WO1999056139A1 - Apparatus for detecting trouble with solenoid-operated device - Google Patents

Apparatus for detecting trouble with solenoid-operated device Download PDF

Info

Publication number
WO1999056139A1
WO1999056139A1 PCT/JP1999/001753 JP9901753W WO9956139A1 WO 1999056139 A1 WO1999056139 A1 WO 1999056139A1 JP 9901753 W JP9901753 W JP 9901753W WO 9956139 A1 WO9956139 A1 WO 9956139A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic coil
voltage signal
value
power supply
voltage
Prior art date
Application number
PCT/JP1999/001753
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Muraji
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Priority to EP99910824A priority Critical patent/EP0995997A4/en
Publication of WO1999056139A1 publication Critical patent/WO1999056139A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1872Bistable or bidirectional current devices

Definitions

  • the present invention relates to a failure determining device for an electromagnetic coil operating device comprising an electromagnetic coil.
  • the direction of the power supply current supplied to the electromagnetic coil is changed in the forward or reverse direction.
  • the device shown in Fig. 1 is known as a device for determining the failure of the electromagnetic coil operating device. I'm afraid.
  • This device has a fault (hereinafter referred to as a ground fault) in which the connection line of the electromagnetic coil operation device and the ground wire are short-circuited, and the connection line of the electromagnetic coil operation device and the power supply line.
  • This is a device to protect the electromagnetic coil operating device or prevent electric leakage to the outside of the device by judging a fault (hereinafter referred to as a short-to-power fault) in which the and are short-circuited.
  • a power supply line of a power supply (not shown) is connected to FETs 10 and 30 which are switching elements via resistors 62 and 63.
  • the operational amplifier element 61 is connected to the connection line between the resistor 62 and the FET 10 and the connection line between the resistor 63 and the FET 30.
  • FETs 10 and 30 are connected to FETs 20 and 40, respectively. Both ends of the electromagnetic coil 1 are connected to a connection line between the FET 10 and the FET 20 and a connection line between the FET 30 and the FET 40, respectively.
  • FET 2 0
  • the FET 40 and the FET 40 are grounded via a resistor 72 and connected to the operational amplifier 71.
  • a supply current detection circuit 60 is composed of the operational amplifier element 61 and the resistors 62 and 63, and the supply current detection circuit 60 has a voltage generated by the resistors 62 and 63. The value of the current supplied to the FETs 10 and 30 is detected from the drop. Further, the operational amplifier element 71 and the resistor 72 constitute an overcurrent detection circuit 70, and the supercharging current detection circuit 70 detects the FET 20 and the FET 20 from the voltage drop generated by the resistor 72. And the value of the current passing through 40.
  • the device shown in FIG. 1 requires two detection circuits, that is, a supply current detection circuit 60 and an overcurrent detection circuit 70, and also requires a detection circuit.
  • An inconvenience has arisen that the program for determining the failure of the electromagnetic coil operating device from the current value detected by the circuit is complicated.
  • the resistors 62, 63, and 72 provided for current detection, half of the CPU, FET, etc. installed near these resistors As the temperature of the conductor elements rises and these elements are liable to malfunction, there is also a problem that it is not possible to properly supply current to the electromagnetic coil. I did.
  • the signal supplied to the operational amplifying element of the current detection circuit is a very small signal, it is easily affected by noise, and the noise occurs. Is There was also the inconvenience that it was easy to misidentify a malfunction in the electromagnetic coil operating device.
  • the present invention has been made in view of the above points, and its purpose is to reduce the cost and to appropriately supply a current to an electromagnetic coil.
  • An object of the present invention is to provide a failure determination device for an electromagnetic coil operating device capable of accurately determining a failure of the electromagnetic coil operating device while supplying the failure.
  • the electromagnetic coil operating device is provided with a fault detecting device which comprises two current paths each comprising a switch pair connected in series with each other.
  • An electromagnetic coil connected between the connection points of each of the switch pairs, a drive circuit for selectively operating the switches, and power supplies at both ends of both the current paths.
  • An adding means for generating an added voltage signal according to the added value, and an operation state of the switch pair Said electromagnetic Coil failure determining means you determine the failure of the Le operation device based on the value of the sum voltage signal, that has features and this pressurized et ing.
  • the cost can be reduced, the current can be appropriately supplied to the power supply coil, and the target can be appropriately reduced.
  • the failure of the electromagnetic coil operating device can be determined with certainty.
  • FIG. 1 is a circuit diagram showing a conventional failure determination device for an electromagnetic coil operating device.
  • FIG. 2 is a circuit diagram showing a failure determining device for an electromagnetic coil operating device according to the present invention.
  • FIG. 3 is a circuit diagram showing the operation of the electromagnetic coil operating device in the on mode.
  • FIG. 4 is a circuit diagram showing the operation of the electromagnetic coil operating device in the off mode.
  • Figure 5 is a flow chart showing a subroutine that determines a ground fault.
  • Fig. 6 is a flow chart showing a subroutine for determining a short-to-power fault.
  • Figure 7 is a timing chart showing the changes in voltage and current in an experiment in which a ground fault occurred.
  • Fig. 8 is a timing chart showing changes in voltage and current in an experiment in which a short-to-supply fault was generated.
  • FIG. 2 shows a failure judging device for an electromagnetic coil operating device according to the present invention. Note that the same reference numerals are given to components corresponding to the components shown in FIG.
  • Supply voltage V B is to via the power supply line VL, the scan I pitch in g elements, Ru is supplied to the FET 1 0 and 3 0
  • the switching elements 10 and 30 are connected to switching elements, for example, FETs 20 and 40, respectively, and the switching elements 20 and 40 are connected to the switching elements 20 and 40, respectively. Connected to ground GND via ground line G. Both ends of the electromagnetic coil 1 are connected to a connection line between the switching element 10 and the switching element 20 and to the switching element 30 and the switching element. It is connected to each of the connection lines to the element 40.
  • connection point 2 of a connection line between the switching element 10 and the switching element 20 a resistor 3 is connected, and the switching element is connected.
  • a connection point 4 of a connection line between 30 and the switching element 40 a resistor 5 is connected.
  • V p a resistor that your only that voltage value to the connection point 4 is referred to as V N.
  • the resistors 3 and 5 are connected to the engine control unit 50 via a resistor 7 for changing the voltage to a predetermined value. It is connected to the A / D converter 51.
  • the AZD converter 51 converts the supplied signal into a digital signal, and supplies the digital signal to the input / output node 52.
  • the input / output node 52 is configured so that a data signal or an address signal is input / output to the CPU 53.
  • the input / output node 52 includes ROM 54, RAM 55, and switching elements 10, 20, 30 and 30.
  • the drive circuit group 56 connected to the drive circuit group 56 for driving 40 controls the switching elements 10, 20, 30, and 40. Connected to signal input terminal.
  • the R ⁇ M 54 is a program for determining the failure of the electromagnetic coil operating device according to the flowchart described in FIGS. 5 and 6. Is memorized.
  • the current path is constituted by the switching elements 10 and 20 or the switching elements 30 and 40 and the connection lines thereof, and An electromagnetic coil operating device is composed of the switching elements 10, 20, 30, and 40 and the electromagnetic coil 1, and a drive circuit is composed of the drive circuit group 56.
  • a power supply means is constituted by a power supply not shown, and a voltage detection means is constituted by a connection line between the connection point 2 and the resistance 3 and a connection line between the connection point 4 and the resistance 5.
  • the resistors 3 and 5 constitute an adding means, and the AZD converter 51, the input / output noise 52, the CPU 53, the ROM 54, and the RAM 55 constitute a determining means.
  • the state in which the switching elements 10 and 30 are opened and the switching elements 20 and 40 are connected is described in an off mode.
  • a state in which the switching elements 10 and 40 are open and the switching elements 20 and 30 are connected is called an on mode.
  • the switching between the on-mode and the off-mode is performed by switching the switching element 1 in response to the above-mentioned instruction signal issued from the CPU 53. 0, 20, 30, and 40 are driven by being driven.
  • the value of the input resistance of the A / D converter 51 is large, and the value of the current supplied to the A / D converter 51 is negligible.
  • the resistors 12, 22, 32, and 42 in FIGS. 3 and 4, which will be described later, correspond to the switching elements 10, 20, 30, and 40, respectively. , For example, on-resistance, each having the same resistance value.
  • a short-circuit fault between the connection line of the electromagnetic coil operation device and GND is called a ground fault
  • a short-circuit fault between the connection line of the electromagnetic coil operation device and the power supply line is called a short-to-power fault. .
  • FIG. 3 shows the operation of the electromagnetic coil operating device in the on-mode. Note that the same reference numerals are given to the components corresponding to the components shown in FIG.
  • the power supply current from the power supply is supplied to the electromagnetic coil 1 via the on / off switch 11 of the switching element 10 and the resistor 12. After that, the current flows to GND via the on-off switch 41 of the switching element 40 and the resistor 42.
  • V p is lower than the power supply voltage V B by the voltage V 12 across the resistor 12
  • V N is only the voltage V 42 across the resistor 42 and the ground potential. Will also be higher.
  • the electromagnetic coil operating device is in a favorable condition, the current flowing through resistors 12 and 42 is Flow is due but Ru Oh the same, the resistance 1 2 and Ri Do rather equally and 4 2 of the inter-end voltage V 12 and V 42, the sum of V P and V N rather equally and V B It becomes.
  • FIG. 4 shows the operation of the electromagnetic coil operating device in the off mode.
  • the same reference numerals are given to the components corresponding to the components shown in FIGS. 2 and 3.
  • the starting process such as the initialization of the variables used in the CPU 53 is completed, and the electromagnetic coil operating device performs a predetermined constant operation, for example, as described above. It is assumed that the on-mode and the off-mode are repeated at a constant period.
  • Figure 5 shows a subroutine that determines a ground fault.
  • step S11 it is determined whether or not the electromagnetic coil operating device is in the on mode (step S11). If it is determined that the mode is not the on-mode, the subroutine is terminated immediately. On the other hand, if it is determined that the Ru Oh in the on-mode is, V ⁇ , you detect the V ⁇ and V ⁇ (scan STEP S 1 2). In the next doctor, V ⁇ - (V ⁇ + V ⁇ ) is you judged whether or not we can large Ri by the predetermined value V D (scan STEP S 1 3). V B — (V p + V N ) is less than V D Ends this subroutine.
  • V B — (V p + V N ) is larger than V D
  • the ground fault processing is performed.
  • the switching elements 10, 20, 30, and 40 are opened to stop the power supply to the electromagnetic coil operating device (step S 14), and the subroutine is opened. End the session.
  • a ground fault is determined during on-mode.
  • Figure 6 shows a subroutine that determines a short-to-power fault.
  • step S21 it is determined whether or not the electromagnetic coil operating device is in an off-mode (step S21). If it is determined that the mode is not the off-mode, the subroutine is terminated immediately. On the other hand, if it is determine by the Ru Oh in the off mode is, that issue detects the V P and V N (the scan STEP S 2 2). Then, Vp + VN is a predetermined value
  • Figure 7 shows the changes in voltage and current in an experiment that caused a ground fault.
  • Figure 8 shows the changes in voltage and current in an experiment that caused a short-to-supply fault.
  • the electromagnetic coil operating device and the failure determining device of the electromagnetic coil operating device as described above are connected to an electromagnetic actuator for driving a driven member.
  • the electromagnetic coil is used for the control device of the present invention, the electromagnetic coil is not used as a magnetomotive force source for driving the magnetic member for driving the driven member, and the electromagnetic coil operating device is not used for the electromagnetic coil operating device.
  • the failure determination device determines the failure of the electromagnetic coil operating device, so that the reliability of the electromagnetic actuator can be improved. It can be done.
  • the failure determination device according to the present invention may be installed in each electromagnetic coil operating device.
  • the other electromagnetic coil operating device has an electromagnetic actuator. It is possible to drive the air conditioner, and the cost is higher than when a failure determination device according to the prior art is installed in each of two electromagnetic coil operation devices. It can be greatly reduced.
  • the addition means constituted by the two resistors 3 and 5 is shown.
  • an analog addition circuit such as an operational amplification element is used as the addition means. It is clear that you can use it.
  • the cost can be reduced, and the number of resistors serving as a heat generating source can be reduced.
  • the temperature rise of the semiconductor By adopting a configuration that can suppress the current, it is possible to appropriately supply current to the power coil, and at the same time, it is possible to accurately control the electromagnetic coil operating device. Failure can be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

An apparatus for detecting troubles with a solenoid-operated device that includes two current paths consisting of two pairs of series switches (10, 20, 30, 40) and an electromagnetic coil (1) connected between the intermediate nodes (2, 4) of the pairs. The existence of a trouble with the solenoid-operated device is decided based both on the state of operation of the switch pair and on the magnitude of the voltage signal corresponding to the sum of a first voltage signal (VP) and a second voltage signal (VN) corresponding, respectively, to potentials at the intermediate nodes (2, 4).

Description

明細書 電磁 コ イ ル動作装置の故障判別装置 技術分野  Description Failure determination device for electromagnetic coil operating device
本発 明 は、 電磁 コ イ ルか ら な る 電磁 コ イ ル動作装置 の 故 障判別装置 に 関す る 。  The present invention relates to a failure determining device for an electromagnetic coil operating device comprising an electromagnetic coil.
背景技術  Background art
電磁 コ イ ルへ供給す る 電源電流の方向 を順方向若 し く は 逆方向 に変更す る 電磁 コ イ ル動作装置の故障 を判別す る 装 置 と し て 図 1 に示す も の が知 ら れて い る 。 こ の装置は、 電 磁コ イ ル動作装置の接続線 と 接地線 と が短絡す る 故障 (以 下 、 地絡故障 と 称す る )、 及び電磁 コ イ ル動作装置 の 接続 線 と 電源供給線 と が短絡す る 故障 (以下、 天絡故障 と 称す る ) を判別 し て 、 電磁 コ イ ル動作装置 の保護若 し く は装置 外部へ の漏電 を 防止す る 為 の装置で あ る 。  The direction of the power supply current supplied to the electromagnetic coil is changed in the forward or reverse direction.The device shown in Fig. 1 is known as a device for determining the failure of the electromagnetic coil operating device. I'm afraid. This device has a fault (hereinafter referred to as a ground fault) in which the connection line of the electromagnetic coil operation device and the ground wire are short-circuited, and the connection line of the electromagnetic coil operation device and the power supply line. This is a device to protect the electromagnetic coil operating device or prevent electric leakage to the outside of the device by judging a fault (hereinafter referred to as a short-to-power fault) in which the and are short-circuited.
電源 ( 図示せず) の電源供給線は、 抵抗 6 2 及び 6 3 を 介 し て ス イ ッ チ ン グ素子で あ る F E T 1 0 及び 3 0 に接続 さ れて い る 。 抵抗 6 2 と F E T 1 0 と の接続線及び抵抗 6 3 と F E T 3 0 と の接続線 にお いて 、 演算増幅素子 6 1 が 接続 さ れて い る 。 ま た 、 F E T 1 0 及び 3 0 は、 各 々 F E T 2 0 及び 4 0 に接続 さ れて い る 。電磁 コ イ ル 1 の両端は、 F E T 1 0 と F E T 2 0 と の接続線 と 、 F E T 3 0 と F E T 4 0 と の接続線 と の 各々 に接続 さ れて い る 。 F E T 2 0 と F E T 4 0 と は、 抵抗 7 2 を介 し て接地 さ れ る と 共 に 、 演算増幅素子 7 1 に接続 さ れて い る 。 A power supply line of a power supply (not shown) is connected to FETs 10 and 30 which are switching elements via resistors 62 and 63. The operational amplifier element 61 is connected to the connection line between the resistor 62 and the FET 10 and the connection line between the resistor 63 and the FET 30. FETs 10 and 30 are connected to FETs 20 and 40, respectively. Both ends of the electromagnetic coil 1 are connected to a connection line between the FET 10 and the FET 20 and a connection line between the FET 30 and the FET 40, respectively. FET 2 0 The FET 40 and the FET 40 are grounded via a resistor 72 and connected to the operational amplifier 71.
上述 し た F E T 1 0 、 2 0 、 3 0 及び 4 0 の ス ィ ッ チ ン グ動作 に よ り 、 電源か ら 電磁 コ イ ル 1 へ供給す る 電流 の方 向及び給電 の停止が制御 さ れ る 。 ま た 、 演算増幅素子 6 1 、 抵抗 6 2 及び 6 3 と か ら 供給電流検出 回路 6 0 が構成 さ れ 供給電流検 出 回路 6 0 は、 抵抗 6 2 及び 6 3 に よ り 生ず る 電圧降下か ら F E T 1 0 及び 3 0 に供給 さ れる 電流 の値 を 検出す る も の で あ る 。 更 に 、 演算増幅素子 7 1 と 抵抗 7 2 と か ら 過電流検出 回路 7 0 が構成 さ れ、 過給電流検出 回路 7 0 は、 抵抗 7 2 に よ り 生ずる 電圧降下か ら F E T 2 0 及 び 4 0 を通過す る 電流 の値 を検出す る ので あ る 。  By the switching operation of the FETs 10, 20, 30, and 40 described above, the direction of the current supplied from the power supply to the electromagnetic coil 1 and the stop of the power supply are controlled. It is. Further, a supply current detection circuit 60 is composed of the operational amplifier element 61 and the resistors 62 and 63, and the supply current detection circuit 60 has a voltage generated by the resistors 62 and 63. The value of the current supplied to the FETs 10 and 30 is detected from the drop. Further, the operational amplifier element 71 and the resistor 72 constitute an overcurrent detection circuit 70, and the supercharging current detection circuit 70 detects the FET 20 and the FET 20 from the voltage drop generated by the resistor 72. And the value of the current passing through 40.
し か し 乍 ら 、 図 1 に示 し た装置 に お い て は、 供給電流検 出 回路 6 0 及び過電流検出 回路 7 0 の 2 つ の検出 回路 を 必 要 と す る と 共 に 、 検出 回路 に よ り 検出 し た電流値か ら 電磁 コ イ ル動作装置の故障 を判別す る た め の判別 プ ロ グ ラ ム が 複雑 と な る と い う 不都合が生 じ た。 ま た 、 電流検出 の為 に 設 け ら れた抵抗 6 2 、 6 3 及び 7 2 か ら の発熱 に よ り 、 こ れ ら の抵抗近傍 に設 け ら れて い る C P U 、 F E T等の 半導 体素子の温度が上昇 し 、 こ れ ら の 素子が誤動作 し やす く な る が故 に 、 電磁 コ イ ル に対 し て電流 を適切 に供給で き な く な る と い う 問題 も 生 じ た。 更 に 、 電流検出 回路 の演算増幅 素子 に供給 さ れる 信号は微小信号で あ る が故 に 、 ノ ィ ズに よ る 影響 を 受 けやす く 、 ノ イ ズが発生 し た場合 に お い て は、 電磁コ イ ル動作装置の故障 を誤判別 し やす い と い う 不都合 も 生 じ た。 However, the device shown in FIG. 1 requires two detection circuits, that is, a supply current detection circuit 60 and an overcurrent detection circuit 70, and also requires a detection circuit. An inconvenience has arisen that the program for determining the failure of the electromagnetic coil operating device from the current value detected by the circuit is complicated. In addition, due to the heat generated by the resistors 62, 63, and 72 provided for current detection, half of the CPU, FET, etc. installed near these resistors As the temperature of the conductor elements rises and these elements are liable to malfunction, there is also a problem that it is not possible to properly supply current to the electromagnetic coil. I did. Furthermore, since the signal supplied to the operational amplifying element of the current detection circuit is a very small signal, it is easily affected by noise, and the noise occurs. Is There was also the inconvenience that it was easy to misidentify a malfunction in the electromagnetic coil operating device.
本発明 は、 上述 の点 に鑑みてな さ れた も ので あ り 、 そ の 目 的 と す る と こ ろ は、 コ ス ト を低減 し 、 電磁コ イ ル に対 し て電流 を適切 に供給す る と 共 に 、 的確 に電磁コ イ ル動作装 置 の故障 を 判別す る こ と がで き る 電磁 コ イ ル動作装置の故 障判別装置 を提供す る こ と に あ る 。  The present invention has been made in view of the above points, and its purpose is to reduce the cost and to appropriately supply a current to an electromagnetic coil. An object of the present invention is to provide a failure determination device for an electromagnetic coil operating device capable of accurately determining a failure of the electromagnetic coil operating device while supplying the failure.
発明 の 開 示  Disclosure of invention
本発 明 に よ る 電磁 コ イ ル動 作装 置 の 故 障判 別 装 置 は 、 各 々 が互 い に直列接続 し た ス ィ ッ チ対か ら な る 2 つ の電流 路 と 、 前記ス ィ ッ チ対の 各対の接続点間 に接続 さ れた電磁 コ イ ル と 、 前記ス ィ ッ チ を選択的 に動作せ し め る 駆動回路 と 、 前記電流路 の双方 の両端 に電源供給線及び接地線 と を 介 し て電圧 を 印加す る 電源供給手段 と 、 か ら な る 電磁 コ ィ ル動作装置 の故障判別装置で あ っ て 、 前記各対の接続点 に お け る 各 々 の電位 を検出 し 、 前記電位 に応 じ た第 1 電圧信 号 と 第 2 電圧信号 と を発す る 電圧検出手段 と 、 前記第 1 電 圧信号の値 と 前記第 2 電圧信号の値 と を加算 し た値 に応 じ た加算電圧信号 を 発す る 加算手段 と 、 前記ス ィ ッ チ対の 動 作状態 と 前記加算電圧信号の値に基づいて前記電磁 コ イ ル 動作装置 の故障 を判別す る 故障判別手段 と 、 か ら な る こ と を特徴 と し て い る 。  The electromagnetic coil operating device according to the present invention is provided with a fault detecting device which comprises two current paths each comprising a switch pair connected in series with each other. An electromagnetic coil connected between the connection points of each of the switch pairs, a drive circuit for selectively operating the switches, and power supplies at both ends of both the current paths. A power supply means for applying a voltage via a supply line and a ground line, and a failure determination device for the electromagnetic coil operating device, comprising: Voltage detecting means for detecting each potential and generating a first voltage signal and a second voltage signal corresponding to the potential; and detecting a value of the first voltage signal and a value of the second voltage signal. An adding means for generating an added voltage signal according to the added value, and an operation state of the switch pair Said electromagnetic Coil failure determining means you determine the failure of the Le operation device based on the value of the sum voltage signal, that has features and this pressurized et ing.
すなわ ち 、 本発明 の特徴 に よ れば、 コ ス ト を低減 し 、 電 源 コ イ ル に電流 を適切 に供給す る こ と がで き る と 共 に 、 的 確 に電磁 コ イ ル動作装置 の故障 を判別す る こ と がで き る 。 In other words, according to the features of the present invention, the cost can be reduced, the current can be appropriately supplied to the power supply coil, and the target can be appropriately reduced. The failure of the electromagnetic coil operating device can be determined with certainty.
図面 の簡単な説明  Brief description of the drawings
図 1 は従来技術の電磁 コ イ ル動作装置 の故障判別装置 を 示す回路 図 で あ る 。  FIG. 1 is a circuit diagram showing a conventional failure determination device for an electromagnetic coil operating device.
図 2 は本発明 に よ る 電磁 コ イ ル動作装置の故障判別装置 を 示す回路図 で あ る 。  FIG. 2 is a circuit diagram showing a failure determining device for an electromagnetic coil operating device according to the present invention.
図 3 は オ ン モ ー ド 時 に お け る 電磁 コ イ ル動作装置 の 動 作 を示す回路 図 で あ る 。  FIG. 3 is a circuit diagram showing the operation of the electromagnetic coil operating device in the on mode.
図 4 は オ フ モ 一 ド 時 に お け る 電磁 コ イ ル動作装置 の 動 作 を示す回路図で あ る 。  FIG. 4 is a circuit diagram showing the operation of the electromagnetic coil operating device in the off mode.
図 5 は地絡故障 を 判別 す る サ ブルー チ ン を 示す フ ロ ー チ ヤ 一 卜 で あ る 。  Figure 5 is a flow chart showing a subroutine that determines a ground fault.
図 6 は天絡故障 を 判別す る サ ブルー チ ン を 示す フ ロ ー チ ヤ一 ト で あ る 。  Fig. 6 is a flow chart showing a subroutine for determining a short-to-power fault.
図 7 は地絡故障 を 発 生 さ せた 実験 に お け る 電圧及 び電 流 の変化 を 示す タ イ ム チ ヤ 一 ト で あ る 。  Figure 7 is a timing chart showing the changes in voltage and current in an experiment in which a ground fault occurred.
図 8 は天絡故障 を 発 生 さ せた実験 に お け る 電圧及び電 流の変化 を 示すタ イ ム チ ヤ 一 卜 で あ る 。  Fig. 8 is a timing chart showing changes in voltage and current in an experiment in which a short-to-supply fault was generated.
発 明 を実施す る た め の最良 の形態 以下 に 、 本発明 の実施例 につ いて 図 面 に基づい て説明す る 。  BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 2 は、 本発明 に よ る 電磁コ イ ル動作装置の故障判別装 置 を示す。 尚 、 図 1 に示 し た構成要素 と 対応す る 構成要素 に は同 一 の 符号 を付 し た。 電源電圧 V B は 、 電源供給線 V L を 介 し て 、 ス ィ ッ チ ン グ素子、 例 え ば F E T 1 0 及び 3 0 に 供給 さ れ る 。 ス イ ツ チ ン グ素子 1 0 及び 3 0 は、 各々 ス イ ッ チ ン グ素子、 例 え ば F E T 2 0 及び 4 0 に接続 さ れ、 ス イ ッ チ ン グ素子 2 0 及び 4 0 は 、 接地線 G を 介 し て グ ラ ン ド G N D に接続 さ れて い る 。 電磁 コ イ ル 1 の両端は、 ス イ ッ チ ン グ素子 1 0 と ス ィ ツ チ ン グ素子 2 0 と の接続線 と 、 ス ィ ツ チ ン グ素子 3 0 と ス ィ ツ チ ン グ素子 4 0 と の接続線 と の各 々 に接続 さ れて い る 。 ま た 、 ス イ ッ チ ン グ素子 1 0 と ス イ ッ チ ン グ素 子 2 0 と の 接続線 の接続点 2 にお い て 、抵抗 3 が接続 さ れ、 ス ィ ツ チ ン グ素子 3 0 と ス ィ ツ チ ン グ素子 4 0 と の接続線 の接続点 4 に お い て 、 抵抗 5 が接続 さ れて い る 。 以下 に お い て は 、 接続点 2 に お け る 電圧値 を V p と 称 し 、 接続点 4 に お け る 電圧値 を V N と 称す る 。 抵抗 3 及び 5 は、 接続点 6 にお い て接続 さ れた後、 所定の電圧値 に 変更す る 為 の抵 抗 7 を介 し て 、 エ ン ジ ン制御ュニ ッ ト 5 0 に設 け ら れて い る A / D 変換器 5 1 に接続 さ れて い る 。 こ の抵抗 3 及び 5 の抵抗値 を 同 じ抵抗値 と し た場合 に は、 接続点 6 にお け る 電圧値 は V P と V N と の和 に 応 じ た 値 と な る の で あ る 。 A Z D 変換器 5 1 は、 供給 さ れた信号 を デ ィ ジ タ ル信号へ変 換 し 、 入 出 力 ノ ス 5 2 に 供給す る 。 入出 力 ノ ス 5 2 は、 C P U 5 3 に デー タ 信号又 はァ ド レ ス 信号が入出 力 さ れ る よ う にな さ れて い る 。 ま た 、 入出 力 ノ ス 5 2 に は、 R O M 5 4 、 R A M 5 5 と ス イ ッ チ ン グ素子 1 0 、 2 0 、 3 0 及び 4 0 を駆動す る た め の駆動回路群 5 6 と が接続 さ れて い る 駆動回路群 5 6 は、 ス イ ッ チ ン グ素子 1 0 、 2 0 、 3 0 及 び 4 0 の制御信号入 力 端子 に接続 さ れて い る 。 ま た 、 R 〇 M 5 4 は 、 図 5 及び図 6 に お い て説明す る フ ロ ーチ ャ ー ト に従 っ て電磁 コ イ ル動作装置の故障 を 判別す る プ ロ グ ラ ム を 記憶 し て い る 。 FIG. 2 shows a failure judging device for an electromagnetic coil operating device according to the present invention. Note that the same reference numerals are given to components corresponding to the components shown in FIG. Supply voltage V B is to via the power supply line VL, the scan I pitch in g elements, Ru is supplied to the FET 1 0 and 3 0 In example embodiment. The switching elements 10 and 30 are connected to switching elements, for example, FETs 20 and 40, respectively, and the switching elements 20 and 40 are connected to the switching elements 20 and 40, respectively. Connected to ground GND via ground line G. Both ends of the electromagnetic coil 1 are connected to a connection line between the switching element 10 and the switching element 20 and to the switching element 30 and the switching element. It is connected to each of the connection lines to the element 40. Further, at a connection point 2 of a connection line between the switching element 10 and the switching element 20, a resistor 3 is connected, and the switching element is connected. At a connection point 4 of a connection line between 30 and the switching element 40, a resistor 5 is connected. And have you below, your only that voltage value to the connection point 2 and referred as V p, that your only that voltage value to the connection point 4 is referred to as V N. After being connected at the connection point 6, the resistors 3 and 5 are connected to the engine control unit 50 via a resistor 7 for changing the voltage to a predetermined value. It is connected to the A / D converter 51. In the case where the resistance value of the resistor 3 and 5 of this was the same resistance value, you only that voltage value at the connection point 6 than ing and response Ji value to the sum of the V P and V N Oh . The AZD converter 51 converts the supplied signal into a digital signal, and supplies the digital signal to the input / output node 52. The input / output node 52 is configured so that a data signal or an address signal is input / output to the CPU 53. The input / output node 52 includes ROM 54, RAM 55, and switching elements 10, 20, 30 and 30. The drive circuit group 56 connected to the drive circuit group 56 for driving 40 controls the switching elements 10, 20, 30, and 40. Connected to signal input terminal. Further, the R〇M 54 is a program for determining the failure of the electromagnetic coil operating device according to the flowchart described in FIGS. 5 and 6. Is memorized.
上述 し た如 き 、 ス イ ッ チ ン グ素子 1 0 と 2 0 若 し く はス イ ッ チ ン グ素子 3 0 と 4 0 及びそ の接続線 と か ら 電流路が 構成 さ れ、 ス イ ッ チ ン グ素子 1 0 、 2 0 、 3 0 及び 4 0 と 電磁 コ イ ル 1 と か ら 電磁 コ イ ル動作装置が構成 さ れ、 駆動 回路群 5 6 か ら 駆動回路が構成 さ れ、 図 示 し な い電源か ら 電源供給手段が構成 さ れ、接続点 2 と 抵抗 3 と の接続線 と 、 接続点 4 と 抵抗 5 と の接続線 と か ら 電圧検 出手段が構成 さ れ、 抵抗 3 及び 5 か ら 加算手段が構成 さ れ、 A Z D 変換器 5 1 、 入 出 力 ノ ス 5 2 、 C P U 5 3 、 R O M 5 4 及び R A M 5 5 力ゝ ら 判別手段が構成 さ れる 。  As described above, the current path is constituted by the switching elements 10 and 20 or the switching elements 30 and 40 and the connection lines thereof, and An electromagnetic coil operating device is composed of the switching elements 10, 20, 30, and 40 and the electromagnetic coil 1, and a drive circuit is composed of the drive circuit group 56. A power supply means is constituted by a power supply not shown, and a voltage detection means is constituted by a connection line between the connection point 2 and the resistance 3 and a connection line between the connection point 4 and the resistance 5. The resistors 3 and 5 constitute an adding means, and the AZD converter 51, the input / output noise 52, the CPU 53, the ROM 54, and the RAM 55 constitute a determining means.
以下 に お い て は、 ス イ ッ チ ン グ素子 1 0 及び 3 0 が開放 さ れ、 ス イ ッ チ ン グ素子 2 0 及び 4 0 が接続さ れて い る 状 態 を オ フ モー ド と 称 し 、 ス イ ッ チ ン グ素子 2 0 及び 3 0 が 開放 さ れ、 ス イ ッ チ ン グ素子 1 0 及び 4 0 が接続 さ れて い る 状態若 し く はス イ ッ チ ン グ素子 1 0 及び 4 0 が開放 さ れ ス イ ッ チ ン グ素子 2 0 及び 3 0 が接続 さ れて い る 状態 を ォ ン モー ド と 称す る 。 尚 、 以下 の説明 にお い て は、 ス ィ ッ チ ン グ素子 2 0 及び 3 0 が開放 さ れ、 ス イ ッ チ ン グ素子 1 0 及び 4 0 が接続 さ れて い る 状態 につ いて 説明す る 。 ま た 、 こ の オ ン モ ー ド と オ フ モ ー ド と の切 り 替え は、 上述 し た C P U 5 3 か ら 発せ ら れ る 命令信号 に応 じ て ス イ ッ チ ン グ素 子 1 0 、 2 0 、 3 0 及び 4 0 が駆動 さ れ る こ と に よ り な さ れ る の で あ る 。 ま た 、 A / D 変換器 5 1 の 入力 抵抗の値 は 大 き く 、 A / D 変換器 5 1 へ供給 さ れ る 電流の値は無視で き る も の と す る 。 更 に 、 後述す る 図 3 及び図 4 に お け る 抵 抗 1 2 、 2 2 、 3 2 及び 4 2 は、 各 々 ス イ ッ チ ン グ素子 1 0 、 2 0 、 3 0 及び 4 0 に含 ま れ る 抵坊、 例 え ばオ ン抵抗 で あ り 、 各 々 同 じ抵抗値 を有す る も の と す る 。 ま た 、 電磁 コ イ ル動作装置の接続線 と G N D と の短絡故障 を 地絡故障 と 称 し 、 電磁 コ イ ル動作装置の接続線 と 電源供給線 と の短 絡故障 を 天絡故障 と 称す る 。 In the following, the state in which the switching elements 10 and 30 are opened and the switching elements 20 and 40 are connected is described in an off mode. A state in which the switching elements 20 and 30 are opened and the switching elements 10 and 40 are connected or the switching elements A state in which the switching elements 10 and 40 are open and the switching elements 20 and 30 are connected is called an on mode. In the following description, the switching elements 20 and 30 are opened and the switching element 10 is opened. And 40 are connected. The switching between the on-mode and the off-mode is performed by switching the switching element 1 in response to the above-mentioned instruction signal issued from the CPU 53. 0, 20, 30, and 40 are driven by being driven. In addition, the value of the input resistance of the A / D converter 51 is large, and the value of the current supplied to the A / D converter 51 is negligible. Furthermore, the resistors 12, 22, 32, and 42 in FIGS. 3 and 4, which will be described later, correspond to the switching elements 10, 20, 30, and 40, respectively. , For example, on-resistance, each having the same resistance value. A short-circuit fault between the connection line of the electromagnetic coil operation device and GND is called a ground fault, and a short-circuit fault between the connection line of the electromagnetic coil operation device and the power supply line is called a short-to-power fault. .
図 3 は、 オ ン モ 一 ド 時 に お け る 電磁コ イ ル動作装置の動 作 を示す。 尚 、 図 2 に示 し た構成要素 と 対応す る 構成要素 に は同 一の 符号 を付 し た。  FIG. 3 shows the operation of the electromagnetic coil operating device in the on-mode. Note that the same reference numerals are given to the components corresponding to the components shown in FIG.
こ の状態 に お い て は 、 電源か ら の電源電流は、 ス ィ ッ チ ン グ素子 1 0 の オ ン オ フ ス ィ ッ チ 1 1 及び抵抗 1 2 を 介 し て電磁コ イ ル 1 に供給 さ れた後、 ス イ ッ チ ン グ素子 4 0 の オ ン オ フ ス ィ ッ チ 4 1 及び抵抗 4 2 を 介 し て G N D に 流れ る 。 こ の と き 、 V p は、 抵抗 1 2 の両端間電圧 V 12 だけ電 源電圧 V B よ り 低 く な り 、 V N は、 抵抗 4 2 の 両端 間電圧 V 42 だ け接地電位 よ り も 高 く な る 。 電磁 コ イ ル動作装置 が好 ま し い 状態 に お い て は、 抵抗 1 2 及び 4 2 を 流れ る 電 流 は同 じ で あ る が故 に 、 抵抗 1 2 及び 4 2 の両端間電圧値 V 12 と V 42 と は等 し く な り 、 V P と V N と の 和 は V B と 等 し く な る の で あ る 。 In this state, the power supply current from the power supply is supplied to the electromagnetic coil 1 via the on / off switch 11 of the switching element 10 and the resistor 12. After that, the current flows to GND via the on-off switch 41 of the switching element 40 and the resistor 42. At this time, V p is lower than the power supply voltage V B by the voltage V 12 across the resistor 12, and V N is only the voltage V 42 across the resistor 42 and the ground potential. Will also be higher. When the electromagnetic coil operating device is in a favorable condition, the current flowing through resistors 12 and 42 is Flow is due but Ru Oh the same, the resistance 1 2 and Ri Do rather equally and 4 2 of the inter-end voltage V 12 and V 42, the sum of V P and V N rather equally and V B It becomes.
一方 、 地絡故障が発生 し ス イ ッ チ ン グ素子 1 0 に地絡 に よ る 電流が流れた 場合 、 例 え ば、 ス イ ッ チ ン グ素子 1 0 と 2 0 と の接続線力 G N D と 短絡 し た場 合 に お い て は、 ス ィ ツ チ ン グ素子 1 0 の抵抗 1 2 に 流れ る 電流が大 き く な る こ と に よ り 、 抵抗 1 2 の 両端 間電圧 V , 2 が大 き く な り 、 V p と V と の 禾卩 は V B よ り も 小 さ く な る の で あ る 。 従 っ て 、 V P と V N と の和 と 、 V B と の差が所定値 V D よ り 大 と な つ た と き に地絡故障が発生 し た と 判別す る こ と がで き る ので あ る 。 こ の所定値 V D は 、 予 め実験 に よ り 定 め た値で あ る 。 On the other hand, if a ground fault occurs and a current flows through the switching element 10 due to the ground fault, for example, the connection line force between the switching elements 10 and 20 When short-circuited to GND, the current flowing through the resistor 12 of the switching element 10 increases, and the voltage V across the resistor 12 is increased. , 2 Ri is Do not rather come large,禾卩of the V p and V Ru Oh than that also Do small Ku Ri by V B. And follow, and the sum of the V P and V N, Ki out and this you determined that the difference between the V B is ground fault in the period that the One, large-Installing by a predetermined value V D occurs It is. The predetermined value V D of this is, Ru Oh in by Ri constant order was value in the pre-Me experiment.
図 4 は 、 オ フ モ ー ド 時 に お け る 電磁 コ イ ル動作装置の動 作 を示す。 尚 、 図 2 及び 3 に 示 し た構成要素 と 対応す る 構 成要素 に は 同 一 の 符号 を 付 し た。  FIG. 4 shows the operation of the electromagnetic coil operating device in the off mode. The same reference numerals are given to the components corresponding to the components shown in FIGS. 2 and 3.
オ ン モ ー ド か ら オ フ モ ー ド へ切 り 換 え た 際 に は、 電磁コ ィ ル 1 の イ ン ダ ク 夕 ン ス に よ り 電流が流れ、 こ の電流は、 G N D カゝ ら ス イ ッ チ ン グ素子 2 0 の抵抗 2 2 及びオ ン オ フ ス ィ ッ チ 2 1 、 電磁 コ イ ル 1 、 ス イ ッ チ ン グ素子 4 0 の ォ ン オ フ ス ィ ッ チ 4 1 及び抵抗 4 2 を経て G N D に 至 る 回路 を 流れ る 。 こ の と き の V p は抵抗 2 2 の両端間電圧 V 22 だ け接地電位 よ り も 低 く な り 、 V N は抵抗 4 2 の両端間電圧 V 42 だ け接地電位 よ り も 高 く な る 。 電磁 コ イ ル動作装置 が好ま し い 状態 に お い て は、 抵抗 2 2 及び 4 2 を流れ る 電 流は 同 じ で あ る が故 に 、 抵抗 2 2 及び 4 2 の両端間電圧 V 2 2 と V 4 2 と の絶対値 は等 し く な り 、 V P と V N と の和 は 0 と な る の で あ る 。 When switching from on-mode to off-mode, current flows through the inductance of electromagnetic coil 1 and this current is On / off switch of the switching element 20, the resistance 22 of the switching element 20, the on-off switch 21, the electromagnetic coil 1, and the switching element 40. It flows through the circuit to GND via 41 and resistor 42. At this time, V p is lower than the ground potential only by the voltage V 22 across the resistor 22, and V N is higher than the ground potential only by the voltage V 42 across the resistor 42. Become . When the electromagnetic coil actuating device is in a favorable condition, the current flowing through resistors 22 and 42 is Flow is due but Ru Oh the same, the resistance 2 2 and 4 the absolute value of the voltage V 2 2 and V 4 2 between two ends is Ri and Do rather equal, the sum of V P and V N is 0 and It becomes.
一方 、 天絡故障が発 生 し ス ィ ツ チ ン グ素子 4 0 に天絡 に よ る 電流が流れた場合 、 例 え ば、 ス イ ッ チ ン グ素子 3 0 と 4 0 と の接続線が電源供給線 と 短絡 し た 場合 に お い て は、 ス イ ッ チ ン グ素子 4 0 の抵抗 4 2 に 流れ る 電流が大 き く な る こ と に よ り 、 抵抗 4 2 の両端間電圧 V 4 2 が大 き く な り 、 V P と V N と の和 は 0 よ り も 大 き く な る の で あ る 。 従 っ て 、 V p と V N と の和が所定値 V u よ り 大 と な っ た と き に 天絡故 障が発生 し た と 判別す る こ と がで き る の で あ る 。 こ の所定 値 V ί; は、 予 め実験 に よ り 定め た値で あ る 。 On the other hand, if a short-to-supply fault occurs and a current due to the short-to-power flows through the switching element 40, for example, the connection line between the switching elements 30 and 40 Is short-circuited with the power supply line, the current flowing through the resistor 42 of the switching element 40 becomes large, so that the voltage between the both ends of the resistor 42 becomes large. voltage V 4 2 is Ri Do not rather come large, the sum of the V P and V N is Ru Oh than even than 0 that Do not rather than can large. And follow, the sum of the V p and V N is Ru Oh than that Ki out and this you determined to heaven絡故disabilities has occurred in the period and was Tsu large door name Ri by the predetermined value V u. This predetermined value V ί; is a value determined by a preliminary experiment.
以下 に お い て は 、 C P U 5 3 に お い て使用 さ れ る 変数 の 初期化等の 始動処理 は全て終 了 し 、電磁 コ イ ル動作装置は、 所定の一定動作、 例 え ば上述 し た オ ン モ ー ド と オ フ モー ド と を 一定周期 で繰 り 返す動作 を し て い る も の と す る 。  In the following, the starting process such as the initialization of the variables used in the CPU 53 is completed, and the electromagnetic coil operating device performs a predetermined constant operation, for example, as described above. It is assumed that the on-mode and the off-mode are repeated at a constant period.
図 5 は 、 地絡故障 を 判別す る サ ブルー チ ン を 示す。  Figure 5 shows a subroutine that determines a ground fault.
最初 に 、 電磁コ イ ル動作装置がオ ン モ ー ド で あ る か否か を 判 断す る ( ス テ ッ プ S 1 1 )。 オ ン モ ー ド で な い と 判別 し た場合 に は、 直 ち に 本サ ブルーチ ン を終 了す る 。 一方、 オ ン モ ー ド で あ る と 判別 し た 場合 に は 、 V ρ、 V Ν 及び V Β を検出す る ( ス テ ッ プ S 1 2 )。 次 い で 、 V Β— ( V ρ + V Ν ) が所定 の値 V D よ り 大 き い か否か を 判 断す る ( ス テ ッ プ S 1 3 ) 。 V B— ( V p + V N ) が V D 以下 で あ る 判別 し た場合 に は 、 本サ ブル ー チ ン を 終 了 す る 。 一方 、 V B — ( V p + V N ) が V D よ り 大 き い と 判別 し た 場 合 に は 、 電磁 コ イ ル 動作装置 は地絡故障 し た と 判別 し 地絡故障処理 、 例 え ばス イ ッ チ ン グ素子 1 0 、 2 0 、 3 0 及び 4 0 を 開放 し て電磁 コ イ ル動作装置へ の 給電 を 停止 し ( ス テ ッ プ S 1 4 )、 本 サ ブルー チ ン を終 了 す る 。 上述の如 く 、 オ ン モ ー ド 時 にお い て 、 地絡故障 を 判 断す る の で あ る 。 First, it is determined whether or not the electromagnetic coil operating device is in the on mode (step S11). If it is determined that the mode is not the on-mode, the subroutine is terminated immediately. On the other hand, if it is determined that the Ru Oh in the on-mode is, V ρ, you detect the V Ν and V Β (scan STEP S 1 2). In the next doctor, V Β - (V ρ + V Ν) is you judged whether or not we can large Ri by the predetermined value V D (scan STEP S 1 3). V B — (V p + V N ) is less than V D Ends this subroutine. On the other hand, if it is determined that V B — (V p + V N ) is larger than V D , it is determined that the electromagnetic coil operating device has a ground fault, and the ground fault processing is performed. For example, the switching elements 10, 20, 30, and 40 are opened to stop the power supply to the electromagnetic coil operating device (step S 14), and the subroutine is opened. End the session. As described above, a ground fault is determined during on-mode.
図 6 は、 天絡故障 を 判別す る サ ブルー チ ン を 示す。  Figure 6 shows a subroutine that determines a short-to-power fault.
最初 に 、 電磁 コ イ ル動作装置がオ フ モ ー ド で あ る か否か を 判 断す る ( ス テ ッ プ S 2 1 )。 オ フ モ ー ド で な い と 判別 し た場合 に は、 直 ち に本サ ブルー チ ン を終 了す る 。 一方、 オ フ モ ー ド で あ る と 判 別 し た 場合 に は 、 V P 及び V N を検 出す る ( ス テ ッ プ S 2 2 )。 次 い で 、 V p + V N が所定 の 値First, it is determined whether or not the electromagnetic coil operating device is in an off-mode (step S21). If it is determined that the mode is not the off-mode, the subroutine is terminated immediately. On the other hand, if it is determine by the Ru Oh in the off mode is, that issue detects the V P and V N (the scan STEP S 2 2). Then, Vp + VN is a predetermined value
V よ り 大 き い か 否 か を 判 断す る ( ス テ ッ プ S 2 3 ) VJudge whether it is larger than V (Step S2 3) V
+ V N が V u 以下で あ る と 判別 し た 場合 に は 、 本サ ブル一 チ ン を終 了 す る 。 一方 、 V p + V N が V u よ り 大 き い と 判別 し た場合 に は、 電磁 コ イ ル動作装置は天絡故障 し た と 判別 し 天絡故障処理 を 行 い ( ス テ ッ プ S 2 4 )、 本サ ブル一 チ ン を終 了 す る 。 上述 し た如 く 、 オ フ モ ー ド 時 にお い て 、 天 絡故障 を判 断す る の で あ る 。 If it is determined that + V N is less than V u, the subroutine is terminated. On the other hand, if the V p + V N is determined to have come large Ri by V u, the electromagnetic co-Yi Le operating system discriminated line physicians the power supply fault failure treatment and failed power supply fault (scan STEP S 24), this subroutine ends. As described above, in the off-mode, the short-to-power fault is determined.
上述 し た如 く 、 V P と V N と を 各 々 別個 に 判別せず と も V p と V N と の 和 に よ り 電磁 コ イ ル動作装置 の 故障 を 判別 す る こ と がで き る が故 に 、 図 2 に お い て説明 し た装置 にお い て は、 A / D 変換器 5 1 の使用 すべ き 入 力端子の数 を減 ら す こ と がで き る と 共 に 、 C P U 5 3 に お け る 演算時間 を 短縮す る こ と も で き る の で あ る 。 如described above rather, Ki out and this you determine the failure of the electromagnetic co-Yi Le operating system Ri by the sum of the V P and V N and the each separately determined without and also V p and V N Therefore, in the device described in FIG. 2, the number of input terminals to be used for the A / D converter 51 is reduced. In addition to being able to do so, it is also possible to reduce the computation time in the CPU 53.
図 7 は 、 地絡故障 を発生 さ せた 実験 に お け る 電圧及び電 流の変化 を 示す。  Figure 7 shows the changes in voltage and current in an experiment that caused a ground fault.
上述 し た 1 つ の オ ン モ ー ド と 1 つ の オ フ モー ド と か ら な る 1 サイ ク ル を 1 m s の周 期で繰 り 返 し 実行 し て い る 際 に . 地絡 に よ っ て発生 し た電流が電磁 コ イ ル動作装置 に流れた と き に は、 オ ンモ ー ド 時 に お け る V p + V N の値は V B よ り 低下 し て レゝ る こ と が示 さ れ る 。 こ の実験例 に お い て は、 2 回連続 し て v B— ( V p + V N ) が所定 の値 V D よ り 大 き い と 判別 し た場合 に は、 地絡故障が発生 し た と 判別 し て、 電磁 コ イ ル動作装置へ の給電 を停止 し て い る 。 When one cycle consisting of one on-mode and one off-mode described above is repeatedly executed in a cycle of 1 ms. to come with the current generated by Tsu good flows in the electromagnetic Coil Le operating system, the value of that only you when you first Nmo over de V p + V N is RuゝLes decreased Ri by V b this And are shown. In this experimental example, if it is determined that v B — (V p + V N ) is larger than the predetermined value V D twice consecutively, a ground fault occurs. It is determined that the power supply to the electromagnetic coil operating device has been stopped.
図 8 は、 天絡故障 を 発 生 さ せた実験 に お け る 電圧及び電 流の変化 を 示す。  Figure 8 shows the changes in voltage and current in an experiment that caused a short-to-supply fault.
図 7 と 同様 に 1 つ の オ ン モ ー ド と 1 つ の オ フ モー ド と か ら な る 1 サイ ク リレ を l m s の周期 で実行 し て い る 際 に 、 天 絡 に よ っ て発生 し た電流が電磁コ イ ル動作装置 に 流れた と き に は 、 オ フ モ 一 ド 時 に お け る V p + V N の 値 は接地電位 よ り 上昇 し て い る こ と が示 さ れる 。 2 回連続 し て V P + V N が所定 の値 V じ よ り 大 き い と 判別 し た場合 に は、 天絡故障 が発生 し た と 判別 し て 、 図 7 に示 し た実験例 と 同様 に電磁 コ イ ル動作装置への給電 を停止 し て い る 。 As shown in Fig. 7, when one cycle consisting of one on-mode and one off-mode is executed at the cycle of lms, it is caused by short-to-power. of a tree and the current flows in the electromagnetic Coil Le operating system, the value of that only us when off mode one de V p + V N has and the child you are rising Ri by ground potential shows Is If the consecutive V P + V N 2 times is determined to have come atmospheric Ri by Ji predetermined value V is determined that the power supply fault failure occurs, the experimental examples is shown in Figure 7 Similarly, the power supply to the electromagnetic coil operating device has been stopped.
上述 し た如 き電磁 コ イ ル動作装置及び電磁 コ イ ル動作装 置の故障判別装置 を 、 被駆動部材 を駆動す る 電磁ァ ク チ ュ ェ一 夕 の制御装置 に 用 い た場合 に は、 電磁 コ ィ ルは被駆動 部材 を駆動す る 磁性部材 を駆動す る 起磁力 源 と し てな し 、 電磁 コ イ ル動作装置 は電磁 コ イ ルへ供給す る 電流 を 制御す る 一方 、 故障判別装置 は電磁 コ イ ル動作装置の故障 を判別 す る の で 、 電磁ァ ク チ ユ エ一 夕 の信頼性 を 高 め る こ と がで き る の で あ る 。 The electromagnetic coil operating device and the failure determining device of the electromagnetic coil operating device as described above are connected to an electromagnetic actuator for driving a driven member. When the electromagnetic coil is used for the control device of the present invention, the electromagnetic coil is not used as a magnetomotive force source for driving the magnetic member for driving the driven member, and the electromagnetic coil operating device is not used for the electromagnetic coil operating device. While the current supplied to the coil is controlled, the failure determination device determines the failure of the electromagnetic coil operating device, so that the reliability of the electromagnetic actuator can be improved. It can be done.
ま た 、 電磁ァ ク チ ユ エ一 夕 の信頼性 を 更 に 高 め る べ く 、 2 つ の電磁 コ イ ル動作装置 を電磁ァ ク チ ユ エ一 夕 に設 け る 構成 と し た 装置 に お い て も 、 本発 明 に よ る 故障判別装置 を 各 々 の電磁 コ イ リレ動作装置 に設 け る こ と と し て も 良 い 。 こ の よ う な構成 とす る こ と に よ り 、 一方の電磁 コ イ ル動作装 置が故障 し た と 判別 し た 際 に は、 他方 の電磁 コ イ ル動作装 置で電磁ァ ク チ ユ エ一 夕 を駆動す る こ と がで き 、 従来技術 に よ る 故障判別装置 を 2 つ の電磁 コ イ ル動作装置の各 々 に 設 けた場合 と 比 し て コ ス ト を よ り 大 き く 低減 さ せ る こ と が で き る の で あ る 。  Also, in order to further enhance the reliability of the electromagnetic actuating unit, a device in which two electromagnetic coil operating devices are provided in the electromagnetic actuating unit. In this case, the failure determination device according to the present invention may be installed in each electromagnetic coil operating device. With this configuration, when it is determined that one of the electromagnetic coil operating devices has failed, the other electromagnetic coil operating device has an electromagnetic actuator. It is possible to drive the air conditioner, and the cost is higher than when a failure determination device according to the prior art is installed in each of two electromagnetic coil operation devices. It can be greatly reduced.
尚 、 上述 し た実施例 にお い て は、 2 つ の抵抗 3 及び 5 に よ り 構成 さ れ る 加算手段 を 示 し た が、 演算増幅素子等の ァ ナ ロ グ加算 回路 を 加算手段 と し て用 い て も 良 い こ と は明 ら か で あ る 。  In the above-described embodiment, the addition means constituted by the two resistors 3 and 5 is shown. However, an analog addition circuit such as an operational amplification element is used as the addition means. It is clear that you can use it.
産業上 の利用 可能性  Industrial applicability
以上説明 し た如 く 、 本発明 に よ る 電磁 コ イ ル動作装置 の 故障判別装置 に よ れば、 コ ス ト を低減す る こ と がで き 、 発 熱源で あ る 抵抗の数 を 少な く し て半導体素子の温度上昇 を 抑 え る こ と がで き る 構成 と し た こ と に よ り 、 電源 コ イ ル に 電流 を適切 に 供給す る こ と がで き る と 共 に 、 的確 に電磁 コ ィ ル動作装置の故障 を 判別す る こ と がで き る 。 As described above, according to the failure determination device for the electromagnetic coil operating device according to the present invention, the cost can be reduced, and the number of resistors serving as a heat generating source can be reduced. As a result, the temperature rise of the semiconductor By adopting a configuration that can suppress the current, it is possible to appropriately supply current to the power coil, and at the same time, it is possible to accurately control the electromagnetic coil operating device. Failure can be determined.

Claims

請求の範囲 The scope of the claims
1 . 各 々 が互 い に 直列接続 し た ス ィ ッ チ対か ら な る 2 つ の 電流路 と 、 前記ス ィ ッ チ対の各対 の接続点 間 に接続 さ れた 電磁コ イ ル と 、 前記ス ィ ッ チ を選択的 に 動作せ し め る 駆動 回路 と 、 前記電流路の 双方の両端 に電源供給線及び接地線 と を介 し て電圧 を 印加す る 電源供給手段 と 、 か ら な る 電磁 コ イ ル動作装置の故障判別装置で あ っ て 、 1. Two current paths each consisting of a switch pair connected in series with each other, and an electromagnetic coil connected between the connection points of each pair of the switch pairs. A drive circuit for selectively operating the switch, and power supply means for applying a voltage to both ends of the current path via a power supply line and a ground line. This is a failure determination device for such an electromagnetic coil operating device.
前記各対の接続点 に お け る 各 々 の電位 を検出 し 、 前記電 位 に応 じ た第 1 電圧信号 と 第 2 電圧信号 と を発す る 電圧検 出手段 と 、  Voltage detecting means for detecting each potential at the connection point of each pair, and generating a first voltage signal and a second voltage signal corresponding to the potential;
前記第 1 電圧信号の値 と 前記第 2 電圧信号の値 と を加算 し た値 に応 じ た加算電圧信号 を発す る 加算手段 と 、  Adding means for generating an added voltage signal corresponding to a value obtained by adding the value of the first voltage signal and the value of the second voltage signal;
前記 ス ィ ツ チ対の 動作状態 と 前記加算電圧信号の値 に 基 づい て前記電磁コ イ ル動作装置の故障 を 判別す る 故障判別 手段 と 、 か ら な る こ と を特徴 と す る 電磁 コ イ ル動作装置 の 故障判別装置。  Failure determination means for determining a failure of the electromagnetic coil operating device based on an operation state of the switch pair and a value of the added voltage signal. Failure determination device for coil operation device.
2 . 前記故障判別手段 は、 前記ス ィ ッ チ対の う ち の 少な く と も 1 方が開放状態 に あ っ て 、 前記電磁 コ イ ルへの給電が な さ れて い な い状態 に お い て 、 前記加算電圧信号の値が第 1 所定値よ り 大き い と き 前記電磁コ イ ル と 前記電源供給線 と が短絡す る 天絡故障が発生 し た と 判別す る 第 1 判別動作 と 、 前記ス ィ ッ チ対の う ち 1 方が接続状態 に あ っ て 、 前記 電磁 コ イ ルへの給電がな さ れて い る 状態 にお い て 、 前記加 算電圧信号 の値 と 電源電圧の値 と の差が第 2 所定値よ り 大 き い と き 前記電磁 コ イ ル と 前記接地線 と が短絡す る 地絡故 障が発生 し た と 判別す る 第 2 判別動作 と の う ち の 少な く と も 一方 の判別動作 をす る こ と を特徴 と す る 請求項 1 記載の 電磁コ イ ル動作装置の故障判別装置。 2. The failure determination means is configured such that at least one of the switch pairs is in an open state and power is not supplied to the electromagnetic coil. When the value of the added voltage signal is larger than a first predetermined value, it is determined that a short-to-power fault occurs in which the electromagnetic coil and the power supply line are short-circuited. In operation, when one of the switch pairs is in a connected state and power is being supplied to the electromagnetic coil, the power is supplied to the electromagnetic coil. When the difference between the value of the calculated voltage signal and the value of the power supply voltage is larger than a second predetermined value, it is determined that a ground fault has occurred in which the electromagnetic coil and the ground wire are short-circuited. 2. The failure determining device for an electromagnetic coil operating device according to claim 1, wherein at least one of the second determining operation and the second determining operation is performed.
3 . 前記加算手段 は、 前記第 1 電圧信号 と 前記第 2 電圧信 号 と を 分圧 し て前記加算電圧信号 を 生成す る こ と を特徴 と す る 請求項 1 記載の電磁 コ イ ル動作装置 の故障判別装置。  3. The electromagnetic coil operation according to claim 1, wherein the addition means divides the first voltage signal and the second voltage signal to generate the added voltage signal. Device failure determination device.
PCT/JP1999/001753 1998-04-28 1999-04-02 Apparatus for detecting trouble with solenoid-operated device WO1999056139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99910824A EP0995997A4 (en) 1998-04-28 1999-04-02 Apparatus for detecting trouble with solenoid-operated device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/118219 1998-04-28
JP11821998A JPH11311651A (en) 1998-04-28 1998-04-28 Failure determining device for electromagnetic coil actuating device

Publications (1)

Publication Number Publication Date
WO1999056139A1 true WO1999056139A1 (en) 1999-11-04

Family

ID=14731178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001753 WO1999056139A1 (en) 1998-04-28 1999-04-02 Apparatus for detecting trouble with solenoid-operated device

Country Status (3)

Country Link
EP (1) EP0995997A4 (en)
JP (1) JPH11311651A (en)
WO (1) WO1999056139A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067380A (en) * 2003-08-25 2005-03-17 Honda Motor Co Ltd Breakdown detection method for electric power steering device
US8362319B2 (en) 2004-09-20 2013-01-29 Basf Plant Science Gmbh Arabidopsis genes encoding proteins involved in sugar and lipid metabolism and methods of use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508320B2 (en) * 1999-10-01 2010-07-21 株式会社ミクニ Failure determination device for electromagnetic coil operating device
DE102004015932A1 (en) 2004-04-01 2005-10-20 Moeller Gmbh Method and circuit arrangement for operating a magnetic drive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238272A (en) * 1991-01-22 1992-08-26 Nippon Inter Electronics Corp Power supply circuit with leakage current detecting function
JPH05185937A (en) * 1991-11-11 1993-07-27 Omron Corp Motor drive device for motor-driven power steering device
JPH0746885A (en) * 1993-07-30 1995-02-14 Nippon Carbureter Co Ltd Driving circuit of dc motor for modifying speed change ratio of variable speed drive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1001996B (en) * 1973-11-28 1976-04-30 Organizzazione Servizi Calcest CONCRETE INCORPORATING FULL BODIES OR SPHERICAL CABLE CABLE GLASS SPHERICAL
JPH0681551B2 (en) * 1984-10-16 1994-10-12 セイコ−電子工業株式会社 Rotation detection method for step motor
NL8600150A (en) * 1986-01-23 1987-08-17 Nederlanden Staat DEVICE FOR CONTROLLING CURRENT STRENGTH BY IMPEDANCE.
GB2273836A (en) * 1992-12-24 1994-06-29 Rover Group Fuel injector control circuit with voltage boost
DE4326942C2 (en) * 1993-08-11 1997-01-16 Veba Kraftwerke Ruhr Device and method for monitoring a tripping circuit of electrical equipment
GB2305560B (en) * 1995-09-19 2000-01-19 Gec Alsthom Ltd Switch circuit for a bistable magnetic actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238272A (en) * 1991-01-22 1992-08-26 Nippon Inter Electronics Corp Power supply circuit with leakage current detecting function
JPH05185937A (en) * 1991-11-11 1993-07-27 Omron Corp Motor drive device for motor-driven power steering device
JPH0746885A (en) * 1993-07-30 1995-02-14 Nippon Carbureter Co Ltd Driving circuit of dc motor for modifying speed change ratio of variable speed drive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0995997A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067380A (en) * 2003-08-25 2005-03-17 Honda Motor Co Ltd Breakdown detection method for electric power steering device
US8362319B2 (en) 2004-09-20 2013-01-29 Basf Plant Science Gmbh Arabidopsis genes encoding proteins involved in sugar and lipid metabolism and methods of use

Also Published As

Publication number Publication date
JPH11311651A (en) 1999-11-09
EP0995997A1 (en) 2000-04-26
EP0995997A4 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
JP5814892B2 (en) Current detection circuit and current control device using the same
US20080048630A1 (en) Switching power supply circuit
JP4618164B2 (en) Switch circuit
CN106982055B (en) Adjusting drive strength for driving transistor devices
US6603353B2 (en) Switching power amplifier
WO1999056139A1 (en) Apparatus for detecting trouble with solenoid-operated device
JP2007006670A (en) Inrush current preventing circuit
JP6312180B2 (en) Method and apparatus for detecting small currents and circuit breaker
TWI477073B (en) A switching circuit and a method for switchably connecting and input node and an output node
JP2003174795A (en) Field effect transistor fault detector
JP6985491B2 (en) How to convert level values in level transducers and vehicle controls
CN109951078B (en) Current detection device for bidirectional switch power supply
JP4599225B2 (en) Switching circuit
CN112671053A (en) Electronic circuit with dual voltage supply circuit
US20040183592A1 (en) Feedback network and amplifier and/or converter circuit with a feedback network
TWI288529B (en) Universal output driver
US11881850B2 (en) Driving apparatus
JP3298804B2 (en) Current output circuit
JP2000299925A (en) Power supply control device
CN109696937B (en) Overcurrent protection circuit with external resistor and current source generating circuit with external resistor
JP2010152596A (en) Current input and output device
JPH11252909A (en) Current detecting circuit
JP2005328632A (en) Overcurrent protection method and overcurrent protective device
JP3457151B2 (en) Coil drive circuit
JP3843855B2 (en) Current communication driver

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 09445583

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999910824

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999910824

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999910824

Country of ref document: EP