at the FAA's Energetic Materials Workshop, Avalon, New Jersey, April 14-17, 1992. The EM's in explosives and propellants, when chemical reaction is properly initiated, generate large volumes of hot gases in a short time, the primary difference between propellants and explosives being the rate at which the reaction proceeds. In explosives, a fast reaction produces a very high pressure shock wave which is capable of shattering objects. In propellants, a slower reaction produces lower pressure over a longer period of time. Pyrotechnics evolve large amounts of heat, but much less gas than explosives and propellants.
Explosive and especially propellant compositions, which this invention is intended to include, can comprise complex mixtures of various inorganic and organic chemical compounds, as well as discrete, physically separate components in an explosive or propellant train. Various additives may be incorporated into the composition along with the EM's, for example, to control shock- sensitivity or, especially in the case of propellants, to maintain the flame temperature within a certain range and to achieve the maximum energy output given that temperature limitation.
More specifically, EMs for purposes of this invention include, materials from the classes of primary explosives, boosters and secondary explosives. Primary explosives are highly sensitive and are used as initiators to trigger the redox train of events leading to detonation. Booster charges are less sensitive and are employed in larger quantity to carry on the redox initiation and cause detonation of the secondary explosive, which is the main or bursting charge. The latter charge is the least sensitive material in the train. The EM's used in primary explosives tend to be somewhat different chemically than the booster and secondary explosives, but the booster and secondary explosives are conveniently treated together, since the same EM's can be employed in both. The EM's in primary explosives include, but are not limited to lead azide, Pb(N3)2; mercury fulminate, Hg(0NC)2;4,5-dinitrobenzene- 2-diazo-l-oxide,"DDNP"; lead styphnate, which is a lead salt of 1, 3-dihydroxy-2 , 4 , 6-trinitrobenzene; tetracene, also known as guanyldiazoguanyltstracene cr 4-guanyl-l-(r.itosoaainoguanyl) -1- tetracene; potassium dinitrobenzofuroxane, "KDNBF"; lead mononitroresorcinate, "UlNR"; and combinations thereof. These EM's all include either metal in a positive valence state, or at least one nitro or diazo group.
The EM's in booster and secondary explosives include several classes, i.e., aliphatic nitrate esters, nitra ines, nitroaromatics, ammonium nitrate, and mixtures of the immediately preceding. Industrial explosives may contain at least some of the same EM's used in weapons, as well as some other closely related compounds of similar structure. Aliphatic nitrate ester EM's are characterized by containing C-0-N02 groups and include, but are not necessarily limited to, for example, 1,2,4-butanetriol trinitrate, "BTTN"; diethyleneglycol dinitrate, "DEGN"; nitrocellulose, "NC," of which there are several types depending upon the nitrogen content; nitroglycerin, "NG" or glycerol trinitrate; nitrostarch, "NS," which is similar to nitrocellulose; pentaerythritol tetranitrate, "PETN"; triethylene- glycol dinitrate, "TEGN" or TEGDN"; and 1,1,1-trimethylolethane trinitrate, "TMETN" or "MTN."
Nitramine EM's are characterized by containing N-N02 or N+-N03 " groups and include, but are not necessarily limited to, for example, cyclotetra ethylenetetranitramine, "HMX"; cyclotri- methylenetrinitramine, "RDXM; ethyl enediamine dinitrate, "EDDN"; ethylenedinitramine, "Haleite"; nitroguanine, "NQ"; and 2,4,6- trinitrophenylmethylnitramine, "Tetryl", which could also be classified as a nitroaromatic; see below. Nitroaromatic EM's are characterized by containing one or more
C-N02 structural units and include, but are not necessarily limited to, for example, ammonium piσrate, "Dunnite" or ammonium 2,4,6,- trinitrophenolate; l,3-diamino-2,4,β-trinitrobenzene, "DATB"; 2,2 ',4,4' ,6,6'-hexanitroazobenzene, "HNAB"; hexanitrostilbene, "HNS"; l,3,5,-triamino-2,4,6-trinitrobenzene, "TATB"; and 2,4,6- trinitrotoluen , MTNT . "
Ammonium nitrate, NH4N03, is in a class by itself and is the least sensitive of the military explosives. A number of other named explosives are obtained by mixing various EM's, and a myriad of combinations are possible, only a representative number of which are described here; others are described in various literature citations. Some of these include binary mixtures, for example, the "Amatols," which are mixtures of ammonium nitrate and TNT; "Composition A, n a mixture of RDX and a desensitizer such as wax; "Composition B," "cyclotols," which are RDX plus TNT; "Composition C," RDX plus plasticizer; "Ednatols," Haleite and TNT; "Octols," mixtures of HMX and TNT; and "Pentolite," which is PETN/TNT; and so forth.
Ternary mixtures include "A atex 20, which contains RDX, TNT, and ammonium nitrate; and the "Ammonals," which are mixtures of ammonium nitrate and aluminum, together with high explosives, such as TNT, DNT and RDX. Other named mixtures include "HBX," "H-6," "HTA," "Minol-2," "Torpex," and so forth. A quaternary explosive is exemplified by "BBX" which includes TNT, RDX, ammonium nitrate and aluminum metal. Other mixtures include the plastic-bonded explosives or "PBX" explosives which contain one or more high explosives, for example, RDX, HMX, HNS, and/or PETN in admixture with a polymeric binder, rubber, plasticizer, and a fuel, such as powdered aluminum or iron.
Explosives classed as industrial explosives includes dynamite, which comprises mixtures of nitroglycerin and clay, such as Kieselguhr. Another widely used industrial explosive is the combination of ammonium nitrate and fuel oil, "ANFO." Water gel and slurry explosives are also used industrially and can include ammonium nitrate, Pentolite, TNT, etc. as the EM's. The EM's contained in propellants are some of the same EM's employed in explosives and described herein. The principle EM's used in propellants include nitrocellulose, nitroglycerine and nitroguanidine. Other components typically are present to control the flame temperature, maximize energy content at that temper ature , reduce the tendency of a gun to exhibit secondary flash, minimize barrel erosion, provide useful physical properties to the propellant, and control cost. The following components, along with general ranges in the amounts of several of them, can be found in typical propellants, although not all of these ingredients are necessarily present in a single propellant.
TABLE 1 y ical Components of Prooellart Compositions
Component Ranσe (Wt%1
Nitrocellulose (-13% N) 20 - 100 Nitroglycerin 10 - 43
Nitroguanidine 48 - 55
Barium nitrate 1.4
Potassium nitrate .75- 1.25
Lead carbonate Lead stearate
Dinitrotoluene 8 - 10
Dibutylphthalate 3 - 9
Diethylphthalate 3
Dimethylphthalate Diphenylamine .7 - 1
Nitrodiphenylamine
Ethyl centralite .6 - 1.5
Graphite .1 - .3
Cryolite .3 Triacetin
The non-EM components of typical propellants do not appreciably affect the methods of this invention.
Chemical warfare agents (sometimes abbreviated "CWA") as appearing in the specification and claims is intended to include a very broad range of substances from poison gases, incendiary materials, and biological microorganisms employed to disable personnel, as well as pesticides, herbicides, and similar substances which can be employed to interfere with the growth of plants, insects, and other non-mammalian species. CWA is intended to also include agents which are effective in relatively small dosages to substantially disable or kill mammals within a relatively short time period. They may also include agricultural chemicals used primarily to control plants, Hexapoda, Arachnida, and certain fungi. Furthermore, for purposes of this invention, the expression "chemical warfare agent" also is intended to include those replicating microorganisms commonly known as biological warfare agents, including viruses, such as equine encephalomyelitis; bacteria, such as those which cause plague, anthrax and tularemia; and fungi, such as coccidioidomycosis; as well as toxic products expressed by such, microorganisms; for example, the botulism toxin expressed by the common Clostridium botulinum bacterium. Also included in the expression "chemical warfare agent," as it is used herein, are those naturally occurring poisons, such as capisin (an extract of cayenne pepper and paprika) , ricin (a toxic substance found in the castor bean) , saxitoxin (a toxic substance secreted by certain shellfish) , cyanide salts, strychnine (a plant-derived alkaloid) , and the like.
Above all, it is to be understood, the expression "chemical war are agent" encompasses a series of "poison gases" which appeared on battlefields in the World War I era. These substances are primarily gases near room temperature and include cyanogen chloride, hydrogen cyanide, phosgene and chlorine. CWA is also intended to encompass those primarily liquid substances, including vesicants which were first used in World War I, and refinements, such as the nerve agents which have appeared on the scene more recently. CWA includes substantially pure chemical compounds, but also contemplates mixtures of the aforesaid agents in any proportions, as well as those agents in impure states in which the other components in the mixture are not simply other CWA's. "Chemical warfare agents," as used herein, also includes partially or completely degraded CWA's, e.g., the gelled, polymerized, or otherwise partially or totally decomposed chemical warfare agents commonly found to be present in old munitions.
As pointed out above, this invention is applicable to the treatment of weapons containing a wide range of CWA's. The method is especially effective when the CWA is selected from the group consisting of vesicants, nerve agents, and mixtures thereof, the formula of the vesicants contains at least one group of the formula:
H
1
(I) -c-x
in which X is halogen.
The nerve agents are represented by the formula: o
Figure imgf000025_0001
in which Rx is alkyl, R2 s selected from alkyl and amino, and Y is a leaving group.
In the vesicants it is preferred that X in the aforesaid formula (I) be selected from fluorine, chlorine and bromine. In the vesicants most commonly found around the world, x is chlorine, and it is especially preferred that X in formula (I) be chlorine for that reason. Two of the most widely available, and thus important vesicants to which the processes of this invention are applicable are mustard gas, also called "HD," or l,l'-thiobis[2- chlo oethane) , or di(2-chloroethyl) sulfide and "Lewisite" or dichloro(2-chlorovinyl) arsine.
Both of these chemical warfare agents were employed in World War I. Munitions constructed in that era, about 75 years ago, containing these CWA's are still to be found in the field, old warehouses, and so forth. At least in the case of some of the munitions containing HD mustard, some, most, or all of the HD has deteriorated into a gel or crusty polymerized material of undefined structure and composition. It has been found, quite unexpectedly, that the demilitarization processes of this invention are effective in munitions not only containing HD, but also the gelled and crusty products of HD degradation, termed "HD heel."
In the nerve agents of formula (II) to which the process of this invention can be applied, Y is a leaving group; that is, Y is an atomic grouping which is energetically stable as an anion, the more preferred leaving groups being those which are most readily displaced from carbon in nucleophilic substitutions and, as anions, have the greatest stability. Although a host of such leaving groups are well known, it is preferred that the leaving group Y be selected from halogen, nitrile (-CN) , and sulfide (-S-) , since these are the groups Y, present in the nerve agents distributed most widely throughout the world. Among the halogens, it is most preferred that Y be fluorine, chlorine or bromine, fluorine being especially ubiquitous in the most readily available nerve agents. Rt in formula (II) can be alkyl, preferably lower alkyl, i.e., Cj-Cg, straight chain or branched or cyclic, e.g., methyl, ethyl, propyl, iso-propyl, iso-butyl, tert-butyl, cyclohexyl, or trimethylpropyl. x in the most widely distributed nerve agents is methyl, ethyl or 1,2, 2-trimethylpropyl and so these alkyl groups are preferred for that reason.
R2 in formula (II) can be alkyl or amino. in the case that R2 is alkyl, it is preferred that alkyl be as defined above for Rl f alkyl R2 in the most widely distributed nerve agents being methyl, the most preferred alkyl R2 being methyl for that reason. In the case that R2 is amino, R 2 can be primary, secondary or tertiary alkylamino, or dialkylamino, or trialkylamino, alkyl being as defined above for Rlf dialkylamino being preferred, with dimethylamino being especially preferred for the reason that R2 is dimethylamino in the most widely distributed nerve agent in which R2 is amino.
Specific representative nerve agents which are widely distributed around the world, and hence are among the most important nerve agents to which the processes of this invention can be applied, are: "Tabun," or "GA," or dimethylphosphoramidocyanidic acid, or ethyl N,N-dimethyl phosphoroamidocyanidate; "Sarin," or "GB," or methylphosphono-fluoridic acid 1-methyl ethyl ester, or isopropyl methyl phosphonofluoridate; "So an," or "GD," or methylphosphono-fluoric acid 1,2,2-trimethylpropyl ester, or pinacolyl methyl phosphonofluoridate; and "VX," or ethylphosphonothioic acid S-[2-[bis(l-methyl ethyl) amino] ethyl] ethyl ester, or ethyl S-2-diisopropyl aminoethyl methyl- phosphorothioate. In January 1993, representatives from more than 130 nations signed the final draft of the Chemical Weapons Convention, which outlaws the production, use, sale, and stockpiling of all chemical weapons and their means of delivery, calling for the destruction of existing stocks by the year 2005. About sixty of the signatory nations have ratified the treaty. " In 1993, some 20 nations were suspected of possessing chemical arsenals or having the means to ak≤ them.
An estimated 25,000 tons of CWA's in the United States and 50,000 tons of CWA's in the former Soviet Union, contained in bulk storage vessels, metal barrels, canisters, rockets, land mines, mortar and artillery shells, cartridge-3, and missiles, must be destroyed if the 1993 Convention is to be carried out. The costs for carrying out demilitarization have been estimated at US$ 8 billion and US$ 10 billion, respectively, for the United States and the former Soviet Union alone. The methods of this invention are intended for use in treating CWA in all formats, including those contained by such "target substrates" as bulk storage vessels, metal barrels, canisters, rockets, land mines, mortar, artillery shells, cartridges, missiles, and so on.
The invention disclosed and claimed herein also addresses the problem of providing a method for demilitarization of the energetic materials incorporated into the explosives and/or propellants used as delivery means for the CWAs. It was found that the methods disclosed can be used to access and remove CWA's can also be employed to access and remove the EM's contained in the delivery means which accompany the CWA's. This greatly simplifies the demilitarization of the complete package of hazardous substances accompanying and including the CWA's, but also provides an attractive method for demilitarizing EM's outside the CWA context as well. This would include, for example, the access and removal of unwanted reserves of containerized chemical warfare agents alone, or which might also contain energetic materials. An example of this combination would be the U.S. Army's M55 rocket, a chemical warfare weapon. The "M28" propellant in the M55 rocket is known to comprise a mixture of nitrocellulose, trinitroglycerin, binders and stabilizers. The burster charge, which disperses the nerve agent upon rocket impact is an explosive mixture comprising trinitrotoluene (TNT) and cyclo ethylenetrinitramine (RDX) , or otherwise known as "Composition B." Accordingly, the invention herein described also includes the demilitarization of such weapons wherein it is desirable to access the interior and remove the hazardous contents. This includes the step of accessing the interior of the closed encasement holding the hazardous chemical substances by efficiently sectioning the casing by means of the high pressure ammoniajet or abrasive ammoniajet as a preliminary step in accordance with the methods described in detail herein. This preliminary step is then followed by employing the same high pressure jet stream for dissolving or dispersing the hazardous materials in the opened casing.
The ammoniajet cutting system used in practicing this invention may be comprised of any standard 50 hp, 40,000 psi (nominal) commercial waterjet system capable of delivering about 4.0 liters/minute of anhydrous ammonia at rated pressures. However, because ammonia will attack copper, brass and zinc components all metal alloys comprising such metals should be removed from the system, and replaced with stainless steel components. In addition, the elastomeric seals and gasketing materials of the system pumps should be replaced with neoprene or other anhydrous ammonia resistant materials. In the United States, the major producers of high pressure water and abrasive jet cutting systems are Flow International, Inc., Kent, Washington; Ingersoll- Rand Corp., Far ington Hills, Michigan and Jet-Edge, Inc., Golden Valley, Minnesota. Any of their high pressure water and abrasive jet cutting systems are suitable for modification in accordance with above guidelines. For example, the O-rings in the piston seals should be replaced with neoprene O-rings, and the bronze bushings and guides replaced with ASI 304 stainless steel in the Cougar™ or 25X™ water intensifiers from Flow International, Inc. When plumbing the system, only high quality tubing and valves should be used, such as those available from Harwood Engineering, Walpole, MA; High Pressure Equipment of Erie, PA and Autoclave Engineers of Erie, PA. The tubing should be autofrettaged to about three times the working pressure for safety and hydrostated. The rating on the tubing and valves should exceed the maximum pressure that the pumps can achieve irrespective of no plans to operate them at maximum pressure. Typical ratings for such valves and tubing are 30,000 psi, 60,000 psi or 100,000 psi. The system should be equipped with an approved safety relief valve or burst diaphragm to protect the system in the event of an accidental overpressure.
Anhydrous liquid ammonia can be used alone as the cutting fluid, i.e., "ammoniajet." Alternatively, anhydrous liquid ammonia-abrasive composition, i.e., "abrasive ammoniajet" can be used as a mixture wherein the ammonia is the carrier for an abrasive. "Anhydrous ammonia" or 'anhydrous liquid ammonia" as used herein is intended to have its ordinary understood meaning, NH3, preferably not less than a commercial grade material comprising at least about 99.5 percent ammonia. Refrigerant grade material comprising at least about 99.7 percent ammonia is most preferred. t will be understood, however, that some deviations from commercial and refrigerant grade anhydrous ammonia are permissible in accordance with practices of this invention, especially with recycled ammonia from the ammonia recovery system which may contain modestly higher levels of moisture from prior usage. In each instance, however, the anhydrous liquid ammonia should be as clean and uncontaminated as possible. Preferably, fluids should be filtered down to 5 microns by either reverse osmosis or mechanical filters, of conventional design- Newly installed systems should run their pumps for several hours with the fluidjet orifices removed to flush out any debris which may have entered the tubing or system during assembly.
The orifice of the cutting head is also an important component of the fluid cutting system. The useful orifices are adapted from precision watch jewels and are typically manufactured from synthetic sapphire, synthetic ruby or diamond. Jeweled orifices are available in sizes ranging from 0.001 inches up to about 0.050 inches. The size of the jewel is dependent on the horsepower of the pump and the pressure the system can operate at. Fig. 1 illustrates the horsepower requirements for the ammoniajet cutting system operating at the approximate pressure of 50 kpsi, a preferred operating range for this invention. As a general rule of thumb, to maintain a 50,000 psi pressure at the orifice of the cutting head, 250,000 hp/in2 of orifice area is needed. It will be observed that a 25 hp pump can run one 0.011 inch or smaller orifice at 50,000 psi. The area of a 0.011 inch orifice is about 0.00009 in2. With a 50 hp pump, one cannot double the diameter of the orifice and maintain pressure. One can only double the area of the orifice. This would result in a 0.016 in. orifice. For purposes of this invention, one would not go above about 50 hp/orifice since the orifices are not that strong as to be able to withstand very high flow rates without excessive erosion or chipping of the orifice. Optimally, more effective cutting can be performed by using multiple orifices, and taking several cuts rather than having one larger orifice doing all the cutting. The general formula for calculating orifice size is:
Figure imgf000033_0001
wherein is mass flow rate; p is fluid density; A, is the orifice area and VJec cutting jet velocity in meters/seconds.
The fluidjet machining system employed in the cutting and washing steps of the methods of the invention discharges at high prεssu a anhydrous ammonia, as previously discussed. As it passes through the orifice the pressure of the fluid is transformed into velocity. Since the mass of the fluid is constant, the velocity increases the fluidjet* s kinetic energy dramatically according to the equation
Kβ = l/2m*v2 where k,, is kinetic energy; m is the fluid mass and v is fluid velocity. In the case of an ammoniajet, the kinetic energy is utilized to directly erode the target substrate, or in the case of abrasive-ammoniajet accelerate the particles of abrasive to abrade and erode the target. Thus, the velocity the fluidjet can reach is based on the formula:
Figure imgf000033_0002
where VJtt = jet velocity in meters/second; p is fluid pressure in kilopascals and p is fluid density in gm/cm3. A major advantage of the invention is based on this inventor's discovery that anhydrous ammonia enables one to achieve up to a 25 percent improvement in cutting efficiency over water used under the same operating conditions. This means higher cutting speeds for minimizing cost per unit treated, which translates to significantly improved economics. To achieve this objective, concentrating the highest amount of kinetic energy on the work piece at the highest fluid pressure possible is necessary. While not wishing to be held to any specific mechanism for achieving this substantial improvement in cutting efficiency, it is nevertheless thought to be due to the density of ammonia which is about 25% less than water at the operating conditions of this invention. As pointed out above, the velocity of a cutting jet according to the equation (Vjet) , is directly influenced by fluid density. Advantageously, with anhydrous liquid ammonia this enables forming a cutting jet which is approximately 25% faster than that of water. Hence, the particles of the cutting jet of this invention are thought to possess increased kinetic energy and enhanced cutting ability over water because they are accαlerated at significantly greater velocities.
As previously stated, the pressure of the cutting fluid is an important parameter because pressure has a direct relationship to fluid velocity and for every target material there is a minimum impact velocity required to cut the material in a reasonable time interval. Generally, the fluidjet pressure, i.e., pump pressure of the fluidjet upstream to the orifice of the cutting head should be sufficiently greater than the yield strength of the target substrate being cut in order to complete the cutting process within a shortest time interval, but preferably not in excess of those operating pressures which otherwise are likely to substantially increase the potential for fluidjet cutting equipment failure or substantially shorten equipment life expectancy. The pressures employed are greater than those utilized by Melvin et al (I) and (II) which are intended for eroding, or alternatively, fracturing solid chemical propellants in rocket motor casings for removal and recovery. Melvin et al (I) and (II) are concerned with treating frangible materials which are subject to erosion or which can be fractured into smaller particles. Accordingly, the present invention utilizes pressures which are sufficient to penetrate and/or cut solid containments, such as steel containments or casings for accessing interior chamber(s) or compartment (s) , such as rocket motor casings, or other containments as previously discussed.
More specifically, the anhydrous ammonia of the ammoniajet (without abrasive) can be in the range from about 30,000 psi to as high as 150,000 psi, but more preferably, from about 40,000 to below about 100,000 psi. However, with most state of the art commercially available waterjet cutting machines, when operating at pressures above 60,000 psi for cutting materials having yield strengths of at least 20,000 psi, it is preferred that an abrasive ammoniajet cutting fluid mixture be used rather than ammonia without abrasive. Operating pressures in excess of 60,000 psi can cause premature wear on pump systems and other components of fluidjet cutting devices, which in turn can lower reliability factors, cause premature equipment failure, and result in costly down time. In such instances, it has been found that abrasive ammoniajet cutting is preferred over an ammoniajet. Abrasive ammoniajet cutting fluid allows lower operating pressures than ammonia alone. Generally, abrasive ammoniajet cutting can be performed at operating pressures in a range of between about 20,000 and 75,000 psi, and efficiently cut metals having high yield strengths. More preferably, abrasive ammoniajet cutting is performed in the range of between about 20,000 and about 60,000 psi for most metallic targets. Thus, when fluidjet cutting, for example, an aluminum target having a yield strength of 20,000 psi, it is more efficient to employ an abrasive ammoniajet in place of anhydrous ammonia alone. Otherwise, to cut aluminum efficiently with anhydrous ammonia alone the minimum recommended pressure for high efficiency cutting is 60,000 psi. However, with abrasive ammoniajet the operating pressure can be reduced to as low as 20,000 psi and still achieve an efficient cutting rate. This concept can be aptly demonstrated from the following table which illustrates substrates with various yield strengths, and cutting fluid pressure options for efficient cutting rates: ABRASIVE AMMONIAJET APPLICATION
Material Yield Ammonia Ammonia Abrasive Abrasive
Strength Jet Min. Jet Opt Ammonia Ammonia
0»i) Pressure Pressure Jet Min. Jet Opt Pressure Pressure
Lead 500 1500 20- 75 ksi 1 ksi 20-75 ksi Tin 1000 3000 20- 75ksi 1 ksi 20 -75 ksi Plastic 1000 3000 20- 75 ksi lksi 20-75 ksi Zinc 1500 4500 20- 75 fan lksi 20- 75 ksi Aluminum 20000 60000 75- 150 si lksi 20-75 ksi Magnsium 25000 7S000 100- 150 ksi lksi 20 -75 ksi -Moncl 40000 120000 150 + ksi l si 20-75 ksi Nickl 50000 150000 150 + i lksi 20-75 ksi
Steel, 65000 lksi 20 - 75 ksi Stainless
Steel, alloy 100000 si 20 - 7S ksi
TNT 20- 75 bi
RDX 20- 75 ksi
Tetiyl 20- 75 ksi
HMX 20- 75 ksi
Glass lksi 20 -75 ksi
Wood 12000 20- 75 ksi lksi 20-75 ksi
Based on the above table it is apparent the ammoniajet is capable of directly cutting many low yield-strength materials without the use of abrasives. To assure efficient cutting rates of harder materials having higher yield strengths abrasive ammoniajet cutting is usually preferred. Generally, the abrasive ammoniajet comprises a mixture of abrasives commonly employed in high pressure waterjet cutting, but dispersed in the anhydrous liquid ammonia. Practically any abrasive can be used which is soft enough to minimize wear on components, sufficiently friable to readily form new cutting edges, economical in cost, and graded with sufficient accuracy to prevent plugging the fluidjet cutting system with particles which are either too large or small. Typically, the coarser the abrasive, the faster and more aggressive the cutting action. For most cutting applications with a surface finish of about 125 micro inches, an 80 mesh abrasive may be used. For finer finishes, an abrasive down to 1000 mesh can be employed. A preferred range of abrasive sizes for most ammoniajet cutting applications is generally from about 80 mesh to about 150 mesh.
Larger mesh abrasives may be used, but in some instances the focusing tube may become plugged with such larger size particles.
The mass of abrasive used in ammoniajet cutting has a nonlinear effect on cutting speed of the jet. Too little of the abrasive material in the ammoniajet prevents the jet from making adequate cutting grains on the target surface. Too much abrasive causes the mixing tube to become overloaded whereby cutting efficiency falls off rapidly. As a general rule, abrasive mass flow rate used is 85 percent of the maximum cutting quantity. More specifically, the abrasive is used at the rate of about one pound per gallon of liquid ammonia typically at a pressure of 50,000 psi. This provides a highly efficient cutting rate for most metallic substrates. This is about a 13 percent on a mass ratio to the ammonia to provide economical operation. Maximum cutting rates can be achieved with additional abrasive in the 17 to 20 percent range. With more than 20 percent on mass ratio to ammonia, cutting efficiency diminishes rapidly as the system becomes clogged on the excess abrasive material in the focusing tube.
Al ondine garnet having a Knoop hardness of 1350 is the abrasive of choice for many abrasive ammoniajet cutting operations. It has been found that garnet abrasive of 100 mesh particle size is efficient and economical for cutting various metals, such as titanium, steel and aluminum. As a general rule, the abrasive grains should be harder than the target materials. Materials like steel shot, for example, may be used to cut steel, but at a speed penalty. Steel shot can still be used efficiently to cut steel if the shot is hardened by quenching from a high heat (known as chilled shot) , and is capable of performing just as a hardened steel file can cut most steels. Glass and silica (silicon dioxide or quartz) are substantially harder than steels, so they can be readily used to cut steels or materials that are softer than steels, e.g., brasses, bronzes, copper, aluminum, nickel, lithium, sodium, potassium, calcium, magnesium, wrought iron, cast iron, uranium, graphite, composites, plastics, marble, limestone, common ceramics, zirconium, and so on. Glass can be cut with silica abrasive, but not with softer abrasives. With softer abrasives there are corresponding slower cutting speeds compared to garnet; higher material costs and potential health consequences. Silica, for example, is low in cost, but is a U.S. Government regulated material (OSHA: Occupational Safety and Health Administration) because of its potential for causing silicosis among workers exposed to fine silica dusts. On the other hand, steel shot, is safe to use, but is substantially more costly than garnet, and has a slower cutting speed.
Abrasive ammoniajet cutting procedures according to this invention may employ either of two delivery methods commonly used in the high pressure abrasive jet cutting art: (i) cutting wherein the anhydrous ammonia passing through the cutting head entrains abrasive particles by aspiration and mixes them by mechanical action into a high-velocity stream of anhydrous ammonia inside a focusing tube for discharge onto the work piece. Alternatively, (ii) a mixture of anhydrous ammonia and abrasive particulates is premixed into a slurry which is then pressurized and forced through a discharge nozzle onto the work piece. While slurry jets (ii) are potentially more efficient than entrained abrasive cutting (i) current abrasive jet cutting equipment has been found not fully capable of operating at pressure levels as high as those operating with entrained abrasive. Consequently, ammoniajet cutting with entrained abrasives provides greater scope in operating versatility, and therefore, is somewhat more preferred. This invention contemplates applications where the downstream presence of abrasives may be detrimental. Under such circumstances, separation means including filtration methods, or alternative abrasives, e.g., chilled steel or ferromagnetic abrasives are employed to enable magnetic separation from the liquid. Methods of the invention and how they may be practiced can be best demonstrated by reference to the drawings wherein Fig. 2 illustrates a closed protective chamber 10 which is a sealed enclosure either a protective hood or other suitable housing for ammonia jet cutting assembly 12 and work piece 14. in this instance, work piece 14 may be a closed high explosive projectile, e.g., M55 rocket consisting of aluminum and steel casing sections with wall thicknesses varying from 0.125 to 0.375 inches, containing an energetic material 16, the objective being demilitarization of the projectile by accessing the interior of the closed steel casing for extraction and recycling energetic material 16. Protective chamber 10 should be capable of safely operating at a minimum of 250 psig, and be constructed to ASME pressure vessel codes (Section VIII Boiler and Pressure Vessel Standards by the American Society of Mechanical Engineers, NY, NY). Chamber 10 should be fitted with pressure release safety valves (not shown) capable of protecting the chamber in the event of a pressure excursion. The closed explosive projectile 14 can be secured in chamber 10, for example, by fitting with a drive collar (not shown) to the aft end of the rocket and the unit loaded tail end first into the chamber. Advantageously, projectile 14 is secured to motorized rotating means for rotation during cutting and washout phases. Once the projectile is mounted and the chamber 10 closed the integrity of the seals is tested using nitrogen gas to 100 psig to verify gas pressure tightness.
The cutting head of the ammoniajet system is preferably electrically bonded (not shown) to a wall of the protective chamber to prevent the generation of static electricity. Ammoniajet cutter assembly 12 includes a spray containment shield and suction pickup 18 for collecting and transporting discharged slurry or solution of ammonia and energetics from the interior of the projectile to other work station(s) 20 for further processing, e.g., ammonia evaporation,, and recovery station for recompression of the ammonia and recycling the energetic material. Shield 18 may also include means for sealing ammoniajet cutter assembly 12 to the exterior surface of projectile 14 by means of an elastomeric seal or boot (not shown) . Such a sealed shield and suction pickup when used can prevent the escape of fugitive ammonia fumes into the work area, and possibly eliminate the need for protective chamber 10.
Preferably, ammoniajet cutting assembly 12 and its ammoniajet stream 22 are positioned relative to work piece 14 as to optimize efficient utilization cf the energy forces from the high velocity stream to penetrate or cut/sever the outer casing and then erode, fracture and dissolve any solid or composite substances, e.g., energetics, adhering to the interior surfaces of the work piece. Likewise, the ammoniajet stream is preferably positioned to generate turbulent forces 24 in the interior compartment causing rapid circulation of the liquid ammonia to facilitate the rate of contact of fresh incoming ammonia for dissolution of all solids. Similarly, the incoming ammoniajet also provides the energy for pressurizing the circulating liquid in the casing for rapid discharge of interior contents for collection by pickup 18 for further processing. Thus, in the case of a generally cylindrically shaped projectile 14 ammoniajet stream 22 should be positioned off center of the central axis of the projectile, so the jet stream enters the interior of the casing towards the sidewall more tangentially than centrally. From this representative example, it will be readily apparent to those skilled in the art how to position the cutting head of the ammoniajet on targets having diverse geometrical configurations for optimizing the washout rate. Fig. 3 illustrates the impingement of high pressure ammoniajet 22 at the surface of the steel casing of projectile 14 during the cutting phase. Jet stream 22 is shown having diameter (d) eroding the surface of the casing. However, the cutting action of ammoniajet produces a kerf 26 which is disproportionate to the diameter (d) of jet stream 22 due to a "mushrooming" effect of the particles of liquefied ammonia impacting the surface under extreme pressure and velocity. Advantageously, the ammoniajet produces a broaden kerf, and ultimately a breakthrough orifice in the outer casing of the projectile or other work piece for washout which is approximately 3 to about 5 times (3-5d) the diameter (d) of jet stream 22.
Fig. 4 shows continuous operation of the high pressure ammoniajet stream 22 after completion of the cutting phase wherein ammoniajet 22 continues to operate substantially as it did during the cutting phase, except that the liquid ammonia enters the interior of the work piece. The energy of the jet stream operates to erode the chemical contents under turbulent conditions mixing and slurrying the contents, dissolving the contents to the extent of their solubility in ammonia. However, because the diameter of orifice 28 is about 3 to about 5 times that of ammoniajet stream 22 entering the orifice, the present invention contemplates utilizing simultaneously the same orifice 28 as both entry port and exit port for delivering fresh ammonia as high pressure jet stream 22, and discharging the slurried contents also through orifice 28 coaxially to the incoming ammoniajet. This means greater production efficiencies in view of penetrating the casing and washing the contents therefrom being performed through a single cutting to produce only one port. This avoids the need for making separate cuts, one as the ammonia inlet port and a second as the slurry outlet port.
While Figs. 2-4 dwell upon cutting a single access port into the casing of a munition, for example, it is to be understood the invention contemplates alternative cutting strategies Inter alia multiple ports, e.g., inlet and outlet ports, as well as sectioning the entire casing with one or more cross or transverse cuts and/or longitudinal or ripping cuts for salvaging rocket motors, for instance.
The ammonia should be maintained in a liquid state during the cutting and washing phases. If, however, the ammonia is allowed to undergo a phase change to a gaseous state it will become less effective in both the cutting and washing phases, previously discussed. Handling systems for anhydrous liquid ammonia, comprising storage and supply capabilities, recovery, treatment and recompression for recycling, including means for monitoring and regulating pressures and temperatures are well known in the art. One representative example is disclosed by U.S. Pat. 4,854,982 (Melvin et al) which employs an ammonia handling system in connection with the demilitarization of open rocket motors. While Melvin et al are not concerned with the problem of accessing the interiors of sealed rocket motors, or high pressure fluidjet cutting as a preliminary step to demilitarization, they do disclose supply systems for anhydrous ammonia, means for extracting a chemical from open rocket motors utilizing pressurized spraying of anhydrous ammonia as the solvating medium, means for recovering chemicals from liquid ammonia, and a system for ammonia recovery. Generally, the supply and high pressure ammonia spray system comprises a liquid ammonia supply vessel, means for monitoring liquid ammonia reserves, and various accessories, e.g., in-line filter and pump for the anhydrous ammonia, flow meter, flow totalizer, back pressure regulator, preheater, check valves, pressure gauges, and so on. The system for recovering extracted oxidizer from the liquid ammonia comprises first a filtration chamber for initially separating insoluble components from the liquid ammonia-containing washings exiting the treated casings. The amraonia-oxidizer filtrate is received in an expansion vessel where it undergoes pressure reduction and conversion of the liquid ammonia to a gaseous phase whereupon the dissolved oxidizer automatically precipitates out as a solid material. The gaseous ammonia is then treated in an ammonia recovery station (ARS) where it is dried in an appropriate column to remove any residual moisture and filtered. The anhydrous gaseous ammonia is then reco pressed in an appropriate ammonia recompression pump and returned to the supply tank for reuse. More specific details of the disclosures of U.S. Pat. 4,854,982 are hereby incorporated-by- reference herein, and made part of this disclosure. The embodiments of the invention discussed above in connection with steps i-v have been described as they relate principally to high pressure ammoniajet cutting as an improved, more efficient, safer alternative, especially in cutting hazardous target substrates; and secondly, as a continuous, uninterrupted process in opening closed target substrates and washing hazardous substances fr~r containments for further treatment, such as reclaiming the contents. The present invention, however, also contemplates embodiments which include the steps of cutting closed containments using high pressure ammoniajet stream, with or without added abrasives, in tandem with the uninterrupted introduction of anhydrous ammonia into the containment for reacting with hazardous substances therein. For example, the ammonia may form a reaction mixture with a munition containing an energetic material, such as nitroglycerin. The munition may be demilitarized through a base catalyzed reaction, or some other mechanism in which the nitroglycerin is converted to a less hazardous substance. Liquid ammonia has also been used to extract, recover and/or chemically degrade the so class 1.1 propellants containing nitramine oxidizers HMX and/or RDX. This is disclosed for example in U.S. pat. 5,284,995, the contents of which are incorporated herein by reference. While the invention has- been described in conjunction with various embodiments, they are illustrative only. Accordingly, many alternatives, modifications and variations will be apparent to persons skilled in the art in light of the foregoing detailed description, and it is therefore intended to embrace all such alternatives and variations as to fall within the spirit and broad scope of the appended claims.

Claims

I CLAIM:
1. A method for cutting structural shapes which comprises the steps of:
(i) providing a system suitable for impinging a high pressure jet of a liquid from a cutting head onto a target substrate having an interior compartment at sufficient velocity to penetrate or cut the substrate;
(ii) positioning in a work area the target substrate adjacent to the cutting head of the system; (iii) shielding the target substrate and cutting head from the work area, and
(iv) impinging a high pressure jet comprising anhydrous liquid ammonia against the target substrate to penetrate and/or cut the substrate for accessing the interior compartment.
2. A method for accessing contents of a target substrate, which comprises the steps:
(i) providing a system suitable for impinging a high pressure jet of a liquid from a cutting head onto target substrate comprising a containment holding a hazardous substance, said high pressure jet operating at sufficient velocity to penetrate or cut said said containment;
(ii) positioning in a work area the target substrate adjacent to the cutting head of said system;
(iii) shielding said target substrate and cutting head from the work area;
(iv) impinging a high pressure jet comprising anhydrous liquid ammonia against said target substrate to penetrate and/or cut an opening in said containment, and
(v) impinging a high pressure jet of anhydrous ammonia from said cutting head at sufficient velocity through said opening in said containment to form a dispersion or solution of said hazardous substance in said containment for removal therefrom.
PCT/US1999/009066 1998-04-27 1999-04-27 Ammonia fluidjet cutting processes WO1999058202A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EA200000429A EA200000429A1 (en) 1998-04-27 1999-04-24 METHOD FOR CUTTING LIQUID AMMONIA JETS
AU57697/99A AU5769799A (en) 1998-04-27 1999-04-27 Ammonia fluidjet cutting processes
EP99944988A EP1034013A2 (en) 1998-04-27 1999-04-27 Ammonia fluidjet cutting processes
IL13574699A IL135746A0 (en) 1998-04-27 1999-04-27 Ammonia fluidjet cutting processes
CA002307722A CA2307722A1 (en) 1998-04-27 1999-04-27 Ammonia fluidjet cutting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6669098A 1998-04-27 1998-04-27
US09/066,690 1998-04-27

Publications (2)

Publication Number Publication Date
WO1999058202A2 true WO1999058202A2 (en) 1999-11-18
WO1999058202A3 WO1999058202A3 (en) 1999-12-29

Family

ID=22071068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/009066 WO1999058202A2 (en) 1998-04-27 1999-04-27 Ammonia fluidjet cutting processes

Country Status (6)

Country Link
EP (1) EP1034013A2 (en)
AU (1) AU5769799A (en)
CA (1) CA2307722A1 (en)
EA (1) EA200000429A1 (en)
IL (1) IL135746A0 (en)
WO (1) WO1999058202A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935274A (en) * 2012-11-16 2013-02-20 青岛科而泰环境控制技术有限公司 Liquid projection bomb, projecting device and delivery method thereof
RU2712875C1 (en) * 2019-05-28 2020-01-31 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Cutting method of ammunition body from corrosion-resistant steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284995A (en) * 1993-03-08 1994-02-08 The United States Of America As Represented By The Secretary Of The Army Method to extract and recover nitramine oxidizers from solid propellants using liquid ammonia
US5516970A (en) * 1991-08-30 1996-05-14 Global Environmental Solutions, Inc. Process and apparatus for photolytic degradation of explosives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516970A (en) * 1991-08-30 1996-05-14 Global Environmental Solutions, Inc. Process and apparatus for photolytic degradation of explosives
US5284995A (en) * 1993-03-08 1994-02-08 The United States Of America As Represented By The Secretary Of The Army Method to extract and recover nitramine oxidizers from solid propellants using liquid ammonia

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935274A (en) * 2012-11-16 2013-02-20 青岛科而泰环境控制技术有限公司 Liquid projection bomb, projecting device and delivery method thereof
US9795814B2 (en) 2012-11-16 2017-10-24 Qingdao Create Environment Control Technology Co., Ltd. Liquid projection bomb, projecting device and delivery method therefor
RU2712875C1 (en) * 2019-05-28 2020-01-31 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Cutting method of ammunition body from corrosion-resistant steel

Also Published As

Publication number Publication date
IL135746A0 (en) 2001-05-20
EA200000429A1 (en) 2000-12-25
CA2307722A1 (en) 1999-11-18
WO1999058202A3 (en) 1999-12-29
AU5769799A (en) 1999-11-29
EP1034013A2 (en) 2000-09-13

Similar Documents

Publication Publication Date Title
Akhavan The chemistry of explosives 4E
US6080907A (en) Ammonia fluidjet cutting in demilitarization processes using solvated electrons
US5524545A (en) Process and apparatus for photolytic degradation of explosives
US4909868A (en) Extraction and recovery of plasticizers from solid propellants and munitions
RU2195987C2 (en) Method of destroying energy-bearing materials
US5737709A (en) High pressure washout of explosives agents
US5284995A (en) Method to extract and recover nitramine oxidizers from solid propellants using liquid ammonia
US4854982A (en) Method to dimilitarize extract, and recover ammonium perchlorate from composite propellants using liquid ammonia
CN100334417C (en) Method and installation for destroying rocket mounted on ammunition
US20210364267A1 (en) Munitions and Ordnance Remediation Blanket (MORB) and Methods of Using Same
US8585840B2 (en) Recovery of the energetic component from plastic bonded explosives
EP0991612A1 (en) Munitions treatment by acid digestion
US7225716B1 (en) Process for removing the fuze from explosive projectiles using fluid jet technology
EP1034013A2 (en) Ammonia fluidjet cutting processes
US20060070690A1 (en) Recovery of the energetic component from plastic bonded explosives
USRE34419E (en) Method to demilitarize, extract, and recover ammonium perchlorate from composite propellants using liquid ammonia
Czajka et al. High energy materials (HEMs)–innovations with regard to the environment
US6118039A (en) Method for digesting a nitro-bearing explosive compound
Burch et al. Value added products from reclamation of military munitions
Wulfman et al. Reformulation of solid propellants and high explosives: an environmentally benign means of demilitarizing explosive ordnance
Poulin et al. Literature Review on Demilitarization of Munitions: Document Prepared for the RIGHTTRAC Technology Demonstration Project
Shyman et al. Disposal and destruction processes of ammunition, missiless and explosives, which constitute danger when storing
Boileau et al. Explosives
RU2712875C1 (en) Cutting method of ammunition body from corrosion-resistant steel
Đurić et al. Overview, analysis and research of the possibilities of application of new technologies in the process of demilitarization of the explosive ordnance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 135746

Country of ref document: IL

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999944988

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2307722

Country of ref document: CA

Ref document number: 2307722

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200000429

Country of ref document: EA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999944988

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999944988

Country of ref document: EP