WO1999057200A1 - Synthetic resin composition, and permeable pavement and permeable material using the same - Google Patents

Synthetic resin composition, and permeable pavement and permeable material using the same Download PDF

Info

Publication number
WO1999057200A1
WO1999057200A1 PCT/JP1999/002354 JP9902354W WO9957200A1 WO 1999057200 A1 WO1999057200 A1 WO 1999057200A1 JP 9902354 W JP9902354 W JP 9902354W WO 9957200 A1 WO9957200 A1 WO 9957200A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
resin composition
liquid
aggregate
liquid synthetic
Prior art date
Application number
PCT/JP1999/002354
Other languages
French (fr)
Japanese (ja)
Inventor
Haruki Kobata
Original Assignee
Haruki Kobata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haruki Kobata filed Critical Haruki Kobata
Publication of WO1999057200A1 publication Critical patent/WO1999057200A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic

Definitions

  • the present invention relates to a synthetic resin composition, and a water-permeable pavement and a water-permeable material using the same.
  • the present invention relates to a synthetic resin composition having an adhesive action.
  • the synthetic resin composition is kneaded with an aggregate and adheres between the aggregates to form a pavement body having water permeability and a drainage function.
  • an adhesive when manufacturing retaining walls and structures, and as a material for enclosing harmful substances such as polychlorinated biphenyl (hereinafter referred to as PCB), and for preventing water leakage It can be used as a paint.
  • PCB polychlorinated biphenyl
  • Aggregate stability is the condition in which aggregates of various sizes, such as pavements, do not move because they are stuck together. This stability of aggregates depends on the strength and durability of the pavement, bricks, blocks, etc.
  • the strength of the adhesive is not the only condition.
  • Aggregate mix in ordinary asphalt pavement mixes not only large and small crushed stones but also large sand (coarse sand), fine sand and stone powder. That is to say, this is called “coarse grain composition of roadway ⁇ dense grain composition”.
  • coarse asphalt pavement on the sidewalk has a diameter of 4 mn! It is an open-grained mixture mainly composed of crushed stones of up to about 8 mm, and is constructed excluding coarse sand, fine sand, and stone powder.
  • the permeable pavement necessary to improve the desertification of the earth and reduce the heat reflection including domestic waste heat, as described above, if only liquid synthetic resin is used as the adhesive, as described above, Due to the point-to-point bonding between the materials, not only is the bonding strength insufficient, but also because the voids between the aggregates are large, earth and sand and dust particles are liable to be clogged there. It was not possible to eliminate the so-called tobbing, in which the aggregate on the lock surface came off. Furthermore, when constructing a sabo dam or retaining wall with a drainage function, simply bonding the aggregate with liquid synthetic resin will cause clogging for the same reason as described above. Not only the soil but also the water stops, and the danger of landslides cannot be wiped out. However, simply increasing the viscosity of the liquid synthetic resin with a thickener does not improve the above-described point-adhesion phenomenon between aggregates in a water-permeable pavement or a water-permeable material.
  • FRP fiber-reinforced plastics
  • An object of the present invention is to produce a water-permeable pavement, a brick, a block, or the like by mixing a liquid synthetic resin with an aggregate as an adhesive as described above, a retaining wall having a drainage function, and other structures.
  • a further object of the present invention is to make the most of the adhesive force of the synthetic resin in the above case, and to be able to use fine particles such as stone powder and fine sand as aggregate. Further, another object of the present invention is to make it possible to securely contain various harmful substances by using a synthetic resin, and to make it possible to produce an FRP having higher strength than before. Disclosure of the invention
  • the synthetic resin composition of the present invention comprises: a liquid synthetic resin; and absorbing the liquid synthetic resin. And a thickening agent and at least one inorganic fiber selected from the group consisting of glass fiber, carbon fiber, and aluminum fiber, and has an adhesive action.
  • a thickening agent and at least one inorganic fiber selected from the group consisting of glass fiber, carbon fiber, and aluminum fiber and has an adhesive action.
  • the rock wool absorb the liquid synthetic resin to a saturated state.
  • the mixing ratio of the inorganic fiber to the liquid synthetic resin is preferably in the range of 1 to 30% by weight, and the mixing ratio of the thickener to the liquid synthetic resin is preferably in the range of 1 to 15% by weight.
  • a curing agent for the liquid synthetic resin to be used may be added to the synthetic resin composition.
  • liquid synthetic resin examples include a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, a urethane resin, and a thermosetting acrylic resin.
  • the thickener examples include isocyanates such as diphenylmethane diisocyanate, powdered cellulose, and calcium carbonate.
  • the synthetic resin composition of the present invention characteristics such as adhesiveness and chemical resistance of the synthetic resin, and characteristics and strength of inorganic fibers such as glass fiber, carbon fiber, or aluminum fiber are more effectively exhibited. Therefore, after absorbing the liquid synthetic resin into rock wool, which is excellent in absorbing power and hard to be dusted, an inorganic fiber such as glass fiber, carbon fiber or aluminum fiber is mixed with the liquid synthetic resin to further stabilize the state. It is preferable to increase the viscosity by adding a thickener in an amount necessary for adjusting the viscosity to the viscosity required for construction or work, in portions, every 5 to 10 minutes.
  • the liquid synthetic resin When the liquid synthetic resin is absorbed by the rock wool, if the liquid synthetic resin is a two-part liquid composed of a main agent and a curing agent, the main agent and the curing agent are mixed and absorbed by the rock wool, or Various methods can be used, such as absorbing the main agent and the curing agent respectively into rock wool and mixing the curing agent after absorbing the main agent into rock wool.
  • the synthetic resin composition of the present invention may contain a curing accelerator. Aggregates are mixed with the synthetic resin composition of the present invention, laid, and rolled to form a water-permeable pavement.
  • the synthetic resin composition is mixed with an aggregate, kneaded, and compression-molded, a water-permeable material can be produced.
  • a molded article can be molded using the synthetic resin composition as described above, and a harmful substance can be enclosed in the molded article.
  • the synthetic resin composition of the present invention is used as a binder for kneading with an aggregate to produce a permeable pavement, a block such as grating, interlocking, brick, and a flat plate block. Alternatively, it can be used to build revetments, sabo dams, pools, retaining walls, and other civil engineering structures.
  • grating originally means a cover of a gutter, but it is also used as a generic term for a protective body applied to the root of a street tree or the like. This dripping is required to have a performance that does not cause clogging, allows only water and air to permeate, and does not allow sediment and dirt to permeate.
  • interlocking means a pavement in which various blocks such as bricks are mainly assembled on a sidewalk or the like, and the blocks themselves were conventionally impermeable materials.
  • the synthetic resin composition of the present invention is used for imparting water permeability to joint portions formed between the water-impermeable blocks, or for producing a water-permeable block itself.
  • the synthetic resin composition of the present invention can be used for solidifying soil contaminated with harmful substances, containing harmful substances such as PCB, and the like.
  • the physical technique that is, the action of the inorganic fiber is used in addition to the advantage of the chemical properties of the liquid synthetic resin, thereby improving the above-mentioned improvement to compensate for many defects in the conventional technology.
  • the synthetic resin stagnates where the aggregates overlap. If a force greater than the adhesive strength of the resin solidified part is applied, it is natural that the resin part is destroyed and the aggregate is peeled off. And, as before, only liquid synthetic resin Then, even if it is thickened with a thickener, after all, the problem of spot adhesion cannot be solved.
  • the strength of the cured product is further improved by absorbing the liquid synthetic resin into rock wool to form a fiber, and further increasing the viscosity thereof.
  • the fibrous synthetic resin also exists in the gaps between the aggregates, and the gaps are further miniaturized, so that the gaps between the aggregates cannot be clogged with earth and sand or dust.
  • the structure allows only water and air to pass through. Adhesion of the aggregate by the synthetic resin composition according to the present invention and its retention force are based on this principle.
  • the synthetic resin composition according to the present invention can be obtained by pursuing what kind of action the asphalt, cement, liquid synthetic resin, and the like, which are adhesives, have when bonding the aggregate to the aggregate. It is a thing.
  • a water-permeable structure using a synthetic resin has a structure in which a liquid synthetic resin that stagnates at a contact portion between the aggregates and adheres by a point action, and the water permeability is inevitably associated with the aggregate. They depended on the voids formed between the aggregates.
  • the evidence is that the drainage holes required for retaining wall blocks actually clog after six months and have no longer served any purpose.
  • there was great expectation for the water permeability of flat plate blocks produced by kneading liquid synthetic resin as an adhesive with aggregate but in reality it is well known that clogging is still a problem. It is.
  • the synthetic resin composition of the present invention is conventionally kneaded with an aggregate such as crushed stone using a liquid synthetic resin as an adhesive, the gap is filled, and uniform kneading is difficult. Fine sand that could not be used as an aggregate of liquid synthetic resin.
  • lightweight aggregates such as waste plastics and ceramics, as well as fine aggregates such as incineration ash and sludge, can be used to manufacture products that go beyond conventional methods. Became possible.
  • because of its high strength and improved toxic substance encapsulation it can play a major role in the most important and indispensable issue of industrial waste disposal of modern society in the containment of toxic substances. .
  • the liquid synthetic resin is used as fibers
  • fine aggregates such as fine sand and stone powder are used as the aggregate, as with the asphalt, not only the rolling operation by the roller 1 but also the press or vibration,
  • it can be formed by hydraulic pressure, perfect strength can be obtained, and fibrous synthetic resin exists in the voids between the aggregates to form ultrafine voids. Therefore, the present invention completely breaks the conventional wisdom that a permeable structure must be a mixture of open-grained aggregates excluding fine sand, stone powder and the like.
  • Construction of a water-permeable and drainage structure using the synthetic resin composition of the present invention can achieve a water-permeability coefficient of 10 to 2 cm, s with a conventional mixture of dense and coarse aggregates.
  • the permeable pavement of the present invention not only the reflection of solar heat acting on the pavement surface can be extremely suppressed, but also the sound of the running tires of automobiles can be controlled by the use of dense particles. It has the effect of lowering by about 5 dB compared to the conventional paved road.
  • asphalt alone cannot maintain the strength, and in recent years construction has been promoted by mixing some liquid synthetic resin into asphalt. However, in this case, clogging due to hot melting of the asphalt is inevitable, although a slight wear reduction effect is recognized.
  • the gaps between the aggregates formed for the purpose of permeation do not make any sense if they are clogged.
  • the flexural strength of a 40 mm thick structure is limited as long as it is a water permeable structure. , 4 3 ⁇ 4 5 kg / cm 2 about the pressure resistance only. Even if the synthetic resin used is the strongest epoxy resin, that is the case.
  • the withstand pressure is 100 kg Z cm. Amazing strength of 2 can be achieved.
  • the FRP using the synthetic resin composition of the present invention is not destroyed even with a hammer. That is, as described above, the synthetic resin composition of the present invention is not only kneaded with the aggregate to form a water-permeable material or a water-permeable pavement, but also becomes a raw material for forming an FRP product.
  • a liquid synthetic resin is applied to glass fibers woven into a cloth, a glass fiber is stuck thereon, and then a synthetic resin is applied, and a glass fiber is stuck from above.
  • the liquid synthetic resin in the present invention also includes a liquid synthetic resin obtained by adding a solvent to a synthetic resin and mixing the resultant.
  • the synthetic resin used in the present invention is mainly a thermosetting resin.
  • a liquid may be used by adding a solvent to the thermoplastic resin.
  • Thermosetting synthetic resins include vinyl ester type, unsaturated polyester type, epoxy type, urethane type and thermosetting acrylic type. These are all cured by reacting with a curing agent. Normally, when a synthetic resin base material and a curing agent are mixed and used as an adhesive, or when aggregates and the like are mixed and used, this is called a two-part synthetic resin.
  • the one-part type cures by causing a chemical reaction when exposed to heat, pressure, light, or air.
  • either a two-part or one-part synthetic resin can be used. If the liquid synthetic resin is mixed with the aggregate and then transported to the construction site, or if the construction takes time, two-part synthetic resin is better than one-part due to the curing time.
  • the one-pack type is more convenient when using up the opened synthetic resin under certain conditions, such as the manufacture of various blocks or the manufacture of FRP molded products.
  • the viscosity of the synthetic resin composition is required to be 200,000 centipoise (hereinafter abbreviated as cps) or more, it is necessary to use a liquid synthetic resin as the main agent, such as epoxy or urethane.
  • a liquid synthetic resin such as epoxy or urethane.
  • the main agent such as epoxy or urethane.
  • the hardener is absorbed by rock wool in the same way as the liquid synthetic resin Let it be fine Use it in a state of thickening and thickening.
  • the amount of the curing agent used is as small as about 1 to 3% by weight, such as a synthetic resin such as a vinyl ester or a polyester resin
  • the curing agent is absorbed into rock wall as described above.
  • the hardening agent may be added and mixed as it is to the synthetic resin base material that has been absorbed into rock wool and fiberized without the need for fiberization and thickening.
  • the synthetic resin composition of the present invention is fiberized. After mixing and kneading the synthetic resin material and the aggregate, a sufficient curing can be achieved even if a curing agent is injected.
  • the reason for this is that by suppressing the sensitive side of the synthetic resin, which is sensitive in character, at the stage of fiberization, the hardener is sufficient for the synthetic resin that is scattered while being kneaded into the aggregate. This is due to the fact that a chemical reaction becomes possible.
  • liquid synthetic resins can be used as the liquid synthetic resin used in the present invention, and depending on the various characteristics of each synthetic resin and the intended use, the settlement due to the liquid state is possible.
  • the disadvantages of the conventional liquid synthetic resin such as the phenomenon and the fact that it can only act on a thin film can be improved.
  • synthetic resins since liquefied synthetic resin has been liquefied, it is impossible to apply the original adhesive strength of the synthetic resin to a thick film in a single operation, and it is impossible to use asphalt at all. Was.
  • synthetic resins have been pointed out as having disadvantages in action and workability, while having the performance as a basic material comparable to cement and asphalt.
  • Synthetic resins with excellent chemical resistance and adhesive strength over a wide area have been continuously investigated on many aspects to improve their action and workability.
  • plastics which were originally conceived to be used only in liquid or powder form
  • the liquid synthetic resin is simply absorbed into rock wool to increase the viscosity, and the liquid which was originally liquid becomes fibrous, which has not been considered conventionally. Adhesive strength and strength were obtained.
  • rock wool is being manufactured by steel companies as an alternative to asbestos, which has already been discontinued in Japan.
  • asbestos production was discontinued because asbestos was fiberized from slag obtained by removing iron from iron ore, which was extremely hard and easily dustable, and could cause lung cancer.
  • rock slag which is made from a mixture of medium-hardness rock and soft rock and melted at a high temperature, is fiberized into slag after removing iron from iron ore. Therefore, rock wool is soft, is less prone to dusting than asbestos, and has excellent absorbency against liquid synthetic resins.
  • the research results of Saitama University that rock wool does not cause lung cancer have been published in newspapers.
  • the amount of the liquid synthetic resin absorbed by the mouth wool will be described. If rock roll is water, it absorbs about 950% by weight based on its own weight. In the case of liquid synthetic resin, the viscosity is higher than that of water, and when rock wool absorbs the liquid synthetic resin to a saturated state, the liquid synthetic resin that is approximately seven times the weight of rock wool is absorbed. In the present invention, the liquid synthetic resin is absorbed into the rock wool to form a fibrous synthetic resin having adhesiveness. The larger the amount of the liquid synthetic resin absorbed by the rock wool, the more preferable, and the saturated amount On the other hand, it is preferable to absorb 80% or more, more preferably 95% or more, and particularly to a saturated state.
  • rock wool absorbs a liquid synthetic resin to form a fiber, and then further forms a resin-coated glass fiber, a carbon fiber reinforced by carbonizing an organic fiber, or a fiber made of aluminum.
  • An inorganic fiber having a reinforcing effect such as a converted aluminum fiber, is entangled with rock wool that has absorbed the liquid synthetic resin, so that resin-coated glass fibers or carbon that cannot normally absorb the liquid synthetic resin.
  • the fibers or aluminum fibers act as if they have absorbed the liquid synthetic resin, and can reinforce the cured product.
  • the rock wool that fully absorbs the liquid synthetic resin originally has a micro size.
  • Rock wool fibers are easily dispersed.
  • the liquid synthetic resin is absorbed by rock wool and becomes fibrous.
  • the rock wool is kneaded so as to be entangled. Thereby, the withstand pressure of the synthetic resin, which is improved by being absorbed by rock wool, is further improved by reinforcing with the inorganic fibers.
  • the glass fiber used in the present invention is a fiber obtained by melting silica stone, which is a raw material of glass, at a high temperature, and has a physical property of a hardness as high as about 7 (Mohs hardness). It is not something that cannot be said to be dusted.
  • glass fibers are widely used as a variety of reinforcing materials, and most of them are produced by coating glass fibers with a synthetic resin and weaving them into a cloth. And its strength is staggering, with the micro-sized fibers being strong enough to lift a few kilograms of goods.
  • the glass fiber coated with the synthetic resin as described above is mixed with the fiberized fiber obtained by further absorbing the synthetic resin into rock wool.
  • the resin is of a type that can be dissolved by the solvent of the liquid synthetic resin absorbed in the rock wool, the effect of reinforcing the fiber by coating the synthetic resin may be spoiled. Therefore, it is preferable to use, as the glass fiber used in the present invention, a glass fiber covered with a synthetic resin that is not dissolved in the solvent of the liquid synthetic resin absorbed in the rock wool. It is preferable to use a resin coated with a synthetic resin of a type different from the main component of the liquid synthetic resin. For example, as a synthetic resin for coating glass fiber, polyester resin is generally used because of its low cost. As the liquid synthetic resin to be absorbed by wool, it is preferable to use an epoxy resin, a vinyl ester resin or the like other than the polyester resin.
  • the carbon fiber used in the present invention is a fiber obtained by heat-treating an organic fiber in an inert gas at a suitable temperature, and carbonizing and crystallizing the organic fiber. This carbon fiber also has an excellent reinforcing effect, far exceeding the degree of reinforcement of the glass fiber.
  • the aluminum fiber used in the present invention is a fiber made of aluminum. This aluminum fiber, unlike glass fiber or carbon fiber, exhibits a reinforcing effect having the characteristics of aluminum, which is a metal.
  • the length of the inorganic fibers as the reinforcing fibers is preferably 5 to 50 mm, more preferably 10 to 40 mm, and particularly preferably about 20 to 40 mm. If the fiber length is less than 5 mm, the reinforcing effect is not sufficient, and if it exceeds 50 mm, the reinforcing effect is obtained, but the effect is uneven, and the workability such as pavement and forming is also improved. become worse.
  • the amount of the inorganic fibers used is in the range of 1 to 30% by weight, more preferably 3 to 10% by weight, and particularly preferably 5 to 8% by weight, based on the solid content of the liquid synthetic resin. If the inorganic fiber content is less than 1% by weight, a sufficient reinforcing effect cannot be obtained, and the strength of a water-permeable pavement or a water-permeable material using this synthetic resin composition may not be sufficient. If the amount exceeds the above range, the composition will be loose and the adhesiveness will decrease, and the strength of the permeable pavement and permeable material will be reduced.
  • the liquid synthetic resin is preferably thickened with a thickener so as to stabilize the physical properties of the mixture of the rock fiber and the inorganic fiber that have been preferably absorbed to a saturated state and exhibit a sufficient effect.
  • the necessary amount of the thickener is added to the synthetic resin composition in a plurality of portions instead of mixing the thickener in an amount necessary to adjust the viscosity to a desired viscosity at a time. Is preferred.
  • the thickener acts from the part to suppress the increase in the viscosity of a part of the liquid synthetic resin located at the center of each fiber of rock wool. This is because, when the thickener is applied uniformly to the liquid synthetic resin even to the inside, even if it is only about 300 cps, the temperature during construction or work can be as low as about 1 Then, as with the conventional liquid synthetic resin, mixing with the aggregate cannot be sufficiently performed. Therefore, it is necessary to leave low-viscosity liquid synthetic resin in order to enable work and construction even at low temperatures.
  • the use of the thickener is for stabilizing the fibrous state of the liquid synthetic resin, and thus, even if the apparent viscosity is as high as 200,000 cps, the viscosity of the liquid is increased. It can be used at low temperatures without the need.
  • the thickener used in the present invention is generally used to adjust a synthetic resin to an appropriate viscosity depending on the application, and isocyanates and resin powders used in urethane-based resins. Cellulose, calcium carbonate and the like are used. Among these thickeners, the above-mentioned isocyanates have a high thickening effect, and the desired viscosity can be obtained with a smaller amount of use than other thickeners. It is more preferable because it can exhibit a thickening effect.
  • the viscosity of the resin composition is adjusted to preferably from 10,000 to 200,000 cps, more preferably from 20,000 to 100,000 cps, particularly preferably from 50,000 to 100,000 cps, with the thickener.
  • the amount of the thickener used depends on the type thereof, but is preferably 1 to 15% by weight, more preferably 1 to 5% by weight, particularly preferably 3 to 4% by weight, based on the solid content of the liquid synthetic resin. Range. If the viscosity of the resin composition is less than 10,000 cps, or if the amount of the thickener used is less than 1% by weight, the desired thickening effect cannot be obtained, and settling when kneaded with the aggregate can be prevented.
  • a vinyl ester resin is preferably added to rock wool until it is saturated.
  • Absorb liquid synthetic resin such as saturated polyester resin, epoxy resin, urethane resin, thermosetting acrylic resin, etc., mix lightly to loosen it, and then mix with glass fiber (preferably glass coated with synthetic resin).
  • Fibers) and inorganic fibers such as carbon fibers or aluminum fibers as reinforcing fibers are added at a ratio of 1% by weight to 30% by weight based on the amount of the liquid synthetic resin, and mixed well.
  • the rock wool that has absorbed the liquid synthetic resin is entangled with the inorganic fibers such as glass fibers, and the liquid synthetic resin and the inorganic fibers are further integrated.
  • the situation is still unstable. That is, in order to absorb the liquid synthetic resin into the rock wool and further reinforce it, if the rock wool is entangled with the inorganic fiber such as glass fiber, let alone the kneading of the aggregate, the hardening agent is mixed. In some cases, the impact may be disjointed and the original effect may not be obtained. Therefore, the thickener of 1% to 15% by weight based on the amount of the liquid synthetic resin is divided into 2 to 5 parts, and after the first addition of the thickener, the mixture is mixed gently.
  • the second and third additions of the thickener are carried out at intervals of minutes to 10 minutes to gradually increase the viscosity.
  • the thickener is required for the fourth and fifth times because the required amount of thickener is large, but the interval is also 5 minutes as before. Preferably every 10 minutes.
  • the reason why the mixing is performed slowly is that, of the liquid synthetic resin absorbed by the rock wool, the liquid synthetic resin on the surface of the rock wool is made to act as a thickener while Of thickener for liquid synthetic resin in the center This is to reduce the effect as much as possible.
  • rock wool made of liquid synthetic resin absorbed has an extremely high viscosity of about tens of thousands to several tens of thousands of cps, but can be kneaded with aggregate even at low temperatures in winter.
  • the easy reason is that the initial viscosity of the liquid synthetic resin to be absorbed by rock wool is based on about 1300 cps at 20.In addition, when thickening is adjusted, uniform thickening is not performed on the whole.
  • Part of the liquid synthetic resin absorbed in rock wool is to leave the initial low viscosity state.
  • the liquid synthetic resin is absorbed into the rock woolen and fiberized, it becomes easier to mix with the aggregate, and the part of the synthetic resin left with low viscosity acts during kneading with the mixer. It can be understood.
  • the liquid synthetic resin is a two-part liquid composed of a main agent and a curing agent, the main agent is absorbed into rock wool to form a fiber, and this is mixed with inorganic fibers to stabilize the structure. It is preferable to add an aggregate as needed, then add a hardening agent and knead the mixture.
  • inorganic fibers such as glass fibers and rock wool that has absorbed liquid synthetic resin are further integrated, and the obtained synthetic resin composition can be stabilized.
  • the characteristic of the synthetic resin composition of the present invention obtained in this way is that even with an extremely high viscosity of about 200,000 cps, it can be uniformly mixed with aggregate containing stone powder and fine sand as in ordinary asphalt. It can be kneaded to form a dense granule mixture. In addition, it can prevent the liquid synthetic resin from sinking during the usable time, such as when using the conventional liquid synthetic resin as it is as an adhesive. The point is that heating is not required at all during work and construction.
  • the same compaction work as for asphalt can be obtained in about 1/6 of the compaction work that makes the aggregate stable completely. That is, the kneaded product of the synthetic resin composition of the present invention and the aggregate can obtain 6 to 7 times the stability as compared with the kneaded product of the asphalt and the aggregate. Therefore, under the same conditions, the aggregate stability is much higher than the aggregate stability after asphalt compaction. Tightening While the number of times of compaction is 5 to 6 reciprocations, in the case of the synthetic resin composition of the present invention, the same aggregate stability can be obtained in one reciprocation.
  • a further feature of the present invention is that the synthetic resin composition of the present invention, whether a pavement or a block obtained by kneading the synthetic resin composition with an aggregate as an adhesive or a block, is free from cracks broken in a bending strength test. As you can see, the aggregate is broken and broken. That is, the strength of the synthetic resin composition portion is extremely high.
  • the synthetic resin composition is a combination of the synthetic resin absorbed into the mouth and made into fibers and the inorganic fibers as reinforcing fibers, the adhesive action between the aggregates is reduced. All the processes are performed in a linear manner.
  • ultrafine voids are formed in the voids between the aggregates because there are also inorganic fibers such as glass fibers and fibrous materials such as rock wool absorbing liquid synthetic resin.
  • inorganic fibers such as glass fibers and fibrous materials such as rock wool absorbing liquid synthetic resin.
  • the aggregate When the aggregate is mixed and kneaded with the synthetic resin composition of the present invention to obtain a pavement block having water permeability, not only crushed stone but also coarse sand, fine sand, stone powder, etc. It can be a mixture of coarse particles and a mixture of fine particles.
  • the mixing ratio of the synthetic resin composition and the aggregate is not particularly limited, but usually the synthetic resin composition is 3 to 15% by weight, more preferably 4 to 7% by weight based on the weight of the aggregate. Mix at about%.
  • the method of performing pavement using the synthetic resin composition of the present invention is the same as that of the conventional permeable pavement.
  • the aggregate obtained by mixing and kneading the aggregate with the synthetic resin composition may be paved.
  • a columnar drain material 3 made of a water-permeable material formed by mixing, kneading and forming an aggregate with the synthetic resin composition of the present invention in the same manner as the pavement 1
  • rainwater is guided from the pavement 1 directly to the subgrade 2 through the permeable drain material 3, which reduces the bearing capacity of the roadbed 4 due to the penetration of rainwater.
  • the pavement 1 it is possible to prevent the pavement 1 from being lifted by the expansion of the water that has penetrated into the roadbed 4.
  • the shape and size of the drain material 3 are not particularly limited, and various shapes such as a columnar shape, a prismatic shape, and an outer diameter can be used. Also, the number of installations may be appropriately determined according to the situation at the construction site.
  • the synthetic resin composition of the present invention has surprising strength, so that even in the production of an FRP structure, the conventional liquid synthetic resin is replaced with a liquid synthetic resin fiber of the present invention.
  • the strength of FRP is further doubled by substituting the synthetic resin composition described above.
  • the synthetic resin composition of the present invention was kneaded with the incinerated ash to form a 9 mm-thick plate and solidified, but no elution of harmful substances was detected.
  • a thin film function of a conventional liquid synthetic resin can be completely made to act as a thick film.
  • the synthetic resin composition of the present invention not only enables kneading with the aggregate even at a low temperature, but also can obtain a uniform adhesive effect without causing a settling phenomenon.
  • water permeability depends on the void volume generated between the aggregates, so that the void volume is large and the voids are liable to be clogged with dust and earth and sand.
  • the voids between the aggregates have an ultrafine void structure due to the fibrous synthetic resin or inorganic fibers.
  • the synthetic resin composition of the present invention can be mixed with the aggregate at room temperature without heating even though it has an extremely high viscosity.
  • the main agent is absorbed into rock wool to form a fiber, and even if the viscosity is as high as 100,000 cps, for example, the viscosity is as low as 0 X: low temperature. It can be mixed with the aggregate without heating even underneath. Even if a low-viscosity curing agent of about 160 cps is then added and mixed, there is no problem in curing.
  • the main agent of the synthetic resin and the curing agent are first mixed well, and then kneaded with the aggregate or the like, or It can be used as it is as an adhesive, or it can be put into a mold as a molding material and cured.
  • the synthetic resin composition of the present invention when used for an adhesive, it can be kneaded with an aggregate and then mixed with a curing agent.
  • the synthetic resin composition of the present invention which is used by forming a liquid synthetic resin into fibers and increasing the viscosity thereof, can function as a thick film as desired.
  • the pressure resistance during curing of the liquid synthetic resin alone is 3550 per cm 2. if kg, and pressure resistance of 1 cm 2 per during curing of fiberizing ultra high viscosity synthetic resin composition in accordance with the present invention with the same resin was improved to 1 3 1 1 kg .
  • the liquid synthetic resin is absorbed into rock wool and fiberized, stone powder and the like do not extremely absorb the liquid synthetic resin, and fine particles such as stone powder and fine sand are stable as aggregates.
  • Fig. 1 Explanatory sectional view showing a construction example of permeable pavement.
  • FIG. 2 is an explanatory view of a harmful substance enclosing container using the synthetic resin composition of the present invention, wherein (a) is a schematic perspective view and (b) is a schematic sectional view.
  • Figure 3 Schematic of the permeability test method.
  • Figure 4 Schematic of the bending test method.
  • the vinyl ester resin (Ripoxy AC 201, Showa Polymer Co., Ltd.) is absorbed into rock wool by the composition shown in Table 1 below
  • glass fiber coated with a polyester resin is mixed. Powdered cellulose was added and mixed 5 times every 3 minutes to obtain a synthetic resin composition of the present invention.
  • the rock wool was produced from lava melted at high temperature by mixing several kinds of medium and soft hardness rocks into slag after iron was melted at high temperature and iron was taken out. Fiber was used. This rock wool becomes about 95 g when 10 g of the rock wool absorbs water to a saturated state. It has a percentage of absorption.
  • the glass fiber a glass fiber produced from lava obtained by melting silica as a raw material of glass at a high temperature and coated with a polyester resin to improve the strength was used.
  • an aggregate having the composition shown in Table 2 below, a hardener and a hardening accelerator were added to the synthetic resin composition using a mortar mixer (manufactured by Tesco Corporation, capacity: 20 L, power: 200 V, stirring blades; hooks), first, the aggregate was added to the resin composition while stirring, and the mixture was stirred for 2 minutes, and then the curing accelerator was added. The mixture was stirred for 2 minutes, and then a curing agent was added and kneaded for another 3 minutes.
  • Epoxy resin (two-pack) was used as the liquid synthetic resin.
  • the same rock rolls and glass fibers as those in Examples 1 and 2 were used.
  • This rock wool was absorbed with an epoxy resin of the present invention having a viscosity of 16000 cps or less until it became saturated.
  • mixing was performed slowly to disperse the fibers of the wool that absorbed the epoxy resin.
  • the glass fiber coated with a synthetic resin is mixed with rock wool that has absorbed the epoxy resin in an amount of 3% by weight based on the amount of the epoxy resin so that the rock wool and the glass fiber are entangled. Mixing.
  • 5 weight% of calcium carbonate with respect to the amount of epoxy resin was used as a thickener, and this was divided into 5 parts.
  • the second thickener was added and mixed for 10 minutes.
  • the thickener was added for the third, fourth, and fifth times, and the thickening operation was similarly performed for 10 minutes each to obtain the synthetic resin composition of the present invention.
  • 0.1 g of PCB standard solution was added per 1 g of soil to make a sample, and the PCB content in this sample was determined.
  • a hardening agent was added to the above synthetic resin composition to obtain a diameter d of 100 mm, a height h of 50 mm, and a wall thickness t shown in FIG.
  • the PCB standard solution used was an n-hexane solution. Considering the homogenization of the sample, n-hexane was added at a rate of 1 ml per 10 g of soil to wet the soil.
  • the sample was placed in a glass beaker and subjected to a standing immersion test.
  • Solvent ratio The immersion solvent was 2 m 1 per 1 cm 2 of the surface area of the sample. • Temperature condition: 40 soil 1 in a thermostat.
  • the elution amount was determined by the following equation.
  • C When the PCB concentration (mgZm 1) of the immersion eluate is set to the lower limit of quantification of 0.003 mgZkg,
  • Alkyl mercury Announcement of the Environment Agency Notification No. 59, Appendix 4 (Gas chromatographic method) '' Cyan: JIS—K— 0102—38 (birazolone 4-pyridinecarboxylate spectrophotometric method)
  • Example 6 From the mixture of the same synthetic resin composition used in Example 3 and the samples shown in Table 6 below, a flat water-impermeable block of 100 X 185 X 9 mm was formed, and the same as in Example 4 A dissolution test was performed. Table 6 shows the results.
  • Example 3 The same synthetic resin composition used in Example 3 was mixed with an aggregate of Omm to l Omm so that the amount of the synthetic resin composition was 7% by weight with respect to the aggregate. Of the amount of the synthetic resin was added and mixed to form a flat plate block of 300 ⁇ 300 ⁇ 30 mm. In this case, the mixture mixed with the aggregate was placed in a mold, pressed with a plasterer's iron to form the mixture, and immediately removed from the mold. This plate block had a bending strength of 95 kg / cm 2 .
  • Example 7 The same synthetic resin composition as in Example 7 and crushed stones having a dense grain mixture were mixed so that the synthetic resin composition was 6% by weight based on the weight of the aggregate, and a test piece of 100 mm ⁇ 10 mm ⁇ 600 mm was obtained.
  • Tezume it results flexural strength test was rows, to obtain a 1 08 k gZc m 2.
  • Abrasion test Abrasion resistance ASTM C 779 “Abrasion resistance test method for horizontal concrete surface”.
  • JISB 773 3 Compression Tester As the tester, the one specified in “JISB 773 3 Compression Tester” shown in Fig. 4 (made by Maekawa Test Instruments, Model: Compression test weighing tester with 100 t weight) is used.
  • Specimen 300 X 300 X 60 shall be installed on the test machine as shown in Fig. 4.
  • test machine used was a test device that was manufactured so that it could be tested in accordance with ASTM C7779 “Abrasion resistance test method for horizontal concrete surface”.
  • the dimensions of the specimen shall be 300 ⁇ 300 300 min x 50 mm thick.
  • the wear tester rotates a 30 cm diameter disk at 12 rpm by means of a geared motor at the top of the tester, and three 6 cm diameter wear wheels mounted on this disk rotate at 280 m. and, abrasive wear surface during the test (No.60 of Kabora random) amount of 4-6 g / min it is continuously sprayed, wear specimens top donut shape at a surface pressure of 108 g / cm 2.
  • a method for measuring the amount of wear is as follows.A chip for fixing the legs of the measurement plate is attached to the four corners of the test piece, and the depth from the upper surface of the measurement plate installed on the test piece to the upper surface of the test piece is measured. Measure 24 points using a digital dial gauge (l / lOOmm).
  • the results are displayed by measuring the wear amount every 15 minutes up to the wear time of 30 minutes (total of 15 minutes after 7.5 minutes of operation and 7.5 minutes of reverse rotation, and then 120 minutes every 30 minutes).
  • the wear depth for each hour is indicated by the average value of 24 points.
  • the tester used is a wheel tracking tester (made by Macross, MODEL NO .: T-332).
  • the test conditions are as follows. ⁇ Travel type: Crank type
  • the coefficient of variation is calculated as the standard deviation from the dynamic stability of each test result, divided by the average of the standard deviations, and expressed as “%”. If the coefficient of variation exceeds 20%, estimate the cause and check the test method, and perform additional tests if necessary.
  • the synthetic resin composition of the present invention is kneaded with the aggregate as an adhesive to prevent clogging, excellent retention, less heat reflection, and almost no topping of the aggregate. No pavement having water permeability can be obtained. In addition, the pavement can provide a road excellent in noise reduction and abrasion resistance by absorbing the frictional noise of the tire. Also, in the production of many blocks, such as gratings, interlocking, and flat blocks, mass production can be performed in the same manner as the production of conventional secondary cement products.
  • stone powder and fine sand can be completely kneaded, solidifying contaminated soil with harmful substances, encapsulating harmful substances such as PCBs, plastic waste materials, glass chips, wood and fir husks, rubber chips, Recycling of many waste materials such as shell pieces is also possible.
  • this synthetic resin composition has a function of a thick film, it is also effective as a paint for preventing water leakage and rain leakage from dams, pools and buildings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Intended to solve the problems arising upon producing a permeable paving body or block from a mixture of an aggregate with a liquid synthetic resin as an adhesive, of the insufficient strength due to spotty adhesion, the clogging of the space between aggregate particles with sand or dust, the togging of an aggregate and the like caused by the precipitation phenomenon during the working life of the liquid synthetic resin, and to take full advantage of the adhesiveness of the liquid synthetic resin. Provided is an adhesive synthetic resin composition obtainable by mixing a liquid synthetic resin, a rock fiber impregnated with the liquid resin, at least one inorganic fiber selected from among a glass fiber, a carbon fiber and an aluminum fiber, and a thickener. A permeable pavement and a permeable material having a high mechanical strength and being free from clogging can be obtained through producing a paving body or a block from a mixture or a kneaded product of the aforemetioned resin composition with an aggregate.

Description

明細書  Specification
発明の名称 Title of invention
合成樹脂組成物並びにそれを用いた透水性舗装及び透水性材料 技術分野  TECHNICAL FIELD The present invention relates to a synthetic resin composition, and a water-permeable pavement and a water-permeable material using the same.
本発明は、 接着作用を有する合成樹脂組成物に関し、 この合成樹脂組成物 は、 例えば、 骨材と混練して該骨材間を接着して透水性を有する舗装体ゃブ ロック、 排水機能を有する擁壁や構造体を製造する際の接着材として、 又、 ポリ塩化ビフエ二ル (以下、 P C Bと記す。 ) 等の有害物を封入するための 材料として、 更には、 漏水防止処理のための塗料として使用することができ る。  TECHNICAL FIELD The present invention relates to a synthetic resin composition having an adhesive action. For example, the synthetic resin composition is kneaded with an aggregate and adheres between the aggregates to form a pavement body having water permeability and a drainage function. As an adhesive when manufacturing retaining walls and structures, and as a material for enclosing harmful substances such as polychlorinated biphenyl (hereinafter referred to as PCB), and for preventing water leakage It can be used as a paint.
背景技術 Background art
合成樹脂には、 それ自体が液状のもの、 溶剤を加えて液状として使用され るもの、 更には粉体の状態で使用されるもの等いろいろあるが、 それぞれ特 有の硬化作用がある。 現在、 これらの合成樹脂の物性と接着力は、 多くの分 野で利用され、 必要不可欠となっており、 セメントやアスファルトが技術改 良されるなかでも、 それらに代わって合成樹脂が多用されるようになってき た。 例えば、 従来のアスファルト舗装では、 舗装体が透水性を有しないこと から、 水たまりができやすい、 地中が乾燥して植物に必要なバクテリアが死 滅する、 水分の補給が行われないため街路樹の育成が悪い、 更には、 側溝か ら放流する雨水の量が下水能力を超えて路上に溢れるといった問題があった - そこで、 雨水を舗装体を通して直接地中に浸透させる透水性舗装工法が提案 された。 この透水性舗装として、 アスファルト舗装だけでなく、 液 合成樹 脂を接着材として用い、 骨材と混練して骨材間を合成樹脂で接着した透水性 舗装も開発され、 又、 同様に液状合成樹脂を接着材として用いた透水性のレ ンガゃプロック等も製造されている。 しかし、 従来では、 液状合成樹脂の可使用時間帯、 即ち、 合成樹脂が化学 反応により硬化する過程、 即ち、 合成樹脂本剤と硬化剤との化学反応や、 あ るいは熱、 光その他により合成樹脂の反応が始まり、 合成樹脂そのものが極 端に凝固し始める直前までの時間帯における合成樹脂の沈下現象や、 骨材と して使用する石粉、 細砂の混合の不均一等により、 骨材が不安定な状態の舗 装体やレンガ、 ブロックしか製造することが出来なかった。 合成樹脂の使用 に際しては、 硬化が始まったら動かさないことが大切であり、 硬化の進行中 に合成樹脂を動かした場合には、 該合成樹脂本来の接着力を得ることができ ない。 しかし、 従来では、 例えば樹脂舗装等の施工の際に、 合成樹脂と骨材 を混練しただけでは粘りが少ないために、 転圧はおろか左官ゴテでさえ充分 に圧縮して成形ができないことから、 混練物全体に粘りが出るまでの、 合成 樹脂が硬化の過程にある間に加圧するといつた無理な施工をせざるを得なか つた。 このため、 硬化途中の合成樹脂が加圧により動かされ、 該合成樹脂本 来の接着力を得ることができず、 施工後の強度が不十分で、 その結果、 骨材 の剥離、 いわゆるトッピングを起こして、 その舗装体やブロック等は長持ち しないという欠点があつた。 There are various types of synthetic resins, such as those that are liquid in themselves, those that are used as a liquid by adding a solvent, and those that are used in the form of a powder. Each of them has its own curing action. At present, the physical properties and adhesive strength of these synthetic resins are used in many fields and are indispensable.In spite of technological improvements in cement and asphalt, synthetic resins are often used in place of them. It has become. For example, in conventional asphalt pavement, the pavement does not have water permeability, so it is easy for puddles to form, the ground becomes dry and bacteria necessary for plants are killed, and there is no water supply. There was a problem that the cultivation was poor, and the amount of rainwater discharged from the gutter overflowed the road exceeding the drainage capacity.Therefore, a permeable pavement method was proposed in which rainwater was directly penetrated into the ground through the pavement. Was. As this permeable pavement, not only asphalt pavement, but also permeable pavement using liquid synthetic resin as an adhesive, kneading with aggregate, and bonding between aggregates with synthetic resin has been developed. Water permeable land blocks using resin as an adhesive are also manufactured. However, conventionally, the usable time period of the liquid synthetic resin, that is, the process in which the synthetic resin is cured by a chemical reaction, that is, the chemical reaction between the synthetic resin and the curing agent, or synthesis by heat, light, etc. Due to the sedimentation of the synthetic resin during the time period immediately before the reaction of the resin starts and the synthetic resin itself begins to solidify to the extreme, the uneven mixing of stone powder and fine sand used as aggregate, etc. Could only produce pavements, bricks and blocks in unstable condition. When using a synthetic resin, it is important not to move it after curing has started, and if the synthetic resin is moved while curing is in progress, the original adhesive strength of the synthetic resin cannot be obtained. However, in the past, for example, kneading a synthetic resin and an aggregate during resin paving, etc., has little toughness, so even a plasterer's iron can't be sufficiently compressed to form, even if it is compacted. Until the whole kneaded material became viscous, it was necessary to apply excessive pressure during the curing process of the synthetic resin, forcing it to perform excessive work. For this reason, the synthetic resin in the course of curing is moved by the pressure, and the adhesive strength inherent in the synthetic resin cannot be obtained, and the strength after the construction is insufficient. As a result, peeling of the aggregate, so-called topping, occurs. There was a drawback that the pavement and blocks did not last long.
又、 舗装体において、 大小様々な形状の骨材が互いに詰まり合って動かな い状態を骨材の安定というが、 この骨材の安定が舗装体やレンガ、 ブロック 等の強度と耐久性の条件であり、 接着材の強さが唯一の条件ではない。 通常 のアスファルト舗装における骨材配合は、 大小様々な砕石だけでなく、 大き めの砂 (粗砂) や細めの砂及び石粉までを混合している。 即ち、 車道の粗粒 配合ゃ密粒配合とよばれているのがそれである。 一方、 例えば、 歩道に於け る目の粗いァスフアルト舗装は、 直径 4 mn!〜 8 mm程度の砕石を中心にし た開粒配合であり、 粗砂、 細砂、 石粉等はすべて除いて施工されている。 透 水性の舗装体、 レンガ、 ブロック等を作る場合に、 アスファルトや従来の液 状合成樹脂を用いると、 骨材間の空隙だけに透水機能を期待せざるを得ない。 しかし、 その結果は、 空隙を残すために密粒配合とすることができず、 骨材 間の接着が点的で強度を向上させることができないばかりか、 骨材間の空隙 が土砂や粉塵で目詰まりを起こし、 透水性が低下する。 大地の砂漠化を改善 し、 生活廃熱を含む熱反射を軽減するうえにも必要な透水性舗装も、 従来の ように単に液状合成樹脂を接着材とした場合には、 前記のように骨材間の接 着が点的であったため、 接着強度が不十分であるだけでなく、 骨材間の空隙 が大きいことから、 そこへ土砂や粉塵の粒子が詰まり易く、 又、 舗装体ゃブ ロック表面の骨材が外れる、 いわゆるトツビングを解消することができなか つた。 更に、 排水機能を有する砂防ダムや擁壁を構築しょうとする場合も、 単に骨材間を液状合成樹脂で接着するだででは、 前記と同様の理由で目詰ま りしてしまい、 その結果、 土砂だけではなく水までも止めてしまい、 土砂崩 れに到る危険もぬぐえない。 しかし、 液状合成樹脂を単に増粘剤で増粘した だけでは、 上記のような透水性舗装や透水性材料における骨材間の点的接着 現象は改善されない。 Aggregate stability is the condition in which aggregates of various sizes, such as pavements, do not move because they are stuck together. This stability of aggregates depends on the strength and durability of the pavement, bricks, blocks, etc. The strength of the adhesive is not the only condition. Aggregate mix in ordinary asphalt pavement mixes not only large and small crushed stones but also large sand (coarse sand), fine sand and stone powder. That is to say, this is called “coarse grain composition of roadway ゃ dense grain composition”. On the other hand, for example, coarse asphalt pavement on the sidewalk has a diameter of 4 mn! It is an open-grained mixture mainly composed of crushed stones of up to about 8 mm, and is constructed excluding coarse sand, fine sand, and stone powder. When asphalt or conventional liquid synthetic resin is used to make permeable pavements, bricks, blocks, etc., it is inevitable that only the voids between the aggregates will have a permeable function. However, the result was that dense granules could not be mixed to leave voids, In addition to the fact that the bond between them is pointy and the strength cannot be improved, the voids between the aggregates are clogged with earth and sand and dust, and the water permeability decreases. The permeable pavement necessary to improve the desertification of the earth and reduce the heat reflection including domestic waste heat, as described above, if only liquid synthetic resin is used as the adhesive, as described above, Due to the point-to-point bonding between the materials, not only is the bonding strength insufficient, but also because the voids between the aggregates are large, earth and sand and dust particles are liable to be clogged there. It was not possible to eliminate the so-called tobbing, in which the aggregate on the lock surface came off. Furthermore, when constructing a sabo dam or retaining wall with a drainage function, simply bonding the aggregate with liquid synthetic resin will cause clogging for the same reason as described above. Not only the soil but also the water stops, and the danger of landslides cannot be wiped out. However, simply increasing the viscosity of the liquid synthetic resin with a thickener does not improve the above-described point-adhesion phenomenon between aggregates in a water-permeable pavement or a water-permeable material.
又、 従来の液状合成樹脂の使用法では、 上記のような透水性材料だけでな く、 不透水性材料における強度も、 合成樹脂自体の接着力だけの強度しか得 ることが出来ない。 更に、 繊維強化プラスチック (以下、 F R Pと記す。 ) においても、 その強度は、 補強材としてのガラス繊維、 炭素繊維等の無機繊 維の強度に負うところが大きく、 それら補強材を張り合わせる合成樹脂自体 は単に補強材を支えているに過ぎない。  Further, in the conventional method of using a liquid synthetic resin, not only the water-permeable material as described above, but also the strength of the water-impermeable material can be obtained only by the adhesive force of the synthetic resin itself. In addition, the strength of fiber-reinforced plastics (hereinafter referred to as FRP) depends greatly on the strength of inorganic fibers such as glass fiber and carbon fiber as reinforcing materials, and the synthetic resin itself to which these reinforcing materials are attached is also used. Is merely supporting the reinforcement.
日本では、 合成樹脂に溶剤を加えた液状合成樹脂を接着材とし、 これを骨 材と混合して、 舗装や平板ブロック等としたものが、 路面の透水性や滑り止 め効果、 更には景観の改善を目的として、 全国的にその利用が拡大している t そして、 その歴史も、 早や 2 0年を超えている。 しかし、 その間、 技術的に は何ら進渉の跡はみられないまま、 今日に至っている。 即ち、 上記した液状 合成樹脂に特有の硬化途中における沈下現象や、 それに伴う接着の不均一、 骨材の剥離 (トッピング) 、 ローラ一による転圧作業やプレス等による充分 な圧縮作業が出来ないための骨材の不安定、 更には、 セメント二次製品のよ うな量産が出来ない等の致命的欠陥の改善は殆どなされていない。 又、 F R Pにおいても、 その強度を従来以上に向上させ、 且つ製法も現行通り、 ある いは現行の製法より簡単に成形できる等の改良等は全くなされていない。 このように、 従来においては、 単に液状合成樹脂をそのままの状態で接着 材として透水性を有する舗装体やレンガ、 ブロック、 あるいは排水機能を有 する擁壁その他の構造物を構築したり、 F R Pを製造していたため、 要求さ れる強度を必ずしも満足することができず、 又、 透水性を目的とするもので は、 目詰まりの問題が解消されておらず、 要求される透水機能を必ずしも充 分に備えているとはいい難い。 In Japan, a liquid synthetic resin made by adding a solvent to a synthetic resin is used as an adhesive, and this is mixed with aggregate to form a pavement or a flat block, etc. for the purpose of improvement, and t nationwide its use is expanding, also its history, is beyond the early or 2 0 years. However, in the meantime, we have reached today without any trace of technical progress. That is, the above-mentioned sinking phenomenon during curing, which is peculiar to the liquid synthetic resin described above, non-uniformity of the resulting adhesion, peeling of the aggregate (topping), rolling by a roller, or sufficient compression by a press or the like cannot be performed. Aggregate instability, and secondary cement products Critical defects such as mass production cannot be improved. In addition, no improvement has been made in FRP, such as improving its strength more than before, and making the manufacturing method as it is now, or making it easier to mold than the current manufacturing method. As described above, in the prior art, a permeable pavement, a brick, a block, a retaining wall or other structure having a drainage function, or a FRP is simply used as an adhesive in a state where the liquid synthetic resin is used as it is. Because it was manufactured, the required strength could not always be satisfied, and for the purpose of water permeability, the problem of clogging was not solved, and the required water permeability function was not always satisfied It is hard to say that it is prepared for.
又、 P C Bをはじめ、 種々の有害物を容易に封じ込めるための合成樹脂の 使用においても、 合成樹脂本来の接着力を厚膜に作用させて効果を向上させ る改良も充分には果たされていない。  Also, in the use of synthetic resins to easily contain various harmful substances such as PCBs, sufficient improvements have been made to improve the effect by applying the inherent adhesive strength of synthetic resins to thick films. Absent.
更に、 漏水防止処理における塗料としての利用にあっても、 液状合成樹脂 を化学的に増粘させただけでは、 一回の塗布作業で充分な効果は得られない。 本発明の目的は、 上記のような、 液状合成樹脂を接着材として骨材と混合 して透水性を有する舗装体やレンガ、 ブロック等を作製したり、 排水機能を 有する擁壁やその他の構造物を構築する場合における、 液状合成樹脂の可使 用時間帯での沈下現象による点的接着現象による強度不足の問題や、 骨材間 空隙中への土砂や粉塵の目詰まりの問題、 更には骨材卜ッビングの問題を解 決せんとするものである。 又、 本発明の更なる目的は、 前記の場合に、 合成 樹脂の接着力を最大限に活用し、 石粉や細砂等の細かなものでも骨材として 使用可能とすることである。 更に、 本発明は、 合成樹脂により、 様々な有害 物質を強固に封じ込めることを可能とし、 又、 従来よりも強度に優れた F R Pを製造可能とすることを目的としている。 発明の開示  Furthermore, even in the use as a paint in the water leakage prevention treatment, a sufficient effect cannot be obtained by a single application operation only by chemically thickening the liquid synthetic resin. An object of the present invention is to produce a water-permeable pavement, a brick, a block, or the like by mixing a liquid synthetic resin with an aggregate as an adhesive as described above, a retaining wall having a drainage function, and other structures. When constructing an object, there is the problem of insufficient strength due to the point-adhesion phenomenon due to the sinking phenomenon of the liquid synthetic resin during the usable time zone, the problem of clogging of soil and dust in the voids between aggregates, and It aims to solve the problem of aggregate tobbing. Further, a further object of the present invention is to make the most of the adhesive force of the synthetic resin in the above case, and to be able to use fine particles such as stone powder and fine sand as aggregate. Further, another object of the present invention is to make it possible to securely contain various harmful substances by using a synthetic resin, and to make it possible to produce an FRP having higher strength than before. Disclosure of the invention
本発明の合成樹脂組成物は、 液状合成樹脂と、 該液状合成樹脂を吸収させ たロックウールと、 ガラス繊維、 炭素繊維及びアルミ繊維からなる群の内か ら選択される少なくとも 1種の無機繊維と、 増粘剤とからなり、 接着作用を 有する。 前記の場合、 ロックウールには液状合成樹脂を飽和状態にまで吸収 させることが好ましい。 前記液状合成樹脂に対する無機繊維の配合割合は、 1〜 3 0重量%の範囲、 前記液状合成樹脂に対する増粘剤の配合割合は 1〜 1 5重量%の範囲とすることが好ましい。 この合成樹脂組成物には、 必要に 応じて使用する液状合成樹脂の硬化剤を配合する。 The synthetic resin composition of the present invention comprises: a liquid synthetic resin; and absorbing the liquid synthetic resin. And a thickening agent and at least one inorganic fiber selected from the group consisting of glass fiber, carbon fiber, and aluminum fiber, and has an adhesive action. In the above case, it is preferred that the rock wool absorb the liquid synthetic resin to a saturated state. The mixing ratio of the inorganic fiber to the liquid synthetic resin is preferably in the range of 1 to 30% by weight, and the mixing ratio of the thickener to the liquid synthetic resin is preferably in the range of 1 to 15% by weight. If necessary, a curing agent for the liquid synthetic resin to be used may be added to the synthetic resin composition.
前記液状合成樹脂の好ましい例としては、 ビニルエステル系樹脂、 不飽和 ポリエステル系樹脂、 エポキシ系樹脂、 ウレタン系樹脂、 熱硬化性アクリル 系樹脂が挙げられる。  Preferred examples of the liquid synthetic resin include a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, a urethane resin, and a thermosetting acrylic resin.
前記ガラス繊維は、 口ックウールに吸収させた液状合成樹脂の溶剤に溶解 しない合成樹脂により被覆されたものを用いることが好ましい。  It is preferable to use a glass fiber coated with a synthetic resin that is not dissolved in a solvent of the liquid synthetic resin absorbed in the mouth wool.
前記増粘剤としては、 例えばジフエ二ルメタンジイソシァネート等のイソ シァネート類、 粉体状セルロース及び炭酸カルシウム等が挙げられる。 本発明の合成樹脂組成物では、 合成樹脂がもつ接着性及び耐薬品性等の特 徵と、 ガラス繊維、 炭素繊維又はアルミ繊維等の無機繊維のもつ特徴と強度 を、 より効果的に発揮させるため、 吸収力に優れ且つ粉塵化しにくいロック ウールに前記液状合成樹脂を吸収させた後、 これにガラス繊維、 炭素繊維又 はアルミ繊維等の無機繊維を混合し、 更に、 その状態を安定化させ、 施工又 は作業に必要な粘度に調整するために必要な量の増粘剤を、 分割して各 5分 〜 1 0分毎に投入して増粘させることが好ましい。  Examples of the thickener include isocyanates such as diphenylmethane diisocyanate, powdered cellulose, and calcium carbonate. In the synthetic resin composition of the present invention, characteristics such as adhesiveness and chemical resistance of the synthetic resin, and characteristics and strength of inorganic fibers such as glass fiber, carbon fiber, or aluminum fiber are more effectively exhibited. Therefore, after absorbing the liquid synthetic resin into rock wool, which is excellent in absorbing power and hard to be dusted, an inorganic fiber such as glass fiber, carbon fiber or aluminum fiber is mixed with the liquid synthetic resin to further stabilize the state. It is preferable to increase the viscosity by adding a thickener in an amount necessary for adjusting the viscosity to the viscosity required for construction or work, in portions, every 5 to 10 minutes.
前記ロックウールに液状合成樹脂を吸収させる際に、 前記液状合成樹脂が 主剤と硬化剤とよりなる二液性の場合には、 前記主剤と硬化剤とを混合して ロックウールに吸収させる、 又は、. 前記主剤及び硬化剤をそれぞれロックゥ —ルに吸収させる、 更には、 前記主剤をロックウールに吸収させた後、 硬化 剤を混合する等、 各種の方法を用いることができる。  When the liquid synthetic resin is absorbed by the rock wool, if the liquid synthetic resin is a two-part liquid composed of a main agent and a curing agent, the main agent and the curing agent are mixed and absorbed by the rock wool, or Various methods can be used, such as absorbing the main agent and the curing agent respectively into rock wool and mixing the curing agent after absorbing the main agent into rock wool.
更に、 本発明の合成樹脂組成物には硬化促進剤を配合することができる。 本発明の合成樹脂組成物に骨材を混合し、 これを敷設し、 転圧することで 透水性舗装とすることができる。 Furthermore, the synthetic resin composition of the present invention may contain a curing accelerator. Aggregates are mixed with the synthetic resin composition of the present invention, laid, and rolled to form a water-permeable pavement.
又、 前記合成樹脂組成物を骨材と混合、 混練し、 圧縮成形すれば、 透水性 材料を製造できる。  Further, if the synthetic resin composition is mixed with an aggregate, kneaded, and compression-molded, a water-permeable material can be produced.
更に、 上記のような合成樹脂組成物を用いて成形体を成形することができ、 この成形体中に有害物質を封入することもできる。  Further, a molded article can be molded using the synthetic resin composition as described above, and a harmful substance can be enclosed in the molded article.
上記のように、 本発明の合成樹脂組成物は、 これを接着材として骨材と混 練することで、 透水性を有する舗装体やグレーチング、 インタ一ロッキング、 レンガ、 平板ブロック等のブロックの製造、 あるいは、 護岸、 砂防ダム、 プ ール、 擁壁、 その他の土木建造物の構築に用いることができる。 尚、 前記グ レーチングとの用語は、 本来、 側溝の蓋を意味するが、 このほか、 街路樹の 根元等に施されている保護体の総称として用いられている。 このダレ一チン グは、 目詰まりがなく、 水と空気だけを透過させ、 土砂やゴミ等は透過させ ない性能が求められている。 又、 前記インターロッキングとの用語は、 主に 歩道等に施工される、 レンガのような様々なブロックが組み合わされた舗装 を意味し、 従来は前記ブロック自体は不透水材であった。 本発明の合成樹脂 組成物は、 前記不透水性ブロック間に形成される目地部分に透水性を付与す るか、 あるいは透水性を有するブロック自体を製造するために用いられる。 又、 本発明の合成樹脂組成物は、 有害物質により汚染された土壌の固化、 P C B等の有害物質の封じ込め等に用いることができる。  As described above, the synthetic resin composition of the present invention is used as a binder for kneading with an aggregate to produce a permeable pavement, a block such as grating, interlocking, brick, and a flat plate block. Alternatively, it can be used to build revetments, sabo dams, pools, retaining walls, and other civil engineering structures. The term “grating” originally means a cover of a gutter, but it is also used as a generic term for a protective body applied to the root of a street tree or the like. This dripping is required to have a performance that does not cause clogging, allows only water and air to permeate, and does not allow sediment and dirt to permeate. Further, the term "interlocking" means a pavement in which various blocks such as bricks are mainly assembled on a sidewalk or the like, and the blocks themselves were conventionally impermeable materials. The synthetic resin composition of the present invention is used for imparting water permeability to joint portions formed between the water-impermeable blocks, or for producing a water-permeable block itself. Further, the synthetic resin composition of the present invention can be used for solidifying soil contaminated with harmful substances, containing harmful substances such as PCB, and the like.
本発明では、 液状合成樹脂の化学的物性の利点の上に物理的手法、 即ち、 無機繊維の作用を併用したことで、 先に述べたような、 従来の技術における 多くの欠陥を補う改良をなし得た。 例えば、 透水性材料を製造する際の接着 材としての用途においては、 骨材と骨材との接着において、 合成樹脂が骨材 同士が重なり合うところに澱む、 いわゆる点的接着の状態では、 硬化後の樹 脂が固化している部分の接着力以上の力がかかれば、 樹脂部分が破壊されて 骨材が剥離するのは当然である。 そして、 従来のように、 液状合成樹脂のみ では、 それを増粘剤で増粘させても、 所詮、 点接着の問題は解決できない。 これに対し、 本発明のように、 液状合成樹脂をロックウールに吸収させて繊 維化し、 更にこれを増粘させることで、 より硬化物の強度が向上する。 しか もこの場合には、 骨材間空隙中にも繊維化された合成樹脂が存在して、 その 空隙を更に超微細化しているため、 骨材間の空隙には土砂や粉塵が詰まり得 ず、 水と空気だけしか透過させない構造となる。 本発明に係る合成樹脂組成 物による骨材の接着とその維持力はこの原理によるものである。 In the present invention, the physical technique, that is, the action of the inorganic fiber is used in addition to the advantage of the chemical properties of the liquid synthetic resin, thereby improving the above-mentioned improvement to compensate for many defects in the conventional technology. Got none. For example, in the use as an adhesive in the production of a water-permeable material, in the bonding between the aggregates, the synthetic resin stagnates where the aggregates overlap. If a force greater than the adhesive strength of the resin solidified part is applied, it is natural that the resin part is destroyed and the aggregate is peeled off. And, as before, only liquid synthetic resin Then, even if it is thickened with a thickener, after all, the problem of spot adhesion cannot be solved. On the other hand, as in the present invention, the strength of the cured product is further improved by absorbing the liquid synthetic resin into rock wool to form a fiber, and further increasing the viscosity thereof. In this case, however, the fibrous synthetic resin also exists in the gaps between the aggregates, and the gaps are further miniaturized, so that the gaps between the aggregates cannot be clogged with earth and sand or dust. The structure allows only water and air to pass through. Adhesion of the aggregate by the synthetic resin composition according to the present invention and its retention force are based on this principle.
従来、 透水性の構造体 (透水係数が 1 0— 2 c mZ s程度のもの) であつ ても、 構造体中に通水用の空隙を確保するために、 液状合成樹脂と混合する 骨材中から細砂や石粉等の細かなものを除かなければならず、 粗砂、 細砂、 石粉等を含む粗粒配合ゃ密粒配合のような充分な強度の構造体では、 満足な 透水係数は得られなかった。 即ち、 液状合成樹脂の場合には、 アスファルト に混入される細砂や石粉等の細かなものは、 均一に混合され難いため、 これ らを排除して強度を犠牲にして、 透水性のための空隙構造を優先せざるを得 なかった。 Conventionally, even it shall apply in permeability of the structure (as permeability of about 1 0- 2 c mZ s), in order to ensure a void for passing water in the structure, the aggregate is mixed with liquid synthetic resin Fine particles such as fine sand and stone powder must be removed from the inside. Coarse grains containing coarse sand, fine sand, stone powder, etc. No coefficients were obtained. That is, in the case of liquid synthetic resin, fine particles such as fine sand and stone powder mixed into asphalt are difficult to mix uniformly. The void structure had to be given priority.
本発明に係る合成樹脂組成物は、 骨材と骨材とを接着するにあたり、 接着 材であるアスファルト、 セメント、 液状合成樹脂等が、 どのような作用をし ているかを追求することにより得られたものである。 従来、 合成樹脂を用い た透水構造体は、 骨材と骨材との接点部分に澱む液状合成樹脂が点的に作用 して接着している構造であり、 透水性は必然的に骨材と骨材との間に形成さ れる空隙に頼っていた。 しかし、 この空隙が大きい部分が多いために、 土砂 や粉塵が詰まり易い。 現に、 擁壁ブロックに義務づけられている水抜きの穴 は、 現実には半年も過ぎれば目詰まりが起こり、 以後は何の役にもたつてい ないことが、 その証拠である。 又、 過去において、 液状合成樹脂を接着材と して骨材と混練して製造される平板ブロックの透水性が大いに期待されたが、 現実には、 やはり目詰まりしていることは周知の通りである。  The synthetic resin composition according to the present invention can be obtained by pursuing what kind of action the asphalt, cement, liquid synthetic resin, and the like, which are adhesives, have when bonding the aggregate to the aggregate. It is a thing. Conventionally, a water-permeable structure using a synthetic resin has a structure in which a liquid synthetic resin that stagnates at a contact portion between the aggregates and adheres by a point action, and the water permeability is inevitably associated with the aggregate. They depended on the voids formed between the aggregates. However, since there are many parts with large voids, it is easy for soil and dust to clog. In fact, the evidence is that the drainage holes required for retaining wall blocks actually clog after six months and have no longer served any purpose. Also, in the past, there was great expectation for the water permeability of flat plate blocks produced by kneading liquid synthetic resin as an adhesive with aggregate, but in reality it is well known that clogging is still a problem. It is.
又、 透水性は、 アスファルト舗装にも大いに期待され、 日本において、 ほ ぼ全国的に歩道に施工された、 目の粗いアスファルト舗装がそれである。 し かし、 現実には、 二回も夏期を過ぎれば目詰まりしてしまい、 期待に答えて はいない。 このアスファルト舗装における目詰まりは、 前記した液状合成樹 脂を使用した透水材の目詰まりとは、 基本的に原因が異なる。 即ち、 熱硬化 性合成樹脂の場合は、 硬化すれば熱溶融は一切ないから、 熱硬化性合成樹脂 を用いた透水材の目詰まりの原因は、 唯一、 前記した骨材間の空隙中へ土砂、 粉塵が詰まることにある。 一方、 アスファルトによる透水材の目詰まりは、 骨材の配合から細砂や石粉を除いて粗目の砕石だけにしたことで必然的に形 成される空隙が大きくなり、 土砂や粉塵が詰まり易いうえに、 アスファルト そのものが熱溶融するため、 夏期にはアスファルトが必ず溶融して空隙中に 詰まった土砂、 粉塵が空隙を目詰まりさせるためである。 更に、 セメントを 用いた透水性材料の目詰まりは、 セメントが水分と化学反応して発泡固化す る結果として、 空隙の形状が極めて複雑で、 その空隙に土砂や粉塵が詰まる しとによる。 In addition, water permeability is greatly expected for asphalt pavement. Coarse asphalt pavement was constructed on sidewalks nationwide. However, in reality, it has clogged twice after summer and has not met expectations. The cause of the clogging on the asphalt pavement is basically different from the clogging of the permeable material using the liquid synthetic resin described above. That is, in the case of a thermosetting synthetic resin, there is no thermal melting when it is hardened. Therefore, the only cause of clogging of the water-permeable material using the thermosetting synthetic resin is the earth and sand entering the gap between the aggregates described above. , Dust is to be clogged. On the other hand, clogging of the permeable material by asphalt is inevitably caused by removing coarse sand and stone powder from the mixture of aggregates and using only coarse crushed stones. In addition, since asphalt itself is thermally melted, asphalt always melts in the summer and earth and sand and dust clogging the pores may clog the pores. In addition, clogging of a water-permeable material using cement is due to the fact that the cement undergoes a chemical reaction with moisture and foams and solidifies, resulting in an extremely complicated shape of the void, which is filled with earth and sand and dust.
元来、 接着力においては、 アスファルトやセメントと比較して抜群に強い 合成樹脂が、 強度を維持して骨材間の空隙を確保にできないわけはなく、 要 は骨材間に形成される空隙を、 土砂、 粉塵が詰まらないように、 いかに超微 細化するかが問題であった。 そこで、 本発明では、 無機質のロックウールを 用いて液状合成樹脂を繊維化することで、 骨材間の空隙を超微細化するとと もに、 その強度においても、 一例を挙げるならば、 耐圧力において、 液状合 成樹脂のみでは 3 5 0 k g c m 2のものでも、 繊維化することで 6 9 0 k g Z c m 2になり、 更に、 この繊維化された合成樹脂にガラス繊維等の無機 繊維を加えた本発明の合成樹脂組成物の耐圧力は 1 3 1 1 k g / c m 2にま で高められた。 Originally, in terms of adhesive strength, synthetic resin, which is remarkably strong compared to asphalt and cement, does not necessarily mean that it is not possible to maintain strength and secure voids between aggregates. The problem was how to make it ultra-fine so that it was not clogged with earth, sand and dust. Therefore, in the present invention, the voids between the aggregates are made ultra-fine by fibrillating the liquid synthetic resin using inorganic rock wool, and the strength thereof is, for example, withstand pressure. in, be of the liquid synthetic resin alone is 3 5 0 kgcm 2, becomes 6 9 0 kg Z cm 2 by fiberizing, further, inorganic fibers such as glass fiber added to the fibers of synthetic resin The withstand pressure of the synthetic resin composition of the present invention was increased to 1311 kg / cm 2 .
又、 本発明の合成樹脂組成物は、 従来、 液状合成樹脂を接着材として砕石 等の骨材と混練する際には、 空隙を埋めてしまい、 又、 均一が混練が困難で あったことから液状合成樹脂の骨材としてはこれまで使用できなかった細砂 や石粉等の細かなものはもとより、 焼却灰やへドロ等の微細な骨材をはじめ、 廃プラスチックやセラミックス等の軽量骨材も使用できるようになり、 これ までの工法を超えた製品の製造が可能となった。 又、 有害物質の封じ込めに おいても、 強度に優れ、 有害物質封入効果が向上したことによって、 現代社 会の最も重要且つ不可欠な産業廃棄物処理の問題にも大きな役割を果たすこ とができる。 In addition, when the synthetic resin composition of the present invention is conventionally kneaded with an aggregate such as crushed stone using a liquid synthetic resin as an adhesive, the gap is filled, and uniform kneading is difficult. Fine sand that could not be used as an aggregate of liquid synthetic resin In addition to fine aggregates such as ash and stone powder, lightweight aggregates such as waste plastics and ceramics, as well as fine aggregates such as incineration ash and sludge, can be used to manufacture products that go beyond conventional methods. Became possible. In addition, because of its high strength and improved toxic substance encapsulation, it can play a major role in the most important and indispensable issue of industrial waste disposal of modern society in the containment of toxic substances. .
元来、 接着力に優れ、 耐酸性、 耐塩性、 及び耐アルカリ性に優れた合成樹 脂が、 何故にアスファルトやセメントに代替出来なかったのかといえば、 従 来においては、 単に化学の面だけで合成樹脂を改革しょうとしたためである。 これに対し、 本発明では、 合成樹脂の優れた物性の上に、 無機繊維化という 物理的条件を重ねたことで、 上記の目的を達成できた。 即ち、 本発明者は、 有機質の合成樹脂に有機質の条件を加えても、 所詮、 上記のような目的を達 成できるとは考えなかったのである。 これは、 本発明の対象基材が液状合成 樹脂である以上、 有機質の合成樹脂が硬化剤以外の有機物と作用して使用に 支障をきたすと考えたからに他ならない。 そこで、 骨材に作用する接着材と しての液状合成樹脂を骨材に対して繊維状に作用させることで、 従来の骨材 間の点的接着作用による欠点を改善できたのである。  Originally, the reason why synthetic resin with excellent adhesive strength, acid resistance, salt resistance, and alkali resistance could not be replaced with asphalt or cement, was conventionally based only on chemistry. This is because they tried to reform synthetic resins. On the other hand, in the present invention, the above-mentioned object was achieved by superposing the physical conditions of inorganic fiber formation on the excellent physical properties of the synthetic resin. That is, the present inventor did not think that even if organic conditions were added to the organic synthetic resin, the above object could be achieved after all. This is nothing but the fact that the organic synthetic resin acts on an organic substance other than the curing agent to hinder use as long as the target substrate of the present invention is a liquid synthetic resin. Thus, by applying a liquid synthetic resin as an adhesive acting on the aggregate in a fibrous manner to the aggregate, the defect caused by the conventional point-to-point adhesion between the aggregates could be improved.
又、 液状合成樹脂を繊維化して使用する本発明では、 骨材として細砂や石 粉等の細かいものを用いても、 アスファルトと同様に、 ローラ一による転圧 作業はもとより、 プレス又はバイブレーション、 更には油圧による成形がで きるため、 完璧な強度が得られるとともに、 骨材間空隙中に繊維状の合成樹 脂が存在して超微細空隙を形成する。 従って、 本発明は、 透水性の構造体で は細砂、 石粉等を除いた開粒骨材の配合でなければならない、 という従来の 常識を完全に打破した。 本発明の合成樹脂組成物を用いた透水、 排水構造体 の施工は、 従来の密粒、 粗粒の骨材配合のままで透水係数 1 0— 2 c m, s を達成しうる。 又、 本発明の透水性舗装では、 舗装面に作用する太陽熱の反 射を極度に抑えうるばかりでなく、 自動車の走行タイヤ音を密粒配合等の従 来の舗装車道と比較して 5デシベル程度低下させる効果を有する。 又、 ァス フアルトだけでは強度維持ができないため、 近年はアスファルトに一部液状 合成樹脂を混入しての施工が進められてはいる。 しかし、 この場合には、 多 少の摩耗減少効果は認められながらも、 アスファルトの熱溶融による目詰ま りは避けられない。 せっかく形成された透水のための骨材間の空隙も、 目詰 まりしては何の意味もない。 又、 液状合成樹脂を接着材として砕石等と混合 して舗装体とした場合も、 曲げ強度においては、 厚さ 4 0 mmの構造体であ つても、 それが、 透水性構造体である限り、 4 3〜 4 5 k g / c m 2程度の 耐圧力しかない。 用いる合成樹脂が、 最も強度の大きなエポキシ系であって もその程度である。 これに対し、 同じエポキシ系の液状合成樹脂を本発明の ように繊維化して砕石等の骨材と混練して透水性を有する構造材とした場合 には、 耐圧力が 1 0 0 k g Z c m 2という驚異的な強度を達成することがで さる。 In addition, in the present invention in which the liquid synthetic resin is used as fibers, even if fine aggregates such as fine sand and stone powder are used as the aggregate, as with the asphalt, not only the rolling operation by the roller 1 but also the press or vibration, Furthermore, since it can be formed by hydraulic pressure, perfect strength can be obtained, and fibrous synthetic resin exists in the voids between the aggregates to form ultrafine voids. Therefore, the present invention completely breaks the conventional wisdom that a permeable structure must be a mixture of open-grained aggregates excluding fine sand, stone powder and the like. Construction of a water-permeable and drainage structure using the synthetic resin composition of the present invention can achieve a water-permeability coefficient of 10 to 2 cm, s with a conventional mixture of dense and coarse aggregates. In the permeable pavement of the present invention, not only the reflection of solar heat acting on the pavement surface can be extremely suppressed, but also the sound of the running tires of automobiles can be controlled by the use of dense particles. It has the effect of lowering by about 5 dB compared to the conventional paved road. In addition, asphalt alone cannot maintain the strength, and in recent years construction has been promoted by mixing some liquid synthetic resin into asphalt. However, in this case, clogging due to hot melting of the asphalt is inevitable, although a slight wear reduction effect is recognized. The gaps between the aggregates formed for the purpose of permeation do not make any sense if they are clogged. Also, when a pavement is formed by mixing liquid synthetic resin with crushed stones as an adhesive, the flexural strength of a 40 mm thick structure is limited as long as it is a water permeable structure. , 4 3~ 4 5 kg / cm 2 about the pressure resistance only. Even if the synthetic resin used is the strongest epoxy resin, that is the case. On the other hand, when the same epoxy-based liquid synthetic resin is fiberized as in the present invention and kneaded with aggregate such as crushed stone to obtain a water-permeable structural material, the withstand pressure is 100 kg Z cm. Amazing strength of 2 can be achieved.
本発明のように、 液状合成樹脂を用い、 アスファルトと同様な施工ができ 、 又、 セメント二次製品と同様な量産を可能とする改良は、 既に 2 0年以上 も前から多くの業界が求め続けてきたものであり、 大手樹脂メーカ一はもと より、 セメントやアスファルトの業界でも、 それぞれ 1 0年以上の研究をし てきたものである。 しかし、 いずれも、 化学的手法を以ては完成に至らなか つたものである。  As in the present invention, many industries have been demanding improvements over 20 years ago that use liquid synthetic resin to perform construction similar to asphalt and to enable mass production similar to secondary cement products. They have been conducting research for more than 10 years in the cement and asphalt industries as well as in the major resin manufacturers. However, none of them have been completed using chemical methods.
又、 F R Pについては、 従来の F R Pでは、 例えば、 船体部分や自動車の 車体の一部を金槌でたたいても破壊されないものはなかった。 これに対し、 本発明の合成樹脂組成物を用いた F R Pは、 金槌でたたいても破壊されない。 即ち、 本発明の合成樹脂組成物は、 前記のように、 骨材と混練して透水性材 料や透水性舗装とするだけではなく、 それ自体が F R P製品を成形する原料 になる。 因みに、 従来の F R P製法においては、 布状に編まれたガラス繊維 に液状合成樹脂を塗り、 その上にガラス繊維を張りつけ、 更に合成樹脂を塗 つては、 又、 その上からガラス繊維を張りつけるといった作業を繰り返して 積層することで製造されるが、 このような従来の F R Pでは、 1 c m 2当た り 2 5 0 0 k gの耐圧力を出すことが限界であるといわれてきた。 これに対 し、 本発明の合成樹脂組成物を F R Pの製造に用いた場合には、 5 0 0 0〜 1 0 0 0 0 k g Z c m 2の耐圧力を達成することができると推測される。 又、 この合成樹脂組成物を単に成形するだけでも、 5 0 0 0 k g / c m 2の耐圧 力を達成することができると推測される。 Regarding the FRP, there was no FRP that could not be destroyed by hammering the hull or a part of the car body, for example. On the other hand, the FRP using the synthetic resin composition of the present invention is not destroyed even with a hammer. That is, as described above, the synthetic resin composition of the present invention is not only kneaded with the aggregate to form a water-permeable material or a water-permeable pavement, but also becomes a raw material for forming an FRP product. By the way, in the conventional FRP manufacturing method, a liquid synthetic resin is applied to glass fibers woven into a cloth, a glass fiber is stuck thereon, and then a synthetic resin is applied, and a glass fiber is stuck from above. Repeat the work It is manufactured by laminating, but it has been said that the limit of such conventional FRP is to produce a withstand pressure of 2500 kg per 1 cm 2 . This against, when the synthetic resin composition of the present invention is used for FRP manufacturing is estimated to be able to achieve 5 0 0 0~ 1 0 0 0 0 kg pressure resistance of Z cm 2 . It is also presumed that a pressure resistance of 500 kg / cm 2 can be achieved by simply molding this synthetic resin composition.
以下、 本発明の合成樹脂組成物の各構成成分についてそれぞれ説明する。 先ず、 本発明における液状合成樹脂には、 合成樹脂に溶剤を加えて混合し て液体状としたものも含まれる。 本発明に用いられる前記合成樹脂は、 熱硬 化性のものが主であるが、 用途によっては、 熱可塑性樹脂に溶剤を加えて液 体状として用いてもよい。 熱硬化性の合成樹脂としては、 ビニルエステル系、 不飽和ポリエステル系、 エポキシ系、 ウレタン系、 熱硬化性アクリル系等が ある。 これらは、 いずれも、 硬化剤と反応することで硬化するものである。 通常、 合成樹脂の主剤と硬化剤を混合し、 これを接着剤として使甩したり、 骨材等を混合して使用する場合、 これを二液性の合成樹脂という。 この二液 性のものとは異なり、 熱や圧力をかけたり、 光を当てたり、 あるいは空気に 触れることで化学反応を起こして硬化する一液性のものもある。 本発明では 二液性、 一液性のいずれの合成樹脂も使用することができる。 液状合成樹脂 を骨材と混合してから施工現場へ運搬する場合や、 施工に時間がかかるとい つた場合には、 硬化時間との関係で、 一液性より二液性の合成樹脂の方が好 都合ではあるが、 各種ブロックの製造や、 F R P成形品の製造のように、 一 定の条件下で開封後の合成樹脂を使い切る場合は、 むしろ一液性タイプのも のが便利である。 尚、 合成樹脂組成物の粘度を 2 0万センチポアズ (以下、 c p s と略記する。 ) 以上の超高粘度とする必要がある場合、 エポキシ系、 ウレタン系のように、 主剤としての液状合成樹脂に対して、 同量、 又は二分 の一、 三分の一程度の大量の硬化剤を必要とするものでは、 主剤の合成樹脂 のみでなく、 硬化剤も、 液状合成樹脂と同様にロックウールに吸収させて繊 維化、 増粘した状態で使用する。 一方、 ビニルエステル系やポリエステル系 等の合成樹脂のように、 主剤に対する硬化剤の使用量が 1〜 3重量%程度と 少量の場合には、 上記のように硬化剤をロックウ一ルに吸収させて繊維化、 増粘を図る必要なく、 ロックウールに吸収させて繊維化した合成樹脂主剤に 対して、 硬化剤をそのまま添加、 混合すればよい。 Hereinafter, each component of the synthetic resin composition of the present invention will be described. First, the liquid synthetic resin in the present invention also includes a liquid synthetic resin obtained by adding a solvent to a synthetic resin and mixing the resultant. The synthetic resin used in the present invention is mainly a thermosetting resin. However, depending on the application, a liquid may be used by adding a solvent to the thermoplastic resin. Thermosetting synthetic resins include vinyl ester type, unsaturated polyester type, epoxy type, urethane type and thermosetting acrylic type. These are all cured by reacting with a curing agent. Normally, when a synthetic resin base material and a curing agent are mixed and used as an adhesive, or when aggregates and the like are mixed and used, this is called a two-part synthetic resin. Unlike the two-part type, the one-part type cures by causing a chemical reaction when exposed to heat, pressure, light, or air. In the present invention, either a two-part or one-part synthetic resin can be used. If the liquid synthetic resin is mixed with the aggregate and then transported to the construction site, or if the construction takes time, two-part synthetic resin is better than one-part due to the curing time. Although convenient, the one-pack type is more convenient when using up the opened synthetic resin under certain conditions, such as the manufacture of various blocks or the manufacture of FRP molded products. If the viscosity of the synthetic resin composition is required to be 200,000 centipoise (hereinafter abbreviated as cps) or more, it is necessary to use a liquid synthetic resin as the main agent, such as epoxy or urethane. On the other hand, for those requiring a large amount of the same amount, or about one-third or one-third of the hardener, not only the main resin but also the hardener is absorbed by rock wool in the same way as the liquid synthetic resin Let it be fine Use it in a state of thickening and thickening. On the other hand, when the amount of the curing agent used is as small as about 1 to 3% by weight, such as a synthetic resin such as a vinyl ester or a polyester resin, the curing agent is absorbed into rock wall as described above. The hardening agent may be added and mixed as it is to the synthetic resin base material that has been absorbed into rock wool and fiberized without the need for fiberization and thickening.
一般には、 液状合成樹脂の使用に際しては、 合成樹脂本剤と硬化剤とを良 く混合したのちに使用することが常であるが、 本発明の合成樹脂組成物の場 合は、 繊維化された合成樹脂本剤と骨材を混合、 混練した後に、 硬化剤を投 入しても充分に硬化させることができる。 その理由は、 性格的にも敏感な合 成樹脂を、 繊維化の段階でその過敏な一面を抑えることで、 骨材に混練され た状態で散乱する合成樹脂に対しても充分に硬化剤が化学反応可能となるこ とによる。  In general, when using a liquid synthetic resin, it is usual to use the synthetic resin after it is mixed well with a curing agent, but in the case of the synthetic resin composition of the present invention, the synthetic resin composition is fiberized. After mixing and kneading the synthetic resin material and the aggregate, a sufficient curing can be achieved even if a curing agent is injected. The reason for this is that by suppressing the sensitive side of the synthetic resin, which is sensitive in character, at the stage of fiberization, the hardener is sufficient for the synthetic resin that is scattered while being kneaded into the aggregate. This is due to the fact that a chemical reaction becomes possible.
このように、 本発明で使用される液状合成樹脂としては、 各種のものを使 用することができ、 それぞれの合成樹脂が有する様々な特性と、 用途に応じ て、 液状であるがゆえの沈下現象、 薄膜にしか作用させることが出来なかつ た等の従来の液状合成樹脂の欠点を改良することができる。 従来、 液状化し た合成樹脂は、 液状化されているがために合成樹脂本来の接着力を厚膜で作 用させることが一度の作業では不可能であり、 アスファルトのような使用は 全く出来なかった。 このため、 合成樹脂は、 セメント、 アスファルトに並ぶ 基礎素材としての性能を有しながら、 作用、 施工性において欠点を指摘され てきた。 耐塩性、 耐酸性、 耐アルカリ性等、 広域にわたる耐薬性と接着力に 優れた合成樹脂は、 多面にわたりその作用と施工性の改良が究明され続けて きた。 しかし、 元来、 液状や粉体状での使用しか考えられていなかった合成 樹脂は、 その視点において、 化学上の変革でセメントやアスファルトのよう に使用できるような改革は不可能であったことは当然といえる。 これに対し. 本発明では、 液状合成樹脂を、 一旦ロックウールに吸収させて粘度を増大さ せるだけで、 元来、 液状であったものが繊維状となり、 従来では考えられな かった接着力、 強度を得たものである。 As described above, various kinds of liquid synthetic resins can be used as the liquid synthetic resin used in the present invention, and depending on the various characteristics of each synthetic resin and the intended use, the settlement due to the liquid state is possible. The disadvantages of the conventional liquid synthetic resin such as the phenomenon and the fact that it can only act on a thin film can be improved. Conventionally, since liquefied synthetic resin has been liquefied, it is impossible to apply the original adhesive strength of the synthetic resin to a thick film in a single operation, and it is impossible to use asphalt at all. Was. For this reason, synthetic resins have been pointed out as having disadvantages in action and workability, while having the performance as a basic material comparable to cement and asphalt. Synthetic resins with excellent chemical resistance and adhesive strength over a wide area, such as salt resistance, acid resistance, and alkali resistance, have been continuously investigated on many aspects to improve their action and workability. However, from the perspective of plastics, which were originally conceived to be used only in liquid or powder form, it was not possible from this point of view to make reforms that could be used like cement and asphalt through chemical reforms. Is natural. On the other hand, in the present invention, the liquid synthetic resin is simply absorbed into rock wool to increase the viscosity, and the liquid which was originally liquid becomes fibrous, which has not been considered conventionally. Adhesive strength and strength were obtained.
次に、 本発明で使用するロックウールについて説明する。 ロックウールは、 すでに日本では製造、 販売が中止された石綿に代わるものとして、 製鉄各社 で製造されている。 石綿の場合には、 鉄鋼石から鉄分を取り出したあとのス ラグを原料として繊維化したもので、 非常に硬く、 粉塵化しやすいうえに、 肺癌の原因になることから、 製造が中止された。 この石綿の代替として、 鉄 鋼石から鉄分を取り出したあとのスラグに、 中間硬度の岩石と軟質の岩石を 混合して高温で溶融したものを繊維化したものが、 ロックウールである。 従 つて、 ロックウールは軟質で、 石綿と比べて粉塵化し難く、 液状合成樹脂に 対する吸収力も優れている。 尚、 ロックウールに関しては、 肺癌の原因には ならない、 との埼玉大学の研究結果も新聞に発表されている。  Next, the rock wool used in the present invention will be described. Rock wool is being manufactured by steel companies as an alternative to asbestos, which has already been discontinued in Japan. In the case of asbestos, production was discontinued because asbestos was fiberized from slag obtained by removing iron from iron ore, which was extremely hard and easily dustable, and could cause lung cancer. As an alternative to asbestos, rock slag, which is made from a mixture of medium-hardness rock and soft rock and melted at a high temperature, is fiberized into slag after removing iron from iron ore. Therefore, rock wool is soft, is less prone to dusting than asbestos, and has excellent absorbency against liquid synthetic resins. In addition, the research results of Saitama University that rock wool does not cause lung cancer have been published in newspapers.
口ックウールに対する液状合成樹脂の吸収量について説明する。 ロックゥ ールは、 水であれば、 自重に対して約 9 5 0重量%を吸収する。 液状合成樹 脂の場合は、 水に比べて粘度が高く、 ロックウールが飽和状態にまで液状合 成樹脂を吸収したときには、 ロックウールの重量のほぼ 7倍の液状合成樹脂 が吸収される。 本発明では、 このロックウールに前記液状合成樹脂を吸収さ せて接着性を有する繊維状の合成樹脂とするのであり、 ロックウールに対す る液状合成樹脂の吸収量は多いほど好ましく、 飽和量に対して 8 0 %以上、 より好ましくは 9 5 %以上、 特には飽和状態にまで吸収させることが好まし い。  The amount of the liquid synthetic resin absorbed by the mouth wool will be described. If rock roll is water, it absorbs about 950% by weight based on its own weight. In the case of liquid synthetic resin, the viscosity is higher than that of water, and when rock wool absorbs the liquid synthetic resin to a saturated state, the liquid synthetic resin that is approximately seven times the weight of rock wool is absorbed. In the present invention, the liquid synthetic resin is absorbed into the rock wool to form a fibrous synthetic resin having adhesiveness. The larger the amount of the liquid synthetic resin absorbed by the rock wool, the more preferable, and the saturated amount On the other hand, it is preferable to absorb 80% or more, more preferably 95% or more, and particularly to a saturated state.
更に、 本発明では上記のように、 ロックウールに液状合成樹脂を吸収させ て繊維化したのち、 更に、 樹脂被覆をさせたガラス繊維、 有機繊維を炭化し て強化した炭素繊維、 又はアルミニウムを繊維化したアルミ繊維等の、 補強 効果を有する無機繊維を、 前記液状合成樹脂を吸収したロックウールに対し てからませることで、 本来なら液状合成樹脂を吸収し得ない樹脂被覆のガラ ス繊維、 炭素繊維、 又はアルミ繊維が、 あたかも液状合成樹脂を吸収したか のような作用をなし、 硬化物を補強することができる。 即ち、 吸収性に優れ たロークウールに、 2 O t:において 1 0 0 0 c p s前後の液状合成樹脂を、 好ましくは飽和状態にまで吸収させると、 液状合成樹脂をたっぷりと吸収し たこのロックウールは、 元来マイクロサイズのロックウールの繊維が分散し やすい状態となる。 液状の合成樹脂は、 この段階でロックウールに吸収され て繊維状となる。 本発明では、 この液状合成樹脂を吸収したロックウールに、 更にガラス繊維、 炭素繊維、 アルミ繊維等の無機繊維を混合することで、 こ れらの無機繊維に、 液状合成樹脂をたっぷりと吸収した前記ロックウールが 絡みつくように混練される。 これにより、 ロックウールに吸収させることで 向上した合成樹脂の耐圧力は、 更に、 前記無機繊維で補強することで、 更に 向上する。 Further, in the present invention, as described above, rock wool absorbs a liquid synthetic resin to form a fiber, and then further forms a resin-coated glass fiber, a carbon fiber reinforced by carbonizing an organic fiber, or a fiber made of aluminum. An inorganic fiber having a reinforcing effect, such as a converted aluminum fiber, is entangled with rock wool that has absorbed the liquid synthetic resin, so that resin-coated glass fibers or carbon that cannot normally absorb the liquid synthetic resin The fibers or aluminum fibers act as if they have absorbed the liquid synthetic resin, and can reinforce the cured product. In other words, excellent absorption When the raw synthetic wool is allowed to absorb a liquid synthetic resin of about 100 cps at 2 Ot :, preferably to a saturated state, the rock wool that fully absorbs the liquid synthetic resin originally has a micro size. Rock wool fibers are easily dispersed. At this stage, the liquid synthetic resin is absorbed by rock wool and becomes fibrous. In the present invention, by mixing inorganic fibers such as glass fiber, carbon fiber, and aluminum fiber with the rock wool that has absorbed the liquid synthetic resin, the liquid synthetic resin is sufficiently absorbed in these inorganic fibers. The rock wool is kneaded so as to be entangled. Thereby, the withstand pressure of the synthetic resin, which is improved by being absorbed by rock wool, is further improved by reinforcing with the inorganic fibers.
本発明で使用されるガラス繊維とは、 ガラスの原料である珪石を高温で溶 融して繊維にしたものであり、 物性的には、 硬度も 7 (モース硬さ) 前後と 硬く、 その繊維も粉塵化しないといえるものではない。 しかし、 ガラス繊維 は、 様々な補強材としての用途が広く、 その殆どはガラス繊維を合成樹脂で 被覆し、 それを布状に織って製品化されている。 そして、 その強度は驚異的 で、 マイクロサイズのこの繊維が数 k gの物品を持ち上げる程の強度を有す る。 ところで、 本発明では、 上記のように合成樹脂で被覆されたガラス繊維 を、 更にロックウールに合成樹脂を吸収させて繊維化したものに混合するの であるが、 ガラス繊維を被覆している合成樹脂が、 前記ロックウールに吸収 させた液状合成樹脂の溶剤によって溶解するような種類のものであっては、 せっかくの合成樹脂の被覆による繊維の補強効果が台無しになってしまう場 合がある。 したがって、 本発明で使用するガラス繊維としては、 ロックウー ルに吸収させた液状合成樹脂の溶剤に溶解しない合成樹脂により被覆された ものを用いることが好ましく、 具体的には、 ロックウールに吸収させた液状 合成樹脂の主剤と異なる種類の合成樹脂で被覆したものを用いることが好ま しい。 例えば、 ガラス繊維を被覆する合成樹脂としては、 ポリエステル系樹 脂がコストも易く一般的に用いられており、 これを用いる場合には、 ロック ウールに吸収させる液状合成樹脂としては、 ポリエステル系以外の、 ェポキ シ系、 ビニルエステル系等の樹脂を用いることが好ましい。 The glass fiber used in the present invention is a fiber obtained by melting silica stone, which is a raw material of glass, at a high temperature, and has a physical property of a hardness as high as about 7 (Mohs hardness). It is not something that cannot be said to be dusted. However, glass fibers are widely used as a variety of reinforcing materials, and most of them are produced by coating glass fibers with a synthetic resin and weaving them into a cloth. And its strength is staggering, with the micro-sized fibers being strong enough to lift a few kilograms of goods. By the way, in the present invention, the glass fiber coated with the synthetic resin as described above is mixed with the fiberized fiber obtained by further absorbing the synthetic resin into rock wool. If the resin is of a type that can be dissolved by the solvent of the liquid synthetic resin absorbed in the rock wool, the effect of reinforcing the fiber by coating the synthetic resin may be spoiled. Therefore, it is preferable to use, as the glass fiber used in the present invention, a glass fiber covered with a synthetic resin that is not dissolved in the solvent of the liquid synthetic resin absorbed in the rock wool. It is preferable to use a resin coated with a synthetic resin of a type different from the main component of the liquid synthetic resin. For example, as a synthetic resin for coating glass fiber, polyester resin is generally used because of its low cost. As the liquid synthetic resin to be absorbed by wool, it is preferable to use an epoxy resin, a vinyl ester resin or the like other than the polyester resin.
又、 本発明で使用される炭素繊維とは、 有機繊維を不活性気体中で適当な 温度で熱処理し、 炭化、 結晶化させた繊維である。 この炭素繊維も、 優れた 補強効果を有し、 前記ガラス繊維の補強度をはるかに超えるものである。 更に、 本発明で使用されるアルミ繊維とは、 アルミニウムを繊維にしたも のである。 このアルミ繊維は、 ガラス繊維や炭素繊維とは異なり、 金属であ るアルミニウムの特性を有する補強効果を発揮する。  The carbon fiber used in the present invention is a fiber obtained by heat-treating an organic fiber in an inert gas at a suitable temperature, and carbonizing and crystallizing the organic fiber. This carbon fiber also has an excellent reinforcing effect, far exceeding the degree of reinforcement of the glass fiber. Further, the aluminum fiber used in the present invention is a fiber made of aluminum. This aluminum fiber, unlike glass fiber or carbon fiber, exhibits a reinforcing effect having the characteristics of aluminum, which is a metal.
これら補強繊維としての無機繊維の長さは、 好ましくは 5〜 5 0 mm、 よ り好ましくは 1 0〜4 O mm、 特に好ましくは 2 0〜 4 0 mm程度である。 繊維の長さが 5 mm未満の場合には、 補強効果が十分でなく、 又、 5 0 mm を超えると補強効果は得られるものの、 その効果にムラが生じ、 舗装や成形 等の作業性も悪くなる。  The length of the inorganic fibers as the reinforcing fibers is preferably 5 to 50 mm, more preferably 10 to 40 mm, and particularly preferably about 20 to 40 mm. If the fiber length is less than 5 mm, the reinforcing effect is not sufficient, and if it exceeds 50 mm, the reinforcing effect is obtained, but the effect is uneven, and the workability such as pavement and forming is also improved. become worse.
前記無機繊維の使用量は、 液状合成樹脂の固形分に対して 1〜 3 0重量%、 より好ましくは 3〜 1 0重量%、 特に好ましくは 5〜 8重量%の範囲である。 無機繊維が 1重量%未満では、 充分な補強効果が得られず、 この合成樹脂組 成物を用いた透水性舗装や透水性材料の強度が充分でない場合があり、 又、 3 0重量%を超えると組成物にパサつきがでて粘着性が低下し、 透水性舗装 体や透水性材料の強度が低下する。  The amount of the inorganic fibers used is in the range of 1 to 30% by weight, more preferably 3 to 10% by weight, and particularly preferably 5 to 8% by weight, based on the solid content of the liquid synthetic resin. If the inorganic fiber content is less than 1% by weight, a sufficient reinforcing effect cannot be obtained, and the strength of a water-permeable pavement or a water-permeable material using this synthetic resin composition may not be sufficient. If the amount exceeds the above range, the composition will be loose and the adhesiveness will decrease, and the strength of the permeable pavement and permeable material will be reduced.
以上の液状合成樹脂、 ロックウール及び無機繊維を混合しただけでは物性 の均一性は得られず、 本発明の目的とする効果は半減する。 そこで、 本発明 では、 前記液状合成樹脂を、 好ましくは飽和状態まで吸収させたロックゥ一 ルと無機繊維との混合物の物性を安定させて充分な効果を奏するよう、 増粘 剤により増粘させる。 この増粘操作にあたっては、 この合成樹脂組成物を、 求める粘度に調整するのに必要な量の増粘剤を一度に混入するのではなく、 必要量の増粘剤を複数に分割して加えることが好ましい。 即ち、 増粘剤を複 数に分割して加えることで、 口ックウールに吸収させた液状合成樹脂の表面 部分から増粘剤を作用させ、 ロックウールの繊維一本一本における中心部に 位置する一部の液状合成樹脂の粘度の増加を抑制するのである。 これは、 増 粘剤を液状合成樹脂に対してその内部にまで全体に均一に作用させた場合に は、 わずか 300 0 c p s程度であっても、 施工又は作業時の気温が 1 程度の低温になると、 従来の液状合成樹脂と同様に骨材との混合が充分には できなくなってしまう。 そこで、 低温下においても作業、 施工を可能にする ため、 低粘度の液状合成樹脂を残す必要があるのである。 即ち、 増粘剤の使 用は、 液状合成樹脂の繊維化した状態を安定させるためであって、 これによ り、 見かけ粘度が 20万 c p sに及ぶ超高粘度であっても、 加温の必要なく 低温下での使用が可能となる。 Even if the above liquid synthetic resin, rock wool and inorganic fibers are merely mixed, the uniformity of physical properties cannot be obtained, and the effect aimed at by the present invention is reduced by half. Therefore, in the present invention, the liquid synthetic resin is preferably thickened with a thickener so as to stabilize the physical properties of the mixture of the rock fiber and the inorganic fiber that have been preferably absorbed to a saturated state and exhibit a sufficient effect. In this thickening operation, the necessary amount of the thickener is added to the synthetic resin composition in a plurality of portions instead of mixing the thickener in an amount necessary to adjust the viscosity to a desired viscosity at a time. Is preferred. In other words, by adding the thickener in multiple parts, the surface of the liquid synthetic resin absorbed in the mouth wool can be absorbed. The thickener acts from the part to suppress the increase in the viscosity of a part of the liquid synthetic resin located at the center of each fiber of rock wool. This is because, when the thickener is applied uniformly to the liquid synthetic resin even to the inside, even if it is only about 300 cps, the temperature during construction or work can be as low as about 1 Then, as with the conventional liquid synthetic resin, mixing with the aggregate cannot be sufficiently performed. Therefore, it is necessary to leave low-viscosity liquid synthetic resin in order to enable work and construction even at low temperatures. In other words, the use of the thickener is for stabilizing the fibrous state of the liquid synthetic resin, and thus, even if the apparent viscosity is as high as 200,000 cps, the viscosity of the liquid is increased. It can be used at low temperatures without the need.
本発明で使用される増粘剤は、 一般に合成樹脂を、 用途に応じて適当な粘 度に調整するために用いられているものであり、 ウレタン系樹脂で用いられ ているイソシァネート類、 樹脂粉末状セルロース、 炭酸カルシウム等が用い られる。 これらの増粘剤の内でも、 前記イソシァネート類は増粘効果が高く、 他の増粘剤に較べて少量の使用量で目的とする粘度が得られ、 又、 殆どの液 状合成樹脂に対して増粘効果を発揮しうることから、 より好ましい。  The thickener used in the present invention is generally used to adjust a synthetic resin to an appropriate viscosity depending on the application, and isocyanates and resin powders used in urethane-based resins. Cellulose, calcium carbonate and the like are used. Among these thickeners, the above-mentioned isocyanates have a high thickening effect, and the desired viscosity can be obtained with a smaller amount of use than other thickeners. It is more preferable because it can exhibit a thickening effect.
前記増粘剤により、 樹脂組成物の粘度を、 好ましくは 1 0000〜 200 000 c p s より好ましくは 20000〜 1 00000 c p s、 特に好ま しくは 50000〜 1 0 0 00 0 c p sに調整する。 増粘剤の使用量として は、 その種類にもよるが、 液状合成樹脂の固形分に対して 1〜 1 5重量%、 より好ましくは 1〜5重量%、 特に好ましくは 3〜4重量%の範囲である。 樹脂組成物の粘度が 1 0000 c p s未満であったり、 増粘剤の使用量が 1 重量%未満では目的とする増粘効果が得られず、 骨材と混練した場合の沈下 を防止することが困難な場合があり、 又、 樹脂組成物の粘度が 200000 c p sを超えたり、 増粘剤の量が 1 5重量%を超えると混練が困難となる。 本発明の合成樹脂組成物の具体的使用方法の 1例を挙げると、 先ず、 ロッ クウールに対し、 好ましくは飽和状態になるまでビニルエステル系樹脂、 不 飽和ポリエステル系樹脂、 エポキシ系樹脂、 ウレタン系樹脂、 熱硬化性ァク リル系樹脂等の液状合成樹脂を吸収させ、 これをほぐすため軽くミキシング した後、 ガラス繊維 (好ましくは合成樹脂で被覆したガラス繊維) 、 炭素繊 維又はアルミ繊維等の無機繊維を補強繊維として前記液状合成樹脂量に対し て 1重量%〜 3 0重量%の割合で加えて良く混合する。 この作業によって、 液状合成樹脂を吸収したロックウールがガラス繊維等の無機繊維にからみ、 液状合成樹脂と無機繊維がより一体化する。 しかし、 この状態では未だ不安 定である。 即ち、 ロックウールに液状合成樹脂を吸収させ、 更に補強するた めに、 ガラス繊維等の無機繊維に前記ロックウールを絡ませた状態のままで は、 骨材の混練はおろか、 硬化剤を混合するだけの衝撃であっても、 ばらば らになって本来の効果を得ることができない場合がある。 そこで、 液状合成 樹脂量に対して 1重量%〜 1 5重量%の増粘剤を 2分割〜 5分割し、 最初の 1回目の増粘剤の投入後、 ゆるやかにミキシングを行い、 その後、 5分〜 1 0分毎の間隔で 2回目、 3回目の増粘剤の投入を行い、 次第に増粘させてゆ くことが好ましい。 粘度を 5万 c p s以上に調整する場合は、 必要な増粘剤 の量が多量であるため、 4回目、 5回目と増粘剤の投入作業を行うが、 その 間隔も前回と同様に 5分〜 1 0分毎とすることが好ましい。 The viscosity of the resin composition is adjusted to preferably from 10,000 to 200,000 cps, more preferably from 20,000 to 100,000 cps, particularly preferably from 50,000 to 100,000 cps, with the thickener. The amount of the thickener used depends on the type thereof, but is preferably 1 to 15% by weight, more preferably 1 to 5% by weight, particularly preferably 3 to 4% by weight, based on the solid content of the liquid synthetic resin. Range. If the viscosity of the resin composition is less than 10,000 cps, or if the amount of the thickener used is less than 1% by weight, the desired thickening effect cannot be obtained, and settling when kneaded with the aggregate can be prevented. If the viscosity of the resin composition exceeds 200,000 cps or the amount of the thickener exceeds 15% by weight, kneading becomes difficult. One example of a specific method of using the synthetic resin composition of the present invention is as follows. First, a vinyl ester resin is preferably added to rock wool until it is saturated. Absorb liquid synthetic resin such as saturated polyester resin, epoxy resin, urethane resin, thermosetting acrylic resin, etc., mix lightly to loosen it, and then mix with glass fiber (preferably glass coated with synthetic resin). Fibers) and inorganic fibers such as carbon fibers or aluminum fibers as reinforcing fibers are added at a ratio of 1% by weight to 30% by weight based on the amount of the liquid synthetic resin, and mixed well. By this operation, the rock wool that has absorbed the liquid synthetic resin is entangled with the inorganic fibers such as glass fibers, and the liquid synthetic resin and the inorganic fibers are further integrated. However, the situation is still unstable. That is, in order to absorb the liquid synthetic resin into the rock wool and further reinforce it, if the rock wool is entangled with the inorganic fiber such as glass fiber, let alone the kneading of the aggregate, the hardening agent is mixed. In some cases, the impact may be disjointed and the original effect may not be obtained. Therefore, the thickener of 1% to 15% by weight based on the amount of the liquid synthetic resin is divided into 2 to 5 parts, and after the first addition of the thickener, the mixture is mixed gently. It is preferable that the second and third additions of the thickener are carried out at intervals of minutes to 10 minutes to gradually increase the viscosity. When adjusting the viscosity to 50,000 cps or more, the thickener is required for the fourth and fifth times because the required amount of thickener is large, but the interval is also 5 minutes as before. Preferably every 10 minutes.
従来、 液状合成樹脂の使用に際しては、 気温 1 5 においてすら、 その粘 度が 3 0 0 0 c p s程度の合成樹脂は均一に骨材と混練することはできなか つた。 そこで、 従来は、 夏用、 冬用と称して、 夏用は粘度を 2 0 0 0 c p s 程度に、 冬用は 1 5 0 0 c p s程度に調整して合成樹脂メーカーは対応して きた。 これに対し、 本発明では、 骨材と混練した材料の構成を安定させ、 し かも低温でも骨材との混練を可能とするために、 増粘剤を使用し、 合成樹脂 組成物の粘度を数万〜 2 0数万 c p s といった超高度に調整する。 尚、 前記 の場合に、 ミキシングをゆるやかに行う理由は、 ロックウールが吸収した液 状合成樹脂のうち、 ロックウール表面部分の液状合成樹脂に対しては増粘剤 を作用させる一方で、 口ックウール中心部の液状合成樹脂に対する増粘剤の 作用を可能な限り少なくするためである。 前記のように、 ロックウールに液 状合成樹脂を吸収させたものが、 その粘度が数万〜 2 0数万 c p s程度と超 高粘度でありながら、 冬季の低温下でも骨材との混練が容易な理由は、 ロッ クウールに吸収させる液状合成樹脂の初期の粘度として 2 0でにおいて 1 3 0 0 c p s程度を基準とするとともに、 増粘調整に際しては、 全体に均一の 増粘は行わず、 ロックウールに吸収させた液状合成樹脂の一部は初期の低粘 度の状態を残すようにしたことにある。 つまり、 液状合成樹脂がロックウー ルに吸収されて繊維化されたことで、 骨材と混ざり易くなり、 しかも低粘度 のままに残された合成樹脂の部分が、 ミキサーでの混練時に作用するものと 理解できる。 尚、 前記液状合成樹脂が、 主剤と硬化剤とからなる二液性の場 合には、 主剤をロックウールに吸収させて繊維化し、 これを無機繊維と混合 し、 その構成を安定させるために、 これに必要に応じて骨材を加えた後、 硬 化剤を添加して混練することが好ましい。 Conventionally, when using a liquid synthetic resin, even at a temperature of 15 degrees, a synthetic resin having a viscosity of about 300 cps cannot be uniformly kneaded with the aggregate. So far, synthetic resin manufacturers have responded by adjusting the viscosity to about 2000 cps for summer and about 1500 cps for winter for summer and winter. On the other hand, in the present invention, in order to stabilize the composition of the material kneaded with the aggregate and to enable kneading with the aggregate even at a low temperature, a thickener is used, and the viscosity of the synthetic resin composition is reduced. Adjust to an ultra-high altitude of tens of thousands to tens of thousands cps. In the above case, the reason why the mixing is performed slowly is that, of the liquid synthetic resin absorbed by the rock wool, the liquid synthetic resin on the surface of the rock wool is made to act as a thickener while Of thickener for liquid synthetic resin in the center This is to reduce the effect as much as possible. As described above, rock wool made of liquid synthetic resin absorbed has an extremely high viscosity of about tens of thousands to several tens of thousands of cps, but can be kneaded with aggregate even at low temperatures in winter. The easy reason is that the initial viscosity of the liquid synthetic resin to be absorbed by rock wool is based on about 1300 cps at 20.In addition, when thickening is adjusted, uniform thickening is not performed on the whole. Part of the liquid synthetic resin absorbed in rock wool is to leave the initial low viscosity state. In other words, since the liquid synthetic resin is absorbed into the rock woolen and fiberized, it becomes easier to mix with the aggregate, and the part of the synthetic resin left with low viscosity acts during kneading with the mixer. It can be understood. In the case where the liquid synthetic resin is a two-part liquid composed of a main agent and a curing agent, the main agent is absorbed into rock wool to form a fiber, and this is mixed with inorganic fibers to stabilize the structure. It is preferable to add an aggregate as needed, then add a hardening agent and knead the mixture.
上記のような増粘調整によって、 ガラス繊維等の無機繊維と、 液状合成樹 脂を吸収したロックウールとがより一体化し、 得られる合成樹脂組成物を安 定させることができる。 この様にして得た本発明の合成樹脂組成物の特徴は、 約 2 0万 c p s程度の極めて高い粘度であっても、 通常のアスファルトと同 様に石粉や細砂を含む骨材と均一に混練して密粒配合とすることが出来、 又、 従来の液状合成樹脂をそのまま接着材として使用する場合のような、 可使用 時間帯における液状合成樹脂の沈下現象を防止できるうえに、 低温下におけ る作業、 施工においても加熱は一切不要である、 という点にある。 しかも、 骨材の安定を完全たらしめる転圧作業も、 アスファルトの場合と比較して約 六分の一程度でァスフアルトと同様の安定が得られる。 即ち、 本発明の合成 樹脂組成物と骨材との混練物は、 アスファルトと骨材との混練物と比較して、 6〜 7倍の安定を得ることができる。 従って、 同一条件下においては、 その 骨材安定度は、 アスファルトの転圧後の骨材安定度よりはるかに高く、 その ため、 施工時の転圧作業においても、 アスファルトの場合は口一ラーでの締 め固めの回数が 5〜 6往復であるのに対し、 本発明の合成樹脂組成物の場合 には一往復で同様の骨材安定を得ることができる。 そして、 本発明の更なる 特徴は、 本発明の合成樹脂組成物は、 これを接着材として骨材と混練して得 た舗装体であれ、 ブロックであれ、 曲げ強度のテストで破壊した割れ目を見 れば明確なように、 骨材が割れて折れている。 つまり、 合成樹脂組成物部分 の強度が極めて大きいということである。 又、 この合成樹脂組成物は、 合成 樹脂が口ックウ一ルに吸収されて繊維化されたものと、 補強繊維としての無 機繊維とを併用したものであるので、 骨材間の接着作用が全て線状で行われ、 しかも骨材間の空隙中にもガラス繊維等の無機繊維や液状合成樹脂を吸収し たロックウール等の繊維状物が存在するため、 超微細な空隙を形成する。 こ れらの結果、 従来の液状合成樹脂のみでは得られなかった強度の向上が得ら れ、 しかも、 骨材間の空隙が極めて微細な構造であるため粉塵や土砂の粒子 も詰まりきれず、 目詰まりしにくい透水機能を有する舗装体やブロックとす ることが出来るのである。 By the above-mentioned viscosity increase adjustment, inorganic fibers such as glass fibers and rock wool that has absorbed liquid synthetic resin are further integrated, and the obtained synthetic resin composition can be stabilized. The characteristic of the synthetic resin composition of the present invention obtained in this way is that even with an extremely high viscosity of about 200,000 cps, it can be uniformly mixed with aggregate containing stone powder and fine sand as in ordinary asphalt. It can be kneaded to form a dense granule mixture. In addition, it can prevent the liquid synthetic resin from sinking during the usable time, such as when using the conventional liquid synthetic resin as it is as an adhesive. The point is that heating is not required at all during work and construction. Moreover, the same compaction work as for asphalt can be obtained in about 1/6 of the compaction work that makes the aggregate stable completely. That is, the kneaded product of the synthetic resin composition of the present invention and the aggregate can obtain 6 to 7 times the stability as compared with the kneaded product of the asphalt and the aggregate. Therefore, under the same conditions, the aggregate stability is much higher than the aggregate stability after asphalt compaction. Tightening While the number of times of compaction is 5 to 6 reciprocations, in the case of the synthetic resin composition of the present invention, the same aggregate stability can be obtained in one reciprocation. Further, a further feature of the present invention is that the synthetic resin composition of the present invention, whether a pavement or a block obtained by kneading the synthetic resin composition with an aggregate as an adhesive or a block, is free from cracks broken in a bending strength test. As you can see, the aggregate is broken and broken. That is, the strength of the synthetic resin composition portion is extremely high. In addition, since the synthetic resin composition is a combination of the synthetic resin absorbed into the mouth and made into fibers and the inorganic fibers as reinforcing fibers, the adhesive action between the aggregates is reduced. All the processes are performed in a linear manner. In addition, ultrafine voids are formed in the voids between the aggregates because there are also inorganic fibers such as glass fibers and fibrous materials such as rock wool absorbing liquid synthetic resin. As a result, strength improvement that could not be obtained with the conventional liquid synthetic resin alone was obtained, and because the voids between the aggregates were extremely fine, dust and earth and sand particles could not be completely clogged. This makes it possible to use pavements and blocks that have a water-permeability function that does not easily clog.
本発明の合成樹脂組成物に骨材を混合、 混練して透水性を有する舗装ゃブ ロック等を得る場合の骨材配合としては、 砕石のみならず、 粗砂、 細砂、 石 粉等を含む粗粒配合、 密粒配合とすることができる。 又、 合成樹脂組成物と 骨材との配合割合は特に限定はないが、 通常は骨材重量に対して合成樹脂組 成物を 3重量%〜 1 5重量%、 より好ましくは 4〜7重量%程度の割合で混 合する。  When the aggregate is mixed and kneaded with the synthetic resin composition of the present invention to obtain a pavement block having water permeability, not only crushed stone but also coarse sand, fine sand, stone powder, etc. It can be a mixture of coarse particles and a mixture of fine particles. The mixing ratio of the synthetic resin composition and the aggregate is not particularly limited, but usually the synthetic resin composition is 3 to 15% by weight, more preferably 4 to 7% by weight based on the weight of the aggregate. Mix at about%.
本発明の合成樹脂組成物を用いて舗装を行う方法は、 従来の透水性舗装と 同様であり、 もともとの地盤である路床の上に砕石等を締め固めて造られる 路盤の上に、 前記合成樹脂組成物に骨材を混合、 混練したものを舗装すれば よい。 尚、 このような透水性舗装では、 雨水が舗装体を通して下方の路盤中 に浸透することで、 路盤の支持力が小さくなつたり、 又、 冬期には、 路盤中 に浸透した水が凍結して膨張し、 舗装体を押し上げてしまうといったおそれ もある。 これを防止するために、 例えば、 図 1に示すように、 透水性舗装の 施工時に、 舗装体 1から路床 2にかけて、 舗装体 1 と同様に本発明の合成樹 脂組成物に骨材を混合、 混練して成形してなる透水性材料からなる柱状のド レン材 3を、 路盤 4を貫通して設けておくことで、 雨水を舗装体 1から、 前 記透水性のドレン材 3を通じて直接、 路床 2へ導き、 雨水の浸透による路盤 4の支持力の低下や、 路盤 4へ浸透した水の膨張により舗装体 1が持ち上げ られることを防止することができる。 又、 前記のように雨水をもともとの地 盤である路床 2へ導くことで、 地中の乾燥による植物に必要なバクテリアの 死滅、 水分の補強が行われないための街路樹の育成の悪化といったことを防 止することができる。 更に、 上記とは逆に、 路床 2が過剰に含水している場 合には、 前記ドレン材 3を通じて路床 2内の水分を舗装体 1の表面から蒸発 させることで、 路床 2の支持力の低下を防止することもできる。 The method of performing pavement using the synthetic resin composition of the present invention is the same as that of the conventional permeable pavement. The aggregate obtained by mixing and kneading the aggregate with the synthetic resin composition may be paved. In addition, in such a permeable pavement, rainwater penetrates into the lower roadbed through the pavement, so that the bearing capacity of the roadbed is reduced, and in winter, the water that has permeated the roadbed freezes. It may expand and push up the pavement. To prevent this, for example, as shown in Fig. 1, At the time of construction, from the pavement 1 to the subgrade 2, a columnar drain material 3 made of a water-permeable material formed by mixing, kneading and forming an aggregate with the synthetic resin composition of the present invention in the same manner as the pavement 1 By penetrating the roadbed 4, rainwater is guided from the pavement 1 directly to the subgrade 2 through the permeable drain material 3, which reduces the bearing capacity of the roadbed 4 due to the penetration of rainwater. However, it is possible to prevent the pavement 1 from being lifted by the expansion of the water that has penetrated into the roadbed 4. In addition, as described above, by guiding rainwater to the subgrade 2 which is the original ground, bacteria necessary for plants are killed due to drying in the ground, and the growth of street trees is deteriorated because water is not strengthened. This can be prevented. Further, conversely to the above, when the subgrade 2 contains excessive water, the moisture in the subgrade 2 is evaporated from the surface of the pavement 1 through the drain material 3 to form the subgrade 2. It is also possible to prevent a decrease in supporting force.
前記ドレン材 3の形状や大きさには特に制限はなく、 円柱状、 角柱状等の 各種形状、 外径のものを用いることができる。 又、 その設置数についても、 施工現場の状況に応じて適宜決定すればよい。  The shape and size of the drain material 3 are not particularly limited, and various shapes such as a columnar shape, a prismatic shape, and an outer diameter can be used. Also, the number of installations may be appropriately determined according to the situation at the construction site.
又、 上記のように本発明の合成樹脂組成物は、 驚異的な強度を有すること から、 F R P構造体の製造においても、 従来の液状合成樹脂を、 液状合成樹 脂が繊維化された本発明の合成樹脂組成物に代えることにより、 F R Pの強 度は更に倍加される。  Further, as described above, the synthetic resin composition of the present invention has surprising strength, so that even in the production of an FRP structure, the conventional liquid synthetic resin is replaced with a liquid synthetic resin fiber of the present invention. The strength of FRP is further doubled by substituting the synthetic resin composition described above.
更に、 本発明の合成樹脂組成物を用いて容器を成形し、 この容器内に P C Bを入れ密封して溶出検査を行ったところ、 P C Bが容器内に完全に封じ込 められていた、 という結果も得ている。 具体的には、 後記する実施例で示す ように、 本発明の合成樹脂組成物で容器を成形し、 これに P C Bを密封して 溶出試験を行ったところ、 P C Bの溶出は全く検出されなかった。 しかも、 P C Bを溶解させた n—へキサンの溶出も一切検出されず、 更には、 同じく 後記の実施例で示すように、 種々の有害重金属等が混入している焼却灰の場 合にも、 本発明の合成樹脂組成物を当該焼却灰と混練して 9 mm厚の平板を 形成して固化しただけで、 同様に有害物質の溶出は検出されなかった。 本発明に係る繊維化された合成樹脂組成物によれば、 従来の液状合成樹脂 の薄膜作用を完全に厚膜作用させることを得る。 即ち、 従来、 合成樹脂を主 成分とする液状のバインダーを骨材等の基材と混練しても、 合成樹脂そのも のが化学変化を起こして硬化が始まるまでの可使用時間帯の中で必ず沈下現 象を起こして均一な接着効果が得られない、 という欠点があった。 これに対 して、 本発明の合成樹脂組成物は、 低温下においても骨材との混練を可能に したばかりでなく、 沈下現象を起こすことなく、 均一な接着効果を得ること ができる。 又、 従来の透水性の舗装体や材料では、 透水性は骨材間に生じる 空隙容積に依存しているため、 空隙容積が大きく、 該空隙に粉塵や土砂が詰 まり易い欠点を有していたが、 本発明の合成樹脂組成物を用いた透水性舗装 や透水性材料の場合には、 骨材間の空隙は繊維化された合成樹脂や無機繊維 により超微細な空隙構造になっているため、 粉塵や土砂の粒子も完全には詰 まりきれず、 水と空気のみを透過させることができ。 又、 本発明の合成樹脂 組成物は、 超高粘度であるにもかかわらず、 加温もせずに常温で骨材と混合 することができる。 更に、 主剤と硬化剤とからなる二液性の合成樹脂の場合, 主剤をロックウールに吸収させて繊維化し、 粘度を例えば 1 0万 c p s程度 の超高粘度としても、 0 X:程度の低温下でも加温することなく骨材と混合で き、 その後、 1 6 0 0 c p s程度の低粘度の硬化剤を投入して混合しても、 硬化には何ら支障を受けない。 即ち、 通常、 主剤と硬化剤とからなる二液性 の液状合成樹脂を使用する場合には、 先ず合成樹脂の主剤と硬化剤とを良く 混合したのち、 骨材等と混練するなり、 又は、 そのまま接着剤として用いる なり、 あるいは、 成形素材として型に入れて硬化させる。 これに対し、 本発 明の合成樹脂組成物は、 接着材としての用途に用いる場合には、 これを骨材 と混練したのちに硬化剤を混入して練り上げることができる。 Furthermore, when a container was molded using the synthetic resin composition of the present invention, and the PCB was placed in the container and sealed and subjected to an elution test, the result was that the PCB was completely sealed in the container. Have also gained. Specifically, as shown in Examples described later, when a container was molded with the synthetic resin composition of the present invention, and a PCB was sealed and subjected to a dissolution test, no dissolution of the PCB was detected. . In addition, no elution of n-hexane in which the PCB was dissolved was detected at all, and even in the case of incinerated ash containing various harmful heavy metals, as shown in the examples described later. The synthetic resin composition of the present invention was kneaded with the incinerated ash to form a 9 mm-thick plate and solidified, but no elution of harmful substances was detected. According to the fibrous synthetic resin composition of the present invention, a thin film function of a conventional liquid synthetic resin can be completely made to act as a thick film. In other words, conventionally, even if a liquid binder containing a synthetic resin as a main component is kneaded with a base material such as an aggregate, the synthetic resin itself undergoes a chemical change and is allowed to undergo curing within a usable time zone until curing starts. There was a drawback that the phenomenon of sinking was always caused and a uniform adhesive effect could not be obtained. On the other hand, the synthetic resin composition of the present invention not only enables kneading with the aggregate even at a low temperature, but also can obtain a uniform adhesive effect without causing a settling phenomenon. Further, in conventional water-permeable pavements and materials, water permeability depends on the void volume generated between the aggregates, so that the void volume is large and the voids are liable to be clogged with dust and earth and sand. However, in the case of a water-permeable pavement or a water-permeable material using the synthetic resin composition of the present invention, the voids between the aggregates have an ultrafine void structure due to the fibrous synthetic resin or inorganic fibers. As a result, dust and dirt particles cannot be completely clogged, allowing only water and air to pass through. Further, the synthetic resin composition of the present invention can be mixed with the aggregate at room temperature without heating even though it has an extremely high viscosity. Furthermore, in the case of a two-component synthetic resin consisting of a main agent and a curing agent, the main agent is absorbed into rock wool to form a fiber, and even if the viscosity is as high as 100,000 cps, for example, the viscosity is as low as 0 X: low temperature. It can be mixed with the aggregate without heating even underneath. Even if a low-viscosity curing agent of about 160 cps is then added and mixed, there is no problem in curing. That is, when a two-part liquid synthetic resin composed of a main agent and a curing agent is used, usually, the main agent of the synthetic resin and the curing agent are first mixed well, and then kneaded with the aggregate or the like, or It can be used as it is as an adhesive, or it can be put into a mold as a molding material and cured. On the other hand, when the synthetic resin composition of the present invention is used for an adhesive, it can be kneaded with an aggregate and then mixed with a curing agent.
以上のように、 液状合成樹脂を繊維化し超高粘度化して用いる本発明の合 成樹脂組成物は、 思うように厚膜の作用をさせることができる。 又、 先に述 ベたとおり、 液状合成樹脂のみでは硬化時の耐圧力が 1 c m 2当たり 3 5 0 k gである場合に、 同じ樹脂を用いて本発明に基づいて繊維化して超高粘度 化された合成樹脂組成物の硬化時の 1 c m 2当たりの耐圧力は 1 3 1 1 k g にまで向上した。 又、 本発明では、 液状合成樹脂をロックウールに吸収させ て繊維化したことで、 石粉等が極端に液状合成樹脂を吸収することがなく、 石粉や細砂等の細かいものも骨材として安定させることができ、 高強度で目 詰まりのない透水性舗装や透水性材料を得ることができる。 更に、 この合成 樹脂組成物で成形した F R Pは従来の F R Pに較べて格段にその強度が向上 している。 更に、 この合成樹脂組成物で作成した容器は、 P C B等の有害物 質を完全に封じ込めることができる。 図面の簡単な説明 As described above, the synthetic resin composition of the present invention, which is used by forming a liquid synthetic resin into fibers and increasing the viscosity thereof, can function as a thick film as desired. In addition, as described above, the pressure resistance during curing of the liquid synthetic resin alone is 3550 per cm 2. if kg, and pressure resistance of 1 cm 2 per during curing of fiberizing ultra high viscosity synthetic resin composition in accordance with the present invention with the same resin was improved to 1 3 1 1 kg . Also, in the present invention, since the liquid synthetic resin is absorbed into rock wool and fiberized, stone powder and the like do not extremely absorb the liquid synthetic resin, and fine particles such as stone powder and fine sand are stable as aggregates. This makes it possible to obtain a high-strength, clogging-free permeable pavement or permeable material. Further, the strength of the FRP molded with this synthetic resin composition is remarkably improved as compared with the conventional FRP. Further, containers made of this synthetic resin composition can completely contain harmful substances such as PCBs. BRIEF DESCRIPTION OF THE FIGURES
図 1 透水性舗装の施工例を示す断面説明図。  Fig. 1 Explanatory sectional view showing a construction example of permeable pavement.
図 2 本発明の合成樹脂組成物を用いた有害物物封入容器の説明図であり 、 (a ) は模式的斜視図、 (b ) は模式的断面図である。  FIG. 2 is an explanatory view of a harmful substance enclosing container using the synthetic resin composition of the present invention, wherein (a) is a schematic perspective view and (b) is a schematic sectional view.
図 3 透水試験方法の概略図。  Figure 3 Schematic of the permeability test method.
図 4 曲げ試験方法の概略図。 発明を実施するための最良の形態  Figure 4 Schematic of the bending test method. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 、 2 )  (Examples 1 and 2)
下記表 1に示す配合により、 ロックウールにビニルエステル樹脂 (リポキ シ A C 2 0 1、 昭和高分子株式会社商標) を吸収させたのち、 ポリエステル 樹脂被覆したガラス繊維を混合し、 この混合物に対して粉体状セルロースを 3分おきに 5回に分けて添加混合して、 本発明の合成樹脂組成物を得た。 こ こで、 前記ロックウールは、 鉄鋼石を高温で溶融して鉄分を取り出したあと のスラグに、 硬度が中間、 軟質の岩石数種を混合して更に高温で溶解した溶 岩から製造された繊維を用いた。 このロックウールは、 該ロックウール 1 0 gに水を飽和状態にまで吸収させると約 9 5 gとなるものであり、 9 5 0重 量%の吸収率を有するものである。 更に、 ガラス繊維としては、 ガラスの原 料である珪石を高温で溶融した溶岩から製造したガラス繊維を、 強度を向上 させるためにポリエステル系樹脂で被覆したものを使用した。 After the vinyl ester resin (Ripoxy AC 201, Showa Polymer Co., Ltd.) is absorbed into rock wool by the composition shown in Table 1 below, glass fiber coated with a polyester resin is mixed. Powdered cellulose was added and mixed 5 times every 3 minutes to obtain a synthetic resin composition of the present invention. Here, the rock wool was produced from lava melted at high temperature by mixing several kinds of medium and soft hardness rocks into slag after iron was melted at high temperature and iron was taken out. Fiber was used. This rock wool becomes about 95 g when 10 g of the rock wool absorbs water to a saturated state. It has a percentage of absorption. In addition, as the glass fiber, a glass fiber produced from lava obtained by melting silica as a raw material of glass at a high temperature and coated with a polyester resin to improve the strength was used.
表 1 合成樹脂組成物の配合  Table 1 Composition of synthetic resin composition
Figure imgf000025_0001
次に、 前記合成樹脂組成物に対し、 下記表 2に示す配合の骨材、 並びに硬 化剤及び硬化促進剤を、 モルタルミキサー (株式会社テスコ製、 容量; 2 0 L、 動力 ; 2 0 0 V、 攪拌羽根; フック) を用いて、 下記表 3に示す配合に より、 先ず、 樹脂組成物に対して攪拌しながら骨材を添加して 2分間攪拌し た後、 硬化促進剤を添加して 2分間攪拌し、 その後、 硬化剤を添加して更に 3分間練り上げた。
Figure imgf000025_0001
Next, an aggregate having the composition shown in Table 2 below, a hardener and a hardening accelerator were added to the synthetic resin composition using a mortar mixer (manufactured by Tesco Corporation, capacity: 20 L, power: 200 V, stirring blades; hooks), first, the aggregate was added to the resin composition while stirring, and the mixture was stirred for 2 minutes, and then the curing accelerator was added. The mixture was stirred for 2 minutes, and then a curing agent was added and kneaded for another 3 minutes.
表 2 骨材の配合 (重量%) Table 2 Aggregate composition (% by weight)
Figure imgf000026_0001
表 3 混練物の配合
Figure imgf000026_0001
Table 3 Composition of kneaded material
Figure imgf000026_0002
上記のようにして練り上げた混練物を用い、 「J I S A 1 1 32 コ ンクリー卜の強度試験用供試体の作り方」 に準じて 10 X 1 0 X 40 c の 曲げ試験体を作成し、 試験体打設 2日後に脱型し、 標準状態での 8日気中養 生試験体での曲げ試験を 「 J I S A 1 1 06 コンクリートの曲げ試験 方法」 に準じて 3等分点載荷法により行った。 曲げ試験結果を表 4に示す。 又、 上記実施例 1の混練物を用いて同様に φ 1 00 X 200 mmの円柱状試 験体を作成し、 セメント ' コンクリート圧縮強度試験方法に準じて強度試験 を行い、 その結果も表 4に併記した。
Figure imgf000026_0002
Using the kneaded material kneaded as described above, prepare a 10X10X40c bending specimen in accordance with "How to make a specimen for strength test of JISA 1132 concrete" and strike the specimen. Two days after the installation, the mold was removed, and a bending test was performed on an 8-day air-cured test specimen in the standard condition by the three-point load method according to “JISA 1106 Concrete Bending Test Method”. Table 4 shows the bending test results. Similarly, a cylindrical test specimen of φ100 × 200 mm was prepared using the kneaded material of Example 1 above, and a strength test was performed in accordance with the Cement-Concrete Compressive Strength Test Method. It was also described in.
表 4 試験結果 Table 4 Test results
曲げ試験結果 円柱試験体の強度  Bending test result Strength of cylindrical specimen
強度 (NZmm2) 平均値 (NZinm2) (N/mm2) Strength (NZmm 2 ) Average value (NZinm 2 ) (N / mm 2 )
1 28  1 28
実施例 1 1 0. 47 0. 8 7 82 Example 1 1 0.47 0.8.82
1 0. 87  1 0.87
8. 98  8. 98
実施例 2 8. 72 8. 87 Example 2 8.72 8.87
8. 90  8. 90
(実施例 3) (Example 3)
液状合成樹脂として、 エポキシ系樹脂 (二液性) を用いた。 又、 ロックゥ ール及びガラス繊維は、 上記実施例 1、 2と同様のものを用いた。  Epoxy resin (two-pack) was used as the liquid synthetic resin. In addition, the same rock rolls and glass fibers as those in Examples 1 and 2 were used.
前記ロックウールに対し、 粘度 1 6000 c p s以下のエポキシ樹脂の本 剤を飽和状態になるまで吸収させた。 次に、 このエポキシ樹脂を吸収した口 ックウールの繊維間をばらけさせるためにゆつく りとミキシングした。 次に、 前記エポキシ樹脂を吸収したロックウールに、 合成樹脂で被覆した前記ガラ ス繊維を、 前記エポキシ樹脂量に対して 3重量%混合して、 ロックウールと ガラス繊維とを良くからませるようにミキシングした。 次いで、 このロック ウールとガラス繊維との混合物を、 およそ 8万 c p sに増粘させるために、 エポキシ樹脂量に対して 5重量%の炭酸カルシウムを増粘剤として、 これを 5分割し、 その 1回分を加えて 1 0分間良くミキシングした後、 2回目の増 粘剤を投入して 1 0分間ミキシングした。 次いで、 3回目、 4回目、 5回目 と増粘剤を投入して同じく 1 0分間ずつ増粘作業を行い、 本発明の合成樹脂 組成物を得た。 次に、 土壌 1 g当たりに P C B標準溶液を 0. 1 g添加し て試料とし、 この試料中の P C B含有量を求めた。 上記合成樹脂組成物に硬 化剤を加えて図 2に示す直径 dが 1 0 0 mm、 高さ hが 5 0mm、 肉厚 tが 8mm、 内径が 84mmの蓋付き容器を作成し、 該容器中に前記試料 70 g を封入した後、 前記と同じ合成樹脂組成物により蓋を密封接着し、 下記の条 件に従って P C B溶出量を求めた。 尚、 用いた P C B標準溶液は n—へキサ ン溶液であり、 試料の均一化を考慮し、 土壌を湿潤するため n—へキサンを 土壌 1 0 g当たり 1 m 1の割合で添加した。 This rock wool was absorbed with an epoxy resin of the present invention having a viscosity of 16000 cps or less until it became saturated. Next, mixing was performed slowly to disperse the fibers of the wool that absorbed the epoxy resin. Next, the glass fiber coated with a synthetic resin is mixed with rock wool that has absorbed the epoxy resin in an amount of 3% by weight based on the amount of the epoxy resin so that the rock wool and the glass fiber are entangled. Mixing. Next, in order to thicken this mixture of rock wool and glass fiber to about 80,000 cps, 5 weight% of calcium carbonate with respect to the amount of epoxy resin was used as a thickener, and this was divided into 5 parts. After adding the batch and mixing well for 10 minutes, the second thickener was added and mixed for 10 minutes. Next, the thickener was added for the third, fourth, and fifth times, and the thickening operation was similarly performed for 10 minutes each to obtain the synthetic resin composition of the present invention. Next, 0.1 g of PCB standard solution was added per 1 g of soil to make a sample, and the PCB content in this sample was determined. A hardening agent was added to the above synthetic resin composition to obtain a diameter d of 100 mm, a height h of 50 mm, and a wall thickness t shown in FIG. Create a container with a lid of 8 mm and an inner diameter of 84 mm, enclose 70 g of the sample in the container, seal the lid with the same synthetic resin composition as above, and determine the PCB elution amount according to the following conditions. Was. The PCB standard solution used was an n-hexane solution. Considering the homogenization of the sample, n-hexane was added at a rate of 1 ml per 10 g of soil to wet the soil.
〔浸漬条件〕  [Immersion conditions]
以下の項に従い、 ガラスビーカーに試料を入れ、 静置による浸漬試験とし た。  According to the following sections, the sample was placed in a glass beaker and subjected to a standing immersion test.
•浸漬溶媒: 蒸留水を塩酸にて pH 4. 0に調整した。  • Immersion solvent: Distilled water was adjusted to pH 4.0 with hydrochloric acid.
·溶媒比 : 試料の表面積 1 cm2当たりに対し、 浸漬溶媒 2m 1 とした。 •温度条件:恒温槽にて 40土 1でとした。 · Solvent ratio: The immersion solvent was 2 m 1 per 1 cm 2 of the surface area of the sample. • Temperature condition: 40 soil 1 in a thermostat.
•浸漬時間: 48時間。  • Immersion time: 48 hours.
〔測定項目及び測定方法〕  [Measurement items and methods]
測定項目 : P CB  Measurement item: P CB
測定方法: J I S— K— 00 9 3 (ガスクロマトグラフ法)  Measurement method: JIS—K—0093 (Gas chromatography)
〔測定結果〕  〔Measurement result〕
-試料の P C B含有量: 0. 1 0mg/k g  -Sample PCB content: 0.10mg / kg
•封入物からの浸漬溶出試験結果: ND (定量下限値 (0. 0 003mg /k g) 以下)  • Results of immersion dissolution test from inclusions: ND (lower limit of quantification (0.0003mg / kg) or less)
〔試験結果〕  〔Test results〕
本測定に用いた浸漬溶出液量は、 640m 1であったことから、 以下の式 により溶出量を求めた。 ここに、 C :浸漬溶出液の P C B濃度 (mgZm 1 ) を定量下限値の 0. 0 00 3 mgZk gとした場合、  Since the amount of the immersion eluate used in this measurement was 640 ml, the elution amount was determined by the following equation. Here, C: When the PCB concentration (mgZm 1) of the immersion eluate is set to the lower limit of quantification of 0.003 mgZkg,
P C B溶出量 (^ g) <C X 640  PCB elution amount (^ g) <CX640
< 0. 1 9  <0.19
封入した P C B量が 7 /i gであることから、 封入試料からの P C B溶出比 は 3 %以下である。 又、 クロマトグラムでは、 P CB (分子量 300〜60 0) のパターンは全く確認されず、 溶出量は皆無であったといえる。 Since the amount of enclosed PCB is 7 / ig, the elution ratio of PCB from the enclosed sample is 3% or less. In the chromatogram, P CB (molecular weight 300 to 60 The pattern of 0) was not confirmed at all, and it can be said that there was no elution amount.
(実施例 4) (Example 4)
前記実施例 3において、 P C B標準溶液の代わりに下記表 5に記載のもの を試料として用いた以外は実施例 3と同様にして下記の項目について測定を 行った。 結果を表 5に示す。  The following items were measured in the same manner as in Example 3 except that the ones shown in Table 5 below were used as samples instead of the PCB standard solution. Table 5 shows the results.
〔測定項目及び測定方法〕  [Measurement items and methods]
- カドミウム : J I S— K一 0 1 02 5 5 (原子吸光光度法)  -Cadmium: JIS—K-1 0 102 5 5 (Atomic absorption spectrophotometry)
J I S— K一 0 1 02 54 (原子吸光光度法) J I S—K-1 0 1 02 54 (Atomic absorption spectrophotometry)
• 六価クロム J I S -K 0 1 0 2 6 5 (ジフエ二ルチオカルバジ卜 吸光光度法) • Hexavalent chromium JIS-K 0 1 0 2 6 5 (diphenylthiocarbazide absorption spectrophotometry)
•砒素 J I S— K一 0 1 02— 6 1 (ジェチルチオカルバミン酸 銀吸光光度法)  • Arsenic JIS—K-1 0 02—6 1 (silver getyl thiocarbamate spectrophotometry)
•総水銀 環境庁告示 59号付表 3 (原子吸光光度法) • Total mercury Announcement of the Environment Agency No. 59 Appendix 3 (Atomic absorption spectrophotometry)
• アルキル水銀:環境庁告示 5 9号付表 4 (ガスクロマトグラフ法) ' シアン : J I S— K— 0 1 02— 3 8 (4-ピリジンカルボン酸ビラ ゾロン吸光光度法) • Alkyl mercury: Announcement of the Environment Agency Notification No. 59, Appendix 4 (Gas chromatographic method) '' Cyan: JIS—K— 0102—38 (birazolone 4-pyridinecarboxylate spectrophotometric method)
有機りん 環境庁告示 59号付表 1 (ガスクロマトグラフ法) P C B J I S— K一 00 93 (ガスクロマトグラフ法) 銅 J I S— K一 0 1 02— 5 2 (原子吸光光度法) Organophosphorus Notification of Environment Agency No. 59 Appendix 1 (Gas Chromatography) PCBJIS-K-1 00 93 (Gas Chromatography) Copper JIS-K-1 0 102-2 5 2 (Atomic Absorption Spectrophotometry)
Figure imgf000030_0001
Figure imgf000030_0001
ND:定量下限値未満、 ( ) 内は灰自体からの溶出:  ND: Below the lower limit of quantification, (): Elution from ash itself:
(実施例 5) (Example 5)
実施例 3で用いたと同じ合成樹脂組成物と下記表 6に示す試料とを混合し たものから 1 00 X 1 85 X 9 mmの平板状不透水性ブロックを形成し、 実 施例 4と同様に溶出試験を行った。 結果を表 6に示す。 From the mixture of the same synthetic resin composition used in Example 3 and the samples shown in Table 6 below, a flat water-impermeable block of 100 X 185 X 9 mm was formed, and the same as in Example 4 A dissolution test was performed. Table 6 shows the results.
表 6 測定結果 (単位: m g Z 1 ) Table 6 Measurement results (unit: mg Z 1)
Figure imgf000031_0001
Figure imgf000031_0001
ND:定量下限値未満、 ( ) 内は灰自体からの溶出量  ND: less than the lower limit of quantification, (): elution amount from ash itself
(実施例 6) (Example 6)
実施例 3で用いたと同じ合成樹脂組成物に、 Omm〜 l Ommの骨材を、 骨材に対して前記合成樹脂組成物が 7重量%となるように混合した後、 前記 合成樹脂組成物中の合成樹脂量の 2分の 1の量の硬化剤を投入して混合し、 300 X 300 X 30 mmの平板ブロックを成形した。 この場合、 骨材と混 合した合材を金型に入れ、 左官ゴテでその合材を押さえて成形した後、 直ち に脱型した。 この平板ブロックは、 曲げ強度において 95 k g/ c m2を得 た。 The same synthetic resin composition used in Example 3 was mixed with an aggregate of Omm to l Omm so that the amount of the synthetic resin composition was 7% by weight with respect to the aggregate. Of the amount of the synthetic resin was added and mixed to form a flat plate block of 300 × 300 × 30 mm. In this case, the mixture mixed with the aggregate was placed in a mold, pressed with a plasterer's iron to form the mixture, and immediately removed from the mold. This plate block had a bending strength of 95 kg / cm 2 .
(実施例 7) (Example 7)
1 5 k gのロックウールに不飽和ポリエステル系樹脂の 1 000 k gを添 加して吸収させ、 更に炭素繊維 5 k gを加えて混練したのち、 300 gの炭 酸カルシウムを増粘剤として混合して粘度が 1 5 0 00 c p sの合成樹脂組 成物を作成し、 500 mmx 500 mmx 1 0 mmの F R Pボードを成形し た。 この FRPボードは、 金槌でたたいても破壊することができなかった。 15 kg of rock wool is added with 1 000 kg of unsaturated polyester resin and absorbed, and then 5 kg of carbon fiber is added and kneaded, and then 300 g of calcium carbonate is mixed as a thickener. Synthetic resin set with viscosity of 1500 cps A product was prepared and a 500 mm × 500 mm × 10 mm FRP board was formed. The FRP board could not be destroyed by hammering.
(実施例 8) (Example 8)
実施例 7と同じ合成樹脂組成物と密粒配合の砕石を、 骨材重量に対して合 成樹脂組成物が 6重量%となるように混合し、 l 00mmX 1 0mmX 60 0mmのテス卜ピースを手詰めにより作成し、 曲げ強度試験を行 た結果、 1 08 k gZc m2を得た。 The same synthetic resin composition as in Example 7 and crushed stones having a dense grain mixture were mixed so that the synthetic resin composition was 6% by weight based on the weight of the aggregate, and a test piece of 100 mm × 10 mm × 600 mm was obtained. prepared by Tezume, it results flexural strength test was rows, to obtain a 1 08 k gZc m 2.
(実施例 9) (Example 9)
ロックウール 4重量部に対し、 エポキシ樹脂の本剤 1 00重量部を加えて 飽和状態になるまで吸収させ、 ゆっく りとミキシングする。 次に、 合成樹脂 で被覆したガラス繊維を、 前記エポキシ樹脂量に対して 3重量部混合して、 口ックウールとガラス繊維とを良くからませるようにミキシングする。 次い で、 この混合物を増粘させるために、 エポキシ樹脂量に対して 4重量部のジ フエニルメタンジイソシァネ一トを増粘剤として加えて良くミキシングして 増粘作業を行い、 合成樹脂組成物を得る。 この合成樹脂組成物に表 7に示す 配合の骨材、 及び前記合成樹脂組成物に対して 3 5重量%の硬化剤を添加し て混練し、 該混練物より透水性の平板を作成する。 Add 100 parts by weight of epoxy resin to 4 parts by weight of rock wool, absorb until saturated, and mix gently. Next, 3 parts by weight of the glass fiber covered with the synthetic resin is mixed with respect to the amount of the epoxy resin, and the mixture is mixed so that the mouth wool and the glass fiber are entangled well. Next, in order to thicken this mixture, 4 parts by weight of diphenylmethane diisocyanate with respect to the amount of epoxy resin was added as a thickener and mixed well to carry out a thickening operation. Obtain a synthetic resin composition. An aggregate having the composition shown in Table 7 and 35% by weight of a curing agent based on the synthetic resin composition are added to the synthetic resin composition and kneaded, and a water-permeable flat plate is prepared from the kneaded product.
表 7 Table 7
Figure imgf000033_0001
上記のようにして作成される透水性平板について、 透水試験、 曲げ試験、 摩耗試験及びホイールトラッキング試験を行い、 その結果を表 8〜表 1 1に 示した。 表 8 透水試験結果
Figure imgf000033_0001
The permeability test, bending test, abrasion test and wheel tracking test were performed on the permeable plate prepared as described above, and the results are shown in Tables 8 to 11. Table 8 Permeability test results
供試体番号 N o. 1 N o. 2 N o. 3 平均値 透水係数  Specimen number No. 1 No. 2 No. 3 Average value Permeability
5.80X10"' 5.87X10"1 8.04X10"' 6.57X10— 1 5.80X10 "'5.87X10" 1 8.04X10 "' 6.57X10— 1
(cm/sec) 表 9 曲げ試験結果 (cm / sec) Table 9 Bending test results
供 a体番 N o. 1 N o. 2 N o. 3 平均値 曲げ強さ荷重  No. 1 No. 2 No. 3 Average value Bending strength load
21.8 21.5 19.9 21.1 21.8 21.5 19.9 21.1
(KN) 表 1 0 摩耗試験結果 (KN) Table 10 Wear test results
試験時間 15分 30分 60分 90分 120分 摩耗量 Test time 15 minutes 30 minutes 60 minutes 90 minutes 120 minutes Wear amount
0. 23 0. 54 0. 96- 1. 36 1. 78 0.23 0.54 0.96- 1.36 1.78
(mm) ホイールトラッキング試験結果 (mm) Wheel tracking test result
Figure imgf000034_0001
尚、 上記各試験の詳細を以下に示す < 表 1 2 供試体
Figure imgf000034_0001
The details of each of the above tests are shown below.
Figure imgf000034_0002
表 1 3 試験目的及び方法
Figure imgf000034_0002
Table 13 Test objectives and methods
試験項目 試験目的 試験方法  Test item Test purpose Test method
透水試験 透水性能 社団法人 日本道路協会編 「舗装試験法便覧別冊 」 に示す 「現場透水量試験方法」 による。  Permeability test Permeability Performance Based on the “Permeability test method on site” shown in “Pavement Test Method Handbook”, edited by The Japan Road Association.
曲げ試験 曲げ強さ J I S A 5304-1994 「舗装用コンクリート平板」 の 曲げ試験方法による。  Bending test Bending strength J I S A 5304-1994 Bending test method for “Pavement concrete plate”.
摩耗試験 耐摩耗性 ASTM C 779 「水平なコンクリート表面の耐摩耗試 験方法」 による。  Abrasion test Abrasion resistance ASTM C 779 “Abrasion resistance test method for horizontal concrete surface”.
ホイール卜ラ 耐流動性 社団法人 日本道路協会編 「舗装試験法便覧」 に ッキング試験 示す 「ホイールトラッキング試験方法」 による。 [透水試験方法」 Wheel Tora Fluid resistance Based on the “Wheel Tracking Test Method” shown in the “Pavement Test Method Handbook” edited by the Japan Road Association and shown in the “Keeping Test”. [Permeability test method]
試験器は、 図 3に示す現場透水量試験器 (大和建ェ (株) 製、 形式: DB - 34) を使用する。  As the tester, use the on-site permeability tester (manufactured by Daiwa Ken-E Co., Ltd., type: DB-34) shown in Fig.
(1) 供試体 (300X 300X 60mm) 表面をよく清掃する。 (1) Specimen (300X 300X 60mm) Thoroughly clean the surface.
(2) 試験器底板外周の底面に直径 lcm程度のひも状に伸ばした油性粘土を付 着させる。 (2) Attach a string of oily clay with a diameter of about lcm to the bottom of the outer periphery of the bottom plate of the tester.
(3) 試験器を平板表面に圧着させ、 油性粘土部分から水漏れしないように した後、 底板上にドーナッツ型の重りを載せる。  (3) Press the tester against the flat plate surface to prevent water leakage from the oily clay part, and place a donut weight on the bottom plate.
(4) 円筒部上面から 100mlの位置に目付 X iを付け、 X iから 400mlの位置に X2を付ける。 (4) with a basis weight X i from the cylindrical portion upper surface to a position of 100 ml, put X 2 from X i to the position of 400 ml.
(5) コックを閉じて、 水を円筒部上端まで注入する。  (5) Close the cock and pour water up to the top of the cylinder.
(6) コックを一気に全開し、 円筒部内の水位が、 から X2まで低下する 経過時間 (秒) をストップウォッチで計測し、 記録する。 (6) fully opened cock once, the water level in the cylindrical portion, the elapsed time decreases to X 2 (sec) was measured with a stopwatch from records.
(7) (5)、 (6)の作業を合計 3回繰り返す。 尚、 各測定毎に 1分間の間隔を 開ける。 (7) Repeat steps (5) and (6) three times in total. In addition, leave an interval of 1 minute for each measurement.
(8) 3回の平均時間を秒単位で算出する。 尚、 この平均時間は、 水 400mlを 流下させる時間である。  (8) Calculate the average time of three times in seconds. This average time is the time required for 400 ml of water to flow down.
(9) 算出した平均時間から 15秒当たりの流下した水量を算出して、 それを 透水量(ml/15秒) とする。  (9) Calculate the amount of water flowing down per 15 seconds from the calculated average time, and use it as the amount of water permeation (ml / 15 seconds).
[曲げ試験方法] [Bending test method]
試験機は図 4に示す 「 J I S B 7 7 3 3 圧縮試験機」 に規定するも の (前川試験器製作所製、 形式:圧縮試験秤量 1 0 0 tの耐圧試験器) を用 いる。  As the tester, the one specified in “JISB 773 3 Compression Tester” shown in Fig. 4 (made by Maekawa Test Instruments, Model: Compression test weighing tester with 100 t weight) is used.
(1) 供試体 (300 X300X 60 ) は図 4のように試験機に設置する。  (1) Specimen (300 X 300 X 60) shall be installed on the test machine as shown in Fig. 4.
(2) 載荷はスパン Lを 240mmとし、 スパンの中央に荷重を加えて行い、 試験 機が示す最大荷重を曲げ強さ荷重とする。 (2) Loading was performed by setting the span L to 240 mm and applying a load to the center of the span. The maximum load indicated by the machine is defined as the bending strength load.
(3) 供試体の加圧面及び支持面にはゴム板をあてがい、 荷重が均等に分布 されるように配慮する。 [摩耗試験方法」  (3) A rubber plate is applied to the pressing and supporting surfaces of the specimen so that the load is evenly distributed. [Wear test method]
試験機は、 AS TM C 7 7 9 「水平なコンクリート表面の耐摩耗試験 方法」 に準拠して試験を行うことが可能なように製作した試験装置を用いた  The test machine used was a test device that was manufactured so that it could be tested in accordance with ASTM C7779 “Abrasion resistance test method for horizontal concrete surface”.
(1) 供試体の寸法は、 縦 300ππηΧ横 300minX厚さ 50mmとする。 (1) The dimensions of the specimen shall be 300 ππη 300 300 min x 50 mm thick.
(2) 摩耗試験機は、 試験機上部のギヤ一ドモータ一によって直径 30cmの円 盤が 12rpmで回転するとともに、 この円盤に取り付けられた直径 6 cmの 3個 の摩耗輪が 280卬 mで回転し、 試験時には摩耗面に研磨材 (No.60のカーボラ ンダム) が 4〜6g/minの量が連続的に散布され、 面圧 108g/cm2で供試体上面 をドーナッツ状に摩耗する。 (2) The wear tester rotates a 30 cm diameter disk at 12 rpm by means of a geared motor at the top of the tester, and three 6 cm diameter wear wheels mounted on this disk rotate at 280 m. and, abrasive wear surface during the test (No.60 of Kabora random) amount of 4-6 g / min it is continuously sprayed, wear specimens top donut shape at a surface pressure of 108 g / cm 2.
(3) 摩耗量の測定方法は、 供試体の四隅に測定版の脚部を固定するための チップを貼り付け、 供試体上に設置した測定板上面から供試体上面までの深 さを摩耗面 24点についてデジタルダイヤルゲージ (l/lOOmm) で測定する。(3) A method for measuring the amount of wear is as follows.A chip for fixing the legs of the measurement plate is attached to the four corners of the test piece, and the depth from the upper surface of the measurement plate installed on the test piece to the upper surface of the test piece is measured. Measure 24 points using a digital dial gauge (l / lOOmm).
(4) 結果の表示は、 摩耗量測定を摩耗時間 30分までは 15分 (7.5分運転後、 逆回転で 7.5分運転して計 15分) 毎に行い、 その後は 30分毎に 120分まで測定 し各時間毎の摩耗深さを、 24点の平均値で示す。 (4) The results are displayed by measuring the wear amount every 15 minutes up to the wear time of 30 minutes (total of 15 minutes after 7.5 minutes of operation and 7.5 minutes of reverse rotation, and then 120 minutes every 30 minutes). The wear depth for each hour is indicated by the average value of 24 points.
[ホイールトラッキング試験方法] [Wheel tracking test method]
試験機は、 ホイールトラッキング試験機 (マクロス (株) 製、 MODEL NO. : T- 3 32 ) を使用する。 試験条件は、 下記の通りである。 ·走行方式: クランク式  The tester used is a wheel tracking tester (made by Macross, MODEL NO .: T-332). The test conditions are as follows. · Travel type: Crank type
' タイヤゴム硬度: 20 : : [IS硬度 84±4、 60で 〗IS硬度 78±2  '' Tire rubber hardness: 20:: [IS hardness 84 ± 4, 60〗 IS hardness 78 ± 2
-載荷荷重: 70± 1 kgf (接地圧 6.456kgf/cm2) •載荷方式: 垂直式 -Load: 70 ± 1 kgf (Ground pressure 6.456kgf / cm 2 ) • Loading method: Vertical
•走行回数: 42土 1回 Z龍  • Number of runs: 42 Sat once Z dragon
• 走行距離: 230±10min  • Mileage: 230 ± 10min
•試験温度: 60±2  • Test temperature: 60 ± 2
•養生時間: 5時間  • Curing time: 5 hours
•試験期間: 60分  • Test duration: 60 minutes
(1)上記条件で測定した結果より動的安定度を (式一 1 ) より求める,  (1) From the results measured under the above conditions, the dynamic stability is obtained from (Equation 1 1),
D S = 4 2 X { ( t t (d d,) } X C ! XC (式一 1 ) に、 D S = 4 2 X {(tt (dd,)) X C! XC (Equation 1 1)
D S :動的安定度 (回 Z匪)  DS: Dynamic stability (times Z marauder)
t , (標準時には 4 5分) における変位量 (mm)  Displacement at t, (45 minutes in standard case) (mm)
d 2 t 2 (標準時には 6 0分) における変位量 (mm) Displacement at d 2 t 2 (60 minutes as standard) (mm)
クランクによる変速駆動型の試験機を使用した場合の補正係数: Correction coefficient when using a variable speed drive type test machine with crank:
1.0 1.0
C 室内及び現場で作製した供試体 (幅 300mm) を使用した場合の補 正係 数 =1.0  C Correction coefficient when using test specimens (300 mm width) prepared indoors and on site = 1.0
(2) 精度としては、 変動係数の計算を行う。 変動係数は、 各試験結果の動 的安定度から標準偏差を算出し、 その標準偏差の平均で割ったもので 「%」 で表示する。 この変動係数が 20%を越えた場合は、 原因の推定や試験方法の チェックを行い、 必要があれば追加試験を行う。 産業上の利用可能性  (2) For accuracy, calculate the coefficient of variation. The coefficient of variation is calculated as the standard deviation from the dynamic stability of each test result, divided by the average of the standard deviations, and expressed as “%”. If the coefficient of variation exceeds 20%, estimate the cause and check the test method, and perform additional tests if necessary. Industrial applicability
本発明の合成樹脂組成物は、 これを接着材として骨材と混練することで、 目詰まりし難く、 維持力に優れ、 熱反射も少なく、 骨材のトッピングも殆ど ない、 透水性を有する舗装体を得ることができる。 又、 この舗装体により、 タイヤの摩擦音も吸収して消音性に優れ、 かつ耐摩耗性に優れた道路を提供 することができる。 又、 グレーチング、 インタ一ロッキング、 平板ブロック 等の多くのブロック製造においても、 従来のセメントニ次製品の製造と同様 に量産することができる。 又、 石粉や細砂も完全に混練することができ、 有 害物による汚染土壌の固化をはじめ、 P C B等の有害物質の封入、 プラスチ ック廃材やガラス片、 木片やモミ殻、 ゴム片、 貝殻片等多くの廃材のリサイ クル等も可能とする。 更に、 護岸の施工においても、 セメントの様な汚染が ない。 又、 砂防ダムの施工や擁壁の水抜きにおいても、 土砂は留めて水分の みを排出でき、 しかも目詰まりしないという効果が得られる。 更に、 この合 成樹脂組成物は、 厚膜による作用を有することから、 ダムやプール及び建造 物の水漏れや雨漏れ防止用の塗料としても有効である。 The synthetic resin composition of the present invention is kneaded with the aggregate as an adhesive to prevent clogging, excellent retention, less heat reflection, and almost no topping of the aggregate. No pavement having water permeability can be obtained. In addition, the pavement can provide a road excellent in noise reduction and abrasion resistance by absorbing the frictional noise of the tire. Also, in the production of many blocks, such as gratings, interlocking, and flat blocks, mass production can be performed in the same manner as the production of conventional secondary cement products. In addition, stone powder and fine sand can be completely kneaded, solidifying contaminated soil with harmful substances, encapsulating harmful substances such as PCBs, plastic waste materials, glass chips, wood and fir husks, rubber chips, Recycling of many waste materials such as shell pieces is also possible. In addition, there is no cement-like contamination in revetment construction. In addition, in the construction of sabo dams and drainage of retaining walls, it is possible to obtain the effect of retaining soil and discharging only water and not clogging. Further, since this synthetic resin composition has a function of a thick film, it is also effective as a paint for preventing water leakage and rain leakage from dams, pools and buildings.

Claims

請求の範囲 The scope of the claims
I . 液状合成樹脂と、 該液状合成樹脂を吸収させたロックウールと、 ガラ ス繊維、 炭素繊維及びアルミ繊維からなる群の内から選択される少なくと も 1種の無機繊維と、 増粘剤と、 からなる合成樹脂組成物。 I. Liquid synthetic resin, rock wool absorbing the liquid synthetic resin, at least one inorganic fiber selected from the group consisting of glass fiber, carbon fiber and aluminum fiber, and a thickener And a synthetic resin composition comprising:
2 . 前記ロックウールに液状合成樹脂を飽和状態にまでに吸収させてなる 請求項 1記載の合成樹脂組成物。  2. The synthetic resin composition according to claim 1, wherein the rock wool is made to absorb a liquid synthetic resin to a saturated state.
3 . 前記液状合成樹脂に対して前記無機繊維を 1〜 3 0重量%の割合で配 合してなる請求項 1記載の合成樹脂組成物。 3. The synthetic resin composition according to claim 1, wherein the inorganic fibers are mixed with the liquid synthetic resin at a ratio of 1 to 30% by weight.
4 . 前記液状合成樹脂に対して前記増粘剤を 1〜 1 5重量%の割合で配合 してなる請求項 1記載の合成樹脂組成物。 4. The synthetic resin composition according to claim 1, wherein the thickener is mixed with the liquid synthetic resin at a ratio of 1 to 15% by weight.
5 . 前記液状合成樹脂の硬化剤を更に配合してなる請求項 1記載の合成樹 脂組成物。  5. The synthetic resin composition according to claim 1, further comprising a curing agent for the liquid synthetic resin.
6 - 硬化促進剤を更に配合してなる請求項 1記載の合成樹脂組成物。  6. The synthetic resin composition according to claim 1, further comprising a curing accelerator.
7 . 前記液状合成樹脂が、 ビニルエステル系樹脂、 不飽和ポリエステル系 樹脂、 エポキシ系樹脂、 ウレタン系樹脂及び熱硬化性アクリル系樹脂から なる群の内から選択される少なくとも 1種の熱硬化性榭脂である請求項 1 記載の合成樹脂組成物。 7. The liquid synthetic resin is at least one kind of thermosetting resin selected from the group consisting of vinyl ester resin, unsaturated polyester resin, epoxy resin, urethane resin and thermosetting acrylic resin. The synthetic resin composition according to claim 1, which is a fat.
8 . 前記液状合成樹脂が、 合成樹脂を溶剤に溶解させたものである請求項 1記載の合成樹脂組成物。  8. The synthetic resin composition according to claim 1, wherein the liquid synthetic resin is obtained by dissolving a synthetic resin in a solvent.
9 . 前記ガラス繊維が、 前記ロックウールに吸収させた液状合成樹脂の溶 剤に溶解しない合成樹脂により被覆されたものである請求項 8記載の合成 樹脂組成物。  9. The synthetic resin composition according to claim 8, wherein the glass fiber is coated with a synthetic resin that is not dissolved in a solvent of the liquid synthetic resin absorbed in the rock wool.
1 0 . 前記増粘剤が、 イソシァネート類、 粉体状セルロース及び炭酸カル シゥムからなる群の内から選択される少なくとも 1種である請求項 1記載 の合成樹脂組成物。  10. The synthetic resin composition according to claim 1, wherein the thickener is at least one selected from the group consisting of isocyanates, powdered cellulose, and calcium carbonate.
I I . :!〜 1 0のいずれかに記載の合成樹脂組成物に骨材を混合、 混練し, これを敷設し、 転圧してなる透水性舗装。 II .: Aggregate is mixed and kneaded with the synthetic resin composition described in any of! A permeable pavement that is laid and rolled.
2 . :!〜 1 0のいずれかに記載の合成樹脂組成物に骨材を混合、 混練し 、 これを圧縮成形してなる透水性材料。 2::! A water-permeable material obtained by mixing, kneading, and compression-molding an aggregate with the synthetic resin composition according to any one of items 1 to 10.
PCT/JP1999/002354 1998-04-30 1999-04-30 Synthetic resin composition, and permeable pavement and permeable material using the same WO1999057200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/120480 1998-04-30
JP12048098A JP3145353B2 (en) 1998-04-30 1998-04-30 Method for producing composite synthetic resin composition

Publications (1)

Publication Number Publication Date
WO1999057200A1 true WO1999057200A1 (en) 1999-11-11

Family

ID=14787225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002354 WO1999057200A1 (en) 1998-04-30 1999-04-30 Synthetic resin composition, and permeable pavement and permeable material using the same

Country Status (2)

Country Link
JP (1) JP3145353B2 (en)
WO (1) WO1999057200A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116135A1 (en) * 2004-05-28 2005-12-08 John Arthur Cummins Fluid permeable composite material and process for same
CN1886462B (en) * 2003-11-25 2010-04-14 吉田清和 Composite synthetic resin composition and material therefrom
CN108129069A (en) * 2017-12-29 2018-06-08 深圳市嘉达高科产业发展有限公司 A kind of seepy material and preparation method thereof
US10094085B2 (en) 2008-03-11 2018-10-09 Terram Limited Cellular structures
US10267010B2 (en) 2011-07-21 2019-04-23 Fiberweb Holdings, Ltd. Confinement structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856648B1 (en) * 2016-05-24 2018-05-10 주식회사 엔엑스티 Potable battery module apparatus for detachable, external and independent type

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072565A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp fiber glass binder
JPH072560A (en) * 1993-01-20 1995-01-06 Haruki Obata Reinforced plastic alloy binder
JPH072564A (en) * 1993-02-01 1995-01-06 Haruki Obata Reinforced plastic fiber glass binder
JPH072563A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp hard binder
JPH072561A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp-reinforcing binder
JPH072562A (en) * 1993-02-01 1995-01-06 Haruki Obata Reinforced plastic carbon binder
JPH0820672A (en) * 1993-02-01 1996-01-23 Haruki Obata Frp fiber glass binder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072560A (en) * 1993-01-20 1995-01-06 Haruki Obata Reinforced plastic alloy binder
JPH072565A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp fiber glass binder
JPH072564A (en) * 1993-02-01 1995-01-06 Haruki Obata Reinforced plastic fiber glass binder
JPH072563A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp hard binder
JPH072561A (en) * 1993-02-01 1995-01-06 Haruki Obata Frp-reinforcing binder
JPH072562A (en) * 1993-02-01 1995-01-06 Haruki Obata Reinforced plastic carbon binder
JPH0820672A (en) * 1993-02-01 1996-01-23 Haruki Obata Frp fiber glass binder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886462B (en) * 2003-11-25 2010-04-14 吉田清和 Composite synthetic resin composition and material therefrom
WO2005116135A1 (en) * 2004-05-28 2005-12-08 John Arthur Cummins Fluid permeable composite material and process for same
EP1753815A4 (en) * 2004-05-28 2007-06-27 John Arthur Cummins Fluid permeable composite material and process for same
EA009777B1 (en) * 2004-05-28 2008-04-28 Джон Артур Камминс Fluid permeable composite material and process for same
AU2005247960B2 (en) * 2004-05-28 2009-10-29 John Arthur Cummins Fluid permeable composite material and process for same
US7879921B2 (en) 2004-05-28 2011-02-01 John Arthur Cummins Fluid permeable composite material and process for same
US10094085B2 (en) 2008-03-11 2018-10-09 Terram Limited Cellular structures
US11549229B2 (en) 2008-03-11 2023-01-10 Terram Limited Cellular structures
US10267010B2 (en) 2011-07-21 2019-04-23 Fiberweb Holdings, Ltd. Confinement structures
US10781569B2 (en) 2011-07-21 2020-09-22 Fiberweb Holdings Limited Confinement structures—DefenCell plastic gabion system
CN108129069A (en) * 2017-12-29 2018-06-08 深圳市嘉达高科产业发展有限公司 A kind of seepy material and preparation method thereof

Also Published As

Publication number Publication date
JP3145353B2 (en) 2001-03-12
JPH11310719A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
AM et al. Development of high quality pervious concrete specifications for Maryland conditions.
KR20070003914A (en) Water-permeable ground covering and method for producing a ground covering
JPH09105106A (en) Paving method of water-permeable concrete
CN107226648A (en) A kind of diamond dust mine tailing composite sand base ecological permeable bricks and preparation method thereof
KR102302127B1 (en) Eco-friendly acrylic polymer concrete water permeable pavement material composition and the polymer concrete water permeable block using the same and the water permeable pavement construction method thereof
WO1999057200A1 (en) Synthetic resin composition, and permeable pavement and permeable material using the same
KR100414901B1 (en) A concrete composite using slag
KR20110116567A (en) Permeable block using polymer
KR100874496B1 (en) Road paving material formation having steel making slag and method for paving of road using that
JP2005139412A (en) Composite synthetic resin composition, its production process, and molded product, pavement structure and paving method using the same
JP2002146709A (en) Water permeable base material utilizing reclaimed aggregate
FI74758B (en) FOERFARANDE FOER FRAMSTAELLNING AV BELAEGGNING FOER IDROTTSPLANER, ISYNNERHET TENNISPLANER.
JP2000038519A (en) Water-permeable block, structure, pavement structure and paving process using composite synthetic resin composition
KR100424453B1 (en) Paving method using stone powder for water permeable cement concrete road
JP2001293449A (en) Impervious structural material and execution method for the same
JPH0264045A (en) Composition for pavement having water permeability, wear resistance and high strength
JP2004218283A (en) Binder for pavement, water permeable resin mortar for pavement, and function-retaining and reinforcing method of drainable pavement
KR100360452B1 (en) Permeable Concrete using impacting aggregate
KR101936761B1 (en) Special eco-friendly pavement method with effect of subgrade improvement, replacement of subbase (aggregates) course and reduction of thickness of base course and pavement structure using the same
JPH072564A (en) Reinforced plastic fiber glass binder
JPH072565A (en) Frp fiber glass binder
JPH0820672A (en) Frp fiber glass binder
JP2601048B2 (en) Soil block and method of manufacturing the same
Kim et al. Characteristics of Environment-Friendly Porous Polymer Concrete for Permeable Pavement
JP2007247378A (en) Permeable concrete paving material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase