WO1999049942A1 - Dispositivo simulador de precision aplicado al ciclismo - Google Patents

Dispositivo simulador de precision aplicado al ciclismo Download PDF

Info

Publication number
WO1999049942A1
WO1999049942A1 PCT/ES1998/000081 ES9800081W WO9949942A1 WO 1999049942 A1 WO1999049942 A1 WO 1999049942A1 ES 9800081 W ES9800081 W ES 9800081W WO 9949942 A1 WO9949942 A1 WO 9949942A1
Authority
WO
WIPO (PCT)
Prior art keywords
bicycle
athlete
computer
exercise
electronic
Prior art date
Application number
PCT/ES1998/000081
Other languages
English (en)
French (fr)
Inventor
Manuel Alvarez Fernandez
Original Assignee
Manuel Alvarez Fernandez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES09501179A priority Critical patent/ES2114440B1/es
Application filed by Manuel Alvarez Fernandez filed Critical Manuel Alvarez Fernandez
Priority to EP98910748A priority patent/EP0995466A1/en
Priority to PCT/ES1998/000081 priority patent/WO1999049942A1/es
Publication of WO1999049942A1 publication Critical patent/WO1999049942A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/16Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/28Devices for two persons operating in opposition or in cooperation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0015Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
    • A63B22/0023Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band

Definitions

  • the present invention relates to a precision simulator device applied to cycling for use in high performance centers, gyms, rehabilitation centers, cycling sporting events or for domestic use. Especially useful when it is very important for the individual to use their own bicycle to perform stress tests or training programs that are most similar to the reality of the road or the track; when a combined and precise monitoring of the effort and physiological parameters of the individual is required; when such monitoring has to be done by one or several individuals at the same time, who are displaced from the monitoring center; When it is desired to have a history of its evolution throughout the sport season or it is intended to correct defects in said activity that hinder a good performance of the athlete, such as: the inappropriate use of their physiological characteristics, the irregular effort of both legs , an incorrect position on the bicycle or others.
  • the simulator device described here is of special application in the high competition cycling environment, both road and track. BACKGROUND OF THE INVENTION
  • the steering wheel can only emulate a small amount of mass far removed from the real one.
  • the usefulness of these equipment primarily intended as a complement to sports activity in times of bad weather, even with the interesting feature of using the athlete's own bicycle, is limited to maintaining muscle elasticity, exercising some agility in pedaling or simply to warm up before a more intense exercise.
  • the first one widely used in gyms for the ease of handling, since from the sitting position on the saddle its parameters can be modified, it is composed - in addition to the elements that give it the characteristic of an exercise bike - of a electronic system that is in charge of the visualization and control of parameters, an electric generator where the resistant pair is produced and a steering wheel that facilitates a more agile pedaling.
  • a panel mounted on the handlebar you have access to the controls that allow the programming and visualization of the parameters related to the exercise that is going to be performed and which can be: number of pedaling, space traveled, speed, duration of the exercise , resistant torque, power, work done, number of supposedly consumed calories, pulsations, etc.
  • the kinetic resistance unit formed by an electric generator controlled by the electronic system allows a very acceptable control of the absorbed power, but not of the resistant torque, so at the time of performing an exercise it is advisable to maintain a constant pedaling so that This also keeps a constant torque.
  • this power is limited by the size of the generator, which in turn is limited by the space available within the equipment and the lack of an element capable of dissipating the energy that at a given time can be obtained from the exercise of an athlete. Therefore, and in order to protect the system, the electronic control itself is responsible for setting a limit on the resistant torque and the maximum power to dissipate that the equipment must be required.
  • the second system differs fundamentally in the procedure used to obtain the resistant torque and in that it has a considerably larger flywheel although with a mass far from the ideal.
  • the resistant pair is obtained by rubbing a tape of suitable material, which in the form of a zuncho surrounds the perimeter of a steel disk, which in turn acts as a flywheel and energy dissipator. Pressing the belt more or less on the steering wheel gives a greater or lesser level of load, which is measured by a metal arm that can freely rotate on one of its ends by drawing an arc of 90 degrees and whose trajectory is properly calibrated.
  • the arm In order to achieve the influence of the arm on the load, it is rested on the belt through a support that is arranged a short distance from the axis of rotation; the other end of the arm incorporates a calibrated counterweight whose downward thrust produces a lever effect on the belt, such that, when tensioned, it produces a displacement in the arm that is mathematically a function of the lever effect itself with respect to the pressure of the tape on the disc and in consequence of the requested resistant pair.
  • the precision simulator device applied to cycling according to the invention is applicable in high performance centers, gyms, rehabilitation centers, sporting events of cycling or for domestic use and in a very special way to high competition cycling in any of its modalities
  • FIG. 1 shows a general isometric view of the precision mounted simulator device.
  • FIG. 2 and Figure 3 show the isometric view of two variants of the simulator device with less performance called medium and low performance respectively.
  • FIG. 1 - Figure B shows the cut of a complete section of the mechanical system of floating shafts.
  • FIG. 7 and 8 show the bicycle mounted on the simulator device in two different work situations.
  • FIG. 9 shows a computer screen where you can see an example of how different parameters can be displayed simultaneously.
  • FIG. 10 shows the cover of the terminal module of the medium performance variant.
  • FIG. 1 shows a synoptic scheme of the electronic kinetic resistance unit.
  • FIG. 12 shows the primary steering wheel with the detail of the braking and guide tracks.
  • the precision simulator device applied to cycling (Fig. 1) is a device capable of simulating a real competition situation, whether it is a road or a track. Therefore, the first need to be resolved is the use of each individual's bicycle, which also has to have all its operability.
  • a special mechanical system of floating shafts (21 to 25) has been developed that is screwed to a base (1). Its mission is to allow the connection and attachment of the bicycle to the simulator device, as can be seen in the figures 8
  • this floating axle system (21 to 25) allow the bicycle to be fully operational.
  • the bicycle take the slope of the slope (Fig. 7) and manipulate all changes in speeds or slow down the flywheel;
  • the shafts rotate on ball bearings (24 and 25), friction losses are extremely small and in any case easily controllable.
  • the mechanical system of floating axes (21 to 25) that can be seen sectioned in Fig. 6, consists of three bodies that form three concentric axes that can rotate independently on the same center, these are: the main body (21) , the floating body (23) and primary shaft body (22).
  • the main body (21) serves as a pedestal and supports the entire assembly. Inside, the floating body (23) is supported by two bearings (25) that allow smooth sliding with high mechanical performance; It is attached to a base (1) and its construction characteristic together with that of the floating body (23) make it possible for the primary steering wheel (60) to work suspended, performing the functions of the rear wheel of the bicycle, while allowing the Connecting it to the simulator device with great comfort and guarantees the correct activity of the gear change mechanism of the bicycle.
  • the primary axle body (22) has the function of holding the bicycle by the rear fork at the same point as its rear wheel and at the same time allowing the bicycle to take the slope of the slope determined by the program in every moment; it is supported on the floating body (23) through four bearings (24) which, as in the previous case, allow smooth sliding with high mechanical performance;
  • a longitudinal drill made in the center of the axle and the special shape of its ends, allows the use of the standard quick locking system (16) used by professional bicycles, so the connection of the bicycle to the simulator system is executed in seconds .
  • the floating body (23) is located between the main body (21) and the primary shaft body (22), and while the main body (21) is attached to the base (1) and the primary shaft body (22) connected to the bicycle (see Fig. 4 to 8), the floating body (23) rotates freely between them.
  • Its mission is to transmit the energy applied to the pedals, cleanly and without influencing any other element of the system, making mechanical transmission between the bicycle and the kinetic resistance unit (31 and 32), passing through the primary steering wheel (60), and the transmitter belt (7) if the electronic system is used (Fig. 1 and Fig. 2), or to the primary steering wheel (60) directly if the hydraulic belt brake (90 to 93) is used (Fig. 2) .
  • the interchangeable pinion set (15) chosen for the test is housed, which is located exactly at the same levels and under the rules that regulate the measures so that changes in run run cleanly and correctly; thanks to this is 10 possible the use of commercial sprocket sets.
  • the other end of the floating body (23) has a specially adapted shape, to contain the primary steering wheel (60) in the form of a lenticular wheel and achieve, together with the main body, that it works perfectly centered on the fork replacing the rear wheel of the bicycle; thus, it is also possible to give its own utility to the bicycle brake that can slow down the gear by acting on a special track (61) that has said primary steering wheel (60).
  • the electronic kinetic resistance unit (31 and 32) has been developed to create the resistant torque that is requested at any time by the program being executed and to accurately emulate the dynamic effect of the mass corresponding to the athlete and his bicycle, taking into account that this mass changes in the athlete the longer the exercise he is performing. It is connected to the computer (4) or to the electronic terminal (7), through a communications port, from which it receives information from the work program and in turn sends information on the dynamic variables that are subsequently properly treated and displayed. It also receives information from load cells (33), speed detector (34), connecting rod detector (35) and chain detector (36), as can be seen in Fig. 1 1.
  • the operation of the electronic kinetic resistance unit (31 and 32) is based fundamentally on two elements, these are: a motor generator (31) that produces the dynamic variables on the primary steering wheel (60) that acts as the rear wheel of the bicycle and, an electronic device (32) that controls them and is responsible for dissipating or supplying the energy necessary to emulate the dynamic effect of the mass.
  • a motor generator (31) that produces the dynamic variables on the primary steering wheel (60) that acts as the rear wheel of the bicycle
  • an electronic device (32) that controls them and is responsible for dissipating or supplying the energy necessary to emulate the dynamic effect of the mass.
  • two dynamic parameters are combined simultaneously.
  • One is the sturdy torque, which is the force that has to be overcome for the bicycle to keep moving. It depends on the route profile and the coefficients of other passive forces such as firm type, wind speed and direction, wheel type, etc. if a competition or load test is being simulated corresponding to the effort to which the individual is intended to be subjected if it is a stress test.
  • the other parameter is the 1 1 influence of the mass (as it is known, has to do with the weight of the athlete and his bicycle) and its effects of inertia, which is the force that opposes this mass changing state, in such a way, that if It is intended to modify the travel speed, the applied force must also be modified, which is a function of the mass and the time it takes to achieve the desired speed.
  • acceleration (applied force - resistant torque) / mass.
  • the motor generator (31) will function as a generator, taking the kinetic energy of the pedals through the primary steering wheel (60) to transform it into electrical energy and transfer it to the base (1) in the form of heat through the power transistor T2 and an absorption resistance when the resistant torque, positive acceleration or both are to be controlled. It will act as a motor, taking power from the electronic equipment through transistor T1, giving it to the primary steering wheel (60) when a negative acceleration is to be controlled if the pedaling rate is reduced and, controlling a positive acceleration if it is simulating a downward slope , as if there really was a mass and it was the one that gave up energy.
  • the electronic equipment (32) by means of a microcontroller and the help of specialized electronics, is in charge of detecting and controlling in real time, any minimum change of force applied to the pedals of the bicycle, measuring the currents that circulate through the motor generator, to respond immediately to the situation to be created in each moment; the power transistors T1 and T2, carry out the control of the load and acceleration that must be produced in the motor generator (32).
  • the transistor T2 short-circuits the generator output (32) based on the positive acceleration and the requested resistant torque, but so that it is induced the current that ultimately creates the resistant torque, it is necessary that the generator (32) be in motion with a speed that allows at least to compensate for its own internal voltage drop. How 12 consequence of this and for the system to begin to function effectively, it is necessary to exceed a certain pedaling rate, which would be taking away the simulator device effectively. To avoid this inconvenience and for the system to begin to be effective from the rest position, the motor generator (32) is supplied with a small amount of electrical energy that produces a current that compensates for its internal voltage drop and thus facilitates obtaining of the resistant torque from the resting position.
  • the load cells (33), the speed detector (34), the chain detector (35) and the connecting rod detector (36), also send information to the electronic equipment that uses it and sends it to the computer (4), or to the terminal module (5) according to the cases.
  • the load cells (33) measure the athlete's weight at all times to take into account the possible variation of the mass.
  • the exercise can begin, at which point the simulator starts taking a series of samples of the reading of the Load cells (33) along the path of the bicycle crank, which are used to determine a proportional variable at each sample point, which will be a function of the athlete's weight, size and size of the bicycle due to the geometric position of the load cells (33) with respect to the point of influence of the forces according to the position of the connecting rod; then periodically, successive comparisons are made at the same sample points and in this way it is checked if there have been changes in the athlete's weight, so that the dynamic effect of the mass emulated by the simulator device can be updated at all times .
  • the speed detector (34) detects the angular displacement of the primary handwheel (60) and sends the information in the form of pulses to the 13 microcontroller that transforms it into its tangential equivalent and that becomes 5 mm of travel; each time this happens, there is an interruption in the microcontroller program to update the information of the speed, acceleration, travel parameters and the correction of the slope if there is one.
  • the chain detector (35) is used to detect in which position of the Catalina the bicycle chain is working and thus, with the joint analysis of other power and physiological data, know the relationship of the change of sprockets where it has been obtained Better performance of the athlete.
  • the connecting rod detector (36) detects the cycle start step of the connecting rod; At the moment that this happens, the microcoiler begins counting the number of impulses that the revolution detector sends until a new step occurs at the beginning of the cycle, with this information it divides the trajectory of the connecting rod into as many positions as impulses are They have detected. Once this data is known, it is possible to determine at every moment in which position of the route the connecting rod is located; analyzing this parameter together with the force applied at the same moment, the stress curve along the trajectory of the connecting rod is determined; This information is subsequently used in the computer program to know if the athlete performs a round pedaling (regular effort on both legs) or how to achieve it to improve his performance
  • the difficulty of the slope will be linked to the inclination that the bicycle will take, thus making the exercise more in line with the reality of the road. For track or stress tests, the use of this can be avoided 14 element using the same front wheel of the bicycle as can be seen in Fig. 8.
  • the primary steering wheel (60) is lenticular in shape (Fig. 12) and replaces the rear wheel of the bicycle, acting as an entry and exit door for energy in and out of the bicycle; thus, when pedaling, the energy applied to the pedals is conducted to the electronic kinetic resistance unit (31 and 32) by the primary steering wheel (60) through the transmitter belt 7 and, when the pedal is stopped or the program It is simulating a downhill slope, it is also the primary steering wheel (60) that receives the energy from the electronic kinetic resistance unit (31 and 32). If the low performance model is used (Fig. 12) and replaces the rear wheel of the bicycle, acting as an entry and exit door for energy in and out of the bicycle; thus, when pedaling, the energy applied to the pedals is conducted to the electronic kinetic resistance unit (31 and 32) by the primary steering wheel (60) through the transmitter belt 7 and, when the pedal is stopped or the program It is simulating a downhill slope, it is also the primary steering wheel (60) that receives the energy from the electronic kinetic resistance unit
  • the primary flywheel (90) has an added function that is to serve as a friction pulley to the hydraulic belt brake (90 to 93) through the guide track (62 ) and at the same time as an energy sink; It also receives the energy that at a given time is transferred by the actual mass constituted by the inertia discs (95) that are arranged in this low performance model (Fig. 3).
  • Another important function of the primary steering wheel (60) is to facilitate the action of the rear brake of the bicycle to reduce the gear when required; for this it has two lateral tracks (61) located at the standard height of the brake shoes.
  • a personal computer (4) gives the device a great capacity to communicate locally or distance with other peripherals and also leaves an open path to the application of new advances. It incorporates a special computer program, which allows the following functions: the introduction of the profile of a real stage, which has been previously taken with other equipment on the road itself and subsequently transferred to the computer either through this equipment or from a support data; the introduction of personalized training plans directly from the keyboard of the computer itself (4), with the coefficients of the passive forces involved in the exercise of a competition and that add to the active work that the athlete must perform; the connection with other medical equipment that have a standard communications protocol, for the simultaneous obtaining and graphical and numerical presentation of the dynamic variables derived from the exercise and the physiological parameters of the athlete (see Fig.
  • the simulator device shown in Fig. 2 which is called medium performance, replaces the computer (4) with a terminal module (5), but follows the same philosophy explained above to obtain the resistant torque and the emulation of the dynamic effect of the mass, except that it does not have load cells (33) and therefore cannot update the mass of the athlete alone if he loses weight as a result of the exercise. Nor does it have enough memory to store the profile of a real stage, but it does allow the introduction of personalized training plans and the simultaneous presentation of three parameters among a total of 15 physical and physiological ones.
  • the simulator device shown in Fig. 3 maintains the functionality provided by the use of the mechanical system of floating shafts but changes the way to obtain the resistant torque and the emulation of the dynamic effect of the mass; It is called low performance.
  • a hydraulic belt brake system (90 to 93), consisting of a piston or pump (90) that is connected by a flexible pipe (91) to a spring return cylinder (92) that pulls a brake belt (93) that surrounds the primary flywheel (60) by rubbing on a specially prepared track (62) so that it can yield energy in the form of heat.
  • the operation is very simple: turning the pump control button (90) in one direction creates a pressure in the hydraulic circuit that forces the cylinder (92) to move by pulling on the belt (93) that surrounds the primary flywheel (60) hugging the track (62) and causing friction on it, which will be greater the more pressure there is in the circuit and therefore also the stronger torque; by turning the knob in the reverse direction, the pressure fades by loosening the belt pull (93) and therefore the friction, until the primary flywheel (60) is completely released leaving the resistant torque practically zero.
  • control module (94) In order to determine the value of the resistant torque that is being applied at each moment, a pressure transducer located in the control module (94) that linearizes the measurement and presents it directly through a 17 digital indicator in Nm or equivalent slope difficulty values if desired; The measure of the resistant torque thus obtained has an acceptable accuracy, but inferior to that of the methods discussed above.
  • the same control module (94) discussed above contains a standard type display that is responsible for displaying instantaneous speed, average speed, distance, time, etc.
  • inertia discs (95) are used that are calibrated in different thicknesses and recorded with the information corresponding to the mass they emulate, in order to be able to form the total mass corresponding to the athlete and his bicycle. These discs are dragged by the primary flywheel (60) through a drive pinion (97) and a transmitter chain (98).
  • the sliding supports (1 1) serve to facilitate the movement of the simulator device and the mast (12) to support the physiological probes of medical equipment if used.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Rehabilitation Tools (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Especialmente desarrollado para el entrenamiento y mejora del rendimiento deportivo sobre la bicicleta particular de cada individuo. Contiene una unidad electrónica especial de resistencia cinética (31 y 32), que emula con precisión el efecto dinámico de la masa del individuo ejercitante al tiempo que controla el par resistente. Un sistema mecánico de ejes flotantes (21) permite obtener toda la operatividad de la bicicleta. Captadores electrónicos situados en diferentes partes, envían señales al control electrónico (31) que intercambia información continuamente con un ordenador (4) o un terminal, donde se visualizan e introducen las variables dinámicas, parámetros fisiológicos y los perfiles de ruta, que permiten simular una situación real de competición y facilitar a los especialistas médicos el control del rendimiento del deportista a lo largo del supuesto recorrido. Programas informáticos especiales ejecutados desde el ordenador (4), permiten combinar la presentación de parámetros y generar históricos o planes personalizados de entrenamiento, que pueden ser introducidos o visualizados localmente o a distancia por otro ordenador utilizando un modem adecuado.

Description

DtSPQSmVO SIMULADOR DE PRECISIÓN APLICADO AL CICLISMO OBJETO DE LA INVENCIÓN
La presente invención se refiere a un dispositivo simulador de precisión aplicado al ciclismo para uso en centros de alto rendimiento, gimnasios, centros de rehabilitación, acontecimientos deportivos de ciclismo o para uso doméstico. Especialmente útil cuando es muy importante que el individuo utilice su propia bicicleta para realizar pruebas de esfuerzo o programas de entrenamiento lo más semejantes a la realidad de la carretera o de la pista; cuando se requiere un seguimiento combinado y preciso del esfuerzo y los parámetros fisiológicos del individuo; cuando dicho seguimiento ha de hacerse de uno o varios individuos a la vez, que se encuentran desplazados del centro de seguimiento; cuando se desea tener un historial de su evolución a lo largo de la temporada deportiva o se pretende corregir defectos en dicha actividad que dificultan un buen rendimiento del deportista, como pueden ser: la inadecuada utilización de sus características fisiológicas, el esfuerzo irregular de ambas piernas, una incorrecta posición sobre la bicicleta u otros.
El dispositivo simulador aquí descrito es de especial aplicación en el entorno del ciclismo de alta competición, tanto de carretera como de pista. ANTECEDENTES DE LA INVENCIÓN
Aunque no se conocen antecedentes de que exista un equipo como el que caracteriza esta invención, dado que su aplicación fundamental está enfocada al deporte de la bicicleta, se hará una breve exposición de algunas máquinas existentes en el mercado comentando algunas de sus características, intentando valorar mejor si cabe las prestaciones del equipo de la invención.
En el mercado existen algunos y variados tipos de aparatos empleados en el entorno del deporte de la bicicleta que se utilizan para realizar pruebas de esfuerzo y mantenimiento; desde los sencillos y conocidos rodillos, hasta caballetes o bastidores especialmente desarrollados para pruebas de esfuerzo de deportistas en cualquier nivel de competición. Con los rodillos es necesario utilizar una bicicleta que ha de 2 trabajar obligatoriamente en posición vertical, con la ruedas apoyadas sobre ellos; algunos dotados de una unidad de resistencia y un pequeño volante hacen posible un pedaleo más cómodo, pero el par resistente obtenido es pequeño debido a que la potencia aplicada a los pedales se transmite a la unidad de resistencia a través del contacto de la rueda trasera con los rodillos; esto produce cierto resbalamiento, aun cuando la potencia transmitida no es demasiado alta; asi mismo, hacen difícil obtener información precisa de la potencia perdida en el roce al encontrarnos con tipos de cubiertas o tubulares a presiones de inflado diferentes en la bicicleta utilizada. Por otro lado, el volante sólo puede emular una pequeña cantidad de masa muy alejada de la real. En todo caso, la utilidad de estos equipos, pensados fundamentalmente como un complemento de la actividad deportiva en épocas de mal tiempo, aun con la interesante característica de utilizar la propia bicicleta del deportista, queda limitada a hacer un mantenimiento de la elasticidad muscular, ejercitar cierta agilidad en el pedaleo o simplemente al calentamiento muscular previo a un ejercicio más intenso.
Los caballetes y bastidores pensados para una actividad deportiva más general que los rodillos, disponen de pedales, manillar y un sillín que permiten un ejercicio que se asemeja al que se hace en una bicicleta, por lo que también se conocen con el nombre genérico de bicicletas estáticas.
Estos aparatos permiten, además del ejercicio, el control del esfuerzo, para lo cual utilizan diferentes técnicas que le dan un mayor o menor grado de sofisticación, encontrándonos con equipos de realización muy simple compuestos únicamente de un pequeño volante y una unidad de resistencia con poca exactitud, hasta equipos que hacen un control del esfuerzo bastante aceptable, al tiempo que proporcionan información de otros parámetros y facilitan la introducción y ejecución de programas que controlan el nivel de carga en función de intervalos de tiempo determinados.
Debido a los diferentes sistemas que existen en el mercado para proporcionar un determinado nivel de prestaciones, se analizarán dos de estos sistemas que en todo caso contienen las prestaciones de los demás. 3
El primero de ellos, muy utilizado en gimnasios por la facilidad de su manejo, ya que desde la posición de sentado sobre el sillín se pueden modificar sus parámetros, se compone - además de los elementos que le confieren la característica de bicicleta estática - de un sistema electrónico que se encarga de la visualización y control de parámetros, un generador eléctrico donde se produce el par resistente y un volante que facilita un pedaleo más ágil. En un panel montado sobre el manillar se tiene acceso a los mandos que permiten la programación y visualización de los parámetros relacionados con el ejercicio que se va a realizar y que pueden ser: número de pedaladas, espacio recorrido, velocidad, tiempo de duración del ejercicio, par resistente, potencia, trabajo realizado, número de calorías supuestamente consumidas, pulsaciones, etc.
La unidad de resistencia cinética formada por un generador eléctrico controlado por el sistema electrónico, permite un control muy aceptable de la potencia absorbida, pero no así del par resistente, por lo que en el momento de realizar un ejercicio conviene mantener un pedaleo constante para que así se mantenga también un par constante. Por otro lado, esta potencia está limitada por el tamaño del generador, que a su vez lo está por el espacio disponible dentro del equipo y por la falta de un elemento capaz de disipar la energía que en un momento determinado se puede obtener del ejercicio de un deportista. Por ello, y con el fin de proteger el sistema, el propio control electrónico se encarga de poner límite al par resistente y a la potencia máxima a disipar que se ha de exigir al equipo. A esta circunstancia hay que añadir el bajo efecto de inercia, debido a la baja relación velocidad-masa del volante, cuyo efecto se acentúa en la medida que se aumenta el par resistente; por otro lado, existe el inconveniente de no poder hacer en este tipo de máquina una buena adaptación ergonómica del deportista, lo cual es preocupante si tenemos en cuenta que el deportista en su practica habitual, ha desarrollado una musculatura especial en una máquina diferente a la que se encuentra en este caso.
Tenemos pues, una máquina relativamente bien dotada para un control del consumo de calorías, con información suficiente para conseguir un ejercicio metódico y bien programado para mantener un peso equilibrado en las épocas de no competición; probablemente muy adecuado para su utilización en gimnasios, pero alejada de cubrir las necesidades del ciclismo profesional.
Por último, el segundo sistema, de construcción casi idéntica al primero, se diferencia fundamentalmente en el procedimiento que emplea para obtener el par resistente y en que dispone de un volante de inercia considerablemente mayor aunque con una masa lejos de la ideal.
El par resistente se obtiene por el roce de una cinta de material adecuado, que en forma de zuncho rodea el perímetro de un disco de acero, que a su vez hace de volante de inercia y de disipador de energía. Apretando más o menos la cinta sobre el volante se obtiene un mayor o menor nivel de carga, la cual es medida por un brazo metálico que puede girar libremente sobre uno de sus extremos trazando un arco de 90 grados y cuya trayectoria está debidamente calibrada. Para conseguir la influencia del brazo sobre la carga, éste se hace descansar sobre la cinta a través de un apoyo que se dispone a poca distancia del eje de giro; el otro extremo del brazo incorpora un contrapeso calibrado cuyo empuje hacia abajo produce un efecto de palanca sobre la cinta, de tal manera, que al ser tensada, produce un desplazamiento en el brazo que es matemáticamente función del propio efecto de palanca respecto de la presión de la cinta sobre el disco y en consecuencia del par resistente solicitado. Se puede decir que la precisión de los valores presentados en la escala calibrada son aceptables pero no del todo exactos, debido sobre todo a que el coeficiente de rozamiento de la cinta sobre la superficie de deslizamiento del disco se modifica con la velocidad periférica del disco, con la temperatura o simplemente con la humedad relativa del aire, por este motivo es también aconsejable mantener un pedaleo regular en el momento de poner en práctica un ejercicio.
Esta forma de obtener el par resistente permite conseguir potencias más altas, que cubren las necesidades de las pruebas de esfuerzo con una precisión aceptable y con un efecto de inercia también mejorado, aunque no se puede olvidar la falta de acoplamiento del ciclista con la máquina como se comentó anteriormente, que en este caso debe ser más vigilada, al permitir realizar más esfuerzo y por tanto aumentar el riesgo de lesiones musculares. No obstante, los especialistas de medicina deportiva, a falta de equipos capaces de proporcionar mejores prestaciones, optan por este último.
Como complemento a esta exposición se sugiere consultar un articulo de José Manuel Castillo publicado en el periódico deportivo Marca con fecha 08/02/1995 y titulado "INDURAIN VERIFICA SU TURBO", donde en diferentes fotos de Guillermo Rodríguez, puede verse al campeón del mundo sometido a un prueba de esfuerzo por los destacados especialistas de medicina deportiva Drs. Sabino Padilla y Guillermo Cuesta, en una máquina como la que se acaba de describir en último lugar.
PROBLEMA TÉCNICO A RESOLVER
El problema técnico queda enfocado por un lado, a solventar que una sola máquina permita un acoplamiento perfecto entre el deportista y ésta, al tiempo que ha de ser capaz de absorber la potencia que éste pueda producir con su esfuerzo, consiguiendo a la vez emular el efecto dinámico de la masa de cada deportista en particular y, naturalmente, que la precisión de las medidas no pueda ser influida en ninguna situación de trabajo. Por otro lado, como lo que se está tratando de acuerdo con la invención es un simulador de precisión aplicado al ciclismo de alta competición, éste ha de ser capaz de simular una situación real de competición, (dentro de su condición de máquina estática) y proporcionar simultáneamente y con total exactitud los parámetros derivados del ejercicio, que han de servir a los especialistas médicos para obtener el mejor rendimiento del deportista en cada una de sus especialidades. Además, ha de permitir a los preparadores físicos (sobre todo en épocas de olimpiadas) seguir desde sus centros de trabajo la evolución de los deportistas en sus lugares de residencia. CARACTERIZACIÓN DE LA INVENCIÓN
El dispositivo simulador de precisión aplicado al ciclismo de acuerdo con la invención, es aplicable en centros de alto rendimiento, gimnasios, centros de rehabilitación, acontecimientos deportivos de ciclismo o para uso doméstico y de una manera muy especial al ciclismo de alta competición en cualquiera de sus modalidades.
Se caracteriza por su capacidad para simular una situación real de competición, creando el par resistente en cada paso del recorrido en función de la pendiente y las fuerzas pasivas que intervienen, según la velocidad que el mismo deportista imprime a la prueba, el tipo de carretera o pista, el viento previsto, el tipo de rueda, etc.
Se caracteriza por emular con total precisión el efecto dinámico de la masa correspondiente a la bicicleta y al deportista, incluso cuando éste pierde peso a consecuencia de un ejercicio prolongado.
Se caracteriza por utilizar la bicicleta particular de cada individuo y permitir que ésta tome la inclinación de la pendiente programada al tiempo que permite toda su operatividad. Se caracteriza por disponer de un sistema mecánico de ejes flotantes cuya misión es permitir la conexión y sujeción de la bicicleta al dispositivo simulador con la misma facilidad con la que se sustituye una rueda, facilitar toda la operatividad de la bicicleta y transmitir la energía aplicada en los pedales a la unidad de resistencia cinética. Se caracteriza por la utilización de un volante primario, que hace la función de rueda trasera de la bicicleta, permitiendo la actuación del freno trasero de ésta para desacelerar la marcha y sirviendo de guía a la correa transmisora; también sirve de polea de rozamiento al freno hidráulico de cinta en el modelo de bajas prestaciones. Se caracteriza por disponer de una unidad electrónica de resistencia cinética cuya misión es crear el par resistente que es determinado por el programa que se esta ejecutando y además, emular con precisión el efecto dinámico de la masa del deportista y su bicicleta, teniendo en cuenta que esta masa cambia en el deportista cuanto más prolongado es el ejercicio que está realizando.
Se caracteriza por la capacidad para comunicarse con otros periféricos en modo local y a distancia y permitir la introducción de rutas obtenidas de etapas reales de competición, planes personalizados de trabajo, visualización combinada y simultanea de parámetros propios y de otros equipos desde otros puntos de la geografía a un centro de trabajo, generación automática de históricos y un programa abierto a la incorporación de nuevos avances.
Por último, se caracteriza por su especial funcionalidad para proporcionar diferentes niveles de prestaciones que permiten adaptarlo a un mercado más general; así, se obtienen además del equipo de prestaciones generales, un modelo de prestaciones medias y un modelo de bajas prestaciones.
BREVE ENUNCIADO DE LAS FIGURAS
Una exposición más detallada de la invención se puede desprender de la descripción de la misma en base a las figuras siguientes:
- la figura 1 muestra una vista isométrica general del dispositivo simulador de precisión montado.
- la figura 2 y la figura 3 muestran la vista isométrica de dos variantes del dispositivo simulador con menos prestaciones denominada de prestaciones medias y bajas prestaciones respectivamente.
- la figura 4 y la figura 5 muestran la vista en planta y perfil respectivamente del dispositivo simulador de precisión.
- la figura B muestra el corte de una sección completa del sistema mecánico de ejes flotantes. - la figura 7 y 8 presenta la bicicleta montada sobre el dispositivo simulador en dos situaciones de trabajo diferentes.
- la figura 9 muestra una pantalla del ordenador donde se puede ver un ejemplo de como se pueden visualizar diferentes parámetros simultáneamente. - la figura 10 muestra la carátula del módulo terminal de la variante de prestaciones medias.
- la figura 1 muestra un esquema sinóptico de la unidad electrónica de resistencia cinética.
- la figura 12 muestra el volante primario con el detalle del las pistas de frenado y guía.
EXPOSICIÓN PRACTICA DE LA INVENCIÓN
Como ya se comentó con anterioridad, el dispositivo simulador de precisión aplicado al ciclismo (Fig. 1 ) es un aparato capaz de simular una situación real de competición, tanto si se trata de carretera como de pista. Por lo tanto, la primera necesidad que se ha de resolver es la utilización de la bicicleta de cada individuo en particular, que además ha de disponer de toda su operatividad. Para ello se ha desarrollado un especial sistema mecánico de ejes flotantes (21 a 25) que está atornillado a una base (1 ). Su misión es permitir la conexión y sujeción de la bicicleta al dispositivo simulador, como se puede ver en las figuras 8
7 y 8, con la misma facilidad con la que se sustituye la rueda trasera, gracias a que dispone del mismo sistema de bloqueo rápido (16) que utilizan las bicicletas profesionales; contiene el juego de piñones intercambiables (15) que se ha de utilizar en cada prueba y un volante primario (BO) en forma de rueda lenticular que aporta una pequeña cantidad de masa al tiempo que sirve de polea transmisora de la energía aplicada en los pedales hacia la unidad electrónica de resistencia cinética (31 y 32), donde se produce el par resistente y se emula el efecto de la masa. En el caso del modelo de bajas prestaciones (Fig. 3), un freno hidráulico de cinta (90 a 93) tiene la función de resistencia cinética cediendo la energía en el mismo volante primario (60) donde se disipa en forma de calor.
Las características de construcción de este sistema de ejes flotantes (21 a 25) permiten a la bicicleta toda su operatividad. Así es posible conseguir, al mismo tiempo que se pedalea, que la bicicleta tome la inclinación de la pendiente (Fig. 7) y manipular todos los cambios de velocidades o frenar la marcha del volante; además, debido a que los ejes giran sobre rodamientos de bolas (24 y 25), las perdidas por rozamiento son extremadamente pequeñas y en todo caso fácilmente controlables.
Este sistema mecánico de ejes flotantes (21 a 25) junto con la unidad electrónica de resistencia cinética (31 y 32), que se describen a continuación, confieren al dispositivo simulador de precisión su característica más destacable y novedosa en el ámbito de las máquinas desarrolladas para el deporte en general, pero sobre todo en el ciclismo, ya que partiendo de la función específica de estos elementos, podemos simular una situación real de competición y estudiar al mismo tiempo a lo largo del recorrido, la evolución fisiológica del deportista en función de su esfuerzo y con tal motivo, determinar como ha de dosificar su esfuerzo para obtener un óptimo rendimiento de su condición deportiva.
El sistema mecánico de ejes flotantes (21 a 25) que se puede ver seccionado en la Fig. 6, está constituido por tres cuerpos que forman tres ejes concéntricos que pueden girar independientes sobre un mismo centro, estos son: el cuerpo principal (21 ), el cuerpo flotante (23) y cuerpo del eje primario (22). El cuerpo principal (21 ) sirve de pedestal y de soporte de todo el conjunto. En su interior se apoya el cuerpo flotante (23) a través de dos rodamientos (25) que le permiten un deslizamiento suave con un alto rendimiento mecánico; está sujeto a una base (1 ) y su característica constructiva junto con la del cuerpo flotante (23) hacen posible que el volante primario (60) pueda trabajar suspendido, realizando las funciones de rueda trasera de la bicicleta, al mismo tiempo que permite la conexión de ésta al dispositivo simulador con gran comodidad y garantiza la correcta actividad del mecanismo de cambio de piñones de la bicicleta. El cuerpo del eje primario (22) tiene la función de sujetar a la bicicleta por la horquilla trasera en el mismo punto donde lo hace su rueda trasera y permitir al mismo tiempo que la bicicleta pueda tomar la inclinación de la pendiente que determine el programa en cada momento; está apoyado en el cuerpo flotante (23) a través de cuatro rodamientos (24) que como en el caso anterior, permiten un deslizamiento suave con un alto rendimiento mecánico; un taladro longitudinal practicado en el centro del eje y la forma especial de sus extremos, permite la utilización del sistema de blocaje rápido estándar (16) que utilizan las bicicletas profesionales, por lo que la conexión de la bicicleta al sistema simulador se ejecuta en segundos.
El cuerpo flotante (23) está situado entre el cuerpo principal (21 ) y el cuerpo del eje primario (22), y mientras el cuerpo principal (21 ) está sujeto a la base (1 ) y el cuerpo del eje primario (22) conectado a la bicicleta (ver Fig. 4 a la 8), el cuerpo flotante (23) gira libremente entre ambos. Su misión es transmitir la energía aplicada en los pedales, limpiamente y sin influir en ningún otro elemento del sistema, haciendo de transmisión mecánica entre la bicicleta y la unidad de resistencia cinética (31 y 32), pasando por el volante primario (60), y la correa transmisora (7) si se utiliza el sistema electrónico (Fig. 1 y Fig. 2), o bien al volante primario (60) directamente si se utiliza el freno hidráulico de cinta (90 a 93) (Fig. 2). Para ello, en una de sus cabezas dispone de una zona roscada donde se aloja el juego de piñones intercambiable (15) elegido para la prueba, que queda situado exactamente en las mismas cotas y bajo las normas que regulan las medidas para que los cambios de marcha se ejecuten con limpieza y correctamente; gracias a esto es 10 posible la utilización de juegos de piñones comerciales. El otro extremo del cuerpo flotante (23) dispone de una forma especialmente adaptada, para contener el volante primario (60) con forma de rueda lenticular y lograr junto con el cuerpo principal, que éste trabaje perfectamente centrado sobre la horquilla sustituyendo a la rueda trasera de la bicicleta; así se consigue dar también su propia utilidad al freno de la bicicleta que puede desacelerar la marcha actuando sobre una pista especial (61 ) que para ello dispone dicho volante primario (60).
La unidad electrónica de resistencia cinética (31 y 32) se ha desarrollado para crear el par resistente que en cada instante es solicitado por el programa que se está ejecutando y para emular con precisión el efecto dinámico de la masa correspondiente al deportista y su bicicleta, teniendo en cuenta que esta masa cambia en el deportista cuanto más prolongado es el ejercicio que está realizando. Está conectada con el ordenador (4) o con el terminal electrónico (7), a través de un puerto de comunicaciones, de donde recibe información del programa de trabajo y a su vez envía información de las variables dinámicas que posteriormente son adecuadamente tratadas y visualizadas. También recibe información de las células de carga (33), detector de velocidad (34), detector de biela (35) y detector de cadena (36), tal y como se puede ver en la Fig. 1 1 .
El funcionamiento de la unidad electrónica de resistencia cinética (31 y 32) esta basado fundamentalmente en dos elementos, éstos son: un motogenerador (31 ) que produce las variables dinámicas sobre el volante primario (60) que hace las veces de rueda trasera de la bicicleta y, un dispositivo electrónico (32) que las controla y se encarga de disipar o suministrar la energía necesaria para emular el efecto dinámico de la masa. En el proceso de trabajo de esta unidad se combinan simultáneamente dos parámetros dinámicos. Uno es el par resistente, que es la fuerza que se ha de vencer para que la bicicleta se mantenga en movimiento. Depende del perfil de ruta y de los coeficientes de otras fuerzas pasivas como tipo de firme, velocidad y dirección del viento, tipo de rueda, etc. si se está simulando una prueba de competición o de la carga correspondiente al esfuerzo al que se pretende someter al individuo si se trata de una prueba de esfuerzo. El otro parámetro es la 1 1 influencia de la masa (como es sabido, tiene que ver con el peso del deportista y su bicicleta) y sus efectos de inercia, que es la fuerza que se opone a que esta masa cambie de estado, de tal manera, que si se pretende modificar la velocidad de marcha, se ha de modificar también la fuerza aplicada, que está en función de la masa y del tiempo que se tarda en lograr la velocidad deseada. Tratando de concretar mejor lo anterior, se puede decir que la aceleración de la marcha será igual a: aceleración = (fuerza aplicada - par resistente) / masa. Éste es el principio básico que define la actuación particular del emulador del efecto dinámico de la masa dentro del sistema electrónico. Para lograr que todo esto se cumpla, el motogenerador (31 ) hará la función de generador, tomando la energía cinética de los pedales a través del volante primario (60) para transformarla en energía eléctrica y cederla a la base (1 ) en forma de calor a través del transistor de potencia T2 y una resistencia de absorción cuando se ha de controlar el par resistente, una aceleración positiva o ambas. Hará de motor, tomando energía del equipo electrónico a través del transistor T1 , cediéndola al volante primario (60) cuando se ha de controlar una aceleración negativa si se reduce el ritmo de pedaleo y, controlando una aceleración positiva si está simulando una pendiente hacia abajo, como si realmente existiese una masa y ésta fuese la que cediese energía.
El equipo electrónico (32), mediante un microcontrolador y el auxilio de electrónica especializada, se encarga de detectar y controlar en tiempo real, cualquier mínimo cambio de fuerza aplicada en los pedales de la bicicleta, midiendo las corrientes que circulan a través del motogenerador, para responder inmediatamente a la situación que se ha de crear en cada instante; los transistores de potencia T1 y T2, realizan el control de la carga y aceleración que se han de producir en el motogenerador (32). Hay que hacer una observación para entender mejor la acción del par resistente en el esquema de la figura 1 1 : el transistor T2 cortocircuita la salida del generador (32) en función de la aceleración positiva y del par resistente solicitado, pero para que se induzca la corriente que en definitiva crea el par resistente, es necesario que el generador (32) esté en movimiento con una velocidad que permita por lo menos compensar su propia caída de tensión interna. Como 12 consecuencia de esto y para que el sistema comience a funcionar eficazmente, es obligado rebasar un ritmo de pedaleo determinado, lo cual estaría quitando eficacia al dispositivo simulador. Para evitar este inconveniente y que el sistema comience a ser eficaz desde la posición de reposo, el motogenerador (32) es alimentado con una pequeña cantidad de energía eléctrica que produce una corriente que compensa su caída de tensión interna y de esta manera facilitar la obtención del par resistente desde la posición de reposo. Naturalmente esta corriente provocará la tendencia a girar al volante primario (60) en sentido inverso, pero el transistor T2 se encarga de bloquear la circulación de corriente mientras el volante esté en reposo absoluto o si tiende a girar en sentido contrario, evitando así que el volante primario (60) retroceda a consecuencia de esta energía adicional.
Las células de carga (33), el detector de revoluciones (34), el detector de cadena (35) y el detector de biela (36), también envían información al equipo electrónico que la utiliza y la envía al ordenador (4), o al módulo terminal (5) según los casos.
Las células de carga (33) miden el peso del deportista en todo momento para tener en cuenta la posible variación de la masa. Después de haber sido introducido previamente el peso del deportista y su bicicleta por separado a través del teclado del ordenador (4), se puede comenzar el ejercicio, momento en el que el dispositivo simulador comienza a tomar una serie de muestras de la lectura de las células de carga (33) a lo largo de la trayectoria de la biela de la bicicleta, que sirven para determinar una variable proporcional en cada punto de muestra, que estará en función del peso del deportista, su envergadura y el tamaño de su bicicleta debido a la posición geométrica de las células de carga (33) respecto del punto de influencia de las fuerzas según la posición de la biela; luego de forma periódica, se realizan sucesivas comparaciones en los mismos puntos de muestra y de esta manera se comprueba si se han producido modificaciones en el peso del deportista, para poder actualizar así en todo momento el efecto dinámico de la masa emulado por el dispositivo simulador.
El detector de revoluciones (34) detecta el desplazamiento angular del volante primario (60) y envía la información en forma de impulsos al 13 microcontrolador que la transforma en su equivalente tangencial y que viene a ser 5 mm de recorrido; cada vez que esto sucede, se produce una interrupción en el programa del microcontrolador para actualizar la información de los parámetros de velocidad, aceleración, recorrido y la corrección de la pendiente si la hubiese.
El detector de cadena (35) sirve para detectar en qué posición de la catalina se encuentra trabajando la cadena de la bicicleta y así, con el análisis conjunto de otros datos de potencia y fisiológicos, conocer ia relación del cambio de piñones donde se ha obtenido mejor rendimiento del deportista.
El detector de biela (36) detecta el paso de comienzo de ciclo de la biela; en el momento que esto sucede, el microcoπtrolador comienza a contar el número de impulsos que envía el detector de revoluciones hasta que se produce un nuevo paso por el comienzo de ciclo, con esta información divide la trayectoria de la biela en tantas posiciones como impulsos se han detectado. Conocido este dato se puede determinar en cada instante en qué posición del recorrido se encuentra la biela; analizando este parámetro junto con la fuerza aplicada en el mismo instante, se determina la curva de esfuerzo a lo largo de la trayectoria de la biela; esta información es utilizada posteriormente en el programa del ordenador para conocer si el deportista realiza un pedaleo redondo (esfuerzo regular en ambas piernas) o cómo lograrlo para mejorar su rendimiento
Un soporte posicionador (81 a 85), ver Fig. 5 y Fig. 7, situado en la parte delantera del dispositivo simulador y atornillado a la base (1 ) por un bastidor de amarre (82), tiene la misión de sujetar la bicicleta por la horquilla, sustituyendo a la rueda delantera. Su función es hacer que la bicicleta tome la inclinación de la pendiente correspondiente al perfil de la carretera; para ello dispone de un husillo (83), por el que se desplaza el soporte (85) que sujeta la bicicleta; este husillo, es arrastrado por un motor (84) que es gobernado por el control electrónico (31 ), en función de la información recibida del ordenador (4). Así la dificultad de la pendiente irá ligada con la inclinación que tomará la bicicleta haciendo de este modo el ejercicio más acorde con la realidad de la carretera. Para pruebas de pista o de esfuerzo, se puede evitar la utilización de este 14 elemento empleando la misma rueda delantera de la bicicleta como se puede ver en la Fig. 8.
El volante primario (60) tiene forma lenticular (Fig. 12) y sustituye a la rueda trasera de la bicicleta haciendo la función de puerta de entrada y salida de energía hacia dentro y hacia fuera de la bicicleta; así, cuando se pedalea, la energía aplicada en los pedales es conducida a la unidad electrónica de resistencia cinética (31 y 32) por el volante primario (60) a través de la correa transmisora 7 y, cuando se deja de pedalear o el programa está simulando una pendiente de bajada, es también el volante primario (60) quien recibe la energía de la unidad electrónica de resistencia cinética (31 y 32). Si se utiliza el modelo de bajas prestaciones (Fig. 3), el volante primario (90) tiene una función añadida que es servir de polea de rozamiento al freno hidráulico de cinta (90 a 93) a través de la pista de guía (62) y al mismo tiempo de disipador de energía; también recibe la energía que en un momento determinado es cedida por la masa real constituida por los discos de inercia (95) que están dispuestos en este modelo de bajas prestaciones (Fig. 3). Otra función importante del volante primario (60) es facilitar la acción del freno trasero de la bicicleta para minorar la marcha cuando así se requiera; para ello dispone de dos pistas laterales (61 ) situadas a la altura estándar de las zapatas de freno.
Todo lo expuesto es de extraordinaria importancia para el ciclismo en cualquier nivel de competición, ya que con este sistema se resuelve definitivamente el problema de adaptación entre el deportista y la máquina, dado que está utilizando la suya propia. Además, al tomar la bicicleta la inclinación de la pendiente, el deportista se sentirá estimulado a levantarse y sentarse en la bicicleta, lo que hará más ameno y real el ejercicio. Por otro lado, al emular el efecto dinámico de la masa del deportista se resuelve uno de los problemas más complejos e importantes de cualquier máquina que haya de medir o facilitar una actividad deportiva, ya que este efecto es diferente en cada individuo y tenerlo controlado significa también que se está midiendo el esfuerzo con exactitud y en las mismas condiciones que en la práctica real. No obstante, hemos de tener en cuenta que cuando el deportista ejerce una fuerza sobre los pedales hace intervenir también todo su cuerpo; como 15 consecuencia, se crean sobre el bastidor de la bicicleta un conjunto de fuerzas desordenadas que dan origen a una pequeña cantidad de energía no medible por el dispositivo simulador. Naturalmente esta situación también se dará en la practica real, por lo que no tendrá influencia en lo que a la función de simulación se refiere; sin embargo, podrá ser introducida en el cómputo total siempre que sea medida con otro equipo e incorporada al ordenador (4) a través de la tabla de coeficientes.
La utilización de un ordenador personal (4) confiere ai dispositivo una gran capacidad para comunicarse localmente o distancia con otros periféricos y también deja un camino abierto a la aplicación de nuevos avances. Incorpora un programa informático especial, que permite las siguientes funciones: la introducción del perfil de una etapa real, que ha sido previamente tomado con otro equipo en la propia carretera y posteriormente trasferido al ordenador bien a través de este equipo o bien desde un soporte de datos; la introducción de planes personalizados de entrenamiento directamente desde el teclado del propio ordenador (4), con los coeficientes de las fuerzas pasivas que intervienen en el ejercicio de una competición y que se suman al trabajo activo que ha de realizar el deportista; la conexión con otros equipos médicos que dispongan de protocolo estándar de comunicaciones, para la obtención y presentación gráfica y numérica simultánea de las variables dinámicas derivadas del ejercicio y los parámetros fisiológicos del deportista (ver Fig. 10); la introducción de los datos personales del deportista y la generación de históricos de cada prueba realizada, que pueden ser mantenidos o transferidos a otro ordenador si se desea; la conexión con otros ordenadores vía modem para permitir el control y la manipulación de los programas de trabajo desde un centro de trabajo común, conectado a los diferentes lugares de residencia de los deportistas y finalmente, la posibilidad de incorporar programas multimedia. Por último, con el fin proporcionar diferentes niveles de prestaciones que permiten adaptarlo a un mercado más general, se obtienen dos variantes que mantienen las prestaciones más destacables del simulador de precisión pero disminuyen sus prestaciones generales. En las Fig. 2 y 3 se pueden ver estas dos variantes en las que ninguna de las dos utiliza el soporte posicionador (81 a 85) que permite que la 16 bicicleta tome la inclinación de la pendiente; en la Fig. 8 se puede ver la bicicleta apoyada sobre su rueda delantera.
El dispositivo simulador representado en la Fig. 2, que se denomina de prestaciones medias, sustituye el ordenador (4) por un módulo terminal (5), pero sigue la misma filosofía explicada anteriormente para obtener el par resistente y la emulación del efecto dinámico de la masa, excepto que no dispone de células de carga (33) y por tanto no puede actualizar por sí solo la masa del deportista si éste pierde peso a consecuencia del ejercicio. Tampoco dispone de memoria suficiente para almacenar el perfil de una etapa real, pero sí permite la introducción de planes personalizados de entrenamiento y la presentación simultánea de tres parámetros entre un total de 15, físicos y fisiológicos.
El dispositivo simulador representado en la Fig. 3, mantiene la funcionalidad que le proporciona la utilización del sistema mecánico de ejes flotantes pero cambia el modo de obtener el par resistente y la emulación del efecto dinámico de la masa; se denomina de bajas prestaciones. Para obtener el par resistente, utiliza un sistema de freno hidráulico de cinta (90 a 93), compuesto por un pistón o bomba (90) que está unida por una tubería flexible (91 ) a un cilindro de retorno por muelle (92) que tira de una cinta de freno (93) que rodea al volante primario (60) friccionando sobre una pista (62) especialmente preparada para que pueda ceder la energía en forma de calor. El funcionamiento es muy simple: girando el botón de mando de la bomba (90) hacia un sentido, se crea una presión en el circuito hidráulico que obliga al cilindro (92) a desplazarse tirando de la cinta (93) que rodea al volante primario (60) abrazando la pista (62) y provocando una fricción sobre ésta, que será mayor cuanta más presión exista en el circuito y por tanto también mayor el par resistente; girando el mando en sentido inverso, la presión se desvanece aflojando el tiro de la cinta (93) y por tanto el rozamiento, hasta que el volante primario (60) queda completamente liberado dejando el par resistente prácticamente nulo. Para determinar el valor del par resistente que se está aplicando en cada momento, se ha dispuesto un transductor de presión situado en el módulo de control (94) que linealiza la medida y la presenta directamente a través de un 17 indicador digital en Nm o en valores equivalentes de dificultad de pendiente si se desea; la medida del par resistente así obtenido tiene una precisión aceptable, pero inferior a la de los métodos anteriormente comentados. El mismo módulo de control (94) comentado anteriormente contiene un visualizadαr de tipo estándar que se encarga de visualizar velocidad instantánea, velocidad media, distancia, tiempo, etc.
Para emular el efecto dinámico de la masa, se utilizan discos de inercia (95) que están calibrados en diferentes espesores y grabados con la información correspondiente a la masa que emulan, para poder conformar la masa total correspondiente al deportista y su bicicleta. Estos discos son arrastrados por el volante primario (60) a través de un piñón conductor (97) y una cadena transmisora (98). Una tuerca de bloqueo (96) de forma redonda y moleteada, situada en el extremo del eje que soporta a los discos de inercia (95), sirve para fijar y permitir el cambio de éstos con facilidad.
Los apoyos deslizables (1 1 ), sirven para facilitar el desplazamiento del dispositivo simulador y el mástil (12) para soporte de las sondas fisiológicas de los equipos médicos si se utilizan.

Claims

18REIVINDICACIONES
1.- DISPOSmVO SIMULADOR DE PRECISIÓN APUCADO AL CICLISMO especialmente desarrollado para el entrenamiento y mejora del rendimiento deportivo sobre la bicicleta particular de cada individuo. Tiene su aplicación en centros de alto rendimiento, centros de rehabilitación, gimnasios, uso doméstico y acontecimientos deportivos de ciclismo y está caracterizado porque simula una situación de practica real de competición tanto si se trata de ruta, como si io es sobre pista, gracias a la utilización de un sistema mecánico de ejes flotantes (21 a 25) que facilita toda la operatividad de la bicicleta; a un sistema electrónico de resistencia cinética (31 y 32) que crea el par resistente y emula el efecto dinámico de la masa de bicicleta y deportista; a un soporte posicinador (81 a 85) que posiciona a la bicicleta con el ángulo de la pendiente requerido; a un volante primario (60) que hace la función de rueda trasera de la bicicleta; por último a un ordenador personal (4) en comunicación permanente con la unidad electrónica de resistencia cinética, que contiene un programa especial donde se introducen los perfiles de ruta y planes de trabajo, se visualizan los parámetros derivados del ejercicio y se facilita la comunicación con otros equipos localmente o a distancia.
2.- DISPOSITIVO de acuerdo con la reivindicación , caracterizado porque el sistema mecánico de ejes flotantes (21 a 25) dispone de tres cuerpos (21 , 22 y 23) que forman 3 ejes concéntricos apoyados sobre rodamientos de bolas (24 y 25) y que gracias a su particular construcción pueden girar libremente sobre un mismo centro sin interferencias entre sí para que cada cuerpo pueda realizar su función específica con un alto rendimiento mecánico.
3.- DISPOSΓTIVO de acuerdo con la reivindicación 2, caracterizado porque el sistema mecánico de ejes flotantes (21 a 25) tiene un cuerpo principal (21 ) sujeto a la base (1 ), que sostiene al volante primario (60) a través del cuerpo flotante (23) de forma que el volante (60) trabaja suspendido y a la altura adecuada para poder girar libremente garantizando al mismo tiempo la correcta actividad del mecanismo de cambio de piñones de la bicicleta.
4.- DISPOSITIVO de acuerdo con la reivindicación 2, caracterizado 19 porque el sistema mecánico de ejes flotantes (21 a 25), tiene un cuerpo de eje primario (22) apoyado en el cuerpo flotante (23) a través de cuatro rodamientos (24) que conecta la bicicleta al dispositivo simulador utilizando el sistema estándar de blocaje rápido (16) que se emplea en las bicicletas comerciales y facilita al mismo tiempo que la bicicleta pueda tomar el ángulo de la pendiente previsto en el ejercicio.
5.- DISPOSITIVO de acuerdo con la reivindicación 2, caracterizado porque el sistema mecánico de ejes flotantes (21 a 25) tiene un cuerpo flotante (23) que se apoya en el interior del cuerpo principal (21 ), gira libremente entre éste y el cuerpo del eje primario (22) para transmitir al volante primario (60) la energía aplicada en los pedales; dispone en una de sus cabezas de una zona roscada destinada a alojar un juego de piñones (15) y sitúa, junto con el cuerpo principal, al volante primario (60) centrado en la horquilla trasera de la bicicleta
6.- DISPOSITIVO de acuerdo con la reivindicación 1 , caracterizado porque la unidad electrónica especial de resistencia cinética (31 y 32), dispone de una unidad electrónica (31 ) compuesta por una tarjeta de potencia que controla a un motogenerador (32) y que incluye una alimentación adicional que hace posible que el par resistente se ejecute desde la posición de reposo y de una tarjeta de control que contiene un microcontrolador que elabora las variables que intervienen en la función del motogenerador y se comunica con un ordenador (4) o con un terminal (5) para recibir y enviar información de las variables dinámicas que intervienen en la realización del ejercicio.
7.- DISPOSITIVO de acuerdo con la reivindicación 6, caracterizado porque la unidad electrónica de resistencia cinética (31 y 32), tiene en cuenta la perdida de peso del deportista a consecuencia del ejercicio, gracias a que a la acción combinada de la unidad electrónica (31 ) y del motogenerador (32) se añade la información periódica recibida de las células de carga (33) que controlan el peso del deportista a lo largo de la trayectoria de la biela de la bicicleta.
8.- DISPOSITIVO de acuerdo con la reivindicación 6, caracterizado porque el motogenerador (32) realiza una doble función, haciendo de motor proporcionando energía o de generador demandándola, para lograr así las variables dinámicas que influyen sobre el volante primario 20
(60) para producir el par resistente y emular el efecto dinámico de la masa.
9.- DISPOSITIVO de acuerdo con la reivindicación 1 , caracterizado porque el ordenador personal (4) incorpora un programa informático especial que contempla los siguientes apartados: permite la introducción del perfil de una etapa real, que ha sido previamente tomado con otro equipo en la propia carretera y posteriormente trasferido al ordenador bien a través de este equipo o bien desde un soporte de datos; la introducción de planes personalizados de entrenamiento directamente desde el teclado del propio ordenador, con los coeficientes de las fuerzas pasivas que intervienen en el ejercicio de una competición y que se suman al trabajo activo que ha de realizar el deportista; la conexión con otros equipos médicos que dispongan de protocolo estándar de comunicaciones (Fig. 1 1 ), para la obtención y presentación gráfica y numérica simultanea de las variables dinámicas derivadas del ejercicio y los parámetros fisiológicos del deportista (Fig. 10); la introducción de los datos personales del deportista y la generación de históricos de cada prueba realizada, que puede ser mantenido o transferido a otro ordenador si se desea; la conexión con otros ordenadores vía modem (Fig. 1 ) para permitir el control y la manipulación de los programas de trabajo desde un centro de trabajo común, a los diferentes lugares de residencia de los deportistas y por último, la posibilidad de incorporar futuros avances.
10.- DISPOSITIVO de acuerdo con la reivindicación 1 , caracterizado porque dispone de un detector de cadena (35) gracias al cual se detecta la posición de la cadena sobre la catalina de la bicicleta y así junto con los datos de potencia y fisiológicos, se conoce la relación del cambio de piñones donde se ha obtenido mejor rendimiento del deportista.
11.- DISPQSπ O de acuerdo con la reivindicación 1 , caracterizado porque dispone de un detector de biela (36) gracias al cual y junto con el detector de revoluciones (34), se conoce a través del ordenador (4) la curva de esfuerzo a lo largo de la trayectoria de la biela, lo que permite determinar si el deportista realiza un pedaleo redondo (esfuerzo regular en ambas piernas) o como lograrlo para mejorar su rendimiento
12.- DISPOSITIVO de acuerdo con la reivindicación 1 , caracterizado 21 por que el volante primario (60) dispone de una pista de frenado (61 ) en cada lateral gracias a las cuales es posible la actuación de las zapatas del freno trasero de la bicicleta para poder desacelerar la marcha del volante cuando así lo requiera el ejercicio y porque además dispone de una pista de guía y rozamiento (62) gracias a la cual se amplia la acción del volante primario (60) para servir de polea de rozamiento al freno hidráulico (90 a 93) en el módulo de bajas prestaciones (Fig. 3).
13.- DISPOSITIVO de acuerdo con la reivindicación 1 , caracterizado porque puede transformarse en un modelo de prestaciones medias sustituyendo el ordenador (4) por un terminal electrónico (5) y eliminando el soporte posicionador (81 a 85), o en un modelo de prestaciones bajas si además se sustituye el terminal electrónico (5) por un módulo de control (94) y la unidad electrónica de resistencia cinética por un freno hidráulico de cinta (90 a 93) y por un conjunto de discos de inercia (95).
14.- DISPOSITIVO de acuerdo con la reivindicación 13, caracterizado porque el freno hidráulico de cinta (90 a 93) está constituido por un pistón o bomba (90) que esta unida por una tubería flexible (91 ) a un cilindro de retorno por muelle (92) que tira de una cinta de freno (93) que rodea al volante primario (60) friccionando sobre una pista (62) formando una unidad mecánica de resistencia cinética gracias a la cual se obtiene el par resistente en el módulo de bajas prestaciones.
PCT/ES1998/000081 1995-06-08 1998-03-31 Dispositivo simulador de precision aplicado al ciclismo WO1999049942A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES09501179A ES2114440B1 (es) 1995-06-08 1995-06-08 Dispositivo simulador de precision aplicado al ciclismo.
EP98910748A EP0995466A1 (en) 1995-06-08 1998-03-31 Simulator precision device applied to cycling
PCT/ES1998/000081 WO1999049942A1 (es) 1995-06-08 1998-03-31 Dispositivo simulador de precision aplicado al ciclismo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES09501179A ES2114440B1 (es) 1995-06-08 1995-06-08 Dispositivo simulador de precision aplicado al ciclismo.
PCT/ES1998/000081 WO1999049942A1 (es) 1995-06-08 1998-03-31 Dispositivo simulador de precision aplicado al ciclismo

Publications (1)

Publication Number Publication Date
WO1999049942A1 true WO1999049942A1 (es) 1999-10-07

Family

ID=26154894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000081 WO1999049942A1 (es) 1995-06-08 1998-03-31 Dispositivo simulador de precision aplicado al ciclismo

Country Status (3)

Country Link
EP (1) EP0995466A1 (es)
ES (1) ES2114440B1 (es)
WO (1) WO1999049942A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2114440B1 (es) * 1995-06-08 1999-01-16 Alvarez Fernandez Manuel Dispositivo simulador de precision aplicado al ciclismo.
WO2001024892A2 (en) * 1999-10-06 2001-04-12 Neil Nusbaum Exercise apparatus with video effects synchronized to exercise parameters
WO2003034584A1 (en) * 2001-09-28 2003-04-24 Graber Products, Inc. Self-powered variable resistance bicycle trainer
DE102005052445B4 (de) * 2005-11-03 2009-07-30 Poddey, Alexander Verfahren zum Betrieb eines Trainingsgeräts
US10695638B2 (en) 2017-07-19 2020-06-30 Wahoo Fitness Llc Bicycle climbing and descending training device
US20220203197A1 (en) * 2020-12-24 2022-06-30 Elite S.R.L. Support device for the front wheel of a bicycle
IT202100003782A1 (it) * 2021-02-18 2022-08-18 Stepgear S R L Simulatore per allenamento ciclistico

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358105A (en) * 1980-08-21 1982-11-09 Lifecycle, Inc. Programmed exerciser apparatus and method
DE3302305A1 (de) * 1982-01-25 1983-09-08 Krieger, geb. Erfurt, Hildegard, 4800 Bielefeld Fahrradzusatz, insbesondere zu einem rennrad
US4709917A (en) * 1982-09-03 1987-12-01 Yang Tai Her Mock bicycle for exercise and training effects
WO1990010474A1 (en) * 1989-03-13 1990-09-20 Schwinn Bicycle Company Load mechanism for exercise devices
EP0403295A1 (en) * 1989-06-15 1990-12-19 Propel Partnership 1987 Electric exercise appliance
WO1992016267A2 (en) * 1991-03-14 1992-10-01 Atari Games Corporation Bicycle and motorcycle riding simulation system
ES2114440A1 (es) * 1995-06-08 1998-05-16 Alvarez Fernandez Manuel Dispositivo simulador de precision aplicado al ciclismo.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358105A (en) * 1980-08-21 1982-11-09 Lifecycle, Inc. Programmed exerciser apparatus and method
DE3302305A1 (de) * 1982-01-25 1983-09-08 Krieger, geb. Erfurt, Hildegard, 4800 Bielefeld Fahrradzusatz, insbesondere zu einem rennrad
US4709917A (en) * 1982-09-03 1987-12-01 Yang Tai Her Mock bicycle for exercise and training effects
WO1990010474A1 (en) * 1989-03-13 1990-09-20 Schwinn Bicycle Company Load mechanism for exercise devices
EP0403295A1 (en) * 1989-06-15 1990-12-19 Propel Partnership 1987 Electric exercise appliance
WO1992016267A2 (en) * 1991-03-14 1992-10-01 Atari Games Corporation Bicycle and motorcycle riding simulation system
ES2114440A1 (es) * 1995-06-08 1998-05-16 Alvarez Fernandez Manuel Dispositivo simulador de precision aplicado al ciclismo.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1983-759780 *

Also Published As

Publication number Publication date
ES2114440A1 (es) 1998-05-16
EP0995466A1 (en) 2000-04-26
ES2114440B1 (es) 1999-01-16

Similar Documents

Publication Publication Date Title
ES2387417T3 (es) Compuestos de arilvinilazacicloalcano y métodos de preparación y usos de ellos.
US5656001A (en) Eddy current trainer for bicycles or other exercise equipment
US4313602A (en) Cycle-type exerciser
US20190054360A1 (en) System and method for controlling a bicycle trainer
US7874957B2 (en) Apparatus for measuring exercise performance
S. El-Sayed et al. Carbohydrate ingestion improves endurance performance during a 1h simulated cycling time trial
US9468794B2 (en) System and method for simulating environmental conditions on an exercise bicycle
US20080096725A1 (en) Performance monitoring & display system for exercise bike
US7220219B2 (en) Bicycle treadmill having automatic speed and resistance adjustments
US6450922B1 (en) Electronic exercise system
US20150182785A1 (en) Sizing Fit Cycle
US20110118086A1 (en) Exercise device
US20150065309A1 (en) Bicycle trainer
WO1998000204A9 (en) Electronic exercise system
Noreen et al. The reliability of a simulated uphill time trial using the Velotron electronic bicycle ergometer
US5083772A (en) Exercising apparatus
WO1999049942A1 (es) Dispositivo simulador de precision aplicado al ciclismo
CN110237493A (zh) 一种具有自行车姿态控制功能的骑行模拟平台
KR101352397B1 (ko) 실내용 자전거 운동기구
CA2172900A1 (en) Fitness machine for cycle training
KR101759096B1 (ko) 마그네틱브레이크를 이용한 실내 자전거 및 그 시스템
JP4641639B2 (ja) 総合運動システム
KR100310710B1 (ko) 다용도자전거주행시스템
Friel Total heart rate training: customize and maximize your workout using a heart rate monitor
CN114042284B (zh) 一种体育训练用空气阻力模拟装置及其测试方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998910748

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998910748

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1998910748

Country of ref document: EP