WO1999056458A1 - Method for measuring image noise of image reader, resolution measuring apparatus and resolution measuring method, and recording medium therefor - Google Patents

Method for measuring image noise of image reader, resolution measuring apparatus and resolution measuring method, and recording medium therefor Download PDF

Info

Publication number
WO1999056458A1
WO1999056458A1 PCT/JP1999/002241 JP9902241W WO9956458A1 WO 1999056458 A1 WO1999056458 A1 WO 1999056458A1 JP 9902241 W JP9902241 W JP 9902241W WO 9956458 A1 WO9956458 A1 WO 9956458A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
read
image reading
noise
density
Prior art date
Application number
PCT/JP1999/002241
Other languages
French (fr)
Japanese (ja)
Inventor
Keiji Honda
Syuu Nitta
Masahide Hashimoto
Original Assignee
Pfu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11664898A external-priority patent/JP3434450B2/en
Priority claimed from JP10116614A external-priority patent/JPH11313185A/en
Application filed by Pfu Limited filed Critical Pfu Limited
Priority to EP99917182A priority Critical patent/EP0998113A4/en
Publication of WO1999056458A1 publication Critical patent/WO1999056458A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00005Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to image data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00007Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
    • H04N1/00013Reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00007Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
    • H04N1/00018Scanning arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00031Testing, i.e. determining the result of a trial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00045Methods therefor using a reference pattern designed for the purpose, e.g. a test chart
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00063Methods therefor using at least a part of the apparatus itself, e.g. self-testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00071Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
    • H04N1/00074Indicating or reporting
    • H04N1/00076Indicating or reporting locally

Definitions

  • the present invention relates to an image noise measuring method for an image reading device, a resolution measuring device, a resolution measuring method, and a recording medium therefor.
  • the present invention relates to a method of measuring image noise and a method of measuring resolution of an image reading device, and a recording medium thereof, and more particularly to a method of quantitatively measuring image noise of an image reading device connected to a host device and providing image data to the host device.
  • Image noise measurement method to determine the quality based on predetermined criteria, and a resolution measurement method that enables automatic computer processing of a resolution test in which one pixel of a CCD element resolves one bar, and their recording media About.
  • Noise of an image read by an image reading device connected to the host device and providing the image data to the host device causes a decrease in image quality, and causes a deterioration in reproducibility of the document. It is important to remove the noise in order to stabilize the performance of the image reading device. Therefore, to accurately measure the noise generated in the image reading device is to grasp the actual state of the image reading device, and at the same time, is an essential element for eliminating the cause.
  • FIG. 24 (a) the image of the abnormal CCD element
  • the data shows a prominent value, and when an original composed of uniform density is read as shown in Fig. 24 (b), image data dropout occurs at the location of the abnormal CCD element. It appears as vertical stripes (in the figure, a set of horizontal white dots).
  • FIGS. 25 and 26 a processing flow for measuring noise in a test process of an image reading apparatus according to a conventional technique will be described.
  • FIG. 25 shows a block diagram
  • FIG. 26 shows a flowchart for measuring noise.
  • the light emitted from the light source lamp 22 passes through the test chart 11 and the CCD element 23 passes through the test chart 11 It emits an electrical signal in response to the light.
  • a test chart 1 having a plurality of reading areas 1a, 1b, 1c, and 1d as shown in FIG. 1 is applied.
  • the reading moving section 24 moves the reading section including the CCD element 23 to execute reading in the sub-scanning direction.
  • the arithmetic control unit 21 amplifies the electric signal emitted from the CCD element 23 into an appropriate form, converts it into image data, and transfers the image data to the measuring device 15.
  • the driver program 52 of the measuring device 15 that has received the image data from the image reading device 12 transfers the image data to an arithmetic control unit 51, displays the image data on a display unit 55, and performs the measurement. Prepare for visual inspection of the operator of device 15
  • step S201 the operator places the test chart 11 on the image reading device 12 to be tested, and proceeds to step S202 to read the image reading device 1 2 Then, the test chart 11 is read, and the image data is transferred to the measuring device 15 in step S203.
  • the measuring device 15 that has received the image data in step S204 proceeds to step S205, displays the image data on the display unit 55, and performs a visual check in step S206.
  • step S207 if the found noise is within the specified allowable range, the process proceeds to step S209, where it is determined that there is no noise, and the image reading device 12 is determined as a device that does not need to be modified. Deliver to the process.
  • step S208 If the detected noise exceeds the specified allowable range, the process proceeds to step S208, where it is determined that there is noise, and the image reading device 12 is determined as a device requiring rework. Hand over to the rework process.
  • step S210 the corresponding test result data is stored in the recording unit 56, and the noise measurement process ends.
  • the extraction and measurement of the image noise and the determination of the pass / fail of the image are executed by the operator visually checking the read image of the test chart 11 displayed on the display unit 55 of the measuring device 15. That is, the noise measurement method in the test process relies on the sensitivity test by the person in charge. Therefore, the level of proficiency of the person in charge greatly affects the test results, and the personal condition of the person in charge, such as eyesight, as well as the health condition of the day and other factors affect the test results. It is difficult to do.
  • the resolution of an image reading device indicates how finely it can be identified, and is determined by the lens and CCD provided in the device. For this reason, the resolution can be increased by using multiple lenses, enlarging the image, and then reading the image with CCD.
  • FIG. 29 shows a test chart for a resolution test generally used when evaluating the resolution of an optical component or an optical system.
  • the test chart shows the combination of three bars provided in both the vertical and horizontal directions and the two spaces separating them as groups of ⁇ , and the pattern size is reduced in order. Meanwhile, they are arranged regularly from outside to inside.
  • the test chart shown in FIG. 29 (a) may be read by the image reading device to be tested, and the image obtained from the image reading device may be confirmed. That is, the resolution can be determined from the size of the smallest pattern in which three bars can be identified. Note that, for example, if the image reading device has a resolution of 240 dpi as a basic specification as a resolution specification of the image reading device, according to the test chart shown in FIG. Approximately 1 1 / m of bar — identification is required.
  • FIG. 27 shows a configuration diagram of the prior art.
  • the test chart 71 shown in FIG. 29, the image reading device 12 to be tested, and the measuring device 16 are used. Be composed.
  • the image reading device 12 is operated by the arithmetic control unit 21 based on the instruction from the measuring device 16 so that the light source lamps 22 and It controls the operations of the CCD element 23 and the reading movement section 24 and transfers the read image data of the test chart 71 to the measuring device 16.
  • the measurement device 16 is controlled by the arithmetic and control unit 61 and exchanges data with the image reading device 12 via the driver program 62.
  • the received image data is processed by the arithmetic and control unit 61 and the display unit 6
  • the read image is enlarged and displayed on 6.
  • the determination of the quality of the resolution is performed by visually checking the image displayed on the display unit 66.
  • the data of the test results are stored in the storage unit 67.
  • step S301 the judge sets the test chart 71 at a predetermined position of the image reading device 12 to be tested and instructs reading.
  • step S302 the image reading device 12 starts reading the test chart 71 by driving the light source lamp 22, the CCD element 23, and the reading moving part 24, and in step S303. Then, the read image data is transferred to the measuring device 16.
  • step S304 the measuring device 16 receives the image data, processes the image data by the arithmetic control unit 61, and in step S305, displays the read image on the display unit 66 in an enlarged manner.
  • step S306 the judge visually checks the image displayed on the display unit 66.
  • step S307 the determiner determines whether the three bars can be identified in the image displayed on the display unit 66.
  • step S308 the image reading device 12 is determined to be defective because it does not have the resolution of the basic specification. If the three bars can be identified, in step S309, the image reading device 12 is determined to be non-defective as having the resolution of the basic specification. In step S310, the data of the measurement result is recorded in the storage unit 67, and the process ends.
  • a resolution test of the image reading apparatus 12 having the above-mentioned resolution of 240 dpi as a basic specification is performed by a skilled technician by, for example, enlarging and displaying a read image. It is judged by. For this reason, taking the example of a test using a general-purpose test chart shown in Fig. 29, which is generally known, the human judgment intervenes at the most important point where it looks first and invisible. Second, the person making the decision requires a wealth of experience and sensitivity to identify the image. The third problem is that the data remaining as test results is scarce. These are major weaknesses in both the production system and the quality assurance system of the image reading device 12.
  • the image reading device 12 forms reflected light from the original or transmitted light from the original on a CCD line sensor (23), converts the image into an electric signal, and performs internal processing. Therefore, the relationship between the original (71) image formed on the CCD line sensor and the size of the CCD light receiving section greatly affects the contrast difference.
  • FIG. FIG. 30 (a) shows a case where the balance between the size of the pattern and the CCD element and the positional relationship between the pattern and the CCD element are both good and the contrast difference is large.
  • Fig. 30 (b) shows the case of the The positional relationship between the turn and the CCD element is good, but the balance between the pattern and the size of one pixel of the CCD element is lost due to defocus, and the contrast difference is small.
  • FIG. The figure shows the case where the balance between the turn and the size of one pixel of the CCD element is good, but the positional relationship between the pattern and the CCD element is shifted, and the contrast difference is small.
  • the purpose of the resolution test is to extract the case shown in Fig. 30 (b) and determine that it is defective.
  • measuring the contrast difference alone makes it difficult to distinguish the case shown in Fig. 30 (c).
  • Such an image resolution measuring method in the image reading apparatus 12 according to the related art has the following problems.
  • the versatility of the general-purpose test chart 71 significantly deteriorates the setability, making it impossible to establish an efficient production system.
  • the pattern and CCD element pixel size balance is broken due to defocus, etc., and the contrast difference is small, and the positional relationship between the pattern and CCD element. Cannot be distinguished from the case where the contrast difference is small.
  • Another object of the present invention is to provide a recording medium storing a program for providing an image noise measuring method of an image reading apparatus for uniquely determining the presence or absence of image noise.
  • Another object of the present invention is to provide a resolution measuring device of an image reading device that can freely set the position of a test chart.
  • Another object of the present invention is to provide a method for measuring the resolution of an image reading apparatus that allows the position of a test chart to be set freely.
  • An image noise measuring method of an image reading apparatus is a method of causing an image reading apparatus to read a test chart having a reading area with a uniform density and collect and analyze image data. If the degree of variation of each image exceeds a predetermined range, the image reading apparatus determines that the image has image noise. According to this image noise measurement method, the presence or absence of image noise can be uniquely determined by analyzing the image data obtained by reading the read area with a uniform density of the test chart.
  • a method for measuring an image noise of an image reading apparatus includes a step of causing an image reading apparatus to read a test chart having a reading area with a uniform density and collect and analyze image data. If the average output value in the vertical or horizontal direction at a specific position deviates from the average value in the entire area beyond a predetermined range, it is determined that there is image noise at the position.
  • this image noise measuring method it is possible to analyze image data obtained by reading a reading area with a uniform density of a test chart, uniquely determine the occurrence of image noise, and know the position of occurrence.
  • a method for measuring an image noise of an image reading apparatus includes the steps of: causing an image reading apparatus to read a test chart having a reading area with a uniform density to collect image data; If the difference between the average output value in the vertical or horizontal direction at a specific position and its adjacent average output value exceeds a predetermined range, it is determined that there is image noise at that location. .
  • this image noise measuring method it is possible to analyze the image data obtained by reading the read area with a uniform density of the test chart, uniquely determine the occurrence of image noise, and know the position of the occurrence.
  • the method for measuring the resolution of the image reading apparatus includes a case where the contrast difference is small as a result of the balance between the pattern and the size of one pixel of the CCD element being lost due to a defocus or the like.
  • the case where the contrast difference is small as a result of the positional relationship of the CCD elements being shifted is identified.
  • a method for measuring the resolution of an image reading apparatus includes a test in which a pattern in a document image formed on a CCD element is set to a value slightly shifted from a logical value. Use a chart and make sure that the white pattern and read pixel, and the black pattern and read pixel always match at regular intervals. Using this test chart, a sufficient area is read so that the pattern and the pixel always match, the gradation difference is calculated for each pixel of the read image of the entire area, and the maximum gradation difference is calculated. Is detected. If the maximum gradation difference exceeds the pass / fail judgment value, the resolution test is passed.
  • the contrast difference between adjacent pixels in the reading area changes with a constant period. Therefore, even when the test chart is mounted on the image reading device, there is a portion where the pattern and the pixel always match without regard to the position of the test chart. For this reason, only by examining the maximum contrast difference, it is possible to identify a case where the balance between the pattern and the size of one pixel of the CCD element is lost due to reasons such as defocus and the contrast difference is small.
  • FIG. 1 is an explanatory diagram of a test chart according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a direction of a noise line according to the present invention.
  • FIG. 3 is a block diagram according to the present invention.
  • FIG. 4 is a flowchart according to a representative embodiment of the present invention.
  • FIG. 5 is a flowchart according to a representative embodiment of the present invention.
  • FIG. 6 is a flowchart according to a representative embodiment of the present invention.
  • FIG. 7 is a flowchart according to a representative embodiment of the present invention.
  • FIG. 8 is a flowchart according to a representative embodiment of the present invention.
  • FIG. 9 is another configuration diagram of the present invention.
  • FIG. 10 is a schematic flowchart of the present invention.
  • FIG. 10 is a schematic flowchart of the present invention.
  • FIG. 11 is a configuration diagram of an embodiment of the present invention.
  • FIG. 12 is an explanatory diagram of an embodiment of the present invention.
  • FIG. 13 is an explanatory diagram of an embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of an embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of an embodiment of the present invention.
  • FIG. 16 is a flowchart of an embodiment of the present invention.
  • FIG. 17 is a flowchart of the embodiment of the present invention.
  • FIG. 18 is a flowchart of the embodiment of the present invention.
  • FIG. 19 is a flowchart of the embodiment of the present invention.
  • FIG. 20 is a flowchart of an embodiment of the present invention. No. 2
  • FIG. 1 is a flowchart of an embodiment of the present invention.
  • FIG. 22 is a flowchart of the embodiment of the present invention.
  • FIG. 23 is an explanatory diagram showing the relationship between the image density of a document and the CCD output.
  • FIG. 24 is an explanatory diagram of a reading screen due to an abnormality of an individual CCD element.
  • FIG. 25 is a block diagram of a noise measurement according to the related art. No.
  • FIG. 26 is a flowchart of noise measurement according to a conventional technique.
  • Figure 27 shows FIG. 2 is a configuration diagram of a conventional technique.
  • FIG. 28 is a flowchart of the prior art.
  • FIG. 29 is a test chart for a conventional resolution test.
  • FIG. 30 is a diagram showing the relationship between the image of the conventional technology and the size of the CCD light receiving unit.
  • An image noise measuring method for an image reading apparatus which is a typical embodiment of the present invention, is configured as follows to solve the above-mentioned problem.
  • the image noise measuring method of the image reading apparatus is to make the image reading apparatus read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and to obtain a total of the individual measurement areas. It is assumed that the standard deviation value of the optical density of the pixel is calculated, and when the standard deviation value exceeds a predetermined numerical value range, the image reading apparatus detects an image noise.
  • the image noise measuring method of the image reading apparatus is to make the image reading apparatus read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and individually read the individual measurement areas.
  • the average density of each vertical line which is the average value of the output sequentially read by the CCD element in the sub-scanning direction, is calculated, and the average density of a specific vertical line is calculated as the average density of each vertical line in the vicinity, or
  • the vertical line is determined to be a noise line, and image noise is detected in the image reading apparatus.
  • the image noise measuring method of the image reading device is configured to cause the image reading device to read a single uniform density reading region or a plurality of uniform density reading regions of different density levels, and to perform the individual measurement region.
  • the average density of each horizontal line which is the average value of the output read in the main scanning direction, is calculated, and the average density of a specific horizontal line is calculated as the average density of each horizontal line in the vicinity or the average of the entire individual measurement area.
  • the horizontal line is determined to be a noise line, and the image reading apparatus detects an image noise.
  • the image noise measuring method of the image reading apparatus includes the steps of causing the image reading apparatus to read a single uniform density reading area or a plurality of uniform density reading areas at different density levels, and perform the individual measurement.
  • the average density of each vertical line which is the average value of the output sequentially read by the individual CCD elements in the sub-scanning direction in the area, is calculated. It is assumed that the vertical line is determined to be a noise line when the value deviates beyond the predetermined numerical value range, and that the image reading apparatus detects image noise.
  • the image noise measuring method of the image reading apparatus comprises: causing the image reading apparatus to read a single uniform density reading area, a certain area, or a plurality of uniform density reading areas having different density levels; The average density of each horizontal line, which is the average value of the output read in the main scanning direction in each measurement area, is calculated, and the average density of a specific horizontal line is a predetermined value with respect to the average density of the adjacent horizontal line It is assumed that the horizontal line is determined to be a noise line when deviating beyond the range, and an image noise is detected by the image reading apparatus.
  • a recording medium storing a program of an image noise measuring method of the image reading device is connected to a host device, and the image reading device that provides image data to the host device.
  • the image reading device reads a single uniform density reading area or a plurality of uniform density reading areas at different density levels, and calculates a standard deviation value of optical densities of all pixels in the individual measurement areas.
  • the recording medium reads a single uniform density reading area, a plurality of uniform density reading areas of different density levels, or a plurality of uniform density reading areas by the image reading apparatus.
  • a procedure for calculating an average density for each vertical line which is an average value of outputs sequentially read in the sub-scanning direction by individual CCD elements in the individual measurement areas; and If the average density of each neighboring vertical line or the average density of the entire individual measurement area deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and the And a program for executing a procedure for reporting that image noise has been detected.
  • the recording medium may cause the image reading device to read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and read the individual measurement areas. Calculating the average density of each horizontal line, which is the average value of the output read in the main scanning direction, and calculating the average density of a specific horizontal line to the average density of the neighboring horizontal lines or the entire area of the individual measurement area. When the average density deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading apparatus is stored. .
  • the recording medium allows the image reading device to read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and to read individual CCD elements in the individual measurement areas. Calculates the average density of each vertical line, which is the average value of the output sequentially read in the sub-scanning direction, and the average density of a specific vertical line is determined in advance with respect to the average density of the adjacent vertical line. If the value deviates beyond the numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading device is stored.
  • the recording medium allows the image reading device to read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and in the main scanning direction in the individual measurement areas.
  • the procedure for calculating the average density of each horizontal line which is the average value of the read output, and the case where the average density of a specific horizontal line deviates from the average density of its adjacent horizontal line beyond a predetermined numerical range
  • a program for executing the procedure of determining the vertical line as a noise line and reporting that the image reading apparatus has detected image noise By adopting these modes, the measuring apparatus for testing the image reading apparatus has an effect of mounting a procedure for detecting image noise and a procedure for specifying a position where the image noise has occurred.
  • the main scanning direction refers to the main scanning direction. Accordingly, image data obtained by one main scan is linear one-dimensional image data, and forms one horizontal line of image data. Usually, a plurality of CCD elements arranged side by side in the main scanning direction collectively read the image data in the main scanning direction, which is a horizontal line.
  • the sub-scanning direction is a scanning direction perpendicular to the main scanning direction, and the linear one-dimensional image data obtained by scanning in the main scanning direction is The two-dimensional planar image data is accumulated by scanning. Therefore, one of the CCD elements provided side by side in the main scanning direction in the image reading device forms one vertical line of image data along the sub scanning direction.
  • Fig. 1 shows a typical example of a test chart used in the image noise measurement method. That is, the test chart 1 shown here is made of a colorless and transparent material that forms an image by transmitted light. This measure eliminates the uncertainties due to diffuse reflections that occur when using test charts that form images with reflected light.
  • the test chart 1 has a plurality of reading areas 1a, lb, lc, and Id, each of which has a uniform density with a stepwise different density.
  • the reading area 1a has no image density
  • the reading area 1d has an image density that completely blocks transmitted light
  • the reading areas 1b and 1c have no image density.
  • Each of the reading areas has a predetermined light transmittance based on an intermediate value between the reading areas 1a and 1d.
  • FIG. 1 (a) shows an example of a test chart in which a horizontal reading area is set
  • FIG. 1 (b) shows an example of a test chart in which a vertical reading area is set.
  • FIG. 2 a noise line generated when the test chart 1 is read will be described. As shown in Fig. 2 (a), if a vertical noise line 2a is seen in the reading area 1a of the test chart 1 read by the image reading device, it is possible that an abnormality has occurred in a specific CCD element or It is presumed that dust or the like adheres to the specific CCD element and its function is affected.
  • Figure 3 shows a block diagram. That is, the image reading device 12 used for the test irradiates the light emitted from the light source lamp 22 onto the test chart 1 placed on the image reading device 12, and transmits the transmitted light via the optical system to the CCD element 2.
  • Image 3 The test chart 1 shown here is the same as the test chart 1 described above with reference to FIG.
  • the reading moving unit 24 moves the optical system in the sub-scanning direction to form vertical image data.
  • the image signal generated in the CCD element 23 is transferred to the measuring device 13 by the arithmetic and control unit 21.
  • the measurement device 13 analyzes the image data transferred from the image reading device 12 by the built-in measurement control program 33 to determine the presence or absence of image noise.
  • the determination result of the presence or absence of image noise is displayed on the display unit 35 and stored in the recording unit 36.
  • step S001 the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step SO02, where the test chart 1 is set by the image reading device 12.
  • step S003 the image data is transferred to the measuring device 13.
  • the measurement device 13 that has received the image data in step S004 Proceed to and specify the measurement target area (by the measurement control program 33).
  • the reading area 1a in the test chart 1 shown in FIG. 1 is designated
  • the data analysis unit 33a incorporated in the measurement control program 33 generates the individual image of the target area. Calculate the average value of the density values for each day, and calculate the standard deviation value based on the average value in the next step.
  • step S07 the standard deviation value is compared with a predetermined value. If the difference value is equal to or smaller than a predetermined allowable range value, the flow advances to step S09 to determine that there is no image noise. If the difference value exceeds the predetermined allowable range value, the process proceeds to step S08, where it is determined that there is image noise, and the image reading device 12 is handed over to a predetermined repair section.
  • step S0110 the measurement record of the standard deviation value and the like is stored in the recording unit 36, and the process proceeds to step S011, for example, to continuously read the test chart 1 shown in FIG.
  • step S011 for example, to continuously read the test chart 1 shown in FIG.
  • the process returns to step S005.
  • the measurement result is displayed on the display unit 35 in step SO 12 and notified to the operator to perform the measurement. End the process.
  • the presence of image noise is uniquely determined without relying on the visual check of the worker in accordance with the processing flow of the image noise measurement shown in Fig. 4, and the data used for the measurement is stored. And can be reproduced when needed.
  • step S022 the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S022, where the test chart 1 is read by the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S023.
  • the measuring apparatus 13 that has received the image data in step S0 24 proceeds to step S0 25 to specify the measurement target area.
  • the test chart shown in Fig. 1 Specify the read area 1a in G1.
  • step S 0 26 the data analysis unit 33 a included in the measurement control program 33 calculates the average of the density values applied to the individual CCD elements of the image data of the vertical line output by the individual CCD elements in the target area. Then, the process proceeds to step S027 to calculate an average value over the entire area of the density values of all the image data of the target area.
  • step S028 the average value of the density values applied to the individual CCD elements in the image data of the vertical lines output from the individual CCD elements calculated in step S026 is calculated.
  • the difference value is calculated by comparing with the average value of the density values of all the image data of the target area calculated in 27.
  • the average value of the density values applied to the individual CCD elements of the vertical line image data output from the individual CCD elements calculated in step S026 and the CCD located at a position separated by a predetermined number The difference value is calculated by individually comparing the image data of the vertical lines output by the elements with the average value of the density values applied to the individual CCD elements. If it is determined in step S029 that the difference value obtained in step S028 is equal to or smaller than a predetermined allowable range value, the process proceeds to step S031, and it is determined that there is no image noise. If the difference value exceeds the predetermined allowable range, the process proceeds to step SO30, where it is determined that an image noise has occurred. The image reading device 12 is to be delivered.
  • step S032 the measurement record such as the position of the vertical line by the CCD element where the abnormality was found is stored in the recording unit 36, and the process proceeds to step S033, for example, as shown in FIG.
  • step S033 the process returns to step S025.
  • step S034 the measurement result is displayed on the display unit 35 and notified to the operator. Then, the measurement process ends.
  • step S041 the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S042, where the operator reads the test chart 1 using the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S043.
  • the measuring apparatus 13 that has received the image data in step S044 proceeds to step S045 to specify the measurement target area.
  • the reading area 1a in the test chart 1 shown in FIG. 1 is designated.
  • step S046 the data analysis unit 33a included in the measurement control program 33 calculates the average value of the density values of the image data of the individual horizontal lines constituting the main scanning direction in the target area. Then, the process proceeds to step S 047, and the entire area average value of the density values of all the image data of the target area is calculated.
  • step S0408 the average value of the density values of the individual horizontal lines constituting the main running direction calculated in step S046 and the target area calculated in step S047 are calculated.
  • the difference value is calculated by comparing the average value of the density values of all image data with the average value individually.
  • step S049 If it is determined in step S049 that the difference value obtained in step S048 is equal to or smaller than a predetermined allowable range value, the flow advances to step SO51 to determine that there is no image noise. If the difference value exceeds a predetermined allowable range value, the flow proceeds to step SO50, where it is determined that there is image noise. 2 shall be delivered.
  • step S052 the measurement record such as the position of the horizontal line where the abnormality was found is stored in the recording unit 36, and the process proceeds to step S053.
  • the flow returns to step S045.
  • step S 0 54 the analysis of the image data for the entire area to be measured in the test chart 1 is completed, the process proceeds to step S 0 54 to display the measurement result on the display unit 35 and notify the operator. Then, the measurement step ends.
  • the existence of the image noise and the position in the sub-scanning direction where the image noise has occurred are uniquely determined without depending on the visual check of the worker. Further, the data used for the measurement can be stored and reproduced when necessary.
  • step S061 the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S062, where the operator reads the test chart 1 using the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S063.
  • the measuring device 13 that has received the image data in step S064 proceeds to step S065 and specifies the measurement target area.
  • the reading area 1a in the test chart 1 shown in FIG. 1 is designated.
  • step S066 the data analysis unit 33a incorporated in the measurement control program 33 calculates the average of the density values applied to the individual CCD elements of the vertical line image data output by the individual CCD elements in the target area. Calculate the value.
  • step S 067 the average value of the density values applied to the individual CCD elements of the image data of the vertical lines output from the individual CCD elements calculated in step S 066 described above is applied to the adjacent CCD elements.
  • the difference value is calculated by comparing the density value with the average value.
  • step S068 If it is determined in step S068 that the difference value obtained in step S0670 is equal to or smaller than a predetermined allowable range value, the process proceeds to step S070 to determine that there is no image noise. If the difference value exceeds the predetermined allowable range value, the flow advances to step SO69 to determine that there is image noise, and to perform predetermined rework after completion of the test process. The image reading device 12 is to be delivered to the department.
  • step S071 the measurement record such as the position of the vertical line by the CCD element in which the abnormality was found is stored in the recording unit 36, and the process proceeds to step S072.
  • the process returns to step S065.
  • step S073 the measurement result is notified to the operator and the measurement process is completed. Therefore, according to the processing flow of the image noise measurement shown in FIG. 7, the position of the CCD element involved in the existence of the image noise and the occurrence of the image noise is uniquely determined without relying on the visual check of the worker, Furthermore, the data used for the measurement can be stored and reproduced when necessary.
  • step S081 the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S082, where the operator reads the test chart 1 using the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S083.
  • the measuring apparatus 13 that has received the image data in step S084 proceeds to step S085, and specifies the measurement target area.
  • the reading area 1a in the test chart 1 shown in FIG. 1 is designated.
  • step S086 the data analysis unit 33a included in the measurement control program 33 calculates the average value of the density values of the image data of the individual horizontal lines constituting the target area in the main scanning direction.
  • step S087 the average value of the density values of the individual horizontal lines configured in the main scanning direction calculated in step S086 and the density value of the individual horizontal lines configured in the adjacent main scanning direction The difference value is calculated by comparing with the average value of.
  • step S088 If it is determined in step S088 that the difference value obtained in step S087 is equal to or smaller than a predetermined allowable range value, the flow advances to step S0900 to determine that there is no image noise. Ma If the difference value exceeds a predetermined allowable range value, the process proceeds to step SO89, where it is determined that there is image noise. Shall be delivered.
  • step S091 the measurement record such as the position of the horizontal line where the abnormality was found is stored in the recording unit 36, and the process proceeds to step S092.
  • the test chart 1 shown in FIG. When measuring the image data relating to the reading area 1b in step, return to step SO85.
  • the process proceeds to step S093, where the measurement result is notified to the operator, and the measurement process is completed.
  • the existence of the image noise and the position in the sub-scanning direction where the image noise has occurred are uniquely determined without relying on the visual check of the worker, Furthermore, the data used for the measurement can be saved and reproduced when needed.
  • the image reading device is caused to read a test chart having a plurality of reading regions having uniform densities based on individual densities set in steps, and to determine a standard deviation value of optical densities of all pixels in the individual measurement regions. Calculated, and when the standard deviation value deviates beyond a predetermined numerical range, it is assumed that image noise has been detected in the image reading apparatus.
  • the image reading device is made to read a test chart having a plurality of reading areas of uniform density according to the individual densities set step by step, and the individual CCD elements are sequentially moved in the sub-scanning direction in the individual measurement areas.
  • Calculate the average density of each vertical line which is the average value of the read output, and calculate the average density of a specific vertical line with respect to the average density of each vertical line in the vicinity or the average density of the entire individual measurement area. If the value deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and the image is read. It is assumed that an image noise is detected in the device.
  • the image reading device is caused to read a test chart provided with a plurality of reading areas having a uniform density based on individual densities set stepwise, and reading in the main scanning direction in the individual measurement areas.
  • the average density of each horizontal line which is the average value of the output, is calculated, and the average density of a specific horizontal line is a predetermined value for the average density of each horizontal line in the vicinity or the average density of the entire individual measurement area It is assumed that the horizontal line is determined to be a noise line when deviating beyond the range, and an image noise is detected by the image reading apparatus.
  • the image reading device is caused to read a test chart having a plurality of reading areas having a uniform density according to the individual densities set stepwise, and the individual CCD elements are set to be subordinate in the individual measurement areas.
  • the average density of each vertical line which is the average value of the output sequentially read in the scanning direction, is calculated, and the average density of a specific vertical line exceeds the predetermined value range for the average density of the adjacent vertical line.
  • the vertical line is determined to be a noise line, and image noise is detected by the image reading apparatus.
  • the image reading device is caused to read a test chart having a plurality of reading regions having uniform densities according to the individual densities set stepwise, and the output read in the main scanning direction in the individual measurement regions.
  • the average density of each horizontal line which is the average value of horizontal lines, is calculated. If the average density of a specific horizontal line deviates from the average density It is assumed that the line is determined to be a noise line, and that the image reading apparatus detects an image noise.
  • a measuring device for measuring image noise of an image reading device connected to a host device and providing image data to the host device a plurality of uniform densities based on individual densities set stepwise are provided in the image reading device.
  • a test chart having a reading area is read, and the standard deviation value of the optical density of all pixels in the individual measurement area is calculated. And a procedure for reporting that the image reading apparatus has detected image noise when the standard deviation value deviates beyond a predetermined numerical range.
  • the image reading device is caused to read a test chart having a plurality of reading areas having uniform densities based on individual densities set stepwise, and then moving to the individual measurement areas to read individual CCD elements.
  • Calculating the average density of each vertical line which is the average value of the output sequentially read in the sub-scanning direction, and calculating the average density of a specific vertical line, the average density of each vertical line in the vicinity, or the individual measurement. If the average density of the entire area deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected by the image reading apparatus is executed. Store the program.
  • the image reading device is caused to read a test chart having a plurality of reading regions having a uniform density based on individual densities set step by step, and moving to the individual measurement regions in the main scanning direction. Calculating the average density of each horizontal line, which is the average value of the read output, and calculating the average density of a specific horizontal line to the average density of a nearby horizontal line or the average density of the entire individual measurement area. On the other hand, if the value deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading apparatus is stored.
  • the image reading device by causing the image reading device to read a test chart having a plurality of reading areas having uniform densities based on individual densities set stepwise, the individual CCD elements are moved in the sub-scanning direction in the individual measurement areas.
  • the procedure for calculating the average density for each vertical line which is the average value of the output read sequentially, and the average density for each specific vertical line If it deviates beyond this, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading device is stored.
  • the image reading device by causing the image reading device to read a test chart having a plurality of reading areas with uniform densities based on individual densities set step by step,
  • the procedure for calculating the horizontal density of each horizontal line which is the average value of the output read in the main scanning direction in the measurement area, and the step of calculating the average density of a specific horizontal line from the average density of its adjacent horizontal lines If the value deviates beyond the range, the vertical line is determined to be a noise line, and a procedure for reporting that an image noise has been detected in the image reading device is stored.
  • the measuring apparatus for testing the image reading apparatus includes a procedure for detecting image noise and a procedure for specifying a position where the image noise has occurred.
  • the work becomes versatile without being limited to a specific device.
  • a resolution measuring device and a resolution measuring method for an image reading device are configured as follows to solve the above-mentioned problems.
  • the resolution measuring device 14a of the image reading device of the present invention shifts the black-and-white line pair pattern pitch a little from the reading pixel pitch of the image reading device.
  • the reading means 3 reads the test chart 2 and the test chart 2, and the reading means 3 and the reading means 3 which read a sufficient width or a vertical area so that a pattern and a pixel always coincide with each other.
  • the resolution measuring procedure of the resolution measuring device 14a having the above configuration is as follows.
  • the entire area is read, and in step S102, the image data including the resolution and the image portion is cut out from the image data read by the cutout means 4 with a margin, and step S103 is performed.
  • step S104 the measurement target portion is cut out by the cutout means 4, and in step S105, every pixel of the read image of the entire area of the image data cut out by the analysis means 5 is extracted in step S105.
  • the maximum tone difference is detected by calculating the tone difference, and in step S106, the judging means 6 judges whether the maximum tone difference exceeds the pass / fail judgment value, and stores the data.
  • the method for measuring the resolution of the image reading apparatus of the present invention is such that the black and white line pair pitch of the test chart 2 is created with a small shift from the reading pixel pitch of the image reading apparatus, and the white pattern and the read pixel In addition, the black pattern and the read pixel are matched in the main scanning direction.
  • an area of sufficient width is read so that the pattern and the pixel always match, and the gradation difference is calculated for each pixel of the read image of the entire area. Detect gradation difference. If the maximum gradation difference exceeds the pass / fail judgment value, the resolution test is passed.
  • the resolution measuring method of the image reading apparatus of the present invention is such that a black and white line pattern of the test chart 2 is created by inclining a small amount, and a white pattern and a read pixel, and a black pattern and a read pixel are formed at regular intervals. Match in the sub-scanning direction.
  • this test chart 2 uses this test chart 2, read a vertical area sufficient to ensure that the pattern and pixel always match, calculate the tone difference for each pixel of the read image of the entire area, and Detect tonality. If the maximum tone difference exceeds the pass / fail judgment value, the resolution test is passed.
  • the gradation difference before and after the point where the maximum gradation difference candidate is detected is opposite to the detected maximum gradation difference. Have a certain level of gradation difference.
  • a criterion is that the maximum gradation difference of each color is equal to or more than a specific value.
  • the maximum gradation difference of each color is equal to or more than an individual fixed standard value
  • the sum of the maximum gradation difference of each color is the standard value of each color. Is determined to be equal to or greater than a certain value equal to or greater than the sum of
  • the method of measuring the resolution of a color image of the image reading apparatus of the present invention focuses on the fact that the degree of influence on the resolution of each color is different, and when calculating the total sum of the maximum gradation difference of each color, an individual coefficient for each color is used. To calculate the sum.
  • the coefficient is set so that green is largest, then red, and then blue.
  • the method for measuring the resolution of the image reading apparatus further comprises: scanning a black-and-white line pair pattern a plurality of times while changing the scanning position; calculating a maximum gradation difference for each scan; Out of the n data, the average value of the P maximum grayscale difference data excluding the upper N or Z and lower M data is determined.
  • the recording medium storing the program for realizing the resolution measuring method of the image reading apparatus of the present invention is a test for making the white pattern and the read pixel coincide with each other and the black pattern and the read pixel at regular intervals of the resolution test.
  • the procedure to scan a sufficient area so that the pattern and the pixel always match, and cut out only the necessary area from the read image data, and read the entire area of the cut out image data To calculate the gradation difference for each pixel of the image and detect the maximum gradation difference, and to execute the resolution test if the maximum gradation difference exceeds the pass / fail judgment value
  • a computer readable program A computer readable program.
  • This program is stored in various appropriate recording media such as FD and CD for recording the program.
  • the width of the bar and the space and the size of the light receiving section of the CCD are slightly different in the main scanning direction, or the bar and the space are slightly inclined in the sub-scanning direction. Then, the contrast difference between adjacent pixels in this region changes with a certain period in the main scanning direction or the sub-scanning direction. Further, the difference in the position of the test chart 2 appears only as a horizontal displacement of the waveform, and the cycle and amplitude thereof hardly change. Therefore, regardless of the position of the test chart 2, only the maximum contrast difference is verified, and the balance between the pattern and the size of one pixel of the CCD element is lost due to the above-mentioned blurring of focus. Only when the contrast difference is small can be identified.
  • the condition for detecting the maximum gradation difference is that the gradation difference before and after the point where the maximum gradation difference candidate is detected has a certain or more gradation difference in the direction opposite to the detected maximum gradation difference. By doing so, factors such as dust and dirt on the test chart 2 in the resolution measurement can be eliminated.
  • the judgment standard is that the maximum gradation difference of each color is equal to or more than a specific standard value, it is possible to measure the resolution of a color image.
  • the measurement accuracy is improved. Can be raised.
  • any program can be used when necessary. It can be installed in a processing device to perform processing.
  • FIG. 11 A representative embodiment according to the present invention will be specifically described with reference to FIGS. 11 to 22.
  • FIG. 11 A representative embodiment according to the present invention will be specifically described with reference to FIGS. 11 to 22.
  • FIG. 11 is a block diagram of an embodiment of the present invention.
  • a resolution test of the image reading device is performed by a test chart 2 shown in FIG. 12 described later, an image reading device 12 to be tested, and a measuring device 14.
  • the image reader 1 2 (reading means 3) controls the operation of the light source lamp 22, the CCD element 23, and the reading moving unit 24 by the arithmetic control unit 21 based on the instruction from the measuring device 14. Then, the read image data of the test chart 2 is transferred to the measuring device 14.
  • the measuring device 14 is controlled by the arithmetic and control unit 41 and exchanges data with the image reading device 12 via the driver program 42, and the received image data is arithmetically controlled. Processed by the measurement control program 43 according to the instruction of the unit 41.
  • the display unit 46 displays necessary data results in the resolution test.
  • the storage unit 47 stores test result data and the like.
  • the measurement control program 43 includes a data analysis unit 44 and a determination unit 45.
  • the measurement control program 4 3 (cutout means 4) cuts out only necessary portions from the image data read by the image reading device 12.
  • the data analysis unit 44 (analysis means 5) calculates a gradation difference for each pixel of the read image of the entire region of the cut image data, and calculates a maximum gradation difference.
  • the judging section 45 (judgment means 6) judges that the resolution test has passed if the maximum gradation difference exceeds the pass / fail judgment value for various pass / fail judgment values required for the resolution test set in advance. If the value does not exceed the pass / fail judgment value, the resolution test is rejected.
  • FIG. 12 is an explanatory diagram of an embodiment of the present invention, and illustrates a main part of the test chart 2 described above.
  • the test chart 2 has a large number of black bars and a large number of white spaces, and the pattern pitch of a black-and-white line pair composed of the black bars and the white spaces is mainly shown. This is set slightly larger than the pitch of a plurality of CCD elements arranged side by side in the scanning direction. For example, 11 ⁇ m bars and spaces required for the measurement of 2400 dpi are set to 12 ⁇ m, and several hundreds of these are arranged.
  • test chart 2 has a pattern pitch of a black and white line pair composed of a number of black bars and a number of white spaces, and the black bars and the white spaces.
  • the pitch is set slightly smaller than the pitch of a plurality of CCD elements juxtaposed in the main scanning direction. For example, 11 ⁇ m bars and spaces required for the measurement of 2400 dpi are set to 10 ⁇ m, and several hundreds of them are arranged.
  • test chart 2 shown in Fig. 12 (a) and Fig. 12 (b) is produced by shifting the pitch of one pixel of the CCD element of the image reading device to be tested by a small amount so that the test chart 2 can be obtained.
  • the white pattern and one pixel of the CCD element, and the black pattern and one pixel of the CCD element coincide in the main scanning direction at regular intervals.
  • test chart 2 has a number of black bars and a number of white spaces, and the pattern pitch of a black and white line pair composed of the black bars and the white spaces is as follows. Set the same as the pitch of a plurality of CCD elements juxtaposed in the main scanning direction. Further, the black and white line pairs are formed with a slight inclination with respect to the sub-scanning direction, and several hundred lines are arranged.
  • Test chart 2 shown in Fig. 12 (c) shows that the white pattern and one pixel of the CCD element, and the black pattern and one pixel of the CCD element are sub-patterns at regular intervals in the positional relationship between the test chart 2 and the CCD element. It becomes coincident in the scanning direction.
  • FIG. 15 is an explanatory view of an embodiment of the present invention.
  • FIG. 15 shows a state in which the pattern formed on the test chart 2 is read by the pixel reading device 13 capable of reading the test object one pixel at a time, and the measuring device 14 performs resolution measurement processing.
  • the CCD output indicates the output of each pixel of the CCD element when one line of the pattern of the test chart 2 is read.
  • the gradation difference indicates a level difference between adjacent pixels of the CCD element. In other words, you can see clearly if the mountain is high.
  • the pattern is a pattern image when the pattern formed on the test chart 2 is read.
  • the contrast difference (gradation difference) between one pixel of the adjacent CCD element in the read area is determined in the main scanning direction or in the main scanning direction. It changes with a constant period in the sub-scanning direction.
  • the difference in the position of the test chart 2 appears as a horizontal shift of the waveform, and its cycle and amplitude hardly change. Therefore, regardless of the position of test chart 2, only the maximum contrast difference is verified, and the balance between the pattern and the size of one pixel of the CCD element is lost due to the above-mentioned blurring of the focus and the contrast difference is small. Only cases can be identified.
  • test chart 2 that facilitates setting on the image reading device to be tested facilitates the automatic computer processing of the resolution test in which one pixel of the CCD element resolves one bar. can do.
  • FIG. 16 shows a flowchart of an embodiment of the present invention.
  • Fig. 16 resolution An outline of the processing procedure of the degree measurement method will be described. The same reference numerals as those shown in FIG. 11 are used.
  • step SI 11 the judge sets the test chart 2 at a predetermined position of the image reading device 12 to be tested and instructs the reading.
  • step SI 12 the image reading device 12 drives the light source lamp 22, the CCD element 23, and the reading moving section 24 to read the entire area of the test chart 2.
  • step S113 the read image data of the test chart 2 is transferred to the measuring device 14.
  • step S114 the measurement device 14 receives the image data, and in step S115, the measurement control program 43 cuts out a measurement target portion from the range of the resolution pattern.
  • step S116 the data analysis unit 44 of the measurement control program 43 calculates the gradation difference for each pixel of the read image of the entire area of the cut image data, and in step S117, , Detect maximum gradation difference.
  • step S118 the judgment unit 45 of the measurement control program 43 compares the pass / fail judgment value set in advance with the maximum gradation difference, and when the maximum gradation difference exceeds the pass / fail judgment value. Is determined.
  • step SI 19 If the maximum gradation difference does not exceed the pass / fail judgment value, in step SI 19, the image reading device 12 is determined to be defective because it does not have the resolution of the basic specification. On the other hand, if the maximum gradation difference exceeds the pass / fail judgment value, in step S120, the image reading device 12 is determined to be non-defective because it has the resolution of the basic specification.
  • step S121 the measurement result data is recorded in the storage unit 47, and in step S122, it is determined whether or not the resolution measurement has been completed, and if it has been completed, the test result is displayed in step S123. Is displayed and the process ends. If not, return to step S115.
  • FIG. 17 shows a flowchart of an embodiment of the invention.
  • FIG. 17 shows the processing procedure of the measurement control program 43 in measuring the resolution of a monochrome image.
  • step S131 the measurement cut out from the range of the resolution pattern Verify whether there is an abnormal pixel in the target part. If an abnormal pixel is detected, it is stored. That is, as shown in FIG. 13, the gradation data is examined for each pixel of the CCD element, and if a pixel that should read a black pattern does not read a black pattern, or a white pattern should be read. If the pixel to be read does not read the white pattern, store the number of that pixel. In this example, the pixel E3, the pixel E4, and the pixel E5, or the pixel E22, the pixel E23, and the pixel E24 correspond. This indicates that the pattern formed on the test chart 2 is not correct and does not form a pattern due to factors such as dust and dirt. Therefore, in the resolution measurement, the location is excluded from the measurement target.
  • step S132 the number of pixels in the measurement area corresponding to the measurement target portion cut out from the range of the resolution pattern is set to count. For example, in the case of a measurement area as shown in FIG. 13, the pixel number counter is set to 43.
  • step S133 an initial value of the maximum gradation difference is set and stored.
  • step S134 the first measurement pixel is set to count. For example, E 0 in FIG. 13 is set.
  • step S135 the next measurement pixel is set to count. For example, E1 in FIG. 13 is set.
  • step S136 it is determined whether the measurement pixel is a normal pixel. That is, the pixel stored in step S1331 is an abnormal pixel, and if it is any other pixel, the process proceeds to step S137. If it is an abnormal pixel, the process returns to step S135.
  • step S137 a gradation difference from the gradation data of an adjacent previously measured pixel is calculated, and it is determined whether the difference is larger than the currently stored maximum gradation difference. If the difference is larger than the currently stored maximum gradation difference, the flow advances to step S138. If it is smaller than the currently stored maximum gradation difference, the flow advances to step S139.
  • abs is an absolute value
  • E n gradation data of the measuring pixel E n> gradation data of the pixel previously measured adjacent, M ax- D iff outermost Daikaicho currently stored
  • M ax- D ax- D iff outermost Daikaicho currently stored
  • the maximum gradation difference is stored.
  • step S139 it is determined whether the number of pixels in the previously set measurement area has been measured. That is, it is determined whether the number of pixels set in the counter has been reached. If all the pixels in the measurement area have been measured, the process proceeds to step S140. If all the pixels in the measurement area have not been measured, the process returns to step S135.
  • step S140 a predetermined pass / fail judgment value is compared with the stored maximum gradation difference to determine whether the maximum gradation difference exceeds the pass / fail judgment value.
  • step 1 the test result is displayed on the display unit, and the process ends.
  • the steps S 13 1 and S 13 36 as a condition of the maximum gradation difference detection, the gradation difference before and after the point where the maximum gradation difference candidate is detected is set to the detected maximum gradation difference.
  • the gradation difference before and after the point where the maximum gradation difference candidate is detected is set to the detected maximum gradation difference.
  • FIG. 18 shows a flowchart of an embodiment of the invention.
  • FIG. 18 shows the processing procedure of the measurement control program 43 in measuring the resolution of a color image. It should be noted that the processing procedures corresponding to step S131 and step S136 shown in FIG. 17 are omitted.
  • step S151 the number of pixels in the measurement area corresponding to the measurement target portion cut out from the range of the resolution pattern is set in the counter.
  • the pixel number counter is set to 43.
  • step S152 an initial value of the maximum gradation difference of red is set and stored.
  • step S153 an initial value of the maximum gradation difference of green is set and stored.
  • step S154 an initial value of the maximum gray level difference of blue is set and stored.
  • step S155 the first measurement pixel is set to count. For example, E 0 in FIG. 13 is set.
  • One pixel of the CCD element has three gradation data of red, green, and blue.
  • step S156 the next measurement pixel is set to count. For example, E1 in FIG. 13 is set.
  • step S157 the gradation difference between the previously measured pixel and the red gradation data of the adjacent pixel is calculated, and it is determined whether the difference is larger than the currently stored maximum gradation difference of red. . If it is larger than the currently stored maximum gradation difference of red, the process proceeds to step S158. If the difference is smaller than the maximum gradation difference of red, the process proceeds to step S159.
  • abs is the absolute value
  • R is the red gradation data of the measured pixel
  • R n- is the red gradation data of the adjacent previously measured pixel
  • D ff — R max is currently stored. Is the maximum gradation difference of the red color.
  • step S158 the maximum gradation difference of red is stored.
  • step S159 the difference between the previously measured green gradation data of the pixel and the previously measured pixel is calculated, and it is determined whether the difference is larger than the currently stored maximum gradation difference of green. If it is larger than the currently stored maximum gradation difference of green, the process proceeds to step S160. If the difference is smaller than the maximum gradation difference of green, the process proceeds to step S161.
  • abs is the absolute value
  • Gn is the green gradation data of the measured pixel
  • Gn is the green gradation data of the adjacent previously measured pixel
  • Diff-Gmax is the currently stored green maximum.
  • step S160 the maximum gray level difference of green is stored.
  • step S161 a gradation difference between the previously measured pixel and the blue gradation data of the previously measured pixel is calculated, and it is determined whether the currently stored blue gradation data is larger than the maximum gradation difference of blue. If it is larger than the currently stored maximum gray level difference of blue, the process proceeds to step S162. If the difference is smaller than the maximum gray level difference of the blue color, the flow advances to step S163.
  • abs is an absolute value
  • B dismiss is the blue gradation data of the measured pixel
  • B n —! Is the blue gradation data of the adjacent pixel measured earlier
  • D ff — Bmax is the current value. This is the maximum difference in gray level of blue that is remembered.
  • step S162 the maximum gray level difference of blue is stored.
  • step S163 the number of pixels in the measurement area previously measured is all measured. Is determined. That is, it is determined whether the number of pixels set in the counter has been reached. If all the pixels in the measurement area have been measured, the flow advances to step S164. If all the pixels in the measurement area have not been measured, the process returns to step S156.
  • step S164 the pass / fail judgment value set in advance is compared with the stored maximum gradation difference to determine whether or not the maximum gradation difference exceeds the pass / fail judgment value.
  • step 5 the test result is displayed on the display unit, and the process ends.
  • step S164 will be described later. Also, in the omitted processing procedure corresponding to steps S 13 1 and S 13 36 shown in FIG. 17, the detection of the abnormal pixel is executed prior to step S 15 1 . The determination as to whether the measurement pixel is a normal pixel is performed between step S156 and step S157.
  • step S166 the details of the aforementioned step S166 will be described.
  • FIG. 19 shows a flowchart of an embodiment of the present invention.
  • FIG. 19 uses the judgment criterion that the maximum gradation difference of each color of the color image is equal to or more than a specific value.
  • step S166a it is determined whether the maximum gradation difference of red is larger than the standard value for red component. If the maximum gradation difference of red is larger than the red component standard value, the flow advances to step S164b. If the maximum gradation difference of red is smaller than the standard value for red component, the process proceeds to step S164d.
  • Dif-Rmax is the maximum gradation difference of red
  • Rto1 is the standard value for the red component.
  • step S164b it is determined whether the maximum gradation difference of green is larger than the standard value for green component. If the green maximum gradation difference is larger than the green component standard value, the flow advances to step S164c. If the maximum gradation difference of green is smaller than the standard value for green component, the process proceeds to step S164d.
  • D iff _Gm ax> G to 1
  • Diff-Gmax the maximum gradation difference of green
  • G to 1 the standard value for the green component.
  • step S164c it is determined whether the maximum gray level difference of blue is larger than the standard value for blue component. If the maximum gradation difference of blue is larger than the blue component standard value, the flow advances to step S164e. If the maximum gray level difference of blue is smaller than the blue component standard value, the flow advances to step S164d.
  • Dif-Bmax is the maximum gray level difference of blue
  • Bto1 is the standard value for the blue component.
  • step S164d it is determined that there is no resolution and is determined to be defective. Also, in step S164e, it is determined that there is a resolution, and a non-defective product is determined. Then, the process ends.
  • FIG. 20 shows a flowchart of an embodiment of the present invention.
  • Fig. 20 shows that the maximum gradation difference for each color of a color image is equal to or greater than a specific standard value for each color, and that the sum of the maximum gradation differences for each color is equal to or greater than the three-color total standard value. This is used as a criterion.
  • step S164h it is determined whether the maximum gradation difference of red is larger than the standard value for red component. If the maximum tone difference of red is larger than the red component standard value, the flow advances to step S164i. If the maximum gradation difference of red is smaller than the standard value for red component, the flow advances to step S1661.
  • step S164i it is determined whether the maximum gradation difference of green is larger than the standard value for green component. If the maximum gradation difference of green is larger than the green component standard value, the flow advances to step S164j. If the green maximum gradation difference is smaller than the green component standard value, the flow advances to step S16641.
  • step S164j it is determined whether the maximum gray level difference of blue is larger than the standard value for blue component. If the maximum gradation difference of blue is larger than the blue component standard value, the flow advances to step S164k. If the maximum gradation difference of blue is smaller than the standard value for blue component, the process proceeds to step S1641.
  • step S164k it is determined whether or not the total of the maximum gradation differences of the three colors red, green and blue is larger than the total standard value of the three colors red, green and blue. If the total of the maximum gradation differences of the three colors is larger than the total standard value of the three colors, the process proceeds to step S164m. If the total of the maximum gradation differences of the three colors is smaller than the total standard value of the three colors, go to step S1641 ⁇
  • Diff—Rmax is the maximum gradation difference of red
  • Diff_Gmax is the maximum gradation difference of green
  • Diff—Bmax is the maximum gradation difference of blue
  • RGB to 1 is the standard value of three colors.
  • step S1641 it is determined that there is no resolution and is determined to be defective.
  • step S164m it is determined that there is a resolution, and is determined to be non-defective. Then, the process ends.
  • FIG. 21 shows a flowchart of an embodiment of the present invention.
  • FIG. 21 is a diagram for calculating the total sum by multiplying each color by an individual coefficient when calculating the total sum of the maximum gradation differences of each color of the color image.
  • step S164r it is determined whether the maximum gradation difference of red is larger than the standard value for red component. If the maximum gradation difference of red is larger than the standard value for red component, the process proceeds to step S164s. When the maximum gradation difference of red is smaller than the standard value for red component, the process proceeds to step S164V.
  • step S164s it is determined whether the maximum gradation difference of green is larger than the standard value for green component. If the green maximum gradation difference is larger than the green component standard value, the flow advances to step S164t. If the green maximum gradation difference is smaller than the green component standard value, the flow advances to step S164V.
  • step S164t the maximum gradation difference of blue is larger than the standard value for blue component. Is determined. If the maximum gradation difference of blue is larger than the blue component standard value, the flow advances to step S164u. If the maximum gray level difference of blue is smaller than the blue component standard value, the flow advances to step S164V.
  • step S164r step S164s, and step S164t, the equation for determining whether the maximum gradation difference of each color is larger than the standard value for each color component is shown in FIG. 19 described above.
  • Steps S164a, S164b, and S164c shown are the same as those described above, and description thereof is omitted.
  • step S1 64u the total of the maximum gradation differences of the three colors multiplied by the component coefficients for each color set to red, green, and blue is larger than the total standard value of the three colors of red, green, and blue. Is determined. If the total of the maximum gradation differences of the three colors is larger than the total standard value of the three colors, the process proceeds to step S164W. When the total of the maximum gradation differences of the three colors is smaller than the total standard value of the three colors, the process proceeds to step S164V.
  • Diff—Rmax is the maximum gradation difference of red
  • Diff—Gmax is the maximum gradation difference of green
  • Diff—Bmax is the maximum gradation difference of blue
  • k R is the coefficient for the red component
  • k G is the coefficient for the green component
  • k B is the coefficient for the blue component
  • RGB t 01 is the three-color comprehensive standard value.
  • the size of the color component coefficient is set to the largest for the green component coefficient, and then to red.
  • step S164V it is determined that there is no resolution and is determined to be defective. Also, in step S164w, it is determined that there is a resolution and a non-defective item is determined. Then, the process ends.
  • FIG. 22 shows a flowchart of an embodiment of the present invention.
  • Fig. 22 shows that the black-and-white line pair pattern is scanned multiple times while changing the scanning position, the maximum gradation difference is calculated for each scan, and the upper N and lower M of the maximum gradation difference group are calculated.
  • the following shows the processing procedure of the measurement control program 43, with the average value of the P maximum gradation difference groups excluding as the judgment target. Note that the processing procedures and the like corresponding to steps S 13 1 and S 13 36 shown in FIG. 17 are omitted.
  • step S 171 for example, as shown in FIG. 14, the initial values of the maximum gradation difference of each scanning line (l to n) to be measured are sequentially set and stored.
  • step S172 the first scan line is set to count. For example, Line 1 in FIG. 14 is set.
  • step S173 the maximum gradation difference is stored from among the first scanning lines. In other words, it sequentially calculates the gradation difference between the previously measured pixel and the previously measured pixel, and determines whether the difference is larger than the currently stored maximum gradation difference. If it is larger than the difference, the maximum gradation difference is stored.
  • abs is the absolute value
  • E m .n is the gradation data of the measured pixel
  • N is the gradation data of the adjacent previously measured pixel
  • Max — Diff disturb is currently stored. Is the maximum gradation difference of the scanning line.
  • step S174 the next scanning line is set in the counter.
  • step S175 the maximum gradation difference from the scanning lines is stored. In other words, it sequentially calculates the gradation difference between the previously measured pixels and the gradation data of the adjacent pixels, determines whether the difference is larger than the currently stored maximum gradation difference, and determines the currently stored maximum gradation difference. If the difference is larger than the difference, the maximum gradation difference is stored. The judgment is the same as the above equation.
  • step S176 it is determined whether or not all the measurement has been performed up to the last scan line of each scan line (1 to! 1) to be measured previously set. If all have been measured, proceed to step S177. If all have not been measured, the process returns to step S174.
  • step S178 the average value of the maximum gradation difference group is calculated and stored.
  • the average value of the maximum gradation difference group is obtained by dividing the sum of the maximum gradation difference groups by the total number of the maximum gradation difference groups. That is, the average value of the maximum gradation difference group is given by the following equation.
  • Diff AVC is the average value of the maximum gradation difference group, ⁇ Ma X—Diff ; (i is an integer from M + 1 to n—N) is the sum of the maximum gradation difference groups, n—N — M is the total number of the maximum difference groups.
  • step S179 the pass / fail judgment value set in advance is compared with the stored average value of the maximum gradation difference group to determine whether the average value of the maximum gradation difference group exceeds the pass / fail judgment value. Then, in step S180, the test result is displayed on the display unit, and the process ends.
  • the resolution measuring process of the image reading apparatus of the present invention is realized by using a program for operating a computer.
  • This program is stored in various suitable recording media such as FDs and CDs for self-recording.
  • the resolution measuring method of the image reading apparatus of the present invention focuses on the contrast of the image, quantifies the “visible” range, and furthermore, considers a test chart that considers the ease of setting the image reading apparatus.
  • automatic computer processing of a resolution test in which one pixel of a CCD element resolves one bar can be performed, and therefore, an efficient production system can be adopted.
  • the resolution of the image reading device it is possible to eliminate factors such as dust and dirt on the test chart.
  • the scanning accuracy can be improved by scanning the monochrome line pattern a plurality of times while changing the scanning position.
  • the program can be realized by using a program for operating a computer, and this program can be stored in various appropriate recording media such as an FD and a CD for recording the program.
  • the device can be installed and processed. Industrial applicability
  • the image reading device is caused to read a test chart having a predetermined reading area, and a value calculated from the result exceeds a predetermined numerical value range.
  • a unique criterion for detecting the image noise can be provided, so that the image noise can be reliably measured without relying on the visual check of the worker. be able to.
  • the method for measuring image noise of the image reading apparatus of the present invention can be realized by using a program for operating such a computer, and the program can be stored in various recording media. A desired measuring device can perform the measuring process.
  • the method for measuring the resolution of the image reading apparatus of the present invention is to read a test chart created by shifting the pitch of the black and white line pair pattern by a small amount from the reading pixel pitch of the image reading apparatus, and read the maximum gradation calculated from the result If the difference exceeds the pass / fail judgment value, a resolution test is passed, and the resolution at which one pixel of the CCD element resolves one bar can be automatically calculated. It also eliminates factors such as dust and dirt on the test chart, making it possible to measure the resolution of an empty image. Further, the method for measuring the resolution of the image reading apparatus of the present invention can be realized using a program for operating such a computer, and the program can be stored in various recording media. A desired measuring device can perform the measuring process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimiles In General (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

According to a method for measuring image noise of an image reader of the invention, image data collected by reading a measurement area having a uniform density of a test chart is analyzed by an image analyzing program of a computer, an abnormal part of the image data is extracted, and it is judged whether or not the abnormal part is noise based on predetermined criteria. According to a method for measuring the resolution of an image reader of the invention, a test chart prepared by slightly shifting the pitch of a black-and-white line pair pattern from the pixel pitch of the image reader is read in such a way that there is always a portion where the pattern coincides with a pixel, only a necessary portion of the read image data is segmented, the gradation difference is calculated for each pixel of the whole segmented image data, the maximum gradation difference is found, and if the maximum gradation difference exceeds an acceptance/rejection judging value, a resolution test acceptance is given.

Description

明細書 画像読取装置の画像ノィズ測定方法、 解像度測定装置及び解像度測定方法並びにその記録媒体 技術分野  TECHNICAL FIELD The present invention relates to an image noise measuring method for an image reading device, a resolution measuring device, a resolution measuring method, and a recording medium therefor.
本発明は、 画像読取装置の画像ノイズ測定方法及び解像度測定方法並びにその 記録媒体に関し、 特に、 ホスト装置に接続してホスト装置に画像データを提供す る画像読取装置の画像ノイズの測定を定量的に行ない予め定める基準に基づいて その良否を判定する画像ノィズ測定方法、 及び、 C C D素子 1画素が 1バーを解 像する解像度試験の自動コンピュータ処理を可能とする解像度測定方法、 並びに それらの記録媒体に関する。 背景技術  The present invention relates to a method of measuring image noise and a method of measuring resolution of an image reading device, and a recording medium thereof, and more particularly to a method of quantitatively measuring image noise of an image reading device connected to a host device and providing image data to the host device. Image noise measurement method to determine the quality based on predetermined criteria, and a resolution measurement method that enables automatic computer processing of a resolution test in which one pixel of a CCD element resolves one bar, and their recording media About. Background art
ホスト装置に接続して、 ホスト装置に画像データを提供する画像読取装置で読 み取つた画像のノィズは画像品質の低下をもたらし、 原稿の再現性を損なう原因 となる。 前記ノイズを除去することは画像読取装置の性能を安定させるために重 要である。 従って、 画像読取装置に発生するノイズを正確に測定することは、 画 像読取装置の実態を把握することであり、 同時にその原因を除去するためにも欠 くことのできない要素である。  Noise of an image read by an image reading device connected to the host device and providing the image data to the host device causes a decrease in image quality, and causes a deterioration in reproducibility of the document. It is important to remove the noise in order to stabilize the performance of the image reading device. Therefore, to accurately measure the noise generated in the image reading device is to grasp the actual state of the image reading device, and at the same time, is an essential element for eliminating the cause.
透過原稿を例にとると、 原稿濃度と前記の原稿を透過した光による C C D素子 の出力との関係は直線的に変化するものではなく、 第 2 3図に示すごとく指数関 数的に変化することが知られている。 このことは、 前記の C C D素子による出力 に発生するノィズは原稿濃度によつてその影響の度合レ、が異なるということを示 している。 従って、 実際に特定の原稿によりノイズを測定する際に濃度の異なる 複数の原稿を読み取ることにより、 発生したノィズを確実に捕捉できるというこ とが判る。  Taking a transparent original as an example, the relationship between the original density and the output of the CCD element due to the light transmitted through the original does not change linearly, but changes exponentially as shown in Fig. 23. It is known. This indicates that the noise generated in the output by the CCD element varies in the degree of the effect depending on the document density. Therefore, it can be seen that the noise generated can be reliably captured by reading a plurality of originals with different densities when actually measuring noise with a specific original.
第 2 4図によって、 前記画像読取装置に例えば塵埃等が混入して、 特定の C C D素子の光検出に異常をきたした場合を説明する。  With reference to FIG. 24, a case will be described in which, for example, dust or the like is mixed in the image reading apparatus, and the light detection of a specific CCD element is abnormal.
第 2 4図 (a ) に示すごとく、 前記異常をきたした C C D素子の箇所では画像 データが突出した値を示し、 第 2 4図 (b ) に示すごとく均一な濃度により構成 する原稿を読み取った場合には前記異常をきたした C C D素子の箇所で画像デー 夕のヌケを発生して縦スジ (図中、 横方向の白点の集合) となって現れる。 第 2 5図及び第 2 6図によって、 従来の技術による画像読取装置の試験工程に おいて、 ノイズを測定する処理フローを説明する。 特に、 第 2 5図はブロック図 を示し、 第 2 6図はノイズを測定するフローチャートを示す。 As shown in Fig. 24 (a), the image of the abnormal CCD element The data shows a prominent value, and when an original composed of uniform density is read as shown in Fig. 24 (b), image data dropout occurs at the location of the abnormal CCD element. It appears as vertical stripes (in the figure, a set of horizontal white dots). Referring to FIGS. 25 and 26, a processing flow for measuring noise in a test process of an image reading apparatus according to a conventional technique will be described. In particular, FIG. 25 shows a block diagram, and FIG. 26 shows a flowchart for measuring noise.
図 2 5において、 テストチャート 1 1を載置した画像読取装置 1 2において、 光源ランプ 2 2の照射する光が前記テストチャート 1 1を透過し、 C C D素子 2 3は前記テストチャート 1 1を透過した光に感応して電気信号を発する。 なお、 前記テストチャート 1 1として第 1図に示したごとく複数の読み取り領域 1 a、 l b、 1 c及び 1 dを備えるテストチャート 1を適用する。 また、 読み取り移動 部 2 4は前記 C C D素子 2 3を備える読み取り部を移動させて副走査方向の読み 取りを実行させる。 更に、 演算制御部 2 1は前記 C C D素子 2 3の発した電気信 号を適当な形態に増幅して画像データとなし、 測定装置 1 5に転送する。 画像読 取装置 1 2より画像データを受信した測定装置 1 5のドライバプログラム 5 2は 、 演算制御部 5 1に前記画像データを転送し、 表示部 5 5に前記画像データを表 示し、 前記測定装置 1 5の操作担当者の目視検査に備える。  In FIG. 25, in the image reading apparatus 12 on which the test chart 11 is placed, the light emitted from the light source lamp 22 passes through the test chart 11 and the CCD element 23 passes through the test chart 11 It emits an electrical signal in response to the light. As the test chart 11, a test chart 1 having a plurality of reading areas 1a, 1b, 1c, and 1d as shown in FIG. 1 is applied. Further, the reading moving section 24 moves the reading section including the CCD element 23 to execute reading in the sub-scanning direction. Further, the arithmetic control unit 21 amplifies the electric signal emitted from the CCD element 23 into an appropriate form, converts it into image data, and transfers the image data to the measuring device 15. The driver program 52 of the measuring device 15 that has received the image data from the image reading device 12 transfers the image data to an arithmetic control unit 51, displays the image data on a display unit 55, and performs the measurement. Prepare for visual inspection of the operator of device 15
図 2 6において、 ステップ S 2 0 1で、 操作担当者は試験の対象である画像読 取装置 1 2にテストチャート 1 1を載置し、 ステップ S 2 0 2に進んで画像読取 装置 1 2によって前記テストチャート 1 1を読み取り、 ステップ S 2 0 3で前記 画像データを測定装置 1 5に転送する。 ステップ S 2 0 4で画像データを受信し た測定装置 1 5は、 ステップ S 2 0 5に進んで前記画像データを表示部 5 5に表 示し、 ステップ S 2 0 6で目視によるチェックを行なう。 ステップ S 2 0 7で、 見出されたノイズが規定の許容範囲内にある場合は、 ステップ S 2 0 9に進んで ノイズ無しと判定して当該画像読取装置 1 2は手直し不要の装置として次工程に 引き渡す。 また、 見出されたノイズが規定の許容範囲を超えている場合は、 ステ ップ S 2 0 8に進んでノイズありと判定して当該画像読取装置 1 2は手直しが必 要な装置として所定の手直し工程に引き渡す。 ステップ S 2 1 0で、 記録部 5 6 に該当する試験結果のデータを格納して当該ノイズ測定の工程を終了する。 このような従来の技術による画像読取装置 1 2の試験工程におけるノィズ測定 方法では、 次に述べるような問題点がある。 In FIG. 26, in step S201, the operator places the test chart 11 on the image reading device 12 to be tested, and proceeds to step S202 to read the image reading device 1 2 Then, the test chart 11 is read, and the image data is transferred to the measuring device 15 in step S203. The measuring device 15 that has received the image data in step S204 proceeds to step S205, displays the image data on the display unit 55, and performs a visual check in step S206. In step S207, if the found noise is within the specified allowable range, the process proceeds to step S209, where it is determined that there is no noise, and the image reading device 12 is determined as a device that does not need to be modified. Deliver to the process. If the detected noise exceeds the specified allowable range, the process proceeds to step S208, where it is determined that there is noise, and the image reading device 12 is determined as a device requiring rework. Hand over to the rework process. In step S210, the corresponding test result data is stored in the recording unit 56, and the noise measurement process ends. Such a noise measuring method in the test process of the image reading apparatus 12 according to the conventional technique has the following problems.
画像ノイズの摘出と測定及びその合否判定は、 測定装置 1 5の表示部 5 5に表 示したテストチャート 1 1の読み取り画像を操作担当者が目視でチ ックするこ とで実行する。 即ち、 当該試験工程におけるノイズ測定方法は担当者による感応 試験に頼るものである。 従って、 担当者の習熟度が検査結果に大きく影響し、 担 当者の視力等の個人的な資質とともに当日の健康状態といつた要素も検査結果に 影響するので、 一義的な判定基準を確立することは困難である。  The extraction and measurement of the image noise and the determination of the pass / fail of the image are executed by the operator visually checking the read image of the test chart 11 displayed on the display unit 55 of the measuring device 15. That is, the noise measurement method in the test process relies on the sensitivity test by the person in charge. Therefore, the level of proficiency of the person in charge greatly affects the test results, and the personal condition of the person in charge, such as eyesight, as well as the health condition of the day and other factors affect the test results. It is difficult to do.
一方、 以上に述べた画像ノイズと密接な関連を有するものとして、 画像読取装 置の解像度がある。 画像読取装置の解像度は、 どの程度細かく識別できるかを表 すものであり、 装置が備えるレンズと C C Dとで決まる。 このため、 レンズを複 数個用レ、て画像を拡大してから C C Dで読み取ることで解像度を高めることがで る。  On the other hand, one closely related to the image noise described above is the resolution of the image reading device. The resolution of an image reading device indicates how finely it can be identified, and is determined by the lens and CCD provided in the device. For this reason, the resolution can be increased by using multiple lenses, enlarging the image, and then reading the image with CCD.
第 2 9図は光学部品や光学システムの解像度を評価する際に一般的に使用され る解像度試験用のテストチャートを示すものである。 第 2 9図 (a ) において、 テストチャートは、 垂直及び水平の両方向に設けられた 3本のバーとそれらを区 切る 2本のスペースという組合せを ^のグループとして、 パターンサイズを順 番に小さくしながら、 外側から内側へと規則正しく配置してある。  FIG. 29 shows a test chart for a resolution test generally used when evaluating the resolution of an optical component or an optical system. In Fig. 29 (a), the test chart shows the combination of three bars provided in both the vertical and horizontal directions and the two spaces separating them as groups of ^, and the pattern size is reduced in order. Meanwhile, they are arranged regularly from outside to inside.
画像読取装置の解像度を調べるには、 第 2 9図 (a ) で示した前記テストチヤ 一トを試験対象の画像読取装置で読取らせ、 画像読取装置から得られる画像を確 認すればよい。 即ち、 解像度は、 3本のバーが識別可能である最も小さいパター ンのサイズから求めることができる。 なお、 画像読取装置の解像度仕様として、 例えば、 2 4 0 0 d p iという解像度を基本仕様として備える画像読取装置であ れば、 第 2 9図 (b ) に示すテストチャートとの対応によれば、 約 1 1 / mのバ —の識別が必要とされている。  To check the resolution of the image reading device, the test chart shown in FIG. 29 (a) may be read by the image reading device to be tested, and the image obtained from the image reading device may be confirmed. That is, the resolution can be determined from the size of the smallest pattern in which three bars can be identified. Note that, for example, if the image reading device has a resolution of 240 dpi as a basic specification as a resolution specification of the image reading device, according to the test chart shown in FIG. Approximately 1 1 / m of bar — identification is required.
第 2 7図は従来技術の構成図を示す。 第 2 7図において、 画像読取装置 1 2の 解像度試験を行うには、 第 2 9図で示したテストチャート 7 1と、 試験対象とな る画像読取装置 1 2と、 測定装置 1 6とで構成される。 なお、 画像読取装置 1 2 は測定装置 1 6からの指示に基づき演算制御部 2 1によって、 光源ランプ 2 2、 C C D素子 2 3、 読取り移動部 2 4の動作を制御するとともに、 読取ったテスト チャート 7 1の画像データを測定装置 1 6へ転送する。 測定装置 1 6は演算制御 部 6 1によって制御され、 ドライバプログラム 6 2を介して画像読取装置 1 2と データの授受を行い、 受信した画像データは演算制御部 6 1によって処理され、 表示部 6 6に読取り画像を拡大表示する。 解像度の良否判定は、 表示部 6 6に表 示された画像を目視によってチヱックすることで行われる。 また、 試験結果のデ —夕は記憶部 6 7に格納される。 FIG. 27 shows a configuration diagram of the prior art. In FIG. 27, to perform a resolution test of the image reading device 12, the test chart 71 shown in FIG. 29, the image reading device 12 to be tested, and the measuring device 16 are used. Be composed. Note that the image reading device 12 is operated by the arithmetic control unit 21 based on the instruction from the measuring device 16 so that the light source lamps 22 and It controls the operations of the CCD element 23 and the reading movement section 24 and transfers the read image data of the test chart 71 to the measuring device 16. The measurement device 16 is controlled by the arithmetic and control unit 61 and exchanges data with the image reading device 12 via the driver program 62. The received image data is processed by the arithmetic and control unit 61 and the display unit 6 The read image is enlarged and displayed on 6. The determination of the quality of the resolution is performed by visually checking the image displayed on the display unit 66. The data of the test results are stored in the storage unit 67.
第 2 8図を用いて、 従来技術の処理手順を説明する。 なお、 符号は第 2 7図に 示すものと同一のものを用いる。  The processing procedure of the prior art will be described with reference to FIG. The same reference numerals as those shown in Fig. 27 are used.
ステップ S 3 0 1において、 判定者は、 テストチヤ一ト 7 1を試験対象とする 画像読取装置 1 2の所定位置にセットし読取りを指示する。 ステップ S 3 0 2に おいて、 画像読取装置 1 2は光源ランプ 2 2、 C C D素子 2 3、 読取り移動部 2 4を駆動させてテストチヤート 7 1の読取りを開始し、 ステップ S 3 0 3におい て、 読取った画像データを測定装置 1 6へ転送する。 ステップ S 3 0 4において 、 測定装置 1 6は、 画像データを受信し、 演算制御部 6 1によって処理し、 ステ ップ S 3 0 5において、 表示部 6 6に読取り画像を拡大表示する。 ステップ S 3 0 6において、 判定者は、 表示部 6 6に表示された画像を目視によってチェック する。 ステップ S 3 0 7において、 判定者は、 表示部 6 6に表示された画像にお いて、 3本のバ一が識別できるか判定する。 3本のバーが識別できなければ、 ス テツプ S 3 0 8において、 画像読取装置 1 2は基本仕様の解像度がないとして不 良品とする。 3本のバーが識別できれば、 ステップ S 3 0 9において、 画像読取 装置 1 2は基本仕様の解像度があるとして良品とする。 ステップ S 3 1 0におい て、 測定結果のデータを記憶部 6 7に記録し、 処理を終了する。  In step S301, the judge sets the test chart 71 at a predetermined position of the image reading device 12 to be tested and instructs reading. In step S302, the image reading device 12 starts reading the test chart 71 by driving the light source lamp 22, the CCD element 23, and the reading moving part 24, and in step S303. Then, the read image data is transferred to the measuring device 16. In step S304, the measuring device 16 receives the image data, processes the image data by the arithmetic control unit 61, and in step S305, displays the read image on the display unit 66 in an enlarged manner. In step S306, the judge visually checks the image displayed on the display unit 66. In step S307, the determiner determines whether the three bars can be identified in the image displayed on the display unit 66. If the three bars cannot be identified, in step S308, the image reading device 12 is determined to be defective because it does not have the resolution of the basic specification. If the three bars can be identified, in step S309, the image reading device 12 is determined to be non-defective as having the resolution of the basic specification. In step S310, the data of the measurement result is recorded in the storage unit 67, and the process ends.
このように、 解像度確認方法として、 例えば、 前記 2 4 0 0 d p iという解像 度を基本仕様として備える画像読取装置 1 2の解像度試験は、 読取り画像を拡大 表示などして熟練した技術者が目視で判断している。 このため、 前述の第 2 9図 で示した一般に知られてレ、る汎用的なテストチャートでの試験を例にとると、 第 1に見える 見えないという最重要のボイントで人間の判断が介入する、 第 2に 判断を行う人間には画像を識別するための豊富な経験と感性とが要求される、 第 3に試験結果として残るデータが乏しい、 といった問題がある。 これらは、 画像 読取装置 1 2の生産体制、 品質保証体制の両面で大きな弱点となる。 As described above, as a method of checking the resolution, for example, a resolution test of the image reading apparatus 12 having the above-mentioned resolution of 240 dpi as a basic specification is performed by a skilled technician by, for example, enlarging and displaying a read image. It is judged by. For this reason, taking the example of a test using a general-purpose test chart shown in Fig. 29, which is generally known, the human judgment intervenes at the most important point where it looks first and invisible. Second, the person making the decision requires a wealth of experience and sensitivity to identify the image. The third problem is that the data remaining as test results is scarce. These are major weaknesses in both the production system and the quality assurance system of the image reading device 12.
画像読取装置 1 2の効率的な生産体制を構築するためには、 解像度試験をコン ピュー夕処理で実現することが望まれる。 白黒のバーが識別できるためには、 黒 のバーと、 それを区切るスペースとがともに見えていることが必要であり、 バー とスペースとを識別する際には、 それぞれのパターンに相当する画素間のコント ラスト差が非常に重要となる。 コントラスト差が大きければバーとスペースが明 確に識別でき、 逆にコントラスト差が小さければ識別しにくくなる。 これらから 、 このコントラスト差に着目し、 人間の感覚を関連付けることで、 コンピュータ 処理は実現できる。  In order to build an efficient production system for the image readers 12, it is desirable to implement a resolution test by computer processing. In order to be able to identify black and white bars, it is necessary that both the black bar and the space that separates it are visible. The contrast difference is very important. If the contrast difference is large, the bars and spaces can be clearly distinguished, and if the contrast difference is small, it is difficult to distinguish them. From these, computer processing can be realized by focusing on this contrast difference and relating human sensation.
また、 画像読取装置 1 2は、 原稿からの反射光あるいは原稿の透過光を CCD ラインセンサ (23) 上に結像させ、 これを電気信号に変換して内部の処理を行 つている。 従って、 CCDラインセンサ上に結像された状態での原稿(7 1) ィ メ一ジと CCD受光部サイズとの関係がコントラスト差に大きく影響する。 第 30図によって幾つかのケースを示す。 第 30図 (a) は、 パターンと CC D素子 1画素のサイズのバランスと、 パターンと CC D素子の位置関係がともに 良好で、 コントラスト差が大きい場合を示している。 また、 第 30図 (b) は、 ノ、。ターンと C C D素子の位置関係は良レ、が、 ピントのぼけ等の理由によってバタ ーンと CCD素子 1画素のサイズのバランスが崩れ、 コントラスト差が小さい場 合を示している。 更に、 第 30図 (c) は、 ノ、。ターンと CCD素子 1画素のサイ ズのバランスは良いが、 パターンと CCD素子の位置関係がずれ、 コントラスト 差が小さい場合を示している。  The image reading device 12 forms reflected light from the original or transmitted light from the original on a CCD line sensor (23), converts the image into an electric signal, and performs internal processing. Therefore, the relationship between the original (71) image formed on the CCD line sensor and the size of the CCD light receiving section greatly affects the contrast difference. Some cases are illustrated by FIG. FIG. 30 (a) shows a case where the balance between the size of the pattern and the CCD element and the positional relationship between the pattern and the CCD element are both good and the contrast difference is large. Fig. 30 (b) shows the case of the The positional relationship between the turn and the CCD element is good, but the balance between the pattern and the size of one pixel of the CCD element is lost due to defocus, and the contrast difference is small. Further, FIG. The figure shows the case where the balance between the turn and the size of one pixel of the CCD element is good, but the positional relationship between the pattern and the CCD element is shifted, and the contrast difference is small.
ところで、 解像度試験においては、 第 30図 (b) に示したケースを摘出し、 不良品と判定することが目的である。 しかし、 コントラスト差を測るだけでは、 第 30図 (c) に示したケースとの区別がつかなくなってしまう。 また、 光学ュ ニットとテストチャートとの位置関係を// m単位で管理すること、 更に、 すべて の装置において当該位置関係を固定することは不可能である。 従って、 第 30図 (a) に示したケースの状態を作り出せることは希であり、 殆どが第 30図 (c ) に示したケースに近い状態になるであろうと予測される。 このため、 CCD素 子 1画素が 1バーを解像する解像度の判定は、 画素とバ一との位置を一致させる 必要があるために、 判定者がいちいちテストチヤートの位置を微妙にずらしなが ら、 塵埃ゃキズなどの要因も排除しつつ判定している。 By the way, the purpose of the resolution test is to extract the case shown in Fig. 30 (b) and determine that it is defective. However, measuring the contrast difference alone makes it difficult to distinguish the case shown in Fig. 30 (c). In addition, it is impossible to manage the positional relationship between the optical unit and the test chart in units of // m, and it is impossible to fix the positional relationship in all devices. Therefore, it is rare that the state of the case shown in FIG. 30 (a) can be created, and it is predicted that almost all of the cases will be close to the case shown in FIG. 30 (c). Therefore, the CCD element In determining the resolution at which one pixel resolves one bar, it is necessary to match the position of the pixel and the bar, so the judge must shift the position of the test chart slightly, and The judgment is made while excluding such factors.
このような従来の技術による画像読取装置 1 2における画像解像度測定方法で は、 次に述べるような問題点がある。  Such an image resolution measuring method in the image reading apparatus 12 according to the related art has the following problems.
第 1に、 C C D素子 1画素が 1バーを解像する解像度の判定において、 汎用的 なテストチャート 7 1では、 そのセット性が著しく悪くなり、 効率的な生産体制 とすることができない。 第 2に、 解像度試験をコンピュータ処理で実現する場合 は、 ピントのぼけ等の理由によってパターンと C C D素子 1画素のサイズのバラ ンスが崩れ、 コントラスト差が小さい場合と、 パターンと C C D素子の位置関係 がずれ、 コントラスト差が小さい場合とを識別することができない。  First, in the determination of the resolution at which one pixel of a CCD element resolves one bar, the versatility of the general-purpose test chart 71 significantly deteriorates the setability, making it impossible to establish an efficient production system. Second, when a resolution test is implemented by computer processing, the pattern and CCD element pixel size balance is broken due to defocus, etc., and the contrast difference is small, and the positional relationship between the pattern and CCD element. Cannot be distinguished from the case where the contrast difference is small.
本発明は、 一義的に画像ノィズの有無を判定する画像読取装置の画像ノィズ測 定方法を提供することを目的としている。  SUMMARY OF THE INVENTION It is an object of the present invention to provide an image noise measuring method for an image reading apparatus that uniquely determines the presence or absence of image noise.
また、 本発明は、 一義的に画像ノイズの有無を判定する画像読取装置の画像ノ ィズ測定方法を提供するプログラムを記憶した記録媒体を提供することを目的と している。  Another object of the present invention is to provide a recording medium storing a program for providing an image noise measuring method of an image reading apparatus for uniquely determining the presence or absence of image noise.
また、 本発明は、 テストチャートの位置を自由にできる画像読取装置の解像度 測定装置を提供することを目的としている。  Another object of the present invention is to provide a resolution measuring device of an image reading device that can freely set the position of a test chart.
また、 本発明は、 テストチャートの位置を自由にできる画像読取装置の解像度 測定方法を提供することを目的としている。  Another object of the present invention is to provide a method for measuring the resolution of an image reading apparatus that allows the position of a test chart to be set freely.
また、 本発明は、 テストチャートの位置を自由にできる画像読取装置の解像度 測定方法を提供するプログラムを記憶した記録媒体を提供することを目的として いる。 発明の開示  It is another object of the present invention to provide a recording medium storing a program for providing a method for measuring the resolution of an image reading apparatus capable of freely setting the position of a test chart. Disclosure of the invention
本発明の一つの実施形態である画像読取装置の画像ノィズ測定方法は、 画像読 取装置に、 均一な濃度による読み取り領域を持ったテストチヤ一トを読み取らせ て画像デ一夕を採取して解析し、 個々の画像デ一夕のバラツキの度合レ、が予め定 める範囲を越えた場合に当該画像読取装置は画像ノイズを持つと判定する。 この画像ノイズ測定方法によれば、 テストチヤー卜の均一な濃度による読み取 り領域を読み取った画像データを解析して、 一義的に画像ノイズの有無を判定す ることができる。 An image noise measuring method of an image reading apparatus according to one embodiment of the present invention is a method of causing an image reading apparatus to read a test chart having a reading area with a uniform density and collect and analyze image data. If the degree of variation of each image exceeds a predetermined range, the image reading apparatus determines that the image has image noise. According to this image noise measurement method, the presence or absence of image noise can be uniquely determined by analyzing the image data obtained by reading the read area with a uniform density of the test chart.
また、 本発明の他の一つの実施形態である画像読取装置の画像ノィズ測定方法 は、 画像読取装置に、 均一な濃度による読み取り領域を持ったテストチャートを 読み取らせて画像データを採取して解析し、 特定の位置にある縦方向又は、 横方 向の平均出力値がその全域における平均値から離れる度合いが予め定める範囲を 越えた場合に当該箇所で画像ノイズを持つと判定する。  In another embodiment of the present invention, a method for measuring an image noise of an image reading apparatus includes a step of causing an image reading apparatus to read a test chart having a reading area with a uniform density and collect and analyze image data. If the average output value in the vertical or horizontal direction at a specific position deviates from the average value in the entire area beyond a predetermined range, it is determined that there is image noise at the position.
この画像ノイズ測定方法によれば、 テストチヤ一トの均一な濃度による読み取 り領域を読み取った画像データを解析して、 一義的に画像ノイズの発生を判定し 、 その発生位置を知ることができる。  According to this image noise measuring method, it is possible to analyze image data obtained by reading a reading area with a uniform density of a test chart, uniquely determine the occurrence of image noise, and know the position of occurrence.
また、 本発明の他の一つの実施形態である画像読取装置の画像ノィズ測定方法 は、 画像読取装置に、 均一な濃度による読み取り領域を持ったテストチャートを 読み取らせて画像デ一夕を採取して解析し、 特定の位置にある縦方向又は、 横方 向の平均出力値がその隣接する平均出力値との差異が予め定める範囲を越えた場 合に当該箇所で画像ノイズを持つと判定する。  Further, in another embodiment of the present invention, a method for measuring an image noise of an image reading apparatus includes the steps of: causing an image reading apparatus to read a test chart having a reading area with a uniform density to collect image data; If the difference between the average output value in the vertical or horizontal direction at a specific position and its adjacent average output value exceeds a predetermined range, it is determined that there is image noise at that location. .
この画像ノイズ測定方法によれば、 テストチヤートの均一な濃度による読み取 り領域を読み取った画像データを解析して、 一義的に画像ノイズの発生を判定し 、 その発生位置を知ることができる。  According to this image noise measuring method, it is possible to analyze the image data obtained by reading the read area with a uniform density of the test chart, uniquely determine the occurrence of image noise, and know the position of the occurrence.
本発明の一つの実施形態である画像読取装置の解像度測定方法は、 ピントのぼ け等の理由によってパターンと C C D素子 1画素のサイズのバランスが崩れた結 果コントラスト差が小さい場合と、 パターンと C C D素子の位置関係がずれた結 果コントラスト差が小さレ、場合とを識別する。  The method for measuring the resolution of the image reading apparatus according to one embodiment of the present invention includes a case where the contrast difference is small as a result of the balance between the pattern and the size of one pixel of the CCD element being lost due to a defocus or the like. The case where the contrast difference is small as a result of the positional relationship of the CCD elements being shifted is identified.
また、 本発明の他の一つの実施形態である画像読取装置の解像度測定方法は、 C C D素子に結像される原稿イメージにおけるパターンを論理的な値より僅かに ずらした値になるようにしたテストチャートを使用し、 一定周期毎に白パターン と読取り画素、 及び黒パターンと読取り画素が必ず一致するようにする。 このテ ストチャートを使用して、 パターンと画素とが必ず一致する箇所があるよう十分 な領域を読取り、 全領域の読取り画像の 1画素毎に階調差を計算し、 最大階調差 を検出する。 その最大階調差が良否判定値を越えてレ、る場合は解像度試験合格と する。 Further, a method for measuring the resolution of an image reading apparatus according to another embodiment of the present invention includes a test in which a pattern in a document image formed on a CCD element is set to a value slightly shifted from a logical value. Use a chart and make sure that the white pattern and read pixel, and the black pattern and read pixel always match at regular intervals. Using this test chart, a sufficient area is read so that the pattern and the pixel always match, the gradation difference is calculated for each pixel of the read image of the entire area, and the maximum gradation difference is calculated. Is detected. If the maximum gradation difference exceeds the pass / fail judgment value, the resolution test is passed.
この解像度測定方法によれば、 この読取り領域における隣接画素間のコントラ スト差は一定の周期を持って変化するようになる。 従って、 テストチャートを画 像読取装置へ搭載する際にテストチヤートの位置を気にしなくても、 パターンと 画素とが必ず一致する箇所がある。 このため、 最大コントラスト差を検証するだ けで、 ピントのぼけ等の理由によつてパターンと C C D素子 1画素のサイズのバ ランスが崩れ、 コントラスト差が小さい場合を識別することができる。 図面の簡単な説明  According to this resolution measuring method, the contrast difference between adjacent pixels in the reading area changes with a constant period. Therefore, even when the test chart is mounted on the image reading device, there is a portion where the pattern and the pixel always match without regard to the position of the test chart. For this reason, only by examining the maximum contrast difference, it is possible to identify a case where the balance between the pattern and the size of one pixel of the CCD element is lost due to reasons such as defocus and the contrast difference is small. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施にかかるテストチャートの説明図である。 第 2図は、 本発明にかかるノイズラインの方向の説明図である。 第 3図は、 本発明にかかる ブロック図である。 第 4図は、 本発明の代表的な実施例によるフローチャートで ある。 第 5図は、 本発明の代表的な実施例によるフローチャートである。 第 6図 は、 本発明の代表的な実施例によるフローチャートである。 第 7図は、 本発明の 代表的な実施例によるフローチャートである。 第 8図は、 本発明の代表的な実施 例によるフローチャートである。 第 9図は、 本発明の他の構成図である。 第 1 0 図は、 本発明の概略フローチャートである。 第 1 1図は、 本発明の実施例の構成 図である。 第 1 2図は、 本発明の実施例の説明図である。 第 1 3図は、 本発明の 実施例の説明図である。 第 1 4図は、 本発明の実施例の説明図である。 第 1 5図 は、 本発明の実施例の説明図である。 第 1 6図は、 本発明の実施例のフローチヤ —トである。 第 1 7図は、 本発明の実施例のフローチャートである。 第 1 8図は 、 本発明の実施例のフローチャートである。 第 1 9図は、 本発明の実施例のフロ 一チャートである。 第 2 0図は、 本発明の実施例のフローチャートである。 第 2 FIG. 1 is an explanatory diagram of a test chart according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of a direction of a noise line according to the present invention. FIG. 3 is a block diagram according to the present invention. FIG. 4 is a flowchart according to a representative embodiment of the present invention. FIG. 5 is a flowchart according to a representative embodiment of the present invention. FIG. 6 is a flowchart according to a representative embodiment of the present invention. FIG. 7 is a flowchart according to a representative embodiment of the present invention. FIG. 8 is a flowchart according to a representative embodiment of the present invention. FIG. 9 is another configuration diagram of the present invention. FIG. 10 is a schematic flowchart of the present invention. FIG. 11 is a configuration diagram of an embodiment of the present invention. FIG. 12 is an explanatory diagram of an embodiment of the present invention. FIG. 13 is an explanatory diagram of an embodiment of the present invention. FIG. 14 is an explanatory diagram of an embodiment of the present invention. FIG. 15 is an explanatory diagram of an embodiment of the present invention. FIG. 16 is a flowchart of an embodiment of the present invention. FIG. 17 is a flowchart of the embodiment of the present invention. FIG. 18 is a flowchart of the embodiment of the present invention. FIG. 19 is a flowchart of the embodiment of the present invention. FIG. 20 is a flowchart of an embodiment of the present invention. No. 2
1図は、 本発明の実施例のフローチャートである。 第 2 2図は、 本発明の実施例 のフローチャートである。 第 2 3図は、 原稿の画像濃度と C C D出力との関係を 示す説明図である。 第 2 4図は、 個別 C C D素子の異常による読み取り画面の説 明図である。 第 2 5図は、 従来の技術によるノイズ測定のブロック図である。 第FIG. 1 is a flowchart of an embodiment of the present invention. FIG. 22 is a flowchart of the embodiment of the present invention. FIG. 23 is an explanatory diagram showing the relationship between the image density of a document and the CCD output. FIG. 24 is an explanatory diagram of a reading screen due to an abnormality of an individual CCD element. FIG. 25 is a block diagram of a noise measurement according to the related art. No.
2 6図は、 従来の技術によるノイズ測定のフローチャートである。 第 2 7図は、 従来技術の構成図である。 第 2 8図は、 従来技術のフローチャートである。 第 2 9図は、 従来技術の解像度試験用のテストチャートである。 第 3 0図は、 従来技 術の画像と C C D受光部サイズとの関係図である。 発明を実施するための最良の形態 FIG. 26 is a flowchart of noise measurement according to a conventional technique. Figure 27 shows FIG. 2 is a configuration diagram of a conventional technique. FIG. 28 is a flowchart of the prior art. FIG. 29 is a test chart for a conventional resolution test. FIG. 30 is a diagram showing the relationship between the image of the conventional technology and the size of the CCD light receiving unit. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施形態)  (First Embodiment)
本発明の代表的な実施の形態を、 第 1図乃至第 8図によって説明する。 本発明 の代表的な実施形態である画像読取装置の画像ノイズ測定方法は、 上記課題を解 決するために以下のように構成される。  A typical embodiment of the present invention will be described with reference to FIGS. An image noise measuring method for an image reading apparatus, which is a typical embodiment of the present invention, is configured as follows to solve the above-mentioned problem.
画像読取装置の画像ノイズ測定方法は、 画像読取装置に、 単一の均一な濃度の 読み取り領域、 あるいは異なる濃度レベルの複数の均一な濃度の読み取り領域を 読み取らせて、 前記個別の測定領域における全画素の光学濃度の標準偏差値を算 出し、 前記標準偏差値が予め定める数値の範囲を超えて逸脱した場合に、 当該画 像読取装置において画像ノィズを検出したとする。  The image noise measuring method of the image reading apparatus is to make the image reading apparatus read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and to obtain a total of the individual measurement areas. It is assumed that the standard deviation value of the optical density of the pixel is calculated, and when the standard deviation value exceeds a predetermined numerical value range, the image reading apparatus detects an image noise.
この形態を取ることにより、 画像ノイズ測定方法において画像ノイズを検出す る一義的な基準を設けるという作用を得る。  By adopting this form, an effect of providing a unique reference for detecting image noise in the image noise measuring method is obtained.
画像読取装置の画像ノイズ測定方法は、 画像読取装置に、 単一の均一な濃度の 読み取り領域、 あるいは異なる濃度レベルの複数の均一な濃度の読み取り領域を 読み取らせて、 前記個別の測定領域において個々の C C D素子が副走査方向に順 次読み取った出力の平均値である縦ラインごとの平均濃度を算出し、 特定の縦ラ ィンの平均濃度がその近傍の縦ラインごとの平均濃度又は、 前記個別の測定領域 全域の平均濃度に対して予め定める数値の範囲を超えて逸脱した場合に当該縦ラ インをノイズラインと判定し、 当該画像読取装置において画像ノイズを検出した とする。  The image noise measuring method of the image reading apparatus is to make the image reading apparatus read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and individually read the individual measurement areas. The average density of each vertical line, which is the average value of the output sequentially read by the CCD element in the sub-scanning direction, is calculated, and the average density of a specific vertical line is calculated as the average density of each vertical line in the vicinity, or When the average density of the individual measurement areas deviates beyond the range of a predetermined numerical value with respect to the average density, the vertical line is determined to be a noise line, and image noise is detected in the image reading apparatus.
また、 画像読取装置の画像ノイズ測定方法は、 画像読取装置に、 単一の均一な 濃度の読み取り領域、 あるいは異なる濃度レベルの複数の均一な濃度の読み取り 領域を読み取らせて、 前記個別の測定領域において主走査方向に読み取つた出力 の平均値である横ラインごとの平均濃度を算出し、 特定の横ラインの平均濃度が その近傍の横ラインごとの平均濃度又は、 前記個別の測定領域全域の平均濃度に 対して予め定める数値の範囲を超えて逸脱した場合に当該横ラインをノイズライ ンと判定し、 当該画像読取装置において画像ノィズを検出したとする。 Further, the image noise measuring method of the image reading device is configured to cause the image reading device to read a single uniform density reading region or a plurality of uniform density reading regions of different density levels, and to perform the individual measurement region. The average density of each horizontal line, which is the average value of the output read in the main scanning direction, is calculated, and the average density of a specific horizontal line is calculated as the average density of each horizontal line in the vicinity or the average of the entire individual measurement area. To the concentration On the other hand, when the value deviates beyond a predetermined numerical range, the horizontal line is determined to be a noise line, and the image reading apparatus detects an image noise.
あるいはまた、 画像読取装置の画像ノイズ測定方法は、 画像読取装置に、 単一 の均一な濃度の読み取り領域、 あるいは異なる濃度レベルの複数の均一な濃度の 読み取り領域を読み取らせて、 前記個別の測定領域において個々の C C D素子が 副走査方向に順次読み取った出力の平均値である縦ラインごとの平均濃度を算出 し、 特定の縦ラインの平均濃度がその隣接する縦ラインの平均濃度に対して予め 定める数値の範囲を超えて逸脱した場合に当該縦ラインをノイズラインと判定し 、 当該画像読取装置において画像ノイズを検出したとする。  Alternatively, the image noise measuring method of the image reading apparatus includes the steps of causing the image reading apparatus to read a single uniform density reading area or a plurality of uniform density reading areas at different density levels, and perform the individual measurement. The average density of each vertical line, which is the average value of the output sequentially read by the individual CCD elements in the sub-scanning direction in the area, is calculated. It is assumed that the vertical line is determined to be a noise line when the value deviates beyond the predetermined numerical value range, and that the image reading apparatus detects image noise.
あるいはまた、 画像読取装置の画像ノイズ測定方法は、 画像読取装置に、 単一 の均一な濃度の読み取り領域、 あるレ、は異なる濃度レベルの複数の均一な濃度の 読み取り領域を読み取らせて、 前記個別の測定領域において主走査方向に読み取 つた出力の平均値である横ラインごとの平均濃度を算出し、 特定の横ラインの平 均濃度がその隣接する横ラインの平均濃度に対して予め定める数値の範囲を超え て逸脱した場合に当該横ラインをノイズラインと判定し、 当該画像読取装置にお レ、て画像ノィズを検出したとする。  Alternatively, the image noise measuring method of the image reading apparatus comprises: causing the image reading apparatus to read a single uniform density reading area, a certain area, or a plurality of uniform density reading areas having different density levels; The average density of each horizontal line, which is the average value of the output read in the main scanning direction in each measurement area, is calculated, and the average density of a specific horizontal line is a predetermined value with respect to the average density of the adjacent horizontal line It is assumed that the horizontal line is determined to be a noise line when deviating beyond the range, and an image noise is detected by the image reading apparatus.
これらの形態を取ることにより、 画像ノィズ測定方法において画像ノイズを検 出する一義的な基準と前記画像ノイズの発生した位置を指定する一義的な基準と を設けるという作用を得る。  By adopting these forms, an effect of providing a unique reference for detecting image noise and a unique reference for designating a position where the image noise occurs in the image noise measurement method is obtained.
画像読取装置の画像ノィズ測定方法のプログラムを記憶する記録媒体は、 ホス ト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装置の、 画 像ノイズを測定する測定装置において、 前記画像読取装置に、 単一の均一な濃度 の読み取り領域、 あるいは異なる濃度レベルの複数の均一な濃度の読み取り領域 を読み取らせて、 前記個別の測定領域における全画素の光学濃度の標準偏差値を 算出する手順と、 前記標準偏差値が予め定める数値の範囲を超えて逸脱した場合 に、 当該画像読取装置にぉレ、て画像ノィズを検出したことを報告する手順とを実 行させるプログラムを格納する。  A recording medium storing a program of an image noise measuring method of the image reading device is connected to a host device, and the image reading device that provides image data to the host device. The image reading device reads a single uniform density reading area or a plurality of uniform density reading areas at different density levels, and calculates a standard deviation value of optical densities of all pixels in the individual measurement areas. And a program for executing, when the standard deviation value deviates beyond a predetermined numerical value range, the image reading apparatus to report that the image noise has been detected by the image reading apparatus. .
あるいはまた、 記録媒体は、 前記画像読取装置に単一の均一な濃度の読み取り 領域、 あるレ、は異なる濃度レベルの複数の均一な濃度の読み取り領域を読み取ら せて、 前記個別の測定領域において個々の C C D素子が副走査方向に順次読み取 つた出力の平均値である縦ラインごとの平均濃度を算出する手順と、 特定の縦ラ インの平均濃度が、 その近傍の縦ラインごとの平均濃度又は、 前記個別の測定領 域全域の平均濃度に対して予め定める数値の範囲を超えて逸脱した場合に当該縦 ラインをノイズラインと判定し、 当該画像読取装置において画像ノイズを検出し たことを報告する手順とを実行させるプログラムを格納する。 Alternatively, the recording medium reads a single uniform density reading area, a plurality of uniform density reading areas of different density levels, or a plurality of uniform density reading areas by the image reading apparatus. A procedure for calculating an average density for each vertical line, which is an average value of outputs sequentially read in the sub-scanning direction by individual CCD elements in the individual measurement areas; and If the average density of each neighboring vertical line or the average density of the entire individual measurement area deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and the And a program for executing a procedure for reporting that image noise has been detected.
あるいはまた、 記録媒体は、 前記画像読取装置に単一の均一な濃度の読み取り 領域、 あるいは異なる濃度レベルの複数の均一な濃度の読み取り領域を読み取ら せて、 前記個別の測定領域にぉレ、て主走査方向に読み取った出力の平均値である 横ラインごとの平均濃度を算出する手順と、 特定の横ラインの平均濃度がその近 傍の横ラインの平均濃度又は、 前記個別の測定領域全域の平均濃度に対して予め 定める数値の範囲を超えて逸脱した場合に当該縦ラインをノイズラインと判定し 、 当該画像読取装置において画像ノイズを検出したことを報告する手順とを実行 させるプログラムを格納する。  Alternatively, the recording medium may cause the image reading device to read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and read the individual measurement areas. Calculating the average density of each horizontal line, which is the average value of the output read in the main scanning direction, and calculating the average density of a specific horizontal line to the average density of the neighboring horizontal lines or the entire area of the individual measurement area. When the average density deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading apparatus is stored. .
あるいはまた、 記録媒体は、 前記画像読取装置に単一の均一な濃度の読み取り 領域、 あるいは異なる濃度レベルの複数の均一な濃度の読み取り領域を読み取ら せて、 前記個別の測定領域において個々の C C D素子が副走査方向に順次読み取 つた出力の平均値である縦ラインごとの平均濃度を算出する手順と、 特定の縦ラ インごとの平均濃度が、 その隣接する縦ラインの平均濃度に対して予め定める数 値の範囲を超えて逸脱した場合に当該縦ラインをノイズラインと判定し、 当該画 像読取装置において画像ノイズを検出したことを報告する手順とを実行させるプ ログラムを格納する。  Alternatively, the recording medium allows the image reading device to read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and to read individual CCD elements in the individual measurement areas. Calculates the average density of each vertical line, which is the average value of the output sequentially read in the sub-scanning direction, and the average density of a specific vertical line is determined in advance with respect to the average density of the adjacent vertical line. If the value deviates beyond the numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading device is stored.
あるいはまた、 記録媒体は、 前記画像読取装置に単一の均一な濃度の読み取り 領域、 あるいは異なる濃度レベルの複数の均一な濃度の読み取り領域を読み取ら せて、 前記個別の測定領域において主走査方向に読み取った出力の平均値である 横ラインごとの平均濃度を算出する手順と、 特定の横ラインの平均濃度がその隣 接する横ラインの平均濃度に対して予め定める数値の範囲を超えて逸脱した場合 に当該縦ラインをノイズラインと判定し、 当該画像読取装置において画像ノイズ を検出したことを報告する手順とを実行させるプログラムを格納する。 これらの形態を取ることにより、 前記画像読取装置を試験する測定装置は画像 ノイズを検出する手順と、 前記画像ノイズの発生した位置を指定する手順とを搭 載するという作用を得る。 Alternatively, the recording medium allows the image reading device to read a single uniform density reading area or a plurality of uniform density reading areas of different density levels, and in the main scanning direction in the individual measurement areas. The procedure for calculating the average density of each horizontal line, which is the average value of the read output, and the case where the average density of a specific horizontal line deviates from the average density of its adjacent horizontal line beyond a predetermined numerical range And a program for executing the procedure of determining the vertical line as a noise line and reporting that the image reading apparatus has detected image noise. By adopting these modes, the measuring apparatus for testing the image reading apparatus has an effect of mounting a procedure for detecting image noise and a procedure for specifying a position where the image noise has occurred.
なお、 この明細書において、 主走査方向とは、 主要方向の読取り走査方向を言 う。 従って、 1回の主走査によって得られる画像データは線状をなした一次元的 な画像データであり、 1本の横ラインである画像データを形成する。 通常は主走 査方向に併置した複数個の C C D素子によって一括して横ラインである主走査方 向の画像デ一夕を読取る。  In this specification, the main scanning direction refers to the main scanning direction. Accordingly, image data obtained by one main scan is linear one-dimensional image data, and forms one horizontal line of image data. Usually, a plurality of CCD elements arranged side by side in the main scanning direction collectively read the image data in the main scanning direction, which is a horizontal line.
また、 副走査方向とは、 主走査方向に対して直角をなす走査方向であり、 前記 の主走査方向に走査して得られた線状の一次元的な画像デー夕は、 副走査方向の 走査によって累積されて面状の二次元的な画像データを構成する。 従って、 画像 読取装置において主走査方向に併置して備える C C D素子の 1個は、 副走查方向 にそって 1本の縦ラインである画像データを形成する。  The sub-scanning direction is a scanning direction perpendicular to the main scanning direction, and the linear one-dimensional image data obtained by scanning in the main scanning direction is The two-dimensional planar image data is accumulated by scanning. Therefore, one of the CCD elements provided side by side in the main scanning direction in the image reading device forms one vertical line of image data along the sub scanning direction.
本発明による代表的な実施例について、 第 1図乃至第 8図によって具体的に説 明する。  A representative embodiment according to the present invention will be specifically described with reference to FIGS.
第 1図に、 画像ノイズ測定方法に用いるテストチャートの代表的な実施例を示 す。 即ち、 ここに示したテストチャート 1は、 透過光によって画像を形成するべ く無色透明な素材によって作られる。 この措置により、 反射光によって画像を形 成するテストチヤ一トを使用する際に発生する乱反射による不確定要素を排除す る。  Fig. 1 shows a typical example of a test chart used in the image noise measurement method. That is, the test chart 1 shown here is made of a colorless and transparent material that forms an image by transmitted light. This measure eliminates the uncertainties due to diffuse reflections that occur when using test charts that form images with reflected light.
また、 前記テストチャート 1は複数の読み取り領域 1 a、 l b、 l c及び I d を持ち、 それぞれ段階的に異なる濃度による均一な濃度を持っている。 例えば読 み取り領域 1 aは全く画像濃度を持たない領域であり、 読み取り領域 1 dは透過 光を完全に遮断する画像濃度を有しており、 更に、 読み取り領域 1 b、 1 cはそ れぞれ前記読み取り領域 1 a及び 1 dの中間値による予め定める光透過率を有し た読み取り領域である。 なお、 第 1図 (a ) には横方向の読み取り領域を設定し たテストチャートの実施例を示し、 第 1図 (b ) には縦方向の読み取り領域を設 定したテストチャートの実施例を示すが、 当然のことながら、 必要に応じて全域 が単一の濃度による均一な濃度を持つものを用いてもよい。 第 2図により、 前記テストチャート 1を読み取った際に生ずるノイズラインを 説明する。 第 2図 (a ) に示すごとく画像読取装置の読み取ったテストチャート 1の読み取り領域 1 aに縦方向のノイズライン 2 aが見られる場合は、 特定の C C D素子に異常が発生したかあるいはまた、 前記特定の C C D素子上に塵埃等が 付着してその機能が冒されているということが推測される。 The test chart 1 has a plurality of reading areas 1a, lb, lc, and Id, each of which has a uniform density with a stepwise different density. For example, the reading area 1a has no image density, the reading area 1d has an image density that completely blocks transmitted light, and the reading areas 1b and 1c have no image density. Each of the reading areas has a predetermined light transmittance based on an intermediate value between the reading areas 1a and 1d. FIG. 1 (a) shows an example of a test chart in which a horizontal reading area is set, and FIG. 1 (b) shows an example of a test chart in which a vertical reading area is set. Although shown, it is needless to say that a material having a uniform concentration with a single concentration throughout may be used as necessary. Referring to FIG. 2, a noise line generated when the test chart 1 is read will be described. As shown in Fig. 2 (a), if a vertical noise line 2a is seen in the reading area 1a of the test chart 1 read by the image reading device, it is possible that an abnormality has occurred in a specific CCD element or It is presumed that dust or the like adheres to the specific CCD element and its function is affected.
第 2図 (b ) に示すごとく画像読取装置の読み取ったテストチャート 1の読み 取り領域 1 aに横方向のノイズライン 2 bが見られる場合は、 副走査方向の送り 機構の欠陥により移動時において光学系に揺らぎを引き起こしたものかあるいは また、 光源ランプの不安定による点滅等の結果であると推測される。  As shown in Fig. 2 (b), if a horizontal noise line 2b is seen in the reading area 1a of the test chart 1 read by the image reading device, the movement in the sub-scanning direction is caused by a defect in the feed mechanism. It is presumed that this was caused by fluctuations in the optical system or by blinking due to instability of the light source lamp.
第 3図乃至第 8図により、 本発明による画像ノィズの測定方法の実施例を説明 する。  An embodiment of the image noise measuring method according to the present invention will be described with reference to FIGS.
第 3図にブロック図を示す。 即ち、 試験に供する画像読取装置 1 2は、 光源ラ ンプ 2 2の照射する光を画像読取装置 1 2に載置するテストチャート 1に当て、 その透過した光を光学系を介して C C D素子 2 3に結像させる。 なお、 ここで示 したテストチャート 1は、 先に第 1図によって説明したテストチャート 1と同等 である。 また、 読み取り移動部 2 4は、 光学系を副走査方向に移動して縦方向の 画像データを形成させる。 C C D素子 2 3に発生した画像信号は、 演算制御部 2 1によって測定装置 1 3に転送される。 測定装置 1 3は、 画像読取装置 1 2より 転送を受けた画像データをその内蔵する測定制御プログラム 3 3によって解析し 、 画像ノイズの有無を判定する。 画像ノイズ有無の判定結果は、 表示部 3 5に表 示されるとともに記録部 3 6に格納される。  Figure 3 shows a block diagram. That is, the image reading device 12 used for the test irradiates the light emitted from the light source lamp 22 onto the test chart 1 placed on the image reading device 12, and transmits the transmitted light via the optical system to the CCD element 2. Image 3 The test chart 1 shown here is the same as the test chart 1 described above with reference to FIG. In addition, the reading moving unit 24 moves the optical system in the sub-scanning direction to form vertical image data. The image signal generated in the CCD element 23 is transferred to the measuring device 13 by the arithmetic and control unit 21. The measurement device 13 analyzes the image data transferred from the image reading device 12 by the built-in measurement control program 33 to determine the presence or absence of image noise. The determination result of the presence or absence of image noise is displayed on the display unit 35 and stored in the recording unit 36.
第 4図に示したフローチャートによって、 本発明による画像ノィズの測定方法 のひとつの実施例を説明する。 なお、 各処理において引用する符号は、 第 3図に 示した符号による。  One embodiment of the image noise measuring method according to the present invention will be described with reference to the flowchart shown in FIG. The reference numerals used in each process are the same as those shown in FIG.
ステップ S 0 0 1で、 操作担当者は試験の対象である画像読取装置 1 2にテス トチャート 1を載置し、 ステップ S O 0 2に進んで前記画像読取装置 1 2によつ て前記テストチヤ一ト 1を読み取り、 ステップ S 0 0 3で前記画像データを測定 装置 1 3に転送する。  In step S001, the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step SO02, where the test chart 1 is set by the image reading device 12. In step S003, the image data is transferred to the measuring device 13.
ステップ S 0 0 4で画像データを受信した測定装置 1 3は、 ステップ S 0 0 5 に進んで、 (測定制御プログラム 3 3により) 測定の対象領域を特定する。 ここ では、 例えば第 1図に示すテストチャート 1における読み取り領域 1 aを指定す ステップ S 0 0 6で、 測定制御プログラム 3 3に内蔵するデータ解析部 3 3 a は対象とする領域の個々の画像デ一夕の濃度値の平均値を算出し、 次レ、で前記平 均値をもとに標準偏差値を算出する。 The measurement device 13 that has received the image data in step S004 Proceed to and specify the measurement target area (by the measurement control program 33). Here, for example, in step S006, the reading area 1a in the test chart 1 shown in FIG. 1 is designated, the data analysis unit 33a incorporated in the measurement control program 33 generates the individual image of the target area. Calculate the average value of the density values for each day, and calculate the standard deviation value based on the average value in the next step.
ステップ S 0 0 7で、 前記標準偏差値を予め定める値と比較し、 その差異値が 予め定める許容範囲値以下であれば、 ステップ S O 0 9に進んで画像ノイズ無し と判定する。 また、 前記差異値が予め定める許容範囲値を越えるものであれば、 ステップ S 0 0 8に進んで画像ノイズありと判定して所定の手直し担当部門に当 該画像読取装置 1 2を引き渡す。  In step S07, the standard deviation value is compared with a predetermined value. If the difference value is equal to or smaller than a predetermined allowable range value, the flow advances to step S09 to determine that there is no image noise. If the difference value exceeds the predetermined allowable range value, the process proceeds to step S08, where it is determined that there is image noise, and the image reading device 12 is handed over to a predetermined repair section.
ステップ S 0 1 0で、 前記標準偏差値等の測定記録を記録部 3 6に格納し、 ス テツプ S 0 1 1に進んで、 例えば継続して第 1図に示すテストチャート 1におけ る読み取り領域 1 bにかかる画像データを測定する場合はステップ S 0 0 5に戻 る。 また、 前記テストチャートにおける測定の対象とする全領域についての画像 データの解析を終了すれば、 ステップ S O 1 2で測定結果を表示部 3 5に表示し て操作担当者に通知して、 当該測定工程を終了する。  In step S0110, the measurement record of the standard deviation value and the like is stored in the recording unit 36, and the process proceeds to step S011, for example, to continuously read the test chart 1 shown in FIG. When measuring the image data relating to the area 1b, the process returns to step S005. In addition, when the analysis of the image data for all the areas to be measured in the test chart is completed, the measurement result is displayed on the display unit 35 in step SO 12 and notified to the operator to perform the measurement. End the process.
従って、 第 4図に示した画像ノイズ測定の処理フローにより、 画像ノイズの存 在を作業担当者の目視チ ックに頼らず一義的に判定し、 更に、 その測定に供し たデータを保存して必要時に再現することができる。  Therefore, the presence of image noise is uniquely determined without relying on the visual check of the worker in accordance with the processing flow of the image noise measurement shown in Fig. 4, and the data used for the measurement is stored. And can be reproduced when needed.
第 5図に示したフローチヤ一トによって、 本発明による画像ノイズの測定方法 の別のひとつの実施例を説明する。 なお、 各処理において引用する符号は、 第 3 図に示した符号による。  Another embodiment of the method for measuring image noise according to the present invention will be described with reference to the flowchart shown in FIG. The reference numerals used in each process are the same as those shown in FIG.
ステップ S 0 2 1で、 操作担当者は試験の対象である画像読取装置 1 2にテス トチャート 1を載置し、 ステップ S 0 2 2に進んで前記画像読取装置 1 2によつ て前記テストチヤ一ト 1を読み取り、 ステップ S 0 2 3で前記画像データを測定 装置 1 3に転送する。  In step S022, the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S022, where the test chart 1 is read by the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S023.
ステップ S 0 2 4で画像データを受信した測定装置 1 3は、 ステップ S 0 2 5 に進んで測定の対象領域を特定する。 ここでは例えば第 1図に示すテストチヤ一 ト 1における読み取り領域 1 aを指定する。 The measuring apparatus 13 that has received the image data in step S0 24 proceeds to step S0 25 to specify the measurement target area. Here, for example, the test chart shown in Fig. 1 Specify the read area 1a in G1.
ステップ S 0 2 6で、 測定制御プログラム 3 3に内蔵するデータ解析部 3 3 a は対象とする領域の個別の C C D素子の出力する縦ラインの画像データの個別の C C D素子にかかる濃度値の平均値を算出し、 ステップ S 0 2 7に進んで対象と する領域の全画像データの濃度値の全域平均値を算出する。  In step S 0 26, the data analysis unit 33 a included in the measurement control program 33 calculates the average of the density values applied to the individual CCD elements of the image data of the vertical line output by the individual CCD elements in the target area. Then, the process proceeds to step S027 to calculate an average value over the entire area of the density values of all the image data of the target area.
ステップ S 0 2 8で、 前記ステップ S 0 2 6で算出した個々の C C D素子の出 力する縦ラインの画像デ一夕の個別の C C D素子にかかる濃度値の平均値と、 前 記ステップ S 0 2 7で算出した対象とする領域の全画像データの濃度値の平均値 とを比較して、 その差異値を算出する。  In step S028, the average value of the density values applied to the individual CCD elements in the image data of the vertical lines output from the individual CCD elements calculated in step S026 is calculated. The difference value is calculated by comparing with the average value of the density values of all the image data of the target area calculated in 27.
あるいはまた、 ステップ S 0 2 6で算出した個別の C C D素子の出力する縦ラ ィンの画像データの個別の C C D素子にかかる濃度値の平均値と、 予め定める個 数を隔てた位置にある C C D素子の出力する縦ラインの画像データの個別の C C D素子にかかる濃度値の平均値とを個別に比較して、 その差異値を算出する。 ステップ S 0 2 9で、 前記ステップ S 0 2 8で求めた差異値が予め定める許容 範囲値以下であれば、 ステップ S O 3 1に進んで画像ノイズ無しと判定する。 ま 十こ、 前記差異値が予め定める許容範囲値を越えるものであれば、 ステップ S O 3 0に進んで画像ノィズぁりと判定して、 当該試験工程の終了後に所定の手直し担 当部門に当該画像読取装置 1 2を引き渡すものとする。  Alternatively, the average value of the density values applied to the individual CCD elements of the vertical line image data output from the individual CCD elements calculated in step S026 and the CCD located at a position separated by a predetermined number The difference value is calculated by individually comparing the image data of the vertical lines output by the elements with the average value of the density values applied to the individual CCD elements. If it is determined in step S029 that the difference value obtained in step S028 is equal to or smaller than a predetermined allowable range value, the process proceeds to step S031, and it is determined that there is no image noise. If the difference value exceeds the predetermined allowable range, the process proceeds to step SO30, where it is determined that an image noise has occurred. The image reading device 12 is to be delivered.
ステップ S 0 3 2で、 前記異常を見出した C C D素子による縦ラインの位置等 の測定記録を記録部 3 6に格納し、 ステップ S 0 3 3に進んで、 例えば継続して 第 1図に示すテストチヤート 1における読み取り領域 1 bにかかる画像データを 測定する場合はステップ S 0 2 5に戻る。 また、 前記テストチャート 1における 測定の対象とする全領域についての画像データの解析を終了すれば、 ステップ S 0 3 4に進んで測定の結果を表示部 3 5に表示して操作担当者に通知して、 当該 測定工程を終了する。  In step S032, the measurement record such as the position of the vertical line by the CCD element where the abnormality was found is stored in the recording unit 36, and the process proceeds to step S033, for example, as shown in FIG. When measuring the image data of the reading area 1b in the test chart 1, the process returns to step S025. When the analysis of the image data for the entire region to be measured in the test chart 1 is completed, the process proceeds to step S034, where the measurement result is displayed on the display unit 35 and notified to the operator. Then, the measurement process ends.
従って、 前記第 5図に示した画像ノイズ測定の処理フローにより、 画像ノイズ の存在及び前記画像ノィズ発生にかかわつた C C D素子の位置を作業担当者の目 視チェックに頼らず一義的に判定し、 更に、 その測定に供したデータを保存して 必要時に再現することができる。 第 6図に示したフローチャートによって、 本発明による画像ノィズの測定方法 の別のひとつの実施例を説明する。 なお、 各処理において引用する符号は、 第 3 図に示した符号による。 Therefore, according to the processing flow of the image noise measurement shown in FIG. 5, the existence of the image noise and the position of the CCD element involved in the occurrence of the image noise are uniquely determined without relying on the visual check of the worker, Furthermore, the data used for the measurement can be saved and reproduced when needed. Another embodiment of the image noise measuring method according to the present invention will be described with reference to the flowchart shown in FIG. The reference numerals used in each process are the same as those shown in FIG.
ステップ S 0 4 1で、 操作担当者は試験の対象である画像読取装置 1 2にテス トチャート 1を載置し、 ステップ S 0 4 2に進んで前記画像読取装置 1 2によつ て前記テストチャート 1を読み取り、 ステップ S 0 4 3で前記画像データを測定 装置 1 3に転送する。  In step S041, the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S042, where the operator reads the test chart 1 using the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S043.
ステップ S 0 4 4で画像データを受信した測定装置 1 3は、 ステップ S 0 4 5 に進んで測定の対象領域を特定する。 ここでは例えば第 1図に示すテストチヤー ト 1における読み取り領域 1 aを指定する。  The measuring apparatus 13 that has received the image data in step S044 proceeds to step S045 to specify the measurement target area. Here, for example, the reading area 1a in the test chart 1 shown in FIG. 1 is designated.
ステップ S 0 4 6で、 測定制御プログラム 3 3に内蔵するデータ解析部 3 3 a は対象とする領域で主走査方向に構成する個別の横ラインの画像デー夕の濃度値 の平均値を算出し、 ステップ S 0 4 7に進んで対象とする領域の全画像データの 濃度値の全域平均値を算出する。  In step S046, the data analysis unit 33a included in the measurement control program 33 calculates the average value of the density values of the image data of the individual horizontal lines constituting the main scanning direction in the target area. Then, the process proceeds to step S 047, and the entire area average value of the density values of all the image data of the target area is calculated.
ステップ S 0 4 8で、 前記ステップ S 0 4 6で算出した主走查方向に構成する 個別の横ラインの濃度値の平均値と、 前記ステップ S 0 4 7で算出した対象とす る領域の全画像デー夕の濃度値の平均値とを個別に比較して、 その差異値を算出 する。  In step S048, the average value of the density values of the individual horizontal lines constituting the main running direction calculated in step S046 and the target area calculated in step S047 are calculated. The difference value is calculated by comparing the average value of the density values of all image data with the average value individually.
あるいはまた、 前記ステップ S 0 4 6で算出した主走査方向に構成する個別の 横ラインの濃度値の平均値と、 予め定める横ライン本数を隔てた位置にある主走 査方向に構成する個別の横ラインの濃度値の平均値とを比較して、 その差異値を 算出一 9る。  Alternatively, the average value of the density values of the individual horizontal lines formed in the main scanning direction calculated in the step S 046 and the individual values formed in the main scanning direction at positions separated by a predetermined number of horizontal lines. Compare the average value of the density value of the horizontal line and calculate the difference value.
ステップ S 0 4 9で、 前記ステップ S 0 4 8で求めた差異値が予め定める許容 範囲値以下であれば、 ステップ S O 5 1に進んで画像ノイズ無しと判定する。 ま た、 前記差異値が予め定める許容範囲値を越えるものであれば、 ステップ S O 5 0に進んで画像ノイズありと判定して当該試験工程の終了後に所定の手直し担当 部門に当該画像読取装置 1 2を引き渡すものとする。  If it is determined in step S049 that the difference value obtained in step S048 is equal to or smaller than a predetermined allowable range value, the flow advances to step SO51 to determine that there is no image noise. If the difference value exceeds a predetermined allowable range value, the flow proceeds to step SO50, where it is determined that there is image noise. 2 shall be delivered.
ステップ S 0 5 2で、 前記異常を見出した横ラインの位置等の測定記録を記録 部 3 6に格納し、 ステップ S 0 5 3に進んで、 例えば継続して第 1図のテストチ ヤート 1における読み取り領域 1 bにかかる画像データを測定する場合はステツ プ S 0 4 5に戻る。 また、 テストチャート 1における測定の対象とする全領域に ついての画像データの解析を終了すれば、 ステップ S 0 5 4に進んで測定結果を 表示部 3 5に表示して操作担当者に通知し、 当該測定工程を終了する。 In step S052, the measurement record such as the position of the horizontal line where the abnormality was found is stored in the recording unit 36, and the process proceeds to step S053. When measuring the image data corresponding to the reading area 1b in the yat 1, the flow returns to step S045. When the analysis of the image data for the entire area to be measured in the test chart 1 is completed, the process proceeds to step S 0 54 to display the measurement result on the display unit 35 and notify the operator. Then, the measurement step ends.
従って、 前記第 6図に示した画像ノイズ測定の処理フローにより、 画像ノイズ の存在及び前記画像ノィズの発生した副走査方向における位置を作業担当者の目 視チ ックに頼らず一義的に判定し、 更に、 その測定に供したデータを保存して 必要時に再現することができる。  Therefore, according to the processing flow of the image noise measurement shown in FIG. 6, the existence of the image noise and the position in the sub-scanning direction where the image noise has occurred are uniquely determined without depending on the visual check of the worker. Further, the data used for the measurement can be stored and reproduced when necessary.
第 7図に示したフローチヤ一トによって、 本発明による画像ノイズの測定方法 の別のひとつの実施例を説明する。 なお、 各処理において引用する符号は、 第 3 図に示した符号による。  Another embodiment of the image noise measuring method according to the present invention will be described with reference to the flowchart shown in FIG. The reference numerals used in each process are the same as those shown in FIG.
ステップ S 0 6 1で、 操作担当者は試験の対象である画像読取装置 1 2にテス トチャート 1を載置し、 ステップ S 0 6 2に進んで前記画像読取装置 1 2によつ て前記テストチャート 1を読み取り、 ステップ S 0 6 3で前記画像データを測定 装置 1 3に転送する。  In step S061, the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S062, where the operator reads the test chart 1 using the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S063.
ステップ S 0 6 4で画像データを受信した測定装置 1 3は、 ステップ S 0 6 5 に進んで測定の対象領域を特定する。 ここでは例えば第 1図に示すテストチヤ一 ト 1における読み取り領域 1 aを指定する。  The measuring device 13 that has received the image data in step S064 proceeds to step S065 and specifies the measurement target area. Here, for example, the reading area 1a in the test chart 1 shown in FIG. 1 is designated.
ステップ S 0 6 6で、 測定制御プログラム 3 3に内蔵するデータ解析部 3 3 a は対象とする領域の個別の C C D素子の出力する縦ラインの画像データの個別の C C D素子にかかる濃度値の平均値を算出する。  In step S066, the data analysis unit 33a incorporated in the measurement control program 33 calculates the average of the density values applied to the individual CCD elements of the vertical line image data output by the individual CCD elements in the target area. Calculate the value.
ステップ S 0 6 7で、 前記ステップ S 0 6 6で算出した個々の C C D素子の出 力する縦ラインの画像データの個別の C C D素子にかかる濃度値の平均値と、 そ の隣接する C C D素子にかかる濃度値の平均値とを比較して、 その差異値を算出 する。  In step S 067, the average value of the density values applied to the individual CCD elements of the image data of the vertical lines output from the individual CCD elements calculated in step S 066 described above is applied to the adjacent CCD elements. The difference value is calculated by comparing the density value with the average value.
ステップ S 0 6 8で、 前記ステップ S 0 6 7で求めた差異値が予め定める許容 範囲値以下であれば、 ステップ S 0 7 0に進んで画像ノイズ無しと判定する。 ま た、 前記差異値が予め定める許容範囲値を越えるものであれば、 ステップ S O 6 9に進んで画像ノイズありと判定して当該試験工程の終了後に所定の手直し担当 部門に当該画像読取装置 1 2を引き渡すものとする。 If it is determined in step S068 that the difference value obtained in step S0670 is equal to or smaller than a predetermined allowable range value, the process proceeds to step S070 to determine that there is no image noise. If the difference value exceeds the predetermined allowable range value, the flow advances to step SO69 to determine that there is image noise, and to perform predetermined rework after completion of the test process. The image reading device 12 is to be delivered to the department.
ステップ S 0 7 1で、 前記異常を見出した C C D素子による縦ラインの位置等 の測定記録を記録部 3 6に格納し、 ステップ S 0 7 2に進んで、 例えば継続して 第 1図のテストチヤート 1における読み取り領域 1 bにかかる画像デ一夕を測定 する場合はステップ S 0 6 5に戻る。 また、 テストチャート 1における測定の対 象とする全領域についての画像データの解析を終了すれば、 ステップ S 0 7 3に 進んで測定結果を操作担当者に通知するとともに当該測定工程を終了する。 従って、 前記第 7図に示した画像ノイズ測定の処理フローにより、 画像ノイズ の存在及び前記画像ノィズの発生にかかわつた C C D素子の位置を作業担当者の 目視チェックに頼らず一義的に判定し、 更に、 その測定に供したデータを保存し て必要時に再現することができる。  In step S071, the measurement record such as the position of the vertical line by the CCD element in which the abnormality was found is stored in the recording unit 36, and the process proceeds to step S072. When measuring the image data over the reading area 1b in the chart 1, the process returns to step S065. When the analysis of the image data for the entire region to be measured in the test chart 1 is completed, the process proceeds to step S073, where the measurement result is notified to the operator and the measurement process is completed. Therefore, according to the processing flow of the image noise measurement shown in FIG. 7, the position of the CCD element involved in the existence of the image noise and the occurrence of the image noise is uniquely determined without relying on the visual check of the worker, Furthermore, the data used for the measurement can be stored and reproduced when necessary.
第 8図に示したフローチャートによって、 本発明による画像ノィズの測定方法 の別のひとつの実施例を説明する。 なお、 各処理において引用する符号は、 第 3 図に示した符号による。  Another embodiment of the image noise measuring method according to the present invention will be described with reference to the flowchart shown in FIG. The reference numerals used in each process are the same as those shown in FIG.
ステップ S 0 8 1で、 操作担当者は試験の対象である画像読取装置 1 2にテス トチャート 1を載置し、 ステップ S 0 8 2に進んで前記画像読取装置 1 2によつ て前記テストチャート 1を読み取り、 ステップ S 0 8 3で前記画像データを測定 装置 1 3に転送する。  In step S081, the operator places the test chart 1 on the image reading device 12 to be tested, and proceeds to step S082, where the operator reads the test chart 1 using the image reading device 12. The test chart 1 is read, and the image data is transferred to the measuring device 13 in step S083.
ステップ S 0 8 4で画像データを受信した測定装置 1 3は、 ステップ S 0 8 5 に進んで測定の対象領域を特定する。 ここでは例えば第 1図に示すテストチヤ一 ト 1における読み取り領域 1 aを指定する。  The measuring apparatus 13 that has received the image data in step S084 proceeds to step S085, and specifies the measurement target area. Here, for example, the reading area 1a in the test chart 1 shown in FIG. 1 is designated.
ステップ S 0 8 6で、 測定制御プログラム 3 3に内蔵するデータ解析部 3 3 a は対象とする領域で主走査方向に構成する個別の横ラインの画像データの濃度値 の平均値を算出する。  In step S086, the data analysis unit 33a included in the measurement control program 33 calculates the average value of the density values of the image data of the individual horizontal lines constituting the target area in the main scanning direction.
ステップ S 0 8 7で、 前記ステップ S 0 8 6で算出した主走査方向に構成する 個別の横ラインの濃度値の平均値と、 その隣接する主走査方向に構成する個別の 横ラインの濃度値の平均値とを比較して、 その差異値を算出する。  In step S087, the average value of the density values of the individual horizontal lines configured in the main scanning direction calculated in step S086 and the density value of the individual horizontal lines configured in the adjacent main scanning direction The difference value is calculated by comparing with the average value of.
ステップ S 0 8 8で、 前記ステップ S 0 8 7で求めた差異値が予め定める許容 範囲値以下であれば、 ステップ S 0 9 0に進んで画像ノイズ無しと判定する。 ま た、 前記差異値が予め定める許容範囲値を越えるものであれば、 ステップ S O 8 9に進んで画像ノイズありと判定して当該試験工程の終了後に所定の手直し担当 部門に当該画像読取装置 1 2を引き渡すものとする。 If it is determined in step S088 that the difference value obtained in step S087 is equal to or smaller than a predetermined allowable range value, the flow advances to step S0900 to determine that there is no image noise. Ma If the difference value exceeds a predetermined allowable range value, the process proceeds to step SO89, where it is determined that there is image noise. Shall be delivered.
ステップ S 0 9 1で、 前記異常を見出した横ラインの位置等の測定記録を記録 部 3 6に格納し、 ステップ S 0 9 2に進んで、 例えば継続して第 1図に示すテス トチヤート 1における読み取り領域 1 bにかかる画像データを測定する場合はス テツプ S O 8 5に戻る。 また、 前記テストチャートにおける測定の対象とする全 領域についての画像データの解析を終了すれば、 ステップ S 0 9 3に進んで測定 結果を操作担当者に通知するとともに当該測定工程を終了する。  In step S091, the measurement record such as the position of the horizontal line where the abnormality was found is stored in the recording unit 36, and the process proceeds to step S092. For example, the test chart 1 shown in FIG. When measuring the image data relating to the reading area 1b in step, return to step SO85. When the analysis of the image data for all the areas to be measured in the test chart is completed, the process proceeds to step S093, where the measurement result is notified to the operator, and the measurement process is completed.
従って、 前記第 8図に示した画像ノイズ測定の処理フローにより、 画像ノイズ の存在及び前記画像ノイズの発生した副走査方向における位置を作業担当者の目 視チェックに頼らず一義的に判定し、 更に、 その測定に供したデータを保存して 必要時に再現することができる。  Therefore, according to the processing flow of the image noise measurement shown in FIG. 8, the existence of the image noise and the position in the sub-scanning direction where the image noise has occurred are uniquely determined without relying on the visual check of the worker, Furthermore, the data used for the measurement can be saved and reproduced when needed.
以上説明したような本発明の実施の態様によれば、 次に示すような効果を得る ことができる。  According to the embodiment of the present invention described above, the following effects can be obtained.
画像読取装置に、 段階的に設定した個々の濃度による均一な濃度の複数の読み 取り領域を備えたテストチヤ一トを読み取らせて、 前記個別の測定領域における 全画素の光学濃度の標準偏差値を算出し、 前記標準偏差値が予め定める数値の範 囲を超えて逸脱した場合に、 当該画像読取装置において画像ノイズを検出したと する。  The image reading device is caused to read a test chart having a plurality of reading regions having uniform densities based on individual densities set in steps, and to determine a standard deviation value of optical densities of all pixels in the individual measurement regions. Calculated, and when the standard deviation value deviates beyond a predetermined numerical range, it is assumed that image noise has been detected in the image reading apparatus.
この手段を取ることにより、 画像ノイズ測定方法において画像ノイズを検出す る統一的な算出方法と一義的な判定基準を設けるので、 作業担当者の目視チェッ クに頼ることなく確実な画像ノィズの測定を実行できるという効果を得る。 画像読取装置に、 段階的に設定した個々の濃度による均一な濃度の複数の読み 取り領域を備えたテストチヤ一トを読み取らせて、 前記個別の測定領域において 個々の C C D素子が副走査方向に順次読み取つた出力の平均値である縦ラインご との平均濃度を算出し、 特定の縦ラインの平均濃度がその近傍の縦ラインごとの 平均濃度又は、 前記個別の測定領域全域の平均濃度に対して予め定める数値の範 囲を超えて逸脱した場合に当該縦ラインをノイズラインと判定し、 当該画像読取 装置において画像ノィズを検出したとする。 By taking this measure, a unified calculation method for detecting image noise in the image noise measurement method and a unique judgment criterion are provided, so that reliable measurement of image noise can be performed without relying on visual checks of the operator. Can be executed. The image reading device is made to read a test chart having a plurality of reading areas of uniform density according to the individual densities set step by step, and the individual CCD elements are sequentially moved in the sub-scanning direction in the individual measurement areas. Calculate the average density of each vertical line, which is the average value of the read output, and calculate the average density of a specific vertical line with respect to the average density of each vertical line in the vicinity or the average density of the entire individual measurement area. If the value deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and the image is read. It is assumed that an image noise is detected in the device.
あるいはまた、 画像読取装置に、 段階的に設定した個々の濃度による均一な濃 度の複数の読み取り領域を備えたテストチヤ一トを読み取らせて、 前記個別の測 定領域において主走査方向に読み取った出力の平均値である横ラインごとの平均 濃度を算出し、 特定の横ラインの平均濃度がその近傍の横ラインごとの平均濃度 又は、 前記個別の測定領域全域の平均濃度に対して予め定める数値の範囲を超え て逸脱した場合に当該横ラインをノイズラインと判定し、 当該画像読取装置にお レ、て画像ノィズを検出したとする。  Alternatively, the image reading device is caused to read a test chart provided with a plurality of reading areas having a uniform density based on individual densities set stepwise, and reading in the main scanning direction in the individual measurement areas. The average density of each horizontal line, which is the average value of the output, is calculated, and the average density of a specific horizontal line is a predetermined value for the average density of each horizontal line in the vicinity or the average density of the entire individual measurement area It is assumed that the horizontal line is determined to be a noise line when deviating beyond the range, and an image noise is detected by the image reading apparatus.
あるいはまた、 画像読取装置に、 段階的に設定した個々の濃度による均一な濃 度の複数の読み取り領域を備えたテストチヤ一トを読み取らせて、 前記個別の測 定領域において個々の C C D素子が副走査方向に順次読み取った出力の平均値で ある縦ラインごとの平均濃度を算出し、 特定の縦ラインの平均濃度がその隣接す る縦ラインの平均濃度に対して予め定める数値の範囲を超えて逸脱した場合に当 該縦ラインをノイズラインと判定し、 当該画像読取装置において画像ノイズを検 出したとする。  Alternatively, the image reading device is caused to read a test chart having a plurality of reading areas having a uniform density according to the individual densities set stepwise, and the individual CCD elements are set to be subordinate in the individual measurement areas. The average density of each vertical line, which is the average value of the output sequentially read in the scanning direction, is calculated, and the average density of a specific vertical line exceeds the predetermined value range for the average density of the adjacent vertical line. When deviating, the vertical line is determined to be a noise line, and image noise is detected by the image reading apparatus.
あるいはまた、 画像読取装置に、 段階的に設定した個々の濃度による均一な濃 度の複数の読み取り領域を備えたテストチヤートを読み取らせて、 前記個別の測 定領域において主走査方向に読み取った出力の平均値である横ライン毎の平均濃 度を算出し、 特定の横ラインの平均濃度がその隣接する横ラインの平均濃度に対 して予め定める数値の範囲を超えて逸脱した場合に当該横ラインをノイズライン と判定し、 当該画像読取装置において画像ノィズを検出したとする。  Alternatively, the image reading device is caused to read a test chart having a plurality of reading regions having uniform densities according to the individual densities set stepwise, and the output read in the main scanning direction in the individual measurement regions. The average density of each horizontal line, which is the average value of horizontal lines, is calculated.If the average density of a specific horizontal line deviates from the average density It is assumed that the line is determined to be a noise line, and that the image reading apparatus detects an image noise.
これらの手段を取ることにより、 画像ノィズ測定方法にぉレ、て画像ノィズを検 出する統一的な手順と、 一義的な判定基準と、 前記画像ノイズの発生した位置を 指定する一義的な基準とを設けるので、 作業担当者の目視チェックに頼ることな く確実な画像ノィズの測定を実行できるという効果を得る。  By taking these measures, a unified procedure for detecting image noise based on the image noise measurement method, a unique criterion, and a unique criterion for specifying the position where the image noise has occurred With this arrangement, it is possible to perform an effective measurement of the image noise without relying on the visual check of the worker.
ホスト装置に接続して、 ホスト装置に画像データを提供する画像読取装置の、 画像ノイズを測定する測定装置において、 画像読取装置に、 段階的に設定した個 々の濃度による均一な濃度の複数の読み取り領域を備えたテストチヤートを読み 取らせて、 前記個別の測定領域における全画素の光学濃度の標準偏差値を算出す る手順と、 前記標準偏差値が予め定める数値の範囲を超えて逸脱した場合に、 当 該画像読取装置において画像ノイズを検出したことを報告する手順とを実行させ るプログラムを格納する。 In a measuring device for measuring image noise of an image reading device connected to a host device and providing image data to the host device, a plurality of uniform densities based on individual densities set stepwise are provided in the image reading device. A test chart having a reading area is read, and the standard deviation value of the optical density of all pixels in the individual measurement area is calculated. And a procedure for reporting that the image reading apparatus has detected image noise when the standard deviation value deviates beyond a predetermined numerical range.
あるいはまた、 前記画像読取装置に段階的に設定した個々の濃度による均一な 濃度の複数の読み取り領域を備えたテストチヤ一トを読み取らせて、 前記個別の 測定領域にぉレ、て個々の C C D素子が副走査方向に順次読み取った出力の平均値 である縦ラインごとの平均濃度を算出する手順と、 特定の縦ラインの平均濃度が 、 その近傍の縦ラインごとの平均濃度又は、 前記個別の測定領域全域の平均濃度 に対して予め定める数値の範囲を超えて逸脱した場合に当該縦ラインをノイズラ ィンと判定し、 当該画像読取装置において画像ノィズを検出したことを報告する 手順とを実行させるプログラムを格納する。  Alternatively, the image reading device is caused to read a test chart having a plurality of reading areas having uniform densities based on individual densities set stepwise, and then moving to the individual measurement areas to read individual CCD elements. Calculating the average density of each vertical line, which is the average value of the output sequentially read in the sub-scanning direction, and calculating the average density of a specific vertical line, the average density of each vertical line in the vicinity, or the individual measurement. If the average density of the entire area deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected by the image reading apparatus is executed. Store the program.
あるいはまた、 前記画像読取装置に段階的に設定した個々の濃度による均一な 濃度の複数の読み取り領域を備えたテストチヤ一トを読み取らせて、 前記個別の 測定領域にぉレ、て主走査方向に読み取つた出力の平均値である横ラインごとの平 均濃度を算出する手順と、 特定の横ラインの平均濃度がその近傍の横ラインの平 均濃度又は、 前記個別の測定領域全域の平均濃度に対して予め定める数値の範囲 を超えて逸脱した場合に当該縦ラインをノイズラインと判定し、 当該画像読取装 置において画像ノイズを検出したことを報告する手順とを実行させるプログラム を格納する。  Alternatively, the image reading device is caused to read a test chart having a plurality of reading regions having a uniform density based on individual densities set step by step, and moving to the individual measurement regions in the main scanning direction. Calculating the average density of each horizontal line, which is the average value of the read output, and calculating the average density of a specific horizontal line to the average density of a nearby horizontal line or the average density of the entire individual measurement area. On the other hand, if the value deviates beyond a predetermined numerical range, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading apparatus is stored.
あるいはまた、 前記画像読取装置に段階的に設定した個々の濃度による均一な 濃度の複数の読み取り領域を備えたテストチヤ一トを読み取らせて、 前記個別の 測定領域において個々の C C D素子が副走査方向に順次読み取った出力の平均値 である縦ラインごとの平均濃度を算出する手順と、 特定の縦ラインごとの平均濃 度が、 その隣接する縦ラインの平均濃度に対して予め定める数値の範囲を超えて 逸脱した場合に当該縦ラインをノイズラインと判定し、 当該画像読取装置におい て画像ノイズを検出したことを報告する手順とを実行させるプログラムを格納す る。  Alternatively, by causing the image reading device to read a test chart having a plurality of reading areas having uniform densities based on individual densities set stepwise, the individual CCD elements are moved in the sub-scanning direction in the individual measurement areas. The procedure for calculating the average density for each vertical line, which is the average value of the output read sequentially, and the average density for each specific vertical line If it deviates beyond this, the vertical line is determined to be a noise line, and a procedure for reporting that image noise has been detected in the image reading device is stored.
あるいはまた、 前記画像読取装置に段階的に設定した個々の濃度による均一な 濃度の複数の読み取り領域を備えたテストチヤートを読み取らせて、 前記個別の 測定領域において主走査方向に読み取った出力の平均値である横ラインごとの平 昀濃度を算出する手順と、 特定の横ラインの平均濃度がその隣接する横ラインの 平均濃度に対して予め定める数値の範囲を超えて逸脱した場合に当該縦ラインを ノイズラインと判定し、 当該画像読取装置において画像ノィズを検出したことを 報告する手順とを実行させるプログラムを格納する。 Alternatively, by causing the image reading device to read a test chart having a plurality of reading areas with uniform densities based on individual densities set step by step, The procedure for calculating the horizontal density of each horizontal line, which is the average value of the output read in the main scanning direction in the measurement area, and the step of calculating the average density of a specific horizontal line from the average density of its adjacent horizontal lines If the value deviates beyond the range, the vertical line is determined to be a noise line, and a procedure for reporting that an image noise has been detected in the image reading device is stored.
これらの手段を取ることにより、 前記画像読取装置を試験する測定装置は画像 ノイズを検出する手順と、 前記画像ノイズの発生した位置を指定する手順とを搭 載するので、 当該画像ノィズの測定工程が特定の装置に限定されることなく汎用 性のある作業になるという効果を得る。  By taking these means, the measuring apparatus for testing the image reading apparatus includes a procedure for detecting image noise and a procedure for specifying a position where the image noise has occurred. However, there is an effect that the work becomes versatile without being limited to a specific device.
(第 2の実施形態)  (Second embodiment)
本発明の他の代表的な実施の形態を、 第 9図乃至第 2 2図によって説明する。 本発明の他の代表的な実施形態である画像読取装置の解像度測定装置及び解像度 測定方法は、 上記課題を解決するために以下のように構成される。  Another representative embodiment of the present invention will be described with reference to FIGS. 9 to 22. A resolution measuring device and a resolution measuring method for an image reading device according to another representative embodiment of the present invention are configured as follows to solve the above-mentioned problems.
第 9図の本発明の他の構成図に示すように、 本発明の画像読取装置の解像度測 定装置 1 4 aは、 白黒ラインペアパターンピッチを画像読取装置の読取り画素ピ ツチから少量ずらして作成するか、 又は、 白黒ラインペアパターンを少量傾斜さ せて作成し、 解像度試験の一定周期毎に白パターンと読取り画素、 及び黒パター ンと読取り画素が主走査方向又は、 副走査方向で一致するようにしたテストチヤ ート 2と、 前記テストチャート 2を読取り、 パターンと画素とが必ず一致する箇 所があるよう十分な幅又は、 縦の領域を読取る読取り手段 3と、 読取り手段 3が 読取った画像データを必要な箇所のみを切り出す切り出し手段 4と、 切り出され た画像デ一夕の全領域の読取り画像の 1画素毎に階調差を計算し、 最大階調差を 検出する解析手段 5と、 その最大階調差が良否判定値を越えている場合は解像度 テスト合格とする判定手段 6とを備える。  As shown in another configuration diagram of the present invention in FIG. 9, the resolution measuring device 14a of the image reading device of the present invention shifts the black-and-white line pair pattern pitch a little from the reading pixel pitch of the image reading device. Create or create a black and white line pair pattern with a small amount of inclination, and the white pattern and read pixel, and the black pattern and read pixel match in the main scanning direction or sub-scanning direction at regular intervals of the resolution test. The reading means 3 reads the test chart 2 and the test chart 2, and the reading means 3 and the reading means 3 which read a sufficient width or a vertical area so that a pattern and a pixel always coincide with each other. Means 4 for cutting out only the necessary parts of the image data that has been extracted, and analysis for calculating the gradation difference for each pixel of the read image of the entire area of the cut out image data and detecting the maximum gradation difference And stage 5, if the maximum tone difference exceeds the quality determination value and a determination unit 6, the resolution test pass.
また、 第 1 0図の本発明の概略フローチャートに示すように、 上記構成の解像 度測定装置 1 4 aの解像度測定処理手順は、 ステップ S 1 0 1において、 読取り 手段 3でテストチャート 2の全領域を読取り、 ステップ S 1 0 2において、 切り 出し手段 4で読取つた画像デー夕から解像度ノ、°夕一ン部を含む画像デー夕をマ一 ジンを持って切り出し、 ステップ S 1 0 3において、 解像度パターンの範囲を示 すマークを検出し、 ステップ S 1 0 4において、 切り出し手段 4で測定対象部分 を切り出し、 ステップ S 1 0 5において、 解析手段 5で切り出された画像データ の全領域の読取り画像の 1画素毎に階調差を計算して最大階調差を検出し、 ステ ップ S 1 0 6において、 判定手段 6でその最大階調差が良否判定値を越えている かを判定するとともに、 そのデータを記録し、 ステップ S 1 0 7において、 試験 の終了を確認し、 試験が終了ならば、 ステップ S 1 0 8において、 その試験結果 を例えば良品ならば O Kと表示し、 不良品ならば N Gと表示するものである。 また、 本発明の画像読取装置の解像度測定方法は、 テストチャート 2の白黒ラ ィンペアパ夕一ンピッチを画像読取装置の読取り画素ピッチから少量ずらして作 成し、 一定周期毎に白パターンと読取り画素、 及び黒パターンと読取り画素が主 走査方向において一致するようにする。 このテストチャート 2を使用して、 パ夕 ーンと画素とが必ず一致する箇所があるよう十分な幅の領域を読取り、 全領域の 読取り画像の 1画素毎に階調差を計算し、 最大階調差を検出する。 その最大階調 差が良否判定値を越えている場合は解像度テスト合格とする。 As shown in the schematic flow chart of the present invention in FIG. 10, the resolution measuring procedure of the resolution measuring device 14a having the above configuration is as follows. The entire area is read, and in step S102, the image data including the resolution and the image portion is cut out from the image data read by the cutout means 4 with a margin, and step S103 is performed. Indicates the range of the resolution pattern In step S104, the measurement target portion is cut out by the cutout means 4, and in step S105, every pixel of the read image of the entire area of the image data cut out by the analysis means 5 is extracted in step S105. The maximum tone difference is detected by calculating the tone difference, and in step S106, the judging means 6 judges whether the maximum tone difference exceeds the pass / fail judgment value, and stores the data. Record and confirm the end of the test in step S107, and if the test is completed, in step S108, display the test result as OK for non-defective products and NG for defective products. Is what you do. Further, the method for measuring the resolution of the image reading apparatus of the present invention is such that the black and white line pair pitch of the test chart 2 is created with a small shift from the reading pixel pitch of the image reading apparatus, and the white pattern and the read pixel In addition, the black pattern and the read pixel are matched in the main scanning direction. Using this test chart 2, an area of sufficient width is read so that the pattern and the pixel always match, and the gradation difference is calculated for each pixel of the read image of the entire area. Detect gradation difference. If the maximum gradation difference exceeds the pass / fail judgment value, the resolution test is passed.
また、 本発明の画像読取装置の解像度測定方法は、 テストチャート 2の白黒ラ ィンペアパターンを少量傾斜させて作成し、 一定周期毎に白パターンと読取り画 素、 及び黒パターンと読取り画素が副走査方向において一致するようにする。 こ のテストチヤート 2を使用して、 パターンと画素とが必ず一致する箇所があるよ う十分な縦の領域を読取り、 全領域の読取り画像の 1画素毎に階調差を計算し、 最大階調差を検出する。 その最大階調差が良否判定値を越えている場合は解像度 テスト合格とする。  Further, the resolution measuring method of the image reading apparatus of the present invention is such that a black and white line pattern of the test chart 2 is created by inclining a small amount, and a white pattern and a read pixel, and a black pattern and a read pixel are formed at regular intervals. Match in the sub-scanning direction. Using this test chart 2, read a vertical area sufficient to ensure that the pattern and pixel always match, calculate the tone difference for each pixel of the read image of the entire area, and Detect tonality. If the maximum tone difference exceeds the pass / fail judgment value, the resolution test is passed.
更に、 本発明の画像読取装置の解像度測定方法は、 前記最大階調差検出の条件 として、 最大階調差候補を検出したポイントの前後の階調差が、 検出した最大階 調差と逆方向に一定以上の階調差を持つようにする。  Further, in the resolution measuring method of the image reading apparatus according to the present invention, as the condition for detecting the maximum gradation difference, the gradation difference before and after the point where the maximum gradation difference candidate is detected is opposite to the detected maximum gradation difference. Have a certain level of gradation difference.
また、 本発明の画像読取装置のカラー画像の解像度測定方法は、 各色毎の最大 階調差がそれぞれ個別の一定の規格値以上であることを判断基準とする。  In the method for measuring the resolution of a color image of the image reading apparatus according to the present invention, a criterion is that the maximum gradation difference of each color is equal to or more than a specific value.
更に、 本発明の画像読取装置のカラー画像の解像度測定方法は、 各色毎の最大 階調差がそれぞれ個別の一定の規格値以上であり、 かつ各色の最大階調差の総和 が各色の規格値の総和以上の一定値以上であることを判断基準とする。 更に、 本発明の画像読取装置のカラー画像の解像度測定方法は、 各色の解像度 に与える影響度が異なることに注目し、 各色の最大階調差の総和の算出時におい て、 各色に個別の係数を乗じて総和を算出する。 Further, in the method for measuring the resolution of a color image of the image reading apparatus according to the present invention, the maximum gradation difference of each color is equal to or more than an individual fixed standard value, and the sum of the maximum gradation difference of each color is the standard value of each color. Is determined to be equal to or greater than a certain value equal to or greater than the sum of Furthermore, the method of measuring the resolution of a color image of the image reading apparatus of the present invention focuses on the fact that the degree of influence on the resolution of each color is different, and when calculating the total sum of the maximum gradation difference of each color, an individual coefficient for each color is used. To calculate the sum.
なお、 一般的には、 解像度に大きく影響を与えるのは緑色なので、 例えば、 係 数の大きさは緑色を最も大きくし、 次に赤色、 次に青色の順に設定する方法があ る。  In general, since the color that greatly influences the resolution is green, for example, there is a method in which the coefficient is set so that green is largest, then red, and then blue.
また、 更に、 本発明の画像読取装置の解像度測定方法は、 白黒ラインペアパ夕 —ンを走査位置を変えながら複数回走査し、 各走査毎に最大階調差を算出し、 そ の最大階調差データ n個のうち、 上位 N個又は、 Z及び下位 M個を除く P個の最 大階調差デ一夕の平均値を判定対象とする。  Further, the method for measuring the resolution of the image reading apparatus according to the present invention further comprises: scanning a black-and-white line pair pattern a plurality of times while changing the scanning position; calculating a maximum gradation difference for each scan; Out of the n data, the average value of the P maximum grayscale difference data excluding the upper N or Z and lower M data is determined.
また、 本発明の画像読取装置の解像度測定方法を実現するプログラムを記録し た記録媒体は、 解像度試験一定周期毎に白パターンと読取り画素、 及び黒パター ンと読取り画素が一致するようにするテストチャートを読取る際に、 パターンと 画素とが必ず一致する箇所があるよう十分な領域を読取る手順と、 読取つた画像 データを必要な箇所のみを切り出すとともに、 切り出された画像デー夕の全領域 の読取り画像の 1画素毎の階調差を計算し、 最大階調差を検出する手順と、 その 最大階調差が良否判定値を越えている場合は解像度テスト合格とする手順とを実 行させるためのコンピュータ読取り可能なプログラムを記録する。  Further, the recording medium storing the program for realizing the resolution measuring method of the image reading apparatus of the present invention is a test for making the white pattern and the read pixel coincide with each other and the black pattern and the read pixel at regular intervals of the resolution test. When reading the chart, the procedure to scan a sufficient area so that the pattern and the pixel always match, and cut out only the necessary area from the read image data, and read the entire area of the cut out image data To calculate the gradation difference for each pixel of the image and detect the maximum gradation difference, and to execute the resolution test if the maximum gradation difference exceeds the pass / fail judgment value A computer readable program.
なお、 このプログラムは、 これを記録するための F Dや C Dなどの適切な種々 の記録媒体に格納している。  This program is stored in various appropriate recording media such as FD and CD for recording the program.
上記の実施の形態をとることにより、 以下に示す作用が働く。  By taking the above-described embodiment, the following operation works.
上記のテストチャート 2を用いることで、 バーの幅及びスペースの幅と、 C C Dの受光部サイズとを主走査方向に少量に違わせる、 あるいは、 バーとスペース とを副走査方向に少量に傾斜させると、 この領域における隣接画素間のコントラ スト差は、 主走査方向あるいは副走査方向において一定の周期を持って変化する ようになる。 また、 テストチャート 2の位置の違いは波形の水平方向のずれとな つて現れるだけで、 その周期や振幅は殆ど変化しない。 従って、 テストチャート 2の位置を気にせず、 最大コントラスト差を検証するだけで、 前述したピントの ぼけ等の理由によってパターンと C C D素子 1画素のサイズのバランスが崩れ、 コントラスト差が小さい場合のみを識別できる。 By using the test chart 2 described above, the width of the bar and the space and the size of the light receiving section of the CCD are slightly different in the main scanning direction, or the bar and the space are slightly inclined in the sub-scanning direction. Then, the contrast difference between adjacent pixels in this region changes with a certain period in the main scanning direction or the sub-scanning direction. Further, the difference in the position of the test chart 2 appears only as a horizontal displacement of the waveform, and the cycle and amplitude thereof hardly change. Therefore, regardless of the position of the test chart 2, only the maximum contrast difference is verified, and the balance between the pattern and the size of one pixel of the CCD element is lost due to the above-mentioned blurring of focus. Only when the contrast difference is small can be identified.
このように、 画像のコントラストに着目して 「見える」 範囲を数値化したこと 、 更に、 画像読取装置へのセット性を容易にするように考慮したテストチャート In this way, we focused on the contrast of the image and quantified the “visible” range. Furthermore, a test chart that was designed to facilitate the setting of the image reading device
2を用いることで、 C C D素子 1画素が 1バ一を解像する解像度試験の自動コン ピュー夕処理を可能にすることができる。 By using 2, it is possible to perform automatic computer processing of a resolution test in which one pixel of a CCD element resolves one bar.
更に、 最大階調差検出の条件として、 最大階調差候補を検出したポイントの前 後の階調差が、 検出した最大階調差と逆方向に一定以上の階調差を持つようにす ることにより、 解像度測定におけるテストチャート 2上のホコリ、 汚れなどの要 因を排除することができる。  Furthermore, the condition for detecting the maximum gradation difference is that the gradation difference before and after the point where the maximum gradation difference candidate is detected has a certain or more gradation difference in the direction opposite to the detected maximum gradation difference. By doing so, factors such as dust and dirt on the test chart 2 in the resolution measurement can be eliminated.
また、 各色毎の最大階調差がそれぞれ個別の一定の規格値以上であることを判 断基準とするので、 カラー画像の解像度測定を可能とすることができる。  Further, since the judgment standard is that the maximum gradation difference of each color is equal to or more than a specific standard value, it is possible to measure the resolution of a color image.
更に、 白黒ラインペアパターンを走査位置を変えながら複数回走査して算出し た最大階調差群のうち、 所定の最大階調差群の平均値を判定対象とすることによ り、 測定精度を上げることができる。  Furthermore, by determining the average value of a predetermined maximum gradation difference group among the maximum gradation difference groups calculated by scanning the black-and-white line pair pattern a plurality of times while changing the scanning position, the measurement accuracy is improved. Can be raised.
また、 コンピュータを動作させるプログラムを用いて実現することができ、 こ のプログラムは、 これを記録するための F Dや C Dなどの適切な種々の記録媒体 に格納することができるので、 必要時に任意の処理装置にインストールし、 処理 を行わせることができる。  In addition, it can be realized by using a program for operating a computer, and since this program can be stored in various suitable recording media such as an FD or a CD for recording the program, any program can be used when necessary. It can be installed in a processing device to perform processing.
本発明による代表的な実施例について、 第 1 1図乃至第 2 2図によって具体的 に説明する。  A representative embodiment according to the present invention will be specifically described with reference to FIGS. 11 to 22. FIG.
第 1 1図は本発明の実施例の構成図である。 第 1 1図において、 画像読取装置 の解像度試験を行うには、 後述の第 1 2図で示すテストチャート 2と、 試験対象 の画像読取装置 1 2と、 測定装置 1 4とで構成される。  FIG. 11 is a block diagram of an embodiment of the present invention. In FIG. 11, a resolution test of the image reading device is performed by a test chart 2 shown in FIG. 12 described later, an image reading device 12 to be tested, and a measuring device 14.
画像読取装置 1 2 (読み取り手段 3 ) は、 測定装置 1 4からの指示に基づき演 算制御部 2 1によって、 光源ランプ 2 2、 C C D素子 2 3、 読取り移動部 2 4の 動作を制御するとともに、 読取ったテストチヤート 2の画像データを測定装置 1 4へ転送する。  The image reader 1 2 (reading means 3) controls the operation of the light source lamp 22, the CCD element 23, and the reading moving unit 24 by the arithmetic control unit 21 based on the instruction from the measuring device 14. Then, the read image data of the test chart 2 is transferred to the measuring device 14.
測定装置 1 4は演算制御部 4 1によって制御され、 ドライバプログラム 4 2を 介して画像読取装置 1 2とデ一夕の授受を行い、 受信した画像データは演算制御 部 4 1の指示により測定制御プログラム 4 3によって処理される。 表示部 4 6は 解像度試験における必要なデータの結果を表示したりする。 また、 記憶部 4 7は 試験結果のデータなどを格納する。 The measuring device 14 is controlled by the arithmetic and control unit 41 and exchanges data with the image reading device 12 via the driver program 42, and the received image data is arithmetically controlled. Processed by the measurement control program 43 according to the instruction of the unit 41. The display unit 46 displays necessary data results in the resolution test. The storage unit 47 stores test result data and the like.
測定制御プログラム 4 3は、 データ解析部 4 4と、 判定部 4 5とを備える。 測 定制御プログラム 4 3 (切り出し手段 4 ) は、 画像読取装置 1 2が読取った画像 データに対して必要な箇所のみを切り出す。 データ解析部 4 4 (解析手段 5 ) は 、 切り出された画像データの全領域の読取り画像の 1画素毎に階調差を計算して 、 最大階調差を算出する。 また、 判定部 4 5 (判定手段 6 ) は、 予め設定された 解像度試験に必要な各種の良否判定値に対して、 その最大階調差が良否判定値を 越えている場合は解像度テスト合格とし、 良否判定値を越えていなければ解像度 テスト不合格とするものである。  The measurement control program 43 includes a data analysis unit 44 and a determination unit 45. The measurement control program 4 3 (cutout means 4) cuts out only necessary portions from the image data read by the image reading device 12. The data analysis unit 44 (analysis means 5) calculates a gradation difference for each pixel of the read image of the entire region of the cut image data, and calculates a maximum gradation difference. The judging section 45 (judgment means 6) judges that the resolution test has passed if the maximum gradation difference exceeds the pass / fail judgment value for various pass / fail judgment values required for the resolution test set in advance. If the value does not exceed the pass / fail judgment value, the resolution test is rejected.
第 1 2図は、 本発明の実施例の説明図であり、 前述のテストチャート 2の要部 を説明するものである。 第 1 2図 (a ) において、 テストチャート 2は、 多数の 黒色のバーと多数の白色のスペースとを持ち、 その黒色のバーと白色のスペース とで構成する白黒ラインペアのパターンピッチを、 主走査方向に併置した複数個 数の C C D素子のピッチと比較して若干大きく設定するものである。 例えば、 2 4 0 0 d p iの測定に必要となる 1 1〃mのバーとスペースとを 1 2〃mに設定 して、 これを数百本配置する。  FIG. 12 is an explanatory diagram of an embodiment of the present invention, and illustrates a main part of the test chart 2 described above. In FIG. 12 (a), the test chart 2 has a large number of black bars and a large number of white spaces, and the pattern pitch of a black-and-white line pair composed of the black bars and the white spaces is mainly shown. This is set slightly larger than the pitch of a plurality of CCD elements arranged side by side in the scanning direction. For example, 11〃m bars and spaces required for the measurement of 2400 dpi are set to 12〃m, and several hundreds of these are arranged.
第 1 2図 (b ) において、 テストチャート 2は、 多数の黒色のバーと多数の白 色のスペースとを持ち、 その黒色のバーと白色のスペースとで構成する白黒ライ ンペアのパタ一ンピッチを、 主走査方向に併置した複数個数の C C D素子のピッ チと比較して若干小さく設定するものである。 例えば、 2 4 0 0 d p iの測定に 必要となる 1 1〃mのバーとスペースとを 1 0〃mに設定して、 これを数百本配 ¾. る。  In FIG. 12 (b), test chart 2 has a pattern pitch of a black and white line pair composed of a number of black bars and a number of white spaces, and the black bars and the white spaces. The pitch is set slightly smaller than the pitch of a plurality of CCD elements juxtaposed in the main scanning direction. For example, 11〃m bars and spaces required for the measurement of 2400 dpi are set to 10〃m, and several hundreds of them are arranged.
第 1 2図 (a ) 及び第 1 2図 (b ) に示すテストチャート 2は、 試験対象とな る画像読取装置の C C D素子 1画素のピッチから少量ずらして作成することで、 テストチヤ一ト 2と C C D素子との位置関係において、 一定周期毎に白パターン と C C D素子 1画素、 及び黒パ夕ーンと C C D素子 1画素が主走査方向において 一致するようになる。 第 1 2図 (c ) において、 テストチャート 2は、 多数の黒色のバーと多数の白 色のスペースとを持ち、 その黒色のバーと白色のスペースとで構成する白黒ライ ンペアのパターンピツチは、 主走査方向に併置した複数個数の C C D素子のピッ チと同一に設定する。 更に、 白黒ラインペアは、 副走査方向に対して若干傾斜さ せて形成し、 これを数百本配置する。 The test chart 2 shown in Fig. 12 (a) and Fig. 12 (b) is produced by shifting the pitch of one pixel of the CCD element of the image reading device to be tested by a small amount so that the test chart 2 can be obtained. In the positional relationship between the CCD and the CCD element, the white pattern and one pixel of the CCD element, and the black pattern and one pixel of the CCD element coincide in the main scanning direction at regular intervals. In FIG. 12 (c), test chart 2 has a number of black bars and a number of white spaces, and the pattern pitch of a black and white line pair composed of the black bars and the white spaces is as follows. Set the same as the pitch of a plurality of CCD elements juxtaposed in the main scanning direction. Further, the black and white line pairs are formed with a slight inclination with respect to the sub-scanning direction, and several hundred lines are arranged.
第 1 2図 (c ) に示すテストチャート 2は、 テストチャート 2と C C D素子と の位置関係において、 一定周期毎に白パターンと C C D素子 1画素、 及び黒バタ ーンと C C D素子 1画素が副走査方向において一致するようになる。  Test chart 2 shown in Fig. 12 (c) shows that the white pattern and one pixel of the CCD element, and the black pattern and one pixel of the CCD element are sub-patterns at regular intervals in the positional relationship between the test chart 2 and the CCD element. It becomes coincident in the scanning direction.
第 1 5図は本発明の実施例の説明図である。 第 1 5図において、 テストチヤ一 ト 2に形成されたパターンを試験対象がカラ一画素読取り可能な画素読取り装置 1 3で読取らせ、 測定装置 1 4で解像度測定処理する状態を示す。  FIG. 15 is an explanatory view of an embodiment of the present invention. FIG. 15 shows a state in which the pattern formed on the test chart 2 is read by the pixel reading device 13 capable of reading the test object one pixel at a time, and the measuring device 14 performs resolution measurement processing.
第 1 5図において、 C C D出力は、 前記テストチャート 2の 1ライン分のバタ 一ンを読取った時の C C D素子 1画素毎の出力を示す。 また、 階調差は、 隣接す る C C D素子 1画素毎のレベル差を示す。 つまり、 山が高ければはっきり見える ことになる。 また、 パターンは、 テストチャート 2に形成されたパターンを読取 つた時のパターン画像である。  In FIG. 15, the CCD output indicates the output of each pixel of the CCD element when one line of the pattern of the test chart 2 is read. The gradation difference indicates a level difference between adjacent pixels of the CCD element. In other words, you can see clearly if the mountain is high. Further, the pattern is a pattern image when the pattern formed on the test chart 2 is read.
このように、 前述の第 1 2図で示したテストチャート 2のパターンを読取るこ とで、 この読取つた領域における隣接する C C D素子 1画素間のコントラスト差 (階調差) は、 主走査方向あるいは副走査方向において一定の周期を持って変化 するようになる。 また、 テストチャート 2の位置の違いは波形の水平方向のずれ となって現れるだけで、 その周期や振幅は殆ど変化しない。 従って、 テストチヤ ート 2の位置を気にせず、 最大コントラスト差を検証するだけで、 前述に示した ピントのぼけ等の理由によってパターンと C C D素子 1画素のサイズのバランス が崩れ、 コントラスト差が小さい場合のみを識別できる。  As described above, by reading the pattern of the test chart 2 shown in FIG. 12 described above, the contrast difference (gradation difference) between one pixel of the adjacent CCD element in the read area is determined in the main scanning direction or in the main scanning direction. It changes with a constant period in the sub-scanning direction. In addition, the difference in the position of the test chart 2 appears as a horizontal shift of the waveform, and its cycle and amplitude hardly change. Therefore, regardless of the position of test chart 2, only the maximum contrast difference is verified, and the balance between the pattern and the size of one pixel of the CCD element is lost due to the above-mentioned blurring of the focus and the contrast difference is small. Only cases can be identified.
このように、 画像のコントラストに着目して 「見える」 範囲を数値化したこと 。 更に、 試験対象となる画像読取装置へのセット性を容易にするようにしたテス トチャート 2を用いることで、 C C D素子 1画素が 1バーを解像する解像度試験 の自動コンピュー夕処理を可能とすることができる。  In this way, focusing on the contrast of the image, the “visible” range was quantified. In addition, the use of the test chart 2 that facilitates setting on the image reading device to be tested facilitates the automatic computer processing of the resolution test in which one pixel of the CCD element resolves one bar. can do.
第 1 6図は本発明の実施例のフローチャートを示す。 第 1 6図において、 解像 度測定方法の処理手順の概要を説明する。 なお、 符号は第 1 1図に示した符号と 同一のものを用いる。 FIG. 16 shows a flowchart of an embodiment of the present invention. In Fig. 16, resolution An outline of the processing procedure of the degree measurement method will be described. The same reference numerals as those shown in FIG. 11 are used.
ステップ S I 1 1において、 判定者は、 テストチャート 2を試験対象とする画 像読取装置 1 2の所定位置にセットし読取りを指示する。  In step SI 11, the judge sets the test chart 2 at a predetermined position of the image reading device 12 to be tested and instructs the reading.
ステップ S I 1 2において、 画像読取装置 1 2は光源ランプ 2 2、 C C D素子 2 3、 読取り移動部 2 4を駆動させてテストチヤート 2の全領域を読取る。 ステップ S 1 1 3において、 読取ったテストチャート 2の画像データを測定装 置 1 4へ転送する。  In step SI 12, the image reading device 12 drives the light source lamp 22, the CCD element 23, and the reading moving section 24 to read the entire area of the test chart 2. In step S113, the read image data of the test chart 2 is transferred to the measuring device 14.
ステップ S 1 1 4において、 測定装置 1 4は、 画像データを受信し、 ステップ S 1 1 5において、 測定制御プログラム 4 3は、 解像度パターンの範囲の中から 測定対象部分を切り出す。  In step S114, the measurement device 14 receives the image data, and in step S115, the measurement control program 43 cuts out a measurement target portion from the range of the resolution pattern.
ステップ S 1 1 6において、 測定制御プログラム 4 3のデータ解析部 4 4は、 切り出された画像データの全領域の読取り画像の 1画素毎に階調差を計算し、 ス テツプ S 1 1 7において、 最大階調差を検出する。  In step S116, the data analysis unit 44 of the measurement control program 43 calculates the gradation difference for each pixel of the read image of the entire area of the cut image data, and in step S117, , Detect maximum gradation difference.
ステップ S 1 1 8において、 測定制御プログラム 4 3の判定部 4 5は、 予め設 定された良否判定値と最大階調差とを比較して、 その最大階調差が良否判定値を 越えているかを判定する。  In step S118, the judgment unit 45 of the measurement control program 43 compares the pass / fail judgment value set in advance with the maximum gradation difference, and when the maximum gradation difference exceeds the pass / fail judgment value. Is determined.
最大階調差が良否判定値を越えていない場合は、 ステップ S I 1 9において、 画像読取装置 1 2は基本仕様の解像度がないとして不良品とする。 一方、 最大階 調差が良否判定値を越えている場合は、 ステップ S 1 2 0において、 画像読取装 置 1 2は基本仕様の解像度があるとして良品とする。  If the maximum gradation difference does not exceed the pass / fail judgment value, in step SI 19, the image reading device 12 is determined to be defective because it does not have the resolution of the basic specification. On the other hand, if the maximum gradation difference exceeds the pass / fail judgment value, in step S120, the image reading device 12 is determined to be non-defective because it has the resolution of the basic specification.
ステップ S 1 2 1において、 測定結果のデータを記憶部 4 7に記録し、 ステツ プ S 1 2 2において、 解像度測定が終了か判定し、 終了ならばステップ S 1 2 3 において試験結果を表示部に表示して処理を終了する。 終了でなければ、 ステツ プ S 1 1 5に戻る。  In step S121, the measurement result data is recorded in the storage unit 47, and in step S122, it is determined whether or not the resolution measurement has been completed, and if it has been completed, the test result is displayed in step S123. Is displayed and the process ends. If not, return to step S115.
以下に、 測定装置 1 4の解像度測定処理手順の詳細を説明する。  The details of the resolution measurement processing procedure of the measurement device 14 will be described below.
第 1 7図は発明の実施例のフローチャートを示す。 第 1 7図は、 モノクロ画像 の解像度測定における測定制御プ αグラム 4 3の処理手順を示す。  FIG. 17 shows a flowchart of an embodiment of the invention. FIG. 17 shows the processing procedure of the measurement control program 43 in measuring the resolution of a monochrome image.
ステップ S 1 3 1において、 解像度パターンの範囲の中から切り出させた測定 対象部分に異常画素がないかを検証する。 異常画素を検出すれば、 これを記憶し ておく。 即ち、 第 1 3図に示すように、 C C D素子 1画素毎に階調データを調べ 、 本来は黒パターンも読取るはずの画素が黒パターンを読取っていない場合、 あ るいは、 本来は白パターンも読取るはずの画素が白パターンを読取っていない場 合は、 その画素の番号を記憶する。 この例では画素 E 3、 画素 E 4及び画素 E 5 あるいは、 画素 E 2 2、 画素 E 2 3及び画素 E 2 4が該当する。 これは、 テスト チャート 2に形成したパターンがホコリ、 汚れなどの要因でその箇所が正しレ、パ ターンを形成していないことを示す。 従って、 解像度測定において前記箇所は測 定の対象から排除することになる。 In step S131, the measurement cut out from the range of the resolution pattern Verify whether there is an abnormal pixel in the target part. If an abnormal pixel is detected, it is stored. That is, as shown in FIG. 13, the gradation data is examined for each pixel of the CCD element, and if a pixel that should read a black pattern does not read a black pattern, or a white pattern should be read. If the pixel to be read does not read the white pattern, store the number of that pixel. In this example, the pixel E3, the pixel E4, and the pixel E5, or the pixel E22, the pixel E23, and the pixel E24 correspond. This indicates that the pattern formed on the test chart 2 is not correct and does not form a pattern due to factors such as dust and dirt. Therefore, in the resolution measurement, the location is excluded from the measurement target.
ステップ S 1 3 2において、 解像度パターンの範囲の中から切り出された測定 対象部分に相当する測定領域の画素個数をカウン夕に設定する。 例えば、 第 1 3 図に示すような測定領域の場合は、 画素個数カウンタを 4 3に設定する。  In step S132, the number of pixels in the measurement area corresponding to the measurement target portion cut out from the range of the resolution pattern is set to count. For example, in the case of a measurement area as shown in FIG. 13, the pixel number counter is set to 43.
ステップ S 1 3 3において、 最大階調差の初期値を設定して記憶する。  In step S133, an initial value of the maximum gradation difference is set and stored.
ステップ S 1 3 4において、 最初の測定画素をカウン夕に設定する。 例えば、 第 1 3図における E 0を設定する。  In step S134, the first measurement pixel is set to count. For example, E 0 in FIG. 13 is set.
ステップ S 1 3 5において、 次の測定画素をカウン夕に設定する。 例えば、 第 1 3図における E 1を設定する。  In step S135, the next measurement pixel is set to count. For example, E1 in FIG. 13 is set.
ステップ S 1 3 6において、 測定画素は正常な画素か判定する。 つまり、 ステ ップ S 1 3 1で記憶した画素は異常画素であり、 これ以外の画素であればステツ プ S 1 3 7に進む。 異常画素であればステップ S 1 3 5に戻る。  In step S136, it is determined whether the measurement pixel is a normal pixel. That is, the pixel stored in step S1331 is an abnormal pixel, and if it is any other pixel, the process proceeds to step S137. If it is an abnormal pixel, the process returns to step S135.
ステップ S 1 3 7において、 隣接する先に測定した画素の階調データとの階調 差を算出し、 現在記憶されている最大階調差より大きいか判定する。 現在記憶さ れている最大階調差より大きい場合はステップ S 1 3 8に進む。 現在記憶されて レ、る最大階調差より小さい場合はステップ S 1 3 9に進む。  In step S137, a gradation difference from the gradation data of an adjacent previously measured pixel is calculated, and it is determined whether the difference is larger than the currently stored maximum gradation difference. If the difference is larger than the currently stored maximum gradation difference, the flow advances to step S138. If it is smaller than the currently stored maximum gradation difference, the flow advances to step S139.
なお、 判定は次式による。  The judgment is based on the following equation.
a b s ( Ε„ - Ε„- ι ) > =M a x_D i f f  a b s (Ε „-Ε„-ι)> = M a x_D i f f
上式において、 a b sは絶対値、 E n は測定画素の階調データ、 E n > は隣接 する先に測定した画素の階調データ、 M a x— D i f f は現在記憶されている最 大階調差、 である。 ステップ S 1 3 8において、 最大階調差を記憶する。 In the above formula, abs is an absolute value, E n gradation data of the measuring pixel, E n> gradation data of the pixel previously measured adjacent, M ax- D iff outermost Daikaicho currently stored The difference,. In step S138, the maximum gradation difference is stored.
ステップ S 1 3 9において、 先に設定された測定領域の画素個数を全て測定し たか判定する。 つまり、 カウンタに設定した画素個数に到達したか判定する。 測 定領域の画素全て測定したならばステップ S 1 4 0に進む。 測定領域の画素全て 測定していなければステップ S 1 3 5に戻る。  In step S139, it is determined whether the number of pixels in the previously set measurement area has been measured. That is, it is determined whether the number of pixels set in the counter has been reached. If all the pixels in the measurement area have been measured, the process proceeds to step S140. If all the pixels in the measurement area have not been measured, the process returns to step S135.
ステップ S 1 4 0において、 予め設定された良否判定値と記憶された最大階調 差とを比較して、 その最大階調差が良否判定値を越えているかを判定し、 ステツ プ S 1 4 1において、 試験結果を表示部に表示して処理を終了する。  In step S140, a predetermined pass / fail judgment value is compared with the stored maximum gradation difference to determine whether the maximum gradation difference exceeds the pass / fail judgment value. In step 1, the test result is displayed on the display unit, and the process ends.
つまり、 ステップ S 1 3 1とステップ S 1 3 6とにより、 最大階調差検出の条 件として、 最大階調差候補を検出したポイントの前後の階調差が、 検出した最大 階調差と逆方向に一定以上の階調差を持つことにより、 解像度測定におけるテス トチャート上のホコリ、 汚れなどの要因を排除することができる。  In other words, by the steps S 13 1 and S 13 36, as a condition of the maximum gradation difference detection, the gradation difference before and after the point where the maximum gradation difference candidate is detected is set to the detected maximum gradation difference. By having a certain level of gradation difference in the reverse direction, it is possible to eliminate factors such as dust and dirt on the test chart in the resolution measurement.
第 1 8図は発明の実施例のフローチャートを示す。 第 1 8図は、 カラー画像の 解像度測定における測定制御プログラム 4 3の処理手順を示す。 なお、 前述の第 1 7図で示したステップ S 1 3 1とステップ S 1 3 6とに相当する処理手順は省 略してある。  FIG. 18 shows a flowchart of an embodiment of the invention. FIG. 18 shows the processing procedure of the measurement control program 43 in measuring the resolution of a color image. It should be noted that the processing procedures corresponding to step S131 and step S136 shown in FIG. 17 are omitted.
ステップ S 1 5 1において、 解像度パターンの範囲の中から切り出された測定 対象部分に相当する測定領域の画素個数をカウンタに設定する。 例えば、 第 1 3 図に示すような測定領域の場合は、 画素個数カウンタを 4 3に設定する。  In step S151, the number of pixels in the measurement area corresponding to the measurement target portion cut out from the range of the resolution pattern is set in the counter. For example, in the case of a measurement area as shown in FIG. 13, the pixel number counter is set to 43.
ステップ S 1 5 2において、 赤色の最大階調差の初期値を設定して記憶する。 ステップ S 1 5 3において、 緑色の最大階調差の初期値を設定して記憶する。 ス テツプ S 1 5 4において、 青色の最大階調差の初期値を設定して記憶する。 ステップ S 1 5 5において、 最初の測定画素をカウン夕に設定する。 例えば、 第 1 3図における E 0を設定する。 なお、 C C D素子 1画素は赤色、 緑色及び青 色の 3つの階調データを持つ。  In step S152, an initial value of the maximum gradation difference of red is set and stored. In step S153, an initial value of the maximum gradation difference of green is set and stored. In step S154, an initial value of the maximum gray level difference of blue is set and stored. In step S155, the first measurement pixel is set to count. For example, E 0 in FIG. 13 is set. One pixel of the CCD element has three gradation data of red, green, and blue.
ステップ S 1 5 6において、 次の測定画素をカウン夕に設定する。 例えば、 第 1 3図における E 1を設定する。  In step S156, the next measurement pixel is set to count. For example, E1 in FIG. 13 is set.
ステップ S 1 5 7において、 隣接する先に測定した画素の赤色の階調データと の階調差を算出し、 現在記憶されている赤色の最大階調差より大きレ、か判定する 。 現在記憶されている赤色の最大階調差より大きい場合はステップ S 158に進 む。 当該赤色の最大階調差より小さい場合はステップ S 159に進む。 In step S157, the gradation difference between the previously measured pixel and the red gradation data of the adjacent pixel is calculated, and it is determined whether the difference is larger than the currently stored maximum gradation difference of red. . If it is larger than the currently stored maximum gradation difference of red, the process proceeds to step S158. If the difference is smaller than the maximum gradation difference of red, the process proceeds to step S159.
なお、 判定は次式による。  The judgment is based on the following equation.
a b s (Rn -R„-i ) > =D i f f一 Rma x abs (R n -R „-i)> = Diff-1 Rma x
上式において、 absは絶対値、 R„ は測定画素の赤色の階調データ、 Rn - , は隣接する先に測定した画素の赤色の階調データ、 Di f f— Rma xは現在記 憶されている赤色の最大階調差、 である。 In the above equation, abs is the absolute value, R „is the red gradation data of the measured pixel, R n- , is the red gradation data of the adjacent previously measured pixel, and D ff — R max is currently stored. Is the maximum gradation difference of the red color.
ステップ S 158において、 赤色の最大階調差を記憶する。  In step S158, the maximum gradation difference of red is stored.
ステップ S 159において、 隣接する先に測定した画素の緑色の階調データと の階調差を算出し、 現在記憶されている緑色の最大階調差より大きレ、か判定する 。 現在記憶されている緑色の最大階調差より大きい場合はステップ S 160に進 む。 当該緑色の最大階調差より小さい場合はステップ S 1 61に進む。  In step S159, the difference between the previously measured green gradation data of the pixel and the previously measured pixel is calculated, and it is determined whether the difference is larger than the currently stored maximum gradation difference of green. If it is larger than the currently stored maximum gradation difference of green, the process proceeds to step S160. If the difference is smaller than the maximum gradation difference of green, the process proceeds to step S161.
なお、 判定は次式による。  The judgment is based on the following equation.
abs (Gn -G„-i ) > =D i f f _Gma x abs (G n -G „-i)> = D iff _Gma x
上式において、 absは絶対値、 Gn は測定画素の緑色の階調データ、 は隣接する先に測定した画素の緑色の階調データ、 Di f f— Gmaxは現在記 憶されている緑色の最大階調差、 である。 In the above equation, abs is the absolute value, Gn is the green gradation data of the measured pixel, is the green gradation data of the adjacent previously measured pixel, and Diff-Gmax is the currently stored green maximum. The gradation difference is
ステップ S 1 60において、 緑色の最大階調差を記憶する。  In step S160, the maximum gray level difference of green is stored.
ステップ S 161において、 隣接する先に測定した画素の青色の階調データと の階調差を算出し、 現在記憶されてレ、る青色の最大階調差より大きレ、か判定する 。 現在記憶されている青色の最大階調差より大きい場合はステップ S 1 62に進 む。 当該青色の最大階調差より小さい場合はステップ S 1 63に進む。  In step S161, a gradation difference between the previously measured pixel and the blue gradation data of the previously measured pixel is calculated, and it is determined whether the currently stored blue gradation data is larger than the maximum gradation difference of blue. If it is larger than the currently stored maximum gray level difference of blue, the process proceeds to step S162. If the difference is smaller than the maximum gray level difference of the blue color, the flow advances to step S163.
なお、 判定は次式による。  The judgment is based on the following equation.
ab s (Β„ -Βη-ι ) > =D i f f _Bma x ab s (Β „-Β η -ι)> = D iff _Bma x
上式において、 ab sは絶対値、 B„ は測定画素の青色の階調デ一夕、 Bn—! は隣接する先に測定した画素の青色の階調データ、 Di f f— Bmaxは現在記 憶されている青色の最大階調差、 である。 In the above formula, abs is an absolute value, B „is the blue gradation data of the measured pixel, B n —! Is the blue gradation data of the adjacent pixel measured earlier, and D ff — Bmax is the current value. This is the maximum difference in gray level of blue that is remembered.
ステップ S 162において、 青色の最大階調差を記憶する。  In step S162, the maximum gray level difference of blue is stored.
ステップ S 163において、 先に測定された測定領域の画素個数を全て測定し たか判定する。 つまり、 カウンタに設定した画素個数に到達したか判定する。 測 定領域の画素を全て測定したならばステップ S 1 6 4に進む。 測定領域の画素を 全て測定していなければステップ S 1 5 6に戻る。 In step S163, the number of pixels in the measurement area previously measured is all measured. Is determined. That is, it is determined whether the number of pixels set in the counter has been reached. If all the pixels in the measurement area have been measured, the flow advances to step S164. If all the pixels in the measurement area have not been measured, the process returns to step S156.
ステップ S 1 6 4において、 予め設定された良否判定値と記憶された最大階調 差とを比較して、 その最大階調差が良否判定値を越えているかを判定し、 ステツ プ S 1 6 5において、 試験結果を表示部に表示して処理を終了する。  In step S164, the pass / fail judgment value set in advance is compared with the stored maximum gradation difference to determine whether or not the maximum gradation difference exceeds the pass / fail judgment value. In step 5, the test result is displayed on the display unit, and the process ends.
なお、 ステップ S 1 6 4の詳細は後述する。 また、 省略した前述の第 1 7図で 示したステップ S 1 3 1とステップ S 1 3 6とに相当する処理手順は、 異常画素 の検出は、 ステップ S 1 5 1に先立って処理を実行する。 また、 測定画素は正常 な画素かの判定は、 ステップ S 1 5 6とステップ S 1 5 7との間に処理を実行す 。  The details of step S164 will be described later. Also, in the omitted processing procedure corresponding to steps S 13 1 and S 13 36 shown in FIG. 17, the detection of the abnormal pixel is executed prior to step S 15 1 . The determination as to whether the measurement pixel is a normal pixel is performed between step S156 and step S157.
以下、 前述のステップ S 1 6 4の詳細を説明する。  Hereinafter, the details of the aforementioned step S166 will be described.
第 1 9図は本発明の実施例のフローチャートを示す。 第 1 9図は、 カラー画像 の各色毎の最大階調差がそれぞれ個別の一定の規格値以上であることを判断基準 とするものである。  FIG. 19 shows a flowchart of an embodiment of the present invention. FIG. 19 uses the judgment criterion that the maximum gradation difference of each color of the color image is equal to or more than a specific value.
ステップ S 1 6 4 aにおいて、 赤色の最大階調差が赤成分用規格値より大きい か判定する。 赤色の最大階調差が赤成分用規格値より大きい場合はステップ S 1 6 4 bに進む。 赤色の最大階調差が赤成分用規格値より小さい場合はステップ S 1 6 4 dに進む。  In step S166a, it is determined whether the maximum gradation difference of red is larger than the standard value for red component. If the maximum gradation difference of red is larger than the red component standard value, the flow advances to step S164b. If the maximum gradation difference of red is smaller than the standard value for red component, the process proceeds to step S164d.
なお、 判定は次式による。  The judgment is based on the following equation.
D i f ί— Rm a x > = R t o 1  D i f ί— Rmax> = R t o 1
上式において、 D i f f— Rm a xは赤色の最大階調差、 R t o 1は赤成分用 規格値、 である。  In the above equation, Dif-Rmax is the maximum gradation difference of red, and Rto1 is the standard value for the red component.
ステップ S 1 6 4 bにおいて、 緑色の最大階調差が緑成分用規格値より大きい か判定する。 緑色の最大階調差が緑成分用規格値より大きい場合はステップ S 1 6 4 cに進む。 緑色の最大階調差が緑成分用規格値より小さい場合はステップ S 1 6 4 dに進む。  In step S164b, it is determined whether the maximum gradation difference of green is larger than the standard value for green component. If the green maximum gradation difference is larger than the green component standard value, the flow advances to step S164c. If the maximum gradation difference of green is smaller than the standard value for green component, the process proceeds to step S164d.
なお、 判定は次式による。  The judgment is based on the following equation.
D i f f _Gm a x > = G t o 1 上式において、 D i f f— Gm a xは緑色の最大階調差、 G t o 1は緑成分用 規格値、 である。 D iff _Gm ax> = G to 1 In the above equation, Diff-Gmax is the maximum gradation difference of green, and G to 1 is the standard value for the green component.
ステップ S 1 6 4 cにおいて、 青色の最大階調差が青成分用規格値より大きい か判定する。 青色の最大階調差が青成分用規格値より大きい場合はステップ S 1 6 4 eに進む。 青色の最大階調差が青成分用規格値より小さい場合はステップ S 1 6 4 dに進む。  In step S164c, it is determined whether the maximum gray level difference of blue is larger than the standard value for blue component. If the maximum gradation difference of blue is larger than the blue component standard value, the flow advances to step S164e. If the maximum gray level difference of blue is smaller than the blue component standard value, the flow advances to step S164d.
なお、 判定は次式による。  The judgment is based on the following equation.
D i f f _B m a x > = B t o 1  D i f f _B m ax> = B t o 1
上式において、 D i f f— B m a xは青色の最大階調差、 B t o 1は青成分用 規格値、 である。  In the above equation, Dif-Bmax is the maximum gray level difference of blue, and Bto1 is the standard value for the blue component.
ステップ S 1 6 4 dにおいて、 解像度なしと判定して不良品とする。 また、 ス テツプ S 1 6 4 eにおいて、 解像度ありと判定して良品とする。 そして処理を終 了する。  In step S164d, it is determined that there is no resolution and is determined to be defective. Also, in step S164e, it is determined that there is a resolution, and a non-defective product is determined. Then, the process ends.
第 2 0図は本発明の実施例のフローチャートを示す。 第 2 0図は、 カラ一画像 の各色毎の最大階調差が各々個別の一定の規格値以上であり、 かつ、 各色の最大 階調差の総和が 3色総合規格値以上であることを判断基準とするものである。 ステップ S 1 6 4 hにおいて、 赤色の最大階調差が赤成分用規格値より大きい か判定する。 赤色の最大階調差が赤成分用規格値より大きい場合はステップ S 1 6 4 iに進む。 赤色の最大階調差が赤成分用規格値より小さい場合はステップ S 1 6 4 1に進む。  FIG. 20 shows a flowchart of an embodiment of the present invention. Fig. 20 shows that the maximum gradation difference for each color of a color image is equal to or greater than a specific standard value for each color, and that the sum of the maximum gradation differences for each color is equal to or greater than the three-color total standard value. This is used as a criterion. In step S164h, it is determined whether the maximum gradation difference of red is larger than the standard value for red component. If the maximum tone difference of red is larger than the red component standard value, the flow advances to step S164i. If the maximum gradation difference of red is smaller than the standard value for red component, the flow advances to step S1661.
ステップ S 1 6 4 iにおいて、 緑色の最大階調差が緑成分用規格値より大きい か判定する。 緑色の最大階調差が緑成分用規格値より大きい場合はステップ S 1 6 4 jに進む。 緑色の最大階調差が緑成分用規格値より小さい場合はステップ S 1 6 4 1に進む。  In step S164i, it is determined whether the maximum gradation difference of green is larger than the standard value for green component. If the maximum gradation difference of green is larger than the green component standard value, the flow advances to step S164j. If the green maximum gradation difference is smaller than the green component standard value, the flow advances to step S16641.
ステップ S 1 6 4 jにおいて、 青色の最大階調差が青成分用規格値より大きい か判定する。 青色の最大階調差が青成分用規格値より大きい場合はステップ S 1 6 4 kに進む。 青色の最大階調差が青成分用規格値より小さい場合はステップ S 1 6 4 1に進む。  In step S164j, it is determined whether the maximum gray level difference of blue is larger than the standard value for blue component. If the maximum gradation difference of blue is larger than the blue component standard value, the flow advances to step S164k. If the maximum gradation difference of blue is smaller than the standard value for blue component, the process proceeds to step S1641.
なお、 ステップ S 1 6 4 h、 ステップ S 1 6 4 i及びステップ S 1 6 4 】にお いて、 各色の最大階調差が各色成分用規格値より大きいかを判定する式は、 前述 の第 1 9図で示したステップ S 1 64 a, ステップ S 1 64 b及びステップ S 1 64 cと同等であり、 説明を省略する。 Steps S164h, S164i and S164] Therefore, the equation for determining whether the maximum gradation difference of each color is larger than the standard value for each color component is as follows: Step S 164 a, Step S 1 64 b and Step S 1 64 c shown in FIG. Equivalent, and description is omitted.
ステップ S 1 64 kにおいて、 赤色、 緑色及び青色の 3色の最大階調差の総合 が赤色、 緑色及び青色の 3色総合規格値より大きいか判定する。 3色の最大階調 差の総合が 3色総合規格値より大きい場合はステップ S 1 64mに進む。 3色の 最大階調差の総合が 3色総合規格値より小さい場合はステップ S 1 641に進む ο  In step S164k, it is determined whether or not the total of the maximum gradation differences of the three colors red, green and blue is larger than the total standard value of the three colors red, green and blue. If the total of the maximum gradation differences of the three colors is larger than the total standard value of the three colors, the process proceeds to step S164m. If the total of the maximum gradation differences of the three colors is smaller than the total standard value of the three colors, go to step S1641 ο
なお、 判定は次式による。  The judgment is based on the following equation.
D i f f— Rma x + D i f f _Gma x + D i f f _Bma x> = RGB t o 1  D i f f— Rmax x D i f f _Gma x + D i f f _Bma x> = RGB t o 1
上式において、 D i f f— Rma xは赤色の最大階調差、 Di f f_Gmax は緑色の最大階調差、 D i f f— Bma xは青色の最大階調差、 RGB t o 1は 3色総合規格値、 である。  In the above formula, Diff—Rmax is the maximum gradation difference of red, Diff_Gmax is the maximum gradation difference of green, Diff—Bmax is the maximum gradation difference of blue, and RGB to 1 is the standard value of three colors. ,.
ステップ S 1641において、 解像度なしと判定して不良品とする。 また、 ス テツプ S 1 64mにおいて、 解像度ありと判定して良品とする。 そして処理を終 了する。  In step S1641, it is determined that there is no resolution and is determined to be defective. At step S164m, it is determined that there is a resolution, and is determined to be non-defective. Then, the process ends.
第 21図は本発明の実施例のフローチャートを示す。 第 21図は、 カラー画像 の各色の最大階調差の総和を算出する時に、 各色に個別の係数を乗じて総和を算 出するものである。  FIG. 21 shows a flowchart of an embodiment of the present invention. FIG. 21 is a diagram for calculating the total sum by multiplying each color by an individual coefficient when calculating the total sum of the maximum gradation differences of each color of the color image.
ステップ S 164 rにおいて、 赤色の最大階調差が赤成分用規格値より大きい か判定する。 赤色の最大階調差が赤成分用規格値より大きい場合はステップ S 1 64 sに進む。 赤色の最大階調差が赤成分用規格値より小さい場合はステップ S 1 64 Vに進む。  In step S164r, it is determined whether the maximum gradation difference of red is larger than the standard value for red component. If the maximum gradation difference of red is larger than the standard value for red component, the process proceeds to step S164s. When the maximum gradation difference of red is smaller than the standard value for red component, the process proceeds to step S164V.
ステップ S 164 sにおいて、 緑色の最大階調差が緑成分用規格値より大きい か判定する。 緑色の最大階調差が緑成分用規格値より大きい場合はステップ S 1 64 tに進む。 緑色の最大階調差が緑成分用規格値より小さい場合はステップ S 1 64 Vに進む。  In step S164s, it is determined whether the maximum gradation difference of green is larger than the standard value for green component. If the green maximum gradation difference is larger than the green component standard value, the flow advances to step S164t. If the green maximum gradation difference is smaller than the green component standard value, the flow advances to step S164V.
ステップ S 164 tにおいて、 青色の最大階調差が青成分用規格値より大きい か判定する。 青色の最大階調差が青成分用規格値より大きい場合はステップ S 1 64 uに進む。 青色の最大階調差が青成分用規格値より小さい場合はステップ S 1 64 Vに進む。 In step S164t, the maximum gradation difference of blue is larger than the standard value for blue component. Is determined. If the maximum gradation difference of blue is larger than the blue component standard value, the flow advances to step S164u. If the maximum gray level difference of blue is smaller than the blue component standard value, the flow advances to step S164V.
なお、 ステップ S 164 r、 ステップ S 1 64 s及びステップ S 1 64 tにお いて、 各色の最大階調差が各色成分用規格値より大きいかを判定する式は、 前述 の第 1 9図で示したステップ S 164 a, ステップ S 1 64 b及びステップ S 1 64 cと同等であり、 説明を省略する。  In step S164r, step S164s, and step S164t, the equation for determining whether the maximum gradation difference of each color is larger than the standard value for each color component is shown in FIG. 19 described above. Steps S164a, S164b, and S164c shown are the same as those described above, and description thereof is omitted.
ステップ S 1 64 uにおいて、 赤色、 緑色及び青色に設定する各色毎の成分用 係数を乗じた 3色の最大階調差の総合が赤色、 緑色及び青色の 3色総合規格値よ り大きレ、か判定する。 3色の最大階調差の総合が 3色総合規格値より大きレ、場合 はステップ S 1 64 wに進む。 3色の最大階調差の総合が 3色総合規格値より小 さい場合はステップ S 1 64 Vに進む。  In step S1 64u, the total of the maximum gradation differences of the three colors multiplied by the component coefficients for each color set to red, green, and blue is larger than the total standard value of the three colors of red, green, and blue. Is determined. If the total of the maximum gradation differences of the three colors is larger than the total standard value of the three colors, the process proceeds to step S164W. When the total of the maximum gradation differences of the three colors is smaller than the total standard value of the three colors, the process proceeds to step S164V.
なお、 判定は次式による。  The judgment is based on the following equation.
D i f f一 RmaxxkR +D i f f _GmaxxkG +D i f f _Bma x x kB > = RGB t o 1 D iff one Rmaxxk R + D iff _Gmaxxk G + D iff _Bma xxk B > = RGB to 1
上式において、 D i f f— Rma xは赤色の最大階調差、 D i f f— Gmax は緑色の最大階調差、 Di f f— Bmaxは青色の最大階調差、 kR は赤成分用 係数、 kG は緑成分用係数、 kB は青成分用係数、 RGB t 01は 3色総合規格 値、 である。 In the above equation, Diff—Rmax is the maximum gradation difference of red, Diff—Gmax is the maximum gradation difference of green, Diff—Bmax is the maximum gradation difference of blue, k R is the coefficient for the red component, k G is the coefficient for the green component, k B is the coefficient for the blue component, and RGB t 01 is the three-color comprehensive standard value.
なお、 各色に設定する個別の色成分用係数は、 一般的には解像度を上げる効果 があるのは緑色なので、 色成分用係数の大きさは、 緑成分用係数を最も大きくし 、 次に赤成分用係数、 次に青成分用係数の順に設定する。 例えば、 緑成分用係数 (kG ) =2. 0、 赤成分用係数 (kR ) = 1. 5、 青成分用係数 (kB ) = 1 . 0とする。 In general, since the individual color component coefficients set for each color generally have the effect of increasing the resolution in green, the size of the color component coefficient is set to the largest for the green component coefficient, and then to red. Set the coefficient for the component and then the coefficient for the blue component. For example, the coefficient for the green component (k G ) = 2.0, the coefficient for the red component (k R ) = 1.5, and the coefficient for the blue component (k B ) = 1.0.
ステップ S 164 Vにおいて、 解像度なしと判定して不良品とする。 また、 ス テツプ S 164 wにおいて、 解像度ありと判定して良品とする。 そして処理を終 了する。  In step S164V, it is determined that there is no resolution and is determined to be defective. Also, in step S164w, it is determined that there is a resolution and a non-defective item is determined. Then, the process ends.
第 18図乃至第 21図において、 カラ一画像の解像度測定を可能にすることが できる。 次に、 他の解像度測定方法の主要な処理手順を説明する。 18 to 21, it is possible to measure the resolution of a blank image. Next, the main processing procedure of another resolution measuring method will be described.
第 2 2図は本発明の実施例のフローチャートを示す。 第 2 2図は、 白黒ライン ペアパターンを走査位置を変えながら複数回走査し、 各走査毎に最大階調差を算 出し、 その最大階調差群のうち、 上位 N個、 下位 M個を除く P個の最大階調差群 の平均値を判定対象とする、 測定制御プログラム 4 3の処理手順を示す。 なお、 前述の第 1 7図で示したステップ S 1 3 1とステップ S 1 3 6とに相当する処理 手順などは省略してある。  FIG. 22 shows a flowchart of an embodiment of the present invention. Fig. 22 shows that the black-and-white line pair pattern is scanned multiple times while changing the scanning position, the maximum gradation difference is calculated for each scan, and the upper N and lower M of the maximum gradation difference group are calculated. The following shows the processing procedure of the measurement control program 43, with the average value of the P maximum gradation difference groups excluding as the judgment target. Note that the processing procedures and the like corresponding to steps S 13 1 and S 13 36 shown in FIG. 17 are omitted.
ステップ S 1 7 1において、 例えば第 1 4図に示すように、 測定対象となる各 走査ライン ( l〜n ) の最大階調差の初期値を順次に設定して記憶する。  In step S 171, for example, as shown in FIG. 14, the initial values of the maximum gradation difference of each scanning line (l to n) to be measured are sequentially set and stored.
ステップ S 1 7 2において、 最初の走査ラインをカウン夕に設定する。 例えば 、 第 1 4図における L i n e 1を設定する。  In step S172, the first scan line is set to count. For example, Line 1 in FIG. 14 is set.
ステップ S 1 7 3において、 最初の走査ラインの中から最大階調差を記憶する 。 つまり、 順次に隣接する先に測定した画素の階調デ一夕との階調差を算出し、 現在記憶されている最大階調差より大きレ、か判定し、 現在記憶されている最大階 調差より大きい場合はその最大階調差を記憶する。  In step S173, the maximum gradation difference is stored from among the first scanning lines. In other words, it sequentially calculates the gradation difference between the previously measured pixel and the previously measured pixel, and determines whether the difference is larger than the currently stored maximum gradation difference. If it is larger than the difference, the maximum gradation difference is stored.
なお、 判定は次式による。  The judgment is based on the following equation.
a b s (Em.„ - Em - i .„ ) > =M a x_D i f f n abs (E m . „-E m -i.„)> = M a x_D iff n
上式において、 a b sは絶対値、 Em. n は測定画素の階調データ、 Em— ,. n は 隣接する先に測定した画素の階調データ、 M a x— D i f f „ は現在記憶されて いる走査ラインの最大階調差、 である。 In the above equation, abs is the absolute value, E m .n is the gradation data of the measured pixel, E m —,. N is the gradation data of the adjacent previously measured pixel, and Max — Diff „is currently stored. Is the maximum gradation difference of the scanning line.
ステップ S 1 7 4において、 次の走査ラインをカウンタに設定する。  In step S174, the next scanning line is set in the counter.
ステップ S 1 7 5において、 走査ラインの中から最大階調差を記憶する。 つま り、 順次に隣接する先に測定した画素の階調デ一夕との階調差を算出し、 現在記 憶されている最大階調差より大きいか判定し、 現在記憶されている最大階調差よ り大きい場合はその最大階調差を記憶する。 なお、 判定は上式と同様になる。 ステップ S 1 7 6において、 先に設定された測定対象となる各走査ライン ( 1 〜! 1 ) の最終走査ラインまで全て測定したか判定する。 全て測定したならばステ ップ S 1 7 7に進む。 全て測定していなければステップ S 1 7 4に戻る。  In step S175, the maximum gradation difference from the scanning lines is stored. In other words, it sequentially calculates the gradation difference between the previously measured pixels and the gradation data of the adjacent pixels, determines whether the difference is larger than the currently stored maximum gradation difference, and determines the currently stored maximum gradation difference. If the difference is larger than the difference, the maximum gradation difference is stored. The judgment is the same as the above equation. In step S176, it is determined whether or not all the measurement has been performed up to the last scan line of each scan line (1 to! 1) to be measured previously set. If all have been measured, proceed to step S177. If all have not been measured, the process returns to step S174.
ステップ S 1 7 7において、 各走査ラインの最大階調差を小さい順に並べる。 そして、 その最大階調差データ n個のうち、 上位 N個、 下位 M個をテスト対象外 とする。 なお、 上位 N個は、 0く = N< = n_ 1とする。 また、 下位 M個は、 0 <=M< = n- 1とする。 ただし、 0 < = N + M< = n— 1とする。 In step S177, the maximum gradation difference of each scanning line is arranged in ascending order. Then, out of the n pieces of the maximum gradation difference data, the upper N pieces and the lower M pieces are excluded from the test. Note that the upper N numbers are 0 = N <= n_1. In addition, the lower M numbers are 0 <= M <= n-1. However, it is assumed that 0 <= N + M <= n—1.
ステップ S 178において、 最大階調差群の平均値を算出して記憶する。 最大 階調差群の平均値は、 最大階調差群の総和を最大階調差群の総数で割ることによ つて求められる。 即ち、 最大階調差群の平均値は次式による。  In step S178, the average value of the maximum gradation difference group is calculated and stored. The average value of the maximum gradation difference group is obtained by dividing the sum of the maximum gradation difference groups by the total number of the maximum gradation difference groups. That is, the average value of the maximum gradation difference group is given by the following equation.
n -N  n -N
D i f f =∑ Ma x_D i f f ; (n-N-M)  D i f f = ∑ Ma x_D i f f; (n-N-M)
i 上式において、 D i f f AVC は最大階調差群の平均値、 ∑Ma X— D i f f ; (iは M+ 1から n— Nまでの整数) は最大階調差群の総和、 n—N— Mは最大 階調差群の総数、 である。 i In the above equation, Diff AVC is the average value of the maximum gradation difference group, ∑Ma X—Diff ; (i is an integer from M + 1 to n—N) is the sum of the maximum gradation difference groups, n—N — M is the total number of the maximum difference groups.
ステップ S 179において、 予め設定された良否判定値と、 記憶された最大階 調差群の平均値とを比較して、 その最大階調差群の平均値が良否判定値を越えて いるかを判定し、 ステップ S 180において、 試験結果を表示部に表示して処理 を終了する。  In step S179, the pass / fail judgment value set in advance is compared with the stored average value of the maximum gradation difference group to determine whether the average value of the maximum gradation difference group exceeds the pass / fail judgment value. Then, in step S180, the test result is displayed on the display unit, and the process ends.
これにより、 白黒ラインペアパターンを走査位置を変えながら複数回走査する ことで、 測定精度を上げることができる。  This makes it possible to improve the measurement accuracy by scanning the black and white line pair pattern a plurality of times while changing the scanning position.
また、 本発明の画像読取装置の解像度測定処理は、 コンピュータを動作させる プログラムを用いて実現される。 このプログラムは、 これを言己録するための FD や CDなどの適切な種々の記録媒体に格納される。  Further, the resolution measuring process of the image reading apparatus of the present invention is realized by using a program for operating a computer. This program is stored in various suitable recording media such as FDs and CDs for self-recording.
以上説明したような本発明の実施の態様によれば、 次に示すような効果を得る ことができる。  According to the embodiment of the present invention described above, the following effects can be obtained.
本発明の画像読取装置の解像度測定方法は、 画像のコントラストに着目して 「 見える」 範囲を数値化したこと、 更に、 画像読取装置へのセット性を容易にする ように考慮したテストチヤ一トを用いることで、 C CD素子 1画素が 1バーを解 像する解像度試験の自動コンピュータ処理を可能とすることができ、 従って、 効 率的な生産体制を採ることができる。 更に、 画像読取装置の解像度測定に際して 、 テストチャート上のホコリ、 汚れなどの要因を排除することができる。 また、 更に、 カラー画像の解像度測定を可能にすることができる。 更に、 白黒ラインべ ァパターンを走査位置を変えながら複数回走査することで、 測定精度を上げるこ とができる。 また、 コンピュータを動作させるプログラムを用いて実現すること ができ、 このプログラムは、 これを記録するための F Dや C Dなどの適切な種々 の記録媒体に格納することができるので、 必要時に任意の処理装置にィンスト一 ルし、 処理を行わせることができる。 産業上の利用可能性 The resolution measuring method of the image reading apparatus of the present invention focuses on the contrast of the image, quantifies the “visible” range, and furthermore, considers a test chart that considers the ease of setting the image reading apparatus. By using this, automatic computer processing of a resolution test in which one pixel of a CCD element resolves one bar can be performed, and therefore, an efficient production system can be adopted. Further, when measuring the resolution of the image reading device, it is possible to eliminate factors such as dust and dirt on the test chart. Also, Furthermore, it is possible to measure the resolution of a color image. Furthermore, the scanning accuracy can be improved by scanning the monochrome line pattern a plurality of times while changing the scanning position. In addition, the program can be realized by using a program for operating a computer, and this program can be stored in various appropriate recording media such as an FD and a CD for recording the program. The device can be installed and processed. Industrial applicability
本発明の画像読取装置の画像ノイズ測定方法は、 画像読取装置に、 所定の読み 取り領域を備えたテストチヤ一トを読み取らせて、 その結果から算出される値が 予め定める数値の範囲を超えた場合に、 画像ノィズを検出したとすることにより 、 画像ノイズの検出の一義的な判定基準を設けることができるので、 作業担当者 の目視チ ックに頼ることなく確実に画像ノイズの測定を行うことができる。 更 に、 本発明の画像読取装置の画像ノイズ測定方法は、 このようなコンピュータを 動作させるプログラムを用いて実現することができ、 また、 このプログラムを種 々の記録媒体に格納することができるので、 所望の測定装置に測定処理を行わせ ることができる。  According to the image noise measuring method for an image reading device of the present invention, the image reading device is caused to read a test chart having a predetermined reading area, and a value calculated from the result exceeds a predetermined numerical value range. In this case, since the image noise is detected, a unique criterion for detecting the image noise can be provided, so that the image noise can be reliably measured without relying on the visual check of the worker. be able to. Further, the method for measuring image noise of the image reading apparatus of the present invention can be realized by using a program for operating such a computer, and the program can be stored in various recording media. A desired measuring device can perform the measuring process.
また、 本発明の画像読取装置の解像度測定方法は、 白黒ラインペアパターンの ピッチを画像読取装置の読み取り画素ピッチから少量ずらして作成したテストチ ヤートを読み取らせて、 その結果から算出される最大階調差が良否判定値を超え ている場合は解像度テスト合格とすることにより、 C C D素子 1画素が 1バーを 解像する解像度を自動的に算出することができるので、 効率的な生産体制を採る ことができ、 また、 テストチャート上のホコリ、 汚れなどの要因を排除し、 カラ —画像の解像度測定を可能にすることができる。 更に、 本発明の画像読取装置の 解像度測定方法は、 このようなコンピュータを動作させるプログラムを用いて実 現することができ、 また、 このプログラムを種々の記録媒体に格納することがで きるので、 所望の測定装置に測定処理を行わせることができる。  Further, the method for measuring the resolution of the image reading apparatus of the present invention is to read a test chart created by shifting the pitch of the black and white line pair pattern by a small amount from the reading pixel pitch of the image reading apparatus, and read the maximum gradation calculated from the result If the difference exceeds the pass / fail judgment value, a resolution test is passed, and the resolution at which one pixel of the CCD element resolves one bar can be automatically calculated. It also eliminates factors such as dust and dirt on the test chart, making it possible to measure the resolution of an empty image. Further, the method for measuring the resolution of the image reading apparatus of the present invention can be realized using a program for operating such a computer, and the program can be stored in various recording media. A desired measuring device can perform the measuring process.

Claims

請求の範囲 The scope of the claims
1 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の画像ノイズ測定方法において、 1. In an image noise measuring method for an image reading device that connects to a host device and provides image data to the host device,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 における全画素の光学濃度の標準偏差値を算出し、  The image reading device is caused to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and a standard deviation value of optical density of all pixels in the individual measurement area is obtained. Calculate,
前記標準偏差値が予め定める数値の範囲を超えて逸脱した場合に、 当該画像読 取装置にぉレ、て画像ノィズを検出したとする  When the standard deviation value deviates beyond a predetermined numerical range, the image reading device detects the image noise by detecting the standard deviation value.
ことを特徴とする画像読取装置の画像ノイズ測定方法。  An image noise measuring method for an image reading apparatus, comprising:
2. ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の画像ノィズ測定方法におレ、て、  2. A method for measuring image noise of an image reading device that is connected to a host device and provides image data to the host device.
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 におレ、て個々の C C D素子が副走査方向に順次読み取った出力の平均値である縦 ラインごとの平均濃度を算出し、  The image reading device is made to read a single uniform density reading area or a plurality of uniform density reading areas at different density levels. The average density of each vertical line, which is the average value of the output sequentially read in the scanning direction, is calculated,
特定の縦ラインの平均濃度が、 その近傍の縦ラインごとの平均濃度又は、 前記 個別の測定領域全域の平均濃度に対して予め定める数値の範囲を超えて逸脱した 場合に当該縦ラインをノイズラインと判定し、 当該画像読取装置において画像ノ ィズを検出したとする  When the average density of a specific vertical line deviates from the average density of each vertical line in the vicinity or the average density of the entire individual measurement area beyond a predetermined numerical range, the vertical line is set as a noise line. Is determined, and the image reading apparatus detects an image noise.
ことを特徴とする画像読取装置の画像ノイズ測定方法。  An image noise measuring method for an image reading apparatus, comprising:
3. ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の画像ノィズ測定方法にぉレヽて、  3. In connection with a host device, an image reading device that provides image data to the host device has an image noise measuring method.
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 におレ、て主走査方向に読み取った出力の平均値である横ラインごとの平均濃度を iし、  The image reading device was made to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and read in the individual measurement areas in the main scanning direction. I is the average density of each horizontal line, which is the average value of the output,
特定の横ラインの平均濃度が、 その近傍の横ラインごとの平均濃度又は、 前記 個別の測定領域全域の平均濃度に対して予め定める数値の範囲を超えて逸脱した 場合に当該横ラインをノイズラインと判定し、 当該画像読取装置において画像ノ ィズを検出したとする The average density of a specific horizontal line deviates from the average density of each horizontal line in the vicinity or exceeds a predetermined numerical value range with respect to the average density of the entire individual measurement area. In this case, the horizontal line is determined to be a noise line, and the image reading device detects an image noise.
ことを特徴とする画像読取装置の画像ノイズ測定方法。  An image noise measuring method for an image reading apparatus, comprising:
4 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の画像ノイズ測定方法において、  4. An image noise measuring method for an image reading apparatus which is connected to a host apparatus and provides image data to the host apparatus,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 において個々の C C D素子が副走査方向に順次読み取った出力の平均値である縦 ラインごとの平均濃度を算出し、  The image reading device is caused to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and the individual CCD elements are sequentially arranged in the sub-scanning direction in the individual measurement areas. Calculate the average density of each vertical line, which is the average value of the read output,
特定の縦ラインの平均濃度が、 その隣接する縦ラインの平均濃度に対して予め 定める数値の範囲を超えて逸脱した場合に当該縦ラインをノイズラインと判定し 、 当該画像読取装置において画像ノイズを検出したとする  When the average density of a specific vertical line deviates from a predetermined numerical value range with respect to the average density of an adjacent vertical line, the vertical line is determined to be a noise line, and image noise is reduced by the image reading device. It is detected
ことを特徴とする画像読取装置の画像ノイズ測定方法。  An image noise measuring method for an image reading apparatus, comprising:
5 . ホスト装置に接続して、 前記ホスト装置に画像デ一夕を提供する画像読取装 置の画像ノイズ測定方法において、  5. In the image noise measuring method for an image reading device which is connected to a host device and provides image data to the host device,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 におレ、て主走査方向に読み取った出力の平均値である横ラインごとの平均濃度を 算出し、  The image reading device was made to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and read in the individual measurement areas in the main scanning direction. Calculate the average density of each horizontal line, which is the average value of the output,
特定の横ラインの平均濃度が、 その隣接する横ラインの平均濃度に対して予め 定める数値の範囲を超えて逸脱した場合に当該横ラインをノイズラインと判定し 、 当該画像読取装置において画像ノイズを検出したとする  When the average density of a specific horizontal line deviates beyond a predetermined numerical value range with respect to the average density of the adjacent horizontal line, the horizontal line is determined to be a noise line, and image noise is reduced by the image reading device. It is detected
ことを特徴とする画像読取装置の画像ノィズ測定方法。  An image noise measuring method for an image reading apparatus, comprising:
6 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の、 画像ノィズを測定する測定装置の制御を実現するプログラムを格納する記 録媒体において、  6. A recording medium which is connected to a host device and stores a program for realizing control of a measuring device for measuring image noise of an image reading device for providing image data to the host device,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 における全画素の光学濃度の標準偏差値を算出する手順と、 前記標準偏差値が予め定める数値の範囲を超えて逸脱した場合に、 当該画像読 取装置において画像ノイズを検出したことを報告する手順とを、 コンピュー夕に 実行させるプログラムを格納する The image reading device is caused to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and a standard deviation value of optical density of all pixels in the individual measurement area is obtained. Calculation procedure, Storing a program for causing a computer to execute a procedure for reporting that image noise has been detected in the image reading device when the standard deviation value deviates beyond a predetermined numerical range.
ことを特徴とするコンピュータ読み取り可能な記録媒体。  A computer-readable recording medium characterized by the above-mentioned.
7 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の、 画像ノイズを測定する測定装置の制御を実現するプログラムを格納する記 録媒体において、  7. A recording medium for connecting to a host device and storing a program for controlling a measuring device for measuring image noise of an image reading device for providing image data to the host device,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 において個々の C C D素子が副走査方向に順次読み取った出力の平均値である縦 ラインごとの平均濃度を算出する手順と、  The image reading device is caused to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and the individual CCD elements are sequentially arranged in the sub-scanning direction in the individual measurement areas. Calculating the average density of each vertical line, which is the average value of the read output;
特定の縦ラインの平均濃度が、 その近傍の縦ラインごとの平均濃度又は、 前記 個別の測定領域全域の平均濃度に対して予め定める数値の範囲を超えて逸脱した 場合に当該縦ラインをノイズラインと判定し、 当該画像読取装置において画像ノ ィズを検出したことを報告する手順とを、 コンピュータに実行させるプログラム を格納する  When the average density of a specific vertical line deviates from the average density of each vertical line in the vicinity or the average density of the entire individual measurement area beyond a predetermined numerical range, the vertical line is set as a noise line. And a procedure for causing the computer to execute the procedure of reporting that the image reading apparatus has detected image noise.
ことを特徴とするコンピュータ読み取り可能な記録媒体。  A computer-readable recording medium characterized by the above-mentioned.
8 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の、 画像ノィズを測定する測定装置の制御を実現するプログラムを格納する記 録媒体において、  8. A recording medium which is connected to a host device and stores a program for realizing control of a measuring device for measuring image noise of an image reading device for providing image data to the host device,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 において主走査方向に読み取った出力の平均値である縦ラインごとの平均濃度を 算出する手順と、  The image reading device is made to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and the average value of outputs read in the main scanning direction in the individual measurement areas is obtained. Calculating the average density for each vertical line
特定の横ラインの平均濃度が、 その近傍の横ラインの平均濃度又は、 前記個別 の測定領域全域の平均濃度に対して予め定める数値の範囲を超えて逸脱した場合 に当該縦ラインをノイズラインと判定し、 当該画像読取装置において画像ノィズ を検出したことを報告する手順とを、 コンピュータに実行させるプログラムを格 納する ことを特徴とするコンピュー夕読み取り可能な記録媒体。 If the average density of a specific horizontal line deviates from the average density of the horizontal line in the vicinity or the average density of the entire individual measurement area beyond a predetermined numerical range, the vertical line is regarded as a noise line. And a program for causing a computer to execute a procedure of determining and reporting that an image noise has been detected in the image reading apparatus. A recording medium readable by a computer.
9 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取装 置の、 画像ノィズを測定する測定装置の制御を実現するプログラムを格納する記 録媒体において、  9. A recording medium which is connected to a host device and stores a program for realizing control of a measuring device for measuring image noise of an image reading device for providing image data to the host device,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 において個々の C C D素子が副走査方向に順次読み取った出力の平均値である縦 ラインごとの平均濃度を算出する手順と、  The image reading device is caused to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and the individual CCD elements are sequentially arranged in the sub-scanning direction in the individual measurement areas. Calculating the average density of each vertical line, which is the average value of the read output;
特定の縦ラインごとの平均濃度が、 その隣接する縦ラインの平均濃度に対して 予め定める数値の範囲を超えて逸脱した場合に当該縦ラインをノイズラインと判 定し、 当該画像読取装置において画像ノイズを検出したことを報告する手順とを 、 コンピュータに実行させるプログラムを格納する  If the average density of each specific vertical line deviates from the average density of the adjacent vertical line beyond a predetermined numerical range, the vertical line is determined to be a noise line and the image is read by the image reading device. Detecting noise detection and storing the program to run on your computer
ことを特徴とするコンピュータ読み取り可能な記録媒体。  A computer-readable recording medium characterized by the above-mentioned.
1 0 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取 装置の、 画像ノイズを測定する測定装置の制御を実現するプログラムを格納する 記録媒体において、  10. A recording medium that stores a program for controlling a measuring device that measures image noise, of an image reading device that is connected to a host device and provides image data to the host device,
前記画像読取装置に、 単一の均一な濃度の読み取り領域、 あるいは異なる濃度 レベルの複数の均一な濃度の読み取り領域を読み取らせて、 前記個別の測定領域 において主走査方向に読み取った出力の平均値である横ラインごとの平均濃度を 算出する手順と、  The image reading device is made to read a single uniform density reading area or a plurality of uniform density reading areas having different density levels, and the average value of outputs read in the main scanning direction in the individual measurement areas is obtained. Calculating the average density for each horizontal line,
特定の横ラインの平均濃度が、 その隣接する横ラインの平均濃度に対して予め 定める数値の範囲を超えて逸脱した場合に当該縦ラインをノイズラインと判定し 、 当該画像読取装置において画像ノイズを検出したことを報告する手順とを、 コ ンピュー夕に実行させるプログラムを格納する  If the average density of a specific horizontal line deviates beyond a predetermined numerical value range with respect to the average density of an adjacent horizontal line, the vertical line is determined to be a noise line, and image noise is reduced by the image reading device. Storing a program that causes the computer to execute the procedure for reporting the detection
ことを特徴とするコンピュータ読み取り可能な記録媒体。  A computer-readable recording medium characterized by the above-mentioned.
1 1 . 白黒ラインペアパターンピッチを画像読取装置の読取り画素ピッチから少 量ずらして作成するか、 又は、 白黒ラインペアパターンを少量傾斜させて作成し 、 解像度試験の一定周期毎に白パターンと読取り画素、 及び黒パターンと読取り 画素が主走査方向又は副走査方向で一致するようにしたテストチャートと、 前記テストチャートを読取り、 ノ、。ターンと画素とが必ず一致する箇所があるよ う十分な幅又は、 縦の領域を読取る読取り手段と、 1 1. Create a black-and-white line pair pattern with a small shift from the read pixel pitch of the image reading device, or create a black-and-white line pair pattern with a small inclination and read it as a white pattern at regular intervals of the resolution test. A test chart in which the pixels and the black pattern and the read pixels match in the main scanning direction or the sub-scanning direction, Read the test chart. Reading means for reading a width or a vertical area which is sufficient to ensure that a turn and a pixel always coincide with each other;
前記読取り手段が読取つた画像デー夕を必要な箇所のみを切り出す切り出し手 段と、  Cutting means for cutting out only necessary portions of the image data read by the reading means,
切り出された画像デー夕の全領域の読取り画像の 1画素毎に階調差を計算し、 最大階調差を検出する解析手段と、  Analysis means for calculating a gradation difference for each pixel of a read image of the entire area of the cut image data and detecting a maximum gradation difference;
その最大階調差が良否判定値を越えてレ、る場合は解像度テスト合格とする判定 手段とを備える  If the maximum gradation difference exceeds the pass / fail judgment value, the resolution test is passed.
ことを特徴とする画像読取装置の解像度測定装置。  A resolution measuring device for an image reading device.
1 2 . テストチャートの白黒ラインペアパターンピッチを画像読取装置の読取り 画素ピッチから少量ずらして一定周期毎に白パ夕一ンと読取り画素、 及び黒ノ、。夕 一ンと読取り画素が一致するように作成したテストチャートを使用し、  1 2. The pitch of the black-and-white line pair pattern of the test chart is slightly shifted from the pixel pitch of the image reading device, and the white pixels, the read pixels, and the black pixels at regular intervals. Use a test chart created so that the reading pixels match the evening,
ノ、。ターンと画素とが必ず一致する箇所があるよう十分な幅の領域を読取り、 全領域の読取り画像の 1画素毎に階調差を計算して最大階調差を検出し、 その最大階調差が良否判定値を越えている場合は解像度テスト合格とする ことを特徴とする画像読取装置の解像度測定方法。  No ,. An area of sufficient width is read so that there is always a point where the turn and the pixel always match, the tone difference is calculated for each pixel of the read image of the entire area, the maximum tone difference is detected, and the maximum tone difference is detected. A resolution measurement method for an image reading apparatus, wherein a resolution test is passed when the value exceeds a pass / fail judgment value.
1 3 . テストチャートの白黒ラインペアパターンを少量傾斜させ、 一定周期毎に 白パターンと読取り画素、 及び、 黒パターンと読取り画素が一致するように作成 したテストチャートを使用し、  1 3. Use a test chart created by tilting the black-and-white line pair pattern of the test chart by a small amount so that the white pattern and the read pixel and the black pattern and the read pixel match at regular intervals.
パターンと画素とが必ず一致する箇所があるよう十分な縦の領域を読取り、 全領域の読取り画像の 1画素毎に階調差を計算して最大階調差を検出し、 その最大階調差が良否判定値を越えている場合は解像度テスト合格とする ことを特徵とする画像読取装置の解像度測定方法。  A sufficient vertical area is read so that there is always a point where the pattern and the pixel match, and the maximum gray level difference is detected by calculating the gray level difference for each pixel of the read image of the entire area. A resolution measurement method for an image reading apparatus, wherein a resolution test is passed when the value exceeds a pass / fail judgment value.
1 4 . 前記最大階調差の検出は、 最大階調差候補を検出したポイントの前後の階 調差が、 検出した最大階調差と逆方向に一定以上の階調差を持つこと、 を条件と する  14. The detection of the maximum gradation difference is that the gradation difference before and after the point where the maximum gradation difference candidate is detected has a certain or more gradation difference in a direction opposite to the detected maximum gradation difference. Condition
ことを特徴とする請求項 1 2又は請求項 1 3記載の画像読取装置の解像度測定 方法。  14. The method for measuring the resolution of an image reading device according to claim 12, wherein:
1 5 . カラー画像の各色毎の最大階調差がそれぞれ個別の一定の規格値以上であ ることを判断基準とする 15. The maximum gradation difference of each color of the color image is more than Is based on
ことを特徴とする請求項 1 2又は請求項 1 3記載の画像読取装置の解像度測定 方法。  14. The method for measuring the resolution of an image reading device according to claim 12, wherein:
1 6 . カラ一画像の各色毎の最大階調差がそれぞれ個別の一定の規格値以上であ り、 かつ各色の最大階調差の総和が各色の規格値の総和以上の一定値以上である ことを判断基準とする  16. The maximum gradation difference for each color of a color image is equal to or greater than a specific standard value for each color, and the sum of the maximum gradation differences for each color is equal to or greater than a specific value for each color. Use the judgment as a criterion
ことを特徴とする請求項 1 5記載の画像読取装置の解像度測定方法。  16. The method for measuring the resolution of an image reading device according to claim 15, wherein:
1 7 . カラー画像の各色の最大階調差の総和の算出時に、 各色に個別の係数を乗 じて総和を算出する  1 7. When calculating the sum of the maximum gradation differences of each color of the color image, calculate the sum by multiplying each color by an individual coefficient.
ことを特徴とする請求項 1 5記載の画像読取装置の解像度測定方法。  16. The method for measuring the resolution of an image reading device according to claim 15, wherein:
1 8 . 白黒ラインペアパターンを走査位置を変えながら複数回走査し、 各走査毎 に最大階調差を算出し、 その最大階調差データ n個のうち、 上位 N個又は、 Z及 び下位 IV [個を除く P個の最大階調差データの平均値を判定対象とする  18 8. Scan the black-and-white line pair pattern a plurality of times while changing the scanning position, calculate the maximum gradation difference for each scan, and select the upper N or Z and lower N of the n maximum gradation difference data. IV [The average value of the P maximum gradation difference data excluding P is determined.
ことを特徵とする請求項 1 2又は請求項 1 3記載の画像読取装置の解像度測定 方法。  14. The method for measuring the resolution of an image reading device according to claim 12, wherein the resolution is measured.
1 9 . ホスト装置に接続して、 前記ホスト装置に画像データを提供する画像読取 装置の、 解像度を測定する測定装置の制御を実現するプログラムを格納する記録 媒体において、  19. A recording medium that stores a program for controlling a measuring device that measures a resolution of an image reading device that connects to a host device and provides image data to the host device,
解像度試験の一定周期毎に白パターンと読取り画素、 及び黒パターンと読取り 画素が一致するようにしたテストチヤ一トを読取る際に、 パターンと画素とが必 ず一致する箇所があるよう十分な領域を読取る手順と、  When reading a test chart in which the white pattern and the read pixel and the black pattern and the read pixel coincide with each other at regular intervals of the resolution test, a sufficient area must be provided so that the pattern and the pixel always coincide. Reading procedure,
読取つた画像デー夕を必要な箇所のみを切り出すとともに、 切り出された画像 データの全領域の読取り画像の 1画素毎に階調差を計算し、 最大階調差を検出す る手) [頃と、  The hand that cuts out only the necessary portions of the scanned image data and calculates the tone difference for each pixel of the read image of the entire area of the cut image data to detect the maximum tone difference) ,
その最大階調差が良否判定値を越えてレ、る場合は解像度テスト合格とする手順 とを、 コンピュータに実行させるプログラムを格納した  If the maximum gradation difference exceeds the pass / fail judgment value, a procedure to pass the resolution test is executed.
ことを特徴とするコンピュータ読み取り可能な記録媒体。  A computer-readable recording medium characterized by the above-mentioned.
PCT/JP1999/002241 1998-04-27 1999-04-27 Method for measuring image noise of image reader, resolution measuring apparatus and resolution measuring method, and recording medium therefor WO1999056458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99917182A EP0998113A4 (en) 1998-04-27 1999-04-27 Method for measuring image noise of image reader, resolution measuring apparatus and resolution measuring method, and recording medium therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11664898A JP3434450B2 (en) 1998-04-27 1998-04-27 Image reading device resolution measuring device, resolution measuring method thereof, and recording medium
JP10/116648 1998-04-27
JP10116614A JPH11313185A (en) 1998-04-27 1998-04-27 Picture noise measuring method for picture reader, and recording medium therefor
JP10/116614 1998-04-27

Publications (1)

Publication Number Publication Date
WO1999056458A1 true WO1999056458A1 (en) 1999-11-04

Family

ID=26454913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002241 WO1999056458A1 (en) 1998-04-27 1999-04-27 Method for measuring image noise of image reader, resolution measuring apparatus and resolution measuring method, and recording medium therefor

Country Status (4)

Country Link
EP (1) EP0998113A4 (en)
CN (2) CN1516479A (en)
TW (2) TW471230B (en)
WO (1) WO1999056458A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158005B1 (en) * 2007-03-06 2012-06-25 삼성전자주식회사 Method and apparatus for calculating indicator for evaluating printing quality
CN101557537B (en) * 2009-04-20 2012-05-09 欧学平 Method for automatically judging resolution
JP5862625B2 (en) * 2013-08-20 2016-02-16 コニカミノルタ株式会社 Image forming apparatus and image noise prediction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238169A (en) * 1985-04-15 1986-10-23 Nec Corp Drum scanner device
JPH05268417A (en) * 1992-03-17 1993-10-15 Fuji Xerox Co Ltd Picture reader
JPH066589A (en) * 1992-06-17 1994-01-14 Fuji Xerox Co Ltd Picture reader
JPH07111565A (en) * 1993-10-12 1995-04-25 Canon Inc Image processor
JPH0998264A (en) * 1995-09-29 1997-04-08 Canon Inc Evaluation system for scanner unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH604452A5 (en) * 1975-12-09 1978-09-15 Foerderung Forschung Gmbh
JPS61258559A (en) * 1985-05-10 1986-11-15 Fujitsu Ltd Read position measuring system
JPH02161476A (en) * 1988-12-15 1990-06-21 Toshiba Corp Resolution inspection method for copying machine
GB9022710D0 (en) * 1990-10-18 1990-11-28 Crosfield Electronics Ltd Methods and apparatus for testing image processing apparatus
JPH0563858A (en) * 1991-09-03 1993-03-12 Kanegafuchi Chem Ind Co Ltd Test chart
DE69221798T2 (en) * 1991-09-18 1998-03-26 Komori Printing Mach Method and device for detecting defective printed matter in a printing press
JPH05136916A (en) * 1991-11-12 1993-06-01 Ya Man Ltd Method of evaluating function of photoelectric picture reader
JP2867832B2 (en) * 1993-04-02 1999-03-10 富士通株式会社 Product catalog with image evaluation chart
JPH07220042A (en) * 1994-02-07 1995-08-18 Dainippon Printing Co Ltd Method and device for evaluating picture
US5600574A (en) * 1994-05-13 1997-02-04 Minnesota Mining And Manufacturing Company Automated image quality control
JP3101667B2 (en) * 1995-02-22 2000-10-23 株式会社日立製作所 Diagnosis method for transmitting facsimile machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238169A (en) * 1985-04-15 1986-10-23 Nec Corp Drum scanner device
JPH05268417A (en) * 1992-03-17 1993-10-15 Fuji Xerox Co Ltd Picture reader
JPH066589A (en) * 1992-06-17 1994-01-14 Fuji Xerox Co Ltd Picture reader
JPH07111565A (en) * 1993-10-12 1995-04-25 Canon Inc Image processor
JPH0998264A (en) * 1995-09-29 1997-04-08 Canon Inc Evaluation system for scanner unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0998113A4 *

Also Published As

Publication number Publication date
CN1273737A (en) 2000-11-15
CN1516479A (en) 2004-07-28
EP0998113A1 (en) 2000-05-03
TW472481B (en) 2002-01-11
EP0998113A4 (en) 2007-01-17
TW471230B (en) 2002-01-01

Similar Documents

Publication Publication Date Title
JP5228490B2 (en) Defect inspection equipment that performs defect inspection by image analysis
KR101214806B1 (en) Apparatus and method for defect inspection of wafer
US20060291706A1 (en) Method of extracting intensity data from digitized image
US20070286471A1 (en) Auto Distinction System And Auto Distinction Method
US20080175466A1 (en) Inspection apparatus and inspection method
US7561751B2 (en) Image processing method
KR101776355B1 (en) Apparatus and methods for setting up optical inspection parameters
JP4230880B2 (en) Defect inspection method
KR20180114826A (en) Sheet inspection device
US20090303469A1 (en) Crack measuring method and apparatus
JP4244046B2 (en) Image processing method and image processing apparatus
WO1999056458A1 (en) Method for measuring image noise of image reader, resolution measuring apparatus and resolution measuring method, and recording medium therefor
US8184898B2 (en) Analysis of leaded components
JP2005252451A (en) Image quality inspection method and image quality inspection apparatus
US8892400B2 (en) Method for evaluating fluorescence correlation spectroscopy measurement data
JP2010038759A (en) Surface flaw inspecting method, surface flaw inspecting device, steel plate manufacturing method and steel plate manufacturing apparatus
KR102221526B1 (en) Melt pool width and deflection measurement method through melt pool image processing
KR100591853B1 (en) Apparatus and method for diagnosing LCD module
KR100605226B1 (en) Apparatus and method for detecting foreign material in digital camera module
JPH11313185A (en) Picture noise measuring method for picture reader, and recording medium therefor
JP3566625B2 (en) Probe mark depth measuring device
JP4829542B2 (en) Film inspection apparatus and film inspection method
JP2021067588A (en) Surface inspection device for object to be inspected and surface inspection method for object to be inspected
CN111504608A (en) Brightness uniformity detection system and brightness uniformity detection method
US6985217B2 (en) System and method for inspecting a light source of an image reader

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801030.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999917182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09446739

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999917182

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999917182

Country of ref document: EP