WO1999051917A1 - Circulating fluidized bed - Google Patents

Circulating fluidized bed Download PDF

Info

Publication number
WO1999051917A1
WO1999051917A1 PCT/JP1999/001663 JP9901663W WO9951917A1 WO 1999051917 A1 WO1999051917 A1 WO 1999051917A1 JP 9901663 W JP9901663 W JP 9901663W WO 9951917 A1 WO9951917 A1 WO 9951917A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
combustion
gas
circulating
bed
Prior art date
Application number
PCT/JP1999/001663
Other languages
French (fr)
Japanese (ja)
Inventor
Kanichi Ito
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to JP2000542609A priority Critical patent/JP3497822B2/en
Priority to AU30538/99A priority patent/AU3053899A/en
Publication of WO1999051917A1 publication Critical patent/WO1999051917A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/005Fluidised bed combustion apparatus comprising two or more beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/50Fluidised bed furnace
    • F23G2203/503Fluidised bed furnace with two or more fluidised beds

Definitions

  • the present invention relates to a fluidized bed used for heat treatment of solid waste such as garbage and waste plastic.
  • the temperature inside the furnace becomes as high as 130 to 140 ° C in order to melt and drop ash on the inner wall as described above.
  • Heat dissipation ⁇ It is necessary to prevent heat loss, so the construction of the furnace wall is expensive. There was a title.
  • FIG. 10 and 11 are views showing a conventional two-tower circulation type fluidized bed, wherein FIG. 10 is a schematic sectional view, and FIG. 11 is a view taken in the direction of arrow Z in FIG.
  • the two-column circulating fluidized bed is composed of a pyrolysis gasification fluidized bed 51 and a combustion fluidized bed 52 of the first class, which are connected by a pair of pipes 53, 54.
  • the amount of heat required for pyrolysis is supplied by circulating the heat medium in two towers.
  • the pyrolysis gas is taken out separately from the combustion exhaust gas.
  • the heat medium in the fluidized bed has a property that it is difficult to move in the horizontal direction, in this configuration, the heat medium is locally supplied by piping and tends to flow short-circuited as indicated by arrows 55 and 56.
  • it was necessary to increase the height H of the fluidized bed in order to cause a sufficient reaction in the fluidized bed, it was necessary to increase the height H of the fluidized bed, and there was a problem that not only the power loss of fluidization was increased but also the size of the apparatus was increased.
  • the generated HC1 is included in the pyrolysis gas.
  • High temperature corrosion occurs due to HC 1 gas in the equipment.
  • complicated pre-treatment was required, such as mechanical removal of vinyl chloride in advance or thermal decomposition separately after heating and melting to remove chlorine. Disclosure of the invention
  • the present invention solves the above-mentioned problems, that is, (1) a high calorie gas capable of rapidly heating a cycle-opening combustion melting furnace even with a low calorie and high moisture content refuse raw material can be obtained. (2)
  • the construction of a cyclone combustion and melting furnace with a high furnace temperature does not require expensive furnace walls. There is no danger of short-circuiting in the circulation of the heat medium as in the two-tower circulation system described in (1), and the equipment is small and compact with small motive power.
  • Waste plastic raw materials containing vinyl chloride etc. The purpose is to obtain a gas applicable to the cycling furnace and to avoid high-temperature corrosion of HC1 by HC1 in various devices after the melting furnace.
  • the invention according to claim 1 comprises forming a fluidized bed in a loop shape, and separating the middle of the looped fluidized bed with a moving bed and having a plurality of independent free boards. It is characterized in that the fluidized medium is circulated using the specific gravity difference between the moving bed and the fluidized bed as the driving force.
  • the fluidized bed in the loop fluidized bed according to the first aspect, is formed in an annular shape, and a cycle opening combustion melting is formed at the center of the annular fluidized bed. It is characterized by building a furnace.
  • the invention according to claim 3 is the annular fluidized bed according to claim 2, wherein the annular fluidized bed is partitioned by two moving beds to form a pyrolysis gasification fluidized bed and a combustion fluidized bed of a class.
  • the generated pyrolysis gas is supplied to the cycle-port combustion melting furnace in the center.
  • the invention according to claim 4 is characterized in that, in the annular fluidized bed according to claim 2, a heat transfer tube is provided in the moving bed.
  • the invention according to claim 5 provides the annular fluidized bed according to claim 4, wherein the annular fluidized bed is partitioned by two moving beds to form a dechlorination fluidized bed and a pyrolysis gasification fluidized bed. It is characterized in that the generated pyrolysis gas is supplied to the central cyclone combustion melting furnace.
  • FIG. 1 is an explanatory view of a system embodiment including a longitudinal sectional view of a circulating fluidized bed according to the present invention.
  • the circulating fluidized bed body is a Y-Y sectional view common to FIGS. 2 and 3.
  • FIG. 2 is a circulating fluidized bed according to the third aspect of the present invention, and is a view as seen from the arrow P in FIG.
  • FIG. 3 is a circulating fluidized bed according to the third aspect of the present invention, and is a sectional view taken along line XX of FIG.
  • FIG. 4 is a development sectional view of R_R of FIG.
  • FIG. 5 is an explanatory view of another system embodiment including a vertical sectional view of the circulating fluidized bed of the present invention.
  • the circulating fluidized bed main body is a Y-Y sectional view common to FIGS. 6 and 7.
  • FIG. 6 is a circulating fluidized bed according to the fourth and fifth aspects of the present invention, and is a view as seen from the arrow P in FIG.
  • FIG. 7 is a circulating fluidized bed according to the fourth and fifth aspects of the present invention, and is a cross-sectional view taken along line XX of FIG.
  • FIG. 8 is an R-R development sectional view of FIG.
  • FIG. 9 shows another embodiment of the gas dispersion plate and the gas chamber.
  • FIG. 10 is a longitudinal sectional view of a conventional two-column circulation type fluidized bed.
  • FIG. 11 is a view on arrow Z in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the pyrolysis gasification fluidized bed 1 and the combustion fluidized bed 2 are formed in an annular shape by an outer cylinder wall 3 and an inner cylinder wall 4.
  • the fluidized bed is partitioned by moving layers 9 and 10 composed of a partition 6 having an opening 5 at the upper end and a partition 8 having an opening 7 at the lower end.
  • non-oxidizing gas 13 such as recirculated pyrolysis gas 13 and combustion air 14 are supplied to 12 respectively
  • fluidized medium sand
  • a pyrolysis gasification fluidized bed 1 and a combustion fluidized bed 2 are formed.
  • the non-oxidizing gas refers to a gas containing no oxygen, such as recycle gas of the pyrolysis gases, refers to the this non-oxidizing gas containing no 0 2 (oxygen) combustion-supporting .
  • the composition of the pyrolysis gas is CO (—carbon oxide), H 2
  • the fluidized medium (sand) is the pyrolysis gasification fluidized bed 1 ⁇ the upper opening 5 ⁇ Moving bed 9—opening at lower end 7 ⁇ combustion fluidized bed 2 ⁇ opening at upper end 5 ⁇ moving bed 10 ⁇ opening at lower end 7 ⁇ pyrolysis gasifier 1 That is, if the upper surface 17 of the fluidized bed is higher than the lower surface 18 of the opening 5 at the upper end, the fluid medium overflows and circulates automatically in the direction of arrow 19, and the circulation speed is the width B of the moving bed.
  • the flow rate is regulated by the overflow height ⁇ .
  • the circulation speed can be controlled by adjusting the height H of the fluidized bed.
  • the flue gas 24 is taken out from the flue gas outlet 26 through the free board 25, but the two free boards 22 and 25 are separated by the partition walls 6 and 8 and the moving bed 9 and 10 and are independent.
  • the force opening Li one this good Una pyrolysis gas is about 5 0 ⁇ 0 k C a 1 Z m 3 This has been experimentally confirmed to be reached.
  • reference numeral 27 denotes a double discharge valve for removing incombustible residue, and the removed incombustible residue is sieved and the fluid medium (sand) under the sieve is returned to the fluidized bed again.
  • the inner cylinder wall 4 of the annular fluidized bed is extended slightly upward, and the combustion gas 21 is formed on the upper part of the cylinder as shown in FIGS.
  • the supply port 29 and the supply port 31 for the pressurized air 30 are provided tangentially, and an exhaust gas outlet 32 is provided at the center of the upper part.
  • the fluidized bed is constructed in an annular shape.
  • the fluidized bed in order to circulate the fluidized medium, is not limited to an annular shape, but is formed into an elliptical annular shape. Any shape is acceptable.
  • the fluidized medium is extruded and moved in a "place-and-place" manner, so there is no risk of short-circuiting as in the conventional two-column circulating type, and the height H of the fluidized bed is reduced. At least, the reaction is sufficiently promoted in the fluidized bed. Therefore, the circulating fluidized bed is not limited to heat treatment of solid waste, but can be applied to cracking of heavy oil, for example.
  • the dispersion plate 15 is formed into a V-shape, and the gas chamber 11 is set to 1 1 — 1 to 1 1 — Divide as shown in 4 and supply to the outer gas chambers 1 1 1 1 and 1 1-4 Supply the gas pressure of the gas pipe 13-1 to the inner gas chambers 1 1-2 and 1 1-13 It is advisable to raise the gas pressure higher than the gas pressure of the gas pipe 13-2 to agitate the fluidized bed as shown by arrow 44.
  • a gas cleaning device 43 for cleaning 4 A to remove H C 1 is provided. Air is supplied from the gas chamber 11 below the pyrolysis gasification fluidized bed 1 as fluidizing gas to perform pyrolysis at about 400 to 600 ° C by partial combustion. However, since the waste plastics as raw materials have a high calorific value, a high-strength port gas which can be sufficiently applied to the cycle-port combustion melting furnace 28 can be obtained. A part of the clean pyrolysis gas from the gas cleaning device 4 3 is recirculated and supplied as a fluidizing gas for the dechlorination fluidized bed 2 A from the gas chamber 12, and partial combustion as necessary At least, adjust to the appropriate temperature of 300 to 350 ° C for dechlorination.
  • waste plastic raw material including vinyl chloride is supplied from the raw material supply device 20 to the dechlorination fluidized bed 2A, The solids from which incombustibles have been removed from the double discharge valve 27 and from which chlorine has been removed are moved to the pyrolysis gasification fluidized bed 1 together with the fluidized medium and gasified.
  • HC 1 rich gas 24 A discharged from the gas outlet 26 A of the dechlorination fluidized bed 2 A is purified by the gas cleaning device 43, then combined with the pyrolysis gas 21, and then supplied from the supply port 29. Supplied to cyclone combustion melting furnace 28.
  • a plurality of fluidized beds having independent free boards are formed in a loop shape, and the fluidized medium is extruded in a "roll-to-roll type" so that each fluidized bed is extruded. Because the bed is circulated, there is no danger of short-circuiting and circulation as in the conventional two-column circulation system.If the height of the fluidized bed is reduced, the reaction is sufficiently promoted and the fluidization power is reduced.
  • the equipment can be made compact.
  • the cyclone combustion melting furnace is provided at the center of the annular fluidized bed and the outside is surrounded by the fluidized bed. Heat radiation from walls ⁇ No need for expensive furnace walls to prevent heat loss.
  • the gas calorie is high even in the low-calorie high-moisture content refuse, and the cycle requiring rapid high-temperature heating is required. It can be used as a fuel for the mouth combustion melting furnace. That is, it is possible to provide a “gasification and melting furnace” that can be used regardless of the calorific value of the raw material waste.
  • the fluidized bed temperature can be adjusted in the intermediate moving bed, a circulating fluidized bed composed of a plurality of fluidized beds having different temperatures can be constructed.
  • a gasification and fusion furnace that combines a pyrolysis gasification fluidized bed furnace and a cyclone combustion and melting furnace, which have many environmental advantages, is used.
  • the furnace can be made compact and its applicability can be greatly expanded.
  • the present invention relates to a fluidized bed used for heat treatment of solid waste such as municipal solid waste and waste plastic, and can be suitably used for waste treatment.

Abstract

A circulating fluidized bed for heat-treating solid waste such as of municipal waste and waste plastic. The circulating fluidized bed is of a loop type and is divided into fluidized beds (1, 2) partitioned at an intermediate portion by moving beds (9, 10) and having independent free boards (22, 25). In the circulating fluidized bed, a fluid medium is circulated by a driving force generated because of the difference in specific gravity between the moving beds (9, 10) and the fluidized beds (1, 2).

Description

明 細 書 循環流動層 技術分野  Description Circulating fluidized bed Technical field
この発明は、 都巿ごみや廃プラスチック等の固形廃棄物の熱処理など に用いる流動層に関する。 背景技術  The present invention relates to a fluidized bed used for heat treatment of solid waste such as garbage and waste plastic. Background art
都巿ごみや廃プラスチック等の固形廃棄物の熱処理においては、 本件 発明者が既に特公昭 6 2— 3 5 0 0 4号 (特許第 1 4 6 1 7 7 5号) In the case of heat treatment of solid waste such as garbage and waste plastic, the present inventor has already published Japanese Patent Publication No. 62-350004 (Patent No. 1461775).
「固形物の燃焼方法及びその装置」 に於て詳記したよ うに、 熱分解ガス 化流動層とサイクロン燃焼溶融炉との組み合わせ方式が両者の欠点を相 補う合理的な方式であり、 周知のよ うに近年この方式は 「ガス化溶融 炉」 と して実用化されつつある。 しかしながら従来のガス化溶融炉にお ける流動層は原料の部分燃焼によ り ガス化 (吸熱反応) に必要な熱量を 供給しているため、 この燃焼排ガスが熱分解ガスを稀釈してガスのカロ リーを低下せしめていた。 一方、 サイ ク ロ ン燃焼溶融炉は、 灰分を高温 溶融して強力な旋回流によって炉の内壁に捕捉する機能上、 急速な高温 加熱が必須条件となるが、 熱量の低い高含水率のごみ原料から得られた 低力口 リ一ガスではこのよ うな急速高温加熱が困難、 という問題があつ た。 As described in detail in “Method and Apparatus for Combustion of Solids”, the combination of a pyrolysis gasification fluidized bed and a cyclone combustion and melting furnace is a reasonable method to compensate for the disadvantages of both, and is well known. In recent years, this method has been put into practical use as a “gasification and melting furnace”. However, the fluidized bed in a conventional gasification and melting furnace supplies the heat required for gasification (endothermic reaction) by the partial combustion of the raw material. Calories were reduced. On the other hand, in the cyclone combustion melting furnace, rapid high-temperature heating is indispensable for the function of melting ash at a high temperature and capturing it on the inner wall of the furnace by a strong swirling flow, but waste with low heat content and high moisture content is required. There was a problem that such rapid high-temperature heating was difficult with low-strength raw gas obtained from raw materials.
またサイク口ン燃焼溶融炉では、 前記のよ うに内壁上で灰分を溶融滴 下せしめるために炉内の温度は 1 3 0 0〜 1 4 0 0 °Cの高温となるので、 炉壁からの放熱 · 熱損失を防止する必要上、 炉壁の構築が高価となる問 題があった。 Moreover, in the cycle-opening combustion melting furnace, the temperature inside the furnace becomes as high as 130 to 140 ° C in order to melt and drop ash on the inner wall as described above. Heat dissipation · It is necessary to prevent heat loss, so the construction of the furnace wall is expensive. There was a title.
一方、 原料ごみの熱量に拘らず高力口 リ一ガスを得る方式と しては公 知の 2塔循環式流動層がある。 図 1 0及び図 1 1 は従来の 2塔循環式流 動層を示す図であり、 図 1 0は概略断面図、 図 1 1は図 1 0の Z矢視図 である。 図 1 0及び図 1 1 に示すよ うに、 2塔循環式流動層は、 熱分解 ガス化流動層 5 1 とチヤ一類の燃焼流動層 5 2 とを襻掛けの配管 5 3 , 5 4で結び、 熱媒体の 2塔循環によって熱分解に必要な熱量を補給して. 熱分解ガスを燃焼排ガスと別個に取り出す方式である。 しかし流動層の 熱媒体は水平方向に移動し難い性質があるので、 この構成では熱媒体は 配管によ り局所的に供給され矢印 5 5 , 5 6に示すよ うに短絡して流れ る傾向となり、 流動層内で充分に反応を行わせるためには流動層高さ H を高くする必要を生じ、 流動化の動力損失が大きく なるのみならず装置 が大型化する、 という問題があった。  On the other hand, there is a well-known two-tower circulation type fluidized bed as a method to obtain high-strength port gas regardless of the calorific value of the raw material waste. 10 and 11 are views showing a conventional two-tower circulation type fluidized bed, wherein FIG. 10 is a schematic sectional view, and FIG. 11 is a view taken in the direction of arrow Z in FIG. As shown in Figs. 10 and 11, the two-column circulating fluidized bed is composed of a pyrolysis gasification fluidized bed 51 and a combustion fluidized bed 52 of the first class, which are connected by a pair of pipes 53, 54. In this method, the amount of heat required for pyrolysis is supplied by circulating the heat medium in two towers. The pyrolysis gas is taken out separately from the combustion exhaust gas. However, since the heat medium in the fluidized bed has a property that it is difficult to move in the horizontal direction, in this configuration, the heat medium is locally supplied by piping and tends to flow short-circuited as indicated by arrows 55 and 56. However, in order to cause a sufficient reaction in the fluidized bed, it was necessary to increase the height H of the fluidized bed, and there was a problem that not only the power loss of fluidization was increased but also the size of the apparatus was increased.
さ らにまた、 塩化ビニールなどを含む廃プラスチックの熱分解ガス化 においては、 発生する H C 1 が熱分解ガスに含まれる為、 これを高温燃 焼した場合にサイク口ン燃焼溶融炉以降の諸装置に H C 1 ガスによる高 温腐食を生ずる。 これを防ぐため予め塩化ビニール類を機械的に除いた り、 別途加熱溶融して塩素を除去してから熱分解するなど、 煩雑な事前 処理を必要とする問題があった。 発明の開示  Furthermore, in the pyrolysis gasification of waste plastics containing vinyl chloride, etc., the generated HC1 is included in the pyrolysis gas. High temperature corrosion occurs due to HC 1 gas in the equipment. In order to prevent this, there was a problem that complicated pre-treatment was required, such as mechanical removal of vinyl chloride in advance or thermal decomposition separately after heating and melting to remove chlorine. Disclosure of the invention
本発明は上述の諸課題を解決するもので、 即ち、 ( 1 ) 熱量の低い高 含水率のごみ原料でもサイク口ン燃焼溶融炉の急速高温加熱を可能とす る高カロ リーガスが得られること、 ( 2 ) 炉内温度の高いサイクロン燃 焼溶融炉の構築にあたって高価な炉壁を必要と しないこと、 ( 3 ) 従来 の 2塔循環式のように熱媒体の循環が短絡する恐れがなく、 低層高で流 動化動力が少なく装置を小型コンパク ト化すること、 ( 4 ) 塩化ビニー ルなどを含む廃プラスチック原料でもサイク口ン燃焼溶融炉に適用可能 なガスが得られ、 溶融炉以降の諸装置の H C 1 による高温腐食を避けら れること、 等を目的と している。 The present invention solves the above-mentioned problems, that is, (1) a high calorie gas capable of rapidly heating a cycle-opening combustion melting furnace even with a low calorie and high moisture content refuse raw material can be obtained. (2) The construction of a cyclone combustion and melting furnace with a high furnace temperature does not require expensive furnace walls. There is no danger of short-circuiting in the circulation of the heat medium as in the two-tower circulation system described in (1), and the equipment is small and compact with small motive power. (4) Waste plastic raw materials containing vinyl chloride etc. The purpose is to obtain a gas applicable to the cycling furnace and to avoid high-temperature corrosion of HC1 by HC1 in various devices after the melting furnace.
上記目的を達成するため請求項 1 に記載の発明は、 流動層をループ状 に形成すると共に、 該ループ状流動層の中間を移動層で仕切って独立し たフ リ一ボー ドを有する複数個の流動層に分割し、 移動層と流動層との 比重差を駆動力と して流動媒体を循環せしめることを特徴とする。  In order to achieve the above object, the invention according to claim 1 comprises forming a fluidized bed in a loop shape, and separating the middle of the looped fluidized bed with a moving bed and having a plurality of independent free boards. It is characterized in that the fluidized medium is circulated using the specific gravity difference between the moving bed and the fluidized bed as the driving force.
また、 請求項 2に記載の発明は請求項 1 に記載のループ状流動層にお いて、 流動層を円環状に形成すると共に、 該円環状流動層の中心部にサ イ ク 口ン燃焼溶融炉を構築することを特徴とする。  According to a second aspect of the present invention, in the loop fluidized bed according to the first aspect, the fluidized bed is formed in an annular shape, and a cycle opening combustion melting is formed at the center of the annular fluidized bed. It is characterized by building a furnace.
また、 請求項 3に記載の発明は請求項 2に記載の円環状流動層におい て、 円環状流動層を 2つの移動層で仕切って熱分解ガス化流動層とチヤ 一類の燃焼流動層を構築すると共に、 生成した熱分解ガスを中心部のサ イ ク 口ン燃焼溶融炉に供給することを特徴とする。  The invention according to claim 3 is the annular fluidized bed according to claim 2, wherein the annular fluidized bed is partitioned by two moving beds to form a pyrolysis gasification fluidized bed and a combustion fluidized bed of a class. In addition, the generated pyrolysis gas is supplied to the cycle-port combustion melting furnace in the center.
また、 請求項 4に記載の発明は請求項 2に記載の円環状流動層におい て、 移動層内に伝熱管を設けたことを特徴とする。  The invention according to claim 4 is characterized in that, in the annular fluidized bed according to claim 2, a heat transfer tube is provided in the moving bed.
また、 請求項 5に記載の発明は請求項 4に記載の円環状流動層におい て、 円環状流動層を 2つの移動層で仕切って脱塩素流動層と熱分解ガス 化流動層を構築すると共に、 生成した熱分解ガスを中心部のサイクロン 燃焼溶融炉に供給することを特徴とする。 図面の簡単な説明  The invention according to claim 5 provides the annular fluidized bed according to claim 4, wherein the annular fluidized bed is partitioned by two moving beds to form a dechlorination fluidized bed and a pyrolysis gasification fluidized bed. It is characterized in that the generated pyrolysis gas is supplied to the central cyclone combustion melting furnace. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の循環流動層の縦断面図を含むシステム実施例の説明図 で、 循環流動層本体は図 2及び図 3に共通な Y— Y断面図である。 FIG. 1 is an explanatory view of a system embodiment including a longitudinal sectional view of a circulating fluidized bed according to the present invention. The circulating fluidized bed body is a Y-Y sectional view common to FIGS. 2 and 3.
図 2は請求項 3に記載の発明に係わる循環流動層で、 図 1の P矢視図 である。  FIG. 2 is a circulating fluidized bed according to the third aspect of the present invention, and is a view as seen from the arrow P in FIG.
図 3は請求項 3に記載の発明に係わる循環流動層で、 図 1 の X— X断 面図である。  FIG. 3 is a circulating fluidized bed according to the third aspect of the present invention, and is a sectional view taken along line XX of FIG.
図 4は図 3 の R _ R展開断面図である。  FIG. 4 is a development sectional view of R_R of FIG.
図 5は本発明の循環流動層の縦断面図を含む他のシステム実施例の説 明図で、 循環流動層本体は図 6及び図 7に共通な Y— Y断面図である。 図 6は請求項 4、 5に記載の発明に係わる循環流動層で、 図 5 の P矢 視図である。  FIG. 5 is an explanatory view of another system embodiment including a vertical sectional view of the circulating fluidized bed of the present invention. The circulating fluidized bed main body is a Y-Y sectional view common to FIGS. 6 and 7. FIG. 6 is a circulating fluidized bed according to the fourth and fifth aspects of the present invention, and is a view as seen from the arrow P in FIG.
図 7は請求項 4、 5に記載の発明に係わる循環流動層で、 図 5 の X— X断面図である。  7 is a circulating fluidized bed according to the fourth and fifth aspects of the present invention, and is a cross-sectional view taken along line XX of FIG.
図 8は図 7の R— R展開断面図である。  FIG. 8 is an R-R development sectional view of FIG.
図 9はガス分散板及びガス室の他の実施例である。  FIG. 9 shows another embodiment of the gas dispersion plate and the gas chamber.
図 1 0は従来の 2塔循環式流動層の縦断面図である。  FIG. 10 is a longitudinal sectional view of a conventional two-column circulation type fluidized bed.
図 1 1は図 1 0の Z矢視図である。 発明を実施するための最良の形態  FIG. 11 is a view on arrow Z in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態例を図面に基づいて説明する。 図 1乃至図 9において、 同一の符号を付した部分は同一または相当部分を示す。 図 1〜図 4によって請求項 1 , 3 の実施形態を説明する。 図 1〜図 4 に示すように、 本発明の循環流動層においては、 熱分解ガス化流動層 1 と燃焼流動層 2は外筒壁 3 と内筒壁 4 とにより 円環状に構築され、 両流 動層は上端に開口 5を有する隔壁 6 と下端に開口 7を有する隔壁 8 とで 構成された移動層 9, 1 0によって仕切られている。 下部のガス室 1 1, 1 2にそれぞれ熱分解ガスの再循環ガスなどの非酸化性ガス 1 3、 及び 燃焼用空気 1 4を供給すると、 それぞれガス分散板 1 5 , 1 6を経て流 動媒体 (砂) を流動化し、 熱分解ガス化流動層 1 と燃焼流動層 2が形成 される。 ここで、 非酸化性ガス とは熱分解ガスの再循環ガスなどの酸素 を含まないガスのことをいい、 支燃性の 0 2 (酸素) を含まない非酸化 性のガスのこ とをいう。 熱分解ガスの組成は C O (—酸化炭素) 、 H 2 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 9, the same reference numerals denote the same or corresponding parts. The first and third embodiments will be described with reference to FIGS. As shown in FIGS. 1 to 4, in the circulating fluidized bed of the present invention, the pyrolysis gasification fluidized bed 1 and the combustion fluidized bed 2 are formed in an annular shape by an outer cylinder wall 3 and an inner cylinder wall 4. The fluidized bed is partitioned by moving layers 9 and 10 composed of a partition 6 having an opening 5 at the upper end and a partition 8 having an opening 7 at the lower end. Lower gas chamber 1 1, When non-oxidizing gas 13 such as recirculated pyrolysis gas 13 and combustion air 14 are supplied to 12 respectively, fluidized medium (sand) is fluidized through gas dispersion plates 15 and 16 respectively. Then, a pyrolysis gasification fluidized bed 1 and a combustion fluidized bed 2 are formed. Here, the non-oxidizing gas refers to a gas containing no oxygen, such as recycle gas of the pyrolysis gases, refers to the this non-oxidizing gas containing no 0 2 (oxygen) combustion-supporting . The composition of the pyrolysis gas is CO (—carbon oxide), H 2
(水素) 、 C〇2 (炭酸ガス) 、 C H (メタン) 、 その他の可燃性ガ スである。 流動層 1, 2の比重は移動層 9, 1 0の比重よ り軽いのでこ の比重差が駆動力となって、 流動媒体 (砂) は熱分解ガス化流動層 1→ 上端の開口 5→移動層 9—下端の開口 7→燃焼流動層 2→上端の開口 5 →移動層 1 0→下端の開口 7→熱分解ガス化炉 1の順で逐次移動する。 即ち流動層の上面 1 7が上端の開口 5の下面 1 8 よ り高ければ、 流動媒 体は溢流して矢印 1 9の方向に自動的に循環し、 しかもこの循環速度は 移動層の幅 B と下端の開口の幅 Sが充分大きければ溢流高さ Δで律則さ れ、 換言すれば流動層の高さ Hを調節することによ り循環速度を制御す ることができる。 原料供給装置 2 0から供給されたごみ原料を無酸素状 態の熱分解ガス化流動層 1 において 5 0 0〜 7 0 0 °C程度で熱分解する と、 生成した熱分解ガス 2 1は灰分と共にフリ一ボー ド 2 2を経て熱分 解ガス出口 2 3から取り 出され、 また熱分解で生成したチヤ一類は流動 媒体と共に燃焼流動層 2に移動して燃焼し、 熱媒体を加熱昇温させて熱 分解 (吸熱反応) に必要な熱量を与える。 燃焼排ガス 2 4はフリーボー ド 2 5を経て燃焼排ガス出口 2 6から取り出されるが、 両フリーボード 2 2 , 2 5は隔壁 6 , 8 と移動層 9, 1 0 とで仕切られ独立しているの で、 熱分解ガス 2 1は燃焼排ガス 2 4 と混ざり合って稀釈されることが なく、 このよ うな熱分解ガスの力口 リ一は約 5 0 ◦ 0 k C a 1 Z m 3 に 達することが実験的に確認されている。 尚、 図中 2 7は不燃物残滓取り 出し用の二重排出弁を示し、 取り出された不燃物残滓は篩分して篩下の 流動媒体 (砂) は再び流動層に戻される。 (Hydrogen), C_〇 2 (carbon dioxide), CH (methane), and other flammable gases. Since the specific gravity of the fluidized beds 1 and 2 is lighter than that of the moving beds 9 and 10, this specific gravity difference becomes the driving force, and the fluidized medium (sand) is the pyrolysis gasification fluidized bed 1 → the upper opening 5 → Moving bed 9—opening at lower end 7 → combustion fluidized bed 2 → opening at upper end 5 → moving bed 10 → opening at lower end 7 → pyrolysis gasifier 1 That is, if the upper surface 17 of the fluidized bed is higher than the lower surface 18 of the opening 5 at the upper end, the fluid medium overflows and circulates automatically in the direction of arrow 19, and the circulation speed is the width B of the moving bed. If the width S of the opening at the lower end is sufficiently large, the flow rate is regulated by the overflow height Δ. In other words, the circulation speed can be controlled by adjusting the height H of the fluidized bed. When the refuse raw material supplied from the raw material supply device 20 is thermally decomposed in an oxygen-free state pyrolysis gasification fluidized bed 1 at about 500 to 700 ° C, the generated pyrolysis gas 21 becomes ash content. Along with the free-decomposition gas outlet 23 via the free board 22.Chars generated by the pyrolysis move to the combustion fluidized bed 2 together with the fluidized medium and burn, and the heating medium is heated and heated. This gives the amount of heat required for thermal decomposition (endothermic reaction). The flue gas 24 is taken out from the flue gas outlet 26 through the free board 25, but the two free boards 22 and 25 are separated by the partition walls 6 and 8 and the moving bed 9 and 10 and are independent. in, without pyrolysis gas 2 1 is diluted mixed up with the flue gas 2 4, the force opening Li one this good Una pyrolysis gas is about 5 0 ◦ 0 k C a 1 Z m 3 This has been experimentally confirmed to be reached. In the figure, reference numeral 27 denotes a double discharge valve for removing incombustible residue, and the removed incombustible residue is sieved and the fluid medium (sand) under the sieve is returned to the fluidized bed again.
次に請求項 2の実施形態を説明すると、 上記円環状流動層の内筒壁 4 を若干上方に延長し、 この円筒上部に、 図 1及び図 2に示すよ うに、 燃 焼ガス 2 1の供給口 2 9及び加圧空気 3 0の供給口 3 1 を接線方向に設 けると共に、 上部中央に排ガス出口 3 2を設けてサイクロン燃焼溶融炉 Next, a second embodiment of the present invention will be described. The inner cylinder wall 4 of the annular fluidized bed is extended slightly upward, and the combustion gas 21 is formed on the upper part of the cylinder as shown in FIGS. The supply port 29 and the supply port 31 for the pressurized air 30 are provided tangentially, and an exhaust gas outlet 32 is provided at the center of the upper part.
2 8を構築する。 加圧空気 3 0によ り旋回流 3 3を作って熱分解ガス 2 1 を高負荷燃焼させて 1 3 0 0〜 1 4 0 0 °Cに急速加熱すると、 灰分は 溶融してサイク口ン内壁に捕捉され、 点線矢印 3 4に示すよ うな溶融ス ラグとなって流下し、 排出口 3 5を経て水室 3 6で冷却された後、 コン ベア 3 7、 二重排出弁 3 8を経て固体スラグと して外部に取り出される c 排ガス出口 3 2から排出したサイク ロン燃焼溶融炉の高温燃焼排ガス 3 9は燃焼流動層の燃焼排ガス 2 4 と合流 (図示せず) してボイラー 4 0 で廃熱を回収利用され、 ガス処理設備 4 1 を経て外部に放出される。 尚、 公知の特公昭 6 2— 3 5 0 0 4号と同様に、 熱分解ガス 2 1 は加圧空気Build 2 8 When swirling flow 33 is created by pressurized air 30 and pyrolysis gas 21 is burned at a high load and rapidly heated to 130 to 140 ° C, the ash melts and the After being caught by the inner wall and flowing down as a molten slag as shown by the dotted arrow 34, it is cooled in the water chamber 36 through the discharge port 35, and then the conveyor 37, the double discharge valve 38 is turned on. boiler 4 0 hot flue gas 3 9 of cyclone combustion melting furnace discharged from c exhaust gas outlet 3 2 is taken out as a solid slug merges with flue gas 2 4 combustion fluidized bed (not shown) through The waste heat is recovered and used in the gas treatment facility, and is discharged outside through the gas treatment facility 41. In addition, as in the well-known Japanese Patent Publication No. 62-350004, the pyrolysis gas 21 is compressed air.
3 0によってェジェクター方式で供給すると一層よい。 It is even better to supply in an ejector system by 30.
上記実施形態では流動層を円環状に構築しているが、 以上の説明から 明らかなよ うに、 流動媒体を循環せしめるためには流動層は円環状に限 らず楕円環状にするなど、 要するにループ状であればよい。 このよ う に 構成された循環流動層においては流動媒体は 「ところてん式」 に押し出 されて移動するので、 従来の 2塔循環式のよ うに短絡する恐れはなく、 流動層の高さ Hが小さく とも流動層内で充分に反応が促進される。 従つ て本循環流動層は単に固形廃棄物の熱処理に限らず、 例えば重質油のク ラッキングなどにも適用できることは勿論である。 尚、 流動層内での原料や熱媒体の混合を促進する目的で、 例えば図 9 に示すよ うに分散板 1 5を V型にすると共に、 ガス室 1 1 を 1 1 — 1〜 1 1 — 4のよ うに分割し、 外側のガス室 1 1 一 1 と 1 1 — 4に供給する ガス管 1 3— 1のガス圧力を、 内側のガス室 1 1 — 2 と 1 1 一 3に供給 するガス管 1 3— 2のガス圧力よ り も高く して、 流動層を矢印 4 4に示 すよ うに攪拌すると良い。 In the above embodiment, the fluidized bed is constructed in an annular shape. However, as is clear from the above description, in order to circulate the fluidized medium, the fluidized bed is not limited to an annular shape, but is formed into an elliptical annular shape. Any shape is acceptable. In the circulating fluidized bed configured as described above, the fluidized medium is extruded and moved in a "place-and-place" manner, so there is no risk of short-circuiting as in the conventional two-column circulating type, and the height H of the fluidized bed is reduced. At least, the reaction is sufficiently promoted in the fluidized bed. Therefore, the circulating fluidized bed is not limited to heat treatment of solid waste, but can be applied to cracking of heavy oil, for example. For the purpose of promoting the mixing of the raw material and the heat medium in the fluidized bed, for example, as shown in FIG. 9, the dispersion plate 15 is formed into a V-shape, and the gas chamber 11 is set to 1 1 — 1 to 1 1 — Divide as shown in 4 and supply to the outer gas chambers 1 1 1 1 and 1 1-4 Supply the gas pressure of the gas pipe 13-1 to the inner gas chambers 1 1-2 and 1 1-13 It is advisable to raise the gas pressure higher than the gas pressure of the gas pipe 13-2 to agitate the fluidized bed as shown by arrow 44.
次に、 図 5〜図 8によって請求項 4, 5 の実施形態を説明する。  Next, embodiments of claims 4 and 5 will be described with reference to FIGS.
本構成は図 1 に示す熱分解ガス化流動層 1 と燃焼流動層 2の位置をそ れぞれ脱塩素流動層 2 Aと熱分解ガス化流動層 1 に置き換えたものであ り、 更に、 熱分解ガス化流動層 1の後段の移動層 9の中に流動媒体冷却 用の熱交換器 4 2を設けて流動媒体を脱塩素の適温約 3 0 0〜3 5 0 °C に調整すると共に、 脱塩素流動層 2 Aから排出する H C 1 リ ッチガス 2 In this configuration, the positions of the pyrolysis gasification fluidized bed 1 and the combustion fluidized bed 2 shown in Fig. 1 are replaced by a dechlorination fluidized bed 2A and a pyrolysis gasification fluidized bed 1, respectively. A heat exchanger 42 for cooling the fluidized medium is provided in the moving bed 9 after the pyrolysis gasification fluidized bed 1 to adjust the fluidized medium to an appropriate temperature of about 300 to 350 ° C for dechlorination. HC discharged from dechlorination fluidized bed 2 A 1 Rich gas 2
4 Aを洗浄して H C 1 を除去するガス洗浄装置 4 3を設けてある。 また、 熱分解ガス化流動層 1の下部のガス室 1 1からは流動化ガスと して空気 を供給して部分燃焼によ り 4 0 0〜 6 0 0 °C程度で熱分解を行うが、 原 料の廃プラスチックは熱量が高いのでサイク 口ン燃焼溶融炉 2 8に充分 適用可能な高力口 リ一ガスが得られる。 ガス洗浄装置 4 3から出たク リ 一ンな熱分解ガスの一部を再循環して脱塩素流動層 2 Aの流動化ガスと してガス室 1 2から供給し、 必要に応じ部分燃焼せしめて脱塩素の適温 3 0 0〜 3 5 0 °Cに調整する。 A gas cleaning device 43 for cleaning 4 A to remove H C 1 is provided. Air is supplied from the gas chamber 11 below the pyrolysis gasification fluidized bed 1 as fluidizing gas to perform pyrolysis at about 400 to 600 ° C by partial combustion. However, since the waste plastics as raw materials have a high calorific value, a high-strength port gas which can be sufficiently applied to the cycle-port combustion melting furnace 28 can be obtained. A part of the clean pyrolysis gas from the gas cleaning device 4 3 is recirculated and supplied as a fluidizing gas for the dechlorination fluidized bed 2 A from the gas chamber 12, and partial combustion as necessary At least, adjust to the appropriate temperature of 300 to 350 ° C for dechlorination.
請求項 4 , 5の実施形態は以上の違いを除き、 フリーボード 2 2 と 2 The embodiments of claims 4 and 5 except for the above differences,
5 Aが独立した状態で流動媒体が矢印 1 9 の方向に循環するメ力ニズム や、 サイクロン燃焼溶融炉 2 8以降の構成 · 作用等は全て請求項 1〜 3 の実施形態で説明した内容と同様である。 即ち塩化ビニール等を含む廃 プラスチック原料を原料供給装置 2 0から脱塩素流動層 2 Aに供給し、 不燃物を二重排出弁 2 7から除去し且つ塩素を離脱した固形分は、 流動 媒体と共に熱分解ガス化流動層 1 に移動してガス化される。 脱塩素流動 層 2 Aのガス出口 2 6 Aから排出する H C 1 リ ツチガス 2 4 Aは、 ガス 洗浄装置 4 3で浄化してから、 熱分解ガス 2 1 と合流せしめた後に供給 口 2 9からサイクロン燃焼溶融炉 2 8に供給する。 The mechanism that the fluid medium circulates in the direction of arrow 19 while 5 A is independent, the configuration and operation of the cyclone combustion melting furnace 28 and thereafter are all the same as those described in the embodiments of claims 1 to 3. The same is true. That is, waste plastic raw material including vinyl chloride is supplied from the raw material supply device 20 to the dechlorination fluidized bed 2A, The solids from which incombustibles have been removed from the double discharge valve 27 and from which chlorine has been removed are moved to the pyrolysis gasification fluidized bed 1 together with the fluidized medium and gasified. HC 1 rich gas 24 A discharged from the gas outlet 26 A of the dechlorination fluidized bed 2 A is purified by the gas cleaning device 43, then combined with the pyrolysis gas 21, and then supplied from the supply port 29. Supplied to cyclone combustion melting furnace 28.
従来の廃プラスチックの脱塩素処理は、 熱分解を可及的最小限に止め 且つ脱塩素を可能とする最適温度と して 3 0 0〜 3 5 0 °Cに溶融して行 われているが、 溶融プラスチックは熱伝導が悪いので短時間でこの適温 に均等加熱することは容易ではなかった。 本法では、 溶融プラスチック が流動媒体 (砂) に薄く付着して比表面積が極めて大き く なることや流 動層特有の物質破砕作用と攪拌効果とが相俟ってプラスチックの均等加 熱が容易となるので、 比較的短時間で塩素が離脱し、 換言すれば装置の 小形化が可能となる。 尚、 脱塩素流動層 2 Aでは H C 1 の他に若干の熱 分解ガスが発生するが、 ガス洗浄後に熱分解ガス 2 1 と合流してサイク 口ン燃焼溶融炉 2 8に供給されるので無駄にはならない。  Conventional dechlorination of waste plastics has been carried out by melting at 300 to 350 ° C as the optimum temperature for minimizing thermal decomposition as much as possible and enabling dechlorination. However, it was not easy to uniformly heat to a suitable temperature in a short time because the molten plastic had poor heat conduction. In this method, uniform heating of the plastic is facilitated by the fact that the molten plastic adheres thinly to the fluid medium (sand) and the specific surface area becomes extremely large, and the material crushing action peculiar to the fluidized bed and the stirring effect are combined. Therefore, chlorine is released in a relatively short time, in other words, the size of the apparatus can be reduced. In the dechlorinated fluidized bed 2A, a small amount of pyrolysis gas is generated in addition to HC1, but is combined with the pyrolysis gas 21 after gas cleaning and supplied to the cycle-port combustion melting furnace 28. It does not become.
以上説明したように請求項 1 に記載の発明によれば、 独立したフリー ボー ドを有する複数個の流動層がループ状に形成され、 流動媒体が 「と ころてん式」 に押し出されて各流動層を循環するので、 従来の 2塔循環 式のように短絡して循環する恐れがなくなり、 流動層の高さを小さ く し ても充分に反応が促進され、 流動化動力が少なく なるのみならず装置を 小型コンパク ト化できる。  As described above, according to the first aspect of the present invention, a plurality of fluidized beds having independent free boards are formed in a loop shape, and the fluidized medium is extruded in a "roll-to-roll type" so that each fluidized bed is extruded. Because the bed is circulated, there is no danger of short-circuiting and circulation as in the conventional two-column circulation system.If the height of the fluidized bed is reduced, the reaction is sufficiently promoted and the fluidization power is reduced. The equipment can be made compact.
また、 請求項 2に記載の発明によれば、 サイクロン燃焼溶融炉は、 円 環状流動層の中心に設けられて外側が流動層で囲まれているので、 炉内 温度が高いにも拘わらず炉壁からの放熱 · 熱損失を防止するための高価 な炉壁を必要と しない。 また、 請求項 3に記載の発明によれば、 熱分解ガスは燃焼排ガスによ つて稀釈されないので、 熱量の低い高含水率のごみでもガスカロ リーが 高く なり、 急速な高温加熱を必要とするサイク 口ン燃焼溶融炉の燃料と して使用できる。 即ち、 原料ごみの熱量如何に拘わらず使用可能な 「ガ ス化溶融炉」 を提供できる。 According to the second aspect of the present invention, the cyclone combustion melting furnace is provided at the center of the annular fluidized bed and the outside is surrounded by the fluidized bed. Heat radiation from walls · No need for expensive furnace walls to prevent heat loss. According to the third aspect of the present invention, since the pyrolysis gas is not diluted by the combustion exhaust gas, the gas calorie is high even in the low-calorie high-moisture content refuse, and the cycle requiring rapid high-temperature heating is required. It can be used as a fuel for the mouth combustion melting furnace. That is, it is possible to provide a “gasification and melting furnace” that can be used regardless of the calorific value of the raw material waste.
また、 請求項 4に記載の発明によれば、 中間の移動層で流動層温度を 調整できるので、 温度の異なる複数個の流動層からなる循環流動層を構 築できる。  According to the fourth aspect of the present invention, since the fluidized bed temperature can be adjusted in the intermediate moving bed, a circulating fluidized bed composed of a plurality of fluidized beds having different temperatures can be constructed.
また、 請求項 5に記載の発明によれば、 流動層の特性から塩化ビニー ルなどを含む廃プラスチックの脱塩素が比較的短時間で可能となり、 サ イク口ン燃焼溶融炉以降の諸装置の H C 1 ガスによる高温腐食を防ぐこ とができる。  Further, according to the invention as set forth in claim 5, it is possible to dechlorinate waste plastics containing vinyl chloride and the like in a relatively short time due to the characteristics of the fluidized bed. High temperature corrosion due to HC 1 gas can be prevented.
以上で明らかなよ うに本発明によれば、 都市ごみや廃プラスチック等 の熱処理において、 環境問題上多く の利点を有する熱分解ガス化流動層 炉とサイクロン燃焼溶融炉とを組み合わせた 「ガス化溶融炉」 をコンパ ク トに構成し得ると共に、 その適用可能範囲を大幅に拡大できる。 産業上の利用の可能性  As is clear from the above, according to the present invention, in the heat treatment of municipal solid waste and waste plastics, etc., a gasification and fusion furnace that combines a pyrolysis gasification fluidized bed furnace and a cyclone combustion and melting furnace, which have many environmental advantages, is used. The furnace can be made compact and its applicability can be greatly expanded. Industrial applicability
本発明は、 都市ごみや廃プラスチック等の固形廃棄物の熱処理などに 用いる流動層に関するものであり、 廃棄物処理に好適に利用可能である  TECHNICAL FIELD The present invention relates to a fluidized bed used for heat treatment of solid waste such as municipal solid waste and waste plastic, and can be suitably used for waste treatment.

Claims

請求の範囲 The scope of the claims
1 . 流動層をループ状に形成すると共に、 該ループ状流動層の中間を移 動層で仕切って独立したフリ一ボー ドを有する複数個の流動層に分割し. 移動層と流動層との比重差を駆動力と して流動媒体を循環せしめること を特徴とする循環流動層。 1. A fluidized bed is formed in a loop shape, and the middle of the loop-shaped fluidized bed is divided by a moving bed into a plurality of fluidized beds having independent free boards. A circulating fluidized bed characterized in that a fluid medium is circulated using a specific gravity difference as a driving force.
2 . 流動層を円環状に形成すると共に、 該円環状流動層の中心部にサイ ク口ン燃焼溶融炉を構築したことを特徴とする請求項 1 に記載の循環流 2. The circulating flow according to claim 1, wherein the fluidized bed is formed in an annular shape, and a cycle-port combustion melting furnace is constructed at the center of the annular fluidized bed.
3 . 円環状流動層を 2つの移動層で仕切って熱分解ガス化流動層とチヤ —類の燃焼流動層を構築すると共に、 生成した熱分解ガスを中心部のサ イク口ン燃焼溶融炉に供給することを特徴とする請求項 2に記載の循澴 流動層。 3. The annular fluidized bed is separated by two moving beds to form a pyrolysis gasification fluidized bed and a combustion fluidized bed of charcoal type, and the generated pyrolysis gas is sent to the central cycle combustion combustion furnace. 3. The circulating fluidized bed according to claim 2, wherein the fluidized bed is supplied.
4 . 移動層内に伝熱管を設けたことを特徴とする請求項 2に記載の循環 流動層。 4. The circulating fluidized bed according to claim 2, wherein a heat transfer tube is provided in the moving bed.
5 . 円環状流動層を 2つの移動層で仕切って脱塩素流動層と熱分解ガス 化流動層を構築すると共に、 生成した熱分解ガスを中心部のサイク ロン 燃焼溶融炉に供給することを特徴とする請求項 4に記載の循環流動層。 5. The annular fluidized bed is divided into two moving beds to form a dechlorination fluidized bed and a pyrolysis gasification fluidized bed, and the generated pyrolysis gas is supplied to the central cyclone combustion and melting furnace. The circulating fluidized bed according to claim 4, wherein
PCT/JP1999/001663 1998-03-31 1999-03-31 Circulating fluidized bed WO1999051917A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000542609A JP3497822B2 (en) 1998-03-31 1999-03-31 Circulating fluidized bed
AU30538/99A AU3053899A (en) 1998-03-31 1999-03-31 Circulating fluidized bed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12521098 1998-03-31
JP10/125210 1998-03-31

Publications (1)

Publication Number Publication Date
WO1999051917A1 true WO1999051917A1 (en) 1999-10-14

Family

ID=14904615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001663 WO1999051917A1 (en) 1998-03-31 1999-03-31 Circulating fluidized bed

Country Status (3)

Country Link
JP (1) JP3497822B2 (en)
AU (1) AU3053899A (en)
WO (1) WO1999051917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2978821B1 (en) * 2013-03-28 2020-11-11 Carbon Gold Limited A method for producing biochar

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175676B1 (en) * 2019-02-20 2020-11-06 주식회사 대경에스코 Fluidized bed pyrolysis apparatus and a pyloysis method of organic material using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135467B2 (en) * 1972-12-14 1976-10-02
JPS51130079A (en) * 1975-05-06 1976-11-12 Agency Of Ind Science & Technol Method and apparatus for fluidized thermal decomposition of organic so lid city wastes
JPS5330480A (en) * 1976-09-01 1978-03-22 Ishigaki Mech Ind Recycling fluid layer thermocracking furnace
JPS5839194B2 (en) * 1975-04-14 1983-08-27 カブシキガイシヤ エバラセイサクシヨ Yuukibutsu no Netsubunkaihouhou Oyobi Netsubunkaisouchi
JPS6235004B2 (en) * 1979-06-20 1987-07-30 Ebara Mfg
JPH102543A (en) * 1996-06-11 1998-01-06 Ebara Corp Fluidized bed gasifying combustion furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135467B2 (en) * 1972-12-14 1976-10-02
JPS5839194B2 (en) * 1975-04-14 1983-08-27 カブシキガイシヤ エバラセイサクシヨ Yuukibutsu no Netsubunkaihouhou Oyobi Netsubunkaisouchi
JPS51130079A (en) * 1975-05-06 1976-11-12 Agency Of Ind Science & Technol Method and apparatus for fluidized thermal decomposition of organic so lid city wastes
JPS5330480A (en) * 1976-09-01 1978-03-22 Ishigaki Mech Ind Recycling fluid layer thermocracking furnace
JPS6235004B2 (en) * 1979-06-20 1987-07-30 Ebara Mfg
JPH102543A (en) * 1996-06-11 1998-01-06 Ebara Corp Fluidized bed gasifying combustion furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2978821B1 (en) * 2013-03-28 2020-11-11 Carbon Gold Limited A method for producing biochar

Also Published As

Publication number Publication date
JP3497822B2 (en) 2004-02-16
AU3053899A (en) 1999-10-25

Similar Documents

Publication Publication Date Title
EP1286113B1 (en) Apparatus for fluidized-bed gasification and melt combustion
CA2430999C (en) Process and gas generator for generating fuel gas
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
JP4243919B2 (en) Fuel gasification system
KR100264723B1 (en) Method and apparatus for producing superheated steam using heat generated through incineration of wastes
WO2002057395A1 (en) Apparatus for gasifying solid fuel
BG64909B1 (en) Method and device for pyrolyzing and gasifying organic substances or organic substance mixtures
JPH08503253A (en) High performance coal gasifier
CN1042955C (en) Sponge iron production process and plant
JP4061564B2 (en) Cooling jacket structure of high-temperature gasifier in waste gasifier
WO1999051917A1 (en) Circulating fluidized bed
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
JP2660184B2 (en) Method for producing thermal energy from waste, especially garbage
JP4155507B2 (en) Biomass gasification method and gasification apparatus
JP2004256657A (en) Produced gas cooling unit for high-temperature gasification furnace
JPH109511A (en) Fluidized bed gasification and melting combustion method
JP2991638B2 (en) Waste incineration equipment
JP3924285B2 (en) Incinerator
JP3327749B2 (en) Superheated steam production equipment using waste incineration heat
JP3276274B2 (en) Superheated steam production equipment using waste incineration heat
JP2006104281A (en) Gasification system
JP3272583B2 (en) Superheated steam production equipment using waste incineration heat
JP2001280615A (en) Melting furnace
JPS61250092A (en) Method for gasifying solid organic material
JP3268214B2 (en) Superheated steam production equipment using waste incineration heat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase